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Editorial on the Research Topic

Monitoring, early warning and mitigation of natural and engineered
slopes–volume III
s

Introduction

Natural and engineered slopes are geological bodies with lateral free surfaces formed
naturally or artificially on the surface of the earth, which are widely distributed around
the world (Zhou et al., 2022; Qiu et al., 2024). Due to climate change and intensified
human activities, mountains, highways, mining areas, and reservoir slopes have become
increasingly unstable, and even gradually evolved into landslide disasters, posing a
serious threat to people’s lives, property safety and infrastructure construction (Qiu et al.,
2022; Yang et al., 2023). Recently, with the progress of slope control technology and the
development of interdisciplinary theory, new development space has been provided for the
dynamic monitoring and early warning of unstable slopes (Zhu et al., 2021; Wei et al., 2024;
Ye et al., 2024).However, large-scale and long-termmonitoring, precise risk assessment, and
low-cost disaster recovery are still worth considering (Wang et al., 2022; Liu et al., 2024).
Volume II of this Research Topic received 16 manuscripts (Qiu et al., 2023). Now, Volume
III also gathered 16 papers aimed at further introducing the latest research progress and
methods on monitoring, early warning, and mitigation of natural and engineered slopes.

Slope hazards reduction technology and
mechanism

Seven of the 16 articles in the Research Topic explored research on slope displacement
profile evaluation, landslide deformation monitoring, and the use of multiple models to
quantitatively evaluate disaster risks, aiming at providing scientific support for slope treatment
and disaster prevention. Li et al. proposed a three-dimensional nested Newmark method
(3D-NNM) within the framework of kinematic theorems in limit analysis. Compared with
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the original nested Newmark method, the results showed that
the proposed 3D-NNM can effectively evaluate the permanent
displacementprofile of slopesunder seismic action. Bai et al. proposed
a rapid evaluation method for the spatial distribution of road traffic
sections under earthquake and landslide damage based on the MDT
model. Liu et al. applied the time series InSAR method to determine
the time series deformation of the main landslide source area of
BaihetanReservoirafterwaterstorageandconductedarefinedanalysis
of the deformation monitoring results of typical source areas. Jiang
et al. inverted the depth of the active zone of the expansive soil
slope in the middle route of the South to North Water Diversion
Project using the InSARmethod, and analyzed its distribution pattern
and dynamic characteristics, providing a basis for designing slope
protectionmeasures and ensuring the safety of water channels. Zheng
et al. used FLAC3D numerical simulation experimental method to
study the effect of coupling between the surface shape of loess
slopes and the structure of coal seam cover on slope movement and
deformation. Shen et al. took Meilonggou in Danba County, Sichuan
Provinceas anexample to study the factors and triggeringmechanisms
of the formation of debris flow disaster chains in the area, which can
provide guidance for strengthening the construction of monitoring
and early warning systems in the local area. Furthermore, Zhang et al.
applied the RAMMS model to numerically simulate the movement
process of debris flows in theXigou area of theThreeGorgesReservoir
Area, and conducted a risk assessment on debris flows with different
recurrence intervals whenmultiple debris flows erupt simultaneously.

Natural disasters in different regions

Due todifferent geographical and tectonic environments, different
regions face different types of disaster risks. Four different studies have
revealed this issue. To evaluate the research focus and development
directionofglacier lakedisaster identification inplateauareas,Liuet al.
collected literature related to glacier lake disaster identification from
theWebofSciencecoreResearchTopicdatabase from1991to2023and
conducted a comprehensive bibliometric analysis. Huang et al. used
SBAS-InSAR technology to monitor subsidence disasters in complex
karst areas of mining areas. The author believed that deformation is
influenced by various factors such as elevation, slope, precipitation,
and vegetation. Li et al. discussed the spatiotemporal drought
characteristics of winter wheat and summer maize growing seasons
in the North China Plain based on the standardized precipitation
evapotranspiration index (SPEI). Results indicated the spatial pattern
of winter wheat and summer maize growth seasons is consistent
with the distribution of drought and humid conditions. Wang et al.
(2022) carried out a hydrological simulation of mountain torrents in
small basins caused by rainstorms.The results indicated that the flood
process in small watersheds has strong spatial heterogeneity, and there
exists intensity changes between flood flow and rainfall.

Ecological and environmental security

The impact of environmental factors on ecologically sustainable
development has received widespread attention from scholars. In
this issue, five studies focused on the distribution of biological

communities affected by environmental factors, the evolution of
vegetation spatiotemporal patterns, and the estimation of biomass. Xu
et al. analyzed the trendandperiodicityof theevolutioncharacteristics
of secondary suspended rivers in the lower Yellow River from
1960 to 2021 and quantitatively explored the factors affecting their
development.Mai et al. studied the abundance of eukaryotic plankton
in theDanjiangkou Reservoir and its relationship with environmental
factors. The results showed significant differences in the vertical
distribution of eukaryotic plankton community diversity, which were
influenced by factors such as pH,water temperature and other factors.
Chen et al. used a comprehensive KNDVI dataset and trend analysis
to evaluate vegetation restoration activities and changes in vegetation
spatiotemporal patterns in mining areas. The results indicated the
overall KNDVI of vegetation shows a clear positive trend, with further
improvement compared to the years 2000–2010, which is of great
significance for the ecological restoration of vegetation in the mining
area. He et al. explored the practicality of various remote sensing
inversion models for estimating grassland biomass, analyzed the
changes innationalgrasslandbiomassof theThreeRiversSourceonthe
Tibetan Plateau from 2015 to 2020, predicted future biomass trends,
and explored the potential impact of climate change on grassland
biomass. Hao et al. analyzed the efficiency of ecotourism in the Yellow
River Basin from 2015 to 2019 using a method based on super-
slacks-based measurement. The results showed that the four regional
development factors of innovation, green, openness, and sharing have
a positive impact on the efficiency of ecotourism in the Yellow River
Basin. This study is of great significance in managing ecological
constraints and improving the quality of sustainable development
of regional ecotourism.

Perspectives

The Research Topic is dedicated to applying modern remote
sensing techniques, machine learning and numerical simulation
models, integrated multidisciplinary theories to monitor natural and
engineered slopes and to warn and mitigate associated disaster
risks. However, in the context of global climate change and
intensified human activities, the in-depth study of slope failure
needs further consideration. On this basis, it provides a reference
for disaster mitigation from the following aspects. 1) Multi-
scale and multidisciplinary integration to analyze the physical
mechanism and dynamic process inside the slope; 2) Monitoring and
analysis of slope instability based on remote sensing and numerical
physical model; 3) Innovative green, efficient and sustainable
ecological restoration projects.
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As a cascading disaster, the surge caused by the reservoir bank landslide seriously
affects the stability of the reservoir bank and the dam body. In addition, large-scale
hydropower projects are usually built in mountain and canyon areas with active
geological structure movement, which provides rich material sources for the
occurrence of landslides, so it is of great significance to monitor the deformation
in the landslide source area of the reservoir. As science and technology have been
leaping forward, a wide variety of high and novel technologies have been
proposed, which can be adopted to monitor landslide deformation. It is
noteworthy that InSAR is capable of monitoring target monitoring areas all
time under all weathers without the need to install any equipment. In this
study, the time series deformation of the main landslide source area of the
Baihetan reservoir after water storage was determined based on the time
series InSAR method. The average annual deformation rate of the landslide
source area of the Baihetan reservoir from April 2021 to January 2023 was
determined by combining the Sentinel-1 SAR data of 55 ascending tracks and
46 descending tracks. Moreover, the vegetation cover variations fromApril 2021 to
January 2023 in the study areawere determined by combining the remote sensing
data of Landsat8-9. A total of four typical source areas were selected based on the
field investigation to analyze the deformation monitoring results and the
vegetation cover variations. As indicated by the results: 1) After water storage,
the slope deformation in all source areas was larger in the short term, and the
deformation rate of the lower part turned out to be more significant, and the
deformation rate exceeded 334.583 mm/year. 2) On the steep slope, the effect of
different types of vegetation on restraining deformation was different. The optimal
effect was reported in shrubs, followed by grasslands, and the worst effect was
reported in woodlands. The results of this study can provide scientific support for
the prevention and control of regional geological disasters.

KEYWORDS

SBAS-InSAR, landslide source area, deformation monitoring, vegetation coverage,
surface deformation
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1 Introduction

In general, large-scale hydropower projects are built in high
mountain canyons with developed water systems, which are affected
by significant geological tectonic activities. The topography varies
violently, and the damage degree of rock mass turns out to be
serious (Guo, 2022; Yang et al., 2023a; Yang et al., 2023b), such that
abundant material sources are provided for the occurrence of landslide.
Moreover, the deformation of the reservoir bank and slope instability will
easily occur under the large rise and fall of water level arising from
reservoir water regulation (Jiang et al., 2019), as well as the occasional
rainstorm (Liu et al., 2023; Yang et al., 2023c), earthquake (Ahmed et al.,
2023), and human engineering activities (Hu, 2017). As a cascading
disaster, the impact of landslides may be not limited to the landslide
while resulting inmore serious secondary disasters and further triggering
greater losses (Zhu et al., 2021), especially in the reservoir area. When
considerable landslide slides into the reservoir, the surge generated by it
seriously affects the stability of the bank slope and the dam (Dong et al.,
2021). In 1963, a large landslide on the bank of the Vajont dam in Italy
caused a surge that destroyed surrounding buildings, flooded the dam,
and killed over 2,000 people downstream (Bosa and Petti, 2011). In 2003,
the Qianjiangping landslide on the bank of the Three Gorges Reservoir
in China created a huge surge and blocked the river to form a barrier
lake, killing 14 people and leaving 10 missing (Wen et al., 2008).
Accordingly, researching the deformation monitoring of the reservoir
landslide source area takes on critical significance.

Deformation monitoring has been confirmed as the most direct
and effective method in the process of identifying and quantitatively
monitoring landslide disasters (Qiu et al., 2022). It is capable of
evaluating the stability of the slope by monitoring the deformation
of the slope and indicating its motion state (Li et al., 2021). As
revealed by this method, the monitoring methods primarily cover
GPS, distributed optical fiber sensing technology, InSAR, and so
forth. The GPS monitoring method is capable of providing high-
accuracy 3D deformation data for users, whereas the landslide
should be investigated in detail, and the monitoring network
should be arranged following its integral or local deformation
characteristics. Moreover, the GPS monitoring signal exhibits low
anti-interference ability in complex environments with high
densities, such that the measuring station should be opened (Ren
et al., 2020; Wang et al., 2023). The distributed optical fiber sensing
technology is capable of achieving real-time automatic remote
monitoring, and it exhibits several advantages (e.g., corrosion
resistance, electromagnetic resistance, high sensitivity, and high
precision). However, it is difficult to ensure that the optical fiber
can run normally in the laying and working processes for a long time
since it can be easily damaged by shear (Cheng et al., 2022).
Compared with the two previously proposed monitoring
methods, the InSAR monitoring method can be adopted to
conduct all-weather and all-time monitoring of the surface
without the need to install any equipment in the target
monitoring area, the monitoring coverage is wide, and the
monitoring accuracy is as high as the centimeter level to the
millimeter scale (Karaca et al., 2021; Yang et al., 2022a; Wang
et al., 2022; Ma et al., 2023).

The multitemporal InSAR technology conforms to the
conventional D-InSAR technology. The conventional D-InSAR
technique refers to a technique employing two SAR images in an

identical area at different times to examine ground deformation.
However, due to the effect of atmospheric, topographic, temporal,
and spatial decorrelation, deformation monitoring achieves a
highly limited accuracy when the conventional D-InSAR
technology is adopted for long-term micro-deformation
monitoring. Thus, the conventional D-InSAR technology can
only achieve the deformation monitoring capability of the
centimeter scale (Yun et al., 2020). To monitor the slow
deformation landslide for a long time and increase the accuracy
of deformation monitoring to the millimeter scale, SBAS-InSAR
technology has been developed using multiple SAR images in the
identical area to acquire interference image pairs with short space-
time baselines and then generate interference maps (Emil et al.,
2021; Dong et al., 2022). SBAS-InSAR technology was proposed by
Berardino et al. (Berardino et al., 2002) and has been investigated
for over two decades. The main application of SBAS-InSAR
technology is long-term monitoring of slow surface
deformation, but if this technology is applied in alpine and
canyon areas, geometric distortion will be caused by terrain
(Dai et al., 2020). Therefore, it is often necessary to employ
different SAR data or combine other techniques to reduce the
impact of geometric distortion on the results. SBAS-InSAR
technology has been employed in several studies to monitor
landslides in the Baihetan reservoir area. Before the reservoir
was impounded, Dai, K.R. et al. (Dai et al., 2022) combined the
multitemporal InSAR technology and UAV aerial survey to
identify hidden trouble points in the reservoir area. Dun, J.W.
et al. (Dun et al., 2023) identified active landslides on both banks of
the river from Hulukou to Xiangbi Ling section in the Baihetan
reservoir area before water storage using the SBAS-InSAR
technology and SAR data. Based on the SBAS-InSAR
technology, Yang, Z.R. et al. (Yang et al., 2022b) analyzed the
effect of water storage factors on the deformation trend of potential
landslide in the Baihetan reservoir area using the field survey of
unmanned aerial vehicles and the Sentinel-1 SAR data set of
ascending and descending tracks.

As the second largest hydropower station in China (Dai et al.,
2023), the Baihetan Hydropower Station is located at the junction of
Ningnan County in Sichuan Province and Qiaojia County in
Yunnan Province. It is situated in the Hengduan Mountain area
on the eastern edge of the Qinghai-Tibet Plateau. Since the Baihetan
Hydropower Station exhibits a complex geological structure and
strong tectonic movement, the rock mass in this area is fractured, the
soil is loose (Yang et al., 2023d; Zhao et al., 2023), and the geological
disasters occur frequently in this area (Li et al., 2020). The
hydropower station will store water in April 2021, and the water
level ranges from 765 to 825 m. The stability of the bank slope is
destroyed under the effect of large periodic fluctuations of reservoir
water and rainfall, such that the safety of the reservoir can be
seriously affected (Yang, 2021). Accordingly, based on the SBAS-
InSAR technology, the deformation monitoring was performed in
the landslide source area of the Baihetan reservoir using Sentinel-1A
SAR data of ascending and descending tracks from April 2021 to
January 2023. The temporal information of vegetation coverage
analyzed by Landsat8-9 remote sensing data and rainfall in the
corresponding period was concluded to analyze the deformation of
the research area, and technical support can be provided for the
relevant departments for disaster prevention and mitigation work.
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2 Overview of the study area

In this study, the Baihetan hydropower station reservoir area is
selected as the research area. The entire study area exhibits a length
of nearly 89.84 km, a width of about 38.30km, and a total area of
approximately 3440.87 km2 (Figure 1). The area is located in the
southeast margin of the Qinghai-Tibet Plateau, belonging to the
mountain canyon landform. The terrain of the area is high in the
northwest and low in the southeast, with the developing geological
fault and strong tectonic movement. Due to the effect of climate and
topography, this area pertains to a typical dry and hot valley.
Furthermore, rainfall is largely concentrated in June-October,
which is small in the valley and heavy on both sides of the river,
thus triggering considerable hidden hazards (e.g., landslides and
other geological hazards in this area) (Zhou, 2018; Dun, 2021).

3 Technical principles

3.1 SBAS-InSAR technology

The basic principle of the SBAS-InSAR technique refers to the
generation of high coherence differential interferogram by the image
of short space-time baselines. Following the relation between the
phase and observation time of highly coherent pixels, the
deformation rate of the ground surface and its time series in the
study area were determined through singular value decomposition
(SVD) (Guo et al., 2019; Feng et al., 2020). The above-mentioned
method is capable of reducing the incoherence phenomenon arising
from long spatial and temporal baselines to a certain extent and
increasing the time sampling rate of deformation monitoring (Bai,
2020). The basic process is expressed as follows:

It was assumed that N + 1 SAR images in the study area were
acquired in chronological order (t0,/, tn), one image was selected as
themain image, and the other SAR images were registered to this image.
The interference pair were combined by an appropriate space-time
baseline threshold to generate aM amplitude differential interferogram,
where M satisfies the following conditions:

N + 1
2

≤M≤
N N + 1( )

2
(1)

For the jth differential interferogram generated from the SAR
image generated from the time of the image tA and themain image tB
(tA < tB), the interference phase of the pixels having the azimuth
coordinate x and the distance coordinate r can be written as:

δφj x, r( ) � φB x, r( ) − φA x, r( )
≈
4π
λ d tB, x, r( ) − d tA, x, r( )[ ] + Δφtopo

j x, r( ) (2)
+Δφatm

j tB, tA, x, r( ) + Δφnoise
j x, r( )

Where j ∈ (1,/,M); λ denotes radar wavelength; d(tB, x, r) and
d(tA, x, r) represent the cumulated variables of the radar line-of-
sight direction relative to d(t0, x, r) � 0 at times tB and tA;
Δφtopo

j (x, r) expresses the residual terrain phase in the differential
interferogram; Δφatm

j (tB, tA, x, r) represents atmospheric delay
phase; Δφnoise

j (x, r) denotes decoherence noise.
When the residual terrain phase, atmospheric delay phase, and

noise phase were ignored, Eq. 2 was simplified as:

δφj x, r( ) � φB x, r( ) − φA x, r( ) ≈ 4π
λ [d tB, x, r( ) − d tA, x, r( ) (3)

To obtain a settlement sequence of physical significance, the
phase in Eq. 3 is expressed as the product of the average phase
velocity and time between the two acquisition times:

vj �
φj − φj−1
tj − tj−1

(4)

The phase value of the jth interferogram is written as:

∑
tB,j

k�tA,j+1 tk − tk−1( )vk � δφj (5)
where the integral of the velocity of the respective period on the time
interval of the primary and the slave images, which is written in a
matrix form:

Bv � δφ (6)
Equation 6 is a matrix. When the matrix B is a full rank or rank

deficit, the minimum norm solution of velocity vector can be
determined using the SVD method, and the corresponding
cumulative topographic variables can be obtained following the
integral of velocity in the respective period (Mehrabi, 2020; Xu
et al., 2021; Gong et al., 2022).

3.2 Calculation of vegetation coverage

In general, vegetation coverage is obtained by remote sensing or
field investigation. Despite the accuracy of the field survey, it is time-
consuming and laborious, and it does not apply to obtaining
vegetation coverage on a large scale. In contrast, remote sensing

FIGURE 1
Location of the study area.
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data exhibit high resolution and wide range, applying to the collection
of a wide range of vegetation cover information. Besides, it can be
employed for large-scale environmental monitoring and assessment.
The estimation of vegetation coverage by remote sensing was
primarily based on the normalized vegetation index (NDVI) using
the pixel binary model. The vegetation index was obtained by
processing multi-spectral image data obtained by the remote
sensing sensor. Its basic principle is to indicate the growth and
coverage of vegetation by the changes in plant chlorophyll
absorption and reflectance spectrum. To be specific, NDVI has
been confirmed as the most common and classic vegetation index
in the remote sensing estimation method of vegetation coverage,
which is largely calculated by the ratio of the infrared reflection band
to the visible band, as expressed by Equation 12. The basic principles
of the pixel binary model are illustrated as follows:

Assuming that all the information of the remote sensing sensor
can fall into two parts, i.e., the vegetation information Sv and the
vegetation cover information Ss. All information S can be
expressed as:

S � Sv + Ss (7)
It was assumed that the information of vegetation in the pixel

(i.e., vegetation coverage) is expressed as FVC, such that the
information of no vegetation coverage can be expressed as
1 − FVC. If Sveg represents the maximum vegetation cover area
in the pixel, the information Sv presented by the hybrid pixel
vegetation section may be expressed as:

Sv � FVC · Sveg (8)

Likewise, if Ssoil represents the maximum non-vegetated area in
the pixel, the remote sensing information Ss determined from the
non-vegetated part of the hybrid pixel is expressed as:

Ss � 1 − FVC( ) · Ssoil (9)

Vegetation coverage can be obtained according to the above
equation:

FVC � (S − Sveg)/ S + Ssoil( ) (10)

TABLE 1 Sentinel-1A data parameters.

Orbital direction Imaging mode Polarization mode Band Wavelength/cm Revisiting Period/d Time span

ascending IW VV C 5.6 12 2021.04.09-2023.01.29

descending IW VV C 5.6 12 2021.04.11-2023.01.07

TABLE 2 Landsat8-9 data parameters.

Data source Launch time Path and row number Revisiting Period/d Time span

Landsat 8 2013.02.11 129/40 129/41 16 2021.04.10-2023.01.26

Landsat 9 2021.09.27 129/40 129/41 16 2021.11.18-2023.01.18

FIGURE 2
Interferogram of study area. (A), (B), and (C) are interferograms generated using the ascending track data, and their time spans are 2021.04.21-
2021.04.09, 2022.02.15-2022.02.03, and 2022.12.24-2022.11.18, respectively. (D), (E), and (F) are interferograms generated using the descending track
data, and their time spans are 2021.04.11-2021.04.23, 2022.02.15-2022.02.03, and 2022.12.24-2022.11.18, respectively.
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Substitute NDVI to:

FVC � (NDVI −NDVIveg)/ NDVI +NDVIsoil( ) (11)

NDVI Value Calculation:

NDVI � NIR − R( )/ NIR + R( ) (12)

where NIR denotes the reflectance in the near-infrared band; R
represents the reflectance in the infrared band (Chen and Lin, 2019;
Feng et al., 2023).

4 Experimental data and processing

4.1 Data sources

To conduct a more precise analysis of the deformation trends in
the study area after impoundment, we gathered Single Look
Complex (SLC) images from the European Space Agency (ESA)
spanning from April 2021 to January 2023. The data set includes
55 ascending track and 46 descending track data, as indicated in
Table 1. The entire data set covers the time period from the onset of
water storage at Baihetan Hydropower Station (April 2021) to the
beginning of the study (January 2023). It provides us with the most
comprehensive deformation data to enhance the accuracy of InSAR
results. To further improve the orbit accuracy of the satellite and
remove the effect of the topographic phase, the corresponding
Copernicus Sentinel Precise Orbit Ephemerides Data (POD)

issued by ESA and the Digital Elevation Model (DEM) with the
spatial resolution of ALOS World 3D-30 m issued by Japan
Aerospace Exploration Agency (JAXA) were introduced.

Optical image data are obtained from the United States
Geological Survey (USGS) free download of 54 views of Landsat
8 and 34 views of Landsat 9. To be specific, Landsat 8 and Landsat
9 achieved an 8-day offset. The data parameters are shown in
Table 2.

4.2 Data processing under SBAS-InSAR
technology

The image data was processed by SBAS-InSAR technology, the
data was imported and cut, the maximum percentage of critical
baseline was 5%, and the maximum time baseline was 36 days, and
the interference image pairs of ascending track 156 pairs and
descending track 122 pairs co-existed. To suppress the speckle
noise, the interference workflow was processed by the Minimum
Cost Flow deconvolution method and the Goldstein filtering
method. After adjusting and eliminating the unideal image pair,
the interference graph of the research area was generated, and some
ideal interference graph is shown in Figure 2.

The orbit was refined and re-flattened, and the deformation
rate and residual topography were estimated through the first
inversion. Based on the second inversion, the atmospheric phase
was estimated and removed to obtain the final displacement
result in a purer time series. Finally, after the sequence

FIGURE 3
Results of LOS direction deformation rate in study area. (A) InSAR deformation rate map with ascending Sentinel-1A images from April 2021 to
January 2023. (B) InSAR deformation rate map with descending Sentinel-1A images from April 2021 to January 2023.
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information was geocoded, the result of the deformation of the
ascending and descending tracks in the LOS direction from
9 April 2021 to 29 January 2023 in the study area was
obtained (Figure 3).

Compared with Figures 3A,B, the deformation information
detected by the ascending track data was more abundant and
largely concentrated on the east bank of Jinsha River. Its whole
deformation rate ranged from −176.987 mm/year to 157.173 mm/

FIGURE 4
Vegetation coveragemap of study area. (A) is the vegetation coverage in 2021.12.14, and the data is from Landsat 9. (B) is the vegetation coverage in
2023.01.10, and the data is from Landsat 8.

FIGURE 5
Location of typical source areas and results of field investigation. (A) is the field investigation of Sunjialiang Tunnel slope. (B) is the field investigation
of Jiefangcun Tunnel slope. (C) is the field investigation of Yingdiliangzi Tunnel slope. (D) is the field investigation ofQiluogou Tunnel slope. In (E), PA is the
location of Sunjialiang tunnel slope; PB is the location of Jiefangcun tunnel slope; PC is the location of Yingdiliangzi tunnel slope; PD is the location of
Qiluogou tunnel slope.
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year. However, the deformation information detected by the
descending track data was less, and the whole deformation rate
ranged from −141.468 mm/year to 116.424 mm/year. Since the
satellite flies from south to north while collecting the ascending
track data, and the opposite is true when collecting the descending
track data, the radar line of sight of both was located on the right
side, and the research area was located in the high mountain gorge.
The high mountain position on both sides of the satellite resulted in
serious geometric distortion phenomena (e.g., shadow, overlay and
perspective contraction) in the deformation monitoring process of
the ground surface using InSAR technology. Therefore, it is
necessary to combine the ascending and descending data for
analysis in a complementary manner.

4.3 Data processing of vegetation coverage

The data downloaded in this study were corrected by the
atmosphere and then calibrated through radiation. The image
can be directly mosaic and cut, and NDVI and FVC were
calculated. Because the study area is often obscured by clouds,
some data that are too heavily obscured by clouds to be useable
have been eliminated. The vegetation coverage of the study area is
shown in Figure 4. Following the actual situation in the study area,
the vegetation coverage in the area fell into four grades, i.e., low
vegetation coverage (45%), medium vegetation coverage (45%–
60%), medium and high vegetation coverage (60%–75%), as well
as high vegetation coverage (75%) (Huang et al., 2023).

5 Results and analysis

5.1 Study object selection

The tunnel slopes located in four typical source areas were
selected as the research objects, i.e., Sunjialiang Tunnel Slope,
Jiefangcun Tunnel Slope, Yingdiliangzi Tunnel Slope, and

Qiluogou Tunnel Slope (Figure 5) through field investigation
following the actual situation of the reservoir area of Baihetan
Hydropower Station.

Except Qiluogou Tunnel slope is composed of gravel soil
landslide, other research objects are soil landslide, and their
vegetation conditions are also different. Table 3 lists the basic
information of the research objects:

When the satellite was collecting data, if the satellite’s local
incident angle was smaller than the residual angle of the slope angle,
the resolution was further improved, and deformation monitoring
was optimal in this area (Zhu et al., 2022). To reduce the geometrical
distortion in the scanning and imaging process of the Sentinel
satellite and acquire more accurate deformation information of
the radar line of sight, different data were selected to analyze the
deformation characteristics of the slope according to the different
slope orientations of each side, the relationship between the slope
and the local incidence angle of the sentinel satellite, and the
difference in the flight direction of the satellites collecting the
ascending and descending tracks data. The selection results are
shown in Table 4.

5.2 Sunjialiang Tunnel

Sunjialiang Tunnel is 2096 m long, and the deformation rate of the
side slope is presented in Figure 6A, and the whole deformation rate
ranged from −96.755 mm/year to 30.471 mm/year. The optical remote
sensing image was observed, and three characteristic points (i.e., PA1,
PA2, and PA3) in the range of heart-shaped landslides were selected. To
be specific, PA1 was located in the upper part of the slope, i.e., the area
with the maximum deformation rate of the landslide. Its average
deformation rate was −82.622 mm/year. PA2 was positioned in the
middle of the slope, and the average deformation rate reached
4.886 mm/year. PA3 was located in the lower part of the slope with
an average deformation rate of 16.583mm/year. When rainfall varied
significantly, the vegetation coverage on the landslide fluctuated less,
usually between 0.15 and 0.25 (Figure 6C).

TABLE 3 Basic information of study objects.

Number Study object Overview of surface Substrate vegetation

PA Sunjialiang Tunnel Slope soil sparse grass

PB Jiefangcun Tunnel Slope soil wood

PC Yingdiliangzi Tunnel Slope soil shrub

PD Qiluogou Tunnel Slope gravel soil grass

TABLE 4 Selection results.

Number Study object Slope orientation Satellite local incidence Angle/° Select results

PA Sunjialiang Tunnel Slope west 38.466 descending

PB Jiefangcun Tunnel Slope east 38.397 descending

PC Yingdiliangzi Tunnel Slope southeast 43.408 ascending

PD Qiluogou Tunnel Slope northeast 38.377 descending
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Under the effect of the water impoundment, the three
characteristic points all declined significantly in the direction of
LOS in April 2021, and then stabilized. Subsequently, under the
effect of a rainstorm in July of the same year, PA1 displayed a
downward trend in the direction of LOS, while PA2 and PA3 tended
to be increased. From February to August 2022, the upper part of the
landslide slipped and deposited into the soil mass in the middle and
lower part of the landslide, which continued to slip under the action
of rainfall and its gravity, and points PA2 and PA3 showed a
downward trend in this period. However, because the upper part
of the slope was in an unstable sliding state, considerable soil
accumulated in the middle and lower part of the slope.

5.3 Jiefangcun Tunnel

Jiefangcun Tunnel is 766 m long, the deformation rate of the side
slope is presented in Figure 7A, and the whole deformation rate
ranges from −1.508 mm/year to 59.830 mm/year. The area was
divided into four parts along the topographic direction, and
feature point PB1 was selected from the upper part, feature point
PB2 was selected from the middle south, feature point PB3 was
selected from the middle north and feature point PB4 was selected
from the lower part. As depicted in Figure 7B, the trends of PB1,
PB2, and PB3 were consistent, and PB4 point shape variable was the
most obvious among the four characteristic points, up to

FIGURE 6
Deformation result and vegetation coverage of Sunjialiang tunnel
slope. (A) is the annual average deformation of Sunjialiang tunnel slope
using the descending track data. (B) is the time series deformation of
selected feature points on Sunjialiang tunnel slope and rainfall
from April 2021 to January 2023. (C) is the variation of vegetation
coverage and rainfall in Sunjialiang tunnel slope from April 2021 to
January 2023.

FIGURE 7
Deformation result and vegetation coverage of Jiefangcun
tunnel slope. (A) is the annual average deformation of Jiefangcun
tunnel slope using the descending track data. (B) is the time series
deformation of selected feature points on Jiefangcun tunnel
slope and rainfall from April 2021 to January 2023. (C) is the variation
of vegetation coverage and rainfall in Jiefangcun tunnel slope from
April 2021 to January 2023.
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81.142 mm. As depicted in Figure 7C, the change of vegetation cover
in this area was positively correlated with rainfall.

Field investigation suggested that the slope of the upper part of
the slope was slow, covered with dense woodland, and the vegetation
coverage was relatively high, such that it can effectively intercept
rainwater and reduce the impact of rainfall on the slope, thus
effectively inhibiting the deformation of the slope. In addition,
the root system of the woodland was well developed, which can
effectively fix soil and further enhance the stability of slope. In
contrast, although the woodland has a certain deformation-
inhibiting effect, the slope of the lower slope was steep, and the
vegetation coverage was high, which resulted in the lower dead
weight, and the slope deformation turned out to be more obvious.

5.4 Yingdiliangzi Tunnel

Yingdiliangzi tunnel is 1144 m in length, and the
deformation rate of the side slope is shown in Figure 8A, and
the whole deformation rate ranges from −41.211 mm/year to
29.227 mm/year. The deformation information of the northeast
side slope in this area is too little, and most of the deformation
information is mainly concentrated on the south side slope. The
southward slope in this area was further subdivided into
southwest slope and southeast slope, the characteristic point
PC1 was selected from the upper part of the southwest slope, and
the characteristic point PC2 was selected from the lower part.
The characteristic point PC3 was selected from the upper part of

FIGURE 8
Deformation result and vegetation coverage of Yingdiliangzi
tunnel slope. (A) is the annual average deformation of Yingdiliangzi
tunnel slope using the descending track data. (B) is the time series
deformation of selected feature points on Yingdiliangzi tunnel
slope and rainfall from April 2021 to January 2023. (C) is the variation
of vegetation coverage and rainfall in Yingdiliangzi tunnel slope from
April 2021 to January 2023.

FIGURE 9
Deformation result and vegetation coverage of Qiluogou tunnel
slope. (A) is the annual average deformation of Qiluogou tunnel slope
using the descending track data. (B) is the time series deformation of
selected feature points on Qiluogou tunnel slope and rainfall
from April 2021 to January 2023. (C) is the variation of vegetation
coverage and rainfall in Qiluogou tunnel slope from April 2021 to
January 2023.
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the southeast slope, and the characteristic point PC4 was
selected from the lower part. To be specific, the average
deformation rates of the characteristic points PC1, PC2, PC3,
and PC4 reached −27.881 mm/year, −12.399 mm/
year, −18.371 mm/year, and −0.632 mm/year, respectively.
There is a positive correlation between vegetation coverage
and rainfall in this region (Figure 8C).

As indicated by the time series deformation of characteristic
points, the variation trend of the above-mentioned four points was
nearly identical, and the variation of shape variable showed a
correlation with the variation of rainfall. During the rainy season,
because of the increase in rainfall, the soil was loosened and flowing
due to water infiltration, thus the deformation of the slope displayed
a downward trend. On the contrary, during the dry season, the
moisture was absent, and the deformation of the slope displayed an
upward trend. Moreover, the upper deformation variable of the two-
way slope was larger, and the whole slope was in a sliding state.
Furthermore, as indicated by the result of the field investigation,
PC2 point was in the area of the landslide trace, and the soil body
near PC1 point and its upper part was accumulated at the upper edge
of the landslide trace.

5.5 Qiluogou Tunnel

The total length of Qiluogou tunnel is 1582m, and the
deformation rate of the side slope is shown in Figure 9A, and
the whole deformation rate ranges from 2.543 mm/year to
66.273 mm/year. The area is divided into southeast side slope,
east side slope and north side slope according to the slope
direction. Since the slope of the east side slope is steep, the
deformation information on the east side slope was less, while
the north side slope is far from the Jinsha River. Therefore, the
characteristic point PD1 was selected on the ridge of this area,
the characteristic point is PD2 in the middle of the southeast

slope and PD3 in the lower part of the southeast slope. The
average deformation rates of PD1 and PD2 approximately
reached 32.859 mm/year and 34.634 mm/year, respectively.
Figure 9C shows that there was a positive correlation between
vegetation coverage and rainfall.

As indicated by the time series deformation of characteristic
points, the deformation trend of PD1, PD2 and PD3 points was
consistent, and the whole trend of uplift arose after settling due
to water storage. However, the deformation of the respective
point is different. The closer it is to the lower characteristic
point, the more susceptible the deformation will be to the rainy
season. When rainfall was increased, the lower part displayed a
downward trend compared with the middle and upper parts.
When rainfall declined, the lower part showed a rising trend
compared with the middle and upper parts. In addition, the area
was covered by grassland. Although the vegetation coverage was
high, slope deformation cannot be effectively restrained due to
steep slope and underdeveloped root system, such that the slope
deformation turned out to be more significant.

6 Discussion

SBAS-InSAR technology has been proved to be a valuable
method for monitoring landslide deformation (Yang et al.,
2022a; Dai et al., 2022; Dun et al., 2023; Guo et al., 2023),
which can effectively monitor surface deformation and reveal
the spatial distribution of landslide source area. The comparison
with several papers (Yang et al., 2022b; Guo et al., 2023) shows
that the deformation trend in the reservoir area of Baihetan
Hydropower Station is consistent in the same time period and
within the same research scope, which effectively supplements
the deformation monitoring in the reservoir area of Baihetan
Hydropower Station. In addition, the influence of rainfall and
vegetation on slope stability is discussed by combining the

FIGURE 10
Time series deformation of lower slope under different vegetation coverage from April 2021 to January 2023. PB4 is located in the lower part of the
Jiefangcun tunnel slope, which is covered by woodland. PC4 is located in the lower part of the Yingdiliangzi tunnel slope, which is covered by shrubs.
PD4 is located in the lower part of the Qiluogou tunnel slope, which is covered by grassland.
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rainfall and vegetation coverage and the deformation trend of
four typical landslide source areas.

Rainfall is one of the important factors affecting the stability of
bank slope. When the rainy season comes, considerable rain will
penetrate the soil, increasing the saturation degree of the soil, such
that the internal pressure of the soil is increased. If the saturation
degree of the soil exceeds a certain degree, it will cause the
liquefaction or flow of the soil, which will lead to the destruction
of the bank slope. In addition, rainfall may also cause surface erosion
and erosion of the bank slope of the reservoir, and aggravate the
stability of the slope.

The effect of different vegetation on restraining slope
deformation is different. To explore this difference, we selected
the time series deformation data of B4 points at the lower part of the
Jiefangcun tunnel slope, C4 points at the lower part of the
Yingdiliangzi tunnel slope, and D4 points at the lower part of the
Qiluogou tunnel slope for comparative analysis (Figure 10). It can be
seen from Figure 10 that C4 has the smallest deformation and B4 has
the largest deformation. This indicates that shrub vegetation has the
best effect on restraining slope deformation, followed by grassland,
while woodland has the worst effect and may even promote slope
deformation. The root system of the shrub is more developed than
that of grassland, which can effectively restrain the deformation of
slope. Although the root system of forest land is developed, its own
weight is larger, which increases the own weight of slope, but
promotes the occurrence of slope deformation.

7 Conclusion

In this study, the deformation results of the study area from
9 April 2021 to 29 January 2023 were obtained using SBAS-InSAR
technology and Sentinel-1 SAR data of the ascending and
descending tracks. The vegetation coverage in the study area was
extracted using Landsat8-9 remote sensing data. The deformation
characteristics of four typical source areas were analyzed by
combining rainfall data. The following conclusions were obtained.

(1) The deformation rate of four typical source areas in the LOS
direction ranged from −96.755 mm/year to 66.273 mm/year.
Since the reservoir began to fill in April 2021, the slope of the
respective source area had a large deformation in a short period,
especially the lower part of the slope turned out to be more
significant, and the deformation rate exceeded 334.583 mm/
year.

(2) Except for the slope of the Sunjialiang tunnel, the change trend
of vegetation coverage in the other three typical source areas was
similar, and all showed a positive correlation with rainfall. The
lower slope of these three typical source areas was steep. As
indicated by the result of the comparative analysis, the
restraining effect of different types of vegetation on slope
deformation was different. Compared with grassland, the
root system of shrubs was developed, such that the inhibition
effect on the slope deformation was optimal. Although the
woodland has a developed root system and good rainfall
interception effect, it exerts the worst inhibition effect on
slope deformation for its relatively large dead weight.
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Minerals Exploration, Chongqing, China
On June 18, 2018, under the influence of heavy rainfall, a debris flow disaster

broke out in Xigou village of the Three Gorges Reservoir Area in Chongqing,

causing some residential houses to be buried along with great economic losses.

The on-site investigation found many loose solid material sources in the debris

flow gully. Under the conditions of heavy rainfall, debris flows are prone to occur

again, which would seriously threaten the lives and property of nearby residents.

In this paper, taking the Xigou debris flow as a research case, numerical

simulation by rapid mass movements simulation (RAMMS) is used to invert the

movement process of the 2018 debris flow event; the dynamic calculation

parameters of the Xigou debris flow event are obtained; a quantitative hazard

prediction of debris flows with different recurrence intervals (30, 50, and 100

years) is carried out in the study area; and risk assessment is conducted based on

the vulnerability characteristics of the disaster-bearing bodies in the study area.

The results show that the maximum accumulation thickness of debris flow in the

30-year, 50-year, and 100-year recurrence intervals is 6.54 m, 10.18 m, and

10.00m, respectively, and the debris flow in the 100-year recurrence interval has

the widest influence range and greatest hazard. The low-, medium-, and high-

risk areas account for 75%, 23%, and 2%, respectively. The high-risk area mainly

includes some buildings near the #1 and #2 gullies. This study provides support

for the prevention and control of potential debris flow disasters in Xigou village

and a scientific basis for disaster prevention and mitigation in the Three Gorges

Reservoir area.

KEYWORDS

Three Gorges Reservoir Area, debris flow, RAMMS, analysis of movement
characteristics, risk assessment
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1 Introduction

Debris flow is a common geological disaster in the mountainous

areas of Southwest China. Characterized by high speed, suddenness,

and high energy, it often causes serious economic losses and

casualties (Yu et al., 2010; Tang et al., 2012; Zou et al., 2020; Qin

et al., 2022; Dai et al., 2023a; Dai et al., 2023b). The Three Gorges

Reservoir area has large undulating topography, complex strata and

lithology, intense geological tectonic activities, frequent extreme

rainfall events, and intense human activities (engineering

constructions) (Yin et al., 2020; Zou et al., 2023), which have

created favorable conditions for debris flows in the area. The

population of the Three Gorges Reservoir area has grown more

concentrated after the area’s resettlement project. After a debris

flow occurs in a resettlement area, it could cause huge losses of life

and property (Wang et al., 2018; Zhang et al., 2019; Guo et al., 2020;

Zhang et al., 2021; Qiu et al., 2022; Zhang et al., 2022; Dai et al.,

2023c; Pei et al., 2023). Many mountain towns in China are located

on the joint alluvial fans of multiple and adjacent past debris flows

(Cui et al., 2013). During heavy rainfall, multiple debris flows can

easily break out at the same time, leading to disasters of various

forms. In addition to direct dynamic impact destruction, debris

accumulation, and subsequent damage induced by lifeline

destruction and chain-reaction disasters that occur due to river

blockages. Therefore, it is urgent to clarify the movement process of

debris flows and evaluate the hazard and risk areas for the

prevention of debris flow disasters in the Three Gorges

Reservoir area.

Debris flow disaster risk refers to the likelihood of loss of human

life, property, economic activities, etc., due to a debris flow disasters

within a certain area within a certain time (Liu et al., 2012). The

core of risk assessment is hazard and vulnerability assessments of

debris flows. As computer technology and numerical calculation

methods have advanced, numerical calculations can not only reflect

the velocity variation characteristics of debris flows but also yield

intuitive information such as the influence range of debris flows,

and are an effective method for the quantitative debris flow

hazard assessment.

In recent years, scholars have performed much research on the

hazards and risk assessment of debris flows (Ouyang et al., 2019; Lai

et al., 2021; Wang et al., 2022; Dai et al., 2023c), and proposed

various methods and models to carry out risk assessments of single-

gully debris flows. Zhang et al. (2014) applied FLO-2D to simulate

three debris-flow gullies in Qingshuigou, Zuizizigou, and

Duanheba, and achieved good results. Gentile et al. (2008)

assessed the hazard degrees of four types of debris flow by

analyzing the hazards of debris flows in southern Italy. Calvo and

Savi (2009) proposed a method for risk analysis of debris flow-

prone areas, applied Monte Carlo procedures to debris flows in

Valtellina in the Alps, and explored the impact of different

vulnerability functions on risk.

Many scholars have carried out debris flow simulations and

achieved valuable results, but most of the research has focused on

the risk assessment of a single-gully debris flow and have rarely

considered the harm caused by the simultaneous eruption of
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multiple debris flows. Although the method of hazard and

vulnerability has been widely used in the risk assessment of single

natural disasters, there are still many challenges for the risk

assessment of complex disasters.

In this paper, taking the Xigou debris flows in the Three Gorges

Reservoir area as a research case, numerical simulation by RAMMS

is used for the inversion of the movement process of the 2018 debris

flow event. The dynamic calculation parameters of the debris flow

in Xigou are obtained; a quantitative hazard prediction of debris

flows with different recurrence intervals (30, 50, and 100 years) in

the study area when debris flows simultaneously break out in

multiple gullies is carried out; and risk assessment is conducted

based on the vulnerability characteristics of the disaster-bearing

body in the study area. This study can provide empirical and

theoretical support for the prevention and control of debris flow

disasters in Xigou village and can serve as a reference for the

prevention and control of debris flow disasters in the Three Gorges

Reservoir area.
2 Geological background of the
study area

The Xigou debris flow is located inWushan County, Chongqing

(31°09′16″ N, 109°58′34″ E). The terrain of the study area is high in

the north and low in the south, with an altitude of 265-1890 m. The

terrain is steep at the top and gentle at the bottom. The upper part of

the valley has steep slopes (30° to 50°), and the lower part has gentle

slopes (10° to 20°). There are three debris-flow gullies in this area.

The basins of the #1, #2, and #3 debris-flow gullies are all

rectangular in shape. The valley trend is 10° southeast, the cross-

section has a V shape, the channel is straight, and the overall basin

area is approximately 0.479 km² (Figure 1). The topographic

information of the debris flow basin is shown in Table 1.

The study area is located in the southeast flank of the Qiyaoshan

anticline, with a monoclinic output. The strata occurrence is 160-

180°∠45-58°. No faults are developed. The strata distributed in this

area are the Quaternary artificial filling soil (Q4
ml), Quaternary

Holocene landslide accumulation layer (Q4
del), Quaternary colluvial

soil layer (Q4
col+dl), and Quaternary Pleistocene alluvial-diluvial

layer (Q4
al+pl). The exposed bedrock is mainly Triassic Badong

Formation (T2b) mudstone, fractured marl, and Lower Triassic

Jialingjiang Formation (T1j
4) limestone. Some weak interlayers and

loose accumulation layers are distributed in each channel, providing

good material source conditions for the formation of debris flows.

The study area has a subtropical monsoon humid climate, with

an annual average temperature of 18.4 °C, an annual average rainfall

of 1066.22 mm, a maximum annual rainfall of 1509.9 mm, a

maximum monthly rainfall of 445.9 mm (September), and a

maximum daily rainfall of 384.6 mm (August 31, 2014), and

68.8% of the rainfall occurs in the rainy season (May-September).

From January to August in 2018, the cumulative rainfall was 824.8

mm, and the cumulative rainfall in June reached 194.2 mm, far

exceeding the historical average rainfall of June (Figure 2), which

provided external triggering conditions for the debris flow.
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On June 18, 2018, Wushan County suffered continuous heavy

rainfall adding up to 174.3 mm. Due to the rainfall, many small

landslides occurred on the rear edge of the slope and accumulated in

the ditch to mix with the rainwater in the ditch, resulting in debris

flow disasters. According to the movement characteristics of the

debris flow in gully #2, there are three areas: formation area,

movement area, and accumulation area. There is a landslide area

in the formation area (Figure 1).

In the formation area, the elevation is mainly 310-560 m, the

slope is approximately 30°, and the overall area is approximately

0.448 km2. The overburden layer on the slope surface is mainly

gravel soil of avalanche deposits, the thickness of the soil layer is

approximately 20 m, and the strongly weathered bedrock is exposed

locally. The phenomenon of collapses and shallow landslides in this
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area is relatively serious, providing much loose solid for

debris flows.

The movement area stretches 135 m long, mainly located

between the elevation of 310 m and the debris flow channel outlet.

The channel is generally narrow and straight, which is conducive to

the rapid flow of debris. Many deposits can be seen along the valley in

this area, resulting in a significant narrowing of the channel and

obvious signs of erosion on the sidewall and bottom of the channel.

The accumulation area is located near the debris flow channel

outlet. With flat terrain and an open space, it is shaped like a fan and

spans approximately 6,643 m2. This area is where residential houses

and infrastructure are concentrated.

Geographically, gullies #1, #2, and #3 are located from west to

east. Since the three debris-flow gullies are adjacent and are located
TABLE 1 Topographic information of #1, #2, and #3 debris-flow gullies.

Name Basin area (km2) Length (km) Elevation difference (m) Average slope (°) Vegetation cover (%)

#1 0.111 0.76 260 27 75

#2 0.159 0.81 280 29 70

#3 0.209 0.87 255 26 80
FIGURE 2

Monthly and cumulative rainfall in the study area in 2018. Modified according to reference Dai et al., 2023c.
FIGURE 1

Geographic location and movement zones of the Xigou debris flow.
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on the same slope, their valley characteristics and topography are

relatively similar. In short, the debris flow channel is narrow and

straight, the elevation difference is nearly 300 m, the slope is steep,

and the rock mass is severely weathered. There are serious collapses

and shallow landslides in the upper reaches of the gully, and much

loose soil remains in the gully, which provides a rich solid material

source for the formation of debris flows. Seasonal rainfall varies

widely in this area, with abundant rainfall in summer, accounting

for approximately 65% of the annual rainfall, when the area is prone

to landslides, debris flows, and other disasters. The topography,

provenance, water source, and other conditions of the study area are

conducive to the formation of debris flows. Therefore, the study

area has the conditions for the eruption of debris flows. Affected by

extreme rainfall and human activities (engineering constructions)

in recent years, slope erosion and soil erosion have intensified, and

the amount of loose solid material sources has increased greatly,

resulting in a possible decrease in the critical rainfall intensity that

will trigger debris flows and an increase in the frequency of

debris flows.

At present, some villagers in Xigou village live on slopes and at

the debris flow channel outlet. Once debris flows erupt, many

people’s lives and property can be lost. Therefore, it is very

important to carry out disaster risk assessments of debris flows in

Xigou village.
3 Numerical simulation and inversion
of the Xigou debris flow

On June 18, 2018, a debris flow disaster occurred in gully #2 in

the study area. In this section, we reproduce the 2018 debris flow

event by numerical simulation, and reasonable calculation

parameters and calculation models are obtained by inversion.

Finally, the validated parameters and model are used to predict

the scope of the influence of debris flows with different recurrence

intervals and risk assessments.
3.1 Introduction to RAMMS

The RAMMS software was developed by the Swiss Federal

Institute for Snow and Avalanche Research. It is mainly used to

simulate the whole process of avalanches, collapses, debris flows,

and shallow landslides from initial failure to movement and

accumulation on 3D terrain. The DEBRIS-FLOW module (that is,

the debris flow module) in the software can predict the spatial

distribution of data, such as debris flow movement paths, flow

velocities, flow depths, and pressure, allowing for better numerical

simulation of the movement of debris flows (Christen et al., 2010).

In the RAMMS model, debris flow is regarded as a fluid with

rheological properties. The Voellmy–Salm rheological continuum

model is used to address rheological problems, the laws of material

energy and motion transformation are used to address the

movement and accumulation process of debris flow, and the
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random kinetic energy (RKE) model is used to make additional

adjustments. In this study, the dynamic characteristics of the

parameters are analyzed to obtain the desired simulation results.

3.1.1 Voellmy–Salm rheological model
The movement characteristics of debris flows are determined by

two main parameters: the debris flow depth H (x, y, t) and the flow

velocity U (x, y, t). The flow depth is expressed as follows:

∂t H + ∂x (HUx) + ∂y (HUy) = Q(x, y, t) (1)

where H represents the fluid height (m) and Q(x, y, t) is the

mass source [kg/(m2·s)]; Q = 0 means no material deposition.

The flow velocity is expressed as follows:

∥U ∥ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
x + U2

y

q
(2)

where ∥U ∥ means the absolute average velocity U, so as to

make sure that U is a strictly positive velocity in the vector space.

The direction of fluid velocity is:

nU =
1

∥U ∥ (Ux ,Uy)
(3)

The frictional resistance of the Voellmy–Salm rheological

model is determined by the following Equations:

Sf = (Sfx + Sfy) (4)

Sfx = nUx½mgzH +
g ∥U ∥2

x
� (5)

Sfx = nUy½
mgzH + g ∥U ∥2

x
� (6)

In each Equation, x, y, and z are the coordinates in the Cartesian

coordinate system, with x, y being the surface coordinates and z

being the elevation; U is the average velocity of the debris flow; Sf is

the frictional resistance; m is the Coulomb friction coefficient; x is

the turbulent flow friction coefficient; t is the movement time of the

debris flow; and g is the acceleration due to gravity.

3.1.2 RKE model
The RKE model can make real-time adjustments to correct the

debris flow simulation process. Due to the chaotic change in the

fluid velocity and direction, the RKE model divides the flow velocity

U into the average velocity and the instantaneous velocity. The flow

velocity in the x and y directions is the vector sum of the average

velocity and instantaneous velocity, and the average velocity in the z

direction is set to 0 to better represent the real-time movement

characteristics of the debris flow (Christen et al., 2010). In the RKE

model, the friction coefficient m and turbulence coefficient x play

important roles.

The friction coefficient m equals:

m(R) = m0exp( −
R
R0

) (7)
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The turbulence coefficient x equals:

x(R) = x0exp(
R
R0

) (8)

where  m0 is the static dry Coulomb, x0 is the turbulence

friction coefficients, R0 is a constant (defined as the exponential

growth rate of friction representing a random kinetic energy density

function), and R is the depth-averaged random kinetic energy.
3.2 Numerical simulation of debris-flow
gully #2

Based on unmanned aerial vehicle (UAV) aerial imagery data, a

digital elevation model (DEM) with a resolution of 0.98 m was

established. After importing the digital elevation model into

RAMMS software, the grid size was set to 2 m, and the basin

range and material source area were delineated. According to the

actual situation, a value is assigned to the material source thickness,

the simulation parameters are adjusted, and the three-point method

is used to generate a flow curve (detailed parameters in Table 2).

According to the on-site investigation, debris flowed out from

the side of the residential building and accumulated in a fan shape at

the debris flow channel outlet (Figures 3A, B). Figure 3B shows the

damage to the residential building when the debris flows occurred

in 2018. The residential building was hit by the debris flows from
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the front. Doors, windows, and walls were severely damaged, and

one wall was partially damaged. The first floor was buried. The

debris flows accumulated behind the residential building with a

thickness up to 2 stories high.

The thickness of the simulated debris flow in Figure 3C is 5.74

m, and the simulated debris flow is located near the northeast

corner of the residential building, which is basically consistent with

the actual accumulation range and thickness of the 2018 debris flow.

Therefore, the 2018 debris flow event as reproduced using the

current calculation model and parameters has good accuracy

and reliability.

For the 2018 debris flow event, the debris flow depths at t=0 s,

80 s, 160 s, 240 s, 320 s, and 400 s are shown in Figure 4. Initially, the

debris flow does not move, and the depth of the debris flow at t=0

represents the thickness of the unstable material source in the gully.

In the landslide area at the end of the formation area, the

phenomena of collapse and shallow landslides are more serious,

and there are many loose solid material sources, so the material

source in the landslide area is relatively thick. At t=80 s, the head of

the debris flow passes through the movement area to the channel

outlet, and the debris flow entrains many loose solids in the

landslide area to flow downstream and accumulate in the narrow

movement area. At t=160 s, the head of the debris flow rushes out of

the channel outlet and hits nearby residential buildings, damaging

some residential buildings. At t=240 s, with the continuous

movement of the debris flow, the head of the debris flow, after
TABLE 2 Inversion parameters of the 2018 debris flow event.

Density r (g/cm3) Gravity g (m/s2) Average slope y (°) Friction coefficient m Turbulence coefficient x

1.61 9.8 29 0.25 300
A B

C

FIGURE 3

Photographs of the 2018 Xigou debris flow event. (A) Actual accumulation pattern. (B) Damage to residential buildings. (C) Simulated accumulation pattern.
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being blocked by the residential building, flows in two directions on

the rear and the east side of the residential building. At t=320 s, the

debris flow reaches the flat area and gradually accumulates in the

rear and east of the residential building. At t=400 s, the debris flow

stops moving. At this time, the debris flow depth is the

accumulation thickness, and the debris flow forms a fan-shaped

accumulation area at the channel outlet. The maximum

accumulation thickness is 5.74 m, which happens near the

northeast corner of the residential building.
Frontiers in Ecology and Evolution 0626
4 Prediction and analysis of debris
flow in the study area
In this paper, the rain-flood method is used to calculate the peak

flow of debris flow. If debris flow and heavy rain occur at the same

frequency and synchronously, the peak storm water flow in the sub-

basin at different frequencies of the section is first calculated

according to the hydrological method, and then the blockage
A B

D

E F

C

FIGURE 4

State of the Xigou debris flow at different times. (A) t=0 s, (B) t=80 s, (C) t=160 s, (D) t=240 s, (E) t=320 s, (F) t=400 s.
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factor is chosen to calculate the debris flow according to the

following Equation:

Qc = (1 +∅ )QpDc (9)

where Qc is the peak flow of debris flow with frequency P (m3/

s); ∅ is the sediment correction coefficient of debris flow; Qp is the

design flow for a rainstorm flood with frequency P (m3/s); and Dc is

the debris flow blockage coefficient.

∅ = (gc − gw)=(gH − gc) (10)

where gc is the bulk density of the debris flow (kg/m3); gw is the

bulk density of clean water (kg/m3), with gw =1.0 kg/m3; and gH is

the bulk density of solid matter in the debris flow (kg/m3), with gH
=2.65 kg/m3.

Flood peak flow can be calculated by empirical formulas widely

used by urban construction and water conservancy departments in

the study area:

Qp(1% ) = 11:2F0:84 (11)

where Qp(1% ) is the design flow for storm floods with a 100-

year recurrence interval (m3/s), and F is the basin area (km2). For

the Three Gorges Reservoir area, the peak flood flow with different

frequencies has the following empirical distribution: Qp(2% ) =0.8

Qp(1% ) , Qp(3:3% ) =0.6 Qp(1% ) , of which Qp(2% ) , Qp(3:3% )

indicates the design flow (m3/s) of the storm flood with a 50-year

recurrence interval and a 30-year recurrence interval, respectively.

The calculation results are shown in Table 3.

The key to numerical simulation of debris flow is the

determination of m and x. Based on the inversion of the 2018

debris flow event, the specific m and x are obtained. Corresponding
models and related parameters are used to analyze and predict the

potential impact range of debris flows in different return periods.

Figures 5A–C shows the accumulation thickness and influence

range of the debris flow at different return periods. The common

feature of the three return periods is that the debris flow hazards

occur at gullies #1, #2, and #3 simultaneously, the differences

being mainly the accumulation thickness of debris flow and

the scope of the hazard area. For the debris flow with a 30-year

recurrence interval, the maximum accumulation thickness in gully

#1 is 4 m, and its head touches the houses and other buildings at

the channel outlet, which poses a certain threat to the residents at

the channel outlet. After the debris flow occurred in ditch #2 in

2018, some debris flow material sources remained in the gully.

Therefore, under this condition, the potential hazard area of
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debris flow in gully #2 is slightly larger than it was in 2018. The

maximum accumulation thickness is 6.54 m, which is located near

the northeast corner of the residential buildings. The debris flow

in the middle of gully #3 is thick and can reach approximately 5 m.

The debris flow stops moving after it reaches the downstream part

of the gully and never reaches the channel outlet, so it cannot

affect the residents directly.

For the debris flow with a 50-year recurrence interval, in gully #1,

the debris flows through the residential area at the channel outlet and

arrives near the Xigou River, with the maximum accumulation

thickness of approximately 6 m, so the debris flow can bury some

houses in the residential area. The scope of the debris flow hazard

area in gully #2 expands further and spreads to the farmland in front

of the channel outlet. With an accumulation thickness of 10.18 m, the

debris flow seriously threatens the lives and property of the residents

in gully #2. The accumulation thickness of the debris flow in gully #3

is mostly between 6 and 9 m, and its head rushes out of the channel

outlet, which gradually threatens the factory buildings.

For the debris flow with a 100-year recurrence interval, due to

the proximity of the Xigou River to gully #1, the debris flows into

the Xigou River, accumulates in large quantities and blocks the

river, forming a barrier dam. Many debris flow in gully #2

accumulate on the farmland in front of the residential buildings,

the accumulation thickness is as high as 8 m, and a small amount of

debris flows into the Xigou River. The debris flow in gully #3 flows

out from the channel outlet, forming a fan-shaped accumulation

area with a thickness of 5 m, burying the factory buildings in front

of the channel outlet.

The numerical simulation results show that in these three cases, the

places near the outlet of #1, #2, and #3 gullies are themost vulnerable to

debris-flow damage, while slopes and places away from the channel

outlet are relatively safe. The maximum accumulation thickness of the

debris flow in the 30-year recurrence interval is 6.54 m, which occurs at

the outlet of gully #2 and the middle reaches of gully #3 and has a great

impact on the residential buildings at the outlet of gully #2. The

maximum accumulation thickness of the debris flow in the 50-year

recurrence interval is 10.18 m, the accumulation thicknesses at gully #2

and the middle and lower reaches of gully #3 are high, and the

buildings at each gully are greatly threatened. The debris flow in the

100-year recurrence interval has the widest influence range, the

maximum accumulation thickness is 10.00 m, and the debris flow is

mainly concentrated downstream of gullies #2 and #3. In this case, the

buildings at the channel outlet are all impacted or even buried. The

outgoing debris flow can block the river and may cause more

serious disasters.
TABLE 3 Simulation parameters of the debris flow in the study area.

Basin area F
(km2)

Frequency
P (%)

Bulk density gc
(kg/m3)

Blockage
factor Dc

Sediment correction
coefficient ∅

Peak flood flow
Qp(m

3/s)
Peak debris flow

Qc(m
3/s)

0.479

3.3 1.61 1.6 0.587 9.279 23.554

2 1.61 1.7 0.587 10.034 27.063

1 1.61 1.8 0.587 11.353 32.421
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5 Discussion

5.1 Hazard zones

In this paper, referring to Swiss and Austrian standards

(Fiebiger, 1997; Garcia et al., 2004), combined with the intensity

and probability of debris flow, the hazard of debris flow is

divided into three levels: low, medium, and high. Debris flow

intensity is defined as the combination of the maximum debris

flow depth (H) multiplied by the maximum flow velocity (V)

(Chang et al., 2017). The classification of debris flow intensity

based on H and V is shown in Table 4. According to the

classification criteria in Table 4, the classification results of
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debris flow intensity in different recurrence intervals are

obtained (Figures 6A–C).

The annual probability of debris flow can be calculated by the

following Equation:

Pm = 1 − 1 −
1
T

� �m

(12)

where Pm is the probability of debris flow occurring over m

years and T is the recurrence interval of debris flow. The Taiwan

Debris Flow Risk Classification (Lin et al., 2011) divides debris flows

into high probability (greater than 10%), medium probability

(between 10% and 1%), and low probability (between 1% and

0.2%). We specify m=1.

By combining the intensity level with the occurrence

probability, the hazard of debris flow is classified, as shown in

Figure 7. Based on this classification system, the map of hazard

zones of the Xigou debris flow is drawn (Figure 8). The high-

hazard area covers an area of 37378 m2, accounting for 21% of

the affected area, and is mainly located inside debris-flow gullies

#1, #2, and #3. The medium-hazard area covers an area of 67108

m2, accounting for 37% of the affected area, and is mainly

located near gullies #1 and #2 and the landslide area. The low-

hazard area covers an area of 758,559 m2, accounting for 42% of
TABLE 4 Debris flow intensity classification.

Debris
flow

intensity

Maximum
depth H

(m)
Relation

Maximum depth (H)
multiplied by maximum

velocity (V) (m2/s)

High H>2.5 or VH>2.5

Medium 0.5<H<2.5 and 0.5<VH<2.5

Low 0<H<0.5 and VH<0.5
A B

C

FIGURE 5

The debris flow accumulation thickness for different recurrence intervals. (A) 30-year recurrence interval (B) 50-year recurrence interval (C) 100-
year recurrence interval.
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the affected area, and is mainly located at the upstream and

channels outlet of debris flow.
5.2 Vulnerability zones

Vulnerability mainly reflects the disaster-bearing capacity of the

disaster-bearing body. Cui et al. (2013) defined vulnerability

according to economic loss, which is related to the economic

value and degree of damage of disaster-affected objects.
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V = V(u)� C (13)

where V is the degree of vulnerability; V(u) is an economic

index with a value range of 0 to 1; and C is an index to measure the

degree of damage to disaster-affected objects, with a range of 0 to 1.

V(u) is the unit price P(/m2) of the disaster-affected object

multiplied by its area N(m2):

V(u) = P � N (14)

According to the difference in function and value, the disaster-

bearing objects of the Xigou debris flow are divided into three

categories: houses, farmland (including open space), and rivers. The

area N and the number of disaster-affected objects are determined

according to field surveys and UAV images, and the unit price P of

each disaster-affected object is determined according to the

reference price provided by the government of Chongqing. C

represents the degree of damage to the disaster-affected object by

the impact of debris flow, and its value ranges from 0 to 1: The

larger the C is, the more vulnerable the disaster-affected object is.

The C of disaster-affected objects of different structural types is

different. Cui et al. (2013) conducted a detailed investigation of

debris flow disasters in the central and western regions of China and

proposed a vulnerability index standard for different buildings or

structures (Table 5). The value of C refers to Table 5. A C value of 1
FIGURE 7

Hazard classification by debris flow intensity and occurrence
probability.
A B

C

FIGURE 6

Zones of debris flow intensity for different recurrence intervals. (A) 30-year recurrence interval, (B) 50-year recurrence interval, (C) 100-year
recurrence interval.
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for agricultural land means that it can be completely damaged by a

debris flow.

Finally, the vulnerability based on economic loss is calculated by

Equation (14). The economic value of the vulnerability of each

disaster-bearing body is superimposed on ArcGIS to obtain a map

of vulnerability zones (Figure 9). Figure 9 shows that the high-

vulnerability area covers an area of 9416 m2, accounting for 6% of the

affected area, and its disaster-affected objects are mainly residential

buildings. The medium-vulnerability area covers an area of 3945 m2,

accounting for 3% of the affected area, and its disaster-affected objects

are mainly the Xigou River. The low-vulnerability area covers an area

of 140,850 m2, accounting for 91% of the affected area, and its

disaster-affected objects are mainly farmland.
5.3 Debris-flow risk zones

We adopt the expression of the risk of natural disasters such as

debris flows proposed by the United Nations Department of

Humanitarian Affairs in 1992:
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R = H � V (16)

where R is the risk level, H is the hazard level, and V is the

vulnerability level.

The map of risk zones of Xigou debris flows are obtained by a

raster operation on the hazard and vulnerability results of debris

flows on the ArcGIS platform (Figure 10). As shown in Figure 10,

the areas affected by debris flows are divided into three risk levels:

low, medium, and high. Table 6 summarizes the areas and

proportions for different hazard, vulnerability, and risk levels.

Among them, the high-risk area is the smallest, accounting for

2% of the total risk area, and mainly includes some houses and

buildings near the #1 and #2 gullies. This area has the highest risk of

debris flow in the future, and the protection of this area should be

strengthened. The medium risk area covers an area of 40,531 m2,

and is mainly located inside the #1, #2, #3 debris-flow gullies. The

low-risk area is the largest, accounting for 75% of the total risk area

(136,025 m2), and mainly covers large tracts of farmland and some

river channels where the debris flows through. Figure 10 can

provide a reference for debris flow prevention and control in

the future.
6 Conclusion

In this paper, taking the debris flow in Xigou, Chongqing,

China, as the research object, the RAMMS numerical

simulation software and ArcGIS software are both used to

simulate and analyze the 2018 debris flow event and carry out

the risk assessment of debris flows with different recurrence

interval when debris flows simultaneously break out in multiple

gullies. We draw the following conclusions.
(1) Using RAMMS software, the Voellmy–Salm rheological

model and the RKE model are used to simulate the 2018

debris flow event, whose movement and influence range

are analyzed. The simulation shows that the debris flows

for 400 s and the maximum accumulation thickness is

5.74 m, which happens near the northeast corner of the

residential buildings.
TABLE 5 Vulnerability index of buildings or structures.

Types of struc-
tures

Vulnerability
grades

Vulnerability
values Characteristics

Adobe construction V 0.9-1.0 Small-scale debris flows can entirely destroy this type of structure.

Timber structure IV 0.8-0.9 Small-scale or medium-scale debris flows can seriously damage this type of structure.

Brick-wood structure III 0.5-0.8 Small-scale or medium-scale debris flows can partially destroy this type of structure.

Brick-concrete
structure

II 0.2-0.5
Small-scale or medium-scale debris flows do not generally affect this type of structure, but it can be

partially destroyed by large-scale debris flow.

Steel reinforced
concrete structure

I 0.1-0.2
This type of structure is not generally affected in small-scale or medium-scale debris flows, but it can be

partially destroyed by a devastating debris flow of huge magnitude.
*The Specification of Geological Investigation for Debris Flow Stabilization (DZ/T 0220-2006) grades debris-flowmagnitude on the basis of the total runoff: the total runoff of a small-scale debris
flow is less than 1×104 m3, that of a medium-scale debris flow is between 1×104 m3 and 10×104 m3, that of a large-scale debris flow is between 10×104 m3 and 100×104 m3, and that of a mega
debris flow is over 100×104 m3.
FIGURE 8

Hazard zones of the Xigou debris flow.
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(2) The verified models and parameters are used to

simulate and predict the debris flow in gullies #1, #2,

and #3 in the study area and determine the potential

hazard areas of debris flow in different recurrence

intervals. The area around the channel outlet is most

vulnerable to the hazards of debris flow, while places on

the slope and away from the channel outlet are relatively

safe. The maximum accumulation thicknesses of debris

flow in the 30-year, 50-year, and 100-year recurrence

intervals are 6.54 m, 10.18 m, and 10.00 m, respectively.

The 100-year recurrence interval has the greatest

influence and hazard.
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(3) In this paper, referring to the disaster classification standards

of Switzerland and Austria, combined with the intensity and

occurrence probability of debris flow, a classification model of

debris flow hazard zones with low, medium, and high-risk

levels is established, and a map of hazard zones is drawn based

on this classification system. From field surveys and UAV

images, an economic vulnerability analysis of the disaster-

bearing bodies in the study area is carried out, and a map of

vulnerability zones is drawn. Finally, the hazard and

vulnerability results are rasterized on the ArcGIS platform to

generate a map of risk zones. The low-risk area is relatively

large, accounting for 75% of the impact area of the debris flow,
FIGURE 10

Risk zones for the Xigou debris flow.
FIGURE 9

Vulnerability zones based on economic loss.
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while the medium-risk area and high-risk area only account

for 23% and 2%, respectively. The high-risk disaster-bearing

bodies are mainly the buildings near the #1 and #2 gullies. The

middle- and low-risk areas mainly include debris-flow gullies

and nearby farmland. The high-risk area has the highest risk of

damage in the event of future debris flows, so the protection of

this area should be strengthened.
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The influence of coal mining
subsidence on the movement and
deformation of loess slope in the
loess gully area of Northern
Shaanxi
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Introduction: How to solve the contradiction between coal mining and soil and
water conservation is a key scientific problem to realize ecological environment
protection and high-quality development in the middle reaches of the Yellow
River.

Methods: Using FLAC3D numerical simulation experiment method, the influence
of loess slope surface shape and coal seam overburden structure coupling on
slope movement and deformation is studied.

Results: Under any surface slope shape, the average slope subsidence coefficient
(q slope average) increases with the increase of sand layer coefficient after coal
mining subsidence. When the sand layer coefficient is less than 0.71, the q slope

average increases rapidly, with an increase of more than 2.86%, and when the sand
layer coefficient is greater than 0.71, the q slope average tends to be stable. Under any
surface slope shape, the q slope average decreases with the increase of sand-mud
ratio. When the overburden structure characteristics of any coal seam and the
natural slope of the surface slope are less than or equal to 5°, the q slope average of
the convex slope is the largest, and the q slope average of the four slope types is
ranked as follows: convex slope > straight slope ≈ composite slope > concave
slope; When the structural characteristics of overlying strata in any coal seam and
the natural slope of surface slope are more than 5°, the q slope average of concave
slope is the largest, and the q slope average of four slope types is in the order of
concave slope > straight slope ≈ composite slope > convex slope. With the
increase of the natural slope of the surface slope, the q slope average first
decreases and then increases, and the inflection point is 15°. The influence law
of loess slope surface morphology and coal seam overburden structure on the
average horizontal movement of slope surface is similar to that of average
subsidence of slope surface.

Discussion: The results can provide scientific basis for surface movement and
deformation and soil and water conservation in the mining subsidence area of
northern Shaanxi in the middle reaches of the Yellow River Basin in China.
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1 Introduction

As an important disposable energy source in China, coal plays a
leading role in the energy structure of China. Based on the energy
structure characteristics of China, which is “short of oil, short of gas
and relatively rich in coal”, coal resources, as the ballast stone of
China’s energy security, will not change in the short term (Wang
et al., 2021; Song et al., 2023a; Song et al., 2023c). Even by 2050, the
proportion of coal in China’s primary energy consumption will not
be less than 40% (Qiu et al., 2022). With the development of coal
resources in eastern China, the western region has become the main
producing area of coal development (Liu F. et al., 2022; Qiu et al.,
2022; Song et al., 2023d), and the middle reaches of the Yellow River
have become the center of coal strategic westward movement (Fang
et al., 2016; Zhang et al., 2019; Shen et al., 2022). However, the soil
erosion in the middle reaches of the Yellow River Basin is serious,
and the natural ecology is very fragile. Especially, the mining area in
northern Shaanxi and the national key control area of soil erosion
with heavy sand and coarse sand in the Yellow River are highly
overlapped in space (Song et al., 2022), so that the mining damage
problems such as surface deformation, water resources destruction
and soil quality degradation caused by coal mining continue to
aggravate regional soil erosion (Song et al., 2018; Li, 2019; Li et al.,
2019). This is contrary to the important instruction on ecological
environment protection in the middle reaches of the Yellow River
(Song et al., 2023b) and the requirement of “paying special
attention to soil and water conservation in the middle reaches
of the Yellow River” in the Outline of Ecological Protection and
High-quality Development Plan of the Yellow River Basin.
Therefore, how to solve the sharp contradiction between coal
mining and soil and water conservation has become a key
scientific issue to realize ecological environment protection
and high-quality development in the middle reaches of the
Yellow River Basin in China.

Scholars at home and abroad have been paying attention to the
influence of loess layer on the development characteristics and
evolution law of coal mining subsidence, and have obtained a lot
of valuable research results from the properties of loess layer such as
thickness, vertical joints, collapsibility and physical and mechanical
properties. For example, Song et al. (2011) studied the influence of
the rock-soil ratio of overlying strata on mining subsidence in the
elm bay mining area in northern Shaanxi, and found that the
extremely thick loess layer over 100 m has the effect of reducing
subsidence coefficient. Tang (2011) thought that the surface
subsidence in the loess-covered area in the west is caused by the
load of loess layer and the uneven settlement of bedrock, and a two-
layer medium prediction model of coal mining subsidence
considering the effect of the thick loess layer is established
through numerical simulation test. Tang F. Q. et al. (2019)
studied the quantitative relationship between the equivalent load
of loess layer and equivalent mining width, depth and bedrock
subsidence, and established a two-medium model to simulate the
interaction between loess layers based on random medium theory.
The natural form (slope) of loess layer on the surface, as a direct

embodiment of the complex topography in the loess gully region, is
not only an important geological factor affecting the coal mining
subsidence, but also an important topographic basis for shaping the
final form of the surface after subsidence, so that there is obvious
mutual feedback effect between “the shape and deformation of loess
slope” and “the characteristics and laws of coal mining subsidence”.
However, it is not enough to study and reveal the influence of coal
mining subsidence on the surface loess slope shape from the
perspective of feedback. As a typical sedimentary mineral, the
overburden structure of coal is not only a very significant and
important geological condition, but also a carrier for the upward
spread of underground mining activities (Song et al., 2011). The
sand layer coefficient of coal seam overburden reflects the
quantitative characteristics of rock strata in overburden, and the
sand-mud ratio of coal seam overburden reflects the overall
lithologic characteristics of overburden. The characteristics of
strata in the overlying strata structure of coal measures
determine the overall shape and panorama of the surface
subsidence basin, and mining subsidence will show completely
different basic characteristics and laws under different overlying
strata structure conditions.

In view of this, taking the loess gully region in Northern China as
the research area, this paper studies and reveals the influence of coal
mining subsidence on the surface loess slope shape (slope and slope
length) under the coupling effect of “the structure of coal seam
overburden and the natural shape of surface loess slope” by using the
numerical simulation experiment method, with a view to enriching
and deepening the research on the law of soil erosion in the coal
mining subsidence area and providing scientific basis for soil and
water conservation in northern Shaanxi coal mining area in the
middle reaches of the Yellow River Basin in China.

2 Overview of the research area

Located in the north of Shaanxi Province, China, the coal mining
area in northern Shaanxi Province generally refers to Yushenfu
mining area, including two relatively large mining areas, Yushen and
Shenfu mining area, so it is also collectively referred to as the
northern Shaanxi coal mining area (see Figure 1). The length of
northern Shaanxi coal mining area is about 84 km in the east-west
direction and 85 km in the North-South direction, and the whole
coal mining area is about 7,139.7 km2 (Liu et al., 2021; Song et al.,
2021; Shang et al., 2022). The overall terrain is high in the northwest
and low in the southeast, and the altitude is within the range of
1,200–1300 m (Wang, 2020; Pei et al., 2023). According to the
genesis and morphological characteristics of the landform in the
mining area, it can be divided into three types: wind-blown sand
landform, loess landform and valley landform, among which the
loess landform can be divided into loess ridge landform, sand cover
loess ridge landform and loess hilly landform. It is cold in winter in
this area, with low humidity and temperature. The annual average
temperature ranges from 6.2°C to 8.5°C, and there is little
precipitation, mainly from July to September (Song et al., 2023e;
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Ma et al., 2023), and the annual rainfall ranges from 194.7 to
531.6 mm. The vegetation types in the study area are single,
mainly including Salix psammophila, Artemisia selengensis,
Sabina vulgaris and Caragana korshinskii. The geological
structure in the area is simple, 2−2 coal is the main coal seam,
and the thickness of coal seams is above 2 m, with the maximum
thickness of 12.5 m. The overall characteristics of coal seams are
shallow burial, large thickness and thin overlying bedrock, which has
good mining conditions. The mining method in the mining area is
mainly longwall fully mechanized mining, which is easy to cause
environmental geological problems. Coal mining and roadway
excavation will produce a large area of mined-out area
underground, and the collapse of mined-out area will lead to the
caving and bending subsidence of overlying strata, and cracks and
surface subsidence will appear in different degrees all over the
mining area (Shao et al., 2015). The ecological environment of
mining areas in Northern Shaanxi is fragile, with drought and little
rainfall all the year round and large evaporation. It is the key control
area of soil erosion in Shaanxi Province, China, with serious soil
erosion for many years, with soil erosion modulus exceeding 5,000 t/
(km2a) (Song et al., 2021). Secondly, the surface damage and soil
erosion caused by coal mining in this area are very representative, so
the northern Shaanxi mining area in China is chosen as the
research area.

3 Model construction and numerical
simulation experiment

3.1 Model construction

Based on the overlying strata structure and loess slope shape of
coal seam in northern Shaanxi coal mining area, a numerical model
framework is designed.

3.1.1 Frame selection
According to the survey data, the type of floor-coal seam-

bedrock-loess layer in the actual geological occurrence structure
of 2−2 main coal seam in the study area accounts for more than 60%
(Wang et al., 2010), so it is used as the basic framework of the model.

3.1.2 Structural design of loess layer
Firstly, the topography of the mining area in northern Shaanxi is

complex. In order to more accurately express the slope shape of the
surface loess layer, we divide the loess layer into two sections.
Secondly, the mining area in Northern Shaanxi is covered by
loess, and the loess layer is thick. From the point of view of
numerical model construction, it is necessary to maintain the
consistency and integrity of the overlying geotechnical structure
of coal seams on both sides of the model, so the loess layer is divided

FIGURE 1
Geographical location map of mining area [see figures (A–C) for mining area, loess hilly landform and ground fissures].
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into two sections. In addition, Song et al. (2016) found that the
mining depth will have an important influence on the deformation
of the surface slope during coal mining. In order to eliminate the
influence of mining depth on mining subsidence as much as
possible, we divide the loess layer into two sections, the upper
section is a slope section and the lower section is a horizontal section.

3.1.3 Surface slope shape design
According to the results of detailed geological survey carried out

by predecessors in the study area, the slope of loess slope in northern
Shaanxi mining area is mainly between 6° and 40°, and according to
China’s Soil Erosion Classification and Classification Standard
(SL190-2007), the slope is set to 5 slopes, which are 5°, 15°, 25°,
35°, and 45° in turn. The external morphology of loess slope is set to
four types: straight slope, concave slope, convex slope and
compound slope. The design of slope and slope shape covers all
types of surface slope morphology in the study area.

3.1.4 Design of overlying strata structure
According to the detailed geological survey results carried out by

predecessors in the study area, the overlying bedrock of 2−2 coal seam in
the whole area is mainly composed of sandstone andmudstone, and the
number of sandstone layers is generally 5–15, with a maximum of 35.
The thickness ratio of sandstone and mudstone in bedrock is between
60% and 80%, so the sand-mud ratio (reflecting the overall lithologic
characteristics of overlying strata) is selected as 6:4 and 8:2. The sand
coefficient (reflecting the quantitative characteristics of strata in
overlying strata) is 0.67, 0.71, and 0.75.

3.1.5 Geometric parameter design of numerical
model frame

Set all models to be 1,000 m long in the X direction, 300 m wide
in the Y direction, 295 m high at the top of the slope in the Z
direction and 235 m high at the bottom of the slope. Set the floor
thickness to be 10 m, the coal seam thickness to be 5 m, the overlying
bedrock thickness to be 210 m, themaximum thickness of loess layer
to be 70 m, and the lower section thickness to be 10 m.

According to the above variables, 120 different models are
constructed.

3.2 Numerical simulation experiment
process

In the study area, the thickness of coal seam is 5 m, and in the
simulation process, the mining height is cut at one time. In the
process of model excavation, the working face is gradually advanced
from left to right, and the excavation is once every 50 m, and the
ground surface begins to sink and move horizontally until the
operation is stopped due to full mining. Take 25° compound
slope with sand-mud ratio of 8:2 and sand layer coefficient of
0.75 as an example, and its three-dimensional numerical model is
shown in Figure 2.

3.2.1 Setting of physical and mechanical
parameters

According to the representative geological drilling and
geotechnical test data, the physical and mechanical parameters of

each geotechnical layer in the model are assigned, and the results are
shown in Table 1.

3.2.2 Boundary condition setting
Mohr Coulomb model is selected in FLAC3D numerical

simulation software, and the constraint conditions of the
model are set according to the actual excavation situation of
the model. Firstly, the front, back, left, right and lower
boundaries of the model are defined as fully constrained
boundaries, and the upper part of the model is loess layer,
which will move in both horizontal and vertical directions
after full mining, and is defined as free boundary.

3.2.3 Data extraction and calculation
Through the simulation experiment, the surface subsidence and

horizontal movement of each model on the slope are extracted by
Fish language, and the extracted data are converted into coordinates
to represent the shape of the slope after subsidence. Irregular slope
gradient and slope length are replaced by uniform slope under the
same conditions (Song et al., 2011). The average slope length of the
typical loess slope in the coal mining subsidence area of northern
Shaanxi is 50 m. The upper 10 m of the subsidence slope is divided
into the top, the middle 30 m is divided into the middle and the
lower 10 m is divided into the toe. A monitoring point is arranged
every 2 m on the loess slope, and a total of 25 monitoring points are
evenly arranged, including 5 monitoring points at the top of the
slope, 15 monitoring points at the middle of the slope and
5 monitoring points at the foot of the slope. The subsidence
coefficient q slope at the toe of the slope (the maximum
subsidence and mining height ratio at the toe of the slope) and
the average subsidence coefficient q slope average (the weighted average
of subsidence and mining height ratio at the top, middle and toe of
the slope, in which the weights of monitoring points at the top,
middle and toe of the slope are 1/5, 3/5 and 1/5 respectively) are
adopted to analyze the overlying strata structure of coal seam.
According to the extracted monitoring point data, the horizontal
movement of each model is calculated (the translation momentum
of all monitoring points on the slope is averaged). Because the
moving direction of the model slope is consistent with the advancing
direction of the working face, it is a positive value, which is
represented by the u slope average.

4 Results and analysis

4.1 Influence of coal mining subsidence on
average subsidence of slope surface

According to the extracted monitoring point data, the
subsidence coefficient at the toe of different models and the
average subsidence coefficient of the whole slope are calculated,
and the calculation results are shown in Table 2. It can be seen from
Table 2 that when the subsidence coefficient q slope at the foot of the
model is used to analyze the loess slope movement law, the
difference of subsidence coefficient among the models is too
small, and there is no obvious law. However, when the
subsidence coefficient q slope average is used to analyze the loess
slope movement law, the q slope average can represent the
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movement and deformation of the whole slope. Under the coupling
effect of different loess slope shapes and coal seam overburden
structure, the subsidence coefficients among the models are also
obviously different, so the q slope average is used to analyze the loess
slope movement and deformation.

4.1.1 Influence of overlying strata structure on
average subsidence coefficient of slope surface
4.1.1.1 Influence of sand layer coefficient on average
subsidence coefficient of slope surface

According to the data in Table 2 and Figure 3 is drawn, as shown
in the figure below.

From Table 1 and Figure 3, it can be seen that under any
coupling type of loess slope surface shape and sand-mud ratio of coal
seam overburden, the q slope averagewill show an increasing trend with
the increase of sand layer coefficient. Specifically:

Under the coupling effect of “sand-mud ratio of coal seam
overburden is 6:4+arbitrary slope shape and natural slope ≤45°”,
with the sand bed coefficient increasing from 0.67 to 0.71, the
increase range of straight slope’s q slope average is 2.86%–5.80%, the

increase range of concave slope’s q slope average is 4.48%–7.14%, the
increase range of convex slope’s q slope average is 4.23%–7.25%, and
that of compound slope is 4.35%–5.80%. Under the coupling
effect of “sand-mud ratio of coal seam overburden is 8:
2+arbitrary slope shape and natural slope ≤45°”, with the sand
layer coefficient increasing from 0.67 to 0.71, the increase range
of straight slope’s q slope average is 3.17%–5.88%, the increase range
of concave slope’s q slope average is 3.08%–7.14%, the increase range
of convex slope’s q slope average is 4.84%–7.94%, and that of
compound slope is 4.62%–6.35%. However, under the coupling
effect of “sand-mud ratio of overlying strata in any coal
seam+arbitrary slope shape of surface and natural slope ≤45°”,
with the increase of sand bed coefficient from 0.71 to 0.75, the q

slope average has no obvious change and gradually tends to be stable.
Therefore, it can be seen that the q slope average is obvious when the
sand layer coefficient of coal seam overburden is ≤0.71, but the q
slope average is stable after the sand layer coefficient is >0.71.

Under the coupling effect of “sand-mud ratio of coal seam
overburden is 6:4+arbitrary slope shape and natural slope ≤45°”,
with the sand bed coefficient increasing from 0.67 to 0.71, the

FIGURE 2
Three-dimensional numerical model diagram of 25° compound slope.

TABLE 1 Physical and mechanical parameters of rock and soil layers.

Rock character Modulus of
elasticity/MPa

Tensile
strength/MPa

Serious/
kN·m−3

Internal friction
angle/(˚)

Poisson’s
ratio

Cohesive
strength/MPa

Loess layer 235 0.20 18.70 36.2 0.31 0.50

Fine sandstone 3,310 1.38 24.31 41.0 0.29 2.15

mudstone 3,510 1.23 24.37 39.0 0.35 1.25

Medium grained
sandstone

4,705 1.29 25.14 39.0 0.37 4.03

Silty sandstone 4,315 1.31 24.38 43.0 0.40 3.27

coal seam 2,560 0.24 13.56 39.5 0.39 0.69

baseboard 4,730 18.8 23.88 38.7 0.35 3.58
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TABLE 2 Average subsidence coefficient and average displacement of loess slope after full mining.

Slope Slope shape The ratio of sand to mud is 6:4. The ratio of sand to mud is 8:2.

Sand layer coefficient
is 0.67

Sand layer coefficient
is 0.71

Sand layer coefficient
is 0.75

Sand layer coefficient
is 0.67

Sand layer coefficient
is 0.71

Sand layer coefficient
is 0.75

q slope/q slope average/u
slope average(m)

q slope/q slope average/u
slope average(m)

q slope/q slope average/u
slope average(m)

q slope/q slope average/u
slope average(m)

q slope/q slope average/u
slope average(m)

q slope/q slope average/u
slope average(m)

5° Straight slope 0.81 0.70 0.43 0.85 0.72 0.52 0.87 0.72 0.59 0.76 0.64 0.41 0.81 0.67 0.47 0.82 0.69 0.51

Concave slope 0.79 0.67 0.46 0.84 0.70 0.58 0.86 0.71 0.68 0.75 0.62 0.43 0.80 0.65 0.49 0.82 0.66 0.53

Convex slope 0.82 0.71 0.42 0.86 0.74 0.46 0.88 0.74 0.48 0.77 0.65 0.40 0.82 0.69 0.45 0.84 0.70 0.46

Compound slope 0.80 0.69 0.43 0.85 0.72 0.55 0.86 0.72 0.63 0.75 0.63 0.42 0.81 0.67 0.48 0.83 0.68 0.51

15° Straight slope 0.77 0.59 0.92 0.80 0.61 0.96 0.83 0.62 1.01 0.72 0.55 0.88 0.76 0.58 0.94 0.77 0.59 0.98

Concave slope 0.78 0.60 0.92 0.81 0.63 0.99 0.84 0.65 1.04 0.73 0.56 0.88 0.77 0.60 0.95 0.78 0.62 1.01

Convex slope 0.75 0.54 0.87 0.79 0.57 0.92 0.80 0.58 0.97 0.70 0.51 0.86 0.74 0.54 0.89 0.76 0.55 0.92

Compound slope 0.77 0.58 0.91 0.80 0.60 0.96 0.83 0.63 0.99 0.72 0.55 0.82 0.75 0.58 0.89 0.75 0.61 0.91

25° Straight slope 0.77 0.65 1.40 0.81 0.68 1.48 0.82 0.69 1.53 0.72 0.63 1.30 0.76 0.65 1.45 0.78 0.66 1.50

Concave slope 0.78 0.68 1.45 0.82 0.71 1.53 0.84 0.73 1.57 0.73 0.65 1.35 0.77 0.67 1.48 0.79 0.68 1.51

Convex slope 0.75 0.61 1.37 0.80 0.65 1.48 0.81 0.66 1.53 0.70 0.56 1.25 0.75 0.60 1.41 0.76 0.62 1.48

Compound slope 0.77 0.65 1.38 0.81 0.68 1.50 0.82 0.69 1.51 0.72 0.63 1.30 0.76 0.66 1.41 0.77 0.66 1.49

35° Straight slope 0.76 0.69 1.61 0.80 0.73 1.73 0.83 0.75 1.78 0.71 0.66 1.57 0.75 0.69 1.65 0.78 0.70 1.71

Concave slope 0.78 0.70 1.50 0.82 0.75 1.65 0.84 0.77 1.70 0.73 0.67 1.40 0.77 0.70 1.62 0.79 0.72 1.68

Convex slope 0.75 0.64 1.72 0.79 0.68 1.86 0.80 0.68 1.90 0.70 0.62 1.71 0.74 0.65 1.82 0.76 0.66 1.88

Compound slope 0.77 0.69 1.74 0.81 0.73 1.84 0.83 0.74 1.85 0.72 0.65 1.70 0.76 0.68 1.78 0.78 0.68 1.83

45° Straight slope 0.77 0.72 1.70 0.80 0.76 1.92 0.82 0.78 2.06 0.72 0.68 1.68 0.76 0.72 1.90 0.78 0.72 1.92

Concave slope 0.78 0.74 1.63 0.81 0.78 1.88 0.84 0.80 1.94 0.73 0.71 1.61 0.77 0.75 1.88 0.79 0.76 1.90

Convex slope 0.75 0.69 1.89 0.79 0.74 2.06 0.81 0.75 2.14 0.70 0.63 1.85 0.74 0.68 2.02 0.76 0.69 2.07

Compound slope 0.76 0.71 1.80 0.80 0.75 1.98 0.82 0.77 2.11 0.71 0.68 1.74 0.75 0.72 1.94 0.77 0.73 1.97
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increase speed of straight slope’s q slope average is 0.5–1, the increase
speed of concave slope’s q slope average is 0.75–1.25, the increase speed
of convex slope’s q slope average is 0.75–1.25 and that of composite

slope is 0.5–1. Under the coupling effect of “sand-mud ratio of coal
seam overburden is 8:2+arbitrary slope shape and natural
slope ≤45°”, with the sand bed coefficient increasing from 0.67 to

FIGURE 3
Comparison of average subsidence coefficient changes of slopes with different slopes under the coupling effect of loess slope shape and sand-mud
ratio of coal seam overlying strata [see Figures (A–D) for straight slopes, concave slopes, convex slopes and composite slopes].
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0.71, the increase speed of straight slope’s q slope average is 0.5–1, the
increase speed of concave slope’s q slope average is 0.5–1, the increase
speed of convex slope’s q slope average is 0.75–1.25 and that of
composite slope is 0.75–1. However, under the coupling effect of
“sand-mud ratio of overlying strata in any coal seam+arbitrary slope
shape and natural slope ≤45°”, with the increase of sand bed
coefficient from 0.71 to 0.75, the increase speed of the q slope

average has no obvious change and gradually tends to be stable.
Therefore, it can be seen that the influence of the overburden sand
coefficient of the coal seam on the q slope average is mainly manifested
in two stages: when the overburden sand coefficient of the coal seam
is ≤0.71, the increase speed of the q slope average is obvious, and it is
sensitive to the change of the sand coefficient; When the overburden
sand coefficient is >0.71, the increase speed of the q slope average does
not change obviously, and the influence of the sand coefficient on
the q slope average is weakened.

4.1.1.2 Influence of sand-mud ratio on average subsidence
coefficient of slope surface

According to the data in Table 2, the comparison chart of the
decline rate of the q slope average when the sand-mud ratio is 8:
2 compared with the sand-mud ratio is 6:4 is drawn, as shown in
Figure 4 below.

As can be seen from Table 2 and Figure 4, with the increase of
overburden sand coefficient of the coal seam, the decline rate of
the q slope average with sand-mud ratio of 8:2 is gradually reduced
compared with that of the q slope average with sand-mud ratio of 6:
4. Specifically, when the sand layer coefficient is 0.67, the
corresponding decline rate of the q slope average is the largest,
and the decline rates of straight slope, concave slope, convex
slope and composite slope are 6.76%, 6.16%, 6.47%, and 6.63% in
turn. When the sand coefficient is 0.71, the decline rates of the q

slope average corresponding to the four slope shapes are 5.98%,
6.00%, 5.82%, and 5.61% in turn. When the sand layer coefficient
is 0.75, the decline rate of the corresponding q slope average is the

smallest, and the decline rates of the four slope shapes are
5.03%, 5.95%, 5.57%, and 5.38% respectively. It can be seen that
the decline rate of the q slope average decreases with the increase
of sand layer coefficient, and the greater the sand layer
coefficient, the weaker the influence of sand-mud ratio on
the q slope average.

4.1.2 Influence of loess slope surface morphology
on average subsidence coefficient of slope surface
4.1.2.1 Influence of slope gradient on average subsidence
coefficient of slope surface

According to the data in Table 2, the average contrast map of the
q slope average under the coupling effect of different coal seam
overburden structure and loess slope shape is drawn, as shown in
Figure 5 below. From Table 2 and Figure 5, it can be seen that under
the coupling effect of loess slope gradient and coal seam overburden
structure, the q slope average first decreases and then increases with the
increase of loess slope gradient, specifically:

Under the coupling effect of “overburden sand coefficient of
any coal seam and sand-mud ratio 6:4+arbitrary slope shape and
natural slope ≤15°”, with the natural slope increasing from 5° to
15°, the decline rate of the straight slope’s q slope average is 13.89%–

15.71%, the decline rate of the concave slope’s q slope average is
8.45%–10.45%, the decline rate of the convex slope’s q slope average

is 21.62%–23.94%, and that of the compound slope is 12.50%–

15.94%. Under the coupling effect of “overburden sand
coefficient of any coal seam and sand-mud ratio 8:2+arbitrary
slope shape and natural slope ≤15°”, with the natural slope
increasing from 5° to 15°, the decline rate of the straight
slope’s q slope average is 13.43%–14.49%, the decline rate of the
concave slope’s q slope average is 6.06%–9.68%, the decline rate of
the convex slope’s q slope average is 21.43%–21.74%, and that of the
compound slope is 10.29%–13.43%. It can be seen that when the
natural slope is ≤15°, the q slope average decreases with the increase
of slope, and reaches the minimum when the slope is 15°.

Under the coupling effect of “overburden sand coefficient of
any coal seam and sand-mud ratio 6:4+arbitrary slope shape of
the surface and 15° < natural slope ≤45°”, with the increase of
natural slope from 15° to 45°, the increase rate of straight slope’s
q slope average is 10.77%–13.04%, the increase rate of concave
slope’s q slope average is 8.82%–9.86%, and the increase rate of
convex slope’s q slope average is 13.11%–13.85%, and that of
compound slope is 9.23%–11.59%. Under the coupling effect
of “overburden sand coefficient of arbitrary coal seam and sand-
mud ratio of 8:2+arbitrary slope shape of surface and 15° <
natural slope ≤45°”, with the increase of natural slope from 15° to
45°, the increase rate of straight slope’s q slope average is 7.94%–

10.77%, the increase rate of concave slope’s q slope average is
9.23%–11.94%, and the increase rate of convex slope’s q slope

average is 11.29%–13.33%, and that of compound slope is 7.94%–

10.61%. It can be seen that the q slope average increases with the
increase of slope when “15° < natural slope ≤45°”, and reaches the
maximum when the slope is 45°.

4.1.2.2 Influence of slope shape on average subsidence
coefficient of slope surface

According to the data in Table 2, the average contrast map of the
q slope average under the coupling effect of different coal seam

FIGURE 4
Comparison chart of decline rate of the q slope average with sand-
mud ratio of 8:2 to 6:4.
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FIGURE 5
Comparison chart of average subsidence coefficient changes under the coupling effect of overburden structure of coal seam (sand-mud ratio of 6:4
is shown on the left and sand-mud ratio of 8:2 is shown on the right) and loess slope surface [straight slope, concave slope, convex slope and composite
slope are shown in Figures (A–D)].
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overburden structure and loess slope surface gradient is drawn, as
shown in Figure 6.

From Table 2 and Figure 6, it can be seen that under the coupling
effect of loess slope shape and coal seam overburden structure, the
change law of the q slope average is different, specifically:

Under the coupling effect of “overburden sand coefficient of any
coal seam and sand-mud ratio of 6:4+arbitrary slope shape and
natural slope of 5°”, with the sand coefficient increasing from 0.67 to
0.71, the q slope average of straight slope is 0.7, 0.72 and 0.72, the q slope

average of concave slope is 0.67, 0.70 and 0.71, and the q slope average of

convex slope is 0.71, 0.74,0.74, the q slope average of compound slope is
0.69, 0.72 and 0.72. Under the coupling effect of “overburden sand
coefficient of any coal seam and sand-mud ratio of 8:2+arbitrary
slope shape and natural slope of 5°”, with the sand coefficient
increasing from 0.67 to 0.71, the q slope average of straight slope is
0.64, 0.67 and 0.69, the q slope average of concave slope is 0.62, 0.65 and
0.66, and the q slope average of convex slope is 0.65, 0.69,0.70, the q slope

average of compound slope is 0.63, 0.67 and 0.68. It can be seen that
when the natural slope is ≤5°, the q slope average of convex slope is the
largest, while that of concave slope is the smallest, and the q slope

FIGURE 6
(Continued)
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average between straight slope and compound slope is not big, which
has obvious homogeneity. The q slope average of four slopes is convex
slope > straight slope ≈ compound slope > concave slope.

Under the coupling effect of “overburden sand coefficient of
arbitrary coal seam and sand-mud ratio 6:4+arbitrary slope shape
of surface and 5° < natural slope ≤45°”, with the sand coefficient
increasing from 0.67 to 0.71, the q slope average of straight slope is
0.66, 0.70 and 0.71, and the q slope average of concave slope is 0.68,
0.72, 0.74, the q slope average of convex slope is 0.62, 0.66, 0.67 and
the q slope average of compound slope is 0.66, 0.69, 0.71. Under the
coupling effect of “overburden sand coefficient of arbitrary coal
seam and sand-mud ratio of 8:2+arbitrary slope shape of surface
and 5° < natural slope ≤45°”, with the sand coefficient increasing
from 0.67 to 0.71, the q slope average of straight slope is 0.63,
0.66 and 0.67, and the q slope average of concave slope is 0.65, 0.68,
0.70 and the q slope average of convex slope is 0.58, 0.62, 0.63, and
the q slope average of compound slope is 0.63, 0.66, 0.67. Therefore,
when “5° < natural slope ≤45°”, the q slope average of concave slope is
the largest, the q slope average of convex slope is the smallest, and the
q slope average between straight slope and compound slope is not
big, which has obvious homogeneity. The q slope average of four
slope types is as follows: concave slope > straight slope ≈
compound slope > convex slope.

4.1.3 Prediction model of influence of overlying
strata structure and surface slope shape on
average subsidence coefficient

Using multivariate nonlinear fitting method, the prediction
model of average subsidence coefficient of slope under the
coupling effect of overburden structure and slope shape under
four kinds of slope shapes is constructed, as shown in
Formulas (1)–(4).

Straight slope:
qslope average � − 7.541 + 4.581α + 8.831β − 0.01S

− 0.834α2 − 5.938β2 − 0.01αβ + 0.006βS

(1)
R2 = 0.717

Concave slope:
qslope average � − 7.554 + 4.586α + 8.613β − 0.006S

− 0.832α2 − 5.625β2 − 0.04αβ + 0.004βS

(2)
R2 = 0.846

Convex slope:
qslope average � − 7.953 + 3.539α + 13.249β − 0.014S

− 0.65α2 − 9.063β2 + 0.03αβ + 0.005βS

(3)
R2 = 0.697

FIGURE 6
Comparison of the changes of the average subsidence coefficient of the slope under the coupling effect of the overburden structure of coal seam
(sand-mud ratio of 6:4 is shown on the left, and sand-mud ratio of 8:2 is shown on the right) and the slope of loess slope [natural slopes are 5°, 15°, 25°, 35°

and 45°, as shown in Figures (A–E) respectively].
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Compound slope:
qslope average � − 7.927 + 4.55α + 9.862β − 0.007S

− 0.829α2 − 6.563β2 − 0.01αβ + 0.002βS

(4)
R2=0.726
Where: α: sand-mud ratio; β: sand layer coefficient, %; S: natural

slope of loess slope, °.
The mining area in northern Shaanxi, China is mainly hilly and

gully landform of the Loess Plateau, with complex topography,
obvious surface undulation and complex slope morphology.
Under this complex terrain condition, the influence of terrain
factors on mining subsidence can not be ignored. However, at
this stage, scholars at home and abroad have not fully considered
and studied this issue. Therefore, we take into account the complex
terrain factors in the mining area of northern Shaanxi, China, and
construct a prediction equation for the influence of the coupling
effect of underground overburden structure and the shape of the
upper slope on the average subsidence coefficient of the surface
slope. This can provide a new idea and method for surface
movement prediction under complex terrain factors in northern
Shaanxi mining area.

4.2 Influence of coal mining subsidence on
average horizontal movement of slope
surface

4.2.1 Influence of overlying strata structure on
average horizontal movement of slope surface

According to the data in Table 2, the influence of the overlying
strata structure of coal seam on the horizontal movement of slope
surface is the same as that on the subsidence of slope surface, and the
main laws are as follows:

Under the coupling effect of “sand-mud ratio of coal seam
overburden is 6:4+arbitrary slope shape and natural slope ≤45°”,
with the sand layer coefficient increasing from 0.67 to 0.71, the u

slope average of straight slope increases by 5.27%–22.50%, the u slope

average of concave slope increases by 5.38%–26.18%, and the u slope

average of convex slope increases by 5.38%–10.76%, the u slope

average of compound slope increases by 5.94%–27.41%. Under the
coupling effect of “sand-mud ratio of overlying strata in coal
seam is 8:2+arbitrary slope shape and natural slope ≤45°”, with
the sand layer coefficient increasing from 0.67 to 0.71, the u slope

average of straight slope increases by 4.58%–14.72%, the u slope

average of concave slope increases by 8.05%–16.70%, and the u slope

average of convex slope increases by 3.78%–13.15%, the u slope

average of compound slope increases by 5.04%–13.03%. However,
under the coupling effect of “sand-mud ratio of overlying strata
in any coal seam+arbitrary slope shape of the surface and natural
slope ≤45°”, with the increase of sand bed coefficient from 0.71 to
0.75, the increase rate of u slope average no longer changes obviously
and tends to be stable gradually. It can be seen from this that
when the sand layer coefficient of coal seam overburden is ≤0.71,
the u slope average increases obviously, but when the sand layer
coefficient is >0.71, the u slope average does not change obviously
and tends to be stable.

The main influence law of sand-mud ratio of coal seam
overlying strata is: the u slope average shows a decreasing trend
with the increase of sand-mud ratio of coal seam overlying strata,

which is the same as the influence law of sand-mud ratio of coal
seam overlying strata on the q slope average.

4.2.2 Influence of surface slope morphology on
average horizontal movement of slope

According to the data in Table 2, it can be seen that the influence
of the loess slope surface shape on slope horizontal movement
mainly has the following main laws:

Under the coupling effect of “overburden sand coefficient of
arbitrary coal seam and sand-mud ratio of 6:4+arbitrary slope shape
of surface and natural slope ≤45°”, with the natural slope increasing
from 5° to 45°, the u slope average of straight slope at 45° is increased by
1.06–1.16 times compared with the u slope average of straight slope at
5°–35°, and that of concave slope at 45° is increased by
1.08–1.14 times compared with the slope at 5°–35°. The u slope

average of convex slope with gradient of 45° is increased by
1.09–1.13 times compared with that of 5°–35°, and the u slope

average of composite slope with gradient of 45° is increased by
1.03–1.14 times compared with that of 5°–35°. Under the
coupling effect of “overburden sand coefficient of any coal seam
and sand-mud ratio of 8:2+arbitrary slope shape of the surface and
natural slope ≤45°”, with the natural slope increasing from 5° to 45°,
the u slope average of straight slope at 45° is increased by
1.07–1.15 times compared with the u slope average of straight slope
at 5°–35°, and that of concave slope at 45° is increased by
1.13–1.16 times compared with the slope at 5°–35°. The u slope

average of convex slope with gradient of 45° is increased by
1.08–1.11 times compared with that of 5°–35°, and the u slope

average of composite slope with gradient of 45° is increased by
1.03–1.09 times compared with that of 5°–35°. Therefore, under
the coupling effect of “overburden sand coefficient of any coal seam
and sand-mud ratio+arbitrary slope shape of the surface and natural
slope ≤45°”, the u slope average increases with the increase of loess slope
surface slope, and reaches the maximum when the slope is 45°.

The main influence law of loess slope shape on the u slope average

is: when the overlying strata characteristics and natural slope of any
coal seam are less than 35°, the concave slope’s u slope average is the
largest after coal mining subsidence, and when the overlying strata
characteristics and natural slope of any coal seam are more than or
equal to 35°, the convex slope’s u slope average is the largest after coal
mining subsidence, which has obvious influence on the horizontal
movement of slope.

5 Discussion

The increase of sandstone layers will directly lead to the increase
of the main structural plane of coal seam overlying strata, which will
not only lead to the decline of the overall strength of coal seam
overlying strata (Liu Z. J. et al., 2022; Wang et al., 2022), but also
weaken the anti-interference ability of coal seam overlying strata to
underground mining disturbance. Song et al. (2014) found that
when the sand layer coefficient of overlying strata of 2−2 coal seam in
northern Shaanxi mining area is less than 0.7, the surface subsidence
coefficient will increase rapidly with the increase of sand layer
coefficient, and when the sand layer coefficient is greater than
0.7, the surface subsidence coefficient tends to be stable.
Therefore, under the condition of the same thickness of bedrock,
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the subsidence coefficient of surface and slope caused by the same
underground coal mining disturbance will increase with the increase
of sand layer coefficient, and the development degree of surface coal
mining subsidence will continue to improve. In addition, the
proportional relationship between the thickness of hard rock and
soft rock in coal seam overburden, that is, the sand-mud ratio, will
also significantly affect the movement and deformation
characteristics of the surface and slope. Song et al. (2014) found
that when the sand layer coefficient is constant, the greater the sand-
mud ratio, the smaller the surface subsidence coefficient. Qian
(2008) found that the main key stratum in overlying strata
controls the dynamic process of surface subsidence, and the
fracture of the main key stratum will lead to the synchronous
fracture of all overlying strata and the rapid subsidence of the
surface, which will lead to the obvious increase and periodic
change of subsidence speed and subsidence influence boundary.
Xu et al. (2007) found that when the lithology changes from soft to
hard, the plastic expansion zone is less easily compressed and the
surface subsidence coefficient decreases accordingly. This is
consistent with the results of this study. It can be seen that the
smaller the sand-mud ratio of overlying strata, the thinner the total
thickness of sandstone in overlying strata, the weaker the anti-
disturbance ability of overlying strata as a whole, and the more
intense the movement and deformation caused by the same coal
mining subsidence. This may be one of the reasons why the smaller
the sand-mud ratio of overlying strata is, the greater the surface
subsidence coefficient is.

The negative correlation between slope gradient and slope
stability has become a recognized fact. Zhu et al. (2020) used
three methods to calculate and analyze the stability of 76 loess
slope models with different slopes, and found that the stability
coefficient of loess slope decreased with the increase of slope, and
the change was most obvious when the slope was less than 55°.
Based on the shaking table model test of soil slope model, Tang
W. M. et al. (2019) found that under the dynamic load, the greater
the slope of soil slope, the stronger the amplification effect of
slope acceleration, and the more obvious the signs of deformation
and failure of slope. Zhang et al. (2007) found that the slope
obviously changed the stress distribution of loess slope, which
made the safety factor of slope decrease with the increase of slope,
showing an obvious logarithmic relationship. Katz et al. (2014)
used the numerical two-dimensional discrete element method to
find that the increase of slope will lead to the increase of slope
movement size, and then increase the risk of slope movement.
Qiu et al. (2018) based on the data of 275 loess landslides in
Zhidan County, the central part of China Loess Plateau, and
found that the slope gradient indirectly affected the size of slope
movement through the slope length. Xi et al. (2021) extracted the
slope information of coal mining subsidence area through DEM,
and found that coal mining subsidence can increase the slope of
surface slope. While Huang et al. (2014) found that coal mining
subsidence can reduce the slope length of loess slope by using
digital terrain analysis and remote sensing image fusion, which is
consistent with the results of this study. Therefore, no matter
what slope shape the loess slope is, the greater the slope is, the
smaller the stability is, and the more intense the movement and
deformation will be under the influence of the same coal mining
subsidence, which may be one of the important reasons why the

loess slope with any slope shape in this study will increase the
slope and decrease the slope length after subsidence. More
interestingly, the greater the natural slope of loess slope, the
greater the slope increment after subsidence, but the smaller the
slope length decline. This provides a new proposition for further
study on the characteristics and laws of surface loess slope
movement and deformation in coal mining subsidence area.
The influence of slope shape on slope stability is still
controversial. Tang W. M. et al. (2019) found that slope shape
has great influence on slope deformation and failure, and concave
slope is less prone to instability and failure than straight slope
and convex slope, but the upper part of concave slope usually has
a large slip phenomenon. Huang (2017) used small-scale shaking
table test and FLAC3D numerical simulation research to find that
if the first longitudinal crack at the top of the slope is taken as the
standard, the stability of convex slope is the worst, followed by
straight slope and concave slope is the most stable. Gao (1993)
found that concave slopes with medium height and steep slope
are more prone to movement and deformation through remote
sensing interpretation. However, this study found that under the
same influence of coal mining subsidence, when the natural slope
is less than 5°, the movement and deformation of convex slope is
the largest, while when the natural slope is more than 5°, the
movement and deformation of concave slope is the most obvious.
It shows that under the special dynamic load of coal mining
subsidence, the influence of slope shape on slope stability and
movement deformation degree is closely related to slope. This
provides a new insight for scientific understanding of the
stability, movement and deformation characteristics of surface
loess slope in coal mining subsidence area.

6 Conclusion

Under any surface slope shape, the q slope average after coal mining
subsidence increases with the increase of overlying sand coefficient
of coal seam, and it mainly shows two stages. The first stage: when
the sand coefficient is ≤0.71, the q slope average is obvious, showing a
rapid growth trend, and the increase range is between 2.86% and
7.94%; The second stage: after “sand coefficient >0.71”, the q slope

average no longer changes obviously and tends to be stable gradually.
Under any surface slope shape, the q slope average after coal mining
subsidence decreases with the increase of sand-mud ratio of coal
seam overlying strata, and the decline rate of the q slope average with
sand-mud ratio of 8:2 is greater than 5.03% compared with that with
sand-mud ratio of 6:4, that is, the smaller the sand-mud ratio of coal
seam overlying strata, the more obvious the influence on loess slope
subsidence.

When the overburden structure characteristics of any coal seam
and the natural slope of the surface slope are less than or equal to 5°,
the q slope average of the convex slope is the largest after coal mining
subsidence, and the q slope average of the four slope types is ranked as
follows: convex slope > straight slope ≈ compound slope > concave
slope; When the overburden structure characteristics of any coal
seam and the surface slope are 5° < natural slope ≤45°, the q slope

average of the concave slope is the largest after coal mining subsidence,
and the q slope average of the four slopes is in the order of concave
slope > straight slope ≈ compound slope > convex slope, that is,
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“convex slope with natural slope ≤5° and concave slope with natural
slope ≤45°” has great influence on loess slope surface subsidence.
With the increase of natural slope after coal mining subsidence, the q

slope average first decreases and then increases with the increase of
natural slope, and the inflection point is 15°. When the natural slope
is less than 15°, the q slope average decreases with the increase of natural
slope, reaches the minimum value when the natural slope is 15°, and
when “15° ≤ natural slope ≤45°”, the q slope average increases with the
increase of natural slope, and reaches the maximum value when the
natural slope is 45°, and the difference between the maximum value
and the minimum value is greater than 22.03%. Based on the basic
principle of multivariate nonlinearity, the prediction equation of the
q slope average with the increase of sand layer coefficient under the
coupling effect of loess slope surface shape and coal seam
overburden structure is constructed.

The influence of structural characteristics of coal seam
overlying strata on the horizontal movement of loess slope is
the same as that of subsidence, that is, the horizontal movement
of loess slope is stronger after coal mining subsidence under any
surface slope shape and when the sand coefficient of coal seam
overlying strata is ≤0.71, and the increase rate of u slope average is
5.04%–27.41%, and the u slope average is no longer obvious after the
sand coefficient is >0.71; Under any surface slope shape, the u

slope average after coal mining subsidence decreases with the
increase of sand-mud ratio of overlying strata in coal seam.
Under any structural characteristics of coal seam overburden
and any slope shape of surface slope, the u slope average increases
with the increase of natural slope after coal mining subsidence,
and reaches the maximum when the natural slope is 45°, which is
more than 1.03 times of the natural slope of 5°–35°. When the
overlying strata structure characteristics and natural slope of any
coal seam are less than 35°, the u slope average of concave slope is the
largest after coal mining subsidence, and when the overlying
strata structure characteristics and natural slope of any coal seam
are more than or equal to 35°, the u slope average of convex slope is
the largest after coal mining subsidence, which has obvious
influence on the horizontal movement of slope.
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An MDT-based rapid assessment
method for the spatial distribution
of trafficable sections of roads hit
by earthquake-induced landslides

Xianfu Bai1,2*, Yuqian Dai3, Qingyun Zhou1,2 and Zhiquan Yang4*
1Kunming Institute of Earthquake Prediction, China Earthquake Administration, Kunming, China, 2Yunnan
Earthquake Agency, Kunming, China, 3Earthquake and Disaster Reduction Bureau of Xishan District,
Kunming, China, 4Faculty of Public Safety and Emergency Management, Kunming University of Science
and Technology, Kunming, China

Inmountainous areas, roads are often damaged by earthquake-induced landslides
(EL). The degree of road damage and the existing functional state will have a very
important impact on the whole earthquake relief work. However, this question has
long been plaguing scientists engaged in the risk assessment. Now, anMDT-based
rapid assessmentmethod for the spatial distribution of trafficable sections of roads
(TSR) hit by EL is proposed. The method mainly consists of three procedures: 1)
Demarcate the road sections in the evaluated region; 2) Create the data for
earthquake-induced landslide sensitivity level for the evaluated region; 3) Use the
sample data to devise the MDT model for the TSR hit by EL and calculate the
trafficability of road sections. This method was applied in the study of the 2008
Wenchuan Ms 8.0, the 2014 Ludian Ms 6.5, the 2012 Yiliang Ms 5.6 and Ms 5.7
earthquake-stricken regions. The case of Wenchuan earthquake was adopted to
establish the method. The cares of Ludian and Yiliang were used to evaluate
whether the method could be transplanted into similar regions. The p-value and
the kappa coefficient were used to test and evaluate the significance and the
consistence of the actual situation. Our results suggest: ⅰ) The Wenchuan
evaluated region had the p-value 2.52 × 10−203 and the kappa coefficient 0.91.
Less than 1% of the road sections that were inferred to be trafficable with the
established method were actually interrupted by EL. The interruptions in the road
sections that were inferred to be un-trafficable were 12 times of those in the other
road sections. ⅱ) The Ludian and Yiliang earthquake-stricken regions had the p-
value 9.7 × 10−107 and the kappa coefficient 0.81. Only 1.31% of the road sections
that were trafficable according to the calculation results of the model had been
actually interrupted by EL. The interruptions caused by EL in the un-trafficable
road sections according to the calculation results were 5.2 times of those in the
trafficable road sections. This method could be applied in other similar regions
when a certain error was permitted.

KEYWORDS

rapid assessment, road trafficability, earthquake-induced landslides, multivariate
decision tree, model
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1 Introduction

The spatial distribution of trafficable sections of roads (TSR)
significantly affects emergency rescue decision-making, which
impacts both the reduction of earthquake disaster losses and the
regional planning for mitigating earthquake disasters. For instance,
if the roads are damaged during an emergency rescue, the rescue
team may be delayed, which can seriously delay the rescue of the
injured in a timely manner (Lan et al., 2009; Chang, 2013; Yang et al.,
2023a). An important part of earthquake emergency response is
drawing up a plan of action for emergency rescue within a short time
after the earthquake. Planning can be enhanced if it is supported by
the simulation and analysis of seismic disasters including the
prediction of expected road blockage caused by earthquake-
induced landslides (EL). The Ministry of Emergency
Management of the People’s Republic of China undertakes
rapidly assessing the impact of significant earthquakes occurring
on the Chinese mainland before eyewitness reports have come in
and informs the government in earthquake-stricken areas (including
the transportation department, armies, and other departments) of
the potential effects. The government’s immediate plan for rescue
and evacuation requires information about road blockage in the
disaster area and suggestions from the Ministry of Emergency
Management of the People’s Republic of China about traffic
management. Facing the need for information concerning a large
area (the Chinese mainland), the assessment of EL disasters
implemented by the Ministry of Emergency Management of the
People’s Republic of China must adopt methods based on
correlation analysis and can at present only provide information
on EL sensitivity. Recently, Dai achieved good results in rapid
assessment of human death by landslide sensitivity information
(Dai et al., 2022). This paper aims to add the capability of being able
to predict road blockage using the existing earthquake-induced
landslide sensitivity (ELS) data. Road trafficability (RT) during an
earthquake event depends mainly on two natural factors. One factor
is the ground motion, which causes direct damage to bridges,
tunnels, and roadbeds. The other factor is the secondary
geological disaster resulting from ELS and mud-rock flow, which
destroys or buries roads. Substantial progress has been made in the
development of techniques for the rapid assessment of roads directly
damaged by ground motion. However, few studies have focused on
the rapid assessment of TSR according to the secondary effects of
earthquakes such as ELS. The C4.5 method based on the maximum
information gain in the decision tree was introduced to explore the
risk assessment of road interruptions based on the ELS in the high-
intensity areas during the Wenchuan earthquake (An et al., 2015).
The study revealed that the ELS level could be used to assess the
trafficability of roads. In the C4.5 method, the ELS level was based on
the intensity as a parameter of ground motion influence. Five levels
of intensity corresponded with the values 1–5 in the landslide cell
attribute. The study used the 90 m × 90 m raster data. In the study of
the high-intensity areas during the Wenchuan earthquake, the
influence on the number of cells was however tested only at a
single ELS level for each child node in the decision tree. At the same
time, the correlation between attributes, which existed extensively in
an information system, was ignored, but it led to costly pruning in
the decision tree model. The largest shortcoming was the poor
universality of the findings in the study because of the absence of

focus on low-intensity areas. To overcome the shortcoming wholly
or partially, an MDT (Multivariate Decision Tree)-based rapid
assessment method is proposed in this paper for the spatial
distribution of TSR based on the ELS. In the method used in the
study, the seismic intensity envelope of an assessed region is used to
calculate and determine the spatial distribution of ELS levels.
Subsequently, the number of cells in the raster data for each ELS
level is calculated within the 180 m buffer zone on both sides of each
road section. The MDT correlation between the number of cells at
each landslide sensitivity level within the buffer zones of each road
section and the trafficability of the road section is established to infer
the spatial distribution of TSR. This method is established to provide a
more universal and accurate way for quickly assessing the spatial
distribution of TSR hit by EL. It is hoped that this method can
meet the urgent need for quantitative information on the spatial
distribution of TSR hit by EL while making decisions on emergency
aid in an earthquake and for quantitatively assessing earthquake
disasters. In some major projects such as the National Earthquake
Social Service Engineering Emergency Response Program, the National
Support Plan for Science and Technology, and the Earthquake Disaster
Scenario Construction in Large and Medium Cities of China, the ELS
was studied to generate the data set for the prediction of ELS level
according to the influence of seismic intensities (Bai et al., 2015; Bai
et al., 2021). The data set was used in the rapid assessment of ELS after
an earthquake. It has 90 m × 90 m raster data displayed as cells in the
computer. In terms of landslide probability, the landslide sensitivity of
cells was categorized into five levels, that is, very low, low,medium, high,
and very high, which correspondingly represent the cell attribute values
1, 2, 3, 4, and 5. The data for the prediction of landslide sensitivity had
three key features: 1) it was 90 m × 90m raster data; 2) it was predicted
with the intensity as the parameter influencing ground motion; 3)
landslide sensitivity was divided into five levels representing the cell
attribute values 1–5 correspondingly. When the landslide sensitivity
level of a region was higher, that is, there were more cells with high
values, it would be more likely that the earthquake would cause
landslides on a larger scale.

This paper is divided into six sections. In the second section, we
describe the research areas and available data. The third section
presents the basic idea of the rapid assessment method for the spatial
distribution of TSR hit by the EL, as well as the MDT theoretical
model. In the fourth section, the main results obtained with the
method are described. The fifth section discusses the change to
parameters and scope of applicability of the constructed method.
The sixth section draws conclusions about the method and
highlights the matters to which special attention should be paid.

2 The study areas and available data

2.1 Study areas

Situated at the southeast edge of the Qinghai–Tibet Plateau, the
Sichuan–Yunnan region is affected by the eastward movement of
crustal materials in the Tibet Plateau and the wedging Assam peak,
causing its complicated crustal activity and intense neotectonic
deformation and seismic activity. It is, therefore, the region most
noticeably exposed to strong seismic activity in mainland China (Su
et al., 2001). At 14:28 (Beijing time) on 12 May 2008, a strong
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earthquake of Ms 8.0 occurred in Sichuan, China. The epicenter of
the earthquake was located at 31.01 N, 103.42 E in Wenchuan
County. The area affected by the Wenchuan earthquake, with
intensities up to degree Ⅺ, was within the active Longmen
Mountain fault zone. This is a zone of active tectonics that
separates the Chengdu Plain and Sichuan Basin to the southeast
from the Longmen Mountain area and the Tibetan Plateau to the
northwest. A significant difference exists between the topography of
the two areas, and the major disaster area following the earthquake was
in the mountainous area, an area prone to landslides. The earthquake
caused severe landslides, and almost all of the roads leading to the
worst-hit areas were affected to varying degrees. The road breaks caused
by the EL have seriously delayed the rescue progress. Ludian County
and Yiliang County, are located in the southwest of Zhaotong City,
Yunnan Province, China. On 3 August 2014, an earthquake of
Ms6.5 occurred in Ludian, Yunnan, China. The earthquake occurred
east of the Xiaojiang fault zone and south of the Lianfeng fault zone. The
epicenter was located in the urban area of Longtoushan Town,
southwest of Ludian County. A severe landslide occurred at the
junction of Huodehong Town and Longtoushan Town on the north
bank of the Niulan River. Although the magnitude of the Ludian
earthquake was not high, the earthquake intensity in the extreme
earthquake area reached Ⅸ, the surrounding landforms in the area
were complex, the accessibility was extremely poor, and the resource
and environmental carrying capacity were fragile. The Ludian
earthquake caused the worst landslides in the region’s history. Dense
landslides have blocked rural roads leading to settlements in the
Niulanjiang Valley region, as well as aftershocks and heavy rains in
the disaster area, resulting in repeated disruptions to the road. On
7 September 2012, the Ms 5.7 andMs 5.6 Yiliang earthquakes occurred
in Yiliang, Yunnan Province, triggering numerous landslides and
causing significant impact on the locals. Many roads around the
Luoze River in Yiliang County have been blocked by earthquake
landslides.

Identifying the extent and degree of interruption of roads hit by the
EL is vital for the development of post-earthquake traffic control

strategies in Yunnan and Sichuan (Ouyang, 2013). In this study, a
rapid assessment model of the TSR hit by the EL is constructed for the
evaluated regions, including the 2008 Wenchuan Ms 8.0 earthquake-
stricken region, the 2014 LudianMs 6.5 earthquake-stricken region, and
the 2012 Yiliang Ms 5.6 and Ms 5.7 earthquakes-stricken region. The
earthquake-stricken region is a region with the seismic intensity VI and
above based on the post-earthquake field survey (Figure 1). The three
earthquake-stricken regions mentioned are typical of the mountainous
areas in the Sichuan–Yunnan region and Southwest China, and
analyses of these are also applicable in other mountainous areas of
China. Among these evaluated regions, the Wenchuan earthquake-
stricken region has the most comprehensive set of samples for the
interruption of roads hit by the EL. These samples can be used to
establish the rapid assessment method for the TSR hit by the EL and
thereby evaluate the effectiveness of the method. The Ludian-Yiliang
earthquake-stricken region is used to evaluate the extensibility and
applicability of the constructed method in similar regions.

2.2 Basic vector data

In this study, the data of roads and seismic intensities were provided
by the basic database for earthquake emergency response of Yunnan
Province and the basic database for earthquake emergency response of
Sichuan Province. The data of the roads in the year immediately
preceding the occurrence of an earthquake in a region were taken as
the basis for creating the spatial data of the road. The format of road
date and intensities date is shapefile. Roads date’s feature type is
polyline, and the intensities date’s feature type is polygon. The
analysis of roads took into account only higher levels of
classification of roads (including expressways, national highways,
and provincial highways) but left out lower levels of roads such as
county-level and town-level roads. However, the trafficability of the
roads of lower levels is also important in real-life crisis management.

The EL data involved in this study were sourced from the
Department of Natural Resources of Yunnan Province (DNRYP).

FIGURE 1
Location of the evaluated regions. (A) Wenchuan evaluated region; (B) Ludian-Yiliang evaluated region.
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After these earthquakes, the DNRYP conducted extensive field
investigations and combined remote sensing image interpretation to
determine the spatial distribution of EL. The feature type of Yiliang EL
date is point, but the others are polygon. Immediately after the
Wenchuan earthquake, we carried out a large field investigation in
the disaster area to assess the impact of landslides on roads. The field
investigation was enhanced by the use of high-resolution images. After
the Ludian and Yiliang earthquakes, we also carried out similar work.
We used these data to determine which roads in the research area were
blocked owing to EL. In this study, the results of the basic vector data we
collected are shown in Figure 2.

2.3 Earthquake-induced landslide sensitivity
date

The trafficability of roads hit by the EL is closely related to the
road condition and the scale of the landslide. Based on the current
research findings, the ELS level was selected to represent the
influence of landslides on the trafficability of roads in this study.
There have been previous studies that focused on the ELS
assessment around the world, but the methods developed in
these studies that applied to rapid assessment were mainly
divided into two categories. One category comprised studies
where the methods were based on the Newmark displacement
model and its derived models (Capolongo et al., 2002; Havenith
et al., 2006; Gaudio et al., 2012; James et al., 2013; Rajabi et al., 2013;
Chousianitis et al., 2014), and the other category contained studies
that used analysis methods based on landslide sensitivity (Havenith
et al., 2006; Kamp et al., 2008; Kamp et al., 2010; Xu et al., 2012a; Xu
et al., 2012b; Xu et al., 2012c; Xu et al., 2014). The Newmark models
applied to the assessment of smaller regions (Jibson, 2007; Yang
et al., 2023b; Pei et al., 2023; Zhao et al., 2023) and not suitable for
assessing the potential landslides caused by earthquakes extensively
(Qiu et al., 2022; Wang et al., 2022; Yang et al., 2023c; Ma et al.,

2023). In the early stage, the studies in China relied on the activity
and occurrence conditions of secondary geological disasters in the
past earthquakes for the preliminary judgment on the ELS in a
specific region, for some time to come (Tang et al., 2001; Liu et al.,
2006). The findings in these studies played a significant role in
China’s land planning and control for a long time, but they could not
be easily applied to the rapid assessment of ELS levels during an
emergency. After the Wenchuan earthquake occurred, many studies
in China explored ELS from the approach of mathematical
regression. The methods used in these studies mainly included
information quantity (Zhuang et al., 2010), logical regression
(Tao et al., 2010; Bai et al., 2015; Xu et al., 2019), analytic
hierarchy process (Wang et al., 2012), fuzzy mathematics (Wang
et al., 2011), artificial neural network (Xu et al., 2012b), and certainty
factor analysis (Xu et al., 2013). A great number of theories,
methods, and data have been accumulated in these studies for
the research of ELS. In this study, a module was borrowed from
a research initiative to rapidly assess the ELS level and formulate the
ELS distribution map of the evaluated region. The module was the
latest product of the “Research on the analysis methods for ELS”
(No. 2016QJGJ09), a special project on earthquake disaster scenario
construction in large and medium cities. The method was used to
draft the spatial distribution of landslide sensitivity levels on the land
of China according to earthquakes of different intensities (Figure 3).
It generated the 90 m × 90 m prediction data set of ELS levels with
intensity VI–XI. After calculating the probability of EL in each cell
for the given intensity, it divided the probability into five levels by
natural breaks, that is, very high, high, medium, low, and very low.
The cell values for these ELS levels are 5–1, respectively. A higher cell
value implies higher ELS (Bai et al., 2021). In Figure 3, each cell value
represents the ELS level at the corresponding position. The cell
values are highlighted in different colors. When tested with the
historical data of EL, the prediction data set of ELS levels is a good
indicator for the occurrence of EL (Bai et al., 2021; Zhang et al.,
2022).

FIGURE 2
Basic vector data of the evaluated regions. (A) Wenchuan evaluated region; (B) Ludian-Yiliang evaluated region.
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3 Materials and methods

The MDT-based rapid assessment method for the spatial
distribution of TSR hit by the EL is employed to evaluate the road
sections, which are then categorized into trafficable and un-trafficable
sections. TSR allows vehicles to ply during an earthquake as they are not
damaged by EL, while un-trafficable sections are buried or destroyed by

EL, making it impossible for vehicles to drive on them. The rapid
assessment of the spatial distribution of TSR hit by the EL is meant to
classify the TSR by identifying the number of cells at different landslide
sensitivity levels within the buffer zones of these sections with theMDT
model. The method is implemented in three basic steps (Figure 4): 1)
Demarcate the road sections in the evaluated region, that is, partition a
road into sections by virtue of the geographic information system (GIS),

FIGURE 3
Prediction data set of ELS levels with intensity VI–XI (90 m × 90 m raster data).

FIGURE 4
Process of the MDT-based rapid assessment for the spatial distribution of TSR hit by the EL.
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and make a 180 m buffer zone on both sides of each road section; 2)
Create the data for ELS level for the evaluated region. The data is
extracted for the spatial distribution of ELS levels in terms of seismic
intensity for the evaluated region. The numbers of cells at different
landslide sensitivity levels are recorded within each buffer zone. Seismic
intensity is determined in the rapid assessment while we quickly
evaluate the spatial distribution of trafficable sections of roads hit by
earthquake-induced landslides. The seismic intensity is usually
conducted by the model of area attenuation features of earthquake
intensity, shakemap, aftershock, and any other methods in the process
of rapid assessment after a significant earthquake occurs. A system of
seismic intensity rapid assessment technology has been given by Bai
et al. (2014) and other researchers. 3) Use the sample data to devise the
MDTmodel for the TSR hit by EL and calculate the trafficability of road
sections. The results of the rapid assessment are taken for mapping the
spatial distribution of TSR according to conditions of EL in the
evaluated region.

3.1 Definition and processing of road section

Road layout normally forms a networked system with some nodes
connected by different traffic lines. One or several traffic lines exist
between two nodes. A line connecting two nodes in a road network is

defined as a road section (Figure 5), which is taken as the basic unit to
assess the trafficability of a road hit by the EL. The nodes at both ends of
a road section may be cities, towns, villages, ramp entrances and exits,
highway intersections (including crossings), roundabouts, stations, or
other highway beginning and endpoints (Figure 6). A road section is
taken as the basic unit in the assessment since an interruption at any
position of the section makes it impossible to transport people and
goods between two nodes through that section. Under this
circumstance, a GIS is employed to partition a road into vector
sections, encode these road sections, and process the relevant fields.
For this purpose, the field for trafficability of sections is Boolean or
logical; that is, the sections of the roads are classified according to the
influence of the EL into either trafficable or un-trafficable sections.

3.2 Landslide influence distance and road
section buffer zone

A road becomes un-trafficable when it is buried or destroyed by
the EL or by the descent of the EL above the road. When a landslide
occurs above a road, it may interrupt the road only if its radius goes
beyond or reaches the road. As for 5,928 landslides induced in the
Wenchuan earthquake (Figure 7), the horizontal projection distance
of their movement ranged from 90 to 190 m; the maximum was

FIGURE 5
A sketch map of road sections.

FIGURE 6
A sketch map of some nodes in the traffic network. (A) Ramp entrance and exit; (B) Roundabout and crossing; (C) Road start and end.
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recorded as 1,201 m and the average was 136.6 m. Among them,
386 samples had a distance larger than 180 m, accounting for only
6.51% of total samples. The average turned out to be 168.8 m if the
repeated distances were taken out from the sample data. The roads
in the mountainous areas of China normally extend along the
valleys with higher elevations on both sides. Based on the statistical
results of EL distance, a space of 180 m on both sides of a road is
defined as the influence of EL on the trafficability of the road. This
aims to lower the subsequent statistical redundancy in this study.
Therefore, the buffer zone of road sections was made 180 m on
both sides of the roads but not provided at the ends of a road
section (Figure 8).

3.3 Spatial distribution of earthquake-
induced landslide sensitivity levels and
assignment of road section landslide attribute

3.3.1 Creation of earthquake-induced landslide
sensitivity data for the evaluated regions

Using the module (described in Section 2.3 above), the ELS level
for the whole evaluated region area can be created. The process
(Figure 9) is as follows: 1) Acquire the disaster areas and the seismic
intensity in each area for the current earthquake from the seismic
intensity map determined in the rapid assessment (Sometimes it can
also be obtained through on-site investigation or other means too).
2) Extract the ELS level distributions in the intensity-specified areas
from the ELS dataset for China according to the corresponding
seismic intensity. 3) Acquire the ELS distribution for the whole
evaluated area affected by the earthquake through the mosaicking of
the previously extracted ELS distributions under each seismic
intensity.

If the spatial distribution of ELS levels is predicted with the
data set, the parameter representing the influence of ground
motion in the evaluated region should be seismic intensity or
converted into it.

3.3.2 Extraction of the cell information for
earthquake-induced landslide sensitivity levels in
buffer zones

The cell information of ELS levels in buffer zones is extracted by
counting the number of cells at different landslide sensitivity levels
in buffer zones based on the data generated in Section 3.3.1. The cells
are covered, as indicated in Figure 8. The number of cells is assigned
as the earthquake-induced landslide attributes (ELA) of the buffer
zone. In the buffer zone attribute table, Ai (i=1, 2, 3, 4, 5) denotes the
number of cells at the ELS level i in a buffer zone.

3.3.3 Assignment of earthquake-induced landslide
attributes to road sections

After extracting the information as given in Section 3.3.2, the
ELA of each buffer zone is assigned to the corresponding road
sections based on the data correlation, and these become the ELA for
these road sections. After this assignment, the road sections share
the same ELA as the buffer zones.

3.4 MDTmodeling of the trafficable sections
of roads subjected to the earthquake-
induced landslides

3.4.1 MDT model
Decision tree modeling is a method commonly used in machine

learning. For instance, we may desire to obtain a model from a given

FIGURE 7
Spatial distribution of the landslide distances in theWenchuan earthquake. To determine the extent of earthquake-induced landslides, we randomly
selected 5,928 samples from the landslides triggered by the Wenchuan earthquake. The plotted dots in the figure represent the locations of the selected
landslides, while the color of the dots indicates the distance of their movement.
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training data set for the classification of new samples in a binary
classification task. The task can be regarded as a process of
“deciding” or “judging” whether a sample is “positive.” As its
name suggests, the decision tree has the decision made in a
treelike structure. The result of the decision-making process is
the judgment we desire. Normally, a decision tree contains a root
node, several internal nodes, and several leaf nodes. The leaf nodes
reflect the results of the decision, while each of the other nodes
represents an attribute test. The sample set for each node is
categorized into the child node based on the result of the
attribute test. The root node contains the entire set of samples.
The path from the root node to each leaf node represents a sequence
that is subjected to a judgment test. Decision tree learning generates
a decision tree that is highly capable of generalization, i.e., processing
new samples. It basically follows the simple and direct strategy of
“divide-and-conquer.” It is evident that a decision tree is generated
in the process of recursion. In the basic algorithm of the decision
tree, the return leads to recursion in three circumstances: 1) all the
samples contained in a node belong to the same category and are not
further classified; 2) the attribute set is empty, or all the samples
cannot be classified since their attribute values are identical; 3) the
sample set contained in a node is empty, making it impossible to
classify. In the second circumstance, the node can bemarked as a leaf

node, and its category is set as the category containing the most
samples of the node. In the third circumstance, the node is also
marked as a leaf node, but its category is set as the category
containing the most samples of its parent node. There is a
substantial difference between them. The posterior distribution of
the node is utilized in the second circumstance, while the sample
distribution of the parent node is taken as the prior distribution of
the node in the third circumstance. A decision tree involves a variety
of models and algorithms. Most of the decision tree models require
the testing of only one attribute at each node, e.g., CART, ID3, and
C4.5. These univariate decision trees assume that the conditional
attributes in the information system are immune to the effect of
decision attributes. Nevertheless, the correlation between the
attributes in various information systems is universal in real life.
It is therefore often impossible to reflect such a correlation in a
univariate decision tree. Additionally, pruning is costly for a
univariate decision tree and causes the loss of some attributes
that seem futile but contain important and relevant information.
This turns into a bottleneck in improving the classification accuracy
of the decision tree. For this reason, Murthy et al. (1994) put forward
the Multivariate Decision Tree (MDT) model in 1994. In the MDT
model, the nodes that were not leaf nodes, were not used exclusively
to decide on a specific attribute but to test the linear combination of
attributes. In other words, each node (other than a leaf node)
appeared as a line classifier, e.g., ∑d

i�1wiai � t, where wi was the
weight of the attribute ai; wi and t could be learned from the sample
set and attribute set contained in the node. The MDT was intended
to create a suitable line classifier instead of finding the optimal
classification attribute for each node that was not a leaf node as it was
conducted in the traditional learning process with a univariate
decision tree (Zhou et al., 2016). In this study, the R software is
utilized to construct the MDT model for the TSR hit by the EL.

3.4.2 Calculation of the trafficable sections of
roads subjected to the earthquake-induced
landslides

The calculation of the TSR subjected to the EL in a given region
is actually the classification of road sections based on MDT in terms
of trafficability. The road sections in a region to be evaluated are
taken as samples to analyze the correlation between RT and the ELS
on both sides of the roads. At the same time, the attributes of these
samples are represented by the number of cells at different landslide

FIGURE 9
Process of the ELS assessment in the evaluated region.

FIGURE 8
The sketch map of the road section buffer zones and cells.
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sensitivity levels on both sides of the road sections (i.e., road section
landslide attributes). The road sections are classified into trafficable
and un-trafficable sections. The RT is obtained in a field survey and
then used to determine the actual trafficable sections in these
samples. The trafficability of the roads hit by EL T is expressed as:

T � 0, 1{ } (1)
In Eq. 1, the value of T is 0 when a road section is interrupted by

EL, i.e., it is un-trafficable. The value 1 is awarded when the road
section is not interrupted by EL, i.e., it is trafficable. The number of
cells at the ELS level in the buffer zones on both sides of the road
section indicates the possibility of EL. Consequently, each sample
has five attributes in correspondence with the five levels of ELS. The
five attributes represent the number of cells at each level of ELS in
that sample. The value of Eq. 1 is determined by whether the
attributes of a road section satisfy Eq. 2:

t � ∑d

i�1wiAi (2)

In the linear expression, t represents for the threshold of
judgment; Ai stands for the number of cells at the landslide
sensitivity level i in the buffer zone; wi denotes the weight of the
landslide sensitivity level i. Normally, wi varies with nodes in the
decision tree. In this study, five ELS levels are used so that the line
classifier d=5. The C4.5 model considers the number of cells at only
one ELS level for each node, but the MDTmodel uses the number of
cells at all ELS levels for each node. In other words, the products of
the number of cells at each ELS level and the weight of the
corresponding sensitivity level should be aggregated for this
purpose.

3.4.3 The quantification of a node’s “purity”
The MDT model was mainly used to find out the optimal linear

expression for each node, but a parameter was still needed to judge
the linear relationship for the most suitable MDT. Generally, the
samples contained in the branch nodes of the tree were desired to be
in the same category along with the progress of classification in the
decision process. It implied that the purity of nodes became higher
and higher. The Gini index was the commonest indicator for the
purity of the sample set. If the proportion of the samples in the kth
category of the sample set D was pk (k=1,2, . . . . . . ,|y|), the Gini
index of D was defined as:

Gini D( ) � ∑
y| |
k�1

∑
k ≠ 1

pkpk′ � 1 −∑
y| |
k�1

pk
2

(3)

The lower the value of the Gini(D), the higher the purity of D.
Apart from Gini index, information gain, and information entropy
was used to measure the purity of nodes. These measures for purity
did not exert any significantly different effect on the model. In this
study, we evaluated the classification in terms of the Gini index.
When the value of Gini(D) was the smallest, it was believed that the
corresponding classifier must be the best.

3.4.4 Accuracy evaluation of the MDT
The MDT model must guarantee the statistical significance of the

assessment results and meet the actual needs at work while ensuring
that each node has the smallest Gini index but the largest purity. The
statistical significance of results is a method for estimating the

authenticity of results (representing the whole). In the statistical test,
the p-value (p-value, Probability, Pr) is an indicator of the declining
credibility of the results. With greater p-values, the correlation of the
variables for samples becomes a less reliable indicator for the correlation
of variables overall. Inmany fields, the p-value is statistically obtained by
virtue of a significance test. However, it is normally believed that 0.05 is
the margin of acceptable error for the p-value. Under normal
circumstances, p<0.05 indicates the existence of a statistical
difference, p<0.01 significant statistical difference, and
p<0.001 highly significant statistical difference. This means that the
probability of sample error caused by the difference between samples is
less than 0.05, 0.01, and 0.001. Moreover, the correctness rate of
assessment can be considered, or the kappa test may be conducted
for the model to meet the actual needs. The correctness rate represents
the percentage of the assessment results that comply with the actual
condition of samples, while the kappa coefficient shows the consistency
of simulation results with the actual condition. The calculated kappa
coefficient ranges from −1 to 1, but the kappa value normally falls into
the range of 0–1. It is common to divide the kappa values into five
categories for the consistency of different levels. Among them,
0.0–0.20 is the range for slight consistency, 0.21–0.40 for fair
consistency, 0.41–0.60 for moderate consistency, 0.61–0.80 for
substantial consistency, and 0.8–1 for almost perfect consistency.

4 Results

4.1 Creation of the spatial data for road
sections

The data of the roads in the year immediately preceding the
occurrence of an earthquake in a region were taken as the basis for
creating the spatial data of road sections. The details regarding the
spatial distribution of road interruptions caused by EL in these
earthquake-stricken regions were obtained from a field survey
(Figure 2). By using the above method (Section 3.1), we have
divided the roads in the evaluation areas into 29,204 sections, of
which 2,254 sections are defined as blocked due to earthquake-
induced landslides. The exclusive numbering scheme and fields were
designed for each of these road sections. The road sections destroyed
or buried by EL were defined as un-trafficable sections, and others as
trafficable sections. In this study, we focused only on how EL
affected the trafficability of roads and ignored the influence of
other disasters. Therefore, some road sections that were inferred
to be trafficable may be un-trafficable for other reasons.

4.2 Data extraction of earthquake-induced
landslide sensitivity levels

For a better comparison with the actual situation, the data of
seismic intensity from the field survey (i.e., spatial vector attribute
data) was used to extract the data of ELS levels in the evaluated
regions. We followed the ELS assessment process (Figure 9) to
extract the data of the corresponding intensity from the prediction
data set of ELS level (Figure 3) and prepared a mosaic of the spatial
distribution data of ELS levels for the three earthquake-stricken
regions (Figure 10). After the data of ELS levels for the evaluated
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regions were extracted for the spatial distribution data of ELS levels
of the evaluated regions, the ELAwas assigned to the road sections in
the evaluated regions as per the methodology given in Section 3.3.2
and Section 3.3.3. Finally, the data of road sections were obtained for
the trafficability of roads hit by EL as well as the ELA.

4.3 Modeling and test in the Wenchuan
evaluated region

4.3.1 Factor analysis on the trafficable sections of
roads subjected to the earthquake-induced
landslides

In this paper, we construct a rapid assessment method for the
TSR subjected to the EL and then use it to infer the trafficability of
road sections based on their ELA. The road sections in the
Wenchuan earthquake-stricken region were classified into two
categories. One category contained the road sections interrupted
by EL, which were defined as un-trafficable. The other category
included the other road sections that were not interrupted by EL,
and these were defined as trafficable. The ELA of the road sections
interrupted by EL in the Wenchuan evaluated region (i.e., the
number of cells at different ELS levels in buffer zones as
discussed above) (Figure 11) were compared with the ELA of
other road sections (Figure 12). This comparison revealed that
the number of cells at the very high or high level of ELS within
the 180 m buffer zones on both sides of the road sections that were
interrupted by EL was significantly higher than that of other
unaffected road sections. Almost all cells were at a very low or
low level of ELS within the 180 m buffer zones on both sides of other
road sections. The number of cells at a very high or high level of ELS
for these roads was very few or even zero. It is evident that roads
were more easily interrupted when there were more cells at a high
level of ELS on both sides of the roads. On the contrary, there was a
greater possibility of roads not being affected by EL if the majority of

the cells were at low levels of ELS on both sides of the roads. As
shown in Figure 11 and Figure 12, the number of cells at different
ELS levels on both sides of road sections could be taken as an
important basis for judging the trafficability of roads hit by the EL.
This indirectly revealed that the prediction data set of ELS levels was
a good indicator for the possible occurrence of EL.

Contingency analysis was carried out to qualitatively identify the
correlation between the ELA of road sections and their trafficability.
This was intended to infer the correlation between the trafficability
of roads subjected to the EL and the number of cells at each ELS level
within their buffer zones, i.e., whether they were independent of each
other. A contingency table was employed to analyze and infer the
correlation between the trafficability of 26,151 road sections hit by
the EL and their ELA for the Wenchuan evaluated region (Table 1).
In the table, T denotes the trafficability of roads according to EL. The
roads are un-trafficable if the value of T is 0 or trafficable if it is 1.
Moreover, Ai represents the number of cells at the landslide
sensitivity level i in buffer zones. In the contingency analysis, the
number of cells at each landslide sensitivity level equaled to or
exceeded 0. The number of road sections reflected the number of
trafficable road sections for ELA.

In the contingency analysis, we used the null hypothesis H0 that
A1 and T were independent of each other, and the alternative
hypothesis H1 that A1 and T were consistent with each other.
The contingency table analysis showed that the p-value in the
test of each group was much lower than 0.001. It was revealed
that the null hypothesis, where the ELA of road sections and their
trafficability were independent of each other, was untenable. In
other words, the number of cells at different ELS levels within the
180 m buffer zones on both sides of road sections is related to the
interruption caused by EL to the road sections. The correlation
coefficient indicated a significantly negative consistency between
A1–A5 and T. WhenA3–A5were greater than 0, the value of T tended
to be 0. In other words, if the number of cells at the medium to very
high landslide sensitivity levels in the buffer zones of a road section

FIGURE 10
Spatial distribution inversion of ELS levels in the evaluated regions. (A) Wenchuan evaluated region; (B) Ludian-Yiliang evaluated region.

Frontiers in Earth Science frontiersin.org10

Bai et al. 10.3389/feart.2023.1287577

58

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1287577


was larger, the road section had a stronger tendency to be
interrupted by EL. Moreover, there was a significantly positive
consistency between A1–A2 and T. When the value of A1–A2 in
the ELA of the road section was greater than 0, the value of T tended
to be 1. Therefore, a road section had a stronger tendency of not
being interrupted by EL when the numbers of cells at the very low
and low landslide sensitivity levels in the buffer zones of the road
section were larger. The positive or negative consistency between Ai

and T depended on the agreement on the trafficability of road
sections but always proved that they were not independent of each
other. The number of cells at the very high ELS level was the least
consistent with the trafficability of roads. It implies that the cells at
the very high ELS level made the highest contribution to the un-
trafficable roads hit by the EL. At the same time, the number of cells
at the very low ELS level was the most consistent with the
trafficability of roads, and its absolute value was the largest. It is
revealed that the number of cells at the very low ELS level exerted the
highest effect on the trafficability of roads hit by the EL. The p-value
and consistency coefficient prove that the trafficability of road
sections could be inferred by using their ELA.

4.3.2 Node division
The road sections in the Wenchuan evaluated region were

classified into two categories. Among them, 8,717 pieces of data
for the road sections were taken as the training set to construct the
MDT model for the TSR hit by the EL. The remaining 17,434 pieces

formed the test set to check the reasonableness of the model.
Selecting the optimal classification attribute from the data set was
crucial to decision tree learning. Following the above constraints, the
statistical software R was utilized to build the MDT model. The
branching rules of the MDT for the trafficability of the roads hit by
the EL were developed according to the output of the R software.

The MDT model for the trafficability of the roads hit by the EL
started from the root node, which contained 8,717 training samples.
The samples included 739 un-trafficable samples and
7,878 trafficable samples. The branching for the root node of the
decision tree was conducted in terms of whether the landslide
attribute values of road sections satisfied Eq. 4:

A5 + A4 + A3 − 1( )≤ 0 (4)
Starting from the root node of the decision tree, the samples

whose landslide attributes of road sections that satisfied Eq. 4 were
deployed to node 1, and other samples went to node 2. The road
sections in node 1 of the decision tree were judged to be trafficable.
At this time, node 1 had the smallestGini index (0.00561366) but the
largest purity so the tree did not grow. In the training set,
7,827 samples satisfied Eq. 4 and were deployed to node 1.
Among them, 7,805 road sections were trafficable, so that the
fault rate was less than 1%.

The branching was conducted for node 2 of the decision tree
based on whether the landslide attributes of road sections satisfied

FIGURE 11
Statistical diagram of the landslide attributes of the road sections interrupted by EL in the Wenchuan evaluated region.

FIGURE 12
Statistical diagram of the landslide attributes of the road sections uninterrupted by the EL in the Wenchuan evaluated region.
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Eq. 5. The samples whose landslide attributes of road sections
satisfied Eq. 5 were assigned to node 3, and other samples went
to node 4. The road sections in node 4 were identified as un-
trafficable. At this time, node 3 had the smallest Gini index
(0.026989308) but the largest purity so the tree stopped growing.
In the training set, 368 samples satisfied Eq. 5 and went to node 3.
However, 363 road sections were un-trafficable, causing a fault rate
of less than 1%.

A5 − 1≥ 0 (5)
The branching was conducted for node 4 of the decision tree

based on whether the landslide attributes of road sections satisfied
Eq. 6. The samples whose landslide attributes of road sections
satisfied Eq. 6 were sent to node 5, and other samples went to
node 6. The road sections in node 5 were identified as un-trafficable.
At this time, node 5 had the smallest Gini index (0.147928994), but
the largest purity and branching was halted. In the training set,
247 samples satisfied Eq. 6 and were sent to node 5. Among these
samples, 228 road sections were un-trafficable, so that the fault rate
was less than 1%.

1/ 4 − A3( ) + 1/ 6 − A4( )< 1/4 (6)
The branching was conducted for node 6 of the decision tree

based on whether the landslide attributes of road sections satisfied
Eq. 7. The samples whose landslide attributes of road sections
satisfied Eq. 7 were added to node 7 of the decision tree, and
other samples went to node 8. The road sections in node 7 were
considered un-trafficable. At this time, node 7 had the smallest Gini
index (0.209876543), but the largest purity and the branching came
to an end. In the training set, 63 samples satisfied Eq. 7 and went to

node 7. Among these samples, 56 road sections were un-trafficable,
causing the correctness rate of 88.89%.

1/ A3 − 13( ) + 1/ 7 − A4( )< 5/104 (7)
The branching was conducted for node 8 of the decision tree

based on whether the landslide attributes of road sections satisfied
Eq. 8. The samples whose landslide attributes of road sections
satisfied Eq. 8 were deployed to node 9 of the decision tree, and
other samples went to node 10. The road sections in node 9 were
judged to be trafficable. In this case, the node had the smallest Gini
index (0.067776457) but the highest purity. Then, the branching was
stopped.

1/ A2 − 102( ) + 1/ 14 − A3( )≤ 15/14 (8)
The branching was conducted for node 10 of the decision tree

based on whether the landslide attributes of road sections satisfied
Eq. 9. The samples whose landslide attributes of road sections
satisfied Eq. 9 were deployed to node 11 of the decision tree, and
other samples went to node 12. The road sections in node 11 were
found to be un-trafficable. At this time, node 11 had the smallest
Gini index (0.64498791) but the highest purity and the decision tree
stopped growing. In the training set, 61 samples satisfied Eq. 9
and were deployed to node 11. Among them, 59 road sections
were un-trafficable, so that the fault rate was less than 4%. The
road sections in node 12 were judged to be trafficable. Node
12 had the smallest Gini index (0.157215802) and the largest
purity so the branching of the decision tree was completed. In the
training set, 122 samples did not satisfy Eq. 9 and went to node
12. Among them, 112 road sections were trafficable, so the
correctness rate was 91.80%.

TABLE 1 Contingency of the ELS and the RT.

Ti p-value of Ai and Ti Consistency coefficient of Ai and Ti

0 1 Total

Ai A5 0 1,127 23,897 25,024 2.42×10−116 −28.9715

>0 1,104 23 1,127

Total 2,231 23,920 26,151

A4 0 207 23,529 23,736 7.52×10−185 −26.1829

>0 2024 391 2,415

Total 2,231 23,920 26,151

A3 0 391 23,368 23,759 2.08×10−151 −22.8983

>0 1840 552 2,392

Total 2,231 23,920 26,151

A2 0 230 23 253 8.884×10−23 21.1148

>0 2001 23,897 25,898

Total 2,231 23,920 26,151

A1 0 1,265 414 1,679 2.91×10−99 96.509

>0 966 23,506 24,472

Total 2,231 23,920 26,151
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3/7≤A4/7< 1 (9)
The above MDT rules for judging the trafficability of the roads

hit by the EL were drafted into a traditional tree structure, as shown
in Figure 13.

The judgment rules given in Figure 13 were used to decide the
trafficability of roads hit by the EL for all samples in the Wenchuan
evaluated region by virtue of MDT. The results were compared with
the actual trafficability of roads. According to the calculation results
(Table 2), the p-value of the Wenchuan evaluated region was
2.52×10−203, much lower than 0.001, and its overall correctness
rate reached 98.50%. Its kappa coefficient was 0.91, which falls in
the range of 0.81–1 so the assessment results given by the model had
almost perfect consistency with the actual condition. Based on the
results, the number of interruptions in the trafficable road sections
hit by the EL took up only 0.958% of these road sections, while the
number of interruptions in the un-trafficable road sections was
12.3 times as high as those in other road sections. Obviously, the
MDT model could be taken as a good indicator of the interruption
caused by EL in the road sections. Compared with the C4.5 decision
tree, theMDTmodel is applicable in a wider range and shows higher
differential significance, that is, higher statistical significance, as well
as higher kappa coefficient, that is, higher consistency and overall
correctness rate.

The above model was utilized in ArcGIS to obtain the spatial
distribution of TSR hit by the EL in the evaluated region

(Figure 14A) by calculating the trafficability of road sections hit
by the EL, based on the seismic intensity from the post-earthquake
field survey. The comparison with actual conditions revealed that
most of the road sections that were assessed to be un-trafficable but
were trafficable belonged to some expressways with high intensity,
while most of the road sections that were calculated to be trafficable
but were interrupted by landslides existed in some provincial
highways with low intensity. The model was not constructed
with the classification of roads but assumed that all roads were
identically vulnerable to EL. However, provincial highways were
more vulnerable to EL than expressways due to design and siting
considerations.

4.4 Application of the model to the Ludian-
Yiliang evaluation regions

The 2014 Ludian Ms 6.5 earthquake-stricken region and the
2012 Yiliang Ms 5.6 and Ms 5.7 earthquake-stricken region in
Yunnan were employed in the study to test the extensibility of
the proposed method for the rapid assessment of TSR hit by the EL
caused by different earthquake magnitudes in the regions with
similar natural and geographical environments. The MDT model
constructed for the TSR hit by the EL for the Wenchuan evaluation
region was applied to the Yunnan evaluation region without altering
the data processing method, model indicators, and parameters. The

FIGURE 13
MDT model of the TSR hit by the EL in the Wenchuan evaluated region.
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spatial distribution of TSR that had EL in the Ludian-Yiliang
evaluation regions was obtained, as shown in Figure 14B. The
Ludian earthquake and the Yiliang earthquake had much lower
magnitude and intensity, and the landslides induced were less
serious than for the Wenchuan earthquake, but they still
triggered different severities of interruption to roads because of
EL since they occurred in the mountainous areas. The calculation
results (Table 3) showed that the p-value in the test of trafficability
for the Ludian-Yiliang evaluated regions was closer to 0, and the
overall correctness rate reached 99.67%. Moreover, the kappa
coefficient was 0.81. Its consistency was slightly lower than that
of the Wenchuan evaluated region but still fell into the almost
perfect range. In the Ludian-Yiliang evaluated regions, the road
sections that were interrupted by EL comprised only 1.31% of those
with the trafficable attribute. Additionally, the road sections that had
the untrafficability attribute and that were interrupted by EL were
5.2 times as high as other road sections. Thus, the calculated
trafficability is a good indicator of whether road sections are
interrupted by landslides. The constructed model for the
Wenchuan evaluated region can be promoted for evaluating the
trafficability of other regions with similar natural and geographical
environments under conditions of EL damage of their road network.

On the premise of acceptable error, the constructed method can be
employed to rapidly and more extensively assess the TSR hit by the
landslides caused by earthquakes of different magnitudes in
Southwest China.

5 Discussion

The strong correlation between the trafficability of road sections
and the ELS level is pivotal to the construction method for the rapid
assessment of TSR hit by the EL. As discussed above, the model must
be constructed under three conditions: 1) The basic unit in the
assessment must be a road section. In the assessment process, a road
must be divided into sections and should not be simply taken as a
unit. 2) The buffer zones on both sides of road sections must be
extended by 180 m and not created at both ends of a road. The value
of 180 m was determined using the horizontal projection distance of
EL in the Wenchuan earthquake. 3) The ELS level uses the 90 m ×
90 m raster data. Moreover, the data of landslide sensitivity is
obtained by taking intensity as a parameter for the influence of
ground motion. The landslide sensitivity is divided into five levels,
and the attribute values of the cells for landslides are

TABLE 2 Assessment results based on the MDT model (the Wenchuan evaluated region).

Actual condition Overall correctness
rate

Kappa coefficient p-value

Un-trafficable Trafficable Total

Judgment based on the model Un-trafficable 1978 161 2,139 98.50% 0.91 2.52×10−203

Trafficable 230 23,782 24,012

Total 2,208 23,943 26,151

FIGURE 14
Spatial distribution inversion of TSR hit by the EL for the evaluated regions. (A) Wenchuan evaluated region; (B) Ludian-Yiliang evaluated region.
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correspondingly 1–5. In the end, the efficacy of this method may
vary if any of these conditions are altered, e.g., using a different basic
unit for the assessment, changing the distance or way of buffering, or
abandoning the 90 m × 90 m raster data of the sensitivity levels.

While developing the rapid assessment method for TSR hit by the
EL, road sections are demarcated since they are the basic element
connecting two nodes in a road network. Theoretically, a road section
fails to serve as a transport medium between two nodes if it is
interrupted at any position. However, a problem still needs to be
addressed, that is, different lengths of road sections. In other words,
the total number of cells at the landslide sensitivity levels in the buffer
zones varies with road sections, which inevitably causes the error of the
model. In this study, a rapid assessment method is uniformly developed
for expressways, national highways, and provincial highways. This may
lead to a simplified process of modeling that could reduce the
calculation of RT in the rapid assessment but increase the relative
error of the assessment results. If the unified geometric attributes are
used for the assessed units and different models are developed for
different types of highways, the assessment accuracy of the model may
be further improved.

The correlation between the trafficability of road sections hit by
the EL and the attribute of ELS level can be described with different
models. In this study, only the MDT model has been employed to
illustrate the correlation between the trafficability of the roads hit by
the EL and the number of cells at different ELS levels. It has also been
compared with the existing C4.5 model. Different models may
generate different assessment results. Therefore, it is necessary to
develop different models and select the more effective one.

As a preliminary attempt, the method is constructed for the
Wenchuan evaluated region and then applied in the Ludian-Yiliang
evaluated regions. It is proved that the proposed rapid assessment
method for TSR hit by the EL is effective when road sections are
taken as the basic unit in the assessment. Moreover, it is also
endorsed for the rapid assessment of earthquake-induced losses
and the risk prediction of earthquakes in other mountainous areas.
The proposed method is basically a machine learning method.
Taking a larger sample size or a larger evaluated region may
further lower the error of the assessment results with the
method. Nevertheless, the method may experience a larger
relative error in the assessment of TSR hit by the EL if the
earthquake in the evaluated region has a lower magnitude or
affects a narrower range. This situation must be attributed to the
discrete lengths of road sections and other occasional factors.

The proposed method for the rapid assessment of TSR hit by the
EL is an exploratory effort to address the lack of assessment methods
for the trafficability of roads subjected to earthquake-induced

geological disasters. This effort is made to quantitatively calculate
the spatial distribution of post-earthquake interruptions on the
roads caused by EL. Therefore, it is possible to develop a
reasonable traffic control strategy and initiate the necessary air
support promptly. The method can be further improved and
expanded after overcoming some shortcomings related to the
sufficiency of data of road interruptions caused by EL in past
earthquakes, the currency—the degree to which the data is
current—of basic data, and the diversity of models and methods.

6 Conclusion

The rapid assessment results of the spatial distribution of TSR
significantly affect the regional planning for alleviating earthquake-
induced disasters and the emergency rescue decision-making for
reducing the losses caused by earthquake-induced disasters. The
southwestern region of China is characterized by high mountains
and steep slopes due to which it is vulnerable to the direct impacts
of groundmotion.Moreover, earthquake-induced geological hazards are
also important factors causing the interruption of roads in the region. In
this paper, a rapid method for assessment of the trafficability of sections
in the roads hit by the EL based on GIS and MDT is proposed to assess
the trafficability of the roads affected by earthquake-induced disasters.
The method is constructed in three basic steps. The first step is to define
the road section as the basic unit of assessment. In the second step, ELA
is assigned to road sections. The numbers of cells at different landslide
sensitivity levels within the 180m buffer zones on both sides of road
sections are calculated and taken as the ELA. The third step is to calculate
the trafficability of road sections using the MDT model for the
correlation between the ELA of road sections and their trafficability.
The calculation results are employed in a GIS for mapping the spatial
distribution of trafficable road sections in the evaluated region.

In this study, the 2008 Wenchuan Ms 8.0 earthquake-stricken
region in Sichuan was selected together with two regions with
similar natural and geographical environments, including the
2014 Ludian Ms 6.5 earthquake-stricken region in Yunnan, and
the 2012 Yiliang Ms 5.6 and Ms 5.7 earthquakes-stricken region in
Yunnan. These evaluated regions were used to develop the rapid
assessment method for TSR hit by the EL and build the
corresponding model. The Sichuan evaluated region was used to
construct the model and test its reasonableness, while the Ludian-
Yiliang evaluated regions in Yunnan were employed to evaluate the
extensibility and applicability of the model. The model constructed
for the Wenchuan evaluated region had a p-value of 2.52×10−203

(much lower than 0.001). The overall correctness rate of the model

TABLE 3 Assessment results based on the MDT model (for the Ludian-Yiliang evaluated regions).

Actual condition Overall correctness
rate

Kappa coefficient p-value

Un-trafficable Trafficable Total

Judgment based on the model Un-trafficable 19 6 25 99.67% 0.81 9.7×10−107

Trafficable 4 3,047 3,051

Total 23 3,053 3,073
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for identifying the trafficable road sections in the assessment reached
98.50%. The kappa coefficient was 0.91, indicating the almost perfect
consistency between the assessment results and the actual condition.
The road sections that were identified as trafficable but were
interrupted by EL took up only 0.958% of these road sections,
while the road sections that were evaluated as un-trafficable and
were in fact interrupted by EL were 12.3 times as high as other road
sections. This revealed that the RT calculated using the MDT model
for theWenchuan evaluated region was a good indicator for whether
road sections were interrupted by EL. The MDT model was
compared with the C4.5 decision tree to prove its wider
applicability, higher differential significance (i.e., higher statistical
significance), as well as higher kappa coefficient (higher consistency
and overall correctness rate). When the constructed method and
model were applied in the Ludian–Yiliang evaluated regions, the
assessment results showed a p-value of 9.7×10−107 and an overall
correctness rate of 99.67%. The kappa coefficient was 0.81, falling
into the range of 0.81–1 so the assessment results given by the model
were almost perfectly consistent with the actual condition.
Moreover, the road sections that were assessed to be trafficable
but were interrupted by EL accounted for only 1.31% of these road
sections, while the road sections that were identified as un-trafficable
but were interrupted by EL were 5.2 times as high as other road
sections. The results of the Ludian–Yiliang evaluated regions proved
that the calculated trafficability was a good indicator for whether
road sections were interrupted by landslides. With some acceptable
error, the constructed method can be used to rapidly assess the
trafficability of the roads according to EL for different magnitudes of
earthquakes and in a wider range of similar natural and geographical
environments in Southwest China.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Author contributions

XB: Formal Analysis, Funding acquisition, Investigation,
Methodology, Writing–original draft, Writing–review and editing.

YD: Data curation, Software, Writing–review and editing. QZ:
Investigation, Writing–review and editing. ZY: Methodology,
Supervision, Writing–review and editing.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported financially by the Key Research and Development
Plan of Yunnan Province: The Technology of the Comprehensive
Risk Assessment of the Earthquake Catastrophe and the Disaster
Chains in Yunnan and Its Application (No. 202203AC100003), the
Youth Academic and Technical Leaders Reserve Talent Project of
2023 in Yunnan Province, and the Seismic Spark Scientific
program of China Earthquake Administration (XH222509C and
XH23003C).

Acknowledgments

The authors thank Prof. YE Liaoyuan for meticulous guidance
on the exploration and thesis research work. They also would like to
thank Prof. SHI Zhengtao for the warm help in revising the paper
format. The authors thank the reviewers for their constructive
suggestions to improve the article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

An, J. W., Bai, X. F., Xu, J. H., Nie, G. Z., and Wang, X. Y. (2015). Prediction of
highway blockage caused by earthquake-induced landslides for improving
earthquake emergency response. Nat. Hazards 79 (1), 511–536. doi:10.1007/
s11069-015-1859-7

Bai, X. F., Dai, Y. Q., Yu, Q. K., and Shao, W. L. (2015). Risk assessment modeling of
earthquake-induced landslides and its preliminary application. J. Seismol. Res. (in
Chinese) 38 (2), 301–312.

Bai, X. F., Dai, Y. Q., and Zhao, H. (2014). Study on the emergency evaluation of
earthquake influence field. Journal of Natural Disasters (in Chinese) 23 (4), 91–102.
doi:10.13577/J.JND.2014.0413

Bai, X. F., Nie, G. Z., Dai, Y. Q., Yu, Q. K., Luo, W. D., and Ye, L. Y. (2021). Modeling
and testing earthquake-induced landslide casualty rate based on a grid in a kilometer
scale: Taking the 2014 Yunnan LudianMs6.5 earthquake as a case. J. Seismol. Res. 44 (1),
87–95 [in Chinese]. doi:10.3969/j.issn.1000-0666.2021.01.012

Capolongo, D., and Mankelow, R. J. (2002). Evaluating earthquake-triggered
landslide hazard at the basin scale through gis in the upper sele river valley. Surveys
in Geophysics. doi:10.1023/A:1021235029496

Chang, Y. M. (2013). Study on emergency evaluation to damaged roads and its
application based on UAV image in the earthquake area. Chengdu, China: Southwest
Jiaotong University. doi:10.7666/d.Y2319094

Chousianitis, K., Del Gaudio, V., Kalogeras, I., and Ganas, A. (2014). Predictive model
of arias intensity and newmark displacement for regional scale evaluation of
earthquake-induced landslide hazard in Greece. Soil Dynamics and Earthquake
Engineering 65, 11–29. doi:10.1016/j.soildyn.2014.05.009

Dai, Y. Q., Bai, X. F., Nie, G. Z., and Huangfu, G. (2022). A rapid assessment method
for earthquake-induced landslide casualties based on GIS and logistic regression model.
Geomatics, Natural Hazards and Risk 13 (1), 222–248. doi:10.1080/19475705.2021.
2017022

Frontiers in Earth Science frontiersin.org16

Bai et al. 10.3389/feart.2023.1287577

64

https://doi.org/10.1007/s11069-015-1859-7
https://doi.org/10.1007/s11069-015-1859-7
https://doi.org/10.13577/J.JND.2014.0413
https://doi.org/10.3969/j.issn.1000-0666.2021.01.012
https://doi.org/10.1023/A:1021235029496
https://doi.org/10.7666/d.Y2319094
https://doi.org/10.1016/j.soildyn.2014.05.009
https://doi.org/10.1080/19475705.2021.2017022
https://doi.org/10.1080/19475705.2021.2017022
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1287577


Gaudio, V. D., Pierri, P., and Calcagnile, G. (2012). Analysis of seismic hazard in
landslide-prone regions: criteria and example for an area of Daunia (southern Italy).
Natural Hazards 61 (1), 203–215. doi:10.1007/s11069-011-9886-5

Havenith, H. B., Strom, A., Caceres, F., and Pirard, E. (2006). Analysis of landslide
susceptibility in the Suusamyr region, Tien Shan: statistical and geotechnical approach.
Landslides 3 (1), 39–50. doi:10.1007/s10346-005-0005-0

James, N., and Sitharam, T. G. (2013). Assessment of seismically induced landslide
hazard for the state of Karnataka using GIS technique. Journal of the Indian Society of
Remote Sensing 42, 73–89. doi:10.1007/s12524-013-0306-z

Jibson, R. W. (2007). Regression models for estimating coseismic landslide
displacement. Engineering Geology 91 (2-4), 209–218. doi:10.1016/j.enggeo.2007.01.013

Kamp, U., Growley, B. J., Khattak, G. A., and Owen, L. A. (2008). GIS-based landslide
susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101
(4), 631–642. doi:10.1016/j.geomorph.2008.03.003

Kamp, U., Owen, L. A., Growley, B. J., and Khattak, G. A. (2010). Back analysis of
landslide susceptibility zonation mapping for the 2005 Kashmir earthquake: an
assessment of the reliability of susceptibility zoning maps. Natural Hazards 54 (1),
1–25. doi:10.1007/s11069-009-9451-7

Lan, R., Feng, B., Wang, Z. B., Clarkson, W. A., and Ibsen, M. (2009). Single frequency
Tm-doped fibre DBR laser at 1943 nm.World Earthquake Engineering 25 (002), 81–87.
doi:10.1109/CLEOE-EQEC.2009.5194697

Liu, F. M., Zhang, L. H., Liu, H. Q., and Zhang, Y. C. (2006). Assessment of secondary
geological hazard of earthquake in China. Journal of Geomechanics (in Chinese) 12 (2),
127–131. doi:10.3969/j.issn.1006-6616.2006.02.00

Ma, S. Y., Qiu, H. J., Zhu, Y. R., Yang, D. D., Tang, B. Z., Wang, D. Z., et al. (2023).
Topographic changes, surface deformation and movement process before, during and
after a rotational landslide. Remote Sensing 15, 662. doi:10.3390/rs15030662

Murthy, S. K., Kasif, S., and Salzberg, S. (1994). A system for induction of oblique
decision trees. Journal of Artificial Intelligence Research 2, 1–32. doi:10.1613/jair.63

Ouyang, Y. (2013). Earthquake tests China’s emergency system. The Lancet 381,
1801–1802. doi:10.1016/s0140-6736(13)61105-8

Pei, Y. Q., Qiu, H. J., Zhu, Y. R., Wang, J. D., Yang, D. D., Tang, B. Z., et al. (2023).
Elevation dependence of landslide activity induced by climate change in the eastern
Pamirs. Landslides 20, 1115–1133. doi:10.1007/s10346-023-02030-w

Qiu, H. J., Zhu, Y. R., Zhou, W. Q., Sun, H. S., He, J. Y., and Liu, Z. J. (2022). Influence
of DEM resolution on landslide simulation performance based on the Scoops3D model.
Geomatics, Natural Hazards and Risk 13 (1), 1663–1681. doi:10.1080/19475705.2022.
2097451

RajabiKhamehchiyanMahdavifarGaudioCapolongo, A. M. M. M. R. V. D. D. (2013).
A time probabilistic approach to seismic landslide hazard estimates in Iran. Soil
Dynamics and Earthquake Engineering 48 (1), 25–34. doi:10.1016/j.soildyn.2012.09.005

Su, Y. J., and Qin, J. Z. (2001). Strong earthquake activity and relation to regional
neotectonic movement in Sichuan-Yunnan region. Earthquake Research in China (in
Chinese) 17 (1), 24–34.

Tang, C., Zhu, J., and Zhang, X. R. (2001). GIS based earthquake triggered landslide
hazard prediction. Journal of Seismological Research (in Chinese) 24 (1), 73–81.

Tao, S., Hu, D. Y., Zhao, W. J., Fan, Y. D., and Wang, Z. H. (2010). Susceptibility
assessment of secondary landslides triggered by earthquakes: a case study of northern
Wenchuan. Geographical Research (in Chinese) 29 (9), 1594–1605. doi:10.11821/
yj2010090006

Wang, L. Y., Qiu, H. J., Zhou, W. Q., Zhu, Y. R., Liu, Z. J., Ma, S. Y., et al. (2022). The
post-failure spatiotemporal deformation of certain translational landslides may follow
the pre-failure pattern. Remote Sensing 14, 2333. doi:10.3390/rs14102333

Wang, X., Nie, G. M., Ma, M., Chen, T., Sun, Y., Qin, X., et al. (2012). CD4-CD8-
T cells contribute to the persistence of viral hepatitis by striking a delicate balance in
immune modulation. Acta Seismologica Sinica 34 (1), 76–84. doi:10.1016/j.cellimm.
2012.11.010

Wang, X. Y., Nie, G. Z., and Wang, S. (2011). Evaluation criteria of landslide hazards
induced by Wenchuan earthquake using fuzzy mathematical method. Rock and Soil
Mechanics 32 (2), 403–410. doi:10.3724/SP.J.1011.2011.00181

Xu, C., Dai, F. C., Xu, X. W., and Lee, Y. H. (2012a). GIS-based support vector
machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River
watershed, China. Geomorphology 145-146, 70–80. doi:10.1016/j.geomorph.2011.
12.040

Xu, C., Xu, X. W., Dai, F. C., Wu, Z. D., He, H. L., Shi, F., et al. (2013).
Application of an incomplete landslide inventory, logistic regression model and its
validation for landslide susceptibility mapping related to the May 12,
2008 Wenchuan earthquake of China. Natural Hazards 68 (2), 883–900. doi:10.
1007/s11069-013-0661-7

Xu, C., Xu, X. W., Dai, F. C., Xiao, J. Z., Tan, X. B., and Yuan, R. M. (2012c). Landslide
hazard mapping using GIS and weight of evidence model in Qingshui River watershed
of 2008 Wenchuan earthquake struck region. Journal of Earth Science 23 (1), 97–120.
doi:10.1007/s12583-012-0236-7

Xu, C., Xu, X. W., Fan, M., Xin, W., and Hu, Y. (2012b). A genome-wide
transcriptome profiling reveals the early molecular events during callus initiation in
Arabidopsis multiple organs. Geological Science and Technology Information (in
Chinese) 31 (3), 116–124. doi:10.1016/j.ygeno.2012.05.013

Xu, C., Xu, X. W., Yao, X., and Dai, F. C. (2014). Three (nearly) complete inventories
of landslides triggered by the May 12, 2008Wenchuan Mw 7.9 earthquake of China and
their spatial distribution statistical analysis. Landslides 11 (3), 441–461. doi:10.1007/
s10346-013-0404-6

Xu, C., Xu, X. W., Zhou, B. G., and Shen, L. L. (2019). Probability of co-seismic
landslides: A new generation of earthquake-triggered landslide hazard model. J. Eng.
Geol. 27 (5), 1122–1130 [in Chinese]. doi:10.13544/j.cnki.jeg.201908

Yang, Z. Q., Chen, M., Zhang, J., Ding, P., He, N., and Yang, Y. (2023b). Effect of
initial water content on soil failure mechanism of loess mudflow disasters. Frontiers in
Ecology and Evolution 11. doi:10.3389/fevo.2023.1141155

Yang, Z. Q., Wei, L., Liu, Y. Q., He, N., Zhang, J., and Xu, H. H. (2023a). Discussion on
the relationship between debris flow provenance particle characteristics, gully slope, and
debris flow types along the Karakoram highway. Sustainability 15, 5998. doi:10.3390/
su15075998

Yang, Z. Q., Xiong, J. F., Zhao, X. G., Meng, X. R., Wang, S. B., Li, R., et al. (2023c).
Column-Hemispherical penetration grouting mechanism for Newtonian fluid
considering the tortuosity of porous media. Processes 11, 1737. doi:10.3390/
pr11061737

Zhang, F. H., Du, H. G., Deng, S. R., Fan, K. L., Dai, W., Liu, W. H., et al. (2022).
Assessment of earthquake hazard risk based on township units: a case study of Jianshui
County, Yunnan Province. Journal of Seismological Research (in Chinese) 45 (1),
109–115.

Zhao, X. G., Yang, Z. Q., Meng, X. G., Wang, S. B., Li, R., Xu, H. H., et al. (2023). Study
on mechanism and verification of columnar penetration grouting of Time-Varying
Newtonian Fluids. Processes 11, 1151. doi:10.3390/pr11041151

Zhou, Z. H. (2016). Machine learning. Beijing: Tsinghua University Press.

Zhuang, J. Q., Cui, P., Ge, Y. G., Zhu, Y. Y., Liu, Y. H., and Pei, L. Z. (2010). Risk
assessment of collapses and landslides caused by 5.12 Wenchuan earthquake-A case
study of Dujiangyan-Wenchuan Highway. Chinese Journal of Rock Mechanics and
Engineering (in Chinese) 29, 3735–3742. Supp. 2.

Frontiers in Earth Science frontiersin.org17

Bai et al. 10.3389/feart.2023.1287577

65

https://doi.org/10.1007/s11069-011-9886-5
https://doi.org/10.1007/s10346-005-0005-0
https://doi.org/10.1007/s12524-013-0306-z
https://doi.org/10.1016/j.enggeo.2007.01.013
https://doi.org/10.1016/j.geomorph.2008.03.003
https://doi.org/10.1007/s11069-009-9451-7
https://doi.org/10.1109/CLEOE-EQEC.2009.5194697
https://doi.org/10.3969/j.issn.1006-6616.2006.02.00
https://doi.org/10.3390/rs15030662
https://doi.org/10.1613/jair.63
https://doi.org/10.1016/s0140-6736(13)61105-8
https://doi.org/10.1007/s10346-023-02030-w
https://doi.org/10.1080/19475705.2022.2097451
https://doi.org/10.1080/19475705.2022.2097451
https://doi.org/10.1016/j.soildyn.2012.09.005
https://doi.org/10.11821/yj2010090006
https://doi.org/10.11821/yj2010090006
https://doi.org/10.3390/rs14102333
https://doi.org/10.1016/j.cellimm.2012.11.010
https://doi.org/10.1016/j.cellimm.2012.11.010
https://doi.org/10.3724/SP.J.1011.2011.00181
https://doi.org/10.1016/j.geomorph.2011.12.040
https://doi.org/10.1016/j.geomorph.2011.12.040
https://doi.org/10.1007/s11069-013-0661-7
https://doi.org/10.1007/s11069-013-0661-7
https://doi.org/10.1007/s12583-012-0236-7
https://doi.org/10.1016/j.ygeno.2012.05.013
https://doi.org/10.1007/s10346-013-0404-6
https://doi.org/10.1007/s10346-013-0404-6
https://doi.org/10.13544/j.cnki.jeg.201908
https://doi.org/10.3389/fevo.2023.1141155
https://doi.org/10.3390/su15075998
https://doi.org/10.3390/su15075998
https://doi.org/10.3390/pr11061737
https://doi.org/10.3390/pr11061737
https://doi.org/10.3390/pr11041151
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1287577


Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Haijun Qiu,
Northwest University, China

REVIEWED BY

Zheng Han,
Central South University, China
Jiangcheng Huang,
Yunnan University, China

*CORRESPONDENCE

Zhiquan Yang

yzq1983816@kust.edu.cn

Na He

hn61886@163.com

Yingyan Zhu

zh_y_y@imde.ac.cn

RECEIVED 18 September 2023
ACCEPTED 13 October 2023

PUBLISHED 27 October 2023

CITATION

Liu Z, Yang Z, He N, Wei L, Zhu Y, Jiao W,
Wang Z, Zhang T, Zhang J and Zou X
(2023) Three decades of glacial lake
research: a bibliometric and visual analysis
of glacial lake identification.
Front. Ecol. Evol. 11:1296111.
doi: 10.3389/fevo.2023.1296111

COPYRIGHT

© 2023 Liu, Yang, He, Wei, Zhu, Jiao, Wang,
Zhang, Zhang and Zou. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 27 October 2023

DOI 10.3389/fevo.2023.1296111
Three decades of glacial lake
research: a bibliometric and
visual analysis of glacial lake
identification

Zhengquan Liu1,2,3, Zhiquan Yang1,2,3*, Na He4*, Lai Wei1,2,3,
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Province, Kunming, China, 4School of Civil Engineering, Henan Polytechnic University, Jiaozuo, China,
5Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
Introduction: As a vital component within glacier systems, the occurrences of

glacial lake disasters in high mountain regions have progressively emerged as

one of the most destructive natural calamities amid the backdrop of global

warming. The swift advancement of glacial lake identification techniques offers a

pivotal perspective for forecasting and mitigating the perils of glacial lake

outburst disasters.

Methods: To evaluate the thematic evolution, research focal points, and

forthcoming directions within the glacier identification domain, a

comprehensive bibliometric analysis was conducted on glacial lake

identification-related literature from 1991 to 2023 in the Web of Science Core

Collection database.

Results: 1) The United States, the United Kingdom, and China stand as principal

nations propelling the field's advancement. The Chinese Academy of Sciences

demonstrates the highest activity in terms of article publications and

international collaborations. 2) Climate change, compilation of glacial lake

inventories, methodologies for risk assessment, glacial lake outburst floods,

comprehensive disaster management strategies, and hydrodynamic models

constitute the domain's research hotspots. It is a typical multidisciplinary field.

3) Persistently high-impact topics over an extended period include “hazard”,

“Late Pleistocene”, “environmental change”, “ice sheet”, and “lake sediments”.

Keywords indicating the present cutting-edge research encompass “inventory”,

“glacial lake outburst flood”, “risk”, “dynamics”, “Tibetan Plateau”, “evolution”, and

“high mountain Asia”.

Discussion: This paper delves into the current status and pivotal concerns of

glacial lake identification techniques, methodologies, and the scale of

identification research themes. Further Research should concentrate on
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avenues like “recognition methods grounded in machine learning and deep

learning”, “multisource data fusion datasets”, “novel algorithms and technologies

adaptable to scale transformation and data expansion”, as well as “enhancing

spatiotemporal data resolution”. This will ultimately enable precise, prolonged,

and multiscalar identification of glacial lakes. his study provides valuable

guidance and reference for future research in the field of glacial lake

identification.
KEYWORDS

glacial lake identification, bibliometric analysis, research focal points, climate change,
remote sensing, GLOF
1 Introduction

As glaciers melt and retreat, the resulting depressed terrains

gradually fill with meltwater, giving rise to glacial lakes. These lakes,

considered one of the most sensitive indicators of global climate

change, are widely distributed in regions featuring extensive glaciers

and active glacial processes, such as the Himalayas, the Andes, and

the Alps (Motschmann et al., 2020; Thompson et al., 2020). Similar

to the predisposing environments and consequences of debris flow

disasters, these areas often possess favorable conditions for glacial

lake formation (Yang et al., 2023a), including low latitudes, high

altitudes, steep slopes, and rugged terrain (Yang et al., 2023b; Allen

et al., 2019). In recent years, with the intensification of global

warming and glacier melting, glacial lakes have become increasingly

prevalent features within natural landscapes.

Glacial lakes primarily derive their water from the meltwater of

surrounding glaciers, often characterized by lower temperatures.

Many glacial lakes form at the moraine margins comprised of ice-

deposited sediments and fragments, potentially containing

suspended sediments that contribute to the unique natural

landscapes of these lakes (Frydrych and Rdzany, 2022). When the

structural integrity of an ice dam weakens or is compromised, ice

dam failure can lead to landslides, debris flows, or even glacial lake

outburst floods (GLOFs) (Pei et al., 2023). Over time, the size,

shape, and water levels of glacial lakes may fluctuate due to local

geological conditions, climate factors, and dynamic changes within

the glacier system (Begam and Sen, 2019). Glacial lakes pose

significant potential hazards, especially when they become

unstable and lead to downstream flooding. The rapid release of a

substantial volume of lake water during such events can have

catastrophic consequences for nearby infrastructure and human

safety (Cook et al., 2018; Emmer et al., 2020). GLOFs typically

involve a complex sequence of processes, including initial triggering

mechanisms, influences and feedback from surrounding terrain and

topography, variations in lake surface or snow cover, dam

overtopping, erosion and sediment deposition along the flood

path, and the spreading of floods or debris flows in the affected

area (Sattar et al., 2021; Sattar et al., 2023). In Nepal’s Kanchenjunga

region, at least six severe GLOF events have occurred historically.

Among these, remote sensing analysis of the Nangama GLOF event
0267
suggests that approximately 800,000 cubic meters of ice debris and

avalanches might have triggered an outburst of about 11.2 million

cubic meters ±1.4 million cubic meters of water. Debris from the

flood formed a moraine-dammed lake called Chheche Pokhari Lake

on the Pabuk Khola River, around 2 kilometers downstream from

the lake (Byers et al., 2020). Statistics show about 80% of GLOF

events are triggered by glacier collapse or rockfall-induced ice

avalanches (Awal et al., 2011). In recent years, human activities

have intensified land resource development, and global warming

has amplified hydrological cycles. As one of the most notable

regions affected by global climate change, glacier-covered areas

are experiencing rapid changes in retreat and melting, an increase

in the frequency of extreme climate events. The frequency of

extreme climate events is increasing. In particular, the frequency

of GLOF outbreaks, the extent of disasters, and the scope of

disasters are on the rise (Yang et al., 2022; Dømgaard et al., 2023;

Emmer, 2023). Therefore, assessing the historical and future risks

associated with glacial lakes is of paramount importance.

Traditionally, much of the research on GLOF risks has focused

on large glacial lakes and climate change-triggering factors.

However, there remains a gap in understanding mechanisms

related to wave overflow, erosion-induced dam failure, and

empirical data. The spatial and temporal distribution of GLOF

disasters is uneven (Dou et al., 2023). Spatially, due to specific

geological and glaciodynamic conditions, different regions might

exhibit localized hotspots, demonstrating significant spatial

heterogeneity (Yang et al., 2023c; Dahlquist and West, 2022; Qi

et al., 2022). Temporally, the probability of disaster occurrence

increases during certain seasons or specific climate events, and

interannual variability suggests fluctuations in the frequency of

disasters each year (Taylor et al., 2022; Emmer, 2023). Long-term

trends describe changes in disaster frequency, scale, and timing,

often attributed to climate change and glacier retreats (Ahmed et al.,

2022a; Emmer et al., 2020; Zhao et al., 2022). It’s important to note

that GLOF disasters are sudden and are limited by the lack of

monitoring techniques and incomplete data resources, making it

challenging to directly observe their mechanisms and processes

(Worni et al., 2014; Williams et al., 2022; Ali et al., 2023). This

involves comprehensive analysis of multi-source data across

multiple time and spatial scales, making it difficult to accurately
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identify or predict the location and timing of disaster occurrences

(Hata et al., 2022). In contrast to mudslides and landslide disasters,

the prediction and monitoring of these events typically require

consideration of factors such as rainfall and mountain stability.

Various methods, including experimental research, erosion

monitoring, and numerical simulations, can be employed (Qiu

et al., 2022; Wang X. et al., 2022c; Ma et al., 2023; Yang et al.,

2023d; Zhao et al., 2023). On the other hand, the prediction and

monitoring of glacial lakes necessitate a focus on factors such as the

water level of the glacial lake and glacier meltwater volume. These

tasks often rely more on remote sensing technologies and sensor

monitoring methods. In recent years, with the advancement of

remote sensing and Geographic Information Systems (GIS)

techniques, various glacial lake identification methods have been

increasingly applied in identifying glacier lakes. By interpreting and

analyzing remote sensing images, researchers can identify

information about the number, location, morphology, and area of

glacial lakes, aiding in identifying potential risk areas (Begam and

Sen, 2019; Ahmed et al., 2022b). Additionally, GIS technology can

be used to analyze issues related to the spatial distribution, trends,

and potential risks of glacial lakes (Rawat et al., 2023; Ahmed et al.,

2022c). As a critical component of warning systems, glacial lake

identification techniques have gradually evolved into important

ways of identifying potential risk areas and predicting disaster

situations. They offer scientific support for glacial lake

management, monitoring, ecological conservation, and

biodiversity protection, ultimately safeguarding people living in

potentially risky areas and creating a more stable environment for

sustainable development (Zhou et al., 2023; Wang L. Y. et al., 2022).

Despite the achievements in glacial lake identification, challenges

still exist. Such as the accuracy of remote sensing image

interpretation, long-term monitoring of glacial lake changes, and

the identification and risk assessment of potentially dangerous

glacial lakes (Kaushik et al., 2022; Gao et al., 2023; Zhang

et al., 2023).

Bibliometrics is a crucial method for evaluating the current

status, forefront trends, and developmental trajectories of scientific

research. In the context of glacial lakes, bibliometrics finds

applications primarily in glacier mass balance research

identification and monitoring, evolution of glacial lake outburst

processes, and assessment of disaster risks based on remote sensing

techniques (Liu et al., 2023). Through bibliometric and data

visualization analysis of glacial lake literature related to remote

sensing technology in the Web of Science (WOS) database from

1990 to 2021. China and the United States are major countries in

the application of remote sensing technology to glacial lake

research. The Chinese Academy of Sciences stands out as the

most productive research institution. Current research hotspots

include keywords such as “Climate change,” “Inventory,” and

“Dynamics” (Yu et al., 2023). Bibliometric methods have played a

significant role in the overview studies of glacial lake-related fields,

particularly in studies regarding glacier retreat and glacial lake

outbursts. For instance, bibliometric analysis of literature on

GLOFs has helped to identify research characteristics,

geographical distribution, and trends on a global scale (Emmer,

2018). The intrinsic connection between dynamic changes in glacial
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lakes and climate change, as well as natural disasters such as glacial

lake outbursts, have a huge impact on the environment and society.

This makes the study of glacial lakes a hot topic that arouses strong

interest among scientific researchers and society. Despite the

substantial progress made by numerous researchers in this field,

there is still a lack of comprehensive statistics and analysis of the

literature. Therefore, it’s essential to systematically review and

summarize the current state of glacial lake identification research.

This approach will provide a deeper understanding of the

developmental trajectory of this research. At the same time, we

will enhance comprehension of the mechanisms behind glacial lake

outburst disasters and predictive warning technologies, identify

pressing scientific issues, and grasp current research hotspots and

future trends. Such a review study will contribute to guiding and

referencing further research in the field of glacial lake identification.

This study employs a research approach that combines

literature review, knowledge graph analysis, and bibliometrics.

The primary analytical methods utilized include citation analysis,

co-citation analysis, and bibliographic coupling analysis.

Techniques such as clustering analysis, visualization analysis, and

change-point detection analysis are employed. Through these

methods, the study aims to comprehensively analyze the main

achievements, research hotspots, cutting-edge directions, and

future research trends in the field of glacial lake identification

based on authoritative literature data. Diverging from previous

research, this study integrates traditional literature reading

methods with bibliometric visualization analysis (Hengst et al.,

2021; Veettil and Kamp, 2021). This integration offers an

objective and systematic overview of research based on glacial

lake identification. Focusing on literature in the field of glacial

lake identification published on the WOS database, the study

summarizes and analyzes research accomplishments over the past

32 years. It specifically emphasizes the application of identification

techniques in the early detection of glacial lake outburst disasters,

extending beyond the realms of GIS and remote sensing technology.

The research objectives encompass: (1) Identifying representative

countries, institutions, and collaboration patterns within the field.

(2) Uncovering valuable information contained in core literature.

(3) Highlighting current research hotspot themes. (4) Revealing

trends in glacial lake identification literature globally, encompassing

the past, present, and future. (5) Summarizing the developmental

trajectory of the field, pointing out shortcomings, challenges, and

frontiers of research. Through the integration of diverse analytical

methods, this study provides a holistic understanding of the glacial

lake identification field, shedding light on its evolution, challenges,

and promising research directions.
2 Data source and methods

2.1 Research methodology

This research is based on the fundamental theories of

bibliometrics. It utilizes a literature knowledge graph generated

from a sample of literature, employing quantitative statistics, co-

occurrence analysis, and visualization methods. The objective is to
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reveal the progress and hot topics in the field of glacial lake

identification-related research and predict future research trends

and focal points. For quantitative analysis of data, various software

tools were used, including VOSviewer (version 1.6.19, Centre for

Science and Technology Studies, Leiden University), CiteSpace

(6.1.R6 Advanced), Pajek (version 2008), and Origin, among

others. Using VOSviewer and CiteSpace, all essential functions

required for literature data visualization were realized. These tools

offer powerful capabilities in terms of literature data statistics, co-

occurrence word clouds, network clustering, density analysis, and

interactive relationships, along with efficient graphical user

interfaces (Zhang et al., 2022a). Through different algorithms for

standardization, mapping, and clustering, the study constructs and

visualizes keyword cluster analyses of glacial lake identification,

relationships among countries’ publications, as well as co-

occurrence analyses in the field. This generates interactive

visualizations of the structural and temporal patterns and trends

in the scientific field, allowing for a comprehensive overview of the

glacial lake identification domain. This approach enables

researchers to closely and widely track the development of the

field, discern prominent shifts in knowledge, and identify focal

topics (Li et al., 2022a). The analysis in this paper includes various

aspects: (1) Research progress and hot directions across different

periods and countries. (2) Clustering of collaborative relationships

among countries and institutions. (3) Evolution of thematic paths.

(4) Co-occurrence clustering of keywords. (5) Keyword emergence

graphs, among others.
2.2 Data sources

We employed the Web of Science Core Collection (WOSCC)

database for literature retrieval and data collection to obtain a

sample of literature related to the field of glacial lake identification.

WOS is one of the earliest and most widely used databases globally,

renowned for its reputable and widely recognized literature data,

along with its rich literature organization and statistical features

(Liu, 2019; Singh et al., 2021). Precisely defining the search formula

is a key prerequisite for successfully collecting sample literature

data. We used the following search formula to filter relevant

literature: (TS = (Glacial Lake) and TS = (Identify) or TS =
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(Glacial Lake) and TS = (Identification) or (TS = (Glacier Lake)

and TS = (Identify) or TS = (Glacier Lake) and (Identification)). The

retrieval date was May 20, 2023, resulting in 2,143 relevant

documents. After refining the data by literature type, we retained

three types of articles: research papers, conference papers

(meetings), and review papers. Subsequently, we exported the

data in plain text format. Using the built-in deduplication and

merging functions in the CiteSpace software, we further processed

the data by removing duplicates and eliminating literature unrelated

to the main topic terms. This resulted in a final dataset of 2,121

sample documents relevant to the topic of glacial lake identification.
3 Bibliometric analysis

3.1 Analysis of publication quantity, citation
count, and journal distribution

Global annual publication counts can directly reflect the

research activity and scientific development trends in a particular

academic field (Wang et al., 2021). By utilizing the citation analysis

report from the WOS, we can gather key data indicators for

analyzing the development of the glacial lake identification

research domain. According to the provided citation analysis

report: There are 46,472 citing documents, reduced to 45,296

after excluding self-citations; the total citations count is 66,326,

reduced to 62,537 after excluding self-citations; the average citations

per paper is 31.27, and the h-index is 105. Considering that data for

the year 2023 is incomplete, it’s not included in Figure 1. To gain a

comprehensive understanding of the glacial lake identification

research field, a slice analysis of retrieval data from 1991 to 2022

was performed with a time interval of 1 year. This analysis reflects

the patterns of both the total number of articles (TP) and annual

article impact (H) changing over time (where H represents the

number of citations received by the most cited article in a year,

reflecting its influence) (Mansur et al., 2021). Figures 1, 2 illustrate

the global volume of publications and their citat ion

impact, respectively.

During the period from 1991 to 2023, despite fluctuations in the

number of published papers related to glacial lake identification (n

= 2121) in certain years, the overall trend of global publication
BA

FIGURE 1

Temporal variation in the number of published literature and citations on glacial lakes from 1991 to 2022. (A) Quantity of published literature.
(B) Citation count. Curves represent exponential fits based on the data.
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volume and citation count has been on the rise (Figure 2). The

quantity of publications and citations is mainly concentrated after

1998, with the highest number of articles published after 2013,

showing the most significant growth. Through statistical analysis, it

was found that the total number of published articles in the 9 years

after 2014 is approximately 1.4 times that of the 23 years before

2014. This suggests that research in this field has garnered

widespread attention from the academic community in recent

years, which might also reflect the severity of GLOF risks. The

citation impact of articles in the field of glacial lake hazards has

exhibited an exponential growth trend since 2000. This indicates, on

one hand, that new technologies like remote sensing, GIS, and deep

learning have provided more data sources and analytical tools for

glacial lake identification research (Lu et al., 2020; Sawi et al., 2022).

On the other hand, in recent years, topics such as the interaction

between glacial lakes and climate change, glacial lake water

resources management, and glacial lake-related disasters have

increased in frequency. Disaster early warning, glacial lake change

monitoring and evolution mechanism, glacial lake flood and

outburst risk assessment, glacial lake and ecological environment

impact, glacial lake disaster prevention and risk management

urgently need to carry out in-depth and detailed research

(Mulsow et al., 2015; Viani et al., 2022).

From 1991 to 2023, the number of cited papers in glacial lake

identification research has shown two significant leaps. Based on the

growth trends of publications and their citations, the publication

history in this field can be divided into three phases. The first phase

(1991-1997) was constrained by limited remote sensing technology

and data accessibility, focusing on preliminary exploration

primarily in specific glacier regions and types of glacial lakes

(Knox, 1996). The second phase (1998-2013) witnessed noticeable

progress compared to the first phase, with a steady increase in

annual publications and citations. During this phase, a focus was

placed on processing multi-source remote sensing data, improving

feature extraction algorithms, establishing diverse datasets, and

monitoring glacial lake evolution and trends (McKillop and
Frontiers in Ecology and Evolution 0570
Clague, 2007; Bolch et al., 2011; Wang et al., 2012). The third

phase (2014 to present) saw rapid developments in numerical

models and machine learning. The number of publications and

citations increased from 103 and 3,163 in 2014 to 168 and 7,838 in

2022, respectively. As of May 20, 2023, the publication count and

citation count for the year 2023 are 54 and 3,467, respectively.

Additionally, the rate of citation growth has outpaced the growth of

publications, indicating a significant lag effect and the increasing

interest of researchers in the glacial lake identification field over the

past three decades. This can be attributed to interdisciplinary

technology integration and application, the launch of more

satellites, the establishment of hydrological models, faster

computing platforms, and more accurate artificial intelligence

models. It provides abundant high-precision, large-scale data

support for glacial lake identification research (Thakur et al.,

2016; Motschmann et al., 2020). Furthermore, international peer

communication and knowledge sharing have played a crucial role in

the rapid advancement of research in this field (as discussed further

below) (Zdorovennova et al., 2021).

Academic journals are essential platforms for the public

dissemination of research findings and serve as crucial channels

for researchers to gain new knowledge, theories, and discoveries in

specific fields or topics (Bondi and Cacchiani, 2021). Research

outcomes in the field of glacial lake identification are distributed

across 621 different journals, with 344 of them having published

only one paper each. The relevant information for the top 10

journals in terms of publication count is provided in Table 1.

Upon analysis, it becomes evident that most of these journals

belong to the category of Earth Sciences, covering various

disciplines such as natural sciences, environmental sciences, and

paleobiology. These journals encompass fields including disaster

science, geography, remote sensing, and environmental science,

demonstrating the diversity and interdisciplinary nature of glacial

lake research topics. From Table 1, it can be observed that the 5-year

impact factors of the top 10 journals range from 2.1 to 5.6, showing

a significant span. However, the number of high-impact factor
FIGURE 2

Publication quantity classified by country or region and its collaborative relationships.
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journals is relatively small, indicating that there is a scarcity of high-

quality articles in the field of glacial lake identification research. The

quality of papers varies, and there is a need to further enhance the

overall research quality. Over 32 years, the journal “Quaternary

science reviews” has published the highest number of papers (178),

followed by “Boreas” (84), “Quaternary international” (73), and

“Geomorphology” (69). “Quaternary science reviews” is recognized

as one of the most authoritative and academically influential

journals in the field of earth sciences. It has a high 5-year impact

factor and H-index. Although “Frontiers in earth science” has a

high publication count and impact factor, its relatively low H-index

suggests that there is still room for improvement in terms of

academic influence for the papers it publishes. When considering

the locations of journal publishers, the top 10 journals are all based

in developed countries. Among them, three are based in the United

Kingdom and the Netherlands, indicating that these developed
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coun t r i e s ho ld a l e ad i ng po s i t i on in g l a c i a l l a k e

identification research.
3.2 Analysis of country/region and
institutional relationships

This study aims to provide a comprehensive overview of the

publication status of countries or regions that rank highly in terms

of the number of published articles, revealing the distribution of the

global glacial lake identification field. The paper quantity from the

top 10 ranked countries is summarized (Figure 2 and Table 2),

encompassing all countries mentioned in the literature. The spatial

distribution of literature publication reflects the academic research

activity level within a particular field for countries or regions,

offering insights into regional strengths, and influence, as well as
TABLE 2 Top 10 countries by quantity of published literature on glacial lake identification and relevant data.

No. Country/Region Continent Link TLS NP PR AC APY

1 USA N. America 24 531 649 195.48 38.94 2013.43

2 England Europe 24 484 510 760.90 41.82 2013.50

3 China Asia 24 311 406 28.75 25.06 2017.45

4 Canada N. America 24 214 283 740.33 29.39 2012.23

5 Germany Europe 24 375 266 319.73 34.37 2015.31

6 Switzerland Europe 24 262 151 1,735.03 43.12 2013.78

7 France Europe 22 185 147 216.97 48.25 2012.55

8 Russia Asia 20 130 112 78.32 23.62 2015.12

9 Australia Oceania 21 138 102 397.07 34.32 2013.01

10 Norway Europe 22 152 101 1,867.60 34.02 2014.79
front
TLS, Total Link Strength; NP, Number of Publications; PR, Publication Ratio; AC, Average Citations per article; APY, Average Publication Year. The color temperature from warm to cold
respectively represents the strength to weakness of the corresponding country’s data in this category.
TABLE 1 Top 10 academic journals by quantity of published literature in WOS.

No. Country/Region Journal Title 5-year impact factor Number Proportion Hindex

1 England Quaternary Science Reviews 4.5 178 8.39 164

2 Denmark Boreas 2.2 84 3.96 67

3 England Quaternary International 2.3 73 3.44 93

4 Netherlands Geomorphology 4.2 69 3.25 136

5 Netherlands
Palaeogeography
Palaeoclimatology
Palaeoecology

3.0 63 2.97 134

6 England Journal of Quaternary Science 2.5 58 2.73 86

7 Netherlands Journal of Paleolimnology 2.1 56 2.64 76

8 United States Quaternary Research 2.4 39 1.83 104

9 Switzerland Frontiers in Earth Science 3.3 34 1.60 30

10 Switzerland Remote Sensing 5.6 34 1.60 81
5-year impact factor data is sourced from the 2022 edition of the journal citation reports. No. = Number.
iersin.org

https://doi.org/10.3389/fevo.2023.1296111
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Liu et al. 10.3389/fevo.2023.1296111
international exchange and collaboration. The collaboration

network graph (Figure 2) displays the level of cooperation among

countries, with the thickness of connections reflecting the frequency

of collaboration—thicker lines signify closer cooperation. Over 100

countries or regions have published papers related to glacial

lake identification.

From Figure 2, it can be observed that the United States engages

in the most frequent international collaboration, followed closely by

the United Kingdom, Germany, France, and China. China

maintains significant exchanges with countries like the United

States, Canada, Australia, and Japan. Sweden, Norway, Belgium,

France, the Netherlands, and Germany also exhibit close

collaboration. The combined publication count of the top ten

countries is 2,727 papers, accounting for 128.57% of the global

total, the top 5 countries collectively contribute to 99.67%. Despite

variations in publication volume among different countries, it

reflects wide attention from researchers across multiple nations to

the field of glacial lake identification. This underscores the vital role

of international collaboration in advancing this field’s academic

progress, with global cooperation and exchanges exerting a positive

influence. In terms of publication count by country, the United

States holds a leading position in the global glacial lake

identification field. According to statistics from the WOSCC

database, the United States has published a total of 649 articles,

constituting 30.60% of the overall total (2,121 articles), the United

Kingdom has published 510 articles, China has published 406

articles, Canada has published 283 articles, and Germany has

published 266 articles. Considering citation counts, the United

States has accumulated a total of 20,677 citations, averaging 38.94

citations per paper, the United Kingdom has 20,241 citations,

averaging 41.82 citations per paper, China has 10,174 citations,

averaging 25.06 citations per paper, Canada has 21,758

citations, averaging 29.39 citations per paper, and Germany has

9,142 citations, averaging 34.37 citations per paper. Notably,

China’s average publication year is 2017, in stark contrast to

other countries whose average publication years fall around 2013.
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This indicates China’s rapid increase in attention to this field in

recent years, suggesting a potential ongoing growth in scientific

influence. Among the top 10 countries for article publication, only

China and Russia are developing countries, with relatively lower

average citation rates per article. In summary, research in the glacial

lake identification field centers around the United States, the United

Kingdom, and China, with significantly higher publication

quantities and citation counts compared to other countries. This

highlights their substantial contributions in the research domain,

potentially linked to their advantages in education, research

investment, and technological innovation. Other developed

nations also play important roles in the field, while developing

countries complement these efforts, making crucial contributions to

progress through their strengths in science, technology, talent

cultivation, and socio-economic development.

Inter-institutional collaboration relationships provide insights

and evaluations of collaboration patterns, effectiveness, and

innovation capabilities among institutions, serving as references

and guidance for the development of institutional partnerships. We

considered the clarity of the institutional collaboration network

diagram, setting a minimum publication threshold of 20 to select

and focus on active and influential institutions within the research

domain. Figure 3 illustrates the collaboration network diagram of

these institutions. Based on calculations from VOSviewer software,

the Chinese Academy of Sciences has collaborated with other

institutions to publish the most articles in glacial lake

identification research (154 papers). It is followed by the

University of Chinese Academy of Sciences (52 papers), Russian

Academy of Sciences (48 papers), University of Bergen (48 papers),

and United States Geological Survey (42 papers)—these 5

institutions have the highest publication volume. In terms of

citation counts, the Chinese Academy of Sciences has the highest

number of citations in the WOS, totaling 5,369. It is followed by the

University of Zurich (1,966 citations), University of Sheffield (1,785

citations), US Geological Survey (1,700 citations), and University of

Colorado (1,640 citations). Looking at the total link strength, the
FIGURE 3

Visualization of institutional publication quantity and its collaborative relationships network.
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top 5 institutions are the Chinese Academy of Sciences (115), the

University of Chinese Academy of Sciences (62), the University of

Bern (42), the University of Oxford (39), and University of

Colorado (38). It’s evident that the Chinese Academy of Sciences

not only leads in terms of article publications but also possesses an

extensive collaborative network in international peer relationships

(highest total link strength). The Chinese Academy of Sciences, the

University of Chinese Academy of Sciences, and the University of

Colorado serve as key institutions in the glacial lake identification

field, playing significant roles in research within the domain. It’s

worth noting that although institutions like the Russian Academy of

Sciences, the University of Copenhagen, and the Australian

National Universi ty demonstrate impressive research

achievements, cross-national or cross-regional institutional

collaboration appears relatively low. Therefore, enhancing

knowledge shar ing , co l laborat ion , resource shar ing ,

complementarity, and expanding the impact and sustainability of

research are aspects that require strengthening in the future

international cooperation within the glacial lake identification field.
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3.3 Analysis of research hotspots
based on co-citation

Literature co-citation clustering analysis is a method of

literature analysis aimed at identifying and analyzing groups of

literature that share similar citation patterns and citation networks.

Using the co-citation network analysis method, a total of 33 clusters

were identified in the field of glacial lake identification. This study

primarily focuses on the 4 most representative clusters among these

33, as illustrated in Figure 4. Modularity Q and silhouette values

represent the quality of the clustering results. In this study, the

network modularity (Q=0.9006) is greater than 0.3, and the

silhouette value (0.9618) is greater than 0.7. This indicates that

the co-citation clusters exhibit characteristics of large clusters and

that the performance of the network clustering is favorable (Chen,

2006). The study primarily delves into the top 4 major clusters.

Tables 3, 4 provide information about these clusters, including

silhouette, size, representative terms, and exemplary literature.

Based on the clustering analysis, the top 4 clusters are as follows:
FIGURE 4

Knowledge graph of co-citation network clustering analysis. Here, the Link Retaining Factor (LRF) is 3.0, the maximum Links per Node (L/N) is 10, the
Look Back Years (LBY) is 5, the minimum citation number (e) is 1.0, the notes is 904, and the nodal links is 1,747.
TABLE 3 Documentation of co-citation knowledge graph.

Cluster
ID

Silhouette Size Clusters Representative Terms
Mean
Year

Representative
Documents

#0 0.943 68 debris-covered glaciers
surface ponds; hazard assessment; glaciological natural

hazards
2011 (Benn et al., 2012)

#1 0.917 56
glacial lake outburst

flood
glacier eruption floods; glof hazard; ice thickness glacier

velocity
2019 (King et al., 2018)

#2 0.996 52 climate
Last Glacial Maximum; glacial geomorphology;

Switzerland
2010 (Barrell et al., 2013)

#3 0.982 49 glacial lake
lake mapping; Eastern Himalayas; hydrodynamic

modeling
2014

(Cook and Quincey,
2015)
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Cluster #0 - Debris-Covered Glaciers, Cluster #1 - Glacial Lake

Outburst Floods, Cluster #2 - Climate, and Cluster #3 -

Glacial Lakes.

As shown in Figure 4, the most prominent cluster topic is #0

“Debris-Covered Glaciers”. This cluster comprises 68 articles with

an average publication year of 2011 and a Silhouette value of 0.943.

The cluster theme is related to the formation of glacial lakes. The

most representative article within this cluster is “response of debris-
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covered glaciers in the Mount Everest region to recent warming and

implications for outburst flood hazards”. This article highlights that

climate warming may intensify the melting of debris-covered

glaciers in the Everest region, potentially leading to severe GLOF

disasters (Benn et al., 2012). The main thematic terms within this

cluster include “surface ponds”, “hazard assessment”, and

“glaciological natural hazards”. “Surface ponds” refer to surface

water bodies on debris-covered glaciers, playing a critical role in the
TABLE 4 Top 5 highly cited references in the top 4 categories.

Cluster
ID

Title Source Citation Reference

#0 The State and Fate of Himalayan Glaciers Science 1,418
(Bolch et al.,

2012)

#0
Response of debris-covered glaciers in the Mount Everest region to recent warming, and

implications for outburst flood hazards
Earth-Science

Reviews
392

(Benn et al.,
2012)

#0
Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between

1990 and 2009
Global and

Planetary Change
277

(Gardelle et al.,
2011)

#0
Glacial lakes in the Indian Himalayas - From an area-wide glacial lake inventory to on-site and

modeling based risk assessment of critical glacial lakes
Science of the Total

Environment
161

(Worni et al.,
2013)

#0
An integrated socio-environmental framework for glacier hazard management and climate

change adaptation: lessons from Lake 513, Cordillera Blanca, Peru
Climatic Change 150

(Carey et al.,
2012)

#1 Rapid worldwide growth of glacial lakes since 1990
Nature Climate

Change
173

(Shugar et al.,
2020)

#1 Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya Science 165
(Cook et al.,

2018)

#1 Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya
Nature Climate

Change
103 (Veh et al., 2019)

#1
An inventory of historical glacial lake outburst floods in the Himalayas based on remote

sensing observations and geomorphological analysis
Geomorphology 102 (Nie et al., 2018)

#1 Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images
Earth System
Science Data

82
(Wang et al.,

2020)

#2 The Last Glacial Maximum Science 2,318
(Clark et al.,

2009)

#2 Methods and code for ‘classical’ age-modeling of radiocarbon sequences
Quaternary

Geochronology
1,673 (Blaauw, 2010)

#2 Latest Pleistocene and Holocene glacier variations in the European Alps
Quaternary Science

Reviews
344

(Ivy-Ochs et al.,
2009)

#2
Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended

INTIMATE(1) event stratigraphy to 48,000 b2k
Quaternary Science

Reviews
210

(Blockley et al.,
2012)

#2
Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a

continental region of south-western Europe
Global and

Planetary Change
100

(Aranbarri et al.,
2014)

#3 A global assessment of the societal impacts of glacier outburst floods
Global and

Planetary Change
279

(Carrivick and
Tweed, 2016)

#3
An inventory of glacial lakes in the Third Pole region and their changes in response to global

warming
Global and

Planetary Change
231

(Zhang et al.,
2015)

#3 Proglacial lakes: character, behavior and geological importance
Quaternary Science

Reviews
226

(Carrivick and
Tweed, 2013)

#3
A regional-scale assessment of Himalayan glacial lake changes using satellite observations from

1990 to 2015
Remote Sensing of

Environment
210 (Nie et al., 2017)

#3
Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern

Himalaya
Geomorphology 72

(Aggarwal et al.,
2017)
Different clusters are distinguished by colors.
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field of glacial lake identification. These ponds are a result of

accumulated meltwater on the debris-covered ice surface and

significantly impact glacier dynamics, such as melt rates and the

formation of surface water pools (Miles et al., 2017). “Hazard

assessment” and “glaciological natural hazards” emphasize the

natural disasters related to glacier dynamics, particularly in cases

where the glacier surface is covered with debris. These natural

hazards encompass a variety of phenomena, including glacier floods

and ice avalanches. In such contexts, conducting hazard

assessments is a crucial step in eval-uating the likelihood of global

glacier meltwater disasters. Understanding the hazards posed by

debris-covered glaciers is essential for assessing risks associated

with glacial lakes and implementing disaster mitigation strategies

(Ye et al., 2022). Within this cluster, the themes of important

articles predominantly cover the impacts of global warming on the

current state and prospects of glaciers in the Himalayan region,

compiling comprehensive inventories of glacial lakes and risk

assessment methods, as well as integrated strategies for managing

glacial lake disasters (Bolch et al., 2012; Lesi et al., 2022; Viani et al.,

2022; Rinzin et al., 2023; Singh et al., 2023).

The second major cluster topic is #1 “Glacial Lake Outburst

Flood” with 56 articles. The average publication year is 2019, and

the silhouette value is 0.917. This cluster emphasizes an

understanding of GLOF disasters. The key thematic terms within

this cluster include “glacier eruption floods”, “GLOF hazard”, and

“ice thickness glacier velocity”. This underscores that GLOF

disasters are frequently discussed topics in the field of glacial lake

identification. In this cluster, considerable attention is given to the

frequency and severity of glacial lake outburst events, especially

detailed studies concerning factors driving erosion and scouring

along their paths. Scholars employ techniques like remote sensing

interpretation and historical record analysis to study the frequency

and severity of GLOFs (Shan et al., 2021; Dømgaard et al., 2023).

This analysis helps identify regions prone to frequent global climate

change-induced occurrences, assess potential hazards of GLOFs to

human communities, infrastructure, and the environment, and

identify environmentally vulnerable areas. This, in turn,

prioritizes monitoring, disaster prevention, and mitigation efforts

in these regions for decision-makers and stakeholders. Additionally,

some researchers explore the significant role of erosion in the

formation and evolution of glacier lakes. They study various

erosion processes, including glacial erosion, water flow scouring,

and sediment transport (Tomczyk and Ewertowski, 2021).

Furthermore, certain scholars investigate variables such as glacial

lake flow velocity, glacier morphology, and potential topographic

conditions to determine how these driving factors impact the

formation and expansion of glacial lakes (Wang W. C. et al.,

2022). These studies provide crucial insights into understanding

the mechanisms and influencing factors of GLOF disasters in

greater depth.

The third major cluster topic is #2 “Climate,” comprising 52

articles. The average publication year for this cluster is 2010, and its

silhouette value is 0.996. The main thematic terms within this

cluster include “Last Glacial Maximum”, “glacial geomorphology”,

and “Switzerland.” This indicates that climate change as a

significant driving factor for glacial lake formation is frequently
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mentioned in the field of glacial lake identification, particularly

when exploring sensitive areas highly influenced by climate. Some

scholars conduct research on glacial lakes within their study areas at

long-term climate scales, including interannual and decadal scales

(Morriss et al., 2013; Harrison et al., 2019). Research findings

suggest that rising temperatures and changes in precipitation

patterns contribute to glacier retreat and glacier meltwater,

providing a water source for glacial lakes and resulting in changes

in glacial lake dynamics (Allen et al., 2016; Gao et al., 2023). Certain

researchers simulate future climate scenarios to assess potential

impacts on glacial lakes (Allen et al., 2022). These studies offer

insights into understanding how glacial lakes respond to climate

change. Future research will likely focus on quantifying the effects of

these interactions on glacial lake formation, development, and

outburst. This cluster highlights the importance of investigating

how climate change influences glacial lake dynamics and how

glacial lakes respond to changing climate conditions. Such

research is crucial for understanding the broader implications of

climate change on glacial landscapes and associated hazards.

The fourth major cluster topic is #3 “Glacial Lake”

encompassing 49 articles. The average publication year for this

cluster is 2014, and its silhouette value is 0.982. The key thematic

terms within this cluster include “lake mapping”, “Eastern

Himalayas”, and “hydrodynamic modeling”. This cluster

emphasizes the significance of glacial lake monitoring, remote

sensing, and hydrological modeling as crucial technical

approaches in the field of glacial lake identification. This is

particularly notable for specific regions like the Eastern

Himalayas. In terms of lake mapping, some researchers employ

techniques such as satellite imagery, aerial photography, and LiDAR

scanning to identify and delineate glacial lakes (Dhote et al., 2022).

They analyze the spectral and spatial characteristics of these lakes to

distinguish their natural features from other bodies of water. Lake

mapping studies also focus on detecting and monitoring temporal

changes in glacier lakes. By comparing historical imagery with

current data, researchers track fluctuations in lake area, volume,

and extent (Kellerer-Pirklbauer et al., 2021). This information aids

in understanding how glacial lakes respond to climate change,

glacier dynamics, and other environmental factors. Furthermore,

some scholars have developed comprehensive databases for glacial

lakes, including their locations, areas, and other relevant

information. These inventories serve as valuable resources for

monitoring changes, assessing hazards, and managing glacier

lakes (Shugar et al., 2020). In the cluster with the theme

“hydrodynamic modeling” mathematical models are primarily

applied to simulate and understand the hydrodynamic behavior

of glacial lakes. Research in this area includes model development

and validation, assessment of lake stability and potential hazards,

and predictions of future changes in glacial lake behavior. The focus

is on the physical processes and dynamics of glacial lakes, such as

water flow, sediment transport, and lake level fluctuations. This

cluster underscores the importance of employing advanced

techniques like remote sensing and mathematical modeling to

comprehensively study glacial lakes’ physical characteristics,

behavior, and responses to changing environmental conditions

(Sattar et al., 2021; Duan et al., 2023).
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3.4 Scientific classification

The WOSCC database categorizes papers from various journals

precisely and integrates them based on specific scientific fields. This

categorization assists researchers in gaining in-depth insights into

the unique contributions of various subfields within a specific

research area, aiding academic assessment, research orientation,

and identifying collaboration opportunities. By mapping these

scientific categories onto the comprehensive dataset of glacial lake

identification literature, a more targeted and comprehensive

research perspective is provided to analyze the subfields and

research hotspots involved in this research domain. To reveal the

disciplinary characteristics of the research field more visually, this

study has created an overlay map of the research domain (Figure 5)

based on the Global Science Map, which is derived from the

summarized literature data of the WOS database (Leydesdorff

et al., 2013; Leydesdorff et al., 2019).

The collection divides all WOS research fields into 5 clusters: #1

Biology & Medicine, #2 Chemistry & Physics, #3 Ecology and

Environmental Science & Technology, #4 Engineering &

Mathematics, and #5 Psychology & Social Sciences. According to

these results, the majority of literature on glacial lake identification

research falls under the “Chemistry & Physics” scientific field

(cluster #2). Within this, the “spectroscopy” scientific category

stands out, indicating the pivotal role spectroscopic techniques

play in glacial lake identification and research. Spectroscopic

techniques, predominantly employed in remote sensing and

satellite image analysis, play a critical role in accurately

identifying and monitoring glacial lakes. By studying unique

spectral features like glacial lakes and shape and texture features,

researchers can differentiate glacial lakes from other substances.

This wide application of spectroscopy enables large-scale detection

and mapping of glacial lakes, providing valuable data for

inventorying and monitoring (He et al., 2021). Spectroscopy is

also crucial for assessing the temporal evolution of glacier lakes,

including expansion or retreat, causes of GLOFs, climate change

impacts, and potential hazards. These pieces of information are vital
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for an in-depth understanding of dynamic changes within glacial

systems (Ahmed et al., 2022b; Kumar et al., 2021). In this scientific

field, the second most significant scientific category is “green &

sustainable science & technology” which plays a vital role in glacial

lake identification through various technological applications. One

important application is powering glacial lake monitoring systems

using renewable energy sources. By utilizing solar energy and other

renewables, researchers can reduce carbon emissions and ensure

continuous monitoring of glacial lakes without relying on fossil

fuels. Furthermore, green and sustainable technologies aid in

comprehending the environmental impacts of GLOFs and the

role of climate change. Through sustainable monitoring

techniques, researchers have been able to gather data on global

warming and its consequences, such as downstream flooding and

infrastructure damage, providing support for risk mitigation

strategies related to GLOFs (Viani et al., 2022). Moreover, green

and sustainable technologies underscore the importance of

preserving glacier ecosystems and their biodiversity (Viani et al.,

2020). With sustainable methods, researchers can minimize

disturbances to these fragile ecosystems, promoting long-term

protection and conservation of glacial lakes.

The second most prominent scientific field is “Ecology and

Environmental Science & Technology” (cluster #3). Within this

field, the most representative scientific categories are

“environmental sciences” and “ecology” which have important

applications in glacial lake identification. One significant

application is the study of the physical and chemical

characteristics of glacial lakes. Researchers analyze factors such as

water temperature, pH, and sediment composition to understand

the characteristics of the glacial lake itself and its surrounding

environment. This information aids in identifying and categorizing

different types of glacial lakes, allowing for the assessment of their

vulnerability to climate change (Qu et al., 2022; Steffen et al., 2022).

This understanding of the interaction between glacial lakes and

their environment contributes to the scientific basis for protecting

and managing these fragile ecosystems. Another application of

environmental science in glacial lake identification is the study of
FIGURE 5

Research categories in the field of glacial lake identification on the global science category map.
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glacial lake dynamics. Researchers utilize hydrological models and

field measurements to explore the processes of glacial lake

formation, expansion, and retreat. These applications are crucial

for predicting the future changes in glacial lakes and their potential

impacts on downstream communities’ safety, ecology, and economy

(Ogier et al., 2021).

The third most active scientific field is “Engineering &

Mathematics” (cluster #4), with the most representative scientific

categories being “computer science, interdisciplinary applications”

and “engineering, multidisciplinary”. Computer science has

multiple important applications in glacial lake identification. One

primary application is remote sensing and image processing

techniques. Computer scientists develop algorithms and models

to analyze satellite images and aerial photographs of glacial lakes,

determining and mapping features such as their location, size,

shape, and depth (Li et al., 2022b). Furthermore, GIS play a

crucial role in glacial lake identification within the realm of

computer science. Researchers use GIS software to integrate and

analyze various spatial data, such as topographic maps, elevation

models, and hydrological data (Viani et al., 2016). This helps

understand the spatial relationships between glacial lakes and

their surrounding environment, as well as predict potential risks

of GLOFs. Another important application of computer science in

glacial lake identification is the development of automated and

efficient recognition methods. Leveraging machine learning and

artificial intelligence technologies, researchers have been able to

train algorithms to identify and classify glacial lakes from large

datasets. This significantly enhances the speed and accuracy of

glacial lake identification, thereby improving the monitoring and

management of these dynamic environments (Bazilova and Kääb,

2022). Additionally, computer science plays a critical role in the

development of decision support systems for glacial lake

management. By integrating diverse data sources and utilizing

modeling techniques, valuable insights and technical support are

provided for glacial lake management decisions, aiming to mitigate

risks associated with GLOFs and climate change (Rinzin et al.,

2023). Glacial lake identification research exhibits typical

interdisciplinary characteristics. Through the integration of

various scientific categories such as environmental science,

computer science, geology, hydrology, and climatology,

researchers can gain a more comprehensive understanding of

glacial lakes and their dynamics. This multidisciplinary approach

highlights the complex interactions and feedback mechanisms

between glacial lakes and their surrounding environment. By

considering factors such as climate change, glacier dynamics,

hydrological processes, and human activities, researchers can

better comprehend the driving factors and impacts of glacial lake

formation and changes (Prakash and Nagarajan, 2018). Moreover,

interdisciplinary approaches aid in the development of early

warning systems for GLOFs and decision support tools,

contributing to the improved management and protection of

these fragile ecosystems (Gu et al., 2023).

The fourth most active scientific field is “Biology & Medicine”

(cluster #1), with a significant and representative scientific category

being “mathematical & computational biology”. The application of

mathematical and computational biology in this field includes: (1)
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Quantitative modeling of glacial lake dynamics: Mathematical

modeling is employed to describe the physical, chemical, and

biological processes that control the formation, growth, and decay

of glacial lakes. These models integrate various parameters such as

glacier melting rates, precipitation, and temperature (Lencioni,

2018; Ogier et al., 2021). (2) Species distribution models:

Computational biology techniques are used to establish species

distribution models for biological entities within glacial lakes.

These models are built based on environmental and ecological

data, predicting the spatial distribution and potential habitat

suitability for different species within glacial lake ecosystems

(Medeiros et al., 2022). By simulating the response of biological

communities and habitats to changing environmental conditions,

these models help predict the impact of climate change on glacial

lake ecosystems. This aids in assessing potential changes in species

ranges and ecological disruptions, enabling the development of

effective strategies for the protection and management of glacial

lake ecosystems. It also facilitates the identification of priority

conservation areas within glacial lake ecosystems, allowing

targeted conservation efforts to maintain crucial habitats and

species. The application of mathematical and computational

biology enhances our understanding of the complex interactions

between glacial lakes and their biological components, and it

contributes to informed decision-making for the conservation and

sustainable management of these unique ecosystems.

In our study, we have discovered that the field of “Psychology &

Social Sciences” (cluster #5) exhibits the lowest level of activity

among scientific domains. All the scientific categories within this

field have fewer than 70 documents each, with “social sciences,

interdisciplinary” (62 documents), “social issues” (57 documents),

and “environmental studies” (53 documents) being the most

significant ones.
3.5 Analysis of phased research
trends and frontiers

By employing the clustering analysis technique within the

CiteSpace software, researchers can visually depict the

evolutionary process of various research topics over different

periods, thereby unveiling research hotspots and future trends in

the field’s development (Abbas et al., 2018). In this study, we

harnessed CiteSpace’s distinctive functionalities, namely Timeline

and Burstness, to process the foundational data of the literature.

The time range was set from 1991 to 2023, with a time slice length of

1, enabling the detection of burst keywords within each time slice.

The research outcomes are presented in Figures 6, 7. Figure 6

illustrates ten timelines, while Figure 7 showcases 25 keywords, with

high-frequency keywords predominantly appearing before 2010.

The forefront of glacier lake identification research manifests

significantly in three distinct research stages, each characterized

as follows.

(1) The period from 1991 to 2010 marked the primary stage of

research in the field of glacier lake identification. Emerging

keywords during this phase include “Canada”, “British

Columbia” , “age” , “record” , “Younger Dryas”, “island” ,
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“Antarctica”, “vegetation history”, “Lake Vostok”, and “calibration”.

Additionally, high-frequency keywords associated with this period

encompass “climate change”, “Last Glacial Maximum”, “lake

sediment”, “environmental change”, and “ice sheet” among

others. The timeline chart and burst keywords of this period

exhibit a substantial number of terms, indicating a strong

academic interest in the glacier lake identification domain and the

emergence of numerous new research concepts. The research

direction is relatively diverse, encompassing a wide range of

scientific inquiries, warranting continuous and profound
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attention. The primary research themes during this phase pertain

to glacial lake formation and evolution, exploration, and research of

paleoclimate and paleoenvironment, and lake sediment analysis

(Bajracharya and Mool, 2009; Corbett and Munroe, 2010; Sionneau

et al., 2010).

(2) The period from 2011 to 2018 witnessed the emergence of

keywords such as “catastrophic drainage”; “Pleistocene”, “glacial

lake”, “subglacial lake”, “flood”, “stream”, “volume”, and

“conservation”. High-frequency keywords closely related to this

era also encompassed “hazard”, “glacial geomorphology”, and
FIGURE 7

Keywords burst analysis from 1991 to 2023.
FIGURE 6

Visual timeline clustering of research topic evolution from 1991 to 2023. Curves indicate literature citation relationships, with warmer colors
indicating closer research time frames. Larger keyword clusters signify research hotspots for a specific period.
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“mass balance” among others. Building upon the foundation of

1991 to 2010, this stage led to the emergence of several new specific

research directions within the GLOF domain, contributing to the

enrichment and further development of glacier lake identification

research. The primary research themes during this phase

encompass glacial lake hazards and risk assessment and glacial

lake dynamics. The theme of glacial lake hazards and risk

assessment primarily involves the evaluation of potential risks

associated with glacial lake disasters, as well as the development

of warning systems and disaster management strategies (Petrakov

et al., 2012; Aggarwal et al., 2016). On the other hand, the glacial

lake dynamics theme focuses on the study of glacier lake volume

and dynamics, involving keywords such as “volume”, “glacial

geomorphology”, and “mass balance”. This research content

encompasses measurements and monitoring of glacier lakes,

along with investigations into the mechanisms underlying

interactions between glacier lakes and factors such as climate and

topography (Li and Sheng, 2012; Emmer et al., 2015).

(3) The period from 2019 to 2023 brought forth keywords such

as “inventory”, “glacial lake outburst flood”, “risk”, “dynamics”,

“Tibetan Plateau”, “evolution”, and “high mountain Asia”.

Concurrently, high-frequency keywords included “Himalaya”,

“moraine dammed lake”, “evolution”, “permafrost”, and

“precipitation” among others. During this phase, the glacier lake

identification research domain exhibited a rapid increase in annual

publications, entering a phase of heightened research activity.

Various research branches gradually evolved into more specific

directions, yet fewer new research directions emerged. Instead,

researchers focused on in-depth investigations building upon the

foundation of the preceding phase. Notable research themes in the

hotspot literature included the drawing of inventories for lakes in

the Qinghai-Tibet Plateau using remote sensing techniques, GLOF

risk assessment, precipitation variation and its impact on glacial

lake response, and the evolution of glacial lakes in high mountain

Asia (Allen et al., 2019; Dwivedi et al., 2022; Zhang et al., 2022b;

Compagno et al., 2022).
4 Discussion

4.1 Current research themes
and further research

In recent years, the field of glacier lake identification has made

significant progress, yet it still faces a range of critical technical

challenges. These challenges encompass limitations in spectral

resolution, objective factors related to climate change, interference

from shadows and ice, as well as constraints on the accuracy of

automated algorithms. These factors restrict the depth and breadth

of research and also impede the accuracy and applicability of

relevant applications (Wangchuk et al., 2019; Hao et al., 2023). In

the domain of glacier lake identification, accurate identification of

glacier lakes holds extensive academic and practical value in

reducing the environmental impact of these lakes. Therefore, this

study delves into two research themes—identification techniques
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and methods, and identification scales—providing insight into the

future directions of glacier lake identification research.

(1) In the realm of glacier lake identification techniques and

methods, significant strides have been made, giving rise to various

remote sensing technologies, GIS, and machine learning approaches

(Kaushik et al., 2022; Wangchuk et al., 2022). These include feature

extraction and classification methods based on synthetic aperture

radar (SAR) and satellite multispectral data, as well as applications

of deep learning models. These methods not only accurately identify

the spatial distribution of glacier lakes but also distinguish between

different types of glacier lakes, allowing researchers to determine the

morphology of glacier lakes with unprecedented precision. This

offers an effective means for studying glacier lake characteristics.

However, despite these advancements, challenges persist. One of the

most crucial challenges is the environmental complexity of glacial

lakes. Factors like distinct topographic features, spectral differences

due to regional water forms, and the transient nature of glacier lakes

introduce complexities that existing algorithms struggle to address.

This complexity results in potential ambiguities in satellite-derived

datasets (Jiang et al., 2023). For instance, small and shallow glacier

lakes are often obscured by surrounding vegetation or debris,

posing a considerable obstacle. Additionally, while higher-

resolution datasets enhance the accuracy of lake identification,

they are also susceptible to increased noise, necessitating more

intricate processing algorithms to extract accurate information.

Existing models and algorithms still simplify the intricate

interactions between glacier lakes and their surroundings to a

certain extent. To achieve more accurate assessment results,

further integration of multidisciplinary data from ecology,

meteorology, geology, and more is needed to account for the

complex interactions (Emmer and Curin, 2021). Lastly, while

many existing models excel in identifying glacier lakes in specific

geographical locations or under certain conditions, their

applicability across different times and spaces remains a

challenge. Investigating the applicability and scalability of these

models requires deeper research to ensure their utility across diverse

temporal and spatial contexts.

Drawing upon the comprehensive overview presented earlier,

we proffer 5 pivotal research topics to steer the trajectory of future

glacier lake identification research. To begin, in light of the

burgeoning influx and diversification of remote sensing data,

researchers must prioritize the advancement of more potent,

adaptable, and efficient algorithms. In forthcoming investigations,

precedence should be granted to the development of adaptive

algorithms capable of dynamic adjustments based on the

distinctive characteristics of diverse study areas. Such an

approach would markedly enhance the accuracy of models across

varying terrains and conditions. Moreover, the exploration of

advanced algorithms rooted in machine learning and deep

learning offers a propitious avenue to seamlessly identify and

further refine glacier lake features within intricate backdrops.

Illustratively, Convolutional Neural Networks (CNNs) hold the

promise to discern nuanced spectral differentials through

meticulous training. Secondly, cognizant of the intricate tapestry

characterizing glacier lake regions, it becomes apparent that reliance
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on a solitary data source might prove inadequate to satiate the

exigencies of accurate identification. Prospective inquiries could

envisage the assimilation of data originating from optical, Synthetic

Aperture Radar (SAR), and even on-site sensors, coalescing into an

amalgamated multi-source data fusion dataset. This dataset, by

amalgamating diverse streams of data, engenders a holistic image of

the glacier lake landscape. Thirdly, the establishment of a systematic

approach to trace the dynamic trajectory of glacier lake’s evolution

assumes paramount significance. Such a methodological construct

facilitates a comprehensive analysis of the evolution of glacier lakes,

their latent perils, and the broader repercussions associated with

climate fluctuations. Fourthly, the construction of integrative

models, harnessing the unique strengths of each constituent

model, offers a prudent stratagem to counterbalance the inherent

limitations of individual models. Collaborative algorithms across

models present the promise of engendering outcomes of heightened

applicability, thereby impelling the ubiquity of glacier lake

assessment models across a global expanse. Concludingly,

notwithstanding the vantage point proffered by remote sensing

techniques, the role of field research remains indispensable in the

schema of validation and calibration. Future research endeavors

should, in particular, be attuned to the exigency of on-site

measurements, employing tools such as unmanned aerial vehicles

or unmanned boats for the procurement of on-site data. This

pivotal validation of remote sensing outcomes bolsters the

credence of glacier lake identification.

(2) Concerning the issue of glacier lake identification scales,

researchers have explored various scales, encompassing the

microscale (such as glacier lake morphology and internal

structure), mesoscale (such as geomorphic features of glacier

lakes), and macroscale (such as regional distribution of glacier

lakes), to delve into the complexity of glacier lake systems

(Dahlquist and West, 2022; Li et al., 2022c; Zhang et al., 2022c).

Nevertheless, despite headway being made, several outstanding

challenges persist. Firstly, the challenge of data matching and

fusion across disparate scales remains pivotal. How to organically

integrate microscale glacier lake features with the macroscale spatial

distribution poses a question that necessitates further inquiry.

Secondly, scale conversion and data extrapolation stand as pivotal

technical challenges. The translation of microscale data into

analyses on a larger scale, as well as effective scale expansion

when data is limited, demands comprehensive exploration.

Moreover, the potential incongruities across various data sources

and interpretations introduce complexity into comparative analyses

and global assessments. Factors such as spatial resolution, the

diverse geomorphic features of glacial environments, and the

manifold physical attributes of glacier lakes themselves,

collectively compound the difficulty in interpreting data.

Based on the preceding synthesis, we posit three pivotal

research topics for the next phase. Firstly, the development and

adoption of a unified standard framework assume paramount

significance. Pioneering novel algorithms and techniques

applicable to scale conversion and data extrapolation is

indispensable to enhancing the precision and reliability of data

translation across disparate scales. Such an endeavor would

engender a standardized perspective for the observation, analysis,
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and comparison of glacier lakes, thereby ensuring the congruence of

research outcomes. Secondly, concomitant with the escalating

demand for heightened glacier lake identification accuracy, the

requisition for data of elevated spatial resolution is concurrently

mounting. Strategic investment and integration of these monitoring

tools will contribute to refining the spectrum of identification scales

and bolstering accuracy. Thirdly, cross-scale data fusion constitutes

the linchpin in resolving the quandary of multi-scale glacier lake

identification. Effectively amalgamating microscale and macroscale

data through cross-scale data fusion empowers a more

comprehensive apprehension of the complexity underpinning

glacier lake systems. Such an approach holds the potential to

furnish a more precise depiction and analysis of glacier lake

changes by holistically integrating data across scales.
4.2 Limitations of the research

Against the backdrop of accelerated glacier retreat and

intensified global warming, the identification and study of glacier

lakes geomorphic features characterized by rapid change and

pivotal environmental significance have assumed an increasingly

urgent tenor. In such a context, bibliometrics emerges as a potent

tool to assess the development of literature and research trends,

furnishing invaluable insights for the glacier lake identification

domain. Admittedly, the bibliometric approach employed in this

study is not devoid of limitations. By unveiling these limitations, we

can more accurately appraise the current research landscape within

glacier lake identification and glean valuable insights to inform the

design and methodologies of future research endeavors.

(1) We acknowledge that the utilization of WOSCC in this

study, while a widely employed literature repository with abundant

scholarly information, may still fall short in comprehensively

encompassing all publications within the glacier lake

identification domain. This could result in our analysis not fully

encapsulating important literature from other databases or non-

academic channels, such as CNKI and Scopus databases, thereby

raising concerns about data incompleteness. Additionally, specific

types of literature like books, doctoral theses, and patents, among

others, might not be entirely incorporated in these databases,

potentially influencing our grasp of the field’s entirety. Such gaps

may emanate from the chosen literature search strategies and a

subset of studies confined to English-language publications.

Furthermore, errors or omissions could potentially arise during

data retrieval and indexing processes within the WOS. Despite

deploying well-formulated strategies for data retrieval and indexing

using the WOS, we cannot guarantee the accurate classification and

indexing of all relevant literature. Moreover, it is pertinent to

recognize that the WOS primarily encompasses literature in the

natural sciences, which could introduce a certain degree of bias in

the glacier lake identification field, especially in interdisciplinary

studies. This might lead to a partial interpretation of research within

the glacier lake identification domain due to the potential omission

of research from diverse disciplines.

(2) The analysis of countries and institutions carries inherent

limitations. The countries and institutions contributing to the
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glacier lake identification field indicate that the United States, the

United Kingdom, and China have the highest publication and

citation counts, with each producing over 300 papers. From the

perspective of the threat posed by glacial lake hazards, scientists

from New Zealand and the UK have emphasized the significant

challenges that global socio-economics faces due to GLOFs.

Notably, in the high mountain Asia region alone, approximately

one million people reside within a 10-kilometer radius of glacial

lakes. The Himalayan region in Asia (including countries like India,

Pakistan, and China) and the Andes region in South America

(encompassing Peru and Bolivia) face even greater threats (Taylor

et al., 2023). Regarding international collaboration, for instance,

collaboration between the United States, the United Kingdom, and

China has shown deeper engagement, primarily spanning Europe,

North America, and East Asia. However, the level of international

collaboration among South American and South Asian nations

remains relatively low, exemplified by countries such as India,

Pakistan, Peru, and Bolivia. This phenomenon underscores the

close connection between research activities in the glacier lake

identification field and the economic capabilities of each country.

Developed nations, owing to their resource and technological

advantages, are more inclined to invest in specialized fields like

glacier lake identification within the realm of scientific research. On

the other hand, developing countries may allocate resources to

more pressing issues. In light of these considerations, it is essential

to recognize that the aforementioned analysis, while informative,

should be interpreted with the understanding that the distribution

of research activities is influenced by complex economic and

regional dynamics.

(3) There are certain limitations to the co-citation analysis

employed in this study. Co-citation clustering, as a quantitative

analytical tool, holds significant advantages in revealing citation

relationships and trends in research fields. However, it is important

to acknowledge the following challenges: Firstly, co-citation

clustering heavily relies on citation relationships between

documents, but these relationships may not always accurately

reflect the actual knowledge structure within the research field.

Citation relationships can be influenced by various factors such as

citation practices and the evolution of citation networks.

Consequently, this method may suffer from citation bias,

potentially affecting the accuracy and reliability of clustering

outcomes. Secondly, co-citation clustering primarily utilizes

citation data for analysis, often overlooking the semantic content

of the documents. This oversight could lead to the erroneous

aggregation of documents from different topics or research areas

due to citation relationships, resulting in misleading clustering

results. Furthermore, the co-citation clustering method typically

neglects the temporal factor’s impact on citation relationships.

Research fields evolve and develop over time, yet this method

may not fully account for the dynamic changes in citation

relationships across different periods. As a result, the method

might provide an incomplete understanding of research trends

and evolution. In conclusion, while co-citation analysis offers

valuable insights, its limitations highlight the need for a

comprehensive approach that integrates multiple analytical

methods to obtain a more accurate and nuanced perspective on
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the development and trends within the glacier lake

identification field.
5 Conclusions

This study leveraged the strengths of software tools such as

VOSviewer 1.6.19 and CiteSpace 6.1.R6 to employ bibliometric and

quantitative analysis methods. Focusing on glacier lake

identification as the research theme, an in-depth visual analysis

was conducted on 2,121 publications from the WOSCC database

spanning the years 1991 to 2023. This analysis encompassed

research progress and trends across different periods, national

collaboration networks, thematic evolution pathways, and more,

providing a comprehensive overview of the field’s developmental

trajectory, shortcomings, and prospective research directions.

Several significant research findings were derived from

this investigation.

(1) Regarding the annual distribution of publications and

citation counts, both indicators exhibit a clear trend of rapid

growth, signaling the increasing scholarly attention toward the

field of glacier lake identification. From a national or regional

perspective, the involvement of countries, journals, and

institutional affiliations in the glacier lake identification domain is

predominantly concentrated in Europe and North America.

Notably, the United States, the United Kingdom, and China stand

at the forefront in terms of publication volume, citation impact, and

international collaboration efforts.

(2) Literature co-citation analysis focuses on the citation

relationships between documents, serving as a means to assess

and analyze the influence, significance, and collaborative networks

of research literature within the academic community. Research

findings indicate that significant clusters of research topics in the

glacier lake identification domain include “debris-covered glaciers”,

“glacial lake outburst flood”, “climate”, and “glacial lake”. Based on

the analysis of the most frequently co-cited documents, research

hotspots in the field encompass climate change, compilation of

glacier lake inventories, methodologies for risk assessment, GLOFs,

strategies for comprehensive disaster management, and

hydrodynamic modeling. Notably, Switzerland and the Eastern

Himalayas emerged as prominent focal areas in the realm of

glacier lake identification.

(3) A detailed analysis of scientific categories and thematic

clusters unveils the diversity and interdisciplinary nature of the

glacier lake identification domain. Research in this field spans

multiple scientific categories, primarily stemming from

“Chemistry & Physics” and “Ecology and Environmental Science

& Technology.” Noteworthy specific disciplines encompassed are

“spectroscopy”, “environmental sciences”, “ecology,” “computer

science, interdiscipl inary applicat ions” , “engineering,

multidisciplinary”, and “mathematical & computational biology”.

(4) The analysis of keyword timelines and burst terms has

unveiled the developmental trajectory of the glacier lake

identification field over the past 32 years. Themes such as

“hazard”, “Late Pleistocene”, “environmental change”, “ice sheet”,

and “lake sediments” have sustained heightened interest over an
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extended temporal span. The evolution of research themes can be

distinctly categorized into three phases: Firstly, during the period

from 1991 to 2010, which marks the nascent stage of glacier lake

identification research, numerous novel concepts emerged.

Research orientations exhibited a degree of dispersion,

accompanied by a prevalence of scientific queries warranting

long-term investigation. Key emergent terms encompassed

“Canada”, “record”, “Younger Drya”, “vegetation history”, “Lake

Vostok”, and “calibration” among others. Research themes centered

on “glacial lake formation and evolution”, “exploration and

research of paleoclimate and paleoenvironment”, and “lake

sediment analysis”. Secondly, spanning from 2011 to 2018, this

phase witnessed a deeper enrichment and expansion of the glacier

lake identification domain. Bursting keywords included

“catastrophic drainage”, “Pleistocene”, “glacial lake”, “subglacial

lake”, “flood”, “stream”, “volume”, and “conservation”. Research

themes predominantly encompassed “glacial lake hazards and risk

assessment” as well as “glacial lake dynamics”. Thirdly, the phase

from 2019 to the present has seen the glacier lake identification field

assume a progressively specialized trajectory, with a rapid escalation

in annual publications and citations. Eminent keywords during this

period comprise “inventory”, “glacial lake outburst flood”, “risk”,

“dynamics”, “Tibetan Plateau”, “evolution”, and “high mountain

Asia”. Noteworthy appearances also include “Himalaya”, “moraine

dammed lake”, “evolution”, “permafrost”, and “precipitation”. The

focal literature gravitates toward research avenues such as “utilizing

remote sensing techniques for the compilation of Qinghai-Tibet

Plateau lake inventories”, “glacial lake outburst flood risk”,

“precipitation variation and glacial lake response”, and “evolution

of glacial lakes in high mountain Asia”.

(5) Building upon the synthesis of preceding research

accomplishments, further exploration into the challenges inherent

in glacier lake identification methodologies and techniques, as well

as the dimensionality of recognition scales, has been undertaken.

This endeavor is then complemented by a prospective delineation of

forthcoming research trajectories within the glacier lake

identification domain. Noteworthy among these trajectories are

the “recognition methods based on machine learning and deep

learning”, the “integration of multi-source data fusion datasets”, the

“emergence of novel algorithms and techniques tailored for scale

transformation and data expansion”, alongside the “advancement of

remote sensing technologies with elevated spatial resolution”.
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How can high-quality
development improve the
ecotourism efficiency in the
region of ecological constraints
of China? Empirical evidence
from the Yellow River Basin

Junqing Hao*, Ying Guo, Mengyao Wu and Zhixin Luo

Xi’an University of Finance and Economics, School of Business, Xi’an, China
Despite the massive impacts of ecotourism on regional development, only limited

papers empirically examined the responses of the regional development factors to

ecotourism in the context of an ecological constraints region. To fill this gap, the

primary aim of this paper is to reveal how ecotourism efficiency is affected by quality

regional development in the region of ecological constraints. The second aim is to

investigate the moderating role of ecological constraints in building relationships of

ecotourism efficiency and quality regional development factors. The research was

conducted in the Yellow River Basin, a prime area for ecological protection and

high-quality regional development in China. Data gathered from 2010 to 2019 were

used to analyze ecotourism efficiency by using the super–slacks-based

measurement method. Findings indicated that four quality regional development

factors—innovative, green, open, and shared factors—have positive impacts on

ecotourism efficiency in the Yellow River Basin. Ecological constraints moderate

the relationship between ecotourism efficiency and quality regional development.

The study makes a significant contribution to the literature in terms of both

managing the ecological constraints and improving the sustainability of

ecotourism in the region of quality development.

KEYWORDS

efficiency, quality regional development, ecotourism, ecological constraint, the Yellow
River Basin
Introduction

In recent decades, the ecology has suffered unprecedented damage (Zou and Shen,

2003; Pei et al., 2023). It is also fairly well understood that, with the rapid development of

the global tourism industry, the inherent environmental dependence and resource

consumption of this industry aggravate the contradiction between tourism development
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and ecological conservation (Peng et al., 2017; Tamario et al., 2019;

Wang et al., 2022). This contradiction can have serious adverse

effects on the ecology of a tourism area, and the risks of the tourism

destination ecosystem are continuously increasing (Ma et al., 2021).

Tourism is no longer a “green” industry (Williams and Ponsford,

2009; Briassoulis, 2020); thus, its sustainable development is

threatened (Qiu et al., 2017). Developing ecotourism has become

some policy note issues by governments concerned for addressing

the contradiction between promoting tourism and protecting the

ecology (Zhang et al., 2022), and realizing the sustainable

development of a regional economy is an urgent practical need.

Previous studies on this subject have concluded that ecotourism

provides people with more opportunities to enjoy recreation within

the acceptable range of the ecosystem, promotes the sustainable

development of ecotourism destinations, and improves the quality

of regional development (Shasha et al., 2020; Fuxia and Bizhe,

2022). Ecotourism has a positive effect on the protection of the

ecological system and promotes high-quality economic growth

(Lundholm, 2015; Chen et al., 2020). That being said, the

conclusions of relevant research are relatively vague on whether

the quality of regional development affects ecotourism and how it

affects the efficiency of ecotourism.

The Yellow River Basin (see Figure 1), located in northern

China, is a typical area as far as ecotourism in China is concerned.

However, the economic aggregate of the Yellow River Basin has

been in a relatively weak position. The development of continuous

urbanization and industrial transformation poses a particularly

significant threat to ecological and environmental protection,

which further leads to ecotourism facing with serious ecological

challenges (Zhao and Wu, 2018). The contradiction between the

advantages of ecotourism and the disadvantages of regional

economics has restricted the quality of regional development in

the Yellow River Basin for a long time. The key to solving this
Frontiers in Ecology and Evolution 0287
contradiction lies in the mechanisms to the quality of regional

development on ecotourism (Ma et al., 2023). Therefore, the

influence mechanism of regional development quality on

ecotourism was examined in this study. Although eco-efficiency is

of great significance in the context of ecological protection and

regional development, the existing research concerning ecotourism

efficiency is insufficient, especially in terms of the relevance of its

takeaway lessons to the Yellow River Basin.

Ecotourism, as a form of responsible travel that aims to

minimize the negative impacts of tourism on the environment

and local communities while promoting conservation and

sustainable development, has received attention worldwide (Qiu

et al., 2022). In the light of the previous studies, this study mainly

contributes innovative suggestions as follows: First, it analyzes the

characteristics underlying the efficiency in ecotourism’s temporal

and spatial evolution in the Yellow River Basin, drawing on the

undesirable slacks-based measurement (SBM) model based on

undesirable outputs. Second, this study constructed a high-

quality development evaluation system and analyzed the

regional quality development index. The influence of high-

quality development on ecotourism efficiency in the Yellow

River Basin was found to be based on the driving factors of

innovation (number of college students in school), coordination

(urbanization rate), green [energy consumption per unit of Gross

Domestic Product (GDP)], openness (amount of foreign capital

utilized per capita), and sharing (number of beds per 1,000

people). Finally, it reveals the regional quality development of

the Yellow River Basin and the effects of driving factors of high-

quality development on the efficiency of ecotourism, thus

revealing the much less understood link between high-quality

development and ecotourism.

The rest of this paper is organized as follows: Section 2 presents

the literature review and theoretical analysis of this study. Section 3
FIGURE 1

Map of the Yellow River Basin.
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describes the variables and data sources, and Section 4 analyzes the

empirical findings. Finally, the conclusions and recommendations

are presented in Section 5.
Literature review and
theoretical analysis

Ecotourism efficiency

Ecotourism is a coordinated conservation strategy to link

conservation and development, a form of responsible travel that aims

to minimize the negative impacts of tourism on the environment and

local communities while promoting conservation and sustainable

development. However, research into the effectiveness of ecotourism

is mixed (Stem et al., 2003).

Eco-efficiency, first proposed by Schaltegger and Sturm (1990),

is one of the most widely used indicators regarded as the ratio of

economic value to environmental impact. Referring to the

previous studies (Fan et al., 2017; Liu et al., 2017), the

effectiveness of ecotourism can be assessed by using eco-

efficiency indicators and metrics. Therefore, this study

considered ecotourism efficiency, as the ratio of comprehensive

ecotourism outputs obtained by tourism inputs and ecological

inputs refers to the ability of the tourism industry to use resources

effectively and efficiently to generate economic benefits while

minimizing negative impacts on the environment and

local communities.

At present, some tourism studies have examined the

measurement and evaluation of ecotourism efficiency (Goessling

et al., 2005; Li et al., 2008; Zhang et al., 2010; Peng et al., 2017), but

the number of samples and selected indicators is relatively small

and, thus, cannot fully reflect ecotourism efficiency (Liu et al., 2017).

These studies mainly focus on specific cases without analyzing the

factors affecting ecotourism efficiency. The above research objects of

ecotourism efficiency include the tourism eco-efficiency of China’s

coastal cities (Liu et al., 2017), the Yangtze River Delta’s ecotourism

efficiency (Ma et al., 2021), and rural tourism eco-efficiency (Liang

and Shi, 2020). Few scholars have discussed the ecotourism

efficiency of the Yellow River Basin from the perspective of

research. The research on ecotourism efficiency includes the eco-

efficiency of tourism transportation (Reilly et al., 2010), forest

ecotourism value (You et al., 2022), ecotourism suitability (Hz

et al., 2020), eco-efficiency of tourism products (Kelly et al.,

2007), eco-efficiency of tourism destinations (Minoli et al., 2015),

and leisure efficiency (Lin, 2017). The research methods include

data envelopment analysis (DEA) (Lin, 2017), the spatial Q method

(Lee, 2019), the fuzzy analysis hierarchy (Hz et al., 2020), multi-

criteria spatial decision-making technology (Feizizadeh et al., 2023),

the feedback-loop dynamic system model (Yuan et al., 2018),

remote sensing images and social media data (Reilly et al., 2010),

and the DEA-tobit model (Liu et al., 2017). However,

comprehensive research on ecotourism efficiency is lacking (Liu

et al., 2017), and even less research is available on comprehensively

measured ecotourism efficiency from the perspective of high-

quality development.
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The relationship of ecotourism and quality
regional development

Quality regional development that is also defined as high-quality

development is a major measure for improving total factor productivity

and building a modern economic system. This may be done by

changing the development mode, optimizing the economic structure,

and transforming the growth momentum to achieve better quality and

fairer and more efficient and sustainable development (Zeng, 2020).

One view is that specific aspects of high-quality regional development

include infrastructure (Wong et al., 2013; Wang et al., 2023),

community engagement (Khaledi Koure et al., 2023), and policy

initiatives (Gibbs et al., 2005; Potts, 2010; Khor et al., 2021). One

viewpoint takes “innovation, coordination, green, openness, and

sharing” as the overall concept of high-quality development and

holds that high-quality development aims at solving the

contradiction of unbalanced and insufficient development. It

emphasizes both the promotion and realization of regional

economic, political, cultural, social, and ecological high efficiency and

the promotion and realization of equitable and green sustainable

development under the guidance of the five major development

factors in the development process (Zhang et al., 2017; Zhu et al.,

2019). This research will focus on five factors of high-quality

development, namely, “innovation, coordination, green, open, and

shared,” which are closely related to the eco-efficiency and eco-

constrained management that this paper wants to examine.

The existing research studies mainly form the following issues

for the relationship of quality regional development and

ecotourism, discuss the different model of different area on high-

quality development, and provide policy recommendations for

achieving high-quality development (Yang et al., 2019). In the

field of ecotourism research, there are some studies that carried

out the themes of ecotourism and high-quality development, such

as rural tourism, red tourism, cultural tourism integration, and

large-scale festival tourism (Liu and Han, 2020; Yu et al., 2020; Song

et al., 2021). Some studies have examined the response of regional

development factors to ecotourism in the context of an ecological

constraints region, such as the strategic role of local community

participation in ecotourism development (Khaledi Koure et al.,

2023), the stimulation of community ecotourism cooperation by

large-scale tourism projects (Barkin and Bouchez, 2002), and the

support of community tourism decision-makers for ecotourism

development (Vincent and Thompson, 2020). However, these

studies do not address the impact of the four high-quality

regional development factors, namely, innovation, green, open,

and shared on ecotourism, let alone explain the process and

mechanisms by which high-quality regional development affects

the efficiency of ecotourism.

Based on the above analysis, the Super-SBM model evaluation

framework was established on the basis of undesirable outputs to

make a systematic and complete analysis of ecotourism efficiency.

In addition, the SBM model can explain the relationship between

tourism and the ecology (Zhang et al., 2022) and further clarify the

dynamic synergy between them, thus providing scientific

management suggestions for ecological protection and high-

quality development in the Yellow River Basin.
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The variables, model, and data source

The variables and models of
ecotourism efficiency

The variables of ecotourism efficiency
The ecotourism efficiency variables in this study consist of three

components: input variables, desirable output variables, and

undesirable output variables.

(1) Input variables: According to the most basic factors in

classical economics, that is, capital, labor, and land, input factors

variables were represented by three indicators: fixed assets

investment in tourism industry, the number of employees in

tourism industry, and the proportion of natural reserve area.

Given that the accommodation industry and the catering industry

are the main sectors allied with tourism economics, the indicators of

fixed assets investment and the number of employees in tourism are

only count enterprises that are above the designated size in

accommodation and catering industry. The indicator of

proportion of natural reserve area used the ratio of natural

reserve area to the total land area. In this study, natural reserve

includes national nature reserves, national geological parks,

national forest parks, national scenic spots, and world natural and

cultural heritage sites, and this may increase the ratio of natural

reserve area, but it highlights the developing strategies, i.e., “doing a

good job of great protection together,” in the Yellow River Basin.

Meanwhile, some studies have considered ecotourism resources as

an input factor variable to measure the efficiency of ecotourism.

Accordingly, this study takes the number of tourism scenic spots as

an indicator, including humanistic scenic spots and natural-type

scenic spots in the Yellow River Basin.

(2) Desirable output variables: These variables were divided into

the scale produces and efficient outputs, which are usually reflected

in tourism industry by tourist arrivals and receipts.

(3) Undesirable output variable: This variable was reflected in

CO2 emissions that are calculated by the conversion of energy

consumption per 10,000 yuan of GDP in China (Zhu et al., 2018;

Zeng, 2020).

The above variables and indicators are further detailed

in Table 1.
The measurement model of
ecotourism efficiency

The ecotourism efficiency discussed in this study aims to

achieve the maximum output of tourism economic with the help

of minimum inputs and ecological impact (Zhu et al., 2018). The

impact of ecotourism on the ecological environment runs through

the whole process of tourism activities, and tourism’s economic

benefits are the typically desirable outputs of ecotourism. CO2

emissions are often considered as the undesirable outputs of

ecotourism. Based on this, a production possibility set comprising

the desired and undesired outputs was constructed. Furthermore,

the possibility of shrinking the desired and undesired outputs under

a particular factor input was analyzed, using the directional

distance function.
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Considering the relaxation problem of variables and the impact

of undesired outputs, the non-angle and non-oriented Super-SBM

method was adopted to measure ecotourism efficiency (Yu et al.,

2015), and the formula is as follows:

minp =

1
mom

i=1
�x
xik

� �

1
r1+r2

o
r1
s=1y

d

ydsk
+ o

r2
q=1y

u
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� �

�x ≥ o
n

j=1,≠k

xijlj; yd ≤ o
n
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�x ≥ xk; yd ≤ ydk ; y
u ≥ yuk ; lj ≥ 0; i = 1, 2, · · ·,m; j = 1, 2, · · ·, n; s

= 1, 2, · · ·, r1; q = 1, 2, · · ·, r2

In the formula, among n Decision Making Units (DMUs), each

DMU contains input m, expected output r1, and unexpected output

r2. x, y
d, and yu, are the elements in the corresponding input matrix,

expected output, and unexpected output matrix, respectively, and p

represents the efficiency value.
The variables of high-quality
regional development

The concept of high-quality regional development is based on

the five development ideas: innovation, coordination, green, open,

and shared. This study takes the high-quality development index of

the Yellow River Basin as the explanatory variable, which was

specifically designed to have five explanatory variables, namely,

innovative development, coordinated development, green
TABLE 1 Ecotourism efficiency: variables and indicators.

Variables Indicators Interpretation of the indicators

Input
variables

Fixed asset
investment in

tourism

Fixed assets of accommodation enterprises +
total fixed assets of catering enterprises/
million yuan

The number
of employees
in tourism

Year-end number of employees in
accommodation enterprises + year-end
number of employees in catering enterprises
above the designated size/person

Proportion of
natural

reserve area

The ratio of the area of nature reserves at or
above the national level, forest parks,
geological parks, scenic spots, and world
cultural and natural heritage sites to the total
land area of the province/%

Tourism
resources

The sum of the number of 3A, 4A, and 5A
tourist attractions

Desirable
output
variables

Tourist
arrivals

International tourist arrivals + domestic
tourist arrivals/million people

Tourist
receipts

International tourism revenue + domestic
tourism revenue/billion yuan

Undesirable
output
variables

CO2

emissions

Total tourists receipts * energy efficiency
consumption per 10,000 yuan of GDP/the
million tons of standard coal
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development, open development, and shared development. The

moderating variable was designed to be an economic variable and

an ecological environment variable. The explained variable is

ecotourism efficiency. Based on the principles of combining the

total index with the per capita index, the efficiency index with the

sustainable development index, and the high-quality development

index with the economic benefits index (Ren and Du, 2021), the

number of college students per 10,000 people, urbanization rate,

energy consumption per unit of GDP, per capita utilization of

foreign capital, number of beds per 1,000 people, per capita GDP,

and types of ecological functional zones were used to reflect the

above variables, respectively. The variable indicators and

explanations are presented in Table 2.
Data source

In this study, the data on ecotourism efficiency was obtained

from the China Statistical Yearbook (2011–2020), the Statistical

Yearbooks of the every provinces in the Yellow River Basin (2011–

2020), and the Statistical Bulletin of National Economic and Social

Development. The data on ecology and environment were

obtained from the eco-functional regionalization of each

province in the Yellow River Basin. Tourism-related data were

acquired from the official websites of the Ministry of Culture and

Tourism, People’s Republic of China (PRC), and the Department

of Culture and Tourism in each of the nine provinces and

autonomous regions in the Yellow River Basin. The high-quality

development data were sourced from the China Statistical

Yearbook for 2011–2020, the Statistical Yearbooks of the nine

provinces, and the Statistical Bulletin of the nine provinces in the

Yellow River Basin over the years. For all of the collected data,

the multiple-imputation method was used to supplement

the missing data.
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Empirical analysis

Empirical analysis on space-time evolution
of ecotourism efficiency in the Yellow
River Basin

Temporal evolution of ecotourism efficiency in
the Yellow River Basin

The temporal evolution characteristics of ecotourism efficiency

in the Yellow River Basin from the perspective of the whole basin

are shown in Figure 2. From 2010 to 2019, the ecotourism efficiency

in the Yellow River Basin increased steadily from 0.144 to 0.721,

with a total growth rate of 400.69% and an average annual growth

rate of 40.07%. However, on the whole, the ecotourism efficiency in

the Yellow River Basin is low, and the average ecotourism efficiency

value in the past 10 years was only 0.356.

From the perspective of different reaches, the ecotourism

efficiency in different reaches of the Yellow River Basin showed

an increasing trend, but the evolution characteristics were

significantly different. (1) In the upper reaches of the Yellow

River—Qinghai, Ningxia, Sichuan, Gansu, and Inner Mongolia—

ecotourism efficiency showed a fluctuating trend of increase for the

period 2010 to 2019. The average ecotourism efficiency increased

from 0.126 to 0.542, with an average annual growth rate of 33.02%.

Both the average and total growth rates were lower than the whole

basin level of 0.303, indicating the lowest ecotourism efficiency.

(2) In the middle reaches of the Yellow River, which includes the

Shaanxi and Shanxi provinces, the growth of ecotourism efficiency

was divided into two stages. From 2010 to 2014, the ecotourism

efficiency rose slowly, with the average value ranging from 0.123 to

0.289, lower than the average level of the whole basin. From 2015 to

2019, the ecotourism efficiency increased rapidly from 0.379 to

1.057, with an average annual growth of 17.89%, making it the

fastest-growing stretch along the Yellow River Basin in terms of
TABLE 2 High-quality regional development: variable indicators and explanations.

Variables Variable
classification

Variable
symbols

Indicators Explanation of indicators

Explanation
variables

Innovative
development

Inova Proportion of the
number of college
students in school

Number of college students in school/total resident population

Coordinated
development

Green Urbanization rate Urban population/total resident population

Green
development

Coordi Energy consumption
per unit of GDP

Total energy consumption/per 10,000 GDP

Open
development

Open Amount of foreign
capital utilized per

capita

Actual amount of foreign capital utilized/number of employed persons

Shared
development

Share Number of beds per
1,000 people

(Number of beds in health facilities/total resident population) × 1,000

Moderating
variables

Ecological
constraint

Environ Type of eco-functional
region

According to the results of eco-functional regionalization in China, prohibited
development area is 4, restricted development area is 3, key development area is 2, and
the priority development area is 1

Explained
variables

ecotourism Toureco Ecotourism efficiency The ecotourism efficiency values are measured above
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ecotourism efficiency. (3) The lower reaches of the Yellow River

Basin are the Henan and Shandong provinces. In the past 10 years,

ecotourism efficiency increased steadily in both provinces, with its

average ranging from 0.211 to 0.836, which is the highest average

rate of ecotourism efficiency in the Yellow River Basin. Notably, in

the upper reaches of the Yellow River Basin, it was the lowest,

whereas it was the highest in the lower reaches. Furthermore, in the

middle reaches, the average growth of this efficiency was the fastest.

Spatial evolution characteristics of ecotourism
efficiency in the Yellow River Basin

Taking the average value of ecotourism in the Yellow River

Basin in a certain year as the boundary, an area for which the value

is higher than the average value has high ecotourism efficiency;

otherwise, the area has low ecotourism efficiency (Table 3). From

the perspective of the whole river basin, only the Sichuan and

Henan provinces had high ecotourism efficiency in 2013. In 2019,
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these provinces were joined by the Shaanxi and Shanxi provinces.

The regions with low ecotourism efficiency changed from seven to

five provinces, namely, Qinghai, Ningxia, Gansu, Inner Mongolia,

and Shandong. Thus, the spatial scope of the high ecotourism rate

areas in the Yellow River Basin gradually expanded, whereas that of

the low–ecotourism rate areas gradually shrunk.

From the perspective of the different provinces, Sichuan and

Henan have always been areas with high ecotourism efficiency,

whereas Qinghai, Ningxia, Gansu, and Inner Mongolia have always

had low ecotourism efficiency. The spatial pattern of ecotourism

efficiency in the abovementioned six provinces has not changed.

The Shandong province was a high-efficiency area that later became

a low-efficiency area, but it bounced back to become a high-

efficiency area once again, and the spatial evolution obviously

fluctuated as a result of these changes. Therefore, except in the

case of Sichuan, the spatial pattern of ecotourism efficiency in the

upper reaches of the Yellow River Basin hardly changed much and

that of the lower reaches of Henan did not change at all. In the

middle reaches, though, it changed significantly and played a key

role in the spatial evolution of the ecotourism efficiency of the basin

on the whole.
Linear regression analysis of high-quality
development on ecotourism efficiency

Sample descriptive statistical results
The descriptive statistical results of the main variables of the

high-quality development index of the Yellow River Basin are

shown in Table 4. The mean value of innovation development is

0.068; the maximum value is 0.512, and the minimum value is

0.0103, indicating a strong difference in the number of college

students. The standard deviation of green development was 5.92e-

05, indicating significant heterogeneity in unit energy consumption

data. The mean values of the coordinated development variables,
TABLE 3 Spatial evolution characteristics of ecotourism efficiency in the
Yellow River Basin.

Year High–ecotourism
efficiency areas

Low–ecotourism efficiency
areas

2010 Sichuan, Henan, and
Shandong

Qinghai, Ningxia, Gansu, Inner
Mongolia, Shanxi, and Shaanxi

2013 Sichuan and Henan Qinghai, Ningxia, Gansu, Inner
Mongolia, Shanxi, Shaanxi, and
Shandong

2015 Sichuan, Shanxi, Shaanxi,
Henan, and Shandong

Qinghai, Ningxia, Gansu, and Inner
Mongolia

2017 Sichuan, Shanxi, Shaanxi,
and Henan

Qinghai, Ningxia, Gansu, Inner
Mongolia, and Shandong

2019 Sichuan, Shanxi, Shaanxi,
and Henan

Qinghai, Ningxia, Gansu, Inner
Mongolia, and Shandong
FIGURE 2

Ecotourism efficiency in the Yellow River Basin (2010–2019).
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shared development variables, and ecological environment variables

were 0.495, 5.195, and 2.295, respectively, and the standard

deviations were 0.0813, 0.963, and 1.146, respectively, indicating

obvious differences in the indicators. The high standard deviation of

the open development variable and the economic variable indicates

that the numerical difference between the unit energy consumption

index and the per capita GDP index was not obvious, which may

affect the reduction of the regression coefficient value in a later

period but had little impact on the analysis of the study’s results.

The factor analysis method was used to process the relevant

data of the high-quality development index evaluation index system

of the Yellow River Basin. Thus, the high-quality development

index of the nine provinces was calculated for 2010–2019. The

SPPS21 software was used for testing and analysis, and the results

showed that the sample data passed the Bartlett sphericity test with

a value above 0.05 and that the Kaiser-Meyer-Olkin (KMO) value

was 0.50. According to the Kaiser metric, the sample data in this

study were more suitable for factor analysis. Then, through factor

analysis, the comprehensive score values of the high-quality

development index were calculated, and these scores were applied

to the following empirical test research.

Panel regression results of high-quality
development on ecotourism efficiency

Based on the above analysis, we further analyzed the impact

mechanism of innovative development, coordinated development,

green development, open development, and shared development on

ecotourism efficiency. First, the panel regression model was

constructed with innovative development (Inova), coordinated

development (Coordi), green development (Green), open

development (Open), shared development (Share), and

ecotourism efficiency (Toureco) as explanatory variables.

According to the characteristics of the panel data, model

checking was required to find the optimal model. In this study,

the F-test was used to compare the Fixed Effect (FE) and Pooled

MLE (POOL) models, the BP test was used to compare the Random

Effects (RE) and POOL models, and the Hausman test was used to

compare the FE and RE models. As per the results, the F-test

showed a significance of 5% [F (8, 74) = 7.627, p = 0.000< 0.05],

indicating that the FE model is better than the POOL model. The

BP test showed a significance of 5% [c² (1) = 2.099, p = 0.147],

indicating that the RE model is better than the POOL model. The
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Hausman test showed a significance of 5% [c² (5) = 20.630, p =

0.001], indicating that the FE model is better than the RE model.

Therefore, the FE model was used as the final regression model in

this study.

To consider the role of time factors and regional factors, the

fixedeffect test was conducted after the determination of the panel

regression model. In general, the FE model considers only

individual-fixed effects. However, considering the time dynamic

characteristics of the high-quality development and ecotourism

efficiency data of the Yellow River Basin, this study tested the

time fixed effect as well. The Ordinary Least Squares (OLS)

regression was used to include time as a virtual dummy variable

in the model for analysis. The results showed that the regression

coefficient value of time to ecotourism efficiency was 0.027, showing

a 0.05 level significance (t = 2.381, p = 0.020< 0.05). Therefore, this

study adopted the double–fixed-effect regression model,

considering the individual-fixed and time-fixed effects. Table 5

shows the regression results.

The impact of innovation factors on
ecotourism efficiency

Table 5 shows that the index of innovation (Inova) is positively

correlated with the value of ecotourism efficiency at the significant

level of 0.1 (t = 1.684, p = 0.096 > 0.05), indicating that innovation

factors have a positive impact on the ecotourism efficiency and

improve the ecotourism of Yellow River Basin. Innovation is one of

the main drivers for the improvement of the regional economic

development level. The innovation-driven economic development,

in turn, further stimulates the double growth of ecotourist arrivals

and ecotourism revenues. Accordingly, it is argued that innovation

factors increase the output of ecotourism, which leads to an increase

in the efficiency of ecotourism in Yellow River Basin.

Next, we analyze the moderating effect of ecological constraint

variables. Table 5 shows that the degree of influence of innovation

factors on tourism efficiency becomes weaker under the moderating

effect of ecological constraint factors. The Yellow River Basin

specifies the ecological constraints of different zones, which

restrict the scope of economic activities in the region and limits

the number of ecotourists, and the scale of ecotourism income,

which leads to the ecotourism outputs under the ecological

constraint requirement that becomes less than that under the

non-ecological constraint requirement, so the ecological
TABLE 4 Descriptive statistics of the main variables.

Variable Observed value Mean value Standard deviation Minimum value Maximum value

Innovation development Inova 88 0.0680 0.141 0.0103 0.512

Coordinated development Coordi 88 0.000120 5.92e-05 4.11e-05 0.000246

Green development Green 88 0.495 0.0813 0.293 0.634

Open development Open 88 162.3 102.3 1.355 373.2

Shared development Share 88 5.195 0.963 3.483 7.543

Ecotourism efficiency Toureco 88 0.361 0.293 0.0445 1.081

Ecological environment Environ 88 2.295 1.146 1 4
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constraint factor of the Yellow River basin weakens the degree of

influence of the innovation factors on ecotourism efficiency.

The impact of coordinated factors on
ecotourism efficiency

The analysis results in Table 5 show that the effect of

coordination factors (Coordi) on ecotourism efficiency (Tourceo)

in the Yellow River Basin was not significant (t = 0.849, p = 0.399 >

0.05). The effect of coordination factor (Coordi) on ecotourism

efficiency (Tourceo) was significant and negatively correlated (t =

−5.671, p = 0.000< 0.01) after adding ecological constraints as a

moderating variable.

The coordination factors are the complementary resource

advantages and industrial linkage between regions to enhance

tourism efficiency through the level of urbanization. The

provinces in the Yellow River Basin have low resource

complementarity, low industrial linkage, and significant

differences in urbanization levels. With different regional

funct ional requirements , the di fferences in resource

complementarity, linkage, and urbanization are more obvious,

and the coordination factors in the Yellow River Basin did not

positively influence the ecotourism efficiency in the region and did

not promote ecotourism development enough.

The impact of green development on
ecotourism efficiency

The green development factors (Green) and ecotourism

efficiency (Tourceo) of the Yellow River Basin in Table 5 show a

significant difference at the level of 0.1 (t = 1.670, p = 0.099 > 0.1),

indicating that the green development factors have a significant

positive impact on the ecotourism efficiency of the Yellow River

Basin. Green development is an efficient development mode of low-

carbon and low-energy consumption. The tourism industry belongs
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to the green industry and is also the core of ecotourism efficiency.

Therefore, the more significant the low-carbon and low-energy

consumption in the Yellow River Basin is, the more significant the

positive impact on ecotourism efficiency is. At the same time, the

results (Table 5) show that the positive impact of green

development in the Yellow River Basin on ecotourism efficiency

has been strengthened by the addition of the adjustment variables of

ecological constraints, and the two have a significant positive impact

relationship at a level of 0.05.

The impact of openness factors on
ecotourism efficiency

In Table 5, the significant level is 0.01 (t = 2.676, p = 0.009<

0.01), and the regression coefficient value is 0.001 > 0, indicating

that openness factors have a significant positive impact on

ecotourism efficiency. Moreover, adding the adjustment variable

of ecological constraints to the analysis, it was found that the

openness factors show a strong relationship between openness

factors on ecotourism efficiency.

The tourism industry is a highly open industry. With the flow of

tourists between tourist sources and destinations, a strong capital

flow, information flow, and material flow have formed, which can

promote highly open tourism destinations. Each province in the

Yellow River Basin has rich ecotourism resources and is a global and

national tourist destination. Therefore, the ecotourism industry

plays a strong role in promoting the growth of foreign investment

and openness in the Yellow River Basin.

The impact of shared factors on
ecotourism efficiency

According to the analysis results in Table 5, the shared factors

showed a significant level of 0.1 (t = 1.888, p = 0.063 > 0.05),

indicating that shared factors have a positive impact on ecotourism
TABLE 5 Panel regression results of high-quality development on ecotourism efficiency.

Explanatory variable Coef Std. Err t p

Intercept (1) −0.520 0.332 −1.569 0.121

(2) 0.958*** 0.192 5.003 0.000

Innovation-driven development (Inova) (1) 3.203* 1.903 1.684 0.096

(2) −0.685*** 0.117 −5.869 0.000

Coordinated development (Coodi) (1) 0.724 0.853 0.849 0.399

(2) −1.534*** 0.270 −5.671 0.000

Green development (Green) (1) 1693.702* 1014.323 1.670 0.099

(2) 969.061** 457.135 2.120 0.037

Development for global progress (Open) (1) 0.001** 0.000 2.676 0.009

(2) 0.001*** 0.000 5.853 0.000

Development for the
benefit of all (Share)

(1) 0.077* 0.041 1.888 0.063

(2) −0.002 0.023 −0.080 0.936
Remarks: (1) Adjustment variable is not added. (2) Add regulating variable; F (5, 74) = 24.543, p = 0.000; R² = 0.624, adjustment R² = 0.558; *p< 0.1, **p< 0.05, and ***p< 0.01.
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efficiency. However, considering the role of the adjustment

variables of ecological constraint, the impact of shared

development on ecotourism efficiency was found to have weakened.

Shared factors, including the construction of regional

infrastructure and public service capacity, have improved the

efficiency of ecotourism in Yellow River Basin. Whereas, the

number of infrastructure is lower in the areas with stringent

ecological requirements than the areas with loose ecological

requirements, and this weakens the impact of shared factors on

ecotourism efficiency in Yellow River Basin.
Conclusions

(1) The spatiotemporal evolution characteristics of ecotourism

efficiency is significant.

This study used the Super-SBM model of unexpected output to

calculate the ecotourism efficiency of the Yellow River Basin in the

past decade from 2010 to 2019. From the perspective of time

evolution, the ecotourism efficiency value of the Yellow River

Basin was generally low—only 0.721 in 2019—but showed a

continuous upward trend and an annual growth rate of more

than 40%. From the perspective of spatial evolution, significant

differences exist in ecotourism efficiency among the upper, middle,

and lower reaches of the Yellow River. The ecotourism efficiency

value in the upper reaches of the Yellow River was the lowest and its

growth rate kept fluctuating. In the middle reaches, the ecotourism

efficiency value increased from low to high and its growth rate was

the fastest. The ecotourism efficiency in the lower reaches of the

Yellow River was the highest, and the development trend was stable.

Moreover, significant differences in ecotourism efficiency also exist

among different provinces. Sichuan and Henan have always been

the areas with high ecotourism efficiency, whereas Qinghai,

Ningxia, Gansu, and Inner Mongolia have always been the areas

with low ecotourism efficiency. Shanxi and Shaanxi have risen from

being low–ecotourism efficiency areas to high–ecotourism efficiency

areas, whereas the ecotourism efficiency of Shandong fluctuated.

(2) High-quality regional development factors have a positive

impact on ecotourism efficiency in Yellow River Basin.

Based on the five major quality regional development factors,

namely, innovation, coordination, green, openness, and sharing,

this study constructed a quality-development index system and

measured the quality-development index of the Yellow River Basin

of the past 10 years from 2010 to 2019. Then, linear regression and

panel regression models were employed to analyze the effects of

these factors on ecotourism efficiency.

The results showed that the quality-development factors had a

significant positive effect on the ecotourism efficiency in the Yellow

River Basin, indicating that quality development in the Yellow River

Basin is conducive to the improvement of ecotourism efficiency.

The innovation factors, green factors, open factors, and shared

factors present a positive impact on ecotourism efficiency in the

Yellow River Basin. Furthermore, the coordinated factors and

ecotourism efficiency did not show a correlation, indicating that

no influencing relationship exists between coordinated factors and

ecotourism efficiency in the Yellow River Basin.
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(3) The moderating effect of ecological constraint is significant.

To further examine the role of ecological constraint on the

relationship between the quality development and ecotourism

efficiency, this study used ecological constraint as moderating

variables for analysis. The results of the study found the

following: (1) ecological constraint weakened the positive impact

of innovative factors and shared factors on ecotourism efficiency

enhancement in the Yellow River Basin and in the context of

considering different ecological constraint, the regional innovation

capacity, and the public. (2) The ecological constraint strengthened

the positive influence of green factors and open factor on the

ecotourism efficiency of the Yellow River Basin, considering the

influence of different ecological functional zones, the promotional

effect of the Yellow River Basin’s pursuit of low-carbon and low-

energy development methods, and the increase in the amount of

foreign capital utilized per capita on the ecotourism efficiency

enhancement. (3) Because of the ecological constraint,

coordinated factors had a negative influence on ecotourism

efficiency in the Yellow River Basin, indicating that insufficient

coordinated factors in the Yellow River Basin inhibits ecotourism

efficiency improvement. Thus, a negative influence relationship was

found between the two.
Discussion

Theoretical implications

First, this study expands the study of the influencing factors of

ecotourism. Existing studies point out that ecotourism is affected by

economic development level, ecological environment, and natural

factors. For example, the findings of Thomas et al. (2021) suggest

that universalism value is positively related to ecotourism

predisposition; some scholars have explored the relationship

between agro-ecotourism and agricultural regional development

(Cao, 2018). This study innovatively reveals the influencing factors

and mechanisms of ecotourism from the perspective of regional

development quality and opens the black box between high-quality

development and ecotourism.

Second, this study enriches the research objects of tourism eco-

efficiency. Previous research objects on tourism eco-efficiency

include the tourism eco-efficiency of China’s coastal cities (Liu

et al., 2017), the tourism eco-efficiency of Yangtze River Delta (Ma

et al., 2021), and rural tourism eco-efficiency (Liang and Shi, 2020).

Few scholars have discussed the tourism eco-efficiency of Yellow

River Basin. Our study analyzes the temporal and spatial evolution

characteristics of ecotourism efficiency in the Yellow River Basin of

China and explores the ecotourism efficiency and its driving factors

in the nine provinces in the Yellow River Basin from 2010 to 2019.

Third, this study broadens the research perspective of tourism

eco-efficiency. Previous scholars have examined the eco-efficiency

of tourism transportation (Reilly et al., 2010), forest ecotourism

value (You et al., 2022), ecotourism suitability (Hz et al., 2020), eco-

efficiency of tourism products (Kelly et al., 2007), eco-efficiency of

tourism destinations (Minoli et al., 2015), and leisure efficiency (Lin,

2017). However, comprehensive research on tourism eco-efficiency
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is lacking (Liu et al., 2017), and even less research is available on

comprehensively measured ecotourism efficiency from the

perspective of high-quality development. Based on the tourism

efficiency model and high-quality development index, we explore

the impact of high-quality development on ecotourism

development in the Yellow River Basin from five dimensions:

innovation, coordination, green, openness, and sharing, which not

only broadens the research perspective of tourism eco-efficiency but

also serves as a useful supplement to the research on high-

quality development.
Managerial implications

(1) Lead the innovation and open development of ecotourism in

the Yellow River Basin with planning

According to the scientific, long-term, strategic, and systematic

characteristics and requirements, the “Yellow River Basin

ecotourism Special Plan” should be studied and compiled. First,

the plan should scientifically analyze the foundation and conditions,

advantages and disadvantages, and prospects and risks of

ecotourism construction in the upper, middle, and lower reaches

of Yellow River Basin. Second, it should scientifically understand

the principles, goals, paths, and modes of ecotourism construction

in the Yellow River Basin. Third, it should scientifically define the

key areas and key regions of ecotourism construction. Fourth, it

should scientifically grasp the key links and measures of ecotourism

construction and define the status and role of planning

(2) Implement an ecological service–oriented compensation

mechanism to promote regional coordinated development and

shared development

The ecological value of tourism resources in the upper reaches

of Yellow River Basin should be objectively understood,

scientifically evaluated, reasonably utilized, and effectively

protected. An ecological compensation system for tourism

development in the middle and lower reaches of Yellow River

Basin should be established and improved to build a bridge for

the coordinated development of the region. Using its beautiful,

natural, and ecological environment; idyllic scenery; and

agricultural cultural heritage, it actively develops green industries,

ecotourism, and rural tourism. Moreover, market-oriented

ecological compensation brings new income and development

opportunities to farmers. Tourism business activities are

beneficiaries of ecological service functions and values, but they

may also be detrimental to ecological service functions and

ecological values. The establishment of ecological compensation

mechanisms for tourism development should be explored, and

ecological compensation fees (taxes) on tourism development

units and individuals should be levied between the upper, middle,

and lower reaches of Yellow River Basin.

(3) Create low-carbon and low-energy ecotourism product

systems to improve the sustainability of ecotourism in the region

of quality development

Our results show that the four high-quality regional

development factors, namely, innovation, green, open, and

shared, have positive impacts on ecotourism efficiency in the
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Yellow River Basin, which provide practical enlightenment for

improving the sustainability of ecotourism in the region of quality

development. Specifically, the goal of the ecotourism product

system layout is to control the development intensity and to

adjust the spatial structure according to the principle of balanced

ecotourism resources and environment as well as unified economic,

social, and ecological benefits to promote the space-intensive and

efficient ecotourism product and ecological space, mountains, and

water. The Shaanxi province that is located in the middle reaches of

Yellow River Basin, for example, is focusing on creating a system of

nine corridors with three life “blue paths,” three health “green

paths,” and three cultural “purple paths,” optimizing the ecotourism

product system in the watershed. The product system of ecotourism

in water should be optimized, focusing on the Han River ecological

experience product; the product system of ecotourism in mountains

should also be optimized, focusing on the Qinling National Park

product; and, last, the product system of ecotourism in red should

be optimized as well, focusing on the geological tourism product in

northern Shaanxi.

(4) Take the lead in building industrial access system and

optimizing ecological constraint management

The results of this paper show that ecological constraints

moderate the relationship between the four quality regional

development factors—innovative, green, open, and shared factors

—and ecotourism efficiency, respectively, which has important

practical significance for optimizing ecological constraint

management and promoting regional high-quality development.

This should be done according to the requirements of the main

functional area planning and nature reserve system of each province

in the Yellow River Basin, combined with the key tasks of zoning

protection of national land space planning, based on the guiding

catalog of industrial structure adjustment, the national negative

market access list, the ecological environmental protection access

list, the green industry guiding catalog, the negative list of national

key ecological function area and county industrial access, and the

development of key protected areas and general protected areas’

industrial access list. The development of green recycling, energy

conservation, environmental protection, organic agriculture,

ecotourism, health, and pension industries should be encouraged,

especially in the upper reaches of Yellow River Basin. The

elimination of backward production capacity in key industries

with high energy consumption and high emissions should be

increased in the middle reaches of Yellow River Basin. The entry

of industries with high pollution and high environmental risks

should be prohibited, and the establishment of an ecological

economic system with ecological industrialization and industrial

ecology as the mainstay should be promoted in the lower reaches of

Yellow River Basin. Following the requirements of the industrial

access list, construction projects should require strict approval,

ecological environmental protection responsibilities should be

implemented, and the aftermath should be supervised. Finally, the

implementation of the industrial list system should be dynamically

monitored, the impact of various industrial development behaviors

on changes in the Yellow River ecosystem should be scientifically

analyzed, and the industrial access list system should be improved

in a timely manner.
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Effects of environmental
factors on vertical distribution
of the eukaryotic plankton
community in early summer in
Danjiangkou Reservoir, China

Sijie Mai, Yuxiao He*, Weiguo Li* and Tongqian Zhao*

Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan, China
Introduction: Eukaryotic plankton plays crucial roles in ecosystem processes,

impacting aquatic ecosystem stability. This study focuses on Danjiangkou

Reservoir, a canyon lake in central China, that acts as the water source of the

Mid-route of the South-to-North Water Diversion Project.

Methods: In this study, high-throughput 18S rDNA gene sequencing was

employed to investigate eukaryotic plankton community at four water depths

(0.5 m, 5 m, 10 m, and 20 m). The environmental factors including pH, water

temperature (WT), nitrate nitrogen (NO3
−-N), ammonia nitrogen (NH4

+-N), total

nitrogen (TN), conductivity (Cond), and dissolved oxygen (DO) in reservoir areas

were measured, and their correlations with abundance and diversity of

eukaryotic plankton were analyzed.

Results: The results showed the presence of 122 genera of eukaryotic plankton

from 38 phyla. Eukaryotic plankton communities were mainly composed of

Eurytemora, Thermocyclops, Sinocalanus, Mesocyclops, and Cryptomonas. In

particular, significant differences in the diversity of eukaryotic plankton

communities were found in vertical distribution. The diversity and abundance

of eukaryotic plankton communities in 7 sampling sites decreasedwith the increase

of depth from 0.5 to 10 m, while the diversity and abundance of plankton

communities increased at 20 m. RDA analysis indicated that pH, depth, WT,

NH4
+-N, DO, Cond, and NO3

−-N could influence the vertical distribution of the

eukaryotic plankton community in the Danjiangkou Reservoir. Among these

eukaryotic plankton, Eurytemora, Thermocyclops, and Volvox were negatively

correlated with pH andWT and positively correlated with depth.

Discussion: This study revealed a novel perspective on the distribution of the

eukaryotic plankton community in Danjiangkou Reservoir, particularly in terms of

vertical variation, which will be helpful to comprehensively understand

ecological processes and to further ensure the water quality safety in this

canyon-style reservoir.

KEYWORDS

Danjiangkou Reservoir, eukaryotic plankton, community structure, environmental
factor, high-throughput sequencing
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1 Introduction

Eukaryotic plankton is important in aquatic communities and

plays crucial roles in material cycling and energy flow in aquatic

ecosystems (Zubkov and Tarran, 2008; Jiang et al., 2012; Filker et al.,

2016). Based on niche theory, environmental variables such as

resource availability and abiotic factors could determine species

composition in eukaryotic plankton communities. Variations of the

eukaryotic plankton community are related to the physicochemical

characteristics and biological conditions of the water bodies at space

and time scales (Ishida, 2008; MaChado et al., 2019). The study of

eukaryotic plankton diversity and community characteristics can

indirectly reflect the water quality of the ecological environment.

Therefore, studying the distribution characteristics of eukaryotic

plankton communities is vital for understanding the characteristics

of water ecosystem processes, formulation of scientific and

conservation management measures.

In the past decades, studies on the planktonic eukaryotes

community mainly depended on microscopy observation.

However, this method is not only influenced by sampling

conditions and preservation techniques but also there is great

variation and disagreement in the identification of these organisms.

With the development of biotechniques (Marianne et al., 2015), the

diversity of plankton can be assessed by high-throughput sequencing.

For eukaryotic plankton high-throughput sequencing of specific PCR

products (e.g., eukaryotic 18S rDNA genes) on such platforms can be

used to obtain information on eukaryotic community structure,

evolutionary relationships, and correlations between eukaryotic

plankton and the environment (Sun et al., 2014; Gao et al., 2018;

McInnes et al., 2019; Keck et al., 2020). Currently, high-throughput

sequencing has been widely used to study plankton community

structure in aquatic ecosystems (Zhao et al., 2019; Liu et al., 2020a;

Zhong et al., 2021; Wu et al., 2022). Many studies have focused on the

community, distribution, and function of phytoplankton, archaea,

plant, bacteria, and animal taxa, and their relationship with water

quality (Wurzbacher et al., 2010; Nagano and Nagahama, 2012; Sun

et al., 2014; Piwosz et al., 2020). High-throughput sequencing

technology provides efficient and rapid assessment with specific

DNA fragments and provides a more comprehensive profiling of

community composition than other methods (Dijk et al., 2014). Its

application in water quality monitoring has attracted increasing

attention (BoonFei et al., 2015).

Danjiangkou Reservoir, located in Danjiangkou City, Hubei

Province and Xichuan County, Henan Province, is the water source

of the Mid-route of the South-to-North Water Diversion Project in

central China. Benefit from this project, more than 20 cities along the

route are supplied with abundant water resources for agriculture,

industry, and human consumption. It is important to ensure the safety

of water quality in Danjiangkou Reservoir. According to the data

provided by the Ecological Environment Department of Henan

Province in 2018–2022, the water quality of Danjiangkou Reservoir

has reached the standard of class I or II water. Danjiangkou Reservoir

is a canyon-style reservoir with a maximum storage capacity of

29.05 billion m3 and a maximum depth of 80 m. As an important

water source, many studies have investigated the eukaryotic plankton

community structure in surface water and its influencing factors in
Frontiers in Ecology and Evolution 0299
Danjiangkou Reservoir at temporal and spatial scales (Shen et al.,

2011; Tan et al., 2011; Wang et al., 2016; Zheng et al., 2018). Wang

et al. (2016) detected a total of 66 phytoplankton species belonging to 7

phyla and 38 species in the reservoir area and found that diatoms were

the dominant phyla in spring, autumn, and winter. Furthermore, the

results of their study showed that dissolved oxygen, pH, and

phosphorus concentration were the main environmental factors

affecting the composition of phytoplankton communities. Through

six continuous monitoring of periphytic algae in Danjiangkou

Reservoir, Zheng et al. (2018) found the community was assigned to

6 phyla and 46 genera, and observed significant spatial and temporal

differences of them. He et al. (2021) detected 6 phyla and 57 genera of

phytoplankton from the samples collected at 1.5 m, 5 m and 10 m in

the reservoir area, and diatoms and green algae were the dominant

phyla. Recently, Cui et al. (2023) analyzed the spatial and temporal

variations of physicochemical indicators and phytoplankton at seven

different water depths in four seasons in Danjiangkou Reservoir to

reveal the main factors affecting the vertical distribution of

phytoplankton. Additionally, the characteristics of phytoplankton

community change in Danjiangkou Reservoir in different seasons

and spaces were analyzed, as well as the main environmental factors

affecting the distribution of phytoplankton community structure

(Zhang et al., 2022; Xiao et al., 2023). However, these studies mainly

focused on the eukaryotic plankton community in shallow water

column, and the patterns in deep water of this canyon-style reservoir

are still limited.

In this study, high-throughput sequencing of 18S rDNA V4

regions was used to investigate eukaryotic plankton community

structure in four layers (0.5 m, 5 m, 10 m, and 20 m) of water in

Danjiangkou Reservoir. Especially, stratified sampling provided amore

comprehensive understanding of eukaryotic plankton distribution in

Danjiangkou Reservoir. Our main goals were to analyze the vertical

structure of the eukaryotic plankton community in deep water at the

Danjiangkou Reservoir, and to reveal the relationship between the

eukaryotic plankton community and environmental factors.
2 Materials and methods

2.1 Samples collection and
physicochemical factors determination

According to the overall structural characteristics of the

reservoir area, and the basis of previous research methods (Wang

et al., 2017; Ferrera et al., 2020; Lee et al., 2018; Song et al., 2019; Liu

et al., 2020b), seven sampling sites including Songgang (SG),

Tumen (TM), Heijizui (HJZ), Kuxin (KX), Dangzikou (DZK),

Wulongquan (WLQ), and Qushou (QS) were set up in the

Danjiangkou Reservoir (Figure 1). In June 2021, the samples at

0.5 m, 5 m, 10 m, and 20 m depth of each sampling site were

collected respectively for investigating the vertical distribution

patterns of the eukaryotic plankton community. A total of 18 L

water samples were collected using a Plexiglas water collector,

passed through a 0.22 mm filter membrane, and transferred to a

1.5 mL sterile centrifuge tube to be stored in liquid nitrogen for

DNA extraction.
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The water temperature (WT), pH, dissolved oxygen (DO), and

conductivity (Cond) were measured on-site using a portable

multifunctional water quality parameter meter. 0.5 L of water

samples were taken from each layer and put into polyethylene

bottles to be brought back to the laboratory. The physicochemical

properties of total nitrogen (TN), ammonia nitrogen (NH4
+-N),

and nitrate nitrogen (NO3
−-N) in the water were determined

according to previously described methods (Jin, 1990).
2.2 DNA extraction, PCR amplification
and sequencing

DNA was extracted from the samples using the DNeasy Power

Water Kit (Mo Bio/QIAGEN) according to the manufacturer’s

instructions. The extracted DNA was analyzed with a

fluorescence spectrophotometer (QuantifluorST fluorometer,

Promega, E6090; QuantiT PicoGreen dsDNA Assay Kit,

Invitrogen, P7589) and 1% agarose gel electrophoresis to

determine concentration and purity. V4 hypervariable region of

18S rDNA was amplified using the specific primers, namely 547F

(FCCAGCASCYGCGGTAATTCC) and V4R (ACTTTCGT

TCTTGATYRA) (Salmaso et al., 2020). Amplification was carried

out in 20 mL reactions with 5×reaction buffer 5 mL, 5×GC buffer

5 mL, dNTP (2.5mM) 2 mL, forward primer (10mM) 1 mL, reverse
primer (10uM) 1 mL, DNA Template 2 mL, ddH2O 8.75 mL, Q5
DNA Polymerase 0.25 mL as the template. Thermal cycling

consisted of an initial of 98°C pre-denaturation for 2 min, 30

cycles (denaturation at 98°C for 15 s, annealing at 55°C for 30 s,

extension at 72°C for 30 s), and a final extension at 72°C for 10 min.

(PCR instrument: ABI Model 2720) The PCR products were
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isolated and purified using AxyPrep DNA Gel Extraction Kit,

Axygen, AP-GX-500. Paired-end sequencing of the amplicon was

performed with the Illumina Novaseq platform. The raw sequences

were deposited in NCBI under the Bio Project PRJNA (No.782248).
2.3 High-throughput data analysis

After quality control, denoising, splicing, and chimera removal

with QIIME2 (Quantitative Insights Into Microbial Ecology)

software, the best taxonomic unit (Operational Taxonomic Unit)

was classified for high-quality sequences at a classification criterion

of ≥97% similarity (default is a species-level similarity). The

sequenced OTUs results were compared with the Silva 132 rRNA

database using the Classify sklearn algorithm of QIIME2 (Chao,

1984; Bokulich et al., 2013) (https://github.com/QIIME2/q2-

feature-classifier) for OTUs representative sequence in the

QIIME2 software with default parameters, using a pre-trained

Naive Bayes classifier for species annotation.
2.4 Diversity analysis and environmental
data analysis

Alpha diversity analysis was performed using QIIME2 software

to construct rarefaction curves, the Chao index, Shannon’s index

and so on. The Chao (Chao, 1984) and Observed-Species indices

were used to characterize richness, the Shannon-Winer (Shannon,

1948) and Simpson (Simpson, 1997) indices to characterize

diversity, the Pielou-evenness (Pielou, 1966) index for evenness,

and Good’s coverage (Good, 2010) index for cover. Beta diversity
FIGURE 1

Location map of sampling sites in Danjiangkou Reservoir.
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was calculated using BrayCurtis and unweighted UniFrac distance

matrices. PCoA was used to analyze the similarity at the taxonomic

level of the eukaryotic plankton phylum in the vertical direction at

each sampling. The relevant data were plotted in Excel and Origin

9.0. Redundancy analysis (RDA) and correlation analysis of the

main eukaryotic plankton with environmental factors were

performed using genescloud. (https://www.genescloud.cn).
3 Results

3.1 Sequencing data of 18S rDNA

A total of 1,972,914 original sequences were obtained, with an

average length of 420 bp. After removal of nontargets and the

singletons, a total of 1,645,985 high-quality sequences were obtained

in all samples, accounting for 83.4% of original sequences. The

rarefaction curve gradually became stable when the sequencing reads

reached 25000, which indicated that the number of sequencings was

sufficient, and the taxon richness was high enough to cover all taxa for

further analysis (Figure 2). All sequences were clustered at the 97%

similarity level and 2392 OTUs were obtained from all the samples.
3.2 Eukaryotic plankton community
composition and relative abundance
in Danjiangkou Reservoir

A total of 38 phyla of eukaryotic plankton were identified. The

main eukaryotic plankton taxa at the level of phylum in the seven

sites were Arthropoda (85.3%), Chordata (4.0%), Chlorophyta

(1.6%), while other plankton such as Haptophyceae, Rotifera and
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Dinophyceae were less than 1% (Figure 3). Obviously, Arthropoda

is the dominant species in the reservoir area.

A total of 122 genera of eukaryotic plankton were detected in the

28 samples, all of which contained taxa that could not be identified at

the genus level. The eukaryotic plankton community at different depths

(0.5 m, 5 m, 10 m, 20 m) comprised 10 higher-level taxon groups

(Figure 4). Notably, the relative abundance of major taxa exhibited

significant variation across these depth levels. Eurytemora dominated at

depths from 0.5 to 10 m, while Thermocyclops was the dominant

species at 20 m. Interestingly, the abundance and species richness of

eukaryotic plankton were higher at the 20 m depth, while the other

depths showed lower abundance and species richness of eukaryotic

plankton. Overall, there were distinct differences in the relative

abundance and diversity of eukaryotic plankton at various depths.
3.3 Structural characteristics on
vertical distribution of eukaryotic
plankton community

There was over 99% coverage of sequences at each sample site,

fully reflecting the species and structure of the eukaryotic plankton

community in the reservoir region. The average number of OTUs

(393) at the 20 m depth water was the largest, and the average

number of OTUs (265) at the 5 m depth water was the smallest. The

eukaryotic plankton a-diversity of the sampling sites with different

depths varied greatly (Table 1). The Observed-Species index and

Chao index ranged from 86 to 673 and 89 to 708, respectively, the

QS4 (Observed-Species 676 and Chao 713) had the highest richness

indices, which were much higher compared to other samples. The

Simpson index and Shannon-Wiener index have maximum values

in SG1, which had the greatest species diversity, and the minimum
FIGURE 2

Rarefaction curve.
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values of the Simpson index and Shannon-Wiener index were at

HJZ2. Pielou-evenness in this study was 0.07–0.68, indicating that

the distribution of the number of OUTs varied widely among

the samples.
3.4 Changes in richness and
diversity on vertical distribution
of the eukaryotic plankton

b-diversity analysis showed that different eukaryotic plankton

species have unique vertical distribution patterns in Danjiangkou
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Reservoir (Figure 5). The result showed that the community

composition of KX, WLQ and QS at 0.5 m depth water was

relatively consistent, and SG, TM, HJZ, DZK each formed a

group. At 5 m depth water, HJZ, KX and DZK formed a group

with higher similarity, and the remaining four sampling sites each

formed a group. At 10 m depth water, KX, DZK and HJZ were more

similar as a group, TM and WLQ formed a group, and SG had the

same eukaryotic plankton community structure as QS. At 20 m

depth water, KX, WLQ, TM and QS formed a group, DZK and HJZ

were more similar as a group, and SG formed its own group. The

results indicated that the community composition of all sampling

sites varied greatly at 0.5–20 m depth water.
FIGURE 4

Classification of main groups of eukaryotic plankton at the genus level.
FIGURE 3

Relative abundance of eukaryotic plankton at different depths at the level of phylum.
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To further compare differences in species composition between

samples, and to achieve a demonstration of trends in species

abundance distribution across samples, species composition

analysis of all sites could be performed using a heat map

(Figure 6). The cross-sectional comparison showed the differences

between samples, taking Eurytemora as an example, at the 0.5 m

depth water, Eurytemora was the most abundant in DZK, at the

5 m depth water, Eurytemora was the most abundant in QS, at the
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10 m depth water, Eurytemora was the most abundant in WLQ,

followed by QS and TM, at the 20 m depth water, Eurytemora was

the most abundant in SG, followed by QS and TM. The vertical

comparison showed the distribution of species within the same

sample and the degree of similarity between samples, for example,

SG species diversity was the most abundant at 0.5 m depth water,

containing Phacotus, Chlamydomonas, Rimostrombidium,

Dinobryon, etc.
TABLE 1 Diversity indices of eukaryotic plankton in different sampling sites.

Depth Sample OTUs Coverage Chao Observed-Species Pielou-evenness Shannon-Wiener Simpson

0.5 m

SG1 604 0.9989 622 606 0.68 6.33 0.96

TM1 357 0.9992 376 359 0.48 4.09 0.84

DZK1 361 0.9994 369 360 0.52 4.39 0.85

WLQ1 253 0.9995 263 252 0.18 1.43 0.25

QS1 392 0.9994 406 393 0.36 3.09 0.55

KX1 311 0.9993 316 303 0.26 2.16 0.40

HJZ1 343 0.9993 357 340 0.48 4.04 0.81

Average 374 0.9993 387 373 0.42 3.65 0.67

5 m

SG2 281 0.9996 283 277 0.32 2.59 0.65

TM2 233 0.9994 246 234 0.43 3.40 0.70

DZK2 230 0.9994 249 234 0.30 2.35 0.46

WLQ2 561 0.9987 595 560 0.61 5.57 0.93

QS2 266 0.9994 272 264 0.54 4.36 0.88

KX2 196 0.9996 204 196 0.27 2.09 0.41

HJZ2 88 0.9998 89 86 0.07 0.48 0.09

Average 265 0.9994 277 264 0.36 2.98 0.59

10 m

SG3 155 0.9996 162 155 0.43 3.15 0.65

TM3 208 0.9998 210 207 0.55 4.22 0.86

DZK3 380 0.9991 406 383 0.41 3.48 0.59

WLQ3 228 0.9994 243 227 0.57 4.43 0.87

QS3 233 0.9997 236 232 0.58 4.58 0.84

KX3 328 0.9991 359 332 0.35 2.96 0.53

HJZ3 546 0.9990 564 549 0.55 5.03 0.83

Average 297 0.9994 311 298 0.49 3.98 0.74

20 m

SG4 244 0.9994 258 247 0.46 3.63 0.78

TM4 430 0.9991 447 430 0.58 5.10 0.88

DZK4 385 0.9988 414 385 0.33 2.83 0.53

WLQ4 432 0.9991 449 428 0.54 4.76 0.84

QS4 399 0.9984 708 673 0.66 6.21 0.95

KX4 411 0.9991 431 410 0.47 4.10 0.70

HJZ4 449 0.9991 461 446 0.59 5.15 0.91

Average 393 0.9990 453 431 0.52 4.54 0.80
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3.5 Environmental factor data analysis

TN, NH4
+-N, DO and pH were measured at the seven sampling

sites of Danjiangkou Reservoir (Table 2). The result showed that all

sites met the requirement of class I water standards, except for TN

(0.68~1.15 mg·L−1) . NH4
+-N (0.08~0.15 mg·L−1) , DO

(7.19~8.57 mg·L−1), pH (8.66~8.96) and Cond (274~308 ms·cm−1)

had no significant change at all sampling sites.WT at QS (mean value

24.5°C) was higher than other sites (mean value 22.3~24°C). And it

was obvious that WT decreased with increasing depth. Remarkably,

NO3
−-N concentration at depth water was conspicuously higher than

those at the surface sample sites. For example, NO3
−-N concentration

was 0.53 mg·L−1 at SG1, 0.79 mg·L−1 at SG2, 0.93 mg·L−1 at SG3 and

0.98 mg·L−1 at SG4. NO3
−-N concentration at TM increased from
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0.41 mg·L−1 (0.5 m) to 0.98 mg·L−1 (20 m). Overall, NO3
−-N

concentration increased with depth at all sampling sites.
3.6 Relationships between spatial
eukaryotic plankton community
and environmental factors

The effects of environmental factors in different samples on the

eukaryotic plankton communities were analyzed by RDA

(Figure 7). The results showed that the percentage of variance

explained by the first and second axes were 25.84% and 7.16%,

respectively. According to P-values, pH (0.035) was the most

important environmental variation factor for the eukaryotic
FIGURE 5

PCoA analysis of eukaryotic plankton community diversity. The percentage in the horizontal and vertical coordinate brackets indicates the
proportion of sample difference data that can be explained by the corresponding coordinate axis. The closer the two points are on the coordinate
axis, the more similar the community composition of the two samples is.
FIGURE 6

Heatmap of eukaryotic plankton. The figure represents a heatmap of eukaryotic plankton at 0.5 m, 5 m, 10 m, and 20 m depth water. The high and low-
abundance species were clustered in blocks, and the color gradient was used to reflect similarities and differences in community composition among
the 28 samples at the genus levels. The length of the gray bar indicates the importance of the species to the sample, decreasing from top to bottom.
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plankton community, followed by depth (0.064), WT (0.097),

NH4
+-N (0.163), DO (0.195), Cond (0.231), NO3

−-N (0.283).

Eurytemora, Thermocyclops, and Volvox were negatively

correlated with pH and WT and positively correlated with depth.
4 Discussions

Microeukaryotes play many roles as primary producers,

secondary producers, and decomposers in aquatic ecosystems,

affecting the structure of aquatic food webs in terms of taxonomic

composition, abundance, biomass, and biodiversity (Tan et al., 2010).

However, there are relatively few studies on the composition,
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distribution characteristics, functions of eukaryotic plankton and

their relationship with water quality (Voronin, 2010; Nagano and

Nagahama, 2012; Taylor and Cunliffe, 2016). In this study, we used

high-throughput sequencing technology to amplify the 18S rDNA V4

region DNA to investigate the community structure of plankton in

Danjiangkou Reservoir. As a result, a total of 2392 OTUs belong to 38

phyla and 122 genera of eukaryotic plankton were identified. Based on

sequence data, many differences in the diversity of eukaryotic

plankton communities were found at a spatial scale, and the

environmental factors including pH, depth and WT could influence

the vertical distribution of eukaryotic plankton communities. This

study would provide a better understanding dynamics of eukaryotic

plankton communities in this important water source.
TABLE 2 Physical and chemical properties in different sampling sites.

Sample
WT/
°C

DO/
mg·L−1

pH
Cond/
mS·cm−1

r(TN)/
mg·L−1

r(NH4
+-N)/

mg·L−1
r(NO3

–-N)/
mg·L−1

SG1 24.1 8.57 8.89 290 0.93 0.10 0.53

SG2 24.0 8.49 8.90 285 0.93 0.09 0.79

SG3 21.1 8.41 8.80 287 0.97 0.13 0.93

SG4 20.0 7.89 8.66 286 0.96 0.11 0.98

TM1 24.2 8.28 8.93 288 1.06 0.13 0.41

TM2 24.1 8.11 8.94 287 1.09 0.14 0.57

TM3 24.0 7.99 8.90 289 1.08 0.09 0.73

TM4 22.9 7.25 8.83 294 1.06 0.14 0.95

HJZ1 24.3 7.99 8.81 284 1.09 0.08 0.44

HJZ2 24.1 7.77 8.92 289 1.08 0.09 0.54

HJZ3 23.0 7.67 8.87 308 1.15 0.15 0.73

HJZ4 22.1 7.36 8.76 294 1.06 0.11 0.98

KX1 24.7 8.11 8.91 274 0.71 0.13 0.40

KX2 24.5 8.03 8.90 274 0.68 0.09 0.49

KX3 24.1 7.74 8.91 275 0.81 0.09 0.59

KX4 22.3 7.54 8.74 280 0.71 0.14 0.61

DZK1 24.8 7.69 8.90 278 0.90 0.11 0.54

DZK2 24.7 7.57 8.94 282 0.93 0.08 0.55

DZK3 23.5 7.51 8.89 282 0.91 0.09 0.59

DZK4 23.0 7.34 8.88 280 0.94 0.10 0.82

WLQ1 25.1 7.74 9.02 280 0.99 0.09 0.46

WLQ2 24.9 7.51 8.94 288 0.96 0.11 0.63

WLQ3 23.4 7.45 8.85 295 0.94 0.08 0.95

WLQ4 22.1 7.25 8.78 288 0.99 0.08 1.00

QS1 25.6 7.7 8.93 283 1.01 0.12 0.49

QS2 25.0 7.52 8.97 289 1.04 0.12 0.58

QS3 24.4 7.27 8.89 291 1.06 0.11 0.88

QS4 23.0 7.19 8.87 289 1.01 0.11 0.94
frontiersin.org

https://doi.org/10.3389/fevo.2023.1324932
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Mai et al. 10.3389/fevo.2023.1324932
In this study, we found that several taxa including Eurytemora,

Thermocyclops, Sinocalanus, Mesocyclops, Cryptomonas, Volvox,

Chrysochromulina play an important role in the genus level of

eukaryotic plankton in Danjiangkou Reservoir (Figure 4). Among

them, Eurytemora, Thermocyclops, Sinocalanus, and Mesocyclops

were reported as common species in still-water bodies (Hu et al.,

2021). Water quality, water temperature, and hydrological factors

affected the phytoplankton community structure (Yan et al., 2021).

Some studies have pointed out that Chrysophyta was more suitable

for growing in oligotrophic water bodies. Cryptophyta were the

dominant species in mesotrophic water bodies, while Cholorophyta

were the dominant species in eutrophic water bodies (Jia et al., 2019).

In this study, the relative abundance of Cryptomonas, Volvox,

Chrysochromulina, and Plagioselmis was ranked in decreasing

order. It can be inferred that the degree of eutrophication in the

reservoir area was between mesotrophic and oligotrophic water

bodies, which was similar to the research conclusions of previous

studies on Danjiangkou Reservoir (Wang et al., 2012; Jia et al., 2019).

The excellent water quality in the reservoir area allowed Cryptomonas

to be one of the dominant species. As an important environmental

factor, water temperature could affect the composition of plankton

community structure in most water bodies (Yang et al., 2014; Zhang

et al., 2019; Wang et al., 2020). For example, Trombetta et al. (2019)

reported that the growth temperature of Cholorophyta is higher than

that of Cryptophyta. In this study, our results indicated that the

reservoir water temperature (Table 2) was favorable for the growth

and reproduction of Cryptophyta, which was consistent with the

previous study. In addition, Cryptophyta were positively correlated

with flow, and Cholorophyta were not significantly correlated with
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hydrological factors. During the investigation, the water level, flow

rate, and flow velocity in the reservoir area were low. The excellent

water quality, suitable water temperature, and suitable hydrological

conditions probably resulted in a planktonic community composition

dominated by Eurytemora, Thermocyclops, Sinocalanus Mesocyclops

Cryptomonas Volvox, etc in the reservoir area.

The clustering results of the plankton community structure in

each layer of each sampling site in the reservoir area were different

(Figure 5). It was found that ecological factors such as season,

environmental factors, and sampling sites in the Danjiangkou

Reservoir area together explained 39% of the variation in

phytoplankton structure, with geographical location accounting

for 12% (Yan et al., 2021). Different geographical conditions

cause changes in the characteristics of the aquatic environment,

leading to spatial differences in the major taxa of plankton. Similar

to our results, previous studies reported differences in eukaryotic

microbial community structure among sampling sites in Xiamen,

Qingdao (Zhang et al., 2018), and Yellowstone Park in the United

States (Meadow and Zabinski, 2012). Moreover, there are also quite

differences in the diversity of planktonic eukaryotes at different

temporal and spatial scales in Danjiangkou Reservoir. KX is located

in the center of the Reservoir, with fewer human interference factors

and closer to the natural state. QS, KX and WLQ are located near

the hilly area in the south of the reservoir, which is upstream of the

reservoir area. HJZ is near the downstream tributary. TM is close to

the northern dry land. DZK is near the Hanjiang River outlet. SG is

closer to the paddy fields and human activities are more frequent.

The differences in environmental factors and hydrological

conditions were responsible for the differences in eukaryotic
FIGURE 7

RDA ordination biplot of planktonic taxa and environmental factors.
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plankton community composition among the sampling sites in the

reservoir area.

The diversity and abundance of eukaryotic plankton

communities in 7 sampling sites decreased with the increase of

depth ranging from 0.5 to 10 m, while the diversity and abundance

of plankton communities increased at 20 m (Table 1). Notably, our

results showed that NO3
−-N concentration was positively correlated

with the depth of water. As a main nitrogen resource in ecosystems,

NO3
−-N had a strong effect on the abundance of eukaryotic

plankton was reported by investigating eukaryotic plankton

communities in the South Yellow Sea (Sun et al., 2021). Relevant

studies have found that the nitrate concentration increases with

depth due to the sinking of nutrient substances (De Queiroz et al.,

2015). Furthermore, the nitrate was absorbed and utilized by

primary producers in the surface water (Wei et al., 2018), leading

to the low NO3
−-N concentration in the surface layer and the high

NO3
−-N concentration in the deep layer. In deep water, nutrient

concentrations change with depth, resulting in a corresponding

change in phytoplankton community structure (Tavernini et al.,

2005). In this study, the abundance and diversity of eukaryotic

plankton communities at 20 m (mean value of OTUs is 393) are

higher than those at 0.5–10 m (mean value of OTUs is 265–374)

(Table 1). As nitrate increased with depth, the maximum biomass of

eukaryotic plankton in deep water was expected (Leal et al., 2009).In

deep water bodies, with the gradient of environmental factors such

as light, temperature, and nutrient salinity, the peak biomass of the

phytoplankton community appeared at different depths (Huovinen,

1999; Ptacnik et al., 2003). In August 2008, it was found that the

abundance of phytoplankton in most stations of Danjiangkou

Reservoir decreased with the increase of depth, but there was no

obvious regularity in other sampling months (Yin et al., 2011).

There is no obvious distribution trend of phytoplankton richness

and diversity in the range of 0–50 m in the Three Gorges Reservoir.

It has been reported that environmental variability explained only

30% of the seasonal succession of microbiota in the eastern English

Channel (Logares et al., 2014). The differences in plankton

communities at different depths were attributed to the synergistic

effects of different environmental factors (Nabout et al., 2009; Zheng

et al., 2020). Because of the stratification phenomenon, the upper

layers of water had the advantage of nutrient concentrations and

temperature. In contrast, the deeper layer of water had extreme

environmental conditions such as higher nutrient concentrations,

low light, and low temperature, resulting in significant differences in

species diversity (Sun et al., 2021). Based on the variation of Chao,

Pielou-evenness, Shannon-Wiener, and Simpson index at all

sampling sites (Table 1), changes in eukaryotic plankton

abundance and diversity in different water samples (Figure 6)

indicated that there were large differences in the vertical

distribution of eukaryotic plankton communities in Danjiangkou

Reservoir. Previous studies have found that there is no significant

difference in the abundance of phytoplankton communities in the

vertical direction of Danjiangkou Reservoir (Yin et al., 2011). The

results of this study are different from the results of previous studies.

The first reason is the expansion of the reservoir area. The previous
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studies were performed time was from 2007 to 2008, and the

reservoir area was expanded in 2012. The hydrological conditions

and physical and chemical parameters of the reservoir area changed

after the expansion, resulting in a corresponding change in the

composition of the plankton community in the reservoir area

(Hoyer et al., 2009). The second reason is the identification

method. The results of plankton characteristics obtained by high-

throughput sequencing technology are more comprehensive than

those derived from microscopic observations in previous studies

(Dijk et al., 2014; Wang et al., 2017).

There is a certain spatial heterogeneity in the ecological

environment of the Danjiangkou Reservoir. It is widely accepted

that there is a close relationship between plankton composition and

environmental factors (Chalar, 2009; Cudowski et al., 2015; Reich

et al., 2017). In this study, the RDA showed that pH was the most

important environmental factor affecting the community

distribution of eukaryotic plankton in the Danjiangkou Reservoir,

followed by depth, WT, NH4
+-N, DO, Cond and NO3

−-N

(Figure 7). It can be indicated from RDA that most of the

eukaryotic plankton were negatively correlated with pH, which

may result from rotifer species increased and decreased in acidic

water bodies, in contrast, the opposite situations occurred in

alkaline water bodies. Acidic, neutral, and weakly alkaline water

bodies are suitable for the survival of Cladocera, and alkaline water

bodies are favorable for the survival of Copepods (He et al., 2022).

In the water with low pH, the growth of phytoplankton will be

limited, and the number of individuals will decrease. The alkaline

water with high pH is more conducive to the photosynthesis of

phytoplankton to form organic matter, and the number of

phytoplankton reproduction will increase (Liu et al., 2010). If the

pH value is in the range of 7.5 to 9.0, it is more favorable for the

growth of diatoms and cyanobacteria. When the temperature is

higher in summer, the suitable pH range is most conducive to the

reproduction of algae and the formation of large-scale blooms (Lu,

1987). On the other hand, phytoplankton photosynthesis absorbs

carbon dioxide in the water body, changes the pH value of the water

body, and the activities of algae themselves will also change the pH

value of the water body, thus affecting the pH value of the water

environment (Xu et al., 2009). Overall, pH is the main factor

affecting the spatial and temporal variation pattern of

phytoplankton, and the interaction between water body pH and

phytoplankton is bidirectional (Wang et al., 2016).

Water temperature is considered to be an important factor

affecting the growth, development, and species composition of

plankton, and it is also the main driving factor affecting the

seasonal succession of the plankton community (Marques et al.,

2006; Chen et al., 2021). Temperature directly affects the growth state

of phytoplankton by controlling the intensity of enzymatic reaction

during phytoplankton respiration and photoreaction (Blinn, 1993)

and is closely related to the relative abundance of phytoplankton (Lu

et al., 2013). WT is one of the main environmental factors affecting

the distribution of the eukaryotic plankton community in the

reservoir area. WT at 0.5m is significantly higher than that at 20 m

at each sampling site. Given that positive correlation with WT,
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Mesocyclops and Cryptomonas were dominant in the surface layer.

Correspondingly, Eurytemora and Thermocyclops were negatively

correlated with WT, and they were abundant in the deep layer.

This study suggested that the change of WT is an important factor

leading to the difference in the relative abundance of plankton from

0.5 to 20 m depth in Danjiangkou Reservoir.

The rapid increase in the levels of organic pollutants, suspended

solids, and other related oxygen-consuming factors in the water

could lead to an imbalance in the production of DO in its water

column, which has an impact on zooplankton (He et al., 2022). In

addition, oxygen production by phytoplankton photosynthesis is

the main source of DO, and phytoplankton respiration and

mortality are the largest pathways of DO consumption (Ouyang

et al., 2013). It should be noted that the interaction between

phytoplankton biomass and the physicochemical indicators of the

water column is reciprocal, and changes in phytoplankton biomass

can also cause changes in DO concentration, pH, and other

indicators in the water column (Wang et al., 2016). As an

important index for measuring water quality, DO concentration

can reflect the concentration can reflect the degree of water

pollution, and the pollution is related to the content of organic

compounds (Diaz and Rosenberg, 2008). In this study,Mesocyclops,

Cryptomonas, Plagiosemis, and Neodiaptomus are positively

correlated with DO, so these taxa can be used as potential

biological reference indicators to monitor the water quality in the

Danjiangkou Reservoir in the future.

Due to the limited sampling in this study, additional samples

from different seasons are needed to provide comprehensive

insights into the eukaryotic plankton communities in

Danjiangkou Reservoir. It’s worth noting that ArcMap, DEM, and

SAR have already found extensive application in ecological

environment research (Liu et al., 2022; Qiu et al., 2022; Wang

et al., 2022; Ma et al., 2023; Pei et al., 2023). In the future, the

integration of sequencing data with ArcMap, DEM, and SAR holds

immense promise for portraying the spatial and temporal

distribution of eukaryotic plankton within the reservoir area.
5 Conclusions

Our results provide a novel perspective on the distribution of

the eukaryotic plankton community in Danjiangkou Reservoir,

particularly in terms of vertical variation. This insight holds

significant potential for understanding ecological processes and

ensuring the water quality safety of this canyon-style reservoir.
Fron
(1) A total of 38 phyla and 122 genera of eukaryotic plankton

were identified in Danjiangkou Reservoir. Notably, we

observed substantial variations in both the diversity and

abundance of the eukaryotic plankton community across

different depths. Specifically, diversity and abundance

exhibited a decreasing trend from depths of 0.5 to 10 m,

while an increase was noted at a depth of 20m.
tiers in Ecology and Evolution 11108
(2) Environmental factors, including pH, depth, WT, NH4
+-N,

DO, Cond, and NO3
−-N, play crucial roles in influencing

the vertical distribution of eukaryotic plankton within the

reservoir. It’s important to note that these environmental

factors have distinct effects on the eukaryotic plankton

community. For instance, Eurytemora, Thermocyclops,

and Volvox were found to be negatively correlated with

pH and WT, while they showed a positive correlation with

depth.
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Investigating the behavior of an
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multi-temporal InSAR
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One of the most significant pieces of linear infrastructure in China is the Middle
Route of the South-to-North Water Diversion Project (MR-SNWDP), a large
section of which consists of an expansive soil slope (ESS) that threatens the
safety of the canal. Here, we prepared 144 Sentinel-1 data from May 2017 to July
2022 to study the behavior of the ESS in the canal section in HuixianCity in theMR-
SNWDP. Then, the Elastoplastic Deformation model under Wetting and Heating
Effects (EDWHE)was employed to accurately characterize the displacement of the
ESS. The InSAR results illustrate that the unstable zones tend to be small and are
distributed along the canal slope, with the magnitude of deformations generally
no more than 20mm/year. Additionally, their deformation time series generally
accumulate exponentially and evolve in a significant pattern of seasonal swelling
and shrinkage. We observed that the slope movements significantly accelerated
during the periodwhen extreme rainfall occurred around 22 July 2021. Affected by
satellite imagery and the geometric structure of the slope, the magnitudes and
evolving trends of LOS deformation vary with different aspects of the slope
sections. Then, the elastic swelling-shrinkage deformations were derived
through the EDWHE model, of which the uplift or settlement was mainly
dependent on geological and meteorological conditions. Moreover, the active
zone depths of the ESS were retrieved using an InSAR-based lag-time approach
and clearly reflected their distribution pattern. In this investigation, the behavior of
the ESS in the study area was quantitatively analyzed using InSAR, and the results
provide support for designing protective slope treatments and keeping the canal
safe in the MR-SNWDP.

KEYWORDS

InSAR, expansive soil slope, elastoplastic deformation, geohazard, landslide, SNWDP,
linear infrastructure

1 Introduction

The Middle Route of the South-to-North Water Diversion Project (MR-SNWDP) is an
extremely significant infrastructure project in China and is effective at alleviating the
imbalance in water distribution between South and North China (Office of the South-to-
North Water Diversion Project Construction Committee et al., 2016; Dong et al., 2021). It
has a total length of 1,432 km from Danjiangkou Reservoir, Henan, to Beijing and largely
consists of excavated and filled slopes. However, 387 km of the MR-SNWDP is well
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distributed with destructive expansive soil, posing a significant
threat to the safety of the channel slopes (Dai et al., 2021; Dong
et al., 2021).

The damage to infrastructure by expansive soil is mainly
attributed to its elastic volume swelling/shrinking in response to
soil moisture gain/loss (Mitchell, 1980; Ng et al., 2003; Zhan et al.,
2007). The soil swells and shrinks repeatedly with wetting-drying
cycles, which conforms to elastic behavior (Wang andWei, 2014; Qi
and Vanapalli, 2016; Li et al., 2023), facilitating soil mass softening
and then accumulating plasticity. An expansive soil slope (ESS) acts
as the down-slope shallow displacement and probably ends up
inducing a progressive failure (Ng et al., 2003; Dai et al., 2021).
Especially for the MR-SNWDP, which is subject to a monsoon
season, expansive soil undergoes coupled swelling and shrinkage in
summer that accelerates the process of wetting-drying cycles and
thus faces more severe geohazard problems (Yang et al., 2006; Li
et al., 2023). Therefore, for the safety of the MR-SNWDP, the
characterization of the elastoplastic displacements of an ESS plays
a significant role in preventing geohazards. In addition, a better
understanding of the swelling and shrinkage dynamics of an ESS can
help the design of more effective treatments for unstable slopes
(Ting et al., 2018; Cohen-Waeber et al., 2023; Li et al., 2023).

The ground displacements of expansive soil receive
contributions from the volume change of soil mass within a
certain depth that is generally referred to as the active zone
depth (AZD) (Aubeny and Long, 2007; Yue and Veenstra, 2018;
Huang et al., 2022). It essentially defines the zone where moisture
beneath the ground moves and soil deforms. AZD is a fundamental
parameter for foundation design and protective treatment (Zongjun
et al., 2006; Yue and Veenstra, 2018; Huang et al., 2022). Given the
active zone, we can effectively protect against unstable slopes in the
MR-SNWDP.

The Interferometric Synthetic Aperture Radar (InSAR)
technique provides us with the ability to approach the demands
mentioned previously. InSAR allows the remote imaging of vast
earth surfaces at one time with high spatial resolution, after which
multitemporal InSAR (MT-InSAR) can observe ground
displacements in a magnitude of millimeters. Nowadays, huge
archives of SAR data (e.g., Sentinel-1 data or NISAR in the
future) make it convenient to characterize more detailed
deformation patterns (Zheng et al., 2023). There have been many
instances in which MT-InSAR has been successfully used to study
the pattern of ground displacements caused by groundwater
exploitation, active slow-moving landslides, and some special soil
issues (Chaussard et al., 2014; Zhao et al., 2016; Miller et al., 2017;
Hu et al., 2020; Lan et al., 2021; Cohen-Waeber et al., 2023; Dong
et al., 2023). Furthermore, some publications have investigated the
deformation distribution on a section of the MR-SNWDP and
studied the destructive behavior of expansive soil––the swelling
and shrinkage responsible for wetting and drying (Vallone et al.,
2008; Bonì et al., 2018; Özer et al., 2019; Cook, 2023; Xiong et al.,
2023).

InSAR time series have demonstrated the advantages of
characterizing the downslope displacements of the ESS with
seasonal variation (Zhang et al., 2022; Cook, 2023). Some
methods, such as using a specific deformation model or
independent component analysis, have been employed to
investigate the characteristics of ESS movement, and its lagging

effect on soil wetting (and drying) has been further studied (Özer
et al., 2019; Cohen-Waeber et al., 2023). Owing to the monsoon
season, the expansive soil’s expansion and contraction are coupled,
resulting in a more complex deformation pattern that has a higher
risk of inducing geohazards in the MR-SNWDP. Then, an
Elastoplastic Deformation model under Wetting and Heating
Effects (EDWHE) is proposed to characterize this deformation
pattern of the ESS in the channel head of the MR-SNWDP, and
an InSAR-based time-lag approach is developed to retrieve the
corresponding slope’s AZD (Li et al., 2023). Here, considering
the heterogeneity of expansive soil and the different engineering
geological setting, we intend to employ the EDWHE model and
time-lag approach to explore its spatiotemporal pattern on a larger
scale and study the behavior of the ESS further in another section of
the MR-SNWDP, i.e., the canal sections in Huixian City, Henan. In
addition, with the knowledge that an unusually heavy rainstorm
occurred there on 22 July 2021, we try to investigate how the extreme
precipitation impacts the ESS displacements.

In this paper, a Sentinel-1 SAR dataset covering the study area,
the canal section in Huixian City, is collected, spanning from July
2017 to May 2022, with a total of 144 scenes. The EDWHE model is
applied to investigate the deformation pattern of ESS in the study
area, in which the by-products, the expansive soil’s time delays
corresponding to rainfall and temperature, are obtained for analysis
and subsequent work. Then, the elastoplastic displacement of the
ESS is discussed in detail, and the elastic component is derived from
the EDWHE model to explore its characteristics in response to
rainfall events and temperature changes. In addition, we employ the
time-lag approach to derive the AZD along the canal slope. Our
study on the behavior of the ESS in multiple aspects provides
support for the prevention of the expansive soil geohazard in the
MR-SNWDP.

2 Materials

2.1 Geological setting of the study area

The canal section is located in Huixian City, northern Henan
Province, China. It flows through the northeast boundary of the
urban area and extends eastward, covering part of the ESS in this
section. The canal section in Huixian City is hereafter called CSHC
for simplicity. The geographical location and spatial distribution of
the canal are shown in Figure 1. The expansive soils in Huixian City
are mainly Upper Tertiary littoral lake facies, fluvial lacustrine
sedimentary strata, and Quaternary Middle Pleistocene alluvial
and diluvial strata (Q2al + pl), including heavy silty loam, silty
clay, marl, and clay rock, with weak expansibility (Xu et al., 2019;
Zhang et al., 2021). Owing to the specific expansion and contraction
of the ESS in the channel, the cracks in the upper zone are fully
developed, and the level of soil saturation is high, which seriously
weakens the shear strength and causes severe damage to the safety of
the ESS (Xu et al., 2019).

Under the influence of expansive soil, there is a high risk of
geohazards occurring on the ESS, which would affect the safe
operation of the water diversion channel (Li et al., 2023).
Therefore, the EDWHE InSAR model is applied in this study to
investigate the potential hazards of the expansive soil slope in the
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Huixian City channel in theMR-SNWDP and study the dynamics of
expansive-soil deformation, providing a better understanding of
expansive soil geohazards. Furthermore, the method of retrieving
the AZD is used to obtain the active layer of expansive soil in this
channel section, providing support for an effective protective
measure.

2.2 The dataset

In this study, the Sentinel-1 SAR data of ascending orbit in path
42 and frame 112 were obtained, spanning from July 2017 to May
2022, with 144 scenes, as shown in Figure 1B. The specific parameters

of the SAR data used are listed in Table 1. The thresholds of the
perpendicular and temporal baselines were set to 200 m and 96 days,
respectively, for the construction of the multi-baseline interferometric
pairs. To avoid the influence of severe atmospheric and decoherent
noise, the interferograms with significantly noisy fringes in the
objective region were excluded as much as possible, and finally, a
total of 387 high-quality interferometric pairs were obtained. The
resulting spatiotemporal baseline network is shown in Figure 2. In
addition, to more accurately remove the contribution of the height
phase, 30 m Copernicus DEM, derived during the MR-SNWDP
construction, was used for differential interferometry.

Before the InSAR analysis using the EDWHE model, it is
necessary to collect enough meteorological data, i.e., precipitation
and temperature records, as the inputs of the EDWHEmodel, which
can also support the subsequent analysis of the behavior of the ESS.
For this reason, the daily rainfall and temperature data from recent
years from the weather station in Huixian City were collected, as
shown in Figure 3. It should be noted that there was abnormally high
rainfall on 22 July 2021, much higher than the daily rainfall peak in
previous years (corresponding to the peak in Figure 3).

3 Methodology

In this study, the EDWHE model was applied to investigate the
deformation pattern of the ESS in the Huixian City section of the

FIGURE 1
Geographical location and spatial distribution of the canal section in HuixianCity, Henan, China. (A) The location of the study area and the distribution of
expansive soil in China (Shi et al., 2002; Li et al., 2023). (B)More detailed information about the geographical location of the study area and the footprint of the
Sentinel-1 SAR data in path 40 and frame 112. (C) Optical image obtained by Google Earth. The dashed blue line delineates the channel.

TABLE 1 Parameters of the Sentinel-1 SAR data used in this study.

Parameters Description

SAR satellite Sentinel-1A

Orbit direction Ascending

Path 42

Frame 112

Number of scenes 144

Time span July 2017–May 2022
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MR-SNWDP. The time-lag approach was used to determine the
active zone of the expansive soil (Li et al., 2023). The overall
flowchart of the study is shown in Figure 4.

3.1 SAR data preprocessing

SAR data preprocessing, including co-registration, multi-look
(4 × 1 in range and azimuth), and interferometry, was first
completed using GAMMA software. Then, the adaptive filter and
minimum-cost flow (MCF) were separately implemented to
suppress the noisy signal and unwrap the phase (Goldstein and
Werner, 1998; Costantini and Rosen, 1999). The filtering window
should be relatively small to retain the spatial detail as much as
possible. After that, phase ramps were removed by fitting the
polynomial function before the time-series analysis, and a
topographic power-law exponential model was exploited to
mitigate the tropospheric disturbance (Bekaert et al., 2015; Li
et al., 2019; Liang et al., 2019).

Considering that the research object (the expansive soil slope) is
distributed in a pattern of long and narrow strips, which only
occupies a small part of the whole image and the coverage area
of the SAR data, there are various ground objects and complicated

ground activities possibly affecting deformation interpretation.
Therefore, to focus more on the spatial deformation pattern and
analysis of the ESS along the channel of theMR-SNWDP, we created
a 1 km buffer along both sides of the canal line with the InSAR data
to isolate the main region of the channel, as shown in Figure 5.

Here, the strategy of multiple quality measures to select reliable
pixels was employed (Yunjun et al., 2019; Li et al., 2023), in which
the measures included average coherence γ, temporal coherence
γtemp, and average intensitymA, separately shown in Supplementary
Figures S1B–D. When selecting reliable points, the average
coherence γ0� 0.65 was initially applied to mask out low-
coherence pixels, after which the pixels with low phase closure
and faint decoherence were further picked out by γtemp,0� 0.7
(Yunjun et al., 2019; Li et al., 2023). Then, the average intensity
(of the threshold set as 0.02) wass used as a complement to separate
the pixels in the water body from the selected pixel subset. The final
result is shown in Supplementary Figure S1A. As InSAR is a well-
developed technique and has been qualified by a great deal of
advanced research, the numerous practices demonstrate that we
could calculate a theoretical accuracy of InSAR deformation through
the given coherence and the Cramer–Rao bounds (Rodriguez and
Martin, 1992; Delbridge et al., 2016; Zheng et al., 2023). The
theoretical accuracy of InSAR deformation can be derived

FIGURE 2
Spatiotemporal baseline network, with 200-m and 96-day perpendicular and temporal baseline thresholds, respectively.

FIGURE 3
Meteorological data from theweather station in Huixian City, whichwere used to construct the deformationmodel and for subsequent analysis. The
blue bars denote the daily precipitation records and the solid yellow lines indicate the daily temperature records.
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through the given parameters above (multi-look ratio, wavelength,
and average coherence) and was 1.8mm.

Owing to the widespread existence of expansive soil in the study
area, its unique expansion and contraction characteristics can
increase the difficulty of selecting reference points in constant
phase correction, which in turn will offset the derived time series
of ESSs (Murray and Lohman, 2018; Jiang and Lohman, 2021;
Zebker, 2021; Li et al., 2023). Here, we employed a multi-
reference frame to mitigate the influence of the inaccurate
selection of a local (single) reference, in the same way as Li et al.
(2023). Therefore, we calculated the standard deviation (SD) of the
time-series deformation of routine SBAS solution (Supplementary

Figure S1A) and identified the reference frame by selecting pixels
with an SD of less than 6 mm (Supplementary Figure S1B). Finally,
the median phase value of the pixels under the reference frame was
calculated and subtracted from each unwrapped interferogram.

3.2 Constructing the EDWHE model

Owing to the expansive soil’s characteristics and weather
activities, the ESS deforms in a seasonal way that forms a specific
elastoplastic behavior. Here, to characterize the deformation of the
ESS in the CSHC of the MR-SNWDP, we employed an Elastoplastic
Deformation model under Wetting and Heating Effects, referred to
as the EDWHE model (Li et al., 2023). In this way, capturing the
variations of elastic swelling-shrinkage deformation and the plastic
accumulation of the ESS is possible. The EDWHE model is
defined as:

dEDWHE � dpla t( ) + dela t( )
� ∑

n

k�1
αkt

k

︸��︷︷��︸
dpla

+ β1Pe t − τ1( ) + β2Tm t − τ2( ) + ce︸��������������︷︷��������������︸
dela

(1)

where the first term dpla(t) denotes the plastic deformation of the
ESS that is the approximated polynomial function of time t, in which
αk indicates a time-related coefficient; k represents the order of the
polynomial function. In this study, we employed k� 4 to better
characterize the non-linear plastic evolution of the ESS. The
second term dela(t) corresponds to elastic deformation relating
to efficient rainfall and mean temperature, in which the efficient
rainfall Pe(t − τ1) � ∑m

k�1ω
kp(t − τ1 − k+1) can take the persisting

effect of previous rainfall infiltration into consideration, where m is
taken as 15 days as in Li et al. (2023), p(t) is the rainfall record at
time t, and τ1 is time delays for a deeper layer influence of
precipitation infiltration. Tm(t − τ2) is the average temperature
between two sequential SAR acquisitions, where τ1 will shift the
temperature data to characterize its delay effect. βi, i� 1, 2 can
represent the magnitudes of swelling and shrinkage; ce is the
constant offset caused by the first two terms. Afterward, the
EDWHE model can be integrated with the phase term of the
residual height, φi

topo � 4πB⊥Δh
λrsinθ , into the frame of SBAS analysis.

FIGURE 4
Workflow for investigating the expansive soil’s behavior using the
elastoplastic deformation under wetting and heating effects (EDWHE)
model and time-lag approach, which are highlighted by the gray,
light-red, and light-blue boxes. γ, γtemp , and mA denote average
coherence, temporal coherence, and average intensity, respectively.

FIGURE 5
Estimated parameters of time delays responding to rainfall infiltrations and temperature changes. (A) Rainfall-related and (B) temperature-related
time delays.
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Here, the pattern-matching method developed by Li et al. (2023)
was used to simultaneously estimate the time delays of precipitation
and temperature from the coupled elastic swelling and shrinking.
The method employed sum square error as the pattern-matching
function to find the best similarities between the estimated elastic
deformation d̂ela(t, τ̂1, τ̂2) and the observable one dela(t):

argmin SSE dela, d̂ela( ) � argmin∑
M

t

dela t( ) − d̂ela t, τ̂1, τ̂2( )( )
2

(2)

where dela(t) is first derived by initially assuming zero-value time
delays and solving the EDWHE model. Then, an iterative procedure
is performed 2–3 times to acquire more accurate estimates.

3.3 Retrieval of the active zone depth

To estimate the AZD of the ESS on the CSHC, we employed an
InSAR-based time-lag approach developed by Li et al. (2023). The
inversion of the AZD utilizes the derivation of a one-dimension
diffusion equation (Mitchell, 1980), as follows:

z � 2Δt





απn

√
(3)

where z is the depth of the active zone, Δt can be represented by the
time delay of rainfall τ̂1, α is the moisture diffusion coefficient, which
is usually determined from field measurements or laboratory data,
and n is the frequency of the suction cycle. The last two parameters
are unknown.

Given the lack of any accessible ground-based data, we
empirically used the upper value α̂ � 10−7m2

s in a general range
10−9 to 10−7m2 to be conservative, as suggested by Tu and
Vanapalli (2016). Considering the same climatic zone as in Li
et al. (2023), the frequency of the suction cycle n� 2 was
determined. Hereafter, the AZD of the ESS along the channel
could be retrieved.

4 Results and discussion

By solving the EDWHE model and employing the time-lag
approach, a series of products within the boundaries of the canal
buffer have been derived and are shown in this section. Except for
general descriptions of the results, we further investigate the
underlying behavior of expansive soil with external
meteorological conditions in the CSHC.

4.1 Estimated parameters of the EDWHE
model

The time delay parameters are crucial in the EDWHE model,
accounting for the delayed swelling and shrinkage caused by rainfall
infiltration and temperature changes. First, they are estimated
through the pattern-matching method; hence, the EDWHE
model can be solved in the linear least-square sense. The
estimated time delays after three iterations are shown in Figure 5,
which shows that the time delays caused by rainfall infiltration,
which are generally greater than 100 days (Figure 5A), are

considerably greater than the temperature-related ones, which are
generally close to zero (Figure 5B). In addition, the time delays of
rainfall seem to spatially distribute in clusters; therefore, the size may
be large or small depending on the ground setting (ground types,
geological conditions, etc.). Temperature-induced time delays are
spatially uniform due to all their lower values. From the results, we
can see that the ESS takes longer to respond to rainfall infiltration
but, conversely, responds rapidly to temperature changes.

After obtaining two parameters of the time delays, the EDWHE
model can be inverted through the linear least-square solution,
thereby obtaining each estimate of the model coefficients, as shown
in Figure 6. The first four estimated coefficients in Figures 6A–D are
time-dependent terms representing the long-term plastic evolution.
We know that plastic deformations accumulate gradually to
significant magnitudes in a decaying way. Figures 6E, F indicates
the magnitudes of the elastic expansion and contraction
deformation of expansive soil. Figure 6E shows the deformations
responding to rainfall infiltration, which are basically positive values,
and have maximum values up to 0.12 mm/mm on some sections of
the channel slopes. Figure 6F shows the temperature-related
deformation coefficient, which illustrates a negative correlation
with temperature in the channel slope and a significant positive
correlation outside the channel in the urban area. Figure 6G shows
the topographic discrepancies relative to the Copernicus DEM. The
positive values mainly appear in urban areas, mostly caused by
urban construction; there are also positive residual heights on the
channel slope, which may also be caused by slope construction.

4.2 Deformation analysis

4.2.1 Spatial pattern of the InSAR deformation
Owing to the lack of knowledge about the study area’s canal

structure, we also collected 30 m resolution SRTM DEM of the
corresponding area. We subtracted it from the sum of the
Copernicus DEM and residual height (Figure 6G) to obtain the
quasi-ground heights (Figure 7). Given the quasi-ground height
results, we divided the channel in the study area into four main
sections, as shown in Figure 7, delineated by the light gray dashed
boxes “a-d”.

The CSHC consists of completely excavated/filled or half-
excavated and half-filled slopes, and a clear building distribution
surrounding the channel can also be observed (Figure 7). Afterward,
combined with the InSAR deformation results, the causes of specific
deformation generation are discussed and analyzed. There are
several clusters with positive coefficients of temperature-
dependent deformation in urban regions (Figure 6F),
corresponding to the significant positive height region in
Figure 7. It is easy to infer that it is the result of the building’s
thermal expansion.

Subsequently, the InSAR products––the annual LOS
displacement velocity and InSAR time series––could be derived.
Here, we first describe the spatial characteristics of LOS
displacement rates (Figure 8) and then discuss the InSAR time
series. In these canal sections, the slope deformation does not
distribute continuously or extensively but occurs in scattered
small pieces, and the deformation rates are positive and negative,
mainly fluctuating in the range of magnitude of 6.0–20 mm/year.
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FIGURE 6
Estimated coefficients in the EDWHE model. Each subplot indicates the values of (A) α1; (B) α2; (C) α3; (D) α4; (E) β1; (F) β2; and (G) Δh.

FIGURE 7
The difference between the 30 m SRTM dem and the sum of Copernicus dem and the estimated dem error Δh.
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The deformation magnitudes may result from heterogeneity in the
ESSs of different formations and geological conditions. In addition,
some of the causes of the observed deformation in the slope are
possibly contributed to by slope maintenance or construction.

Furthermore, the four local regions “a-d” marked in Figure 8
are magnified separately to display where the time-series
deformations on several feature points are plotted (Figures
9–12). According to the LOS deformation rates, we observed
that the unstable slopes are small and distributed sparsely along

the channel. Then, we could understand that slope instability does
not occur continuously or on a massive scale but rather in small
and scattered areas, which significantly increases the challenge of
slope monitoring and treating the unstable zones. The deformation
time series of the unstable regions generally evolved exponentially
and were accompanied by significant swelling and shrinkage (the
featured points in Figures 9–12). We can note that there was a
significant acceleration of the ESS displacements around 22 July
2021. It demonstrates that torrential rain on these days severely

FIGURE 8
Annual LOS deformation rates. The dashed white boxes a-d indicate the local sections where the slopes with significant deformation are. The
dashed black boxes a-d in Figure 7 delineate the same local regions.

FIGURE 9
The magnified local region “a” denoted in Figure 7 and Figure 8, with the same colormap and scale as Figure 8.
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impacted the stability of the ESS and facilitated their down-slope
movements.

It is also intriguing that different locations on the channel slope
exhibit diverse accumulation trends. Taking points P1 and P2 as an
example, they are located at the canal section with the same slope
direction, but their deformation trends are inverse, possibly because
of the geometric structure of the slopes and the limitation of satellite
SAR imagery. According to Figure 9, P2 is located at the filling part
of a half-cut and half-fill slope, where settlement may occur at a
significant magnitude, which turns out to be negative LOS
deformation, and its temporally exponential evolution shown in
Figure 9 proves this process. For other sub-regions, the feature
points basically exhibit the elastoplastic characteristics as described

above. Except for P9 and P12, they (Figures 11, 12) are the points
outside the canal slope, of which the displacements were caused by
engineering construction.

Although the evolutions of time series with the deformation
pattern specific to ESS were captured, the magnitudes of
displacements seem to differ among sub-regions “a-d" of Figures
9–12. Specifically, the final accumulated LOS displacements of those
featured points in sub-region “b, c" (except for P9) were generally
less than those of others, i.e., sub-region “a, d", approximately
20 mm. It is presumable that the direction of the canal slope
extending and the viewing mode of the SAR satellite causes this
phenomenon, as a result of the deformation pattern of the
downslope slide in the ESS; the LOS displacements in this case

FIGURE 10
The magnified local region ‘b” denoted in Figure 7 and Figure 8, with the same colormap and scale as Figure 8.

FIGURE 11
The magnified local region “c” denoted in Figure 7 and Figure 8, with the same colormap and scale as Figure 8.
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will become larger at a slope that extends non-west-east than at one
along “west-east”where the slope movements are approximately in a
south-north direction, i.e., sub-region “b, c" (Ng et al., 2003; Li et al.,
2023). It is a pity that only a single source of SAR data was available,
and therefore, we could not view the deformation pattern of the ESS
from a two-dimensional or even three-dimensional perspective
(Zheng et al., 2023).

4.2.2 Dynamic of the elastic deformation
Elastic swelling and shrinkage are the main incentives for the

progressive landslide of the ESS (Ng et al., 2003; Dai et al., 2021; Li
et al., 2023); therefore, further analysis of its evolving characteristics
is necessary. Therefore, in this section, we decouple the ESS’s
deformation through the EDWHE model and then derive the
elastic-plastic component. Here, the time series of elastic
deformation corresponding to P2, P5, and P7 are analyzed as
examples (Figure 13). Among them, the delay times of points P2,
P5, and P7 corresponding to rainfall infiltration are 18, 2, and
153 days, respectively; the temperature-induced ones are 49, 3, and
6 days, respectively.

The elastic deformation is prone to obvious shrinkage
deformation under the influence of high temperature every
summer, corresponding to the green fitting lines in Figure 13
significantly evolving downward during that period. Under the
temperature change, the elastic contraction presented periodic
changes on a long-term scale. However, summer also
corresponds with a rainy season; therefore, it can be observed
that the elastic deformation appears to uplift mid-year in some
years with heavy rainfall. In the extraordinary rainstorm that
occurred in July 2021, significant swelling can be observed as a
result of a large amount of rainfall infiltration, which is also the
reason for the significant acceleration of plastic deformation during

this period. In addition, we find that, for P7, the response of the soil
shrinkage to temperature is not obvious; by contrast, it responds
greatly to rainfall events and therefore it mainly shows expansion
deformation in summer. This may be attributed to the different
geological properties of P7.

The elastic deformation mentioned above is the process of
swelling and shrinkage coupling, which results in uplift or
settlement, as analyzed previously, mainly depending on
geological and meteorological conditions. Under monsoon effects,
the frequent swelling and shrinkage provide more chances to
weaken slope strength and accelerate slope instability (Ng et al.,
2003; Bao, 2004).

4.3 Active zone depth

Owing to the lack of groundmeasurement data in the study area,
the necessary parameters in Equation (8) were determined
empirically by the moisture diffusion coefficient α̂ � 10−7m2/s
and suction cycle frequency n� 2. Here, to focus on the AZD
distribution pattern of the ESS in the CSHC, the region outside
the channel was cut out, and the retrieval of the AZD was then
completed, which is shown in Figure 14. Themost active zones are in
shallow layers of expansive soil, and the other part of them extends
to greater depths, up to 4 m. It does reflect the spatial distribution of
the AZD at different locations. Additionally, we could see that the
AZDs on the bridges across the channel are generally close to zero,
which means there is no active zone under the bridges. Furthermore,
most of the AZDs are uniform and continuous along the canal
sections (e.g., downstream of the channel in Figures 14C, D). In fact,
in the shallow active zone in the canal slope, those AZDs close to 0
demonstrate the effectiveness of the waterproof measure on the ESS

FIGURE 12
The magnified local region “d” denoted in Figure 7 and Figure 8, with the same colormap and scale as Figure 8.
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that prevents moisture or rainwater from permeating deeper.
However, there are discrete and abnormal values among the
uniform AZDs in some sections (e.g., Figures 14A, B). It may be
the reason that the construction and maintenance of the ESS during
the monitoring period brought in a different deformation pattern
unrecognizable to the EDWHE model, which can probably lead to
the overestimated time lag and then the abnormally high value of the
AZD in some locations.

Although using the time-lag approach to calculate AZD has been
evaluated in the geotechnical field and has demonstrated its
effectiveness, the lack of ground data makes it the only choice for
determining the diffusion coefficient α empirically by Tu and
Vanapalli (2016) and stops further quantitative analysis of AZD
retrieval based on the InSAR results. Therefore, in the future, it will
be necessary to use in situ-measured AZD to verify the efficiency of
the InSAR-based method of retrieving AZD.

5 Conclusion

In this study, we collected 144 Sentinel SAR data between July
2017 to May 2022 to study the behavior of expansive soil in the
Huixian section of the MR-SNWDP to provide a further
understanding of ESS displacement and investigate the impact of
torrential rainstorms on the stability of the ESS, consequently
supporting the protective measure for geohazards in expansive

soil in the MR-SNWDP. To this end, the EDWHE model was
applied to interpret the expansive soil’s elastoplastic deformation.
Except for deriving the deformation results by solving the model, the
time delays responsible for rainfall and temperature were estimated
simultaneously, and the rainfall-induced delay was used for
subsequent AZD retrieval using the time-lag approach.

According to the estimated time delays, the expansive soil
deformation responses are longer for rainfall infiltration than for
temperature change. As revealed by the InSAR results, the unstable
zones are small and distributed on the channel slope in the study
area, where the LOS deformation rates are generally no more than
the absolute values of 20 mm/year. The displacement time series on
some feature points temporally accumulate with significant seasonal
swelling and shrinkage. The extreme torrential rains on 22 July 2021,
in Huixian City led to the significant displacement acceleration of
the ESS. Owing to the slope aspects and geometric structure in
different locations, the magnitudes and evolving trends of the ESS’s
LOS displacements may be different. Additionally, the elastic
deformations are derived through the model. We find there is
significant coupled swelling and shrinkage in the rainy/hot
season, and the elastic deformation presenting uplift or
settlement mainly depends on geological and meteorological
conditions.

The depths of the active zone in the study area were obtained
through the InSAR-based lag-time approach, which illustrated their
spatial distribution pattern with high resolution. Even though we

FIGURE 13
Evolutions of the elastic swelling-shrinkage deformations. Three elastic deformation time series are located at feature points (A) P2, (B) P5, and (C)
P7. The black triangles indicate the elastic deformation of the expansive soil, which is then fitted by the solid green lines. The light green and gray shadows
are the daily precipitation and monthly temperature.
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could not further quantify the accuracy of the retrieved AZD because
of the limited available ground data, it does provide the potential to
support the protective measures for the unstable ESS in the MR-
SNWDP.

Nevertheless, the studies carried out in this paper investigated the
behavior of the ESS from a macroscopic perspective using InSAR and
can offer a better understanding of the prevention of expansive soil
geohazards, which is significant for the safety of the MR-SNWDP.
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and Pengshang Li5*

1Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China,
2Chongqing Jiaotong University, Chongqing, China, 3Technology Innovation Center for Southwest
Land Space Ecological Restoration and Comprehensive Renovation, Ministry of Natural Resources,
Chengdu, China, 4Shandong Jianzhu University, Jinan, China, 5Chengdu Land Consolidation and
Ecological Rehabilitation Center, Chengdu, China
Three-River-Source (TRS) National Park stands as one of China’s earliest

established national parks, dedicated to significant ecological responsibilities

that include conserving soil and water resources in the Tibetan Plateau region.

Research on climate change’s influence on the TRS region’s grasslands is of great

significance in our efforts to comprehend and conserve the grassland ecosystem.

The most effective random forest (RF) model was chosen to invert the

aboveground biomass (AGB) of grassland in the previous 6 years (2015−2020)

and predict the grassland AGB in the following 20 years (2021−2040) by

comparing linear regression and multivariate nonlinear regression models such

as RF, support vector machine, decision tree, and artificial neural network. A

Theil–Sen median trend analysis and a Mann–Kendal test were then used to

examine the trends of grassland AGB. The results showed that (1) RF

outperformed other models in estimating grassland AGB, with a test set

decision coefficient of multiple determination (R2) of 0.722, a root mean

square error of 42.596 g/m2, and a mean absolute error of 35.619 g/m2;

(2) over 6 years, the grassland AGB in TRS National Park had a spatial trend of

a steady rise from the northwest to the southeast. The average annual grassland

AGB was 247.333 g/m2, with averages of 44.836 g/m2, 92.601 g/m2, and

120.217 g/m2 in the Yangtze River, Yellow River, and Lancang River source

parks respectively. The trend of the grassland AGB was primarily stabilized and

slightly recovered, with a small portion of the slightly deteriorated areas;

(3) climate change significantly affected grassland AGB, and when temperature
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and precipitation conditions were adequate, grassland AGB values increased with

temperature and precipitation. In the scenarios of ssp119, ssp245, and ssp585,

grassland AGB is projected to exhibit a dynamic upward trend over the next 20

years. Global warming is expected to boost grassland AGB. Comprehensive

measures are essential to maintain grassland health and ensure a positive impact

on global carbon and ecological balance. The study’s findings hold great

importance for the ecological security of the TRS region and contribute to our

global understanding of sustainable grassland development.
KEYWORDS

climate change, grassland AGB, machine learning, model evaluation, remote sensing
inversion, Three-River-Source National Park
1 Introduction

Grassland ecosystems, recognized as themost important ecosystem

types globally, encompass over 40% of the Earth’s land area. They have

a vital role in the global carbon cycle, climate regulation, and carbon

storage (Chapin et al., 2013). As the largest nature reserve in China and

a critical grassland ecological function area, Three-River-Source (TRS)

National Park is essential to maintaining water conservation and

ecological security on the Tibetan Plateau and inland Asia (Yu et al.,

2020b; Jiang F. et al., 2022). However, TRS National Park is located in

the hinterland of the Qinghai–Tibetan Plateau, where the high altitude

and harsh natural conditions make the region’s ecological environment

very fragile (Ma et al., 2022). Furthermore, the TRS region is

confronting a pressing ecological challenge—grassland degradation.

This predicament has arisen due to global warming, escalating

environmental deterioration, and overgrazing (Li C. et al., 2019; Shu

et al., 2022). Therefore, assessing the status and trends of the grassland

biomass in TRS National Park and monitoring and analyzing critical

parameters of grassland ecosystems can provide a scientific basis for the

sustainable use of grassland resources and ecological restoration in the

region (Yu et al., 2020a).

Grassland aboveground biomass (AGB) is an important indicator

reflecting grassland ecosystems’ productivities and carbon cycles. It is

also a critical factor in assessing the degree of grassland degradation

and the effect of restoration (Jia et al., 2016; Zhou et al., 2023). Due to

the vast scope, complex terrain, and inconvenient transportation of

TRS National Park, it is difficult and costly to obtain grassland AGB

data with the use of traditional field survey methods, and the spatial

and temporal coverage is low (Zhang F. et al., 2022). Despite

significant progress in the estimation of grassland AGB, several

challenges persist. The unique environmental conditions, extreme

weather variations, and specific vegetation types found in high-

altitude and high-latitude regions pose distinct challenges for

accurate AGB estimation (Gao et al., 2020). Remote sensing

technology can provide high spatial- and temporal-resolution

remote sensing image data, and by establishing a quantitative

relation model between remote sensing images and grassland AGB,

rapid, accurate, and large-scale inversion and prediction of grassland

AGB can be achieved (Jiang L. et al., 2022; Liu et al., 2022). Fan et al.
02126
(2022) used Sentinel-2 images to estimate the grassland AGB of the

Qinghai–Tibetan Plateau, and Chapungu et al. (2020) assessed

grassland biomass in northeastern Zimbabwe by hyperspectral

remote sensing data using the relation between vegetation indices

and grassland organisms. In addition to remote sensing imagery,

uncrewed aerial vehicle (UAV) imagery is often a favored tool for

analyzing grassland AGB (Alvarez-Mendoza et al., 2022). Zhang H.

et al. (2022) used UAV technology to obtain large-area grassland

AGB with an R2 of 0.78, which is good evaluation accuracy. New

technologies like the 3D-laser point cloud technology are essential in

estimating grassland biomass (Wijesingha et al., 2019). In future

scenarios, sky–ground integration for estimating grassland AGB will

help to understand the changing characteristics of grassland

ecosystems and achieve the scientific use of grassland resources and

sustainable development (Yu et al., 2021a).

To establish inversion models, most studies use empirical

statistical models, such as linear and nonlinear regression.

Although those models can describe the mathematical relation

between grassland AGB and remote sensing indices, they lack the

explanatory value of physical mechanisms. They are also limited by

the number of sample data, making it difficult to achieve a generalized

application across regions and time (Zhang Y. et al., 2022). In recent

years, machine learning models have provided new methods for the

inversion of grassland AGB (Morais et al., 2021). Ge et al. (2022)

constructed grassland AGB data from 2000 to 2019 in North China

by comparing 4 machine learning algorithms and selecting the

optimal random forest (RF) model. Liu et al. (2023) also

constructed a model of grassland biomass in the western part of

Southwest China with the use of RF and analyzed the relation

between its response to climatic factors. Although machine learning

algorithms are widely used in various fields for their advantages and

accuracy, they differ markedly in sample requirements, parameter

adjustment, and computational efficiency (Wang Y. et al., 2022; Ma

et al., 2023). Also, overfitting during the machine learning fitting

process remains a critical problem that continues to be addressed (Yu

et al., 2021b). Therefore, it is essential to compare and evaluate the

accuracy, performance, and applicability of various machine learning

algorithms and emerging algorithms in remote sensing inversion to

promote the application of machine learning in this field.
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For grassland AGB inversion in TRS National Park, the current

method still has some problems in data selection, modeling, and

result validation (Xu et al., 2021). More in-depth studies are

urgently required to improve the accuracy and reliability of

grassland AGB inversion. Also, because TRS National Park is

located in an area sensitive to global warming, the past and future

spatial and temporal distribution and changes of its grassland AGB

are significantly affected by climatic factors (Xu et al., 2022; Zhang

L. et al., 2022). Therefore, exploring how the AGB in TRS National

Park will respond to future climate change is important for

determining the health and sustainability of grassland ecosystems.

This study aimed to (1) assess the suitability and limitations of

various regression models for estimating grassland AGB in TRS

National Park through remote sensing and determine the best

inversion models, (2) analyze the spatial and temporal

distribution patterns of AGB and its trends in the park and offer

a reference for addressing degradation in specific regions, and

(3) explore the impacts of climate change on the AGB in TRS

National Park to better understand the ecological influences on

grasslands and to provide strategic information on grassland

management in the TRS region.
2 Data and research methods

2.1 Study area

The TRS National Park encompasses the headwaters of 3 major

rivers in southern Qinghai Province and is accordingly divided into

3 zones: the sources of the Yangtze Yellow, and Lancang rivers

(Figure 1). The park covers an expansive area of 123,100 km2,
Frontiers in Ecology and Evolution 03127
extending from approximately long 89°50’57”E to long 99°14’57”E

and from lat 32°22’36”N to lat 36°47’53”N. This area constitutes

31.16% of the entire TRS region. It spans 4 counties: Zhiduo, Maduo,

Qumalai, and Zaoduo, and encompasses the Cococli Nature Reserve

(Zhang et al., 2019). The park is in the heart of the Qinghai–Tibetan

Plateau, with an average altitude exceeding 4,500 m. The climate is

characterized by extreme cold and aridity, featuring an average

annual temperature of 1.9°C and an average annual precipitation of

498.5 mm (Zheng et al., 2020). The park has various grassland

ecosystems, including alpine meadows, alpine steppes, alpine

swamps, and alpine scrub meadows. Among those, the alpine

steppes and meadows are the most pivotal ecosystems, significantly

contributing to water conservation and biodiversity preservation.
2.2 Data collection

2.2.1 Sampling data
In this study, ground sample data from grasslands were

collected primarily during the peak months of July and August

between 2018 and 2020. The sample area for grass collection was

standardized to 1 m by 1 m, with a minimum separation distance of

more than 20 m between each sampling square. The key recorded

information included ground cover, species names, vegetation

height, biomass measurements, and latitude and longitude

coordinates of each sample square. All grass samples were

carefully harvested during sampling, subsequently dried at 85°C

within a laboratory setting, and weighed. The AGBs of the sample

squares were determined by averaging the data obtained from 3

sample squares. One hundred sixty sampling points were

established, concentrated primarily within the TRS area.
FIGURE 1

Distribution of grassland types and sampling points in the study area.
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2.2.2 Remote sensing data
Remote sensing data were acquired using MOD13Q1/Global

250 m resolution with 16 d composite data, accessible at https://

search.earthdata.nasa.gov/search. That dataset included 2 images,

h25v05 and h26v05, covering the designated study area. MODIS

Reprojection Tool software was used for data processing tasks such

as format conversion, projection adjustment, and image

mosaicking. Subsequently, relevant vegetation indices were

extracted from the data with the use of ENVI software.

2.2.3 Climate and other data
Climate data for 2015 to 2020 were sourced from the National

Science and Technology Basic Conditions Platform-National Earth

System Science Data Center (http://www.geodata.cn). Those data

primarily included monthly average temperature and precipitation

data. Future climate data from 2021 to 2040 were obtained from

CMIP6 (cmip6–Home | ESGF-CoG [llnl.gov]), comprising monthly

average temperature and precipitation data. That dataset featured

data from EC-Earth3, encompassing 3 future climate scenarios:

ssp119, ssp245, and ssp585. Those scenarios correspond to various

socio-economic development pathways and greenhouse gas

emission levels. The numerical suffix in the ssp scenarios indicates

the projected radiative forcing level for the year 2100, with higher

radiative forcing values indicating more substantial global warming

(Hurtt et al., 2020). Specifically, ssp119 represents a low-emission

and low-forcing scenario aimed at limiting global warming to

approximately 1.5°C above pre-industrial temperatures, ultimately

stabilizing at approximately 1.4°C by the end of the century. ssp245

signifies a medium-emission and medium-forcing scenario, where

temperatures are projected to rise by 2.7°C by the end of the

century. ssp585 denotes a high-emission and high-forcing

scenario, anticipating global average temperatures to increase by

4.4°C by 2100 (Popp et al., 2017). The climate data used in the text

were average monthly temperatures and precipitation for August.

Three-River-Source grassland-type data were acquired from the

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/zh-

hans/). Digital elevation model (DEM) data were derived from the

Geospatial Data Cloud (http://www.gscloud.cn/) SRTMTPI 90 m

resolution data product, and the slope data were generated from the

DEM data.
2.3 Modeling and data analysis

2.3.1 Inversion model construction and
accuracy assessment

(1) Vegetation index: This study used IBM’s SPSS Statistics

software to establish correlations between the extracted vegetation

indices and the collected sample grassland biological data (Table 1).

The primary objective was to assess the potential of the selected

vegetation indices and actual grassland AGB as influential factors in

estimating overall biomass within the study area (Li M. et al., 2019).

This validation process facilitated determining the correlation

strength between these factors, laying the groundwork for
Frontiers in Ecology and Evolution 04128
constructing the inversion model and identifying the most

strongly correlated vegetation index for the model’s development.

Where:

rNIR is the reflectance in the near-infrared band.

rR is the reflectance in the red band.

rB is the reflectance in the blue band.

L is the soil conditioning coefficient, which assumes a value of 1

in the EVI and 0.5 in the SAVI (Ren et al., 2018). NDVIsoil is the

NDVI value of an area that is completely bare soil or has no

vegetation cover, while NDVIveg is the NDVI value of an image

element that is completely covered by vegetation.

(2) Model construction: This study used various modeling

approaches for remote sensing inversion, including traditional

simple linear regression, multivariate linear models, and machine

learning models such as RF, decision tree (DT), support vector

machine (SVM), and artificial neural network (ANN).

In the simple linear regression, the normalized difference

vegetation index (NDVI), the vegetation index with the highest

correlation, was selected as the independent variable, and measured

grassland AGB in grams per square meter (g/m2) as the dependent

variable y. The model is represented as

y = kx + b   (7)

where k and b are the model parameters representing the slope

and intercept respectively.

A multiple linear regression model used several independent

variables to describe the linear relation between those variables and

the dependent variable. Let the dependent variable be denoted as y

and the respective independent variables as x1, x2, x3, and so forth

up to xn. The linear relation between the dependent and

independent variables can be represented as

y = a1x1 + a2x2 +⋯+ anxn + e (8)

where y is the dependent variable; x1, x2, x3 and xn are the

independent variables; a1, a2, a3, and an   are the regression

coefficients; and e is the error coefficient. This error coefficient

accounts for the difference between the actual true value and the

predicted value.
TABLE 1 Vegetation index information.

Type Equation

Difference vegetation index (DVI) DVI = rNIR − rR (1)

Ratio vegetation index (RVI) RVI = rNIR
rR

(2)

Normalized difference vegetation
index (NDVI)

NDVI = rNIR−rR
rNIR+rR

(3)

Enhanced vegetation index (EVI) EVI = 2:5 rNIR−rR
rNIR+6rR−7:5rB+L

(4)

Soil adjustment vegetation index (SAVI) SAVI = (rNIR−rR )(1+L)
rNIR+rR+L

(5)

Fractional vegetation cover (FVC) FVC = NDVI−NDVIsoil
NDVIveg−NDVIsoil

(6)
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Machine learning methods contain mainly RFs, decision trees,

SVMs, and ANNs.

An RF is an algorithm that combines the strengths of multiple

decision trees. Each tree is independently trained on randomly

selected data subsamples, reducing the risk of overfitting (Zeng

et al., 2019). Moreover, RFs are known for their high predictive

accuracy and exceptional performance in handling complex data

and high-dimensional features.

Decision trees divide the input space into regions, each

corresponding to an output value. Predictions of the output

variable are made based on the value of the input variable (Zhang

J. et al., 2022).

Support vector machines map the input data to a high-

dimensional feature space with the use of nonlinear mapping.

They then construct an optimal hyperplane in the feature space

to minimize the distance from all data points to the hyperplane for

predicting the output variable (Amarsaikhan et al., 2023).

Artificial neural networks are composed of interconnected

neurons, with layers for input, hidden, and output nodes. The

network architecture, including the number of nodes in each layer

and their connections, is defined. Those networks are trained using

optimization algorithms to handle linear and nonlinear regression

problems (Yang et al., 2018).

(3) Accuracy assessment: During the model construction

process, 80% of the samples were designated as the training set,

and 20% the test set. Our goal was to ensure that the inversion

model accurately reflected the conditions within the study area. To

evaluate model accuracy, several metrics were used, including the

root mean square error (RMSE), R2, and mean absolute error

(MAE) between the actual grassland AGB and the simulated

grassland AGB. Those metrics were crucial for assessing the

model’s performance. In accuracy evaluation, the R2 value ranged

from 0 to 1, where the closer the value 1, the higher the accuracy of

the constructed inversion model. Additionally, the RMSE and the

MAE measured the deviation between actual and simulated

grassland AGB values. Smaller values for the RMSE and MAE

signified a smaller difference between the actual and simulated

values, thereby indicating higher accuracy in the constructed

inversion model (Zhang et al., 2023).

The accuracy of the validation inversion model was determined

using the following equations:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − y0i)
2

N

r
(9)

R2 = 1 −o
n
i=1(yi − y0i)

2

on
i=1(yi − �yi)

2 (10)

MAE = 1
no

n

i=1
jyi − y

0
ij, (11)

where yi is the actual grassland AGB of the sample, y0i is the
corresponding calculated simulated grassland AGB, �yi is the mean

of the simulated grassland AGB across all samples, andN is the total

number of samples.
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2.3.2 The Theil–Sen median slope estimation and
Mann–Kendall nonparametric test

The Theil–Sen median slope estimation and Mann–Kendall

nonparametric test are combined methods for analyzing time-series

data trends (Wu N. et al., 2023).

The Theil–Sen median slope estimation is a robust

nonparametric statistical approach used to calculate the average

rate of change, or slope, in time-series data. This method

determines the direction and magnitude of trends within a time

series.

b = median
xj−xi
j−i

� �
,∀ j > i (12)

A calculated value of b greater than 0 signifies an upward trend

in the time series, whereas a value of less than 0 indicates a

downward trend in the time series. If b equals 0, it suggests a

stable or flat trend within the time series.

The Mann–Kendall nonparametric test is a method used to

assess the presence of marked trend changes in time-series data.

What sets this test apart is that it does not assume that the data

follow a specific distribution, making it versatile for various

applications. Furthermore, it is robust at handling missing values

and outliers and is particularly well suited for conducting trend-

significance testing on lengthy time-series data.

Z =

S−1ffiffiffi
V

p ,     if S > 0

        0,     if   S = 0,

S+1ffiffiffi
V

p ,   if   S < 0

   

8>><
>>:

(13)

where

S =o
i=1
o
j=i+1

sign(xj − xi) (14)

V = n(n−1)(2n+5)
18     (15)

where xi and xj are the AGB values in years i and j respectively,

while n is the total number of data points in the time series. The sign

function refers to the mathematical signum function. The statistic Z

is a measure that can take a range of values from negative infinity to

positive infinity. At a given significance level a , when Zj j > m1−a=2, it

indicates a significant change in the time series at the a level.

Typically, a is set to 0.05, leading to a value of m1−a=2, approximately

±1.96. In this study, the significance of trend changes in the AGB

time series was determined with a confidence level of 0.05 (Table 2).
TABLE 2 Distribution of trend scenarios under various b and Z values.

b Z Scenario

b < 0 Z >1.96 Significant deterioration

b < 0 Z ≤1.96 Slight deterioration

b = 0 Z Stabilized

b > 0 Z ≤1.96 Slightly recovered

b > 0 Z >1.96 Significant recovery
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3 Results

3.1 Correlation between vegetation index
and grassland aboveground biomass

Among the vegetation indices, the highest correlation

coefficient was observed between grassland AGB and the NDVI,

which stood at 0.61. Following closely, the correlation coefficients

for the enhanced vegetation index, the ratio vegetation index, and

the fractional vegetation cover were 0.60, indicating a high degree of

similarity among these 3 vegetation indices, and their correlation

coefficients ranked second only to that of the NDVI. The soil

adjustment vegetation index and the difference vegetation index

had slightly lower correlation coefficients, with values of 0.58 and

0.56 respectively. All vegetation indices had a positive correlation

with AGB. The higher the vegetation index, the higher the AGB

value. This suggests that vegetation indices effectively characterize

grassland AGB. In the realm of climatic factors, the correlation

coefficients between grassland AGB and monthly average air

temperature and precipitation were 0.38 and 0.46 respectively.

Notably, precipitation influenced grassland AGB significantly

more than air temperature did. Within certain bounds,

precipitation and air temperature increases lead to higher

grassland AGB values. Geographic factors also affect grassland

AGB. The correlation coefficient between AGB and the DEM was

−0.48, indicating that grassland AGB decreases with rising altitude.

Because the study area was in a plateau region, there was also a

positive correlation between grassland AGB and slope, albeit with a

relatively small correlation coefficient of 0.28 (Figure 2).
3.2 Model accuracy

Six distinct models were used to analyze and predict grassland

AGB within the TRS National Park area (Table 3). In the simple

linear regression, the independent variable chosen was solely the

vegetation index NDVI, because it showed the highest correlation

coefficient with AGB. For the multivariate linear model and the
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machine learning model, 5 influential factors were integrated:

NDVI, average monthly precipitation, average monthly

temperature, elevation, and slope, because those factors

collectively contributed to the construction of the regression model.

In the training set constructed by the 6 grassland AGB models,

the DT model yielded the highest R2 at 0.893. Furthermore, it

showed the lowest RMSE and MAE at 29.382 g/m2 and 20.500 g/m2

respectively. Notably, the RF model closely followed with an R2 of

0.876 and relatively low RMSE and MAE values. On the other hand,

simple linear regression achieved the lowest R2 at 0.560 in the

training set, resulting in higher RMSE and MAE compared to the

other models. In the test set, the RF model had the highest R2 at

0.722, along with corresponding RMSE and MAE values of

42.596 g/m2 and 35.619 g/m2 respectively. The multivariate linear

model achieved the second-highest R2 in the test set at 0.690,

demonstrating its effectiveness. In general, all 4 machine learning

models attained R2 values exceeding 0.63 in the test set, indicating a

strong fit. In contrast, simple linear regression had the lowest R2 in

the test set at 0.624, resulting in comparatively higher RMSEs and

MAEs. Due to its limitation of relying on only one factor to predict

grassland AGB, that model had a poorer fit. Overall, the RF

approach demonstrated advantages in predicting grassland AGB

in both the training and test sets.

Through the comparison of 6 different models and their actual

versus predicted values, the RF approach stood out for its superior

performance (Figure 3). As shown in Figure 3D, the predictions

obtained through the RF model closely aligned with the actual values.

The fitting line in those figures closely approximates a 1:1 relation,

with only a few predictions deviating markedly from the observed

AGB. Multivariate linear regression, DT regression, and ANNmodels

also demonstrated relatively minor differences between their

predicted values and actual values. However, the SVM model was

more accurate when AGB values were below 150 g/m2. Conversely,

when the AGB value was relatively high, the gap between the actual

and predicted values of the SVM became more pronounced. Simple

linear regression showed the lowest correlation with measured AGB

values, with a more dispersed distribution of sample points,

indicating the least effective modeling.

Building upon the preceding context, RF was used to estimate

the grassland biomass within TRS National Park.
3.3 Temporal dynamic and spatial pattern
of grassland aboveground biomass
distribution in each park

3.3.1 Temporal dynamic of grassland
aboveground biomass

From the inversion of the grassland AGB in TRS National Park

from 2015 to 2020 with the use of RF modeling, the average AGB

values in the Yellow River, Yangtze River, and Lancang River source

parks showed a consistent and dynamic increasing trend (Figure 4).

The most substantial increase in grassland AGB occurred in the

Yellow River source park from 2016 to 2017, with an average AGB

rise of 19.224 g/m2. The Yangtze River source park, influenced by its

geographic location and climatic factors, had lower average
FIGURE 2

AGB correlation with indicators.
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TABLE 3 Evaluation of the accuracy of each model.

Model
Training accuracy Test accuracy

R2 RMSE (g/m2) MAE (g/m2) R2 RMSE (g/m2) MAE (g/m2)

Simple linear regression 0.560 61.165 50.721 0.624 49.691 58.777

Multivariate linear regression 0.641 55.237 45.225 0.690 52.684 46.060

RF 0.876 32.826 25.432 0.722 42.596 35.619

SVG 0.758 46.193 31.140 0.639 53.026 41.027

DT 0.893 29.382 20.500 0.647 61.261 43.730

ANN 0.626 56.227 44.224 0.686 54.262 44.798
F
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FIGURE 3

Comparison of the actual value of each model with the predicted value (unit: g/m2). (A) Simple Linear Regression, (B) Multiple Linear Regression,
(C) Decision Tree, (D) Random Forest, (E) Support Vector Machine, (F) Neural Network Regression.
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grassland AGB values than the other 2 parks. The maximum AGB

value within the 6 years did not surpass 50 g/m2. Notably, the AGB

in that park showed a linear increase from 2015 to 2017, with a

growth rate of 24.73%, suggesting an enhancement in the ecological

health of the Yangtze River source park grassland. Conversely, the

Lancang River source park showed a relatively consistent growth

trend during the same 6-year period, with annual average values

ranging from 98.966 g/m2 to 136.892 g/m2. TRS National Park had

a growth trend similar to those of the individual parks over the 6

years, consistently showing a dynamic increase. The average AGB

rose from 200.371 g/m2 in 2015 to 274.330 g/m2 in 2020, marking a
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total increase of 73.958 g/m2. All 3 parks experienced a reduction in

grassland AGB during 2018−2019, with a decrease of 5.54%. The

primary reason for that was insufficient precipitation in the TRS

region during that period, leading to limited grass growth.

3.3.2 Spatial pattern of grassland AGB
The overall spatial distribution of TRS National Park from 2015

to 2020 had relatively minor changes, and all areas demonstrated a

gradual increase in AGB from the northwest to the southeast

(Figure 5). That pattern showed noticeable heterogeneity, aligning

closely with the distribution of actual sampling data. The average

grassland AGB for TRS National Park as a whole was 247.333 g/m2.

When considering the region’s individual parks, the Yangtze River

source park had the lowest average AGB at 44.836 g/m2. That can be

attributed to its elevated average altitude and less favorable water

and heat conditions. In contrast, the Yellow River and Lancang

River source parks boasted higher average grassland AGB values,

standing at 92.601 g/m2 and 120.217 g/m2 respectively. The

Lancang River source park enjoyed a more suitable climate and

altitude, resulting in a higher grass biomass.

3.3.3 Trends of changes in grassland
aboveground biomass

By overlaying the results of grassland AGB changes with their

significance, we delineated the trends in grassland AGB changes

across TRS National Park during the 6-year period. As shown in

Figure 6, the 3 parks predominantly slightly recovered and stabilized

in their AGB trends. A few areas showed slight deterioration, with

minimal signs of either significant recovery or significant

deterioration. The areas showing slight recovery are the most

extensive and are situated primarily in the southeast of the Yangtze

River source park, a substantial portion of the Lancang River source
FIGURE 4

Average grassland AGB of Three-River-Source National Park by park
from 2015 to 2020.
FIGURE 5

Spatial distribution of average grassland aboveground biomass in Three-River-Source National Park.
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park, and the south-central area of the Yellow River source park.

Stabilized areas are concentrated in the northwestern region of the

Yangtze River source park, while scenarios of slight deterioration

were observed primarily in the southeastern part of all 3 parks.

The most extensive category was slight recovery, encompassing

an area of 69,780.53 km², which accounts for 56.99% of TRS National

Park’s total area. This suggests that the overall grassland recovery in

the TRS region has been relatively positive in recent years. The

stabilized category encompassed a total area of 28,148.06 km²,

distributed primarily in the Yangtze River source park area. That

region is relatively undisturbed, resulting in a more stable grassland

condition. Notably, the Yangtze River source park comprises

25,654.65 km², representing 91.14% of the total stabilized area,

while the Yellow River and Lancang River source parks had smaller

stabilized areas. Areas of slight deterioration were dispersed across

the 3 parks, totaling 22,003.87 km². Within this category, the Yellow

River, Yangtze River, and Lancang River source parks occupied

13.54%, 69.27%, and 17.19% of the total area respectively.

Moreover, the combined areas of significantly deteriorated and

significantly restored regions measured 2,535.63 km², constituting

2.07% of TRS National Park’s total area. These results suggest that

from 2015 to 2020, the TRS area experienced an overall trend of

grassland recovery, stability in the eastern part of the Yangtze River

source park, and localized deterioration trends (Table 4).
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3.4 Distribution of grassland aboveground
biomass in future scenarios

Using the RF approach, the future changes in grassland AGB in

TRS National Park were modeled for the period 2021−2040 under 3

scenarios: ssp119, ssp245, and ssp585 (Figure 7). All scenarios had a

dynamic upward trend in grassland AGB, with trend lines showing

slopes greater than 0. Notably, the ssp119 scenario showcased the

most rapid upward trend in grassland AGB for TRS National Park,

with a slope of 7.618. That slope exceeded those observed in the

ssp245 and ssp585 scenarios. The fluctuations in overall grassland

AGB remained relatively consistent across the 3 parks, with the

Lancang River source park displaying the highest values, followed

by the Yellow River and Yangtze River source parks. Under the

ssp585 scenario, the mean grassland AGB in TRS National Park

averaged 320.92 g/m² over the 20-year period. This figure surpassed

the mean values of ssp119 and ssp245, which stood at 288.80 g/m²

and 311.53 g/m² respectively. This suggests that higher radiative

forcing corresponds to increased global warming, resulting in

elevated temperatures and, consequently, higher grassland

AGB values.

In the ssp119 scenario, the average grass biomass in Changjiang

Yuan Park increased to 54.77 g/m² from 2020 to 2035, surpassing

the average value from 2015 to 2020. Notably, in 2035, the AGB of
FIGURE 6

Trend analysis of grassland aboveground biomass changes in national parks.
TABLE 4 Area of different trend changes in each park (km2).

Source park
Significant
recovery

Slight recovery Stabilized
Slight

deterioration
Significant

deterioration

Yellow River 555.19 13394.31 1877.05 2979.18 32.95

Yangtze River 1544.76 47368.61 25654.65 15242.44 220.33

Lancang River 117.15 9017.61 616.36 3782.25 65.25

Total 2217.1 69780.53 28148.06 22003.87 318.53
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grassland in the Yangtze River source park peaked at 92.55 g/m². In

the subsequent years, an average AGB of approximately 60 g/m²

was maintained, which was markedly higher than the period from

2020 to 2034. The Yellow River source park showed an average

grass biomass of 113.79 g/m² over 20 years, with 101.29 g/m² from

2020 to 2035 and a peak of 142.93 g/m² from 2035 to 2040. The

Lancang River source park had the highest average grassland AGB

of 120.24 g/m² over the 20-year period, displaying a dynamic

upward trend, with a peak of 92.55 g/m² in the subsequent years.

That was a 33.19% increase from 2031 to 2035.

Under the ssp245 scenario, the mean grassland AGB in TRS

National Park increased at a lower rate than in ssp119, showing a

fluctuating upward trend. In this scenario, the Yangtze River source

park peaked at 71.37 g/m² in 2040, with a mean value of 57.29 g/m²

from 2020 to 2039, showing a steep increase between 2039 and

2040. The mean value of grass biomass in the Yellow River source

park remained relatively stable at 112.17 g/m² over the 20 years,

ranging from 89.20 g/m² to 134.83 g/m². In that scenario, the mean

value of grassland AGB in the Lancang River source park exceeded

that of the other 2 parks, with a mean value of 141.36 g/m², marking

a 21.25 g/m² increase compared to the period from 2015 to 2020,

accounting for 17.59% of the total.

Under the ssp585 scenario, the mean grassland AGB in the

Yangtze River source park averaged 59.87 g/m² over 20 years,

reaching a peak of 76.30 g/m² in 2036. The Yellow River source

park showed an average grassland AGB of 115.60 g/m² over 20
Frontiers in Ecology and Evolution 10134
years, with occasional lower values in 2021, 2022, and 2033, whereas

the remaining years consistently exceeded 100 g/m². In the Lancang

River source park, the ssp585 scenario showed an increase in the

mean grassland AGB, with a minimum value of 129.26 g/m² and an

average of 145.49 g/m². That indicated that temperature increases

had a more pronounced effect on grassland AGB in the Lancang

River source park than in the Yellow River and Yangtze River

source parks.
4 Discussion

4.1 Factors affecting the accuracy of
grassland aboveground biomass
inversion models

Machine learning algorithms offer clear advantages over

traditional simple and multivariate linear regression models, because

they excel in capturing and characterizing the relation between

grassland AGB and its influencing factors. When constructing

models, it became evident that relying solely on a single variable like

NDVI could not encompass the full spectrum of characteristics within

grassland biomass. The complexity of measured grassland AGB data

and the presence of multicollinearity among influencing factors

further hinder the accurate estimation of grassland AGB through

multiple linear regression models, as noted by Zhou et al. (2021).
A

B C

FIGURE 7

Changes in grassland aboveground biomass under various scenarios. (A) ssp119 scenarios, (B) ssp245 scenarios, (C) ssp585 scenarios.
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Among the 4 machine learning algorithms considered, RF was

the top performer when assessed using training set accuracy

analysis. Following RF, the ranking continued with ANN, DT,

and SVM respectively. Its effectiveness in estimating grassland

biomass in the TRS region was further substantiated by the

findings of Zeng et al. (2021), who found that the RF model

outperformed other machine learning models, achieving an

impressive correlation coefficient (r) of 0.84 and RMSE of 76.99

g/m2. Moreover, Zhang J. et al. (2022) also successfully applied the

RF model to estimate alpine grassland AGB from 2001 to 2019 in

the Tibetan Plateau, which encompasses the TRS region, thereby

emphasizing the strong regional representation offered by the RF

fitting method.

The machine learning approach effectively captures the

nonlinear relation between independent and dependent variables

and often yields higher accuracy relative to traditional regression

models. However, is not without its challenges, notably the problem

of overfitting in practical applications due to noise interference.

This concern is further exacerbated when pertaining to studies that

use smaller sample sizes and a greater number of variables for

fitting, as observed in many contemporary research works (Yu et al.,

2021b). To mitigate overfitting, it is crucial to increase the number

of samples during the fitting process while simultaneously

exercising control over the number of variables. Furthermore,

note that the accuracy of machine learning models can also be

affected by problems related to the model’s physical parameters, as

highlighted by Liang et al. (2016). Therefore, optimizing model

parameters is another critical and challenging aspect that merits

continued exploration and refinement in future research endeavors.

It is essential to recognize that model inversion accuracy is

subject to various influencing factors (Qiu et al., 2022). Because

the actual sampling data years were 2018 to 2020, and the

inversion grass biomass years were 2015 to 2020, the model

inversion results were subject to errors caused by the mismatch

in the numbers of sampling years. The TRS region, situated on the

Tibetan Plateau, has substantial variations in elevation, with

different areas being affected by varying elevations and slopes

(Liang et al., 2016; Wang L. et al., 2022). The remote sensing

estimation method for grassland AGB represents a transition from

statistical analysis to growth-process simulation. It involves

simulating the grass’s growth and development by analyzing

the statistical relations among various influencing factors,

including environmental, anthropogenic, topographic, and

climatic factors. In this intricate process, irregular fluctuations

in external factors can significantly affect the precision of grass

biomass model construction.
4.2 Impacts of climate change on
grassland aboveground biomass

Temperature and precipitation fluctuations directly influence

the supply and demand of water and heat crucial for grass growth.

Moreover, climate factors can induce alterations in the attributes of

grassland vegetation by affecting the transformation of biological

conditions like soil (Chi et al., 2021; Shi et al., 2023).
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Future global warming will alter soil temperature and moisture

levels (Pei et al., 2023). Research indicates that temperature determines

grassland growth, with higher temperatures promoting vegetation

growth and development (Xu and Li, 2021). Precipitation also has a

broad spectrum of effects on grass vegetation characteristics. It

influences the interaction between plants and soil microorganisms,

leading to changes in vegetation biomass distribution (Zhang and Xi,

2021). Moreover, there is an asynchronous relation between grassland

biomass and changes in precipitation. Zhang et al. (2023) researched

moisture conditions affecting both the aboveground and belowground

biomasses of grasslands during different stages of vegetation flowering

and fruiting. Wang Q. et al. (2022) found that increased temperatures

have a significant effect on the biomass and species diversity of

degraded grasslands in their natural recovery state, although they

have little effect on natural grasslands. Therefore, restoring degraded

grasslands might become more challenging under future warming

scenarios. To address the degradation trend observed in the grasslands

of the TRS National Park, sustainable grazing management practices

should be implemented, grassland restoration projects advanced, and

proactive measures taken to protect and enhance biodiversity to

ensure the health and sustainability of the grasslands.

This study explored the relation between grass biomass and

temperature and precipitation within the TRS National Park area.

The relations among average monthly temperature, monthly

precipitation, and grassland AGB were constructed based on

sample data (Figure 8). It was observed that when precipitation was

below 90 mm, the average grassland AGB remained below 136.6 g/

m2 regardless of temperature changes. In the range of 90−120 mm of

precipitation and temperatures ranging from 9°C to 12°C, the

grassland AGB increased with rising temperatures. The peak

grassland AGB was reached when precipitation was approximately

95 mm, and the temperature was approximately 11°C. This suggests

that grassland AGB increases with both precipitation and

temperature under favorable climatic conditions. In the ssp585

scenario, grassland AGB increased more substantially with rising

temperature and precipitation compared to the ssp119 and ssp245

scenarios. Precipitation appeared to have a greater influence than
FIGURE 8

Relation between mean monthly temperature, mean monthly
precipitation, and grassland aboveground biomass.
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temperature change, mainly because, at lower temperatures,

increasing precipitation led to more grassland AGB. However, the

relation between temperature change and grassland AGB was weaker

under lower precipitation conditions. Wu W. et al. (2023) also

demonstrated that climate factors have varying effects in Inner

Mongolia and the Tibetan Plateau, with increased precipitation

positively affecting grassland material production, while increased

temperature has varying effects in different regions, both promoting

and suppressing scenarios. In the context of global warming, most of

the extreme climate indicators have risen in the TRS region, the

frequency of extreme heat events has increased, and the frequency of

extreme precipitation is higher than in other regions of the globe (Jin

et al., 2020). To address the challenge of climate warming in the TRS

region, key measures to improve the sustainability of agriculture and

animal husbandry, strengthen water resource management, and raise

awareness of ecological protection are required to ensure the health

and balance of grassland ecosystems.
5 Conclusion

This paper delves into the practicality of various remote sensing

inversion models for estimating grassland AGB, using actual

sampling points and remote sensing data. The analysis covers

changes in grassland AGB within the TRS National Grassland

from 2015 to 2020, forecasts future biomass trends, and examines

the potential influence of climate change on grassland AGB. The

key findings can be summarized as follows:

(1) Grassland AGB strongly correlates with vegetation indices,

with the highest correlation coefficient observed with the NDVI.

Machine learning models proved more accurate in estimating

grassland AGB in the TRS region than traditional linear

regression models. Among the machine learning methods, the RF

fitting approach yielded the highest accuracy, with a test set

coefficient of determination reaching 0.722, making it well suited

for grassland AGB analysis in TRS.

(2) From 2015 to 2020, the mean grassland AGB in TRS

National Park showed a continuous upward trajectory

characterized by a gradual increase from northwest to southeast.

The analysis of grassland AGB trend changes revealed a

predominant pattern of slight recovery and stabilization, with

some areas experiencing slight deterioration. Notably, the areas

displaying significant recovery or deterioration were limited. For

degraded grassland areas, measures such as vegetation restoration,

improved grazing management, and soil protection should be taken

to restore and maintain the ecological health of grasslands.

(3) The grassland AGB in TRS National Park consistently

displayed fluctuating and increasing trends across three future

climate change scenarios (ssp119, ssp245, and ssp585). Apart

from geographic factors, the effects of temperature and

precipitation on grassland AGB proved to be more pronounced.

Within specific ranges, grassland AGB values also increased as

temperatures continued to increase and precipitation grew.

Notably, the growth rate was particularly evident under

conditions of 100−120 mm of precipitation and temperatures

ranging from 9°C to 12°C. Global warming is expected to further
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drive the rise in grassland AGB values. Proactive measures must be

taken to protect grasslands in the context of global warming. Those

measures include implementing sustainable grassland management

methods and enacting policies focused on preserving grasslands to

mitigate the effect of climate change on these ecosystems.
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Evolution and drivers of
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Ruixun Lai1, Xiang Zhang1 and Xiangyu Gao1,3

1Key Laboratory of Lower Yellow River Channel and Estuary Regulation, Ministry of Water Resources
(MWR), Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission (YRCC),
Zhengzhou, China, 2North China University of Water Resources and Electric Power, School of Water
Conservancy, Zhengzhou, China, 3School of Water Resources and Transportation, Zhengzhou
University, Zhengzhou, China
The secondary suspended river increases the probability of the occurrence of

“Heng river”, “Xie river” and “Gun river” in the lower Yellow River, and is the main

factor threatening the safety of human life and property in the Yellow River levee

and beach area. Here, the Dongbatou–Gaocun section of the severe secondary

suspended river in the lower Yellow River was taken as the research object. The

trend and periodicity of the evolution characteristics of the secondary suspended

river in the study area from 1960–2021 were systematically analyzed using the

Theil-Sen estimator and wavelet analysis, and the factors influencing its

development were quantitatively explored. Over the past 62 years,

development of secondary suspended rivers can be divided into four stages:

initial formation (1960–1973), slow development (1974–1986), rapid

development (1987–1999) and stable (2000–2021) periods. The evolution

period of the beach transverse gradient differed significantly before and after

operation of Xiaolangdi Reservoir commenced, prior to which there was a first

main period of 31 years followed by a second main period of 21 years.

Development of secondary suspended rivers was primarily related to

floodplain flooding and human activity. When the inflow sediment coefficient

of a floodplain flood (z) was < 0.04 and the floodplain coefficient was < 1.29, the

secondary suspended river was relieved; when z > 0.04 or z < 0.04 and the

floodplain coefficient was > 1.29, the secondary suspended river was intensified.

The production levees have exacerbated development of secondary suspended

rivers to some extent.

KEYWORDS

secondary suspended rivers, evolution trend, beach transverse slope, wavelet analysis,
driver analysis, lower Yellow River, wandering section
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1 Introduction

The Yellow River has characteristics such as a small amount of

water and a large amount of sediment”, various sources of water and

sediment, and inconsistent water-sediment relationships (Liao,

2003). The lower Yellow River is in a strong siltation state

because of the large amount of sediment (Hu and Zhang, 2006),

and with annual average elevation of 0.05–0.10 m, the current

riverbed is generally 4–6 m higher than the ground on both sides of

the back river. Hence, the lower Yellow River has become a world-

renowned “suspended river” (Jiang et al., 2003; Sun et al., 2008).

Since the 1960s, with construction and operation of Sanmenxia

Reservoir and construction of production levees (Gao et al., 2004;

Yan et al., 2006), the water-sediment relationship in the lower

Yellow River has become extremely disharmonious, and the

downstream riverbed has continued to reduce in size. The main

river channel gradually rises above the beach near the levee, forming

a secondary suspended river with a high channel, low beach, and

low levee root (Figure 1). Since the middle to late 1980s, the Yellow

River has been in a relatively dry season. Downstream runoff has

decreased, industrial and agricultural water use has increased

significantly, the probability of deluge has decreased, the flood

floodplain has reduced beach siltation, and the process of low

flow has greatly increased. This changed the horizontal siltation

distribution of the sediment that occurs under natural conditions,

and the elevation difference between the beaches and channels

further reduced; thus, the secondary suspended river is

extremely severe.

Since operation of Xiaolangdi Reservoir commenced in 2000,

significant changes have occurred in the process of water and

sediment entering the downstream area. Sedimentation of the

downstream has been reduced; however, the situation of high

channel, low beach, and low levee root remains. The most

severely affected river section extends from Dongbatou–

Taochengpu (Shan and Wang, 2021). The entire river water and

sediment regulation with Xiaolangdi Reservoir as the core has

slowed development of the secondary suspended river to a certain

extent. However, there are problems such as insufficient subsequent

momentum in the water and sediment regulation of Xiaolangdi

Reservoir (Zhang et al., 2021). After the sediment retention capacity

of Xiaolangdi Reservoir is reached, without the use of other
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backbone projects, the lower Yellow River will once again be

severely silted and raised (YRCC, 2013) and the secondary

suspended river will develop rapidly. In the event of a deluge,

when the horizontal slope of the river beach is much greater than

the vertical slope, the overflow ratio in the beach area will increase,

which will directly threaten the safety of the Yellow River levee and

human lives and property in the beach area. Therefore, there is an

urgent need to study the evolution mechanism of secondary

suspended rivers.

Since the early 1970s, secondary suspended rivers have formed

in the lower Yellow River, and extensive research has been

conducted on the causes, which are believed to be closely related

to changes in the inflow, sediment, and boundary conditions of the

river (Hu and Zhang, 2006). In terms of incoming water and

sediment conditions, the amount of water and sediment entering

the downstream has decreased due to human activities (Duanmu

and Zhang, 2003; Liu, 2020), particularly with reductions in peak

flow and flood frequency, which greatly reduces the probability of

floodplain floods with a siltation beach and scouring channel.

Furthermore, long-term low flow causes sedimentation and a

reduction in size of the riverbed and accelerates development of

secondary suspended rivers (Yan et al., 2006; Yang et al., 2006).

Hyper-concentrated floods promote development of secondary

suspended rivers (Jiang et al., 2003). Excessive use of Yellow River

water has caused the total amount of water diverted from the Yellow

River to exceed its carrying capacity, and production and social

water use have long been occupying a large amount of sediment

flushing water, which has also promoted development of secondary

suspended rivers (Pang, 2005). In terms of channel boundary

conditions, although production levees have alleviated inundation

losses in the beach area to some extent, they have hindered water

and sediment exchange in the beach and channel, accelerating

development of secondary suspended rivers (Zhang, 2004; Pang,

2005; Yang et al., 2006; Zhang et al., 2018). To eliminate secondary

suspended rivers, it is necessary to break down production levees

(Zhang, 2004; Pang, 2005). Jiang et al. (1999) conducted extensive

research on the adjustment laws of the vertical and horizontal

sections, water and sediment transport, and exchange

characteristics of the lower Yellow River, and highlighted that the

lateral imbalance of sediment transport in the channel gradually

formed secondary suspended rivers. Sun et al. (2008) established a
FIGURE 1

Schematic diagram of the secondary suspended river in the lower Yellow River: ① Main channel; ② beach area; ③ beach lip; ④ production levee;
⑤ channel at the root of the levee; ⑥ secondary suspended river; ⑦ primary suspended river; ⑧ ground behind levee.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1330749
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Xu et al. 10.3389/fevo.2023.1330749
planar two-dimensional water and sediment mathematical model

for development of the secondary suspended river in the lower

Yellow River and studied the impacts of the suspended difference in

the secondary suspended river on flood routing, beach and channel

flow structures, and flood discharge along the levee. The frequent

occurrence of extreme weather worldwide (Pei et al., 2023) has also

led to some geological disasters (Wang et al., 2022; Ma et al., 2023).

Time series analysis is conducive to disaster identification and

monitoring (Liu et al., 2022), and many experts have established

corresponding prediction models (Qiu et al., 2022). However, there

are still shortcomings in time series analysis of secondary

suspended rivers.

Although the water and sediment regulations of Xiaolangdi

have alleviated the secondary suspended river situation in the lower

Yellow River to some extent, the threat of secondary suspended

rivers to flood control remains significant, and secondary

suspended rivers are receiving increasing attention. The 2021

Yellow River Basin Ecological Protection and High-Quality

Development Plan Outline mentions that carrying out secondary

suspended river management in the lower Yellow River to reduce

the safety risks of the Yellow River levees, and which has put

forward higher requirements for secondary suspended river

management at the national level. Research on the causes and

mechanisms of secondary suspended river formation has mostly

been qualitative. However, research on the evolution characteristics

of long-term secondary suspended rivers, their development and

evolution after operation of Xiaolangdi Reservoir commenced, and

the quantitative impact of various factors on secondary suspended

rivers, remains relatively weak. Therefore, in the context of

increasingly intensified human activities, there is an urgent need

to comprehensively study the development and evolution of

secondary suspended rivers from a long-term perspective, as well

as the quantitative impact of various influencing factors on their

formation. In this study, the most severe secondary suspended river

section from Dongbatou–Gaocun in the wandering section of the

lower Yellow River was selected to analyze the basic parameter

evolution characteristics and periodicity of secondary suspended

rivers under long-term time-series conditions, determine their

severity, and quantitatively analyze and calculate the various

factors that caused their development. The research results will

have significant implications for managing wandering river

channels and downstream flood control and provide theoretical

and technical support for scientific management of secondary

suspended rivers.
2 Materials and methods

2.1 Study areas

The wandering section of the lower Yellow River starts in Baihe

in Mengjin, Henan, and ends in Gaocun in Dongming, Shandong.

The river has a total length of 299 km, a wide and shallow channel,

and significant erosion and sedimentation. The main stream

oscillates frequently; the distance between the main levees on

both sides is generally 5–10 km, with the widest levee distance
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exceeding 20 km. The Dongbatou–Gaocun section is 70 km long

(Figure 2) and has a beach area of 402 km. The flood discharge

width decreased from 10.5 km before construction of the

production levee to 4.2 km after its construction. In the late

1990s, the bank-full discharge in this section of the river

decreased to 2000 m³/s on one occasions, and the river was

heavily silted up. Under the influence of various factors, the

entire Dongbatou–Gaocun section forms a secondary suspended

river, which is one of the most severe secondary suspended river

situations (Jiang et al., 2006).
2.2 Study methods

2.2.1 Data sources
Based on the large-section topography data of the Dongbatou–

Gaocun section from 1960–2021, the elevations and starting

distances of the beach lip and beach surface near the levees were

determined, and the elevation difference and beach width between

the beach lip and beach surface near the levees were calculated,

followed by calculation of the beach transverse slope. The transverse

slope of the beach is the ratio of the elevation difference between the

beach lip and beach surface adjacent to the levee to the beach width.

Taking the Gaocun section (1996) as an example, the calculation

process of lateral slope is shown in Figure 3. Due to the fact that the

lowest point elevation at the levee root cannot reflect the true

transverse slope of the beach, the average elevation of the levee root

within a certain range (300m) is used as the levee root elevation for

this study. The main channel of the observation section set up in the

research river section is mostly located on the right bank, which

leads to the width of the right bank beach being too small and

abnormal values in the transverse slope. To avoid this problem, we

take the left bank as the research object. The system sorted and

calculated the annual water volume and sediment volume of

Huayuankou station in the lower Yellow River from 1960–2021,

as well as the water volume, sediment volume, peak discharge, and

other floodplain flood data. Large-section data were measured by

professional departments of the Yellow River Conservancy

Commission (YRCC). The water and sediment data of the series

of years and floods were obtained from the sediment bulletin of the

YRCC and hydrological data of the Yellow River basin. All data

were official and of high authority.

2.2.2 Data processing methods
(1) Theil-Sen estimator

The Theil-Sen estimator is a stable non-parametric statistical

trend calculation method. Using this method to estimate the linear

slope has advantages of high calculation efficiency and insensitivity

to measurement errors and discrete group data, and it is widely used

in trend analysis of long time-series data (Kong et al., 2022). The

formula is as follows:

k  ¼  Median
xj − xi
j − i

� �
,∀ j > i (1)

whereMedian represents the median; xj and xi are the sample data

corresponding to time j and time i (j > i), respectively; and k is the degree
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of the trend of the time series. When k > 0, the time series shows an

upward trend, and when k< 0, the time series shows a downward trend.

(2) Wavelet analysis

Wavelet analysis is a signal analysis method based on the

Fourier transform and developed in the early 1980s. The key to

wavelet analysis is selection of the wavelet functions. A complex

Morlet (Cmor) wavelet with good resolution in both the time and

frequency domains was selected for this study.

Before using the wavelet analysis, the data of each sequence

were subjected to anomaly processing, i.e., taking the mean

difference between each element in the sequence and the

sequence as the anomaly sequence. The amplitude of the

wavelet coefficients calculated after leveling is smaller, which

better reflects the fluctuation details of the wavelet coefficients

(Wang et al., 2006). Because the measured sequence is a finite

time series, boundary effects may occur at both ends. To eliminate
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the boundary effects generated at both ends of the sequence

during wavelet transform, the two ends of the anomalous

sequence were symmetrically extended (Sun and Luo, 2008).

After the calculations were completed, the corresponding added

data were deleted.

For wavelet functions that satisfy certain conditions, Y(t), the

wavelet transform of the time series f(t) ∈ L2 (R) is:

Wf (a, b)= aj j−1
2∫+∞−∞f (t) �Y

t − b
a

� �
dt (2)

where Wf (a, b) is the wavelet transform coefficient; f(t) is a

signal or a flat integrable function; a is the scaling factor; b is the

time factor, i.e., the translation of the reaction in time; �Y is the

complex conjugate function of Y. Wf(a, b) is a binary function that

varies with parameters a and b, with b as the abscissa and a as the
FIGURE 2

Study area location: (A) location of the lower Yellow River in China; (B) magnified lower Yellow River and location of the study area; (C) magnified
study area.
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ordinate, drawing a three-dimensional surface map Wf, and its

projection on the plane is a two-dimensional contour map. The

wavelet transform three-dimensional surface map and contour map

reflect the time‒frequency variation characteristics of the time

series. When the scale of a was the same, the wavelet coefficient

changed with time, reflecting the variation characteristics of the

time series at that scale. By analyzing the wavelet coefficients, the

periodic evolution characteristics of a long time series at multiple

timescales can be identified (Sang et al., 2013).

The real parts of the Cmor wavelet coefficients reflected periodic

changes in the transverse slope time series of the beach at different

timescales. The modulus of the wavelet coefficients reflected the

distribution of the energy density corresponding to different

timescale periods in the time domain. The larger the modulus of

the wavelet coefficients, the stronger the periodicity of their

corresponding timescale during that time period, and the color

mapping in the 3D surface and contour maps is warm. The square

of the wavelet coefficient modulus is equivalent to the wavelet

energy spectrum, which was used to analyze the oscillation energy

of different periods and obtain the limitations of the periods in the

time domain at different timescales.

To determine the main timescale of the time series, the square

value of the wavelet coefficient modulus was integrated into the time

domain to obtain the wavelet variance, as follows:

Var(a, b)  ¼∫+∞−∞ Wf (a, b)
�� ��2db (3)

where Var(a,b) is the wavelet variance, and the meaning of Wf

(a,b) is as described previously.

The process of changing the wavelet variance with the timescale

a is called the wavelet variance map. Each peak in the wavelet

variance map corresponded to a significant period. When the

wavelet variance reaches its maximum value, the scale of the

wavelet function most accurately matches the period of the time
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series, indicating that the periodic oscillation is the strongest at that

scale and is referred to as the main period.
3 Results

3.1 Evolution characteristics of secondary
suspended rivers

The main characteristics of secondary suspended rivers are the

high beach lip elevation and low depression of the levee root. The

average elevation of the levee root and average transverse slope of

the beach were selected to characterize the development of the

secondary suspended river.

3.1.1 Evolution process of average elevation of
left-bank beach lip and levee root

Severe sedimentation of the beach lip of the main channel was

the direct cause of the formation of the secondary suspended river,

and changes in its elevation reflected its evolution characteristics.

Figure 4 shows the changes in the average elevations of the levee

root and beach lip on the left bank in the Dongbatou–Gaocun

section from 1960–2021. Owing to the inconsistent years of layout

along the cross sections, the number of cross sections varied in

different years. Figure 4 shows that an increase in the number of

sections impacted the average levee root and beach lip elevations,

which may have increased (e.g., from 1963–1965) or decreased

(from 1999–2003). When the impact caused by the unstable

period of the cross section was not considered, analyses of the

data from other long-term series showed that the average

elevations of the left-bank beach lip and levee root had both

increased over time, and that the trend of their changes was

relatively consistent. Although there was a slight increase in the
FIGURE 3

Schematic diagram for calculating transverse slope.
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average elevation of the levee root from 1970–1997, this change

was extremely gentle. During this period, the average beach lip

elevation changed significantly and increased annually; it

decreased after 1983, and increased gradually after 1989. This

indicated that the floodplain floods during this period only caused

sedimentation at the beach lip with minimal impact on the levee

roots. After 2004, the cross-sectional data remained stable, with

both the average beach lip elevations and levee root being

relatively high and the changes being relatively stable.
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3.1.2 Evolution process of average transverse
slope on the left-bank beach

The transverse slope of a beach is an important parameter that

reflects the development level of secondary suspended rivers and an

important indicator of the degree of flood risk in river channels.

Therefore, variation in the transverse slope was an important

manifestation of the evolution of the riverbed in the lower Yellow River.

Figure 5 shows the evolution of the average transverse slope of

the left-bank beach in the Dongbatou–Gaocun section from 1960–
FIGURE 5

Trend of transverse slope change.
FIGURE 4

Changes in levee root elevation and beach lip elevation.
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2021. Overall, prior to commencement of operation of Xiaolangdi

Reservoir in 2000, the evolution trend of the average transverse

slope of the beach underwent multiple fluctuations, and the overall

trend gradually increased. In the analyses of its trend using the

Theil–Sen estimator, the trend degree is expressed in k, which could

be divided into four stages: ① 1960–1973, the transverse slope of the

beach had a trend degree of k = 0.03, which belongs to the initial

formation period of secondary suspended rivers; ② 1974–1986, k =

0.04, which belongs to the period of slow development of secondary

suspended rivers; ③ 1987–1999, k = 0.18, which belongs to the rapid

development period of secondary suspended rivers; and ④ 2000–

2021, k = 0.03, which belongs to the stable period of secondary

suspended rivers. The first three periods were before

commencement of operation of Xiaolangdi Reservoir and the

fourth period was after operation commenced.

Figure 6 and Table 1 present the transverse slope of the left-bank

beach for each section from Dongbatou–Gaocun in 2021. As of 2021,

the transverse slope of 88% of the cross section was within 10% and

12% of the cross section was > 10%. The secondary suspended rivers

in the Shuangjing and Qingzhuang sections were the most severe,

with a transverse slope of > 20% on the beach. The transverse slope

from Xiezhaizha–Hedao was relatively small, i.e., basically within 5%.

The current secondary suspended river situation in the lower Yellow

River remains serious.
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3.2 Periodicity of secondary suspended
river evolution

The time-series changes in the transverse slope of the left bank

beach from Dongbatou–Gaocun showed that the evolution law of

the transverse slope had nonlinear characteristics and had been in a

fluctuating state. The following presents a periodic analysis of the

transverse slope using the Cmor wavelet analysis method.

Figure 7 shows the wavelet coefficients of the transverse slope of

the left-bank beach from Dongbatou–Gaocun, China. Figures 7A, B

show the wavelet real part three-dimensional surface maps and real-

part contour maps, respectively, which reflect the distribution of the

transverse slope in the timescale and the periodic changes in

different time domains. Figure 7 shows that the wavelet

coefficients fluctuate on timescales of 25–32, 15–25, 10–15, and

5–9 years, indicating multiple timescale characteristics in the

transverse slope. There were three quasi-oscillations with

alternating rises and falls on the 25–32-year timescale, and four

and a half oscillations on the 15–25-year timescale. The wavelet

coefficients exhibited the most drastic changes at these two

timescales and most accurately represented the fluctuation pattern

of the transverse slope.

Figures 7C, D show the three-dimensional surface and contour

maps of the wavelet coefficients of the transverse slope, respectively,

reflecting the periodicity intensity of the corresponding timescales

during this period. Warm colors indicated strong periodicities, and

cold colors indicated weak periodicities. Figure 7 shows that during

the evolution of the transverse slope, the modulus values on the 15–

25 and 25–32-year timescales were the highest, indicating that the

transverse slope period of the beach was the strongest within these

two timescales; whereas, the modulus values of periodic changes on

other timescales were small, indicating that the transverse slope

period of the beach was not significant at other timescales.

Figures 7E, F show the three-dimensional surface and contour

maps of the modulus of the wavelet coefficients of the transverse slope,

which were used to analyze the oscillation energy of different periods.

Unlike Figures 7C, D, Figures 7E, F clearly reflects the timescale of the

strongest period. It can be seen that the energy on the 15–25-year

timescale was the strongest, with a time domain distribution after

2000. The energy on the 25–32-year timescale was the second

strongest, with a time-domain distribution from 1975–2000.

Figure 8 shows the variance and main period trend charts of the

wavelet coefficient of the transverse slope of the beach, which reflect

the main period and evolution trends of the transverse slope of the

beach, respectively. Figure 8A shows two clear peaks in the wavelet

variance map of the beach transverse slope: the first and second

main periods. The first main period corresponded to a 31-year

timescale, and the second main period corresponded to a 21-year

timescale. Figure 8B shows that on the 31-year timescale of the first
FIGURE 6

Trend of transverse slope change with channel section (numbers
represent the transverse slope)(starting from XZ, clockwise direction
is Xinzhuang, Yangzhuang, Leiji, Chanfang, Dianji, Xizhangji,
Zuozhaizha, Limenzhuang, Youfangzhai, Machang, Jinggang,
Dawangzhai, Wanggaozhai, Xindian, Liuheji, Dongheigang, Mazhai,
Changxingji, Zhulin, Shitouzhuang, Xiezhaizha, Xiaosuzhuang,
Yangxiaozhai, Yulin, Huangzhai, Wuqiu, Xibaocheng, Zhaodi,
Zhangzhai, Hedao, Shuangjing, Qingzhuang, Shiziyuan and
Gaocun respectively).
TABLE 1 Transverse slope distribution of the left-bank beach from Dongbatou–Gaocun in 2021.

Transverse slope 0~50/000 5~100/000 10~150/000 15~200/000 20~300/000

Number of sections 15 15 2 0 2

Proportion 44% 44% 6% 0 6%
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main period, the transverse slope experienced three quasi-

oscillations with an evolution period of 20 years. On the 21-year

timescale of the second main period, the transverse slope

experienced four and a half oscillations, with an evolution period

of 13–14 years.

Figures 7 and 8 show that the first and second main periods

corresponded to two different timescales. Using 2000 as the

boundary, it was divided into two stages. The first main period

was before 2000 and the second was after 2000. After 2000, the

construction and operation of Xiaolangdi Reservoir changed the

original periodic evolution of the beach transverse slope.
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4 Discussion

According to previous studies, the formation and development

of the secondary suspended river in the lower Yellow River result

from the combined effects of incoming water, sediment, and river

boundary conditions. The impact of human activities has also

promoted development of secondary suspended rivers. This study

focused on quantitative research on the various factors that affect

development of secondary suspended rivers and explored the

evolutionary characteristics of secondary suspended river

development under the influence of various factors.
A B

D
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FIGURE 7

Wavelet coefficient map of the time series of the beach transverse slope: (A) wavelet real part 3D surface map, (B) wavelet real part contour map,
(C) wavelet coefficient modulus 3D surface map, (D) wavelet coefficient modulus contour map, (E) 3D surface map of wavelet coefficient modulus
square, (F) contour map of wavelet coefficient modulus square.
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4.1 Annual water and sediment impact on
secondary suspended rivers

Figure 9 shows the impacts of annual runoff, annual sediment

transport, incoming sediment coefficient, and bank-full discharge on

the transverse slope at Huayuankou station in the lower Yellow River

from 1960–2021. From a long-term perspective, annual runoff and

sediment transport in the lower Yellow River decreased; whereas, the

transverse slope showed an overall increasing trend (Figures 9A, B).

Specifically, the overall trends of annual runoff and sediment

transport at Huayuankou station gradually decreased from 1960–

2000. Although overall annual runoff was relatively low after 2000,

there was a steady increasing trend. The overall change in annual

sediment transport was not significant, with an increase over the past

5 years (2017–2021). The incoming sediment coefficient at

Huayuankou station (Figure 9C) fluctuated between 0–0.06 kg·s/m6

before 2000, with an average of 0.024 kg·s/m6. After 2000, the

incoming sediment coefficients fluctuated between 0–0.01 kg·s/m6

overall, with an average of 0.005 kg·s/m6. Changes in annual runoff

and sediment transport in the lower Yellow River only reflected the

overall impact on the transverse slope. Before 2000, the high sediment

coefficient and repeated fluctuations significantly impacted the

morphology of river sections, resulting in an overall increase in

the transverse slope. After 2000, no floodplain flood shaped the

previously formed floodplain; the transverse slope was still relatively

large, and the threat of secondary suspended rivers remained.

However, the overall incoming sediment coefficient was relatively

small, and the riverbed had a certain degree of erosion, resulting in a

clear trend of stability and slowing down development of secondary

suspended rivers.
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When the incoming sediment coefficient was large, it caused

sedimentation and shrinkage of the main channel, resulting in a

decrease in the bank-full discharge and an increase in the

probability of water flooding. On one hand, the lateral

sedimentation of floodplain sediment was mainly distributed near

the beach lip; on the other hand, river regulations and production

levees limited floodplain floods to a certain range, exacerbating the

sedimentation of the beach lip. Figure 9D shows the relationship

between the transverse slope and full bank discharge. Overall, the

transverse slope also increased with a decrease in bank-full

discharge, particularly at the two turning points. One of these

turning points was around 1972, during the early stage of the

rapid development of the transverse slope, when the bank-full

discharge decreased to its minimum value. The other was around

1999, when the transverse slope tended to a higher value and the

bank-full discharge decreased to its historically minimum value.

Figure 5 shows that development of the secondary suspended

river was divided into four stages. Table 2 shows the relationship

between the average annual runoff, average annual sediment

transport, average annual incoming sediment coefficient, and the

development trend k value of the secondary suspended river in

these four stages at Huayuankou station in the lower Yellow River.

From 1960–1973, the average annual sediment coefficient was

relatively high, at 0.0224 kg·s/m6. This is because from

September, 1960 to March, 1962, Sanmenxia Reservoir was used

for water storage and sediment retention, resulting in severe

sedimentation in the reservoir. From March, 1962 to October,

1973, Sanmenxia Reservoir was used for flood detention and

sediment discharge, resulting in a high incoming sediment

coefficient and serious sedimentation in the downstream channel,
A

B

FIGURE 8

Wavelet map of the beach transverse slope: (A) wavelet variance map, (B) main period trend map of the beach transverse slope.
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causing the rapid development of secondary suspended rivers. From

November, 1974 to 1985, Sanmenxia Reservoir implemented a

storage and sediment discharge operation method of non-flood

season water storage and sediment retention, and flood season flood

and sediment discharges. Although the flood season was still silted,

the rate of increase in the transverse slope slowed, and the

secondary suspended river developed slowly. From 1986–1999,

under the influence of the completion of and joint regulation

with Longyangxia Reservoir, development and utilization of water

resources of the Yellow River, comprehensive management of the

middle and upper reaches, and low precipitation, the inflow of

water and sediment in the lower reaches underwent tremendous

changes. The water inflow in the flood season decreased and that in
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the non-flood season increased, the peak flow decreased, the dry

water duration lengthened, and the sediment-carrying capacity of

the water flow decreased, leading to a sharp decrease in the size of

the main channel and a reduction in the bank-full discharge. The

transverse slope was rapidly increasing, and development of

secondary suspended rivers was accelerating. From 2000–2021,

after completion and commencement of operation of Xiaolangdi

Reservoir, the amount of water and sediment entering the lower

Yellow River was effectively controlled. Through water and

sediment regulations, the main channel was scoured and cut

down and the bank-full discharge gradually increased. The water

flow did not flood the beach, and the rapid upward trend of the

transverse slope was restrained and became relatively gentle.
TABLE 2 Relationship between water and sediment and the development trend of secondary suspended rivers in the lower Yellow River.

Number Time Annual average
runoff (108m³)

Annual average sediment
transport (108t)

Annual average sediment inflow
coefficient (kg·s/m6)

k

1 1960–
1973

459.8 11.71 0.0224 0.03

2 1974–
1985

438.0 10.10 0.0190 0.04

3 1986–
1999

276.5 6.84 0.0302 0.18

4 2000–
2021

288.4 1.22 0.0044 0.03
A B

DC

FIGURE 9

Incoming water and sediment from Huayuankou station in the lower Yellow River (1960–2021): (A) annual water volume; (B) annual sediment
volume; (C) incoming sediment coefficient; (D) bank-full discharge.
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However, the transverse slope remains large, and the secondary

suspended river situation remains severe.

Notably, after 2000, the water flow in the lower Yellow River did

not flood the floodplain. In this case, the driving force for the

change in the transverse slope mainly came from changes in the

shape of the river section, such as the widening of the main channel,

which led to changes in the beach lip elevation (decreasing) and

beach width (narrowing). Changes in river section shape are

generally caused by an abnormal river regime and bank collapse;

however, this situation accounts for a very small proportion of the

entire lower Yellow River. At the time of the present study, the

overall river section morphology in the lower Yellow River was

relatively stable; therefore, development of secondary suspended

rivers caused by changes in the morphology of river sections was

relatively rare. Therefore, we did not focus on this issue.
4.2 Impact of floodplain floods on
secondary suspended rivers

The bed formation pattern of the floodplain floods differed from

that of the non-floodplain floods. After flooding, the cross section

suddenly increased, the average velocity of the cross section

decreased, the sediment-carrying capacity of the water flow

decreased, and a large amount of sediment was deposited,

forming new beach lips at the beach edge and increasing the

transverse slope of the beach. Figure 10 shows the relationship

between flood peak discharge, bank-full discharge, and beach

transverse slope of Huayuankou station floodplain in the lower

Yellow River from 1960–2021. From 1973–1985, the floodplain

frequency during this period was relatively high (up to 61%) and the

sediment coefficient was relatively small (Table 3), the transverse

slope was in a slow development stage. From 1986–1999, the

frequency of floodplains was also high (up to 43%), moreover, the

terrain was affected by the previous floodplain floods, the transverse

slope decreases first during this period. Subsequently, due to the
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occurrence of two Hyper-concentrated floods in 1992 and 1994, the

river siltation was severe, and the bank-full discharge continued to

decrease, resulting in rapid development of the transverse slope.

The shapes of the river channels were completely different because

of the different sediment concentrations in the floodplain floods.

For floodplain floods with a high sediment content, after the

floodplain, the cross-section increased and the average flow

velocity decreased, resulting in a decrease in the sediment-

carrying capacity of the water flow. A large amount of sediment

accumulated in the river channel and beach lip, resulting in a

decrease in the bank-full discharge and an increase in the transverse

slope of the beach, which promoted development of secondary

suspended rivers.

Table 3 presents the flood situation in the floodplain from

1960–2021 and shows the characteristic values of floodplain floods

in different years, such as peak flow, water volume, sediment

volume, and bank-full discharge. The average sediment

concentration, sediment inflow coefficient, floodplain coefficient,

and height difference changes of each floodplain flood were

calculated. The floodplain flood category was determined based

on whether the production levees overflowed and was combined

with the floodplain coefficient. The floodplain coefficient was

calculated as the ratio of the peak discharge to the bank-full

discharge of the current year, which represented the degree of

floodplain in this flood (Hu and Zhang, 2015; Shen et al., 2017).

The height difference refers to the difference between the elevation

of the beach lip and the levee root, and the change in height

difference refers to the difference between the height of the

previous year that of the current year. If the change in height

difference was positive, it indicated that the current secondary

suspended river had developed. A negative change in height

difference indicated that the current secondary suspended river

had eased. When the floodplain coefficient was >1.5 (Zhang et al.,

2016) and the floodplain flood overflowed the production levee, it

was determined that the flood was a large floodplain flood;

otherwise, it was a general floodplain flood (Table 3).
FIGURE 10

Relationship between peak discharge and bank-full discharge.
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TABLE 3 Statistics of characteristic values of floodplain floods in different years.

Height
difference
change
(m)

Floodplain
coefficient*

Has it over-
flowed the
production

levee

Floodplain
category

-0.052 1.30 no general

-0.017 1.13 no
general

-0.043 1.19 no
general

-0.005 1.17 no
general

-0.072 1.01
no general

0.295 1.65
no general

0.310 1.68 Yes huge

0.057 1.67 no general

0.050 1.74 Yes huge

0.125 1.52 no general

0.168 2.55 Yes huge
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Number Time
Peak dis-
charge
(m3/s)

Bank-full
discharge
(m3/s)

Water
amount
(108m3)

Sediment
amount
(108t)

Average
sediment concentration

(kg/m3)

Incoming
sediment
coefficient
(kg·s/m6)

1
1966-
07-20/
11-27

8480 6500 81.17 7.71 94.98 0.0253

2
1968-
09-14/
09-26

7340 6500 64.70 2.47 38.23 0.0066

3
1970-
07-24/
10-10

5830 4900 38.99 4.16 106.78 0.0331

4
1971-
07-25/
07-31

5040 4300 9.30 1.32 141.75 0.0659

5
1972-
08-26/
09-23

4170 4110 17.51 0.70 40.02 0.0158

6
1973-
08-20/
11-23

5890 3560 31.80 6.98 219.42 0.0656

7
1975-
07-08/
11-30

7580 4500 37.65 1.48 39.35 0.0063

8
1976-
07-08/
11-30

9210 5510 80.82 2.86 35.44 0.0049

9
1977-
08-04/
08-12

10800 6200 30.02 6.51 216.92 0.0562

10
1981-
09-24/
10-12

8060 5320 94.63 2.20 23.30 0.0040

11
1982-
07-30/
08-28

15300 6000 61.09 1.99 32.64 0.0051
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TABLE 3 Continued

Average
ment concentration

(kg/m3)

Incoming
sediment
coefficient
(kg·s/m6)

Height
difference
change
(m)

Floodplain
coefficient*

Has it over-
flowed the
production

levee

Floodplain
category

24.07 0.0049 -0.100 1.20 no general

41.12 0.0074 0.032 1.20 no general

85.97 0.0172 -0.035 1.27
no

general

35.96 0.0105 -0.100 1.02
no

general

182.63 0.0634 0.115 1.50
no

general

152.37 0.0605 0.200 1.70
no

general

89.82 0.0277 0.228 2.30 Yes huge
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151
Number Time
Peak dis-
charge
(m3/s)

Bank-full
discharge
(m3/s)

Water
amount
(108m3)

Sediment
amount
(108t)

sed

12
1983-
06-25/
11-19

8180 6800 55.43 1.33

13
1985-
08-25/
11-06

8260 6900 43.06 1.77

14
1988-
07-07/
09-21

7000 5500 73.23 6.30

15
1989-
07-02/
10-21

6100 6000 32.59 1.17

16
1992-
07-27/
10-24

6430 4300 24.87 4.54

17
1994-
08-06/
08-19

6300 3700 30.47 4.64

18
1996-
07-17/
08-26

7860 3420 58.92 5.29

*Floodplain coefficient = Peak discharge/Bank-full discharge.
i
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Figure 11 shows the relationship between floodplain floods and

changes in the elevation difference of the secondary suspended

rivers. When incoming sediment coefficient (z) was >0.04, the

changes in elevation difference were basically positive, and the

suspension difference of the secondary suspended river increased.

When z < 0.04, the changes in elevation difference were basically

negative (Figure 11A) and the difference in height of the secondary

suspended river decreased. However, there are situations in which

the elevation difference increased within the sediment coefficient

range. Floodplain floods with z < 0.04 were selected, and a

relationship was established between the elevation difference and

the floodplain coefficient to analyze the factors affecting the

elevation difference (Figure 11B). As the degree of the floodplain

increased, the elevation difference changed from negative to positive

and gradually increased. When the change in the elevation

difference was zero, the floodplain coefficient was approximately

1.29; i.e., when the flood coefficient of the floodplain was <1.29 and

the sediment coefficient was <0.04, the suspension difference of the

secondary suspended river was negative, and the secondary

suspended river situation could be alleviated to some extent.

Figure 12 shows the shaping effect of different floodplain floods

on the river cross-section, and the impact on the development of

secondary suspended rivers was analyzed. Figures 12A, B show the

changes in erosion and sedimentation of the Youfangzhai section in

1989 and Mazhai section in 1970, respectively, before and after the

flood season. The sediment coefficient and floodplain degree of the

1989 flood were relatively low, and changes in erosion and

sedimentation mainly occurred within the production levee. After

the flood, the main channel was scoured and the left-bank beach lip

elevation decreased. The elevation of the left bank levee root

remained unchanged, and the height difference between the beach

lip and levee root decreased. Although the 1970 flood did not

overflow the production levee, the sediment coefficient was higher

than that in in 1989, and the bank-full discharge in the river channel

was lower than that in 1989. The degree of flooding increased,

causing the river to be in a silted state with the beach lip raised and

the elevation difference increased. Figures 12A, B show the general
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floodplain floods, in which it can be seen that general floodplain

floods may have promoted (1970 floodplain floods) or slowed (1989

floodplain floods) the development of secondary suspended rivers,

which mainly related to the incoming sediment coefficient.

Figures 12C, D show the cross-sectional erosion and

sedimentation changes in the Gaocun section in 1982 and

Yangxiaozhai section in 1996 before and after the flood season.

The floods in 1982 and 1996 were both large floodplain floods, and

the main channel eroded to a certain extent. The floodplain

overflowed the production levee and silted up along the beach;

however, lateral siltation gradually decreased to the outside, and

erosion occurred near the levee root, leading to a further increase in

the height difference. The causes of the flooding in 1982 and 1996

differed. In 1982, the peak discharge of Huayuankou station reached

15300 m³/s, the bank-full discharge was 6000 m³/s, and the

sediment coefficient was 0.0051, which was a typical case of high

water and low sediment flow. In 1996, the peak discharge of

Huayuankou station reached 7860 m³/s, and its main channel was

affected by previous sedimentation and shrinkage, resulting in

bank-full discharge of only 3420 m³/s. The sediment coefficient

was as high as 0.0277, causing all floodplains in the lower Yellow

River. This showed that floods in the floodplain were beneficial for

erosion of the river channel, which had a positive effect on shaping

the subsequent form of the river channel. This could improve the

sediment transport capacity of the river channel, increase the bank-

full discharge, and slow the development of the secondary

suspended river to some extent.
4.3 Impact of human activities on
secondary suspended rivers

Human activities have changed the boundary conditions of the

riverbed, and their impact on the secondary suspended river was the

same as that of the riverbed boundary conditions. Human activities

mainly include construction of river regulation works and

production levees. Since the 1960s, the construction and gradual
A B

FIGURE 11

Relationship between characteristic values of floodplain floods and changes in elevation difference. Relationships between (A) sediment coefficient
and changes in elevation difference and (B) floodplain coefficients and changes in elevation differences (z < 0.4).
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improvement of river regulations in the lower Yellow River have

played a dual role in controlling the river regime and protecting

levees. River regulations have controlled the river regime in the

curved section of the lower Yellow River. The transitional section is

basically controlled, and the majority of the wandering section is

controlled. The relatively stable main channel is an excellent

container for sediment deposition. Once the main channel

accumulates, a secondary suspended river develops in it.

However, the river regulations are mainly used to control water

flow, stabilize river regimes, and protect levees. Moreover, after

water and sediment regulation in Xiaolangdi Reservoir, the

downstream river channel underwent a certain degree of erosion,

and the effect of river regulation on stabilizing the river regime

became increasingly obvious without directly affecting development

of secondary suspended rivers.

The production levees in the lower Yellow River were built

based on the historical Minnian (People spontaneously build earth

embankments to protect farmland and villages for blocking water).

Historically, people living on beaches spontaneously built Minnian

to defend themselves against certain levels of flooding. Due to war

and floods, Minnian has dilapidated and can no longer function

effectively. Since the people’s governance of the Yellow River in

1946, Minnian has been repaired and production levees have been

added to the building. By the 1970s, production levees had already

reached a certain scale; therefore, the overall effect of floodplain

floods after the 1970s continued to be affected by production levees.

After construction of the production levee in the Dongbatou–

Gaocun section, the flood width of the general floodplain has been

reduced from >10.5 km to 4.2 km (Jiang et al., 2019). Generally, it is

difficult for floodplain floods to cross production levees, resulting in

changes in river erosion and siltation occurring only in the middle of
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the production levees on both banks. Although large floodplains can

cross production levees, and beaches outside the production levees

also exchange water and sediment, production levees limit the lateral

distribution of sediment deposition. Figure 12 shows that there was a

significant difference in the amount of erosion and sedimentation on

both sides of the production levee, and that the sedimentation depth

on the side near the main channel was significantly greater than that

on the side far from the main channel. Table 4 shows the erosion and

sedimentation conditions of the erosion and sedimentation situation

near the main channel and far from the main channel at each section

of the Dongbatou–Gaocun section under the action of flooding in

1982 (taking the left bank as an example). It is evident from Table 4

that owing to the production levees, the amount of sedimentation on

the beach near the main channel was significantly greater than that

on the beach far from the main channel.

These results showed that although production levees can block

the inundation loss of local beach areas caused by floodplain floods,

they seriously hinder normal water and sediment exchange in the

beach channel, which causes most of the sediment in the flood not

to overflow the production levees to settle at the beach lip. However,

because of the inability of the flood to reach the root of the levee,

there was no sediment deposition, which caused the beach lip to

increase and the levee root to decrease, accelerating development of

the secondary suspended river.
5 Conclusions

Considering the Dongbatou–Gaocun section as the research

object, the evolution process of the secondary suspended river on

the left-bank beach from 1960–2021 was analyzed. The trend and
A B

DC

FIGURE 12

Cross-section changes in erosion and sedimentation in a typical flood year: (A) Youfangzhai station (1989); (B) Mazhai station (1970); (C) Gaocun
station (1982); (D) Yangxiaozhai station (1996).
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periodicity of the transverse slope change on the left-bank beach

were studied, and the evolution law of the secondary suspended

river in the wandering river channels was explored. Factors

influencing the development of secondary suspended rivers were

quantitatively analyzed. The main conclusions are as follows.

(1) The evolution process of the transverse slope from 1960–2021

can be divided into five stages:① The period from 1960–1973 belongs

to the initial formation period of secondary suspended rivers, with a

transverse slope trend of k = 0.03; ② the period from 1974–1986

belongs to the slow development period of secondary suspended

rivers, with a transverse slope trend of k = 0.04; ③ the period from

1987–1999 belongs to the rapid development of secondary suspended

rivers, with a transverse slope trend of k = 0.18; ④ the period from

2000–2021 belongs to the stable period of secondary suspended

rivers, with a transverse slope trend of k = 0.03.

The first three periods were before commencement of operation

of Xiaolangdi Reservoir and the fourth period was after operation

commenced. This showed that in the early stages of operation of

Xiaolangdi Reservoir, a secondary suspended river developed to a

very serious extent. Through water and sediment regulation in

Xiaolangdi Reservoir, the sedimentation of the downstream river

channel was reduced, which effectively alleviated the development

trend of the secondary suspended river.

(2) The evolution period of the transverse slope on the beach

differed significantly before and after commencement of operation of

Xiaolangdi Reservoir. Prior to commencement of operation of

Xiaolangdi Reservoir in 2000, incoming water and sediment from

the lower Yellow River were mainly affected by Sanmenxia Reservoir.

The transverse slope of the beach had a primary period of 31 years

(period of 20 years). After commencement of operation of Xiaolangdi

Reservoir, owing to its influence on water and sediment regulation,

the overall downstream river channel continued to erode, the

transverse slope of the beach changed, and there was a second

main period of 21 years (period of 13–14 years).

(3) Incoming water and sediment affected development of

secondary suspended rivers. When the incoming sediment

coefficient of floodplain flood (z) was >0.04 or <0.04 and

floodplain coefficient was >1.29, the change in height difference of

the secondary suspended river increased, and the secondary

suspended river intensified. When z < 0.04 and the floodplain
Frontiers in Ecology and Evolution 16154
coefficient was <1.29, the change in height difference of the

secondary suspended river decreased, and the secondary

suspended river was alleviated. The production levee blocked the

water and sediment exchange between the general floodplain flood

and the floodplain outside the production levee, which affected the

lateral sedimentation distribution of sediment in a large floodplain

flood and promoted development of secondary suspended rivers.
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Investigating the spatio-
temporal pattern evolution
characteristics of vegetation
change in Shendong coal
mining area based on kNDVI
and intensity analysis
Zhichao Chen*, Xufei Zhang, Yiheng Jiao, Yiqiang Cheng,
Zhenyao Zhu, Shidong Wang and Hebing Zhang

School of Surveying and Land Information Engineering, Henan Polytechnic University,
Jiaozuo, China
Alterations in vegetation cover serve as a significant indicator of land ecology.

The Shendong Coal Mining Area, being the largest coal base globally, holds

significant importance for national energy security. Moreover, it has gained

recognition for its environmentally conscious approach to coal mining,

characterized by the simultaneous implementation of mining activities and

effective governance measures. In order to assess the ongoing vegetation

recovery and the temporal changes in vegetation within the Shendong Coal

Mining Area, we initially utilized Landsat TM/ETM+/OLI remote sensing data.

Using the Google Earth Engine (GEE), we developed a novel kernel-

normalized vegetation index (kNDVI) and subsequently generated a

comprehensive kNDVI dataset spanning the years 2000 to 2020. In

addition, the Sen (Theil-Sen median) trend analysis method and MK (Mann-

Kendall) test were utilized to examine the temporal trends over a span of 21

years. Furthermore, the Hurst exponent model was employed to forecast the

persistent changing patterns of kNDVI. The utilization of the intensity analysis

model was ultimately employed to unveil the magnitude of vegetation

dynamics. The findings indicated a notable positive trend in the overall

kNDVI of vegetation within the study area. In relation to the analysis of

changing trends, the vegetation in the region underwent a slight

improvement from 2000 to 2010, followed by a significant improvement

from 2010 to 2020. During this transition period, a total of 289.07 km2, which

represents 32.36% of the overall transition area, experienced a shift in

vegetation. The predictive findings from the Hurst model indicate that

while the majority of areas within the mining region will exhibit an upward

trend in vegetation growth, there will be certain areas that will demonstrate a

decline. These declining areas account for 39.08% of the total transition area.

Furthermore, the intensity analysis results reveal notable disparities in the

characteristics of vegetation growth and evolution between the periods of

2000-2010 and 2010-2020. Throughout the entirety of the transformation

process, the transition from slight improvement to significant improvement

prevails in terms of both relative intensity and absolute intensity, surpassing

alternative transformation processes. Various trend transitions display diverse
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intensity characteristics that adhere to the overarching principles governing

shifts in vegetation growth. Furthermore, the utilization of the intensity

analysis framework and intensity spectrum employed in this study

demonstrates their efficacy in elucidating the temporal dynamics of

vegetation changes. Furthermore, this study plays a pivotal role in the

surveillance and assessment of the efficacy of ecological restoration in

mining regions. It carries substantial implications for comparable land

ecological restoration efforts in mining and reclamation, thereby furnishing

a theoretical foundation.
KEYWORDS

kNDVI (kernel normalized difference vegetation index), vegetation coverage,
spatio-temporal changes, Sen’s + Mann-Kendall trend analysis, intensity analysis,
Shendong coal mine
1 Introduction

According to Zeng et al. (2023), vegetation serves as a reliable

indicator of ecological changes and offers a comprehensive

depiction of land and environmental conditions. The

investigation of vegetation growth and its dynamic fluctuations in

mining regions has consistently been a focal point of scholarly

inquiry (Han et al., 2021b). Hence, the assessment of vegetation

degradation and analysis of spatiotemporal dynamics in mining

regions are of paramount importance in terms of their theoretical

and practical implications for ecological restoration and

enhancement of environmental quality in such areas (Guo et al.,

2019; Jiang et al., 2022).

The Shendong Mining Area, situated in the loess-wind deposit

sand mining region within the middle and upper reaches of the

Yellow River basin, is characterized by an arid climatic condition

(Xu et al., 2021). The area in question holds significant ecological

fragility and serves as a crucial monitoring site for soil and water

erosion in the context of governance in China (Chi et al., 2022). The

ecological environment of the area is significantly impacted by the

extensive coal mining activities (Xiao et al., 2020; Yang et al.,

2022b). The restoration of vegetation in coal mining areas has

gained widespread acceptance among nations (Roy et al., 2022). In

addition, the monitoring of the fluctuating patterns of vegetation in

mining regions is a fundamental aspect of initiatives aimed at

restoring vegetation and holds significant importance in the

planning, execution, and supervision of vegetation-related

activities in mining areas (Liu et al., 2021a; Wang et al., 2021a;

Xu et al., 2023b). Hence, the monitoring of vegetation dynamics and

alterations in the Shendong Coal Mine carries significant

importance. The research findings provide a theoretical basis for

the implementation of vegetation management, soil erosion control,

and ecological restoration efforts within the Shendong Coal Mine.

The production of coal has an undeniable impact on the

ecological environment. Within the context of coal production,
02157
monitoring the ecological environment plays a crucial role in

attaining economic sustainability (Burchart-Korol et al., 2016; Li

et al., 2021a). At present, the predominant method for ecological

monitoring in coal mines involves the utilization of remote sensing

methods in conjunction with vegetation indices to evaluate the extent

of vegetation coverage and the prevailing growth conditions on the

terrain (He et al., 2019; Han et al., 2021a; Shang et al., 2022). The

subject of long-term ecological monitoring has gained significant

attention in recent times. Long-term ecological monitoring

predominantly depends on the utilization of Landsat data, which

offers a consistent supply of high-resolution multi-spectral remote

sensing data spanning several decades, starting from the 1970s (Shan

et al., 2019; Jiang et al., 2021; Pei et al., 2023). The utilization of

remote sensing technology enables the temporal monitoring of

vegetation, facilitating the investigation of alterations in the

ecological environment. The Landsat TM/ETM satellite provides

data with a high level of spatial resolution, which has led to its

extensive utilization in the monitoring of land cover and land use

change (Garioud et al., 2021; Pérez-Cabello et al., 2021; Zhou et al.,

2022). The Normalized Difference Vegetation Index (NDVI) has

emerged as the predominant vegetation index employed in long-term

monitoring studies. Extensive research utilizing NDVI has

contributed significantly to the understanding and characterization

of spatiotemporal variations in vegetation cover, both at a national

level within China and on a global scale (Huang et al., 2020; Jimenez

et al., 2022; Martinez and Labib, 2023). Nevertheless, the Normalized

Difference Vegetation Index (NDVI) does possess certain limitations.

The relationship between the subject and green biomass exhibits a

non-linear and saturated pattern (Carlson and Ripley, 1997).

Additionally, it is important to consider potential errors that may

arise when working with atmospheric noise, soil background, and

saturation (Liu and Huete, 1995). Despite efforts made by researchers

to address these limitations by integrating data from different spectral

bands, the problem of saturation has yet to be resolved (Andualem

and Berhan, 2021; Huang et al., 2021). In the year 2021, the kernel-
frontiersin.org
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normalized difference vegetation index (kNDVI) was introduced by

Camps-Valls et al. (2021). The present vegetation index incorporates

the benefits of machine learning principles and employs kernel

methods for the extraction and computation of NDVI, with the

objective of mitigating the constraints associated with the

conventional methodology (Gustavo and Lorenzo 2009; Luis et al.,

2018). Camps-Valls et al. (2021) conducted an evaluation and

comparison of the performance of three vegetation indices, namely

kNDVI, NDVI, and NIRv. Based on the outcomes of their research, it

was observed that kNDVI demonstrated a higher level of effectiveness

compared to NDVI and NIRv in diverse applications, biomes, and

climatic zones. This study highlighted the distinct benefits of utilizing

kNDVI in mitigating saturation effects, managing intricate

phenological cycles, and accounting for seasonal variations. The

suitability of the index for effectively representing the status of

vegetation coverage in both natural and agricultural systems has

been demonstrated in several studies (Liu et al., 2021b; Forzieri et al.,

2022; Gensheimer et al., 2022; Wang et al., 2022b). Furthermore, the

suitability of kNDVI for evaluating the growth conditions and

temporal variations of vegetation in the mining region has been

well-recognized (Wang et al., 2023). Therefore, in the present study,

we opted for kNDVI as the preferred metric for assessing the

condition of the vegetation ecosystem.

Nevertheless, previous research in the field of vegetation

dynamics has predominantly concentrated on the gradual and

uniform alterations within vegetation ecosystems, while

investigations into the magnitude of spatiotemporal patterns have

been relatively scarce. Presently, the main focus of scholarly inquiry

pertaining to vegetation cover in mining regions revolves around the

utilization of extensive time-series remote sensing data. This

approach entails an examination of the effects of coal mining

activities on the surrounding vegetation and broader ecological

landscapes. The objective of this study is to analyze the dynamic

patterns of vegetation cover in response to coal mining disturbances.

The study aims to contribute valuable data and technical assistance

for future restoration and management initiatives in mining regions

(Wang et al., 2021b; Chen et al., 2022; Qi et al., 2023). Nevertheless,

the extent to which vegetation growth is affected in mining areas

remains uncertain. Therefore, the present study aims to introduce the

intensity analysis method proposed by Pontius et al. (2004) for the

purpose of assessing the intensity of vegetation dynamics. The

analysis of intensity and vegetation change shows the extent to

which vegetation change is influenced by factors such as climate

change and human activities. This is accomplished by examining

variables such as vegetation cover, vegetation growth rate, and

vegetation types (Guesewell et al., 2007; Tong et al., 2016; Guo

et al., 2018). In recent years, there has been a significant amount of

scholarly research dedicated to the examination of vegetation change

intensity (Murwira and Skidmore, 2006; Liu and Liu, 2018). One the

one hand, the utilization of remote sensing technology enables

the acquisition of vegetation index data, which in turn facilitates

the examination of fluctuations in vegetation growth. Consequently,

this approach enables the quantitative assessment of the magnitude of

changes in vegetation (Siteur et al., 2014). Alternatively, an avenue for

further exploration lies in examining the variations in response to

climate change across different types of cover, thereby elucidating the
Frontiers in Ecology and Evolution 03158
connection between intensity analysis and vegetation change (Xu

et al., 2013; Sun et al., 2023). This methodology not only examines the

relative stability or dynamics of transitioning vegetation growth trend

types, but also determines the dominant category during the

transition process. Consequently, this enables us to gain

understanding and discern the potential ramifications of ecological

restoration initiatives on the recuperation of vegetation in the area.

In summary, this research employed Landsat TM/ETM+/OLI

data spanning from 2000 to 2020 to construct a kNDVI dataset on

the Google Earth Engine (GEE) platform. The primary objective is

to analyze the spatial and temporal variations in vegetation cover

and the magnitude of its alterations within the Shendong Coal Mine

area. The research utilized Theil-Sen median slope analysis, Mann-

Kendall (MK) test, and Hurst exponent analysis to investigate the

spatiotemporal characteristics of vegetation cover and its future

development trends in Shendong Coal Mine. Furthermore, the

application of the intensity analysis framework is utilized to

examine the evolutionary attributes of various types of vegetation

growth trends during two distinct time periods: 2000-2010 and

2010-2020. The primary objective is to evaluate the current state of

vegetation restoration in the mining region and offer informed

suggestions for the long-term sustainability of Shendong Coal Mine.
2 Materials and methods

2.1 Study area

Shendong mining area (38°52′N–39°41′N, 109°51′E–110°46′E) is
situated in the southeastern part of the Ordos Plateau and the

northern edge of the Loess Plateau. It is situated at the

geographical border between Yulin City in Shaanxi Province and

Ordos City in Inner Mongolia Autonomous Region (as depicted in

Figure 1A). The estimated land area encompasses approximately 900

km2. The region exhibits an average annual temperature of 6.2 °C,

characterized by extreme minimum temperatures of -31.4 °C and

extreme maximum temperatures of 36.6 °C. The annual precipitation

in the region varies between 300 and 400 mm. Additionally, the rate

of evaporation surpasses the amount of rainfall by more than

fourfold, suggesting a characteristic arid to semi-arid continental

climate. The region exhibits variations in topography, characterized

by elevated terrain in the northwestern portion and comparatively

lower terrain in the southeastern part (as depicted in Figure 1B). On

average, the altitude of the area hovers around 1200 meters. The

mining area’s eastern and northeastern regions are comprised of loess

hills and mountains, which are distinguished by a network of gullies.

The region is situated within a transitional ecological zone

characterized by a blend of steppe and forest-steppe ecosystems (as

depicted in Figure 1C). The dominant vegetation types in this area

include grasslands, deciduous broadleaf shrubs, and sand-based

vegetation. These areas display three distinct landforms, namely

ridges, gullies, and loess tablelands. These regions are prone to

erosion and significant soil degradation. The western and

southwestern regions are characterized by the presence of mobile,

semi-fixed, and fixed sand dunes, which provide a suitable

environment for sand-based vegetation communities. These
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communities include sand-based pioneer plant communities and

Artemisia communities. Wetland vegetation is commonly observed

in low-lying areas, adjacent to river courses, and encircling bodies of

water such as lakes.
2.2 Data collection and preprocessing

The remote sensing image data utilized in this investigation

were acquired from the United States Geological Survey (USGS) as

Landsat T1_L2 products encompassing the time period from 2000

to 2020. The data were obtained through the utilization of the

Google Earth Engine (GEE) platform. The resolution of the images

was 30 meters, while the temporal resolution was 16 days. The data

underwent preprocessing techniques, such as atmospheric
Frontiers in Ecology and Evolution 04159
correction, radiometric calibration, and cloud removal, specifically

targeting data with cloud cover below 20% within the local

vegetation growth season spanning from July to October. Table 1

presents comprehensive details regarding the data utilized in the

present study. In order to mitigate the problem of data striping

observed in Landsat 7 satellite imagery, a destriping algorithm

provided by the Google Earth Engine (GEE) platform was

utilized. Following that, the computation of the Normalized

Difference Vegetation Index (NDVI) and Kernel Normalized

Difference Vegetation Index (kNDVI) was carried out on the

cloud. The study employed a median composite algorithm to

generate composite images. Additionally, the Quality Mosaic

algorithm available online was employed for image clipping in

order to address the negative impacts of clouds, atmosphere, and

satellite sensor angles on the remote sensing data.
TABLE 1 Sources of data used in this study.

Dataset Type
Image Usability

Analysis
Spatial

Resolution/m
Time Resolution/Year Data Source

Image data

Landsat 5 T1 Raster 73 scenes 30 2000-2011
United States Geological Survey

https://www.usgs.gov/

Landsat 7 T1 Raster 129 scenes 30 2000-2020
United States Geological Survey

https://www.usgs.gov/

Landsat 8 T1 Raster 74 scenes 30 2013-2020
United States Geological Survey

https://www.usgs.gov/
B

C

A

FIGURE 1

The study area in the Shendong Coal Mine (A) location in China, (B) elevation, and (C) land-cover class.
frontiersin.org

https://www.usgs.gov/
https://www.usgs.gov/
https://www.usgs.gov/
https://doi.org/10.3389/fevo.2023.1344664
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chen et al. 10.3389/fevo.2023.1344664
The present study examines the accessibility of Landsat images

within the Shendong mining area, utilizing the GEE cloud platform.

A comprehensive analysis yielded a total of 276 images that were

deemed suitable for further investigation. Figure 2 illustrates the

temporal distribution of satellite images from the years 2000 to

2020, as depicted in Figure 2A, along with the corresponding

number of available images, as shown in Figure 2B.
2.3 Research methods

As illustrated in Figure 3, this study acquired a dataset of kNDVI

spanning 21 years, from 2000 to 2020, specifically from the Shendong

Coal Mine. The dataset was partitioned into two distinct periods,
Frontiers in Ecology and Evolution 05160
namely 2000-2010 and 2010-2020, in order to investigate the patterns

of vegetation change. The Theil-Sen Median slope estimation and

Mann-Kendall trend test methods were utilized to discern patterns of

vegetation change. The Hurst exponent was employed to assess the

long-term persistence of vegetation dynamics in the studied area. We

employed the intensity analysis framework model to evaluate the

intensity of transition trends in vegetation changes during the two

periods. This assessment took into account both absolute and relative

intensity perspectives.

2.3.1 kNDVI vegetation index calculation
The kNDVI is a normalized vegetation index that utilizes kernel

functions, which are a type of machine learning techniques. The

proposed approach represents an advancement of the conventional
BA

FIGURE 2

Availability of Landsat images of a time series of the reserve from 2000 to 2020, (A) Landsat image time distribution, (B) total number of sensor
image (Landsat5/7/8).
FIGURE 3

Flow chart of the research.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1344664
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chen et al. 10.3389/fevo.2023.1344664
NDVI index, with the primary objective of addressing the

challenges related to scale transformation and nonlinearity.

According to Camps-Valls et al., 2021), the integration of kernel

technology enables kNDVI to offer enhanced vegetation

information that is both dependable and precise, even in

scenarios involving nonlinear variations and across various scales.

The calculation formula is as follows (Equation 1):

kNDVI = tanh NIR−Red
2s

� �2� �
= tanh NDVI

2t
� �2� �

(1)

Where s represents a length scale directly proportional to the

mean values of near-infrared and red reflectance obtained from the

remote sensing image. A t =0.5 strikes a favorable compromise

between accuracy and simplicity (Wang et al., 2023). Using s =

t(NIR+Red). The calculation formulas are as follows : (Equations 2, 3)

dkNDVI
dNDVI = 1

2t 2 (1 − kNDVI2)NDVI (2)

kNDVI = tanh(NDVI2) (3)
2.3.2 Sen+Mann-Kendall vegetation
trend analysis

The Theil-Sen median trend analysis, also referred to as Sen

trend analysis, is a resilient non-parametric statistical technique

employed to compute trends. In contrast to linear regression trend

analysis, the Sen trend analysis method has the ability to mitigate

the influence of missing time series data and the shape of the data

distribution. Additionally, it effectively eliminates the interference

caused by outliers in the time series data (Gocic and Trajkovic,

2013). The mathematical expression denoted as Equation 4

provides the formula for determining the magnitude of the Sen

trend.

bkNDVI = median
kNDVIj−kNDVIi

j−i

� �
,∀ i (4)

Where kNDVIi and kNDVIj represent kNDVI time series. A

bkNDVI > 0.0005 indicates an improved kNDVI trend. Conversely, a

bkNDVI < 0.0005 implies a degraded kNDVI trend.

The Mann-Kendall test, also known as the MK test, is frequently

employed in conjunction with Sen trend analysis. The

aforementioned approach is a non-parametric statistical test that

exhibits robustness in the presence of missing values and outliers.

Additionally, it does not make any assumptions regarding the

underlying data distribution (Yue and Wang, 2004). The

statistical test procedure is demonstrated in (Equations 5–8).

Z =

S−1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p   (S > 0)

0   (S = 0)

S−1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p   (S < 0)

8>>><
>>>:

(5)

S = o
n=1

j=1
o
n

i=j+1
sign(kNDVIj − kNDVIi) (6)
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Var(S) =
n(n − 1)(2n + 5)

18
(7)

sign(q) =

1   (q > 0)

0   (q = 0)

−1   (q < 0)

8>><
>>:

(8)

Where kNDVIj and kNDVIi refer to kNDVI time series; sign

represents the sign function; S denotes the test statistic; Z is the

standardized test statistic; n is the number of data points. At a given

significance level a, if | Z | > Z1−a=2, it suggests the presence of a

significant trend change. In this study, a is set as to 0.05, implying

the evaluation of the significance of kNDVI time series changes at a

0.05 significance level.

2.3.3 Analysis of vegetation change sustainability
The calculation of the Hurst exponent is derived from the

application of the rescaled range (R/S) analysis method. This

exponent is utilized as a metric to discern whether a given set of

time series data adheres to a random walk or a biased random walk

process. The description of time series patterns is a widely employed

approach in the fields of hydrology, geology, and climate studies

(Sioris et al., 2016). This study employs the Hurst exponent to

characterize the future temporal evolution of pixel values within the

study area. The computation method is as follows:

For a given time series { kNDVI ( t ), 1, 2,..., n }, the mean

sequence is defined by Formula (Equation 9):

kNDVI(T) =
1
To

T

t=1
kNDVI(T)  T = 1, 2,⋯, n (9)

The cumulative deviation formula is (Equation 10) :

X(t,T) =o
t

t=1
(kNDVI(t) − kNDVI(T))   1 ≤ t ≤ T (10)

The value range formula of and is (Equation 11) :

R(T) = maxX(t,T) −minX(t,T)  T = 1, 2,⋯, n (11)

The standard deviation formula is (Equation 12) :

S(T) =
1
To

T

t
(kNDVI(t) − kNDVI(T))

2
� �1

2

 T = 1, 2⋯, n (12)

And using the above formula, we can get Formula (Equation 13)

:

R(T)

S(T)
≅ R

S (13)

A R=S ∝ TH indicates the presence of the Hurst phenomenon

in the analyzed sequence. Here, H represents the Hurst exponent,

which can be obtained by fitting log (R=S)n = R=S( )n = a +

H*log(n), using the least squares method. A 0< H< 0.5 indicates

anti-persistent kNDVI in the time series, implying that the future

trend is opposite to the past. As H gets closer to 0, the degree of anti-

persistence increases. Similarly, a 0.5 < H < 1 suggests positive

correlation in the kNDVI time series, meaning that the future trend

is consistent with the past. As H approaches 1, the degree of positive
frontiersin.org

https://doi.org/10.3389/fevo.2023.1344664
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chen et al. 10.3389/fevo.2023.1344664
correlation strengthens. A H = 0.5 signifies that the variation trend

of kNDVI in the time series is a random sequence with no

significant correlation.

2.3.4 Intensity analysis framework model
The analysis of intensity focuses on the quantitative assessment

of vegetation change trends, which occur at various time intervals.

This examination is conducted from two distinct viewpoints:

absolute intensity and relative intensity. The concept of absolute

intensity pertains to the absolute number of trend conversions

occurring within a specific time frame. This measure can be

examined from two perspectives: the conversion from a particular

trend type to different trend types, and the conversion from other

trend types to the specified trend type. The calculation formulas for

each intensity pattern are specified as follows:

The absonorlute transition intensity, denoted as AIij, represents

the conversion of the initial vegetation trend level i to a specific final

vegetation trend level jwithin the time interval [Tn,Tn+1] (where i≠j).

Its calculation formula is as follows (Equation 14):

AIij =
j ij=(Tn+1 − Tn)

oI
i=1j ij

(14)

The mean absolute transition intensity (MAIj) for the

conversion of all vegetation trend grades except j to grade j

within the time interval [Tn,Tn+1]; Its calculation formula is as

follows (Equation 15):

MAIj =
oI

i=1j ij

� �
− j jj

	 

=(I − 1)

� �
=(Tn+1 − Tn)

oI
i=1j ij

(15)

The absolute transition intensity, denoted as AOxy, represents the

conversion of the initial vegetation trend grade x to a specific final

vegetation trend y within the time interval [Tn,Tn+1] (where x≠y). Its

calculation formula is as follows (Equation 16):

AOxy =
jxy=(Tn+1 − Tn)

oY
y=1jxy

(16)

The average absolute transition intensity (MAOx) is calculated for

all vegetation trend grades except x within a specific time interval [Tn,

Tn+1]; Its calculation formula is as follows (Equation 17):

MAOx =
oY

y=1jxy

� �
− jxx

h i
=(Y − 1)

n o
=(Tn+1 − Tn)

oY
y=1jxy

(17)

Where i and y represent the initial and final vegetation trend grades,

while j and x represent the transition-in and transition-out vegetation

trend grades. jij and jxy represent the area of the transition from grade i

to grade j and the transition from grade x to grade y, respectively, within

the given time interval. jjj and jxx represent the area in which the grade
remains unchanged within the time interval. I and Y denote the number

of initial and final vegetation trend grades, respectively.

The concept of absolute intensity pertains to the absolute

number of trend type conversions, encompassing both the

process of transitioning into a trend type and the process of

transitioning out of it. Relative intensity, in continuation of this

foundational analysis, conducts a further examination of the
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influence of the intensity of land cover conversion on the

structure of vegetation change trends in the study area.

The transition intensity, denoted as RIij, represents the

conversion of the initial vegetation trend grade i to a specific final

vegetation trend grade j within the time interval [Tn,Tn+1] (where

i≠j), as: Its calculation formula is as follows (Equation 18):

RIij =
j ij=(Tn+1 − Tn)

oY
y=1j iy

(18)

The average relative transition intensity, denoted asMRIj, is the

conversion of all other vegetation trend grades except j to grade j

within the time interval [Tn,Tn+1], as: Its calculation formula is as

follows (Equation 19):

MRIj =
oI

i=1j ij

� �
− j jj

	 

=(I − 1)

� �
=(Tn+1 − Tn)

oY
y=1½(oI

i=1j iy) − j jy�
(19)

The relative transfer strength ROxy (x≠y) represents the

conversion of the initial vegetation trend level x to a final

vegetation trend level y within the time interval [Tn,Tn+1], as: Its

calculation formula is as follows (Equation 20):

ROxy =
jxy=(Tn+1 − Tn)

oI
i=1j iy

(20)

The average relative transfer strength MROx represents the

conversion of vegetation trend level x within the time interval

[Tn,Tn+1] to all other vegetation trend levels except x, as: Its

calculation formula is as follows (Equation 21):

MROx =
oY

y=1jxy

� �
− jxx

h i
÷ (Y − 1)

n o
÷ (Tn+1 − Tn)

oI
i=1 oY

y=1j iy

� �
− j ix

h i
:

(21)

In the equation above, jix represents the area where the initial

vegetation trend level i transitions to level x, and jiy represents the

area within the time interval [Tn,Tn+1] where the initial vegetation

trend level i transitions to the final levely.
3 Results

3.1 Temporal and spatial variations of
vegetation coverage

3.1.1 Temporal dynamics of vegetation coverage
The representative kNDVI values for each year between 2000

and 2020 were obtained by utilizing the median value of kNDVI

pixels in the images from 2000 to 2020, which serves as a

comprehensive indicator of vegetation conditions. The annual

kNDVI values were utilized in order to generate a fitted curve

that illustrates the fluctuations in kNDVI, as depicted in Figure 4. As

depicted in Figure 3, there exists a notable disparity in kNDVI

values over the course of multiple years. Between the years 2000 and

2020, as depicted by the red line, the normalized difference

vegetation index (kNDVI) exhibited an upward trajectory from

0.040 to 0.185. This corresponds to an annual growth rate of 0.0065,

suggesting a notable and swift enhancement in vegetation coverage.
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A model was developed to analyze the spatiotemporal variation

of vegetation coverage within the protected area. This model

utilized the pixel-based intermediate approach. The findings of

the study indicate a statistically significant rise in the mean

annual vegetation coverage within the mining region between

2000 and 2020 (p< 0.05). The Mann-Kendall mutation test was

utilized to construct a map depicting the annual mutation of

vegetation coverage in the mining area. The analysis revealed that

this mutation occurred in the year 2010, as illustrated in Figure 5.

Given the clear presence of discernible mutation points in both the

UF and UB curves in the year 2010, the present study opted to

partition the time series data pertaining to vegetation coverage

within the protected area into two distinct stages: the period

spanning from 2000 to 2010, and the subsequent interval from

2010 to 2020. Figure 4 illustrates the kNDVI trends from 2000 to

2010, as represented by the blue line. During this time frame, a

gradual growth phase is observed, characterized by an increment
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from 0.04 to 0.079 in kNDVI values. The corresponding growth rate

is calculated to be 0.0041 per annum. In contrast, the time span

from 2010 to 2020 (represented by the green line) exhibited a

notable period of expansion, as indicated by the increase in kNDVI

from 0.079 to 0.185 and a growth rate of 0.013 per annum. During

the period from 2000 to 2010, the Shendong Coal Mine undertook

extensive afforestation initiatives and implemented diverse

ecological and environmental comprehensive management

approaches throughout its development and construction

endeavors. Nevertheless, the challenging conditions of the mining

region posed significant obstacles to the process of vegetation

reconstruction and restoration, thereby impeding the rate of

growth in comparison to the timeframe spanning from 2010 to

2020. Between the years 2010 and 2020, there was a notable

establishment of a foundation for vegetation coverage,

accompanied by intensified efforts towards vegetation recovery.

Consequently, there was a significant and rapid augmentation in
FIGURE 5

Mann-Kendall mutation test.
FIGURE 4

Time variation of median kNDVI in the Shendong Coal Mine, 2000—2020.
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vegetation coverage. From the year 2000 to 2020, there was a

noticeable pattern of substantial vegetation expansion within the

mining region.

3.1.2 Spatial distribution characteristics of
vegetation coverage

Figure 6 illustrates the distribution characteristics of median

values of kNDVI during various stages of the 21-year duration of

Shendong Coal Mine. The calculation of the overall vegetation for

the time periods of 2000-2010, 2010-2020, and 2000-2020 was

conducted using the median values of the annual kNDVI. The

selection of median values was made to serve as a representation of

the vegetation coverage across the three stages in question. The

findings demonstrated a strong correlation between the extent of

vegetation coverage and the corresponding rates of vegetation

growth observed at each stage. The vegetation coverage during

the time frame of 2010-2020 exhibited the highest value of 0.149,

indicating the most favorable conditions. Subsequently, the periods

of 2000-2020 and 2000-2010 displayed values of 0.087 and 0.065,

respectively, suggesting relatively lower levels of vegetation

coverage. Based on the analysis of Figure 6, it is evident that the

three stages (Figures 6A–C) exhibit a notable concentration of

elevated kNDVI values in the eastern and western regions of the

Shendong mining area. Additionally, these high values are also

observed in the mountainous areas flanking the town, as well as in

the southern sections of the Huojitu and Daliuta mining areas.

Conversely, the diminished values primarily manifest in the urban

regions of the mining vicinity and adjacent areas that experience

substantial anthropogenic impact, such as the Ulan Mulun and

Shigetai coal mining regions. In general, the spatial distribution of

kNDVI in the Shendong mining area demonstrates a consistent

pattern. The vegetation coverage within the entirety of the

Shendong mining area exhibits minimal fluctuations. The

vegetation coverage in certain mining regions, such as Da Lita

and Ulan Mulun Mine, exhibited a lower extent. In general, the

vegetation coverage along the eastern and western boundaries of the

Shendong Coal Mine exhibited superior characteristics. Moreover,
Frontiers in Ecology and Evolution 09164
this geographical area serves as a crucial site for the execution of

ecological conservation initiatives in China, including afforestation

and reforestation schemes. These endeavors have yielded

noteworthy benefits in terms of enhancing vegetation coverage as

a result of human interventions.

3.1.3 Spatial variation characteristics of
vegetation coverage

In order to accurately capture the patterns of vegetation changes

and spatial distribution characteristics in the area, this research

integrates Sen’s trend analysis with the Mann-Kendall test. The

Sen’s values can be categorized into three distinct groups. The first

group consists of values falling within the range of -0.0005 to

0.0005, which are considered as indicative of a stable condition. The

second group includes regions with Sen’s values equal to or greater

than 0.0005, which are classified as areas showing improvement.

Lastly, the third group comprises regions with Sen’s values less than

-0.0005, which are identified as areas experiencing degradation. The

outcomes of the Mann-Kendall test are categorized into two groups:

statistically significant changes (Z > 1.96 or Z< -1.96) and

statistically insignificant changes (-1.96 ≤ Z ≤ 1.96), with a

confidence level of 0.05. The vegetation change trend map for the

entire region is derived by aggregating the results at each pixel scale.

Based on the aforementioned classification criteria, the entire region

can be categorized into five distinct groups, as illustrated in Table 2.

Based on the analysis of the annual inter-annual variation trend

of kNDVI in the Shendong Coal Mine spanning from 2000 to 2020

(Figure 7), it is evident that the vegetation growth within the region

has exhibited a notable enhancement, encompassing approximately

89.47% of the entire mining area. The proportion of the total area

that is classified as degraded is 2.74%. The degraded areas primarily

exist within different open-pit mining sites, specifically the northern

section of Huojitu Mine and the southern section of Shigetai Mine.

The mining region has adopted strategies for concurrent mining

and restoration, with each individual mine making efforts to

mitigate environmental harm and engage in active restoration of

impacted areas. Consequently, the areas exhibiting slight
B CA

FIGURE 6

Spatial distribution characteristics of vegetation cover (A) 2000—2010, (B) 2000—2020, (C) 2010—2020.
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improvements are primarily localized along the perimeters of the

open-pit regions of each mine, constituting approximately 4.65% of

the overall land area. The Shendong Coal Mine holds significant

importance as a focal region for the implementation of ecological

conservation initiatives within China. From the year 2000 to 2020,

there was a notable increase in vegetation coverage within the

mining area.

To provide a comprehensive depiction of vegetation dynamics

from 2000 to 2020 and elucidate patterns of vegetation change, the

temporal span is partitioned into two distinct stages: 2000-2010 and

2010-2020. This division is predicated on the growth rate of

vegetation coverage, as illustrated in Figure 8. The examination of

the trend in vegetation growth during two distinct stages provides

insight into the intensity of vegetation restoration and the mode of

transition observed in the mining area at different points in time.

According to the data presented in Figure 8, the period from 2000 to

2010 witnessed a discernible but modest upward trajectory in the

Shendong Coal Mine. This particular phase accounted for 54.83% of

the overall area. The trend of significant improvement represents
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the second largest proportion, comprising 31.47% of the total area.

In contrast, the period from 2010 to 2020 witnessed a notable

upward trend in the dominance of the mining sector, with its share

increasing from 31.47% in the 2000-2010 period to 61.16% in the

2010-2020 period. The percentage of the area exhibiting a slight

improvement trend decreases from 54.83% to 32.39%. In general,

the trajectory of vegetation dynamics progresses from a slight

improvement to a significant improvement pattern.
3.2 The spatial distribution and future
development trend of the Hurst exponent
for vegetation coverage

3.2.1 Spatial distribution of Hurst exponent for
vegetation coverage

According to the data presented in Figure 9, the average Hurst

exponent for kNDVI in the Shendong Coal Mine is 0.521. The

regions exhibiting Hurst values below 0.5 are primarily

concentrated in the northwestern section of the mining area,

encompassing the Cuncaota and Buertai Mines. These regions

account for approximately 40.12% of the total area. Conversely, it

can be observed that regions exhibiting Hurst values exceeding 0.5

are predominantly situated in the southeastern portion of the

mining area, encompassing Bulianta, Shanwan, and Daliuta

Mines. These specific regions account for approximately 59.88%

of the overall area. The comprehensive examination of the mining

region reveals that the kNDVI in Shendong Coal Mine

demonstrates a spatial pattern characterized by clustering,

accompanied by a certain level of variability.
FIGURE 7

Trends of inter-annual kNDVI change in the Shendong Coal Mine from 2000 to 2020.
TABLE 2 Statistical analysis results of kNDVI trends.

Sen’s Z value Trend of kNDVI

≥0.0005 ≥1.96 Significantly Improved

≥0.0005 -1.96-1.96 Slightly Improved

-0.0005-0.0005 -1.96-1.96 Stable

≤-0.0005 -1.96-1.96 Slightly Degraded

≤-0.0005 ≤-1.96 Severely Degraded
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3.2.2 Future development trend of
vegetation coverage

To enhance comprehension regarding the trajectory and long-

term viability of vegetation, an examination is conducted on the

kNDVI trend, which is subsequently juxtaposed with the Hurst

exponent. This integration yields interconnected insights, as

depicted in Figure 10. The findings can be categorized into four
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distinct groups: a consistent downward trend, a consistent upward

trend, a decline in the present with an anticipated increase in the

future, and an increase in the present with an expected decrease in

the future. The persistent decline in vegetation levels within the

region signifies a sustained and pronounced downward trajectory.

A continuous increase denotes a persistent and consistent upward

trajectory in vegetation. The present reduction and forthcoming
FIGURE 9

Spatial distribution of Hurst exponent in vegetation coverage.
BA

FIGURE 8

Trends of inter-annual kNDVI change in the Shendong coalfield: (A) 2000—2010, (B) 2010—2020.
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improvement signify a contemporary pattern of diminishing

vegetation, with a prospective shift towards an ascending

trajectory. The present improvement and forthcoming diminution

signify a prevailing positive trajectory in vegetation, yet a

prospective shift towards a negative trajectory.

Based on the data presented in Figure 10, it is evident that the

majority of regions exhibit an increasing trend in vegetation, with

certain areas projected to undergo a decline in the future. These

declining areas encompass a total land area of 349.22 km²,

constituting approximately 39.10% of the overall region. The

aforementioned regions primarily encompass the Cuncaota and

Buertai coal mine areas. Nevertheless, it is important to

acknowledge that the observed decrease in vegetation in Buertai

coal mine and similar regions may not provide an accurate

representation of the true state of vegetation on the terrain. Based

on field investigations, it has been discovered that the Cuncaota and

Buertai coal mines have adopted an “ecological restoration and

utilization model” that aligns with the local ecological conditions.

This model involves the establishment of ecological restoration

bases in areas affected by coal subsidence, as well as the

implementation of photovoltaic-assisted planting techniques

across a designated land area spanning 42,000 acres. As a result,

the utilization of photovoltaic panels has made remote sensing

techniques insufficient for accurately monitoring the current state of

ground vegetation. The areas in question exhibit a consistent

pattern of growth, encompassing a total land area of 510.87 km²,

which corresponds to 57.20% of the overall territory. These areas

hold significant influence within the context of the Shendong Coal

Mine. Only a small proportion, specifically 2.85%, of the entire

region exhibits a persistent decline, predominantly concentrated

within the open-pit areas of diverse mining operations.
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3.3 Analysis of the intensity of vegetation
change in Shendong coal mine

3.3.1 Analysis of vegetation growth trend
changes in Shendong coal mine

The vegetation growth trend observed in Shendong Coal Mine

can be divided into two stages: 2000-2010 and 2010-2020. During the

first stage, there was a slight improvement in vegetation growth, while

during the second stage, there was a significant improvement. The

combined area percentage of vegetation growth during the 2000-2010

period was 95%, whereas it was 86.30% during the 2010-2020 period.

A transition matrix (Table 3) is utilized to conduct a more

comprehensive examination of the change characteristics of various

vegetation trend types in Shendong Coal Mine. During the transition

from the 2000-2020 period to the 2010-2020 period, the prevailing

pattern of vegetation change predominantly exhibits a modest

improvement, as evidenced by an area measuring 489.75 km²

transitioning away from this particular category. The predominant

form of vegetation change that occurs during the transition process is

characterized by a substantial improvement, encompassing a total

area of 546.29 square kilometers. Among the diverse categories of

vegetation trend transitions, the transition from a slight to a

significant improvement stands out as the most notable. This

transition encompasses an area of 289.07 km², constituting

approximately 58.02% of the total area undergoing a transition

away from the slight improvement category. In general, the

vegetation trends observed in Shendong Coal Mine during the two

stages exhibit a consistent and stable pattern of cross-transition. This

pattern primarily involves a shift between slight improvement and

significant improvement types, indicating the favorable influence of

local ecological restoration initiatives on the recovery of vegetation.
FIGURE 10

Future trends in vegetation coverage.
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The existing research primarily emphasizes the direct utilization

of area change information from the transition matrix, without

considering the underlying relationship between the structure of

vegetation trend and its transformation. To fully harness the

information contained in the transition matrix, this study

proposes an intensity analysis model. This model aims to delve

into the deeper-level information within the transition matrix and

comprehensively analyze the characteristics of vegetation trend

transitions in the region.

Figure 11 displays the chart depicting the intensity of change in

vegetation growth trends. The chart comprises units that symbolize

the reciprocal transformation between the initial vegetation growth

trend (i) and the final vegetation growth trend (j) within a specific

time interval. The x-axis is indicative of the initial trend in vegetation

growth, whereas the y-axis represents the final trend in vegetation

growth. The intensity chart comprises four components for each unit:

absolute inflow intensity, absolute outflow intensity, relative inflow

intensity, and relative outflow intensity. The filling rules can be

described as follows: the color light green is used to represent a

tendency, while the color orange is used to represent an inhibition.

Specifically, when all units in the chart are horizontally filled with

light green, it signifies a transformation process from the initial
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vegetation growth trend i to the final vegetation growth trend j. This

transformation is characterized by both the absolute inflow intensity

and absolute outflow intensity exhibiting a tendency, which reflects

an overall absolute tendency in the transformation. When all units

are occupied by the color orange, it signifies a relative inclination

within the process of transformation. When a collection of entities is

populated exclusively with either light green or orange, it signifies the

presence of a systematic tendency or inhibition.

The intensity analysis framework offers a comprehensive

examination of the transfer matrix data, thereby enhancing the

availability of decision-making information for local ecological

restoration efforts. Figure 11 illustrates discernible attributes in

the alteration of vegetation growth patterns during two distinct

time periods: 2000-2010 and 2010-2020. There exist four primary

forms of intensity conversion, with the relative tendency emerging

as the prevailing type. Furthermore, there is a relatively balanced

distribution of tendencies and inhibitions in general. The shift from

significant improvement to slight improvement signifies a complete

transformation in trend. This suggests that the vegetation within the

mining region exhibits a propensity for degradation in terms of

absolute intensity, yet demonstrates an increasing trend in terms of

relative intensity. For instance, the transitions observed between
FIGURE 11

Atlas of vegetation change intensity from 2000—2010 to 2010—2020.
TABLE 3 Transition matrix of vegetation growth trends from the period of 2000-2010 to the period of 2010-2020.

2000—2010/km²

2010—2020/km²

TotalSeverely
Degraded

Slightly
Degraded

Stable
Slightly

Improved
Significantly
Improved

Severely Degraded 0.03 0.18 0.81 1.48 2.20 4.70

Slightly Degraded 0.66 2.75 3.24 25.10 37.33 69.08

Stable 0.33 1.80 5.33 15.44 25.72 48.61

Slightly Improved 3.33 17.90 5.59 173.86 289.07 489.75

Significantly Improved 1.77 10.50 3.37 73.42 191.97 281.02

Total 6.11 33.13 18.32 289.30 546.29 893.16
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significant degradation and slight degradation, significant

degradation and stability, and slight degradation and stability

demonstrate inherent tendencies that are relative in nature. The

observed shift from slight to significant improvement indicates a

consistent pattern, providing additional evidence for the positive

impact of ecological restoration initiatives on vegetation in the

mining region. The observed results are consistent with the patterns

of local vegetation evolution. The intensity spectrum encompasses

the fundamental principles governing vegetation growth trends as

well as the dynamic variations in vegetation growth characteristics.

The transition from slight to significant improvement aligns with

the overarching principles governing alterations in vegetation

growth patterns, thus affirming the viability of the intensity

analysis framework and visualization spectrum employed in this

research. The forthcoming analysis will concentrate on conducting

a comprehensive examination of these patterns of change.

3.3.2 Analysis of the transformation pattern from
slight improvement to significant improvement

The primary analysis was centered on examining the

transitional region and variations in the intensity of various types

of vegetation growth trends. In the examination of the intensity

chart pertaining to the transition from slight improvement to
Frontiers in Ecology and Evolution 14169
significant improvement (Figure 12), the dashed line denotes the

uniform transitional intensity expressed as a percentage. When the

transitional intensity surpasses the uniform intensity, it signifies a

preferential focus on gains and losses within a specific growth trend

category. The analysis reveals that the significant improvement

trend type demonstrates a notable expansion in its coverage area,

exhibiting an intensity that surpasses the average level by a

significant margin (0.016%). This is in contrast to the slight

improvement trend type, as depicted in Figure 12A. These

findings suggest a propensity for transitioning from the slight

improvement trend type to the significant improvement trend

type. Furthermore, this transition appears to impede the shift

from the slight degradation trend type and the remaining four

types. In a similar vein, the slight improvement trend type

demonstrates a heightened intensity surpassing the average level

(0.016%) during the transition to the significant improvement trend

type. This suggests a propensity towards transitioning to the

significant improvement, while inhibiting transitions to the

significant degradation trend type and other types (see

Figure 12C). When considering the relative intensity, if each type

transitions to the significant improvement trend type in proportion

to its initial area, the inflow intensities of each type should be equal.

The data reveals that the slight improvement trend type experiences
B

C D

A

FIGURE 12

Intensity analysis of Slightly Improved to Significantly Improved, (A) Transitions to significantly improved absolute intensity, (B) Transitions to significantly
improved relative intensity, (C) Transitions from slightly improved absolute intensity, (D) Transitions from slightly improved relative intensity.
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a relatively higher inflow intensity (0.058%) towards the significant

improvement trend type (Figure 12B). This suggests that there is a

tendency for the slight improvement type to transition into the

significant improvement type with a larger proportion of its area,

resulting in a more substantial impact on the percentage of the

significant improvement type in the study area. In a similar vein, the

type characterized by a slight improvement trend demonstrates a

relatively higher outflow intensity (0.052%) towards the slight

degradation and significant improvement types (Figure 12D).

This suggests a greater increase in the proportions transitioning

to other types, as opposed to the inhibited transition to the stable

type. This implies that the process of transformation has a

substantial influence on the proportion of the significant

improvement category within the study region.

3.3.3 Analysis of the transformation pattern from
stable to slight degradation

The examination of the intensity chart depicting the transition

from stable to slight degradation (Figure 13) reveals that Shendong

Coal Mine exhibits a discernible inclination in the progression from

the stable vegetation growth category to the slight degradation

category. Regarding absolute intensity, it is observed that both the
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inflow from stable to slight degradation and the outflow from stable

to slight degradation exhibit values that are below the average

absolute intensity, specifically 0.023% and 0.022% respectively. This

observation suggests that the size of the transition zone between

stable and slightly degraded types is relatively limited when

compared to other types. This implies that there is an inhibitory

effect in terms of the overall quantity, as depicted in Figures 13A, C.

However, in terms of relative intensity, the slight degradation type

demonstrates a greater inflow from both the stable and significant

degradation types compared to the average level (0.0037%). In a

similar vein, the stable type demonstrates a greater outflow towards

the slight degradation type from both the stable and significant

degradation types compared to the average level of 0.005% (as

depicted in Figures 13B, D). The aforementioned findings

demonstrate a notable inclination towards transitions from the

stable category to the slightly degraded category. It is important to

acknowledge that the inhibitory behavior observed in absolute

intensity does not directly constrain the relative tendency in

terms of intensity. Although the transition area between the stable

type and the slight degradation type is small, it can still exert a

notable influence on the distribution of these types within

the region.
B

C D

A

FIGURE 13

Intensity analysis of Stable to Slightly Degraded, (A) Transitions to slightly degraded absolute intensity, (B) Transitions to slightly degraded relative
intensity, (C) Transitions from stable absolute intensity, (D) Transitions from stable absolute intensity.
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4 Discussion

4.1 The kNDVI index and
spatiotemporal changes

This study provides a comprehensive examination of the spatial

distribution, inter-annual variability, and intensity transitions of the

kNDVI (kernel Normalized Difference Vegetation Index) in the

Shendong Coal Mine area from 2000 to 2020. The analysis is

conducted using the Google Earth Engine (GEE) platform. In

contrast to prior research, the primary emphasis of this paper lies

in the enhancement of vegetation indices and the examination of

spatiotemporal variations in vegetation. The current body of

research primarily relies on NDVI products, primarily derived

from MODIS data, which may not provide an accurate

representation of vegetation changes in mining areas (Li et al.,

2020; Li et al., 2021b; Xu et al., 2022). Nevertheless, the utilization of

kNDVI in this research significantly deviates from the conventional

NDVI approach by effectively addressing the challenge of mixed

pixels. Both the kNDVI and NIRv indices operate within the near-

infrared spectrum. Pixels exhibiting high vegetation coverage

demonstrate a robust association between kNDVI and variables

such as chlorophyll fluorescence. However, this correlation

diminishes as vegetation coverage declines (Zhang et al., 2022;

Ma et al., 2023b; Wang et al., 2023). Yet, the reduction in

correlation observed for kNDVI is comparatively less pronounced

than that observed for NDVI, suggesting that the kNDVI index

exhibits a notable capability in distinguishing reflectance across

various vegetation levels (Ding et al., 2022; Qiu et al., 2022).

Furthermore, the kNDVI metric possesses a robust theoretical

foundation, rendering it straightforward to compute and

implement. Moreover, it holds significant utility in the

examination of both natural and agricultural systems. The index

demonstrates a strong association with GPP and SIF in grasslands,

farmland, mixed forests, and arid areas. This suggests that the index

effectively addresses saturation and mixed pixel challenges that are

commonly encountered by conventional indices (Deng et al., 2020;

Wang et al., 2022a). Moreover, the scope of its application extends

beyond the monitoring of vegetation, encompassing change and

anomaly detection, phenology, and greening research. Furthermore,

this exemplifies the viability and significance of utilizing this index

as a means of monitoring alterations in vegetation restoration

within the Shendong mining area. A comprehensive analysis of

vegetation spatiotemporal changes over a period of 21 years in the

Shendong mining area has been conducted, focusing on the

utilization of the kNDVI index to address saturation effects in

vegetation analysis. The current body of literature predominantly

centers on the examination of spatiotemporal variations in

vegetation within a specific geographic area over an extended

duration (Zhang et al., 2021; Guo et al., 2023). However, there is

a dearth of research investigating vegetation dynamics across

distinct time periods within the same region, as well as the

evolving nature of these changes over time. The Shendong Coal

Mine is situated in a region that serves as a transitional zone

between the Loess Plateau and the Mu Us Desert. This location

renders it a representative mining area of significant importance for
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ecological restoration efforts (Yang et al., 2022a). In order to

evaluate the efficacy of vegetation restoration and elucidate the

temporal evolution of vegetation recovery in Shendong Coal Mine

over a span of 21 years, this study undertakes a comprehensive

analysis of the spatial and temporal patterns as well as the

magnitude of changes in vegetation. Drawing upon prior

research, the objective of this study is to enhance the breadth of

knowledge regarding the fluctuations in vegetation within the

Shendong Coal Mine. By doing so, it aims to contribute valuable

insights that can inform ecological and environmental restoration

endeavors in the area.
4.2 Analysis of factors influencing kNDVI
spatiotemporal changes

The study utilized Sen’s and Mann-Kendall trend analysis to

examine the spatiotemporal variation trend of vegetation coverage

in the research area. The findings of the study revealed a statistically

significant alteration in the extent of vegetation coverage when

implementing the concurrent mining and restoration approach in

the Shendong East mining region. The study area exhibited a

consistent upward trajectory in vegetation coverage from 2000 to

2010, followed by a substantial acceleration in growth from 2010 to

2020. Consequently, there was a notable enhancement in the overall

vegetation coverage. This discovery is consistent with the research

findings of Wu et al. (2023). The recovery of vegetation in the

mining area can be attributed to the successful implementation of

various strategies such as reforestation, grassland enclosure, and

rotational grazing policies in the Shendong East mining area since

2000. These measures have had a positive impact on the restoration

of grassland ecology. The Shendong East mining area is

characterized by its geographical location within a semi-arid and

arid climate zone, which contributes to the presence of a delicate

natural environment and challenging climatic conditions. The

degradation of the ecological environment in this mining area has

been intensified by the large-scale, high-intensity, and multi-layered

mining activities that have been repeatedly conducted. The

intensive mining activities in the region have initiated a cascade

of interconnected consequences, encompassing diverse

environmental and societal concerns. Among these, the

degradation of soil and vegetation has been identified as the most

profoundly affected aspect (Xu et al., 2021). In the Shendong East

mining area, the simultaneous mining and remediation model has

been implemented, incorporating vegetation restoration practices

since the initiation of production in 1985. In light of the recurrent

sandstorms and significant soil erosion observed in the mining

region, early-stage efforts in vegetation restoration involved the

implementation of measures such as grid fixation and sand flow

improvement. These measures were aimed at stabilizing the areas

characterized by mobile sand. Water storage and soil conservation

were accomplished utilizing techniques such as “horizontal ditches”

and “fish-scale pits.” Following this, various models for vegetation

restoration were developed, taking into account the varied

ecological conditions found in different regions (Song et al.,

2022). Liu et al. (2021a) have classified the vegetation restoration
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models in the Shendong East mining area as economic forest,

ecological forest, photovoltaic grassland, and sand control models.

Subsequently, crops and vegetation have been cultivated in

accordance with these models. Following an extensive period of

ecological restoration, the Shendong East mining area has witnessed

a substantial augmentation in vegetation coverage, surging from a

mere 3% to an impressive figure exceeding 64%. The plant

community has undergone a transition from an herbaceous

community primarily governed by Artemisia ordosica to a shrub-

grass community predominantly governed by Hippophae

rhamnoides. The plant species have experienced a substantial

increase in their numbers, expanding from the initial count of 16

to approximately 100. This notable growth has had a significant

impact on the populations of microorganisms and animals. The

enhancement of the existing delicate ecological environment has

been observed (Xu et al., 2023a). Nevertheless, the notable

augmentation in vegetation coverage within the mining region

cannot be exclusively ascribed to artificial ecological restoration

initiatives. Temperature and precipitation are significant factors

that contribute to the promotion of vegetation growth in mining

areas (Yu et al., 2020). In brief, the notable reestablishment of

vegetation within the mining region can be attributed to the

collaborative endeavors of local afforestation initiatives and

climatic influences.
4.3 Limitations and future work

Moreover, this study employs intensity analysis as a means to

further investigate the transformation characteristics exhibited by

various types of vegetation growth trends within the designated

study area. The intensity analysis method was employed to visually

represent the transition patterns of vegetation growth trends in the

region. This analysis revealed distinct tendencies and inhibitions in

the transformation processes of different types of vegetation growth

trends. For example, the trend types of significant improvement and

slight improvement demonstrate an absolute tendency in their

transformations, whereas the trend types of slight and significant

improvement exhibit a relative tendency in their transformations.

The results of this study further confirm the efficacy of the intensity

analysis approach employed, while also offering additional insights

into the comprehension of alterations in vegetation growth within

the research site. Furthermore, through the integration of the

kNDVI trend and the Hurst exponent, this investigation unveils

the long-term viability of alterations in vegetation. The findings

indicate the existence of four distinct sustainability patterns: a

consistent decline, a consistent growth, a decline in the present

with projected growth in the future, and growth in the present with

projected decline in the future. These findings provide additional

evidence of the lack of sustainability and the existence of a positive

correlation between vegetation changes in the study area. Moreover,

they contribute to enhancing our comprehension of the dynamic

processes associated with vegetation changes.

Nevertheless, this study exhibits specific constraints and

deficiencies. The scope of this study was limited to the Shendong

East mining area, which may restrict the generalizability and
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applicability of the research findings. Furthermore, the present

study exclusively utilized remote sensing data for analysis,

without taking into account field data and other relevant factors.

In addition, there was a lack of investigation into the influence of

meteorological factors on the spatial and temporal variations of

local vegetation, as well as a failure to explore the underlying

mechanisms driving these changes. The specific contributions of

human activities and meteorological conditions to the observed

substantial increase in vegetation coverage remain uncertain.

Furthermore, the long-term dynamics of vegetation coverage are

subject to various non-climatic influences, including urban

expansion, construction projects, grazing, and land use changes

(Ma et al., 2023a). Hence, it is imperative for future studies to

integrate field surveys and other pertinent data sources in order to

holistically and precisely elucidate the mechanisms by which coal

mining activities affect vegetation coverage. In addition, it is

imperative to integrate human activities and meteorological

factors into the analysis in order to enhance comprehension of

the spatial distribution of diverse climatic and non-climatic driving

factors. This will ultimately enable a more profound exploration of

the correlation between coal mining activities and vegetation

ecological environments.
5 Conclusions

The analysis focused on the spatiotemporal pattern of

vegetation kNDVI in the Shendong mining area from 2000 to

2020, utilizing Landsat kNDVI data. This examination provided

insights into the sustainability and intensity of evolution in

vegetation change trends. The findings indicated a consistent

upward trajectory in kNDVI values throughout the span of 21

years. The implementation of ecological restoration initiatives

resulted in a significant improvement of kNDVI throughout the

entire region. Specifically, during the period from 2010 to 2020,

there was a notable and swift growth rate of 0.013 per annum. The

analysis of vegetation coverage in the mining area using the Theil-

Sen median trend and Mann-Kendall tests demonstrated a

noteworthy enhancement in vegetation growth over the course of

the previous two decades. Specifically, the vegetation now

encompasses 89.47% of the total area, while only 2.74% of the

area has experienced degradation. In general, there was a notable

upward trajectory observed in the vegetation coverage within the

mining region. The examination of various stages indicated that

during the period from 2000 to 2010, there was primarily a marginal

enhancement trend, constituting approximately 54.83% of the

observed data. Conversely, from 2010 to 2020, a substantial

improvement trend emerged as the prevailing pattern,

encompassing approximately 61.16% of the analyzed data. In

general, there was a transition in the vegetation dynamic trend

from a slight improvement to a significant improvement.

Despite observing a general improvement and notable

enhancement in vegetation within the mining region, analysis of

the Hurst index distribution reveals that approximately 40.12% of

the area is projected to experience unsustainable vegetation growth

in the coming years. Consequently, the vegetation in these regions
frontiersin.org

https://doi.org/10.3389/fevo.2023.1344664
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chen et al. 10.3389/fevo.2023.1344664
will experience a distinct transformation from its initial state of

growth. Upon analyzing the vegetation growth patterns, a majority

of the studied regions displayed an upward trajectory. However,

certain areas that exhibited an initial increase in vegetation are

projected to experience a decline in the future. These areas

encompass a landmass of 349.22 km2, accounting for

approximately 39.10% of the overall mining area. Moreover, the

transformation characteristics and transition intensities of

vegetation growth trends in the Shendong mining area during the

periods of 2000-2010 and 2010-2020 were visually depicted within

the framework of intensity analysis. As an illustration, the shift from

a slight to a significant increase demonstrated a consistent pattern,

whereas the shift from a substantial increase to a slight increase

displayed an unequivocal pattern. The observed characteristics

suggest that the vegetation within the mining site exhibits a

degree of adherence to the principles of ecological restoration

during the mining process.
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Liupanshui City in Guizhou Province represents a karstmountainous regionwith a
delicate geological environment. The area has a long history of coal mining, and
several coal mines have been progressively closed in recent years. However, even
after closure of coal mines, the fractured rock mass in the mined-out areas
continues to undergo deformation over a specific period. In karst mountainous
regions, this deformation is affected by various factors including elevation, slope,
precipitation, and vegetation. In this study, we employed SBAS-InSAR technology
to construct a time series of surface deformation data from January 2019 to May
2022 within Liupanshui City’s LuJiaZhai-DaPingDi Minefield. Subsequently, this
data was comprehensively analyzed in conjunction with time series vegetation
cover, monthly precipitation, elevation, and slope data from the identical period.
The key findings of this research are as follows: 1) After the closure of the mine,
the subsidence area gradually stabilized, yet the volume of subsidence continues
to increase. The subsidence area primarily occurs near the MaiZiGou Coal Mine
air-mining area, which had a relatively short closure time, as well as in higher
elevation areas in the southern and eastern parts of theminefield. Specifically, the
maximum cumulative subsidence and the subsidence rate during the study
period reached −60.3 mm and −21.83 mm/a, respectively. 2) Surface
deformation is closely linked to slope, vegetation type, and rainfall, with
subsidence rates and amounts noticeably higher during the rainy season than
in the dry season. 3) Surface vegetation cover types display varied effects on
deformation, with grassland or shrub areas being more sensitive to precipitation
than forests. Forests, especially pine and fir, show a delayed subsidence response
to rain, typically 2–3 months post-rainy season onset. This inhibitory effect
lessens with increasing slope, particularly beyond a 25° threshold, where
responsiveness to precipitation and associated subsidence significantly
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increase. The findings of this study hold substantial scientific implications for the
restoration and management of closed mining areas, as well as the prevention of
geological hazards in karst complex mountainous regions.

KEYWORDS

SBAS-InSAR, mine closure, karst collapse, deformation monitoring, slope, precipitation,
vegetation cover type

1 Introduction

Karst landscapes are widespread throughout China. Specifically,
soluble rocks of Karst landscapes cover over an expansive area of up
to 365 × 104 km2, which accounts for more than one-third of the
national territory (Sun et al., 2023). Guizhou Province stands out as
the region of Karst landscapes due to its extensive development of
carbonate rocks and the thickest exposure, predominantly
composed of limestone and dolomite, resulting in the formation
of representative karst landforms (Chu et al., 2015). Additionally,
Guizhou Province is characterized by significant coal resources,
making it one of the southern Chinese regions with abundant coal
reserves. The primary coal-producing areas are located within the
zone of karst landscape development. The complex terrain and
fragile geological environment of this karst mountainous region (Shi
and Zhang, 2023), coupled with years of coal mining, have
exacerbated surface deformation issues. Furthermore, large-scale
landslides and collapses frequently occur, causing severe casualties
and property losses (Wang et al., 2020; Chen H. et al., 2022; Zhong
et al., 2022; Zhao Q. et al., 2023).

Coal, as a vital energy source (Yu et al., 2021), is extensively
utilized in industrial production and electricity generation,
remaining a primary source of energy in many countries (Chen
et al., 2020). China, with its abundant coal reserves and limited oil
resources, heavily relies on coal as a fundamental energy source and
essential rawmaterial (Chen B. et al., 2023), accounting for over 60%
of primary energy consumption (Deng et al., 2022). However, the
exploitation of coal resources has given rise to significant geological
environmental challenges, particularly concerning long-term coal
mining in the fragile surface environments of karst complex
mountainous regions. Prolonged coal mining activities can lead
to ground subsidence, damage to surface structures, and the
occurrence of geological hazards such as ground fissures,
landslides, and surface collapses. These hazards pose severe
threats to the productivity and safety of local communities, as
well as the construction and operation of critical national
infrastructure such as power grids and transportation routes
(Zhu Q. et al., 2019; Li et al., 2019; Li et al., 2021). In the 1980s,
China experienced a substantial demand for coal resources, resulting
in a rapid increase in the number of coal mines inmining cities. Over
time, the intensive and large-scale extraction of coal resources has
led to resource depletion in certain areas. Furthermore, recent
adjustments to China’s energy structure and the implementation
of supply-side structural reforms have prompted the consolidation
and closure of small, scattered, and disorderly coal mines,
significantly increasing the number of closed coal mines in the
country. The closure of these mines leaves behind a considerable
amount of land resources, leading to various issues related to
resources, environment, safety, and society, which have gradually

become apparent (Hu and Yan, 2018; Chen Z. et al., 2022; Li et al.,
2022). The transformation, redevelopment, and management of the
ecological environment of these closed mines have become a critical
concern for the sustainable economic and social development of
resource-based cities. Once a mine is closed, the rock mass of the
coal seam undergoes weathering deterioration and a reduction in
strength due to factors such as stress and groundwater.
Consequently, the stress and bearing capacity of the rock mass,
disrupted by mining activities, change, often resulting in secondary
subsidence of the air-mined area and the surrounding ground
surface (Chen B. et al., 2022). This deformation, particularly in
complex karst mountainous regions, tends to exhibit complex,
concealed, sudden, and long-term characteristics, posing potential
threats to the mining area and its surrounding engineering
construction and mining geological environment. Therefore,
there is an urgent need for comprehensive, long-term, and high-
precision monitoring of subsidence in closed mines. Furthermore, it
is crucial to explore the intricate relationship between surface
deformation in closed mining areas and variables such as
elevation, slope, precipitation, and vegetation cover. This
exploration serves as a vital prerequisite for conducting ecological
restoration and management of mining areas.

Despite high precision in subsidence monitoring, traditional
methods such as precise leveling measurements (Wang, 2013), GPS
measurements (Zhao and Zhu, 2020), and crack gauges (Bai et al.,
2020) suffer from limitations such as low point density, providing
only discrete subsidence data in well-explored deformation areas.
Moreover, these methods are characterized by long observation
cycles, high costs, lower efficiency, and struggle to meet the
increasing demand for regional subsidence monitoring. In
contrast, Interferometric Synthetic Aperture Radar (InSAR)
technology has gained widespread adoption for surface
deformation monitoring due to its advantages such as all-weather
capability, extensive coverage, high precision, and cost-effectiveness
(Zhu et al., 2017; Yang et al., 2020). Nevertheless, in mining areas,
the presence of dense surface vegetation and significant mining-
induced deformations often results in decreased coherence of SAR
interferograms (Zhu J. et al., 2019). This presence poses a challenge
for conventional differential InSAR (D-InSAR) techniques, making
it difficult to achieve optimal results in deformation monitoring in
mining areas. To address this challenge, mining area InSAR
monitoring has transitioned from D-InSAR to time series
interferometric synthetic aperture radar (TS-InSAR). TS-InSAR
effectively mitigates the challenges associated with D-InSAR,
including spatial-temporal decorrelation, DEM errors, and
atmospheric delay disturbances, while conforming to the
requirements for prolonged dynamic monitoring in mining areas
(Du et al., 2017; Tang et al., 2021; Liu et al., 2022). Noteworthily,
existing research employed two primary techniques for mining area
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deformation monitoring based on TS-InSAR, including the phase
stacking method (Zhang et al., 2021) and the small baseline subsets
InSAR (SBAS-InSAR) (Berardino et al., 2002). Both of the
aforementioned techniques are well-suited for long-term
deformation monitoring in mining areas and have gained
widespread use in subsidence monitoring. Zhang et al. (2016)
utilized the Stacking InSAR method to monitor subsidence in the
Pei Bei mining area, such that this method is confirmed to be
effective in large-scale deformation monitoring. Based on Sentinel-1
data, Zhang et al. (2018) employed a novel TOPS imaging mode
Stacking technique to analyze ground subsidence characteristics in
the Huainan mining area, achieving excellent monitoring results.
Their work also underscored the advantages of the Sentinel-1
satellite constellation, with its short revisit cycle and wide
coverage, making it particularly suitable for subsidence
monitoring in mining areas with expansive subsurface regions.
Similarly, Xu et al. (2022) applied three InSAR techniques based
on Sentinel data to extract mining-induced deformations in the
Datong Coalfield from November 2020 to October 2021. The results
suggested that both Stacking InSAR and SBAS InSAR outperformed
D-InSAR, with SBAS InSAR providing more precise displacement
rate results. Notably, Stacking InSAR exhibited superior
performance in densely vegetated or low-coherence regions.

The Liupanshui region boasts abundant coal resources and a
longstanding mining history. Researchers have successfully utilized
InSAR technology to investigate surface deformation in this region.
Zhu et al. (2022) employed Stacking InSAR technology, alongside
multi-temporal optical remote sensing images, stratigraphy, and
geomorphology, to identify 588 active landslides in western
Guizhou for the first time. These landslides, primarily mining-
induced (91.8%), reservoir bank-induced (4.1%), and reactivated
ancient ones (2.4%), underscore the profound impact of coal
mining on regional landslides, especially in steep, elevated areas.
Wu et al. (2021) applied SBAS InSAR technology using Sentinel-1
radar images for extensive surface deformation monitoring in
Liupanshui, Tongren, and Guiyang, Guizhou, identifying
102 hazard areas. Using optical images, they identified
72 deformation areas from mining or construction, along with
16 landslides and 14 suspected landslides. Chen L. et al. (2023)
utilized the Intermittent Small Baseline Subset (ISBAS) method
with Sentinel-1 images to determine Guizhou’s surface deformation
rate, mapping 693 active landslides. They noted a significant
correlation between landslide distribution and factors such as
altitude, slope, and coal-bearing strata. The aforementioned
researchers have effectively utilized InSAR technology for a
comprehensive surveillance of Guizhou’s landslides, providing
crucial insights into the macroscopic distribution of surface
deformation in the area. Furthermore, researchers have examined
and analyzed the destabilization mechanisms behind typical mining-
induced landslides in the region (He et al., 2022; Zhao C. et al., 2023;
Chen H. et al., 2023; Li et al., 2023). Literature review suggests that
research primarily concentrates on extensive landslidemonitoring and
analyzing deformation and destabilization mechanisms of typical
mining-induced landslides in Guizhou’s Liupanshui area. Reports
on surface deformation of closed mines in this region are scarce.
Recent studies on closed mines predominantly focus on long-term
monitoring, subsidence trends, and post-closure mechanism analysis
in plain areas (Deng et al., 2015; Yu et al., 2021; Liang and Hu, 2022;

Qin et al., 2022; Zhang et al., 2023). At present, the majority of
researchers have primarily concentrated on long-termmonitoring and
the analysis of subsidence trends and mechanisms after mine closure.
Nevertheless, in the karst mountainous regions of southwestern
China, factors (e.g., high altitudes, steep slopes, concentrated
precipitation, and diverse vegetation types) complicate the
subsidence patterns in closed mines. These mines not only
experience the effects of underground goaf areas but are also
affected by the mentioned environmental factors. Therefore,
investigating the complex relationship between surface deformation
within closed mining areas and multiple influencing factors in this
region holds significant practical importance.

LiuPanshui City, renowned as the primary “Coal Capital of
South China,” possesses abundant coal reserves and occupies a
significant position as a major coal-producing city in Guizhou
Province and even China. The coal mines in this region are
predominantly located in high-altitude areas characterized by
complex geological formations, including karst mountains.
Extensive coal mining activities over the years have exacerbated
surface deformations, resulting in the emergence of geological
hazards such as ground fissures, landslides, and subsidence (Fang
et al., 2016; Wu et al., 2021). In recent times, LiuPanshui City has
closed several coal mines, prompting this study to focus on the
LuJiaZhai-DaPingDi Minefield as a representative case. Leveraging
100 scenes of Sentinel-1 ascending orbit data spanning from January
2019 to May 2022, the study employs the Small Baseline Subset
(SBAS) InSAR technique to continuously monitor surface
deformations in four closed mines within the region.
Subsequently, the research investigates the intricate relationships
among elevation, slope, vegetation coverage, monthly precipitation,
and surface deformations. The outcomes of this investigation can
serve as a valuable foundation for decision-making pertaining to
ecological restoration, judicious land reuse, and the prevention of
geological hazards in closed mining areas.

2 Study area and data sources

2.1 Study area overview

The study area encompasses the LuJiaZhai-DaPingDi Minefield
(Figure 1), located in the western region of Liupanshui City,
Guizhou Province. The mining area’s central coordinates are
104°31′37.2″E, 25°59′45.6″N. It falls into the transitional slope
zone from the Yunnan Plateau to the central Guizhou mountain
area, and is characterized as a typical southwestern karst mountain
region. The terrain in this area is intricate, featuring expansive
canyons, towering peaks, steep slopes, and deep valleys. It exhibits
poor stability and limited resistance to interference. The elevation
within the region ranges from 1,501 to 2048 m, with a relative height
difference of 547 m. The slopes are notably steep, of which the
steepest slope reach 88.27 degrees. The mining area comprises
MaiZiGou Coal Mine, LongTouShan Coal Mine, FuGuiZhuang
Coal Mine and BaiPing Coal Mine, which have a long history of
mining but are currently closed, with the time of mine closure
depicted in Figure 1D.

The strata present in the mining area demonstrate a
characteristic geological pattern known as “hard on top, soft
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below.” These formations can be classified into three distinct rock
types: hard rock, interbedded hard and soft rock, and soft rock. The
hard rock category encompasses the Guanling Formation from the
Triassic period and the Emeishan Basalt Formation from the
Permian period. These formations consist of limestone, dolomite,
and dolomitic limestone, which are characterized by their hardness,
brittleness, and high mechanical strength. However, unfavorable
slope conditions can lead to deformation and collapse in these rocks.
The interbedded hard and soft rock category includes the
Yungningzhen Formation from the Triassic period. This
formation comprises thin to medium-thickness layers of
limestone, dolomite, shale, sandstone, and mudstone. These rocks
exhibit variable lithological properties and complex combinations.
The presence of karst development, active groundwater flow, high
mechanical strength of carbonate rocks, and resistance to
weathering contribute to their stability. Nevertheless, the
existence of weaker interlayers can result in landslides and other
geological hazards under unfavorable slope conditions. The soft rock
category consists of the Feixianguan Formation from the Triassic
period and the Longtan Formation from the Permian period. These
formations consist of thin to medium-thickness layers of mudstone,
sandy mudstone, siltstone, sandstone, shale, and coal seams. These
rock formations are highly susceptible to disturbances caused by
mining activities and exhibit weak resistance to weathering. They
tend to soften when exposed to water, leading to poor stability.
Under unfavorable slope conditions, these rock formations are
prone to landslides, collapses, and other geological hazards.

2.2 Data sources

The study employed Sentinel-1 ascending orbit satellite data to
cover the study area. Sentinel-1 is a radar satellite equipped with a
C-band radar sensor and is part of the European Space Agency’s
Copernicus program. The Interferometric Wide (IW) imagery mode
and Single Look Complex (SLC) data format were utilized. The data
was collected with HH polarization and had a spatial resolution of
5 m × 20 m. The dataset spanned from January 2019 to May 2022,
comprising a total of 100 scenes. This dataset was utilized to construct
a time-series of deformation information within the study area. To
enhance data accuracy, AW3D30 Digital Surface Model (DSM) data
was used for terrain phase correction. Geocoding of the data was
performed using SAR imagery, following the methodology described
by Yang et al. (2021). Systematic errors resulting from orbital
inaccuracies were mitigated using Precise Orbit Ephemerides
(POD) data. Landsat8 OLI remote sensing images, provided by the
USGS, were used to extract Fraction of Vegetation Coverage (FVC)
information for the same time period. The extraction of FVC
information was conducted on the Google Earth Engine platform.
This involved using Landsat OLI remote sensing images from January
2019 to 2022 and calculating the Normalized Difference Vegetation
Index (NDVI) based on the image element dichotomous model. The
Landsat OLI remote sensing images from January 2019 to May
2022 were utilized to calculate the monthly NDVI for the study
area, and subsequently, the time-series FVC of vegetation cover was
calculated based on the image element dichotomous model (Adams

FIGURE 1
Overview of the Study Area and Mine Closure Time. ((A) illustrates the study area’s schematic location, (B) its altitude, (C) its slope, and (D) the coal
mining rights and mine closure times).
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et al., 1986). Furthermore, ASTER Global Digital Elevation Model
(GDEM) data from NASA was utilized to obtain elevation and slope
information for the study area. Monthly average precipitation data for
the study area was obtained from the China Meteorological Data
Network. Further details regarding the data sources can be found in
Table 1. To synchronize the InSAR cumulative deformation, FVC,
and monthly rainfall data for time series analysis, we computed both
the monthly cumulative deformation and FVC data, with the month
serving as the measurement unit.

3 Research methods and technical
principles

3.1 SBAS-InSAR technology principlesw

The small baseline subsets InSAR (SBAS InSAR) technique,
initially introduced by Berardino et al. (2002) in 2002.

The fundamental principle of this technique assumes the
collection of S Synthetic Aperture Radar (SAR) images, denoted
as (t1, t2,/, ts), with the study area covered. Among this collection,
one SAR image from the middle of the sequence is selected as the
master image. The remaining S − 1 SAR images are then registered
and sampled. This process results in the creation of M
interferometric pairs, in accordance with the following (Eq. 1):

S

2
≤M≤

S S − 1( )
2

(1)

In general, vertical baseline thresholds and time baseline
thresholds are established based on actual conditions to limit the
range ofM values. This approach can mitigate the adverse effects of
excessive vertical and temporal baselines that can induce coherence
loss (Li et al., 2013). To calculate the differential interferometric
phase, for the j interferogram, which is derived from SAR image
interferometry acquired at two distinct times, denoted as tA and tB
(tA < tB), the differential interferometric phase of the pixel located at
distance coordinate r in the range direction and azimuth coordinate
x is given by Xiao et al. (2019) as follows (Eq. 2):

δφj x, r( ) � φ tB,x, r( ) − φ tA, x, r( ) ≈ 4π
λ

dtB − dtA( ) + Δφtop,j

+ Δφatm,j + Δφnoise,j (2)

Where λ denotes the radar wavelength, dtB and dtA represent the
cumulative shape variables thought to be the starting value of tA
corresponding to the corresponding moment, Δφtop,j expresses the
residual terrain phase difference, Δφatm,j is the atmospheric delay
phase difference, and Δφnoise,j is the noise phase difference. After
removing the phases other than the shape variables, the
interferometric phase simplifies to:

dtB − dtA � Vi tB − tA( )
Where Vi represents the deformation rate from tA to tB time period.
The phase of the differential interferogram after the resulting de-
entanglement can be expressed by the matrix as:

Av � δφ

Where A represents an m × s matrix, which, when subjected to
Singular Value Decomposition (SVD), provides the average
deformation rate for each time period (Dong et al., 2022).

In this study, the processing of Sentinel-1 data involved
multi-view processing with spatial resolutions of 23.8 m ×
28.0 m in the range and azimuth directions, respectively, using
a 10 × 2 multi-view ratio. The differential interferometric
combinations employed a maximum time interval of 48 days
and a maximum vertical baseline of ±250 m. This resulted in a
total of 416 interferometric pairs acquired from ascending orbit
data. The differential interferometric processing was performed
on these combinations, leading to the generation of differential
interferograms and coherence coefficient maps. To mitigate
phase noise, an adaptive filtering method was applied.
Subsequently, phase unwrapping was carried out on the
filtered interferograms, utilizing the Minimum Cost Flow
(MCF) method for this purpose. After error removal, the
phase unwrapping results underwent Stacking and Small
Baseline Subset (SBAS) processing to obtain deformation rates
and time-series results.

TABLE 1 Data details.

Data type Data
track

Date of
data

Incident
angle/°

Resolution/
m

Source

Sentinel-1 Ascending
track

2019.01-
2022.05

37.03 5 × 20 European Space Agency (https://search.asf.alaska.edu/)

Landsat OLI — 2019.01-
2022.05

— 30 United States Geological Survey (https://glovis.usgs.gov/)

AW3D30 DSM — 2011 — 30 Japan Aerospace Exploration Agency (https://www.eorc.jaxa.jp/
ALOS/en/aw3d30/data/index.htm)

ASTER GDEM — 2013 — 30 National Aeronautics and Space Administration (https://search.
earthdata.nasa.gov/search)

Precise Orbit
Ephemerides data

— 2019.01-
2022.05

— — European Space Agency (https://scihub.copernicus.eu/gnss/)

month average rainfall — 2019.01-
2021.12

— — china meteorological data service center (https://data.cma.cn/)
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3.2 Stacking technology principles

Stacking refers to a technique (Sandwell and Price, 1998) used to
perform a weighted average solution on multiple differential
interferograms acquired through the Differential Interferometric
Synthetic Aperture Radar (D-InSAR) method. This process is aimed
at obtaining linear phase deformation rates to mitigate the influence
of spatially uncorrelated noise. The solution format can be expressed
as follows (Eq. 3):

ph rate � ∑n
i�1Δti*phi( )
∑n

i�1Δt2i
(3)

Where ph rate represents the linear phase deformation rate, Δti
stands for the time baseline of the i set of differential interferograms,
phi represents the unwrapped phase value of the i differential
interferogram.

4 Results and analysis

4.1 Subsidence rate results and
accuracy analysis

Using SBAS-InSAR technology, we obtained radar line of sight
(LOS) deformation rates (Figure 2) and cumulative time-series
deformation results (Figure 4) for four closed mines in the
LuJiaZhai-DaPingDi Minefield in Liupanshui City from January
2019 to May 2022. In these figures, positive values indicate vertical
surface uplift (i.e., along the LOS), while negative values represent
vertical subsidence (i.e., along the LOS). As depicted in Figure 2, during
the study period, significant deformation was observed in the
northeastern and southwestern parts of the mining area. The
maximum annual average subsidence rate and the maximum uplift
rate within themining area, located in the western and southern regions
of the MaiZiGou Coal Mine, were determined as −21.83 mm/year and
8.13 mm/year, respectively. In the western part of the MaiZiGou Coal

Mine, a prominent subsidence center was observed, with subsidence
rates irregularly spreading out in an elliptical pattern from the center.
This subsidence was notably higher than the other three mines. The
overall subsidence within the mine was oriented in an “east-west”
direction, primarily affected by the closure time of the mine and the
distribution of old goaf areas. The MaiZiGou Coal Mine was closed in
December 2019 but was still operational in 2019, resulting in higher and
concentrated subsidence rates in the western part of the mine.
Furthermore, multiple subsidence centers were observed in the
southwestern part of the mining area, which were distributed in a
“northwest-southeast” direction, of which the maximum subsidence
rate was determined as −15.13 mm/year.

It is imperative to assess the reliability of the monitoring results
before the analysis of the results of ground subsidence monitoring.
Currently, there are two commonly used accuracy validation methods:
internal consistency accuracy validation and external consistency
accuracy validation. Due to the lack of concurrent ground-based
monitoring data, this study employs the internal consistency
accuracy validation method. This method involves cross-validating
the subsidence rate results extracted by two different algorithms to
investigate the reliability of the surface subsidence monitoring results.
Using the SBAS technique to extract Line of Sight (LOS) deformation
rates in the study area as the X-axis and the LOS deformation rates
extracted by the Stacking technique as the Y-axis, a scatter density plot
was created, as presented in Figure 3. The correlation coefficient (R2)
between the LOS deformation rates for corresponding points obtained
by the two methods was 0.7017, indicating a high degree of correlation
between the deformation rates obtained by the two InSAR techniques in
the study area, thus validating the reliability of the subsidence
monitoring results in the study area.

To evaluate the extent of ground subsidence development in the
study area, this research classifies the ground subsidence rates into four
distinct categories, as outlined in Table 2. During the period spanning
from January 2019 to May 2022, the LuJiaZhai-DaPingDi Minefield
exhibits the following tiers of ground subsidence: Areas experiencing
subsidence rates below −15 mm/year are classified as regions with a

FIGURE 2
Average annual deformation rate of closed mines in LuJiaZhai-DaPingDi Minefield.

Frontiers in Earth Science frontiersin.org06

Huang et al. 10.3389/feart.2023.1353593

181

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1353593


high degree of ground subsidence development, constituting a mere
0.29% of the overall mining area. Subsidence rates ranging
from −15 mm/year to −5 mm/year indicate regions with a moderate
level of ground subsidence development, encompassing approximately
19.34% of the total mining area. Regions with subsidence rates falling
between −5 mm/year and 5 mm/year denote areas with relatively stable
ground subsidence development, representing the largest portion,
accounting for 79.55% of the entire mining area. Areas exhibiting
subsidence rates exceeding 5 mm/year are categorized as uplifted
regions, comprising a mere 0.82% of the total mining area. This
classification system serves as a valuable tool for evaluating and
characterizing the extent of ground subsidence development in the
study area, enabling a comprehensive understanding of the spatial
distribution of subsidence and uplift patterns within the mining region.

The results indicate that, following the closure of the mines, the
overall proportion of surface deformation areas within the LuJiaZhai-
DaPingDi Minefield is relatively high. Except for the relatively stable
areas, the combined area of other subsidence development levels
accounts for 20.45% of the total mining area.

4.2 Spatial and temporal distribution analysis
of surface deformation in the mining area

This study aimed to analyze the spatiotemporal distribution
patterns of surface deformation in various closed mines and the
mining area. To accomplish this, the study utilized acquired

subsidence rates and performed temporal integration to assess
the cumulative subsidence over time in the study area (Figure 4).
Nine equally spaced time intervals were selected to represent the
cumulative subsidence for each period.

Figure 4 demonstrates that the distribution of cumulative
subsidence aligned with the subsidence rates. Overall, the region’s
different mines underwent varying degrees of deformation. The
highest cumulative subsidence was observed in the MaiZiGou Coal
Mine, measuring −60.3 mm, while the maximum uplift was reported
in the southern part of the study area, with a magnitude of
34.17 mm. During the study period, the MaiZiGou Coal Mine
was operational in 2019 but closed by the year’s end. However,
deformation persisted even after closure, expanding from the goaf
area to the surrounding regions. The maximum cumulative
subsidence and uplift reached −60.3 mm and 21.45 mm,
respectively. The FuGuiZhuang Coal Mine ceased operations in
June 2018. Within the study period, this mine experienced a
maximum cumulative subsidence of −23.48 mm and an uplift of
22.82 mm. Subsidence primarily affected the higher-altitude western
area of the mine. Although cumulative subsidence increased over
time, deformation in this mine stabilized, with limited diffusion. The
LongTouShan Coal Mine closed in February 2015. Its western part
remained relatively stable without significant deformation, while the
eastern part experienced cumulative subsidence of −24.18 mm and
uplift of 19.71 mm, influenced by the MaiZiGou Coal Mine. The
BaiPing CoalMine closed in August 2015.Within its boundaries, the
maximum cumulative subsidence and uplift were −21.86 mm and
22.44 mm, respectively. Deformation in this area remained relatively
stable, primarily concentrated in the higher-altitude northeastern
region of the mine, with ongoing deformation.

Notably, two distinct subsidence clusters were observed near the
closed mines. One cluster was located in the southwestern part of the
mining area, while the other was found in the eastern region,
characterized by higher altitudes and steeper slopes. These
clusters experienced cumulative subsidence and uplift
of −49.93 mm and 27.95 mm, respectively. Figure 4 indicates that
the extent and magnitude of deformation within these areas
continued to expand throughout the study period. Although the
range of deformation stabilized byMay 2022, the deformation values
were still increasing, indicating ongoing subsidence beneath the
surface with future persistence.

The study also included two profile lines for the LuJiaZhai-
DaPingDi Minefield, one in the longitudinal direction and the other
in the transverse direction (Figure 1D). These profile lines were
strategically positioned to intersect areas with significant subsidence.
Subsidence rates and elevation values were then extracted from these
profiles. Figure 5 illustrates an overall negative correlation between

FIGURE 3
Correlation Analysis of Common Points between SBAS and
Stacking Techniques.

TABLE 2 Ground subsidence levels in the LuJiaZhai-DaPingDi minefield.

Subsidence rate/(mm/a) Subsidence level Area proportion/(%)

<−15 High Subsidence Area 0.29

−15–−5 Moderate Subsidence Area 19.34

−5–5 Relatively Stable Area 79.55

>5 Uplifted Area 0.82
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subsidence rates and elevation. This suggests that as elevation
increases, surface deformation becomes more frequent and
exhibits a fluctuating decreasing trend. In contrast, as elevation
decreases, subsidence rates decrease and tend to stabilize. In the
northern section of Profile Line D, influenced by the closure time of
the MaiZiGou Coal Mine, a “V”-shaped curve became evident
around the profile line points near 100.

The findings of this study indicate that surface deformation
within the closed mining area is influenced not only by the timing of
mine closures but also by the elevation of the region. This correlation
can be attributed to the study area’s characteristics as a typical karst
mountainous region, where high elevations and significant
topographic variations are prevalent. These high-elevation areas
are often characterized by steep slopes and deep valleys. Due to
external factors such as precipitation, these regions are more
susceptible to complex and concealed surface deformation.
Additionally, elevation plays a role in determining the types of
vegetation covering the surface. Different vegetation types exert
diverse effects on slope stability (Asada and Minagawa, 2023).
Consequently, this study places particular emphasis on
investigating the interconnected relationship between surface
deformation, elevation variations, slope characteristics, vegetation

distribution, and precipitation patterns following mine closures
within karst regions.

4.3 Analysis of surface deformation at
different elevation gradients and slope levels

To conduct a comprehensive analysis of surface deformationwithin
a mining area in a complex karst region following mine closures at
various elevations and slopes, and to investigate the interplay between
surface deformation, precipitation patterns, and vegetation coverage,
this study employed two sets of deformation feature points for cross-
validation purposes within the designated study area. The selection of
these feature points aimed to minimize the influence of anthropogenic
activities, such as urban areas and croplands, on surface deformation.
Figure 1B illustrates the deformation feature points at different
elevations (points a to l), while Figure 1C displays the feature points
at various slopes (points m to x). The primary objective of this research
is to examine the relationship between surface deformation within a
mining area in a typical karst region after mine closures, considering
different elevations and slopes, as well as its interaction with
precipitation and vegetation coverage.

FIGURE 4
Temporal Cumulative Subsidence in the Lu LuJiaZhai-DaPingDi Minefield for Closed Mines (reference time: 2019-01-09).
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Figure 6 presents time series curves depicting the deformation
patterns at different elevations, ranging from 1566 m to 2022 m. The
subsidence trends for these points consistently exhibit fluctuating
downward movement. Among these points, the maximum
cumulative subsidence is −31 mm (point c), while the minimum
is −16 mm (point f), with the remaining points falling within
the −20 mm to −30 mm range. Precipitation in the study area is
concentrated between May and October, while vegetation coverage
is particularly high from June to September. Generally, the
subsidence values at these points display a systematic response to
precipitation. During the rainy season, subsidence rates and
magnitudes increase significantly, whereas during the dry season,
the points tend to experience sliding or uplift. Notably, points a, c, d,
and e exhibit a more rapid response to precipitation, showcasing
significant subsidence early in the rainy season as precipitation
accumulates. In contrast, points b and f demonstrate a delayed
response, with noticeable subsidence occurring two to 3 months
after the onset of the rainy season.

Precipitation is a significant contributing factor to surface
deformation and geological hazards, such as landslides and
collapses, particularly when precipitation is prolonged and heavy
(Zhang et al., 2020; Wang et al., 2022; Ma et al., 2023; Pei et al.,
2023). In the designated study area, precipitation is concentrated
within specific periods, with substantial amounts recorded. Monthly
average precipitation at the deformation points from May to
October can reach as high as 1887 mm, and certain months
exhibit maximum monthly precipitation of up to 3,586 mm. The
unique geological conditions in this area, characterized by a layered
structure of hard rock atop soft rock and the presence of coal seams

in the Longtan Formation (P3l) underlying the mountains, have
been disrupted by past coal mining activities, resulting in the
formation of fractures. Consequently, precipitation plays a
significant role in surface deformation and the development of
geological hazards in this region. Figure 6 demonstrates that
subsidence is more pronounced during the rainy season. This can
be attributed to twomain factors. Firstly, heavy precipitation leads to
surface soil erosion and extensive infiltration through rock fractures,
resulting in the softening of rocks and soils, increased water content,
and added weight to the slopes. Prolonged precipitation further
saturates the soft rock layers, significantly reducing their shear
strength and resistance to sliding along contact surfaces. The
combination of increased material weight and slope gradient
accelerates surface subsidence. Secondly, the study area exhibits
typical characteristics of a complex karst mountainous region, with
underlying fractured rock bodies and well-developed joint and
fracture networks influenced by tectonic movement. Previous
coal mining activities have created pathways for atmospheric
precipitation to penetrate the rock mass. Prolonged precipitation
intensifies dissolution processes, leading to the formation of
numerous karst fissures and conduits. These geological features
reduce the stability of the mountain mass and trigger surface
deformation.

In general, a scarcity of vegetation coverage leads to a relatively
exposed surface with limited capacity for retaining soil, rendering it
more vulnerable to subsidence during prolonged and heavy
precipitation (Jacquemart and Tiampo, 2021). Conversely, high
vegetation coverage indicates the presence of well-established
surface vegetation, which enhances the soil’s ability to retain its

FIGURE 5
Profile of Subsidence Rate and Elevation. [(A–D) depict the subsidence rates and elevations for cross-section lines (A) through (D), respectively].
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structure. However, despite the substantial vegetation coverage
during the rainy season, significant surface subsidence persists in
the study area, indicating a robust response of surface deformation
to precipitation. Additionally, it is important to note that vegetation
coverage solely reflects the extent of surface vegetation and does not
consider the specific types of vegetation present. Different vegetation
types have varying impacts on soil retention capacity (Zhang et al.,
2020). Among the deformation points presented in Figures 6A–F,
with the exception of deformation point d, which has a slope of 33°,
the other deformation points exhibit similar slopes ranging from 11°

to 19°. Deformation points b and f demonstrate distinct deformation
patterns compared to other feature points. These points are
predominantly covered by dense coniferous trees, including tall
species such as fir and pine. The presence of these tree species,
characterized by expansive canopies and deep-rooted systems, plays
a crucial role in stabilizing the soil structure, thereby reducing soil
loosening and collapse. Furthermore, the dense canopies of fir and
pine trees act as effective buffers during precipitation, mitigating the
impact of precipitation on the soil. Moreover, the accumulation of
fallen branches and leaves on the ground resulting from these trees
significantly decelerates water flow and erosion, contributing
positively to soil and water conservation efforts.

Although deformation points a, c, d, and e have relatively high
vegetation coverage, they exhibit a more rapid response to
precipitation. Typically, with the increase in precipitation during
the early part of the rainy season, these deformation points
experience a significant increase in subsidence. The primary
reason for this behavior is that the surface coverage in these
deformation points mainly consists of shrubs and grassland.
Compared to large trees (such as fir and pine trees), the surfaces
with shrubs and grassland are more vulnerable to the impact and

erosion of heavy rain, leading to soil loosening and collapse, and
consequently accelerating surface deformation.

To establish the correlation between surface deformation at
different elevations and precipitation and vegetation coverage, an
additional set of deformation points was selected for validation. The
selection criteria for these points remained consistent, with efforts made
to avoid areas influenced by human activities, such as farmland and
urban regions. In Figure 7, deformation points g-l were chosen,
exhibiting elevations that incrementally increased by approximately
100 m, ranging from 1591 m to 2011 m. With the exception of
deformation points I and j, which possessed a slope of 28°, the slope
of the remaining deformation points exhibited minimal variation,
falling within the range of 12°–22°. Figure 7 illustrates a comparable
pattern among deformation points g-l and deformation points a-f in
Figure 6. Overall, all deformation points displayed a fluctuating
downward trend, with the subsidence values systematically
influenced by precipitation. Notably, the subsidence rate and
magnitude of deformation points notably escalated during the rainy
season. The diverse types of vegetation coverage observed at the
deformation points led to distinct deformation patterns during this
period. Deformation points g, k, and l were predominantly
characterized by the presence of large trees, such as fir and pine
species. These points exhibited a noticeable delay in subsidence,
typically occurring 2–3 months after the onset of the rainy season.
Conversely, deformation points h and j were primarily covered by
shrubs and grasslands, rendering them highly responsive to
precipitation. These points often displayed significant subsidence
during the initial month of the rainy season. Additionally,
deformation point I, despite having tree vegetation, possessed a
steep slope of 28.63°. It demonstrated a sensitive response to the
rainy season, exhibiting significant subsidence during the early stages

FIGURE 6
Time Series Curves of Deformation Points at Different Elevations. [(A–F) have elevations of 1566 m, 1672 m, 1729 m, 1829 m, 1930 m, and 2022 m,
respectively].
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of precipitation. This suggests that the terrain’s slope is a contributing
factor to surface deformation, with the steepness of the slope influencing
the extent to which precipitation impacts deformation points.

Topography and geomorphology play a significant role in
governing slope stability, with slope gradient serving as a crucial
parameter for characterizing the terrain (Guo et al., 2008). To
examine the deformation patterns of deformation points at
different slopes and their response to precipitation, we extracted
time series cumulative subsidence data, vegetation cover data, and
monthly cumulative precipitation data from two distinct sets of
deformation feature points. To reduce the effect of different
vegetation types on precipitation data, we selected deformation
feature points that all exhibited woody vegetation cover.

As depicted in Figure 8, time series curves were generated for
deformation points at different slope levels (<5°, 5°–15°, 15°–25°,
25°–35°, 35°–45°, >45°). The slope angles for points in Figures
8M–R increased progressively, ranging from 4.38° to 57.76°. In
general, all deformation points exhibited a fluctuating subsidence
trend, demonstrating a distinct response to variations in precipitation.
During the rainy season, deformation points are subjected to
significant subsidence, while they will remain relatively stable
during the dry season. With the increase of the slope gradient,
subsidence rates will accelerate. Notably, deformation points in
Figures 8M, N, O do not show significant subsidence at the early
stages of the rainy season, even under intense precipitation in June
2021. Instead, they exhibit delayed subsidence, typically occurring
2–3 months after the onset of the rainy season. In contrast,
deformation points in Figures 8P, Q, R responded rapidly to
increased precipitation during the early stages of the rainy season,
displaying noticeable subsidence. These results suggested that with the
increase of slope gradient, deformation points will become more

sensitive to precipitation. Specifically, when the slope gradient was less
than 25°, deformation points were less affected by precipitation, and
their response time may be delayed, with significant subsidence
occurring 2–3 months after the rainy season starts. Nevertheless,
when the slope gradient was greater than 25°, deformation points
respondedmore quickly to precipitation, typically showing substantial
subsidence at the beginning of the rainy season.

The topographic characteristics of the study area, characterized
by elevated mountains and steep slopes, exert a profound influence
on slope stability. The gradient of the slope not only impacts the
distribution of stress within the slope but also plays a pivotal role in
determining crucial factors such as surface water runoff, the
distribution of loose deposits across the slope, and the thickness
of such deposits. Steeper slopes experience more significant stress
distribution across their surfaces and upper sections, rendering them
more susceptible to deformation and failure. Furthermore, during
the rainy season, steeper slopes tend to accumulate surface runoff,
and the steep gradient amplifies the velocity of the runoff. This
phenomenon intensifies erosion and scouring of the slope surface,
exacerbating soil erosion and facilitating soil loosening and collapse.
In such circumstances, surface deformation becomes more probable,
thereby increasing the occurrence of geological hazards.

To verify the deformation patterns and their response to
precipitation at different slopes, we selected another set of
deformation points with varying slopes. The slopes of these
points, as presented in Figure 9, were 3.58°, 12.31°, 21.05°, 32.58°,
35.93°, and 49.33°, and all of them had woody vegetation cover. As
depicted in Figures 9S–X, these points displayed a similar pattern to
those in Figure 8. Overall, with an increase in slope, the deformation
points showed an accelerating sinking trend. The response of the
deformation points to precipitation was quite apparent, with

FIGURE 7
Time Series Curves for Deformation Points at Different Elevations. [(G–L) have elevations of 1591 m, 1634 m, 1750 m, 1855 m, 1938 m, and 2011 m,
respectively].
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significant sinking occurring during the rainy season. Among these
points, a slope of 25° appeared to be a threshold for the speed of
response to precipitation. Specifically, when the slope was less than
25°, the deformation points exhibited a delayed response to
precipitation, typically showing significant sinking 2–3 months
after the rainy season begins. On the other hand, when the slope
exceeded 25°, the deformation points responded very rapidly, with
significant sinking occurring at the start of the rainy season.

5 Discussion

5.1 Analysis of surface deformation in karstic
mountainous regions as affected by
subsidence of closed mines

Following the cessation of mining activities, the persistence of
ground subsidence, characterized by collapsed rock masses within
goaf regions, remains a prominent contributor to land subsidence in
the area.Within the study area, which represents a typical karst complex
mountainous region, comprehending the implications of subsidence
induced by mine closures on surface deformation is of utmost
importance. Currently, there exists a dearth of research concerning
the distribution patterns and impact models of surface deformation
resulting from mine closure within this specific study area. Hence, our
discourse is primarily centered around this representative study area.

In their investigation on surface deformation resulting from mine
closures, Chen et al. (2020) explored the characteristics of surface
deformation in several abandoned goaf areas at Ying’an Coal Mine
and Baoshan Coal Mine, situated in the alluvial plains of Jilin, China.
Their findings revealed that the subsidence process subsequent to coal

mining can be divided into two distinct stages: the initial stage primarily
entails subsidence in the central region of the goaf, while the subsequent
stage witnesses subsidence predominantly concentrated in the
peripheral areas of the goaf. The distribution patterns of surface
deformation arising from mine closures in this study exhibit
consistency with the observations made by Chen et al. However, it
is crucial to recognize that the study area under consideration represents
a typical karst complex mountainous region characterized by robust
karst processes, thereby rendering the impact of mine closure on
ground subsidence more intricate than in plain areas.

Surface deformation in the LuJiaZhai-DaPingDi Minefield extends
beyond the confines of the closed mining areas, predominantly
impacting high-altitude regions adjacent to the closed mining areas.
This phenomenon can be attributed to multiple factors. Coal mining
operations typically disrupt the initial stress state of overlying rock
layers, resulting in their redistribution and consequent movements and
deformations. This process generates various voids, encompassing
fractures between rocks, cracks within overlying rock layers, and
fissures within loose sedimentary materials (Wang et al., 2016). The
study area exhibits significant elevation variation, characterized by a
“hard on top and soft underneath” pattern in the rock layers. Coal
seams are situated within the Longtan Formation (P3l) at the base of the
mountains, while the mining goaf is located at the foothills. During the
initial phases of coal mining, the central portion of the goaf, providing
the weakest support to the overlying rock layers, experiences substantial
early movements and deformations concentrated in its central region.
As the overlying rock layers subside, the progressive deformation
gradually extends upward, resulting in surface subsidence and the
formation of numerous fractures within the mountains. With time,
the central part of the mining goaf undergoes compaction first. At this
stage, the central portion of the goaf reaches a relatively stable state,

FIGURE 8
Time Series Curves of Deformation Points at Different. [(M–R) have slopes of 4.38°, 10.54°, 21.53°, 29.69°, 37.68°, and 57.76°, respectively].
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leading to a decline in surface deformation. However, in the boundary
regions of the goaf, there remains space that requires compaction.
Consequently, during the later stages following mine closure,
subsidence primarily concentrates in the border areas of the goaf.

Preceding the coal mining activities in the karst mountain regions,
the area was already influenced by tectonic movements, resulting in
fractured rock formations with well-developed joint fissures. Under the
influence of precipitation and weathering, the existing cracks had
already manifested in the mountainous terrain. As coal mining
operations progressed, these initial cracks further widened, and new
cracks emerged (Sun et al., 2023). These mountain cracks not only
compromised the stability of the terrain but also provided pathways for
rainwater infiltration into the rock formations, thereby accelerating the
karstification process. Consequently, this gave rise to karst subsidence
occurrences within the area.

5.2 Analysis of the coupled relationship
between surface deformation of closed
mines in karst mountainous areas and
factors such as slope, precipitation, and
vegetation types

Our experimental results indicate that besides the goaf, slope is
the primary factor causing surface deformation in closed mines in
karst mountainous areas, with precipitation acting as a triggering
factor leading to periodic changes in surface deformation in the
study area. When the slope is less than 25°, arboreal coverage (such
as pine and fir trees) significantly mitigates surface deformation
induced by rainfall. However, this mitigating effect rapidly
diminishes when the slope exceeds 25°. To further analyze the

impact of slope on surface subsidence in the Karst mountain
areas of Liupanshui and its response to precipitation and
vegetation coverage, we have compared our findings with
previously published similar studies, outlining the complementary
aspects of our research and identifying any existing limitations.

Contemporary investigations concerning the impact of slope,
precipitation, and vegetation coverage on surface deformation
primarily concentrate on landslide causation and susceptibility
assessments. For example, Zhang et al. (Zhang et al., 2020)
examined the spatial distribution characteristics of landslide-prone
regions in Xiangxi Autonomous Prefecture, Hunan Province, China,
based on diverse geographical factors. Their study underscored the
significance of slope and vegetation coverage in landslide occurrence.
Among the 21 geographical factors examined, slope emerged as the
most influential contributor to landslides. Furthermore, the distribution
of landslide-prone areas exhibited a close association with vegetation
coverage. Specifically, regions with higher Normalized Difference
Vegetation Index (NDVI) values displayed fewer landslides,
indicating that areas with lower NDVI values possessed weaker
vegetation stability and were more susceptible to landslides. Bao and
You (2010), through field surveys and an analysis of geological hazard-
prone locations in the Zhongshan area of Liupanshui, investigated the
characteristics and causes of geological disasters. Their findings revealed
that landslides predominantly transpired in areas with slopes ranging
from 10° to 65°, with the majority falling within the 25°–35° range.
Additionally, the peak period for geological disasters was from May to
September, corresponding to heightened precipitation and heavy
precipitation. Similarly, Qian et al. (2022) conducted a susceptibility
analysis of landslides in Liupanshui, employing various geographical
factors and a Logistic fuzzy comprehensive coupling model on a
Geographic Information System (GIS) platform. Their results

FIGURE 9
Time Series Curves for Deformation Points at Different Slopes. [(S–X) have slopes of 3.58°, 12.31°, 21.05°, 32.58°, 35.93°, and 49.33°, respectively].
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indicated that areas at extremely high and high risk of landslides were
considerably influenced by slope and surface undulation. These
researchers generally evaluated the contribution of influencing
factors to landslide occurrence at a general level, typically relying on
known geological hazard-prone locations and employing statistical or
modeling approaches. Our study aligns with these trends in a general
sense. However, our research distinguishes itself by utilizing SBAS
technique to obtain time series deformation monitoring results,
enabling a more detailed assessment of the contributions of different
slope levels, vegetation types, and precipitation to surface subsidence in
closed mining areas. In recent studies, Asada et al. (2020) emphasized
the importance of precipitation as a significant factor compared to
vegetation, attributing approximately 40% of the likelihood of shallow
landslides to it. Their research also highlighted the effective mitigation
of shallow landslides by vegetation under specific conditions. In their
more recent study (Asada and Minagawa, 2023), they constructed
generalized linear models (GLM) and random forest models (RF) using
statistical methods to quantitatively assess the impact of different
vegetation conditions on shallow landslide occurrence. The models
were developed considering slope and hourly precipitation as critical
parameters for evaluating slope stability. The study found that forest-
covered slopes exhibited greater stability compared to grass-covered
slopes, and secondary grasslands and shrubs were more prone to
landslides than coniferous forests. However, it was observed that the
slope stability of forested areas had its limitations. Our study exhibits a
similar trend to Asada’s research. Specifically, under comparable slope
conditions, areas with grassland and shrub coverage display heightened
sensitivity to precipitation, while areas with forest coverage exhibit a
certain degree of delayed response. Moreover, when vegetation
primarily consists of trees, slope becomes a pivotal factor influencing
the response to precipitation. Specifically, when the slope is less than 25°,
tree-covered surfaces exhibit a noticeable delay in response to
precipitation. Conversely, when the slope exceeds 25°, the response
to precipitation is rapid. Our research provides an analysis of the

contributions of slope, vegetation type, and precipitation to surface
subsidence in closed mining areas based on time series deformation
results. However, numerous factors influence surface deformation in
karst mountain areas with closed mines. Consequently, undertaking a
quantitative exploration of the contributions of multiple factors to
surface deformation in closed mining areas using Interferometric
Synthetic Aperture Radar (InSAR) technology represents a crucial
focus of our future research.

In addition, in order to further verify the reliability of the
deformation extraction results in this study, we went to the
LuJiaZhai-DaPingDi Minefield to conduct a field investigation,
and the results of the field investigation are shown in Figure 10,
from which it can be clearly seen that the slopes with steeper slopes
under the cover of shrubs have been sliding obviously (Figures 10D,
F) and the sliding surfaces are fresh, and meanwhile, a number of
highways in the wellfield have been damaged due to the ground
settlement (Figures 10A–C, E), which suggests that surface
subsidence has continued to take place in the area even though
all the mines in the wellfield are closed to the public so far.

6 Conclusion

In the context of the intricate interplay between surface
deformation, precipitation, and vegetation cover in karst mountain
regions, this study focuses on the LuJiaZhai-DaPingDi Minefield
situated in Liupanshui City. Leveraging remote sensing technology,
we investigate the influence of various factors, including altitude, slope,
vegetation cover, and precipitation, on surface deformation within
closed mining areas. An extensive analysis was performed utilizing
time series data of surface deformation, vegetation cover, precipitation,
altitude, and slope. The key findings are as follows:

The areas exhibiting surface deformation within the study region are
primarily concentrated near the recently closed MaiZiGou Coal Mine

FIGURE 10
Photographs of LuJiaZhai-DaPingDi Minefield survey: (D) and (F) depict pronounced sliding on steep slopes under bush cover; (A), (B), (C) and (E)
illustrate road damage caused by subsidence.

Frontiers in Earth Science frontiersin.org14

Huang et al. 10.3389/feart.2023.1353593

189

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1353593


and the higher-altitude eastern and southern regions of the mining field.
These deformation areas comprise 20.45% of the total mining area. Over
the study period, the maximum cumulative subsidence
reaches −60.3 mm, while the maximum uplift is 34.17 mm. The
maximum annual average subsidence rate and uplift rate
are −21.83 mm/yr and 8.13 mm/yr, respectively. Overall, surface
deformation in the closed mining area displays systematic variations
with precipitation. During the rainy season, both the subsidence rate and
subsidence values in the mining area are significantly higher compared
to the dry season. Furthermore, distinct types of vegetation cover exert
varying degrees of influence on surface deformation. Surfaces covered by
grassland and shrubs exhibit a more rapid response to precipitation
compared to areas adorned with deciduous trees such as fir and pine.
Typically, substantial subsidence occurs promptly during the initial
stages of the rainy season or periods of heavy precipitation on
grassland and shrub-covered surfaces. However, when the surface is
enveloped by deciduous trees, even in the presence of the rainy season or
heavy precipitation, surface subsidence does not manifest immediately.
Instead, a delayed response ensues, typically lagging behind precipitation
by 2–3 months. In regions characterized by deciduous tree vegetation
cover, the response of surface deformation to precipitation is primarily
influenced by the terrain slope. When the slope is below 25°, surfaces
covered by deciduous trees do not display significant subsidence in the
early stages of the rainy season or heavy precipitation, with the response
typically lagging behind the rainy season by 2–3months. Conversely,
when the slope exceeds 25°, substantial subsidence occurs early in the
rainy season or during heavy precipitation, even if the surface is covered
by deciduous trees. This indicates that a slope of 25° represents a critical
threshold for surface deformation in response to precipitationwithin this
region. Moreover, deciduous trees such as fir and pine exhibit a certain
degree of restraining effect on surface subsidence triggered by
precipitation. However, this restraining effect is limited and
diminishes as the slope increases.
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Against the backdrop of global climate warming, the issue of flash flood disasters
in small watersheds triggered by heavy rainfall is gradually becoming more
prominent. Selecting an appropriate hydrological model is crucial for flash
flood disaster defense. This article focuses on the Daxi Water Basin in Lianping
County, Guangdong Province, as the research area. Firstly, organize the data and
subject it to standardization processing. Subsequently, establish the topological
relationships within the basin, construct a hydrological model for simulating flood
processes in Chinesemountainous regions, and obtain a set of model parameters
applicable to the specific basin. The results indicated that:① the relative errors of
flood runoff depth were all less than 7%, with an average of 4.5%; ② the relative
errors of peak flow for all events were less than 6%, with an average of 4.2%; ③
peak time errors were all within ±2 h, either earlier or later than the actual peak by
1 h; ④ the Nash-Sutcliffe efficiency coefficient for floods were all greater than
0.8, with an average of 0.86. The research results above will serve as a reference
and guidance for flood defense management in the Daxi Water Basin.

KEYWORDS

flash flood, flood simulation, distributed hydrological model, Daxi Water Basin, flood
prevention

1 Introduction

Flash flood disaster caused by sudden floods in streams and rivers in hilly areas, which
brings losses to humans and the natural environment and constitute one of the most
significant natural disasters in China (Zhao, 1995; Liu et al., 2019; Pei et al., 2023). As global
climate warming intensifies, the problem of flash floods caused by sudden and localized
heavy rainfall in hilly areas has become increasingly prominent, which has had a serious
impact on the natural environment and social development, resulting in casualties, property
losses, and facility destruction. and environmental damage and other serious consequences
(Liu, 2012; Zhou et al., 2022; Ma et al., 2023). For example, in September 2023, floods in
Libya caused nearly 13,000 people to die and go missing (Chen andWei, 2023). Since 2000,
the number of deaths due to flash floods in China has accounted for more than 70% of the
number of flood deaths every year (Wei et al., 2022); since 2011, the average number of
deaths and missing persons caused by flash floods has exceeded 300 per year (Li and Zhao,
2022). China has numerous mountainous areas, dense river networks, and frequent extreme
weather, which poses a great threat to flash flood disasters. Among them, the southwest
region, South China, and the middle and lower reaches of the Yangtze River have frequent
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flash flood disasters, and are all high-risk areas for flash flood
disasters (Zhao, 1996; Zhao and Fan, 2006; Qiu et al., 2022;
Wang et al., 2022); For example, in the first three-quarters of
2023, natural disasters across the country caused nearly
500 deaths and missing persons, more than 80% of which were
caused by flash floods and geological disasters; a flash flood in
Jinyang, Sichuan alone at the end of August caused 52 deaths and
missing persons (Dong, 2023). Therefore, research on flash flood
prevention is a focus issue that has attracted much attention at home
and abroad.

In the hilly regions, small watersheds are susceptible to the
influences of terrain and vegetation. These areas are prone to short-
duration heavy rainfall, and the small watershed areas between
mountains and streams, with steep riverbed slopes, accelerate the
formation of runoff in the watershed. Moreover, rapid fluctuations
in water levels lead to significant impacts and erosive effects,
resulting in substantial damage from floods in these small
watersheds. Additionally, the occurrence of extreme weather
events contributes to frequent flooding and waterlogging
disasters, primarily concentrated between April and October. Due
to the relatively underdeveloped socio-economic conditions in the
hilly regions and issues such as low monitoring station coverage, the
defense against flood disasters poses significant challenges. The core
hydrological models for flood defense have long been the focus of
extensive attention. Improving their simulation accuracy remains a
key research priority. Hydrological models can be broadly
categorized into distributed hydrological models and lumped
hydrological models (Liang et al., 2007). Lumped hydrological
models treat watersheds of various scales as a homogeneous
entity, typically neglecting spatial variations in natural
geographical elements and hydrological processes within the
watershed. Consequently, they struggle to describe the internal
hydrological processes of the watershed. On the other hand,
distributed hydrological models consider differences in rainfall
and underlying surface conditions across the watershed, allowing
for a more realistic representation of the actual hydrological
processes within the watershed. Therefore, selecting a
hydrological model that suits the characteristics of the watershed
is crucial for effective flood defense in hilly regions.

Based on the dynamic mechanisms of the water cycle,
distributed hydrological models can effectively simulate and
forecast watershed hydrological processes (Wang et al., 2012). In
1969, Freeze et al. (Rui, 2017) proposed the framework for
distributed hydrological physics models and elucidated their
theoretical foundations, marking the initiation of research into
distributed hydrological models. Researchers from France, the
United Kingdom, and Denmark (Rui et al., 2006) collaborated to
enhance the System Hydrological European (SHE) model, which
could investigate issues such as water quality, runoff, and sediment
production in European watersheds, considering human activities.
Subsequently, various countries developed hydrological models
tailored to their specific characteristics, opening up new
possibilities for flood prediction (Liu et al., 2003).

With the development of modern science and technology,
especially the application of "3S" information technology
(Geographic Information Systems, Remote Sensing, Global
Positioning System), important methods and technological
support have been provided for watershed flood forecasting.

Various hydrological models have undergone iterative
optimization, the applicability to watersheds has gradually
strengthened, and the forecasting effectiveness has progressively
improved. This has further enhanced the importance of hydrological
models in flood prediction. Combining geographic information
system (GIS) technology, the Hydrologic Engineering Center
(HEC) model (Halwatura and Najim, 2013) constructed by the
United States federal government, using ARCVIEW as the operating
platform, achieved the extraction of watershed characteristic
parameters and the generation of river networks and watershed
vector boundaries. Shen et al. (Shen et al., 1995) proposed a GIS-
based distributed rainfall-runoff model, which simulated
characteristic values of slope runoff, convergence, and river
channel evolution. Ren (Ren and Liu, 1999), in conjunction with
a watershed digital elevation model, encoded the river network and
sub-basins within the watershed and established the topological
relationships. Cao et al. (Pan et al., 2021) utilized hydrological
information extracted from a digital elevation model to construct
a distributed hydrological model for rivers in the northeastern part
of the Qinghai-Tibet Plateau. They also proposed the potential
application of LiDAR data in hydrological modeling for small,
high-altitude, and cold regions. Koohi et al. (Koohi et al., 2022)
explored the applicability of the Global Water Resources Reanalysis
(GWRR) dataset for calibrating the VIC-3L distributed hydrological
model in the Sefidroud Basin, Iran, providing insights into the use of
GWRR data sources for hydrological modeling in data-
scarce regions.

In recent years, the application of distributed hydrological
models in multi-scale watersheds has become a research hotspot
in flood forecasting. Dong et al. (Dong, 2008), using the LL-II fully
distributed hydrological model and the Shaanbei model, investigated
their application in flood forecasting in semi-arid areas, taking the
Taoqupo Reservoir in Shaanxi Province as an example. Xu et al. (Xu
et al., 2021), utilizing the Liuxihe model, designed a flood forecasting
scheme for the Bai Penzhu Reservoir in Guangdong Province and
verified that the forecasting results exhibited strong accuracy.
Marahatta et al. (Marahatta et al., 2021) used the SWAT model
to simulate the hydrological processes in the Budhigandaki River
Basin (BRB) in Nepal, validating the applicability of the SWAT
model in data-scarce and complex mountainous watershed areas.

In summary, scholars both domestically and internationally
have achieved rich results in hydrological modeling. However,
most of the models mentioned above are applicable to large
scales and require high-quality measured data for watershed
conditions. In China, there are still challenges in small to
medium-sized watershed flood forecasting, including weak non-
linear adaptability of models, lack of measured data, and human
activities interference. The China Institute of Water Resources and
Hydropower Research has independently developed the Chinese
Flash Flood Hydrological Model. This model integrates a set of
nationwide small watershed basic datasets through investigating and
analyzing the natural geographical features and hydrological
conditions of the watershed. The model has a limited number of
parameters, making it suitable for application in small to medium-
sized watersheds. Currently, the model has participated in over ten
thousand flood simulation tests in different types of terrain across
the country, with over 93% of the simulated flood results meeting
forecasting requirements (Zhai et al., 2020). The Daxi Water Basin
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in this study is prone to flash floods, and there is currently limited
research on flood simulation in this area, with a lack of experience.
By introducing the Chinese Flash Flood Hydrological Model, a set of
characteristic parameters suitable for this basin was calibrated and
validated. Combined with multiple evaluation indicators, the
simulation accuracy is analyzed. This research aims to provide
reference and guidance for mountainous flood defense and
control in the studied watershed.

2 Research area and information

2.1 Research area

The river network system and rainfall-flood monitoring stations
in the Daxi Water Basin are concentrated in the eastern Shangping
watershed. Therefore, this paper designated the Shangping
watershed as the primary study area (Figure 1). The basin is
situated in the northeastern part of Lianping County, Guangdong
Province. The total area of the basin is 175.95 km2, with the outlet of
the basin located at approximately 114.57°E and 24.44°N. The basin
spans from the northeast to the southwest, traversing Lianping
County, with the terrain rising in the north and lowering in the
south. The northern-central part features undulating mountain
ranges, belonging to a segment of the Jiulian Mountain Range in
Guangdong Province. The valleys between the mountains are deeply
cut by flowing water, developing into narrow and deep "V"-shaped
valleys. The main valleys, shaped by river erosion and crustal uplift,
give rise to relatively smaller "V"-shaped valleys on their side
slopes—hanging valleys. The southwestern part is characterized
by low hills, fertile soil, and abundant water resources. The
research area experiences a subtropical monsoon climate,
characterized by simultaneous high temperatures and rainfall

during the rainy season. Summers are hot and rainy, while
winters are mild and dry. Rainfall gradually increases from
March, with the peak concentrated in May and June. Summer is
susceptible to heavy rainfall due to convective thunderstorms and
typhoon influences, leading to the occurrence of flash floods. The
Daxi Water Basin is one of the six main rivers in Lianping County,
with a total of 15 major and minor tributaries. The river originates
from the Jiaofeng Ridge (elevation 732.9 m) in Zhongcun, Upper
Ping Town, and eventually flows into Xinfeng County. The river has
a total length of 75 km, a natural drop of 1,070 m, an average slope of
0.0398, and an average annual runoff of 15.95 m³/s.

2.2 Data introduction

This study primarily involves two categories of data for the
research area: watershed geographic spatial data and rainfall-flood
data. The geographic spatial data include a digital elevation model
(DEM) of the watershed, as well as spatial distribution maps for the
watershed, river channels, nodes, and monitoring stations. The
rainfall-flood data consist of observed rainfall data from various
rainfall stations and water level-flow data from the outlet
hydrological station in the Daxi Water Basin, spanning from
March to July 2019. Specific details are provided in Table 1.

2.3 Research methods

(1) Chinese Flash Flood Hydrological Model

The Chinese Flash Flood Hydrological Model is built on the
basis of natural small watershed attributes, employing modular and
hierarchical architectural concepts. It takes the cluster of watershed

FIGURE 1
Locations of Guangdong Province (A), Daxi Water Basin (B), and Shangping Watershed (C).
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hydrological relationships, high-precision terrain and topographic
data as units, accommodating the characteristics of runoff
generation and convergence in different climatic regions. The
model establishes a library of multi-process water cycle models,
primarily focused on the development of defense against flash floods
in small watersheds. It addresses the challenges of nonlinear runoff
simulation and computationally efficient modeling under short-
duration, intense rainfall conditions. In a certain sense, the Chinese
Flash Flood Hydrological Model is a generalized distributed
watershed hydrological model. Its hydrological units mainly
include watershed, river section, node, water source, watershed
divide, reservoir, and depression. The hydrological processes
encompass rainfall, runoff generation, hillslope runoff
convergence, and flood routing, with runoff generation involving
factors such as vegetation interception, evapotranspiration, and soil
moisture. The model structure is shown in Figure 2.

The Shangping Watershed comprises 14 sub-watersheds, with
sizes ranging from 0.4 km2 to 29.03 km2. Within the watershed,
there are five rainfall observation stations and two hydrological
observation stations. Taking into account the characteristic of the
watershed’s terrain being higher in the north and lower in the south,
the downstream Shangping hydrological station was designated as
the outlet node, and the watershed’s topological structure was
established. Given that the Shangping Watershed is located in a
humid region, the runoff module primarily employed the
Xin’anjiang three-source storage runoff method. The convergence
module utilized distributed unit hydrographs extracted and
processed from the "National Mountain Flood Disaster
Prevention Project" (1), which effectively reflects the phase-based
impact of underlying surface and rainfall intensity on flow velocity

in various river sections. The river channel evolution module
employed the dynamic Muskingum method (2) suitable for small
watersheds with limited data availability.

V � KsS
0.5i 0.1

Tj � ∑Mj
m�1

cLm

Vm

⎧⎪⎪⎨
⎪⎪⎩

(1)

In the equation: V represents the flood flow velocity, measured
in meters per second (m/s); Ks is the coefficient used to calculate
water flow velocity, measured in meters per second (m/s); S is the
specific drop of the river bed in any grid in the basin; i is the
dimensionless rain intensity; Tj is the time required for runoff
convergence in the j-th grid of the watershed; Mj is the number
of grids passed through by runoff convergence in the j-th grid of the
watershed; Vm is the flow velocity in the mth grid of the watershed,
measured in meters per second (m/s); L m is the length of the river
channel passed through by the flood when it traverses them-th grid;
c is the coefficient, taking a value of 1 or

�
2

√
.

K � a · L · N0.6·J-0.3 · Q-0.20

Vw � b · N-0.6·J0.3 · Q0.2
0

x � 0.5 − 0.11

���
Q0

√

J · Vw · L

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2)

In the equation: K represents the slope of the reservoir storage
curve, in terms of elevation (h); Q0 is the reference flow rate, measured
in cubic meters per second (m³/s), calculated asQ0 =Qb + 0.5(Qp - Qb),
where Qb is the maximum upstream flood flow rate, and Qp is the
maximum upstream flood flow rate, bothmeasured in cubic meters per

FIGURE 2
China flash flood hydrological model structure diagram.
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second (m³/s); Vm is the wave velocity, measured in meters per second
(m/s); x is the flow ratio coefficient; J is the channel slope; L is the length
of the channel, measured in meters (m); N is the Manning’s coefficient.
Parameters a and b are determined based on the cross-sectional shape.

(2) Simulation Accuracy Evaluation Index

The article employed three indicators, namely, relative error of
runoff depth, relative error of peak flow, and peak timing difference,
combined with the Nash-Sutcliffe efficiency coefficient to evaluate

the accuracy of flood simulations. According to the IHydrological
Information Forecasting SpecificationJ, a flood simulation result is
considered qualified only if it simultaneously satisfies all error index
requirements. The maximum allowable relative errors for runoff
depth and peak flow are both 20%, and the permissible error for peak
timing difference is ±2 h. The Nash-Sutcliffe efficiency coefficient,
approaching 1, indicates better correlation, with the optimal value
being 1. If NSE is less than 0, it indicates that the simulation accuracy
is worse than the measured average. The formulas for calculating
each indicator are shown in Table 2.

FIGURE 3
Research approach.
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In the equation: ‾Rs, Qs,p, Ts,p are the simulated average runoff
depth (mm), the simulated peak flow (m³/s), and the simulated peak
current (h) respectively; Qs,i is the simulated flow rate at the time i,
m³/s; ‾R0,Q0,p, T0,p are the measured average runoff depth (mm), the
measured peak flow rate (m³/s), and the actual peak time (h)
respectively; Qo,i is the measured flow rate at time i, ‾Q0,i is the
average measured flow rate, m³/s.

2.4 Research approach

In this study, the first step involved standardizing data.
Subsequently, based on ArcGIS, a digital elevation model of the
small watershed was extracted, and the watershed’s topological
relationships were established by integrating with the Chinese
Flash Flood Hydrological Model system. The model was then
constructed using data on watershed soil types, soil textures, and
the national dataset of small watersheds. Parameters of the model
were calibrated and validated. This entailed analyzing the

significance of model parameters and the natural geographic
features within the watershed, determining the events for
calibration and validation of floods, obtaining specific parameter
values, and analyzing their feasibility. Subsequently, a set of model
parameters suitable for the study area was simulated. Finally, the
accuracy of flood simulations was evaluated using relative error and
the Nash-Sutcliffe efficiency coefficient. This evaluation was then
used to explore the applicability of the Chinese mountain flood
hydrological model in the Da Xi River Basin. The specific research
approach is illustrated in Figure 3.

3 Results and discussion

3.1 Analysis of flood simulation process

By analyzing rainfall-flood data in the Shangping Watershed,
representative flood events are selected. Approximately 70% of these
events were defined for model calibration, while the remaining 30%

FIGURE 4
Flood simulation results.
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were reserved for model validation. Considering the natural
geographical features and hydrological conditions of the
Shangping watershed, the main model parameters, including
upper soil water storage capacity, lower soil water storage
capacity, deep soil water storage capacity, and free water storage
capacity, were set to 15 mm, 70 mm, 40 mm, and 22 mm,
respectively. Figure 4 illustrates the simulation results of the
flood events.

The flood event "20190305″ exhibits a double-peak pattern,
with an initial flow smaller than other events. The first peak flow
occurred at 22:00 on March 5th, reaching 70 m³/s, differing from
the actual peak flow by 3.2 m³/s. The rise in flow during the
second phase was slower, and the relationship between post-peak
flow and time became more linear. The period with significantly
higher flow concentrations for the entire flood event occurred
from 13:00 on March 5th to 08:00 on March 10th, with good
fitting between simulated and actual flow processes during
this period.

The flood event "20190413″ is a typical double-peak flood. The
simulated peak flows occurred at 22:00 on April 13th and 21:00 on
April 14th, reaching 35 m³/s each. The measured peak flows
occurred at 21:00 on April 13th and 20:00 on April 14th, both at
36.3 m³/s. Additionally, the intervals between the simulated and
measured peak flows were both 23 h. However, the river channel
base flow was relatively high during this flood, and the rainfall
continuity was not strong, resulting in a relatively gentle fluctuation
of the entire flood.

The flood event "20190419″ is a multi-peak flood. Intense
rainfall from 19:00 on April 18th to 10:00 on April 19th caused
frequent changes in rainfall intensity, leading to significant
fluctuations in flood flow along with the rainfall trend. Three

peak flow values occurred during this period: 56 m³/s at 21:00 on
April 18th, 60 m³/s at 01:00 on April 19th, and the highest flow value
of 83 m³/s at 06:00 on April 19th. After the third peak, rainfall
rapidly decreased, followed by a stabilizing trend, and the river flow
slowly decreased.

The flood event "20190427″ had a slightly higher base flow than
other events. The flood initiated rapidly, with the first peak
occurring in the second hour (15:00 on April 26th), reaching
75 m³/s. However, the short duration of rainfall led to a sudden
drop in flood flow. A second round of rainfall occurred at 00:00 on
April 27th, resulting in the second peak flow of this event at 79 m³/s.
The third intense rainfall occurred at 13:00 on April 27th, and
although the third peak flow was slightly lower than the previous
two, the high flow period lasted for 7 h.

The flood event "20190522″ had a shorter duration compared to
others, lasting for 1 day. It is a double-peak flood, with the first peak
occurring at 12:00 on May 22nd, reaching 25 m³/s. After 10 h, a
second peak flow occurred at 22:00 on the same day, reaching
27.9 m³/s. Due to the discontinuous nature of rainfall, the fitting
degree between the simulated and actual flood processes for this
event was smaller than for other events.

Overall, the routing of the five flood events show strong
consistency with the changes in rainfall during the study period.
Additionally, all five flood events exhibited significant flow
fluctuations before the main peak, and the decrease in flow
during the declining phase after reaching the maximum value
was slow. Comparing the five flood events, the simulated flow
results of the three flood events with more continuous rainfall,
namely, "20190305," "20190419," and "20190427," were closer to the
measured flow values, indicating better overall simulation
performance.

3.2 Model error analysis

From the statistical results of flood simulation errors (refer to
Table 3), it can be observed that all five simulated flood events are
qualified: The relative errors in flood runoff depth for all five events
were below the maximum permissible error of 10%; the maximum
error was 6.1% for the "20190522″ event, while the minimum was
2.4% for the "20190305″ event, with an average of 4.5%. Relative
errors in peak flow were below the maximum permissible error of
20% for all five events, accounting for 100%; the maximum error is

TABLE 1 Daxi Water Basin information.

Type Name Identification Source Remark

Geography
Space
Data

Digital Elevation Model DEM Geographical Space Data Cloud 30 m resolution (raster data)

Basin WATA China Water Resources and Hydropower Research Institute 14 sub-watersheds (vector data)

River RIVL 22 items (vector data)

Node NODE 13 (vector data)

Station ZD 11 (vector data)

Rain flood data Rainfall Value P Hydrology of Guangdong Province INTV=1 h

Flood Flow Q Hydrology of Guangdong Province INTV=1 h

TABLE 2 Calculation formula of evaluation indicators.

Evaluation index Calculation formula

Runoff Depth Relative Error
ReR � |R‾ s−R

‾

0 |
R
‾

0

Relative Error of Peak Flow ReQ � |Qs,p−Q0,p |
Q0,p

Peak Time Difference TP � |Ts,p−T0,p|

Nash-Sutcliffe Efficiency Coefficient
NSE � 1 − ∑N

i�1(Qs,i−Q0,i )2

∑N

i�1(Q0,i−Q
‾

0 )2
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5.4%, the minimum is 3.6%, and the average is 4.2%. Four events
simulated peak times occurring 1 h later than the observed peaks,
while for the "20190427″ event, the simulated peak occurred 1 h
earlier than the observed peak; the simulated results were within the
maximum permissible error of ±2 h. Nash-Sutcliffe efficiency
coefficients for all five events were above 0.8; the maximum was
0.91 for the "20190419″ event, the minimum was 0.81 for the
"20190522″ flood, and the average was 0.86, indicating a good
correlation between the simulated and actual flood processes.

Comparing the analysis of the five flood events, for the "20190522″
event, although all error values were within permissible ranges, the
errors were relatively large, and the fitting degree between the simulated
and actual flow processes was not high. In contrast, for the "20190419″
flood event, both relative errors in runoff depth and peak flow were the
lowest, and the Nash-Sutcliffe efficiency coefficient was closest to 1,
making it the event with the best simulation performance. The China
Flash Flood Model can accurately simulate the flood processes in the
Shangping River basin, and the results are reliable.

4 Discussion

This study, based on the China Flash Flood Model, conducted
flood simulations in small watersheds within susceptible
mountainous flood areas and evaluated the model’s applicability.
The main conclusions are as follows: ①small watershed river flood
processes exhibit strong spatial heterogeneity, in which distributed
unit hydrograph can effectively reflect the impact of different rainfall
intensities and underlying surface conditions on flood velocity in
various river segments;②there is a strong consistency between flood
flow and rainfall intensity variations, but both lag behind the
changes in rainfall; ③the relative errors in simulated runoff
depth were all below 7%, peak flow relative errors were below
6%, peak timing differences were within 1 h, and Nash-Sutcliffe
efficiency coefficients were all above 0.8, showing simulation results
were good, and the accuracy was higher for flood events with
continuous rainfall. This research provides reference for flood
forecasting and control in the studied region. However, the study
also faced numerous challenges, including a limited number of flash

flood events and the need for a more in-depth analysis of the
mechanisms responsible for heavy rainfall. These issues may
affect the operational application of the model and hinder a
more comprehensive exploration of flood characteristics. In the
future, the researchers plan to incorporate machine learning
techniques to reveal the flash flood mechanisms, enhance the
model’s informatization and intelligence, and provide theoretical
and empirical foundations for flash flood simulations in data-scarce
regions in China.
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TABLE 3 Simulation error analysis.

Type Event Base
flow
(m3/s)

Measured
runoff

depth (mm)

Relative Error of
runoff depth (%)

Relative Error
of flood
Peak (%)

Peak
appearance
Error (h)

Coefficient of
certainty

Calibrate
Events

2019
0305

12 136.7 2.4 4.3 1 0.86

2019
0413

15 20 4.4 3.6 1 0.85

2019
0419

20 53.7 3.9 3.6 1 0.91

Verify
Evens

2019
0427

20 71.4 5.6 4 −1 0.88

2019
0522

11 10.7 6.1 5.4 1 0.81

Average – – – 4.5 4.2 – 0.86
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Spatiotemporal drought
characteristics during growing
seasons of the winter wheat and
summer maize in the North
China Plain
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Meihong Ma2*
1Research Center on Flood and Drought Disaster Reduction, China Institute of Water Resources and
Hydropower Research, Beijing, China, 2Geographical and Environmental Science Department, Tianjin
Normal University, Tianjin, China

The North China plain (NCP) is an important production base for winter wheat
and summer maize in China. Severe droughts seriously restrict agricultural
production in this region, threatening food security. Based on the
standardized precipitation evapotranspiration index (SPEI), this study explored
the spatial and temporal drought characteristics during the winter wheat and
summer maize growing seasons in the region. The study found that: 1) From
1980 to 2013, the drought trend of the winter wheat growing season in the NCP
has intensified, with Huang-Huai Plain agricultural area (HH_P) showing the most
significant drought trend. However, the summer maize growing season has
become wetter, with the Shandong hilly agricultural and forestry area (SD_Q)
showing the most significant wetting trend. 2) After the year 2003, the results
fromMann-Kendall trend analysis revealed that the drought trend of HH_P during
the winter wheat growing season became particularly pronounced, but the
wetting trend of SD_Q and HH_P during the summer maize growing season
became more evident. 3) The dominant spatial patterns observed in the NCP
during the growing seasons of winter wheat and summermaizeweremarked by a
consistent distribution of drought and wetness conditions. For winter wheat, the
southern regions of the foothill plain area of Yanshan and TaihangMountains (YT_
P) and the low-lying plain area of Hebei, Shandong, and Henan (JLY_P) were
more sensitive to the changes of drought and wet conditions. For summer maize,
SD_Q was more sensitive to the changes of the drought and wet conditions. The
results of this study could provide references for the formulation of drought relief
strategies of winter wheat and summer maize in the NCP.

KEYWORDS

drought, winter wheat, summer maize, the North China Plain, spatial and temporal
distribution characteristics

1 Introduction

The North China Plain (NCP) is a key area for grain production in China.
Approximately 50% of the country’s total winter wheat planting area and yield come
from this region (Liu et al., 2006), while the maize planting area in the region accounts for
30% in China, with a yield comprising around 50% of China (Sun et al., 2009). Drought
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poses a significant threat to the food security of the area, being the
primary meteorological disaster affecting agricultural production.
With the backdrop of global climate change, the NCP has
experienced a substantial rise in average temperature over the
past 50 years, leading to intensified drought (Zhang et al., 2015).
Furthermore, drought in this region shows clear cyclic variations
and regional differences (Hu, 2014; Li et al., 2023). Studies have
shown that droughts, heat waves, and floods can have compound
effects (Carvalho and Spataru, 2023). Under extreme climate
change, sudden changes between droughts and floods can have
lasting and profound effects on soil fertility by altering
comprehensive conditions such as water, soil, and temperature,
exacerbating threats to food security (Bai et al., 2023).
Underground coal mining can cause continuous and long-term
surface deformation, triggering landslides, and may also pose a
threat to grain-producing areas (Ma et al., 2022).

Fan assessed the impact of El Niño and La Niña phenomena on
meteorological drought in theWeihe River Basin in China from 1970 to
2020. They found that on a scale of 3–6 months, attention should be
paid to the drought disasters in the summer of the following year caused
by LaNiña, but the impact of El Niño on the 12-month scale of drought
in China cannot be ignored (Fan et al., 2023). Drought is typically
classified into meteorological drought, hydrological drought,
agricultural drought and socio-economic drought (Jiang et al., 2019).
Simultaneous occurrences ofmultiple droughts can significantly impact
the economic development, particularly causing substantial losses in
food production. Research on drought in the context of winter wheat
and summer corn primarily includes the evolution of drought, drought
prediction, spatiotemporal analysis of drought changes, and the
drought influences on agricultural production. Some studies have
also explored the drought spatiotemporal changes of winter wheat
and summer maize from the perspective of solar radiation values
(Zheng et al., 2022).

Based on different data sources, the drought indices can be
divided into remote sensing-based indices such as Temperature
Condition Index (TCI), Vegetation Condition Index (VCI), and
Vegetation Health Index (VHI), and meteorological data-based
indices such as Standardized Precipitation Index (SPI), Palmer
Drought Severity Index (PDSI) and Standardized Precipitation
Evapotranspiration Index (SPEI) (Vicente-Serrano and Sergio,
2013). The PDSI is primarily utilized to calculate short-term
drought conditions, estimating soil moisture supply and demand
through a two-layer model based on precipitation and temperature.
It can provide a comprehensive indicator of the overall water
condition. However, the PDSI index is mainly used for
calculating short-term drought conditions and has a relatively
singular time scale (Vicente-Serrano and Sergio, 2013). SPI can
monitor drought at different time scales (Pasho et al., 2011). SPI has
been widely used in drought monitoring studies due to its simplicity
in calculating and ability to measure drought at different time scales.
However, its application has limitations in the context of climate
change, as it only considers precipitation conditions. The
accumulated precipitation, one of the indicators of drought, is
not only related to rainfall but also connected to temperature
changes (Zhou et al., 2022). In areas lacking rainfall data, it can
be used to predict drought, landslides, and debris flow disasters
(Zhou et al., 2022). With the development of remote sensing
technology, more and more technologies such as unmanned

aerial vehicle detection and Synthetic Aperture Radar
Interferometry (InSAR) are being applied in the acquisition of
drought indices and land instability analysis (Yang et al., 2021;
Liu et al., 2022; Wang et al., 2022).

SPEI combines the advantages of SPI and PDSI, considering the
impacts of precipitation and temperature on drought (Vicente-
Serrano et al., 2010). It has been widely used in the research for
monitoring and assessing the impact of drought (Guo et al., 2017; Cao
et al., 2021; Tirivarombo et al., 2018; Wu and Chen, 2019; Yang et al.,
2020). The Penman-Monteith (PM) method was used to calculate the
national potential evapotranspiration in China from 1961 to 2019.
Furthermore, by utilizing the SPEI as a monthly drought indicator, it
was determined that there has been an exacerbation of drought in the
North China region due to abnormal temperature and wind speed
(Wen and Chen, 2023). Therefore, in this study, SPEI was chosen as
the drought monitoring index in the NCP. Meteorological data from
50 weather stations in the NCP was selected. And the SPEI could
represent the drought conditions during the winter wheat and
summer maize growing season were calculated. The study utilized
methods such as linear trend analysis, Mann-Kendall trend analysis
and Empirical Orthogonal Function (EOF) decomposition to
investigate the spatiotemporal characteristics of drought during the
winter wheat and summermaize growing seasons in the NCP over the
past 33 years. The aim of this study is to provide references for the
formulation of drought relief strategies of winter wheat and summer
maize in the NCP.

2 Study area and materials

2.1 Study area and data

The North China Plain (NCP) (32°N ~ 40°N, 114°E ~ 121°E) is
located in the northern part of China, including all or part of seven

FIGURE 1
Spatial distribution of meteorological stations in the study area.
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provinces (municipalities) including Hebei, Henan, Shandong,
Jiangsu, Anhui, Beijing, and Tianjin. This region belongs to the
Huang-Huai-Hai agricultural region in the comprehensive
agricultural zoning of China, including four secondary
agricultural regions: the Huang-Huai Plain agricultural area
(HH_P), the Shandong hilly agricultural and forestry area (SD_
Q), the low-lying plain area of Hebei, Shandong, and Henan (JLY_
P), and the foothill plain area of Yanshan and Taihang Mountains
(YT_P). It is an important grain production base in China
(Figure 1). Winter wheat and summer maize are the main grain
crops in this region. The North China Plain is located in the East
Asian monsoon climate zone, with uneven spatial and temporal
distribution of precipitation. Drought is one of the main factors
restricting the growth of winter wheat and summer maize in this
region. The meteorological data used in this study are from
50 meteorological stations in North China from 1980 to 2013,
obtained from the China Meteorological Data Sharing
Service Network.

2.2 Research methods

As shown in Figure 2. By inputting temperature and
precipitation data, standardized evapotranspiration index (ETI)
can be obtained. The Mann-Kendall test method is used to assess
climate and hydrological change trends, while empirical orthogonal
function (EOF) analysis is employed to identify abrupt changes and
three spatial-temporal distribution patterns.

2.2.1 Standardize precipitation evaporation
index (SPEI)

SPEI considers the impact of precipitation, temperature
changes, and potential surface evapotranspiration on drought. It
can identify the occurrence or end of drought and reflect its actual
severity. Here’s how it is calculated:

1) This study involves retrieving daily weather data from the
selected ground meteorological station and organizing it into
monthly climate data. Then, the monthly potential
evaporation (Pe) is calculated based on the monthly average

temperature recorded at the station. The specific calculation
formula is as follows:

Pei � 16K
10Ti

I
( )

m

i � 1, 2 . . . 12 (1)

Ii � Ti

5
( )

1.514

(2)

I � ∑
12

i�1
Ii (3)

where Eqs 1–3, Ti is the monthly average temperature in degrees°C,
Ii is the monthly heat index, I is the annual heat index, and K is the
correction index, a constant m � 0.492 + 1.79 × 10−2I − 7.71 ×
10−5I2+ 6.75 × 10−7I3

K � N

12
( )

NDM

30
( ) (4)

where Eq. 4, NDM is the total number of days in that month, N is the
possible sunshine hours, calculated using Eq. 5:

N � 24
π

( )ws (5)

Where ws is the sunrise hour angle, calculated using Eq. 6:

ws � arccos − tanφ tan δ( ) (6)

Where φ is the latitude in radians (rad), δ is the solar declination
angle, calculated using Eq. 7:

δ � 0.4093 sin
2πJ
365

( ) − 1.405 (7)

Where J is the average day number of that month, ranging from
1 to 365 or 366, with 1st January being day 1.

2) Construct the cumulative water deficit X for different time
scales. Calculated using Eq. 8:

Di � Pi − Pei (8)
Where Di is the monthly water deficit, Pi is the monthly

precipitation, and Pei is the monthly potential evaporation, all in
millimeters (mm).

FIGURE 2
Research methodology flowchart.
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Then, calculate the water deficit Dij for the i-th year and j-th
month, using Eq. 9 and Eq. 10, depending on different time scales.

Xk
i,j � ∑12

i�13−k+jDi−1,j +∑j

i�1Di,j (9)

Xk
i,j � ∑

j

i�j−k+1Di,j (10)

3) Calculate the probability distribution of the cumulative
water deficit X

Below introduce the probability density function of the three-
parameter log-logistic distribution as shown in Eq. 11:

f x( ) � β

α

x − γ

α
( )

β−1
1 + x − γ

α
( )

β

[ ]
−2

(11)

Where α, β and γ are the scale, shape, and location parameters,
D< γ<∞. Respectively. α, β, and γ are calculated using Eqs 12–14:

α � w0 − 2w1( )β
Γ 1 + 1

β( )Γ 1 − 1/β( )
(12)

β � 2w1 − w0

6w1 − w0 − 6w2( ) (13)
γ � w0 − α Γ 1 + 1/β( )Γ 1 − 1/β( ) (14)

where Eqs 12, 14, Γ(β) is the Gamma function, and in Eq. 15, i is the
ordinal number of the cumulative water deficit sequence Xi,
arranged in ascending order. The probability distribution
function of the three-parameter log-logistic distribution is Eq. 16:

ws � 1
N

∑
N

i�1 1 − i − 0.35
N

( )
s

Xi (15)

F x( ) � 1 + α

x − γ
( )

β

⎡⎣ ⎤⎦
−1

(16)

Finally, standardize the probability distributions for
each month.

Order P � 1 − F(x), at that time P≤ 0.5, then W � ��������−2 ln (P)√

SPEI � C0 + C1W + C2W2

1 − d1W + d2W2 + d3W3
(17)

Order P> 0.5, at that time W � �����������−2 ln (1 − P)√

where Eq. 17, C0 � 2.515517, C1 � 0.802853, C2 � 0.010328,

d1 � 1.432788 d2 � 0.189269, d3 � 0.001308 are all involved

The SPEI-based drought classification is given in Table 1.

2.2.2 Climate trend rate
Using the least squares method to calculate the regression

coefficient between the sample and time, the change in
meteorological elements can be represented by a linear Eq. 18:

y � aX + b (18)

The climate trend rate is 10a.

2.2.3 M-K trend analysis
The M-K test method is a non-parametric statistical test

method. It can not only detect changes in the trend of the
sequence but also find mutation points in the sequence. It
does not require the sample to follow a certain distribution
and is not affected by a few exceptional values. It is suitable
for the analysis of type variables and ordinal variables. The
calculation process of MK is as follows (Sharma and Goyal,
2020; Alsubih et al., 2021):

For a time series X with a sample size of n, we construct a rank
sequence in Eq. 19:

Sk � ∑
k

i�1ri, k � 2, 3,/, n (19)

Where ri � +1, xi >xj

0, xi ≤ xj
{ , j � 1, 2, 3,/, i

It can be seen that the rank sequence Sk is the cumulative count
of the number of values at time i greater than the values at time j.

Assuming random and independent time series, we define the
statistic in Eq. 20:

UFK � Sk − E Sk( )[ ]�������
var Sk( )√ , k � 1, 2,/, n (20)

Where UF1 � 0, E(Sk), var(Sk) are the mean and variance of the
cumulative count Sk. When x1, x2,/, xn are mutually independent
and have the same continuous distribution, they can be calculated by
the following Eq. 21:

E Sk( ) � k k − 1( )
4

var Sk( ) � k k − 1( ) 2k + 5( )
72

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k � 2, 3,/, n (21)

WhereUFi is the standard normal distribution. It is a sequence of
statistics calculated in the order of the time series X, x1, x2,/, xn.
Given a significance level α, we check the normal distribution
table. If |UF1|>Uα, it indicates a significant trend change in
the sequence.

The above process in reverse order of the time series X,
xn, xn−1,/, x1. Simultaneously, we ensure that UBk � −UFk, k �
(n, n − 1,/, 1), UB1 � 0.

Analyze and plot theUFk andUBk curves. If the value ofUFk or
UBk is greater than 0, it indicates an upward trend. If it is less than 0,
it represents a downward trend. When they exceed the critical line, it
indicates a significant upward or downward trend. The range
beyond the critical line is determined as the time region of
occurrence of the mutation. If the UFk and UBk curves intersect,
and the intersection is between the critical lines, then the time
corresponding to the intersection is the start time of the mutation. If
it exceeds the UFk critical line but the intersection of UFk and UBk

TABLE 1 Drought classes based on SPEI.

SPEI index Drought class

−1.0 < SPEI ≤ −0.5 Slight drought

−1.5 < SPEI ≤ −1.0 Moderate drought

−2.0 < SPEI ≤ −1.5 Severe drought

SPEI ≤ −2.0 Extreme drought
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is outside the critical line, it cannot be easily determined whether this
point is a mutation point.

2.2.4 Empirical orthogonal function (EOF)
decomposition

The EOF decomposition was proposed by Pearson in 1902.
In the mid-1950s, Lorenz introduced it into the study of
atmospheric science (Lorenz and Hartmann, 2003). The
advantage of EOF decomposition is that it can decompose
meteorological elements into spatial functions that do not
change with time (eigenvalues) and time functions that are
independent of space. The spatial function part is determined
by the main characteristics of the meteorological element field.
The convergence speed of EOF decomposition is fast, so as long
as a few eigenvectors with large eigenvalues are taken, the spatial
characteristics of the climate element field can be fully described.
EOF decomposition is to decompose the three-dimensional
climate variables into orthogonal spatial typical fields and the
corresponding time series, which can represent the main spatial
distribution structure of meteorological elements.

The observed data of a certain climate variable field is given in
matrix form:

X �
x11 / x1n

..

.
xij

..

.

xm1 / xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

In Eq. 22, m represents spatial points,n represents time points,
and xij represents the j observation at the i station. After removing
the anomalies from the variable field, the meteorological significance
of the separated eigenvectors is more intuitive.

The above matrix is decomposed into two parts Eq. 23:

X � VT (23)

The spatial function V and the time function T, where V and T
are referred to as the spatial function matrix and the time function
matrix, respectively. Each column of V represents a spatial typical
field, which is only related to space. According to orthogonality, the
spatial typical field and the time weighting coefficient should satisfy
the following Eq. 24:

∑
m

i�1
vikvil � 1, k � l ; ∑

m

i�1
vikvil � 0, k ≠ l (24)

According to the theorem of real symmetric decomposition, we
have Eq. 25:

XX′ � VTX′ � VTT′V′ � VΛV′ (25)
where Λ is a diagonal matrix composed of the eigenvalues of the
matrix. According to the properties of eigenvectors, (ÛTU=I).
Therefore, the spatial function matrix can be obtained from the
eigenvectors of Λ. After obtaining V, the time function matrix T can
be obtained. Λ is a diagonal matrix, and the diagonal elements are
the eigenvalues of the matrix. Arrange the eigenvalues in descending
order as shown in Eq. 26:

λ1 ≥ λ2 ≥/≥ λm (26)

Calculate the variance contribution of each eigenvalue and the
cumulative variance contribution of the first k eigenvectors, based
on Eq. 27 and Eq. 28:

Rk � λk/∑
m

i�1
λi, k � 1, 2,/, p p<m( ) (27)

G � ∑
p

i�1
λi/∑

m

i�1
λi (28)

3 Results and discussion

3.1 Drought trends during the growing
season of winter wheat and summer maize

Between 1981 and 2013, the growth season of winter wheat in the
Huang-Huai-Hai Plain area of North China showed an increasing trend
of drought, with a decrease rate of SPEI at 0.4/10a (p < 0.05). In contrast,
the growing season of summer maize in this region overall exhibited a
trend towards wetter conditions, with an SPEI growth rate of 0.1/10a
(Figure 3A). The changes in SPEI for the crop growing season in the low-
lying plains of Hebei, Shandong, and Henan provinces were not
significant overall, indicating no significant change in the dryness or
wetness conditions during the crop growing season over the past 33 years
(Figure 3B). The growing season of summer maize in the hilly and
forested area of Shandong showed a trend towards wetter conditions,
with a growth rate of approximately 0.27/10a. However, the winter wheat
growing season in this region exhibited a slightly drier trend at 0.066/10a
(Figure 3C). The foothill plains of the Yanshan and Taihang Mountains
showed a trend towards drier conditions for both the winter wheat and
summermaize growing seasons, with the summermaize season showing
a more pronounced trend towards dryness at 0.158/10a compared to the
winter wheat season at 0.072/10a (Figure 3D).

By using climate trend analysis methods to analyze the changes in
SPEI at 50 stations in the North China region from 1981 to 2013, it can
be observed that during the past 33 years, most stations in North China
showed a trend towards drier conditions during the winter wheat
growing season, particularly pronounced in the Huang-Huai-Hai Plain
area. Only some stations in the northern part of the North China Plain
showed a certain trend towards wetter conditions, mainly distributed in
the northern parts of the low-lying plains of Hebei, Shandong, and
Henan provinces, and the northern foothill plains of the Yanshan and
Taihang Mountains (Figure 4). As for the summer maize growing
season, apart from some stations in the northern part of North China
showing a more pronounced trend towards dryness, most areas in the
North China region exhibited a trend towards wetter conditions during
the summer maize growing season (Figure 5).

Overall, in the past 30 years, the winter wheat growing season in
North China has shown a trend towards drier conditions, while the
summer maize growing season has shown a trend towards wetter
conditions. This dry-wet trend, in terms of spatial distribution, has
manifested as a worsening drought trend at most stations for winter
wheat, with a few stations in the north showing a trend towards
wetter conditions, such as in cities like Bazhou, Miyun, and Botou
(Figure 4). As for summer maize, it has shown a trend towards
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wetter conditions at most stations, with a few stations in the north
exhibiting a trend towards dryness, such as in cities like Miyun,
Beijing, and Tangshan (Figure 5).

3.2 Mann-Kendall trend analysis results
of SPEI

The Mann-Kendall method was employed to analyze the
variation trends and change patterns of SPEI during the winter
wheat and summer maize growing seasons in four secondary
agricultural regions in North China. In Figure 6, UF represents
the statistics for the upward sequences, while UB represents the
statistics for the downward sequences.

In the four secondary agricultural regions of North China, the UF
curve of the winter wheat growing season showed an upward trend in
the early and mid-1980s, but it exhibited a downward trend after the
mid-1980s (Figures 6A, C, E, G). After the mid-1980s, the winter wheat
growing season showed a trend towards drier conditions. In the hilly
and forested area of Shandong, the UF curve showed a gentle decline

after the mid-1980s, suggesting that the trend towards drier conditions
was not significant (Figure 6A); in the Huang-Huai Plain area, the UF
curve showed a noticeable decline around 2003, indicating an
intensified trend towards drier conditions after 2003 (Figure 6C); in
the low-lying plains of Hebei, Shandong, and Henan, and the foothill
plains of the Yanshan and Taihang Mountains, the UF curve showed a
more stable trend after 1998, suggesting relatively unchanged drought
conditions in these areas (Figures 6E, G).

In the four major agricultural regions of North China, the UF curve
of the summer maize growing season exhibited spatial differences. The
UF curve trends in the hilly and forested area of Shandong and the
Huang-Huai Plain area were similar (Figures 6B, D). In these two
regions, the UF curve changes were relatively stable from around
1980 to 2003, indicating no significant change in drought conditions
during this period. After 2003, theUF curves of these two regions showed
an upward trend, suggesting a gradual trend towards wetter conditions
during the summer maize growing season. In the low-lying plains of
Hebei, Shandong, andHenan, and the foothill plains of the Yanshan and
Taihang Mountains, the UF curve trends were similar (Figures 6F, H).
Before 1997, the UF curve showed some fluctuation trends, but after

FIGURE 3
Drought trends during the winter wheat and summer maize growing seasons in different agricultural areas of the North China Plain from
1981 to 2013.
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1997, the UF curves in both of the mentioned areas exhibited a clear
downward trend, indicating that these areas showed a more pronounced
drying trend during the summer maize growing season after 1997.

3.3 Drought spatiotemporal characteristics
during the growing seasons of winter wheat
and summer maize

In order to further analyze the spatiotemporal distribution
characteristics of drought during the winter wheat and summer

maize growing seasons in North China over the past 30 years, the
SPEI for the winter wheat and summer maize growing seasons were
separately subjected to EOF decomposition. Through EOF
decomposition, mutually orthogonal characteristic vectors can be
obtained, which can represent independent drought spatial
distribution types in North China. The magnitude of the variance
contribution rate after EOF decomposition characterizes the
typicality of the corresponding mode’s drought spatial
distribution form. The larger the variance contribution rate, the
more typical the corresponding drought distribution form. The
maximum center of each mode is the sensitive center of drought
variation. The temporal coefficient can be used as a weight of the
spatial coefficient to reflect the contribution rate of a certain year to
this drought spatial distribution. The larger the absolute value of the
temporary coefficient, the more typical the distribution form
of that year.

Based on the magnitude of the variance contribution rate, the
first 3 characteristic vectors of the SPEI for the winter wheat and
summer maize growing seasons were selected. Table 2 respectively
list the variance contribution rates corresponding to the first
3 characteristic vectors of winter wheat and summer maize. It
can be seen that the variance contribution rate of the first mode
for both crops is much larger than that of the second and third
modes, indicating that, whether for winter wheat or summer maize,
the first mode corresponds to the main drought spatial distribution
type in North China. Below discusses the spatial distribution and
temporal coefficients for different modes:

3.3.1 The first mode
The variance contribution rate of the spatial coefficient

characteristic vectors of the first mode for the winter wheat and
summer maize growing seasons is significantly higher than that of
the second and third modes (Table 2), indicating that the spatial
distribution type of the first mode is the main spatial distribution
type in North China. From Figure 7, it can be seen that the spatial
coefficients corresponding to the first mode of the growing seasons
for both crops are positive, indicating a good spatial consistency in
the drought distribution in North China during the growing seasons
of the two crops. For winter wheat, the high-value area of the first
mode is mainly distributed in the southern part of the Yanshan and
Taihang mountain foothill plains and the low-lying plains of the
Hebei, Shandong, and Henan regions, including areas such as
Xingtai, Anyang, and Chaoyang. For summer maize, the high-
value area of the first mode is mainly distributed in the hilly
agricultural and forestry areas of Shandong and the plains of the
Huang-Huai region, including areas such as Shangqiu, Dangshan,
and Ganyu, indicating that the variability of drought occurrence is
more significant and their response to dryness and wetness is more
sensitive (Figures 7A, C).

Since the spatial coefficients corresponding to the first mode
of the growing seasons for winter wheat and summer maize are
both greater than 0 (Figure 7), the positive or negative situation of
the temporal coefficients corresponding to the first mode reflects
the overall dryness and wetness conditions in North China for
that year. The temporal coefficients corresponding to the first
mode of the winter wheat growing season show an overall trend
of first increasing and then decreasing. Specifically, between
1981 and 1991, the temporal coefficients of the first mode for

FIGURE 4
SPEI variation trends during the winter wheat growing season in
different stations of the North China Plain from 1981 to 2013.

FIGURE 5
SPEI variation trends during the summermaize growing season in
different stations of the North China Plain from 1981 to 2013.
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winter wheat show an overall increasing trend, and after 1991,
they show an overall decreasing trend, indicating that the main
drought spatial distribution type in North China during the
winter wheat growing season over the past 34 years has
undergone an evolution from wet to dry (Figure 7B). For

summer maize, before 2000, its temporal coefficients
alternated between positive and negative without a clear trend,
indicating that from 1981 to 2000, the overall dryness and
wetness conditions during the summer maize growing season
in North China did not change significantly. After 2000, there

FIGURE 6
Mann-Kendall test figures for winter wheat and summer maize growing seasons in different agricultural areas of North China from 1981 to 2013.
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were significantly more years with positive temporal coefficients
than with negative ones for the winter wheat growing season in
North China, showing an overall increasing trend, indicating that
after 2000, the summer maize growing season in North China has
shown a trend towards wetter conditions (Figure 7D).

3.3.2 The second mode
Both winter wheat and summer maize show significant north-

south differences in the spatial distribution of the second mode’s
SPEI EOF during their growing seasons. Specifically, for the winter
wheat growing season, the spatial coefficients of the SPEI EOF
exhibit a positive trend in the north and a negative trend in the south

(Figure 8A), while for summer maize, it is the opposite, with a
negative trend in the north and a positive trend in the south
(Figure 8C). This indicates that the second dominant dry-wet
spatial distribution pattern during the growing seasons of winter
wheat and summer maize in North China exhibits a contrasting
spatial pattern from north to south.

After 2000, there is a significant increase in the number of years
with positive temporal coefficients corresponding to the second
mode of the winter wheat growing season, indicating that the
northern drought during the winter wheat growing season in
North China has eased, while the southern drought has
intensified (Figure 8B). For summer maize, after 2000, the

TABLE 2 Variance contribution rates of the first 3 modes of EOF decomposition of the SPEI index for the winter wheat and the summer maize growing
season in the NCP (%).

Winter wheat Summer maize

Modal 1 2 3 Modal 1 2 3

Variance 41.29 14.27 8.10 Variance 32.32 17.52 8.37

Cumulative Variance 41.29 55.56 63.66 Cumulative Variance 32.32 49.84 58.21

FIGURE 7
Spatial distribution and temporal coefficient changes of the first mode for winter wheat and summer maize growing seasons in the NCP.
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temporal coefficients corresponding to the second mode show a
decreasing trend, indicating that the northern drought during the
summer maize growing season in North China is gradually
worsening, while the southern drought is gradually easing. In
particular, 2012 and 2013 are typical years of northern drought
and southern wetness (Figure 8D).

3.3.2 The third mode
The variance contribution rates of the third mode of the SPEI

EOF decomposition for the growing seasons of winter wheat and
summer maize are 8.10% and 8.37% respectively (Table 2), to some
extent reflecting the drought spatiotemporal distribution
characteristics of the two crops’ growing seasons in North China.
From the spatial distribution maps of the third mode’s spatial
coefficients for the two crops (Figures 9A, C), it can be observed
that for both the winter wheat and summer maize growing seasons’
SPEI EOF decomposition, the high-value areas of the third mode are
concentrated in the Shandong Peninsula. The difference lies in the
fact that for winter wheat, the hilly agricultural and forestry areas of
Shandong near Taian and Jinan are also significant high-value areas.
Overall, for winter wheat, the third mode exhibits a drought spatial

distribution pattern of three northeast-southwest-oriented bands,
with the middle band’s spatial coefficient higher than the two outer
bands, and the northern band having the smallest spatial coefficient.
For summer maize, the spatial coefficients of the third mode exhibit
a decreasing trend from the eastern coastal areas to the
western areas.

The temporal coefficients of the third mode during the winter
wheat growing season show an overall trend of first increasing and
then decreasing (Figure 9B). In 1986, 1988, 1991, and 2008, the
winter wheat growing season in North China exhibited significant
dryness in the middle and wetness on the sides; in 1993, 1994, and
2006, it exhibited a spatial distribution pattern of wetness in the
middle and dryness on the sides. The temporal coefficients
corresponding to the third mode of the summer maize growing
season show an overall increasing trend (Figure 9D), indicating that
during the summer maize growing season, the eastern part of North
China is becoming wetter, while the western part is becoming drier.
1981, 1982, and 2000 were typical years of western wetness and
eastern dryness in North China, while 1985, 1986, 1997, 2001, as well
as 2005 and 2007, were relatively typical years of eastern wetness and
western dryness.

FIGURE 8
Spatial distribution and temporal coefficient changes of the second mode for winter wheat and summer maize growing seasons in the NCP.
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4 Conclusion

Based on the SPEI, this study explored the spatiotemporal
characteristics of drought during the growing season of the
winter wheat and summer maize in the NCP from 1980 to 2013.
The main conclusions were as follows:

(1) From 1980 to 2013, except for the northern parts of YT_P
and JLY_P, the drought trend during the winter wheat
growing season has intensified, with HH_P showing the
most significant drought trend. In contrast, the summer
maize growing season showed wetting trends generally, with
SD_Q showing the most significant wetting trend, only the
northern parts of YT_P and JLY_P show a drought trend.

(2) The Mann-Kendall trend analysis results indicate that after
the mid-to-late 1980s, the winter wheat growing season in the
NCP has shown consistent drought trends, with HH_P
showing a particularly pronounced drought trend after
2003. For summer maize, after 2003, the wetting trends in
the SD_Q and HH_P was more significant, while the drought
trend is evident for JLY_P and YT_P after 1997.

(3) The consistency of the drought-wet spatial distribution is the
dominant pattern for the winter wheat and summer maize
growing seasons in North China. For winter wheat, the
southern parts of YT_P and JLY_P were more sensitive to
the changes of drought-wet conditions, while for summer
maize, SD_Q were more sensitive to the changes of the
drought-wet conditions.

(4) The opposite north-south drought-wet spatial distribution
pattern was the second dominant spatial distribution pattern
for the winter wheat and summer maize growing seasons in
the NCP. The third drought-wet spatial distribution pattern
for winter wheat consisted of three northeast-southwest-
oriented bands, with the spatial coefficient of the middle
band higher than the two outer bands. For summer maize,
the third drought-wet spatial distribution pattern overall
exhibited opposite characteristics from east to west.

5 Discussion

This study presents a comprehensive analysis of agricultural
drought in the North China Plain region, focusing solely on the

FIGURE 9
Spatial distribution and temporal coefficient changes of the third mode for winter wheat and summer maize growing seasons in the NCP.
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Standardized Precipitation Evapotranspiration Index (SPEI) and the
Empirical Orthogonal Function (EOF) method. The integration of
drone and remote sensing data with SPEI and EOF methods offers a
promising approach for monitoring and forecasting agricultural
drought, thus contributing to the development of effective
strategies for drought management in the North China Plain.
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The research interest in multi-hazard chains lies in the comprehension of how
various hazards, such as debris flows, floods, and landslides, can interact and
amplify one another, resulting in cascading or interconnected hazards. On
17 June 2020, at approximately 3:20 a.m., a debris flow occurred in Meilong
gully (MLG), located in Banshanmen Town, Danba County, in southwest China’s
Sichuan Province. The debris flow had a discharge volume of approximately 40
× 104 m3 and rushed out to block the Xiaojinchuan (XJC) river, subsequently
forming a barrier lake. This event ultimately induced a hazard chain that included
heavy rainfall, debris flow, landslides, the formation of a barrier lake, and an
outburst flood. The impact of this chain resulted in the displacement of 48
households and affected 175 individuals. Furthermore, it led to the destruction
of an 18 km section of National Highway G350, stretching from Xiaojin to
Danba County, causing economic losses estimated at 65 million yuan. The
objective of this study is to analyze the factors leading to the formation of this
hazard chain, elucidate its triggeringmechanisms, and provide insights for urban
areas in the western mountainous region of Sichuan to prevent similar dam-
break type debris flow hazard chains. The research findings, derived from field
investigations, remote sensing imagery analysis, and parameter calculations,
indicate that prior seismic disturbances and multiple dry-wet cycle events
increased the volume of loose solid materials within the MLG watershed.
Subsequently, heavy rainfall triggered the initiation of the debris flow in MLG.
The cascading dam-break, resulting from three unstable slopes and boulders
within the channel, amplified the scale of the hazard chain, leading to a
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significant amount of solid material rushing into the XJC river, thus creating a
dam that constricted the river channel. With the intensification of river scouring,
the reactivation and destabilization of the Aniangzhai (ANZ) paleolandslide
occurred, ultimately leading to the breach of the dam and the formation of an
outburst flood. The research comprehensively and profoundly reveals the causal
mechanism of the MLG hazard chain, and proposes measures to disrupt the
chain at various stages, which can aid in enhancing monitoring, early warning,
forecasting systems, and identifying key directions for ecological environmental
protection in urban areas within the western mountainous region of Sichuan.
Additionally, it could also serve as a reference for mountainous urban areas such
as the Tianshan, Alps, Rocky Mountains, and Andes, among others.

KEYWORDS

debris flow, hazard chain, slope instability, formation and evolution mechanism,
monitoring and early warning, risk assessment

1 Introduction

The study of hazard chains has gained significant attention
in recent years, particularly in the context of large-scale debris
flow hazards in high mountain and canyon areas. These hazards
often trigger a series of interconnected events, including landslides,
barrier lakes, and outburst floods. Examples of such hazard chains
can be found in various regions, including the Qinghai-Tibet
Plateau (CUI et al., 2015; Liu et al., 2023b), the western Sichuan
Plateau (Chen et al., 2011), the Italian Alps (Deganutti et al., 2000),
the island of Elba (Iotti and Simoni, 1997), Taiwan (Cheng et al.,
2000), the SE coast of Australia (Flentje et al., 2000), and Nicaragua
(Scott, 2000).

The combination and overlapping impact of multiple hazards
create a secondary hazard chain that poses a significantly greater
threat than the direct impact of a single debris flow. This
phenomenon underscores the complex and interconnected nature
of natural disasters, highlighting the need for comprehensive
understanding and effective mitigation strategies (Guo et al.,
2021; Guo et al., 2022). Mountain hazard chain causes enormous
damage to transportation routes, agricultural and forestry economy,
ecological environment and the safety of urban residents. For
example, in 2018, the Baige landslide in Tibet led to the formation of
a dam that blocked the Jinsha River, resulting in severe downstream
flooding and devastating economic losses (Zhang et al., 2019;
Zhang et al., 2020a; Zhong et al., 2020). Similarly, on 17 October
2018, at approximately 5 a.m., an ice and rock avalanche in Tibet
triggered a debris flow, leading to the formation of a barrier lake
that posed a significant threat to the lives and property of residents
in upstream and downstream towns, as well as the ecological
environment and transportation networks in the vicinity (Hu et al.,
2019; Liu et al., 2023b; Yang et al., 2023b; Yang et al., 2023d). The
devastating impact of hazard chainswas exemplified by the extensive
floods, landslides, and debris flows that occurred in Venezuela on
December 15–16, 1999, causing the worst natural disaster in the
country’s history, resulting in significant loss of life and widespread
destruction of homes and structures. This historical event serves
as a poignant reminder of the far-reaching consequences of
interconnected hazards and the importance of understanding and
mitigating the secondary disaster chain effects (Pérez, 2001).

In the context of studying hazard chains, the Meilong gully
(MLG) hazard chain in Danba County, Sichuan Province, China,
occurred on 17 June 2020, has emerged as a rare and valuable case for
analysis, shedding light on the complexities and implications of such
interconnected hazards. The MLG hazard chain in Danba County
was triggered by heavy rainfall. However, during the same period,
in Zengda gully, Dajin County, Sichuan Province, China, which is
located less than 1.2 km away and has a larger watershed area of
125.53 km2, no debris flow occurred. According to the literature,
Zengda gully has experienced six debris flow hazards since the
1990s, with the latest one occurred on 27 June 2019 (Hu et al., 2022).
Despite the similarities in topography, geomorphology, and climatic
conditions, Zengda gully, with a larger drainage area and more
sediment sources, did not experience a debris flow event.

Currently, scholars have conducted research in the MLG
watershed. A simulation was conducted to analyze the movement
and accumulation process of MLG debris flow (An et al., 2022).
Additionally, Ning et al. (2022) analyzedthe implementation of
engineering measures aimed at slowing down and reducing the
ongoing development of the MLG hazard chain. Liu et al. (2023a)
conducted numerical simulations of the XJC river dam failure
process and identified that the channel uplift resulting from the
dam failure exacerbated the flood hazard of the MLG hazard
chain. However, these studies have not revealed the entire process
and mechanism of the formation, development, evolution, and
hazard-causing of the MLG debris flow hazard chain under
the internal and external dynamic coupling. Unlike the simple
superposition of single or multiple hazards, the mountain hazard
chains often have temporal and spatial continuity and extension,
and exhibit cascading and compound effects, often characterized
by huge damage, wide impact range, and long duration (Chen and
Cui, 2017; Mani et al., 2023). With the acceleration of economic
development and population growth, engineering activities in
mountainous urban areas in western Sichuan are also increasing
rapidly (Wang et al., 2018). At the same time, slope instability, debris
flows, and other mountain hazards and their secondary hazard
chains are also threatening the safety of mountainous urban areas.

In this context, using the MLG hazard chain that occurred
in Danba County, Sichuan Province, China, as a case study, this
research investigates the triggering mechanism of debris flow
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under the combined influence of earthquakes and multiple dry-
wet cycles, in addition to the heavy rainfall factor. This article
is pioneering in its utilization of the dry-wet cycle within long-
term rainfall sequences to analyze the promotion effect of increased
loose source materials on the formation of debris flow in the MLG
watershed. It elucidates the whole process of the MLG hazard
chain, encompassing formation, occurrence, scale amplification,
and disaster. Furthermore, it examined the mechanisms leading to
the formation of secondary hazards within the chain. The results
shed light on the factors behind the tendency of “block-burst” type
debris flow hazard chains in mountainous urban areas in western
Sichuan to be large in scale and result in substantial losses. These
findings also serve as a reminder that, in future mountainous urban
development, it is imperative to accurately identify debris flow
gullies and to take into account the impacts of pre-earthquakes,
dry-wet cycles, and channel blockages during geological hazard risk
assessments.

2 Materials and methods

2.1 Background

2.1.1 Geographic and geomorphic background of
the study area

MLG is situated in the high mountain canyon region of western
Sichuan Province, specifically in Guanzhou Village, Banshanmen
Town, Danba County, within the Ganzi Tibetan Autonomous
Prefecture (see Figure 1). Access to MLG is available via the G350
national highway leading to the gully entrance. The geographic
coordinates of the MLG debris flow gully entrance are as follows:
N30°59′25.11″, E102°1′32.20". The drainage area of MLG spans
62.79 km2, with the main ditch extending over a length of 12.42 km.
The highest point within the watershed reaches an elevation of
4,760 m, while the lowest point is located at the entrance of the
XJC river at an elevation of 2,120 m, resulting in a relative height
difference of 2,640 m. The average longitudinal drop across the
watershed is approximately 212.56 per mille, with the accumulation
area near the gullymouth featuring a gentler slope, averaging around
100 per mille. The MLG watershed encompasses ten branch ditches,
and the extent of the watershed and its topographic characteristics
are illustrated in Figure 1.

2.1.2 Topographic features and earthquakes
The study area is situated within a triangular fault block,

enclosed by the Freshwater River Fault, the Longmenshan Fault,
and the South Qinling Fault Zone. This region is characterized
by high tectonic activity and the presence of well-developed
faults. The exposed geological strata in the MLG watershed
predominantly consist of clastic rocks from the Devonian Guiguan
Group (Dwg), as well as Quaternary avalanche deposits and alluvial
soils (refer to Figure 1). Notably, this study area has experienced
frequent seismic events in recent history, including significant
earthquakes such as the 7.9 magnitude quake in Fuhuo (1973), a
5.0 magnitude event in Tagong (1978), a 6.9 magnitude earthquake
in Daofu (1981), an 8.0 magnitude earthquake in Wenchuan
(2008), and a 6.3 magnitude earthquake in Kangding (2014),
all within the same vicinity (see Figure 1). The most powerful

earthquake recorded in this region was the magnitude 8.0 mega-
earthquake that struck Yingxiu Township, Wenchuan County,
on 12 May 2008.

2.1.3 Meteorological and hydrological
characteristics

The study area experiences relatively low average annual
rainfall, with a long-term average of 649.34 mm and a maximum
annual precipitation of 823.3 mm recorded in 2012. Rainfall is
primarily concentrated between May and September, accounting
for 82.3% of the annual total, with an average monthly rainfall of
about 101 mm during this period, with June having the highest
monthly average at 100.5 mm. The average annual temperature
is 14.6°C, with the coldest month, January, ranging between
3°C–6°C, and the hottest month, August, typically ranging
from 20°C–23°C. The highest recorded temperature in recent
years was 39.5°C.

2.2 Methodology

2.2.1 Calculation of debris flow dynamic
parameters

The key dynamic parameters for assessing the nature and
magnitude of debris flow include density, velocity, and discharge.
In this study, field investigations (Figure 2) were conducted,
involving the selection of 12 groups for on-site slurry preparation
of debris flow samples and the examination of 6 representative
sections within the MLG area (Rahman and Konagai, 2017). The
parameters characterizing the behavior of debris flow in MLG
were determined through a combination of field investigations
and laboratory tests. The relevant calculation formulas are as
follows (Table 1).

2.2.2 Seismic impact analysis
It has shown that earthquakes can cause landslides and

subsequent hazard chains (Fan et al., 2018; Wang et al., 2019). The
study combined empirical relationships between earthquakes and
landslides, drawing from data provided by the United States
Geological Survey seismic database. A total of 720 seismic events
with magnitudes exceeding 4, occurring within a 420 km radius
centered on MLG, were extracted from the Chinese National
Earthquake Science Data Center (http://data.earthquake.cn) and
the global seismic database (https://www.usgs.gov/) published by
the United States Geological Survey (Keefer, 1984). These data
sets were then employed to examine the impact of historical
seismic events on the stability of soil formations within the
study area.

2.2.3 Drought analysis
The SPI can accomplish the simultaneous assessment of drought

because the observed precipitation during each time period is
considered a statistical sample from a larger parent population. For
computational accuracy, Guttman (1999) recommends a minimum
of 50 years of precipitation data. Observational data need not
be preprocessed into the desired aggregations; available software
codes (such as available from the National Drought Mitigation
Center) accept monthly input data [which is usually the minimum
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FIGURE 1
Regional setting of the study area. (A) The study area is located at the high mountain canyon area of western Sichuan Province and Historical
earthquakes with a magnitude greater than 4.0 since 1970 within 420 km centered on MLG. (B) Geological background. (C) High-resolution remote
sensing images of the MLG.

FIGURE 2
On-site soil sampling.

interval frequency used to study drought (i.e., the 1-month SPI)]
and aggregate it to desired intervals. Precipitation is known to
follow an asymmetric frequency distribution, with the bulk of the
occurrences at low values, and a rapidly decreasing likelihood of
larger precipitation totals. There are a number of such positively-
skewed analytical distributions, six of which were analyzed for
SPI computations by Guttman (1999). The distribution for the
SPI adopted by McKee et al. (1995), as well as the NDMC, is the
incomplete gamma distribution. We first collected historical rainfall
data from 1950 to 2020 and then utilized the SPI algorithm in

MATLAB to analyze the input data, ultimately obtaining 1-month
SPI value.

The 1-month Standardized Precipitation Index (SPI) was
employed in this study to evaluate the area’s drought and humidity
before the disaster (Seiler et al., 2002). The SPI categorizes drought
into seven grades based on the values: SPI ≥2 for extremely
wet, 1.5 < SPI ≤1.99 for severely wet, 1.0 < SPI ≤1.49 for
moderately wet, −0.99 < SPI ≤0.99 for near normal, −1.49 < SPI
≤ −1.0 for moderately dry, −1.99 < SPI ≤ −1.5 for severely dry,
and SPI ≤ −2 for extremely dry (McKee et al., 1995). Data were
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TABLE 1 Formula tables for debris flow dynamic parameters.

Parameter Formula Parameters in the
formula

Density γc = G/V γc is the debris flow density;
G is the soil sample weight; V
is the soil sample volume

Velocity

Vc = (Mc/a)H
2/3
c I

1/2
c V c ais the velocities of the

debris flow; Ic is the
hydraulic gradient of the
debris flow section of the
gully obtained by on-site
measurement; Mc are the
roughness coefficients for
debris flows; Hc is the
hydraulic radius (m) defined
as the mud depth of the
debris flow section obtained
by on-site measurement. a is
the drag coefficient; φ is the
increase coefficient; γw is the
density of water (kg/m3)
determined as 1,000 kg/m3;
γs is the density of the solid
material (kg/m3) determined
as 2,650 kg/m3.

a = (1+φγs)
1/2

φ = (γc − γw)/(γs − γc)

Discharge QC= ASC× VC QC is the peak discharge of
debris flow (m3/s), where Asc
denotes the area of the
cross-section (m2), and VC is
the average velocity at the
cross-section (m/s).

obtained from the National Meteorological Data Center of China
(http://data.cma.cn/).

3 Characteristics of MLG hazard chain

3.1 Overview of MLG hazard chain

Based on on-site investigations and related information, MLG
experienced a minor mudslide during the flood season of 1952,
but it was of a relatively small scale and resulted in no casualties.
However, on 17 June 2020, around 3:20 a.m., MLG witnessed
a large-scale, infrequent catastrophic mudslide with a recurrence
period estimated to be approximately one event in 70 years. This
event had significant consequences, including the destruction of
an 18 km stretch of National Highway G350 from Xiaojin to
Danba (Figures 3A, B). Numerous houses in GuanzhouVillage were
flooded, resulting in the unfortunate loss of two lives in the area,
and it affected 175 villagers from 48 households (as depicted in
Figure 3C). Additionally, the substantial material carried by the
mudslide in MLG directly obstructed the XJC River, leading to
the formation of a barrier lake (Figure 3D). The constriction of
the river increased its scouring capacity, destabilizing the ANZ
paleolandslide (Figure 3E), and the barrier lake eventually breached,
causing an outburst flood that inundated upstream properties and
farmland. Simultaneously, this event affected the water discharge
of the Guanzhou hydroelectric power station, resulting in a total
economic loss estimated at 85 million yuan.

3.2 Calculation results of debris flow
motion parameters

3.2.1 Density
As historical monitoring data for debris flow in MLG were

lacking, determining the density of the debris flow relied on
two methods: on-site preparation of debris flow samples and a
table checking method. The weights of the debris flow samples
were measured during field investigations, with reference to
contemporary debris flows. A total of 12 sets of field experiments
were conducted across the upper, middle, and lower reaches of
the watershed, as well as in the accumulation area. Additionally,
insights from villagers who had witnessed the debris flow events
were considered for comparison. This collective data contributed to
the calculation of bulk weight parameters for the 12 groups of debris
flow samples (as outlined in Table 2).The results revealed an average
bulk density of 1.769 g/cm3 for the MLG debris flow, signifying it as
a viscous debris flow.

3.2.2 Velocity and discharge
Discharge serves as a direct indicator of debris flow size

and is a pivotal design parameter for prevention and control
projects. Calculating debris flow velocity is essential for determining
debris flow discharge, which is typically accomplished through
morphology investigation methods. Detailed velocity and discharge
calculations for six sectionswithin theMLGdebris flow are provided
in Table 3. The findings reveal that at the mouth of MLG, the
debris flow velocity is 4.78 m/s, and the debris flow discharge is
860.40 m3/s. These results unequivocally classify the MLG debris
flow as a large-scale debris flow disaster (as outlined in Table 3).

4 Results

4.1 Causal mechanism and evolution
processes of MLG debris flow hazard chain

4.1.1 Rainstorm triggered the initiation of the
hazard chain in MLG

Between 23:40 on 16 June 2020, and 02:30 on 17 June 2020,
a heavy rainstorm impacted most townships in Danba County,
with a particularly intense, short-term heavy rainfall episode
occurring in the area of Banshanmen Township. Local interviews
with villagers revealed that the debris flow in MLG began at
approximately 3:00 p.m. on June 17. While the debris flow initiation
was somewhat delayed compared to the onset of rainfall, it was
generally consistent with the period of maximum rainfall intensity.
According to the contour rainfall map found in the “Small and
medium-sized watersheds in Sichuan Province rainstorm and flood
calculation manual,” the average 24-h maximum rainfall in the
Banshanmen area of Danba County is typically around 40 mm. In
themountainous regions of Sichuan, debris flows are often triggered
by rainfall amounts of approximately 48–50 mm for a single rainfall
event (or 8–12.2 mm for a 10-min rainfall, or 0.8–1.2 mm for a 1-
min rainfall). On June 17, the cumulative rainfall in Danba County
reached only 16.2 mm (Figure 4). However, data from the county
reported a 24-h rainfall of 59.9 mm in the mountainous area of
Bawang Township, situated on the rear side of MLG, at 2:00 a.m.
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FIGURE 3
MLG debris flow hazard chain. (A) MLG debris flow destroyed and buried the houses in the gully mouth (B) MLG debris flow destroyed the national
highway G350 and The debris flow destroyed the national highway G350 and triggered the resurrection of ANZ landslide on the opposite bank. (C)
Outburst flood destroyed houses along the coast. (D) Barrier lake inundated houses and vehicles. (E) Cracks at the back end of landslide ANZ landslide.

on June 17. Based on established rainfall criteria, this amount
classifies as a heavy rainstorm. Therefore, it can be inferred that the
immediate trigger of the hazard chain was the short-term intense
rainfall (Fiorillo and Wilson, 2004; Chen et al., 2006; Ni et al., 2014;
Guo et al., 2016).

4.1.2 Earthquakes, landforms, and lithology
provided abundant source of materials for the
initiation of the hazard chain

The distinctive geomorphology and tectonics of the study area
form a favorable foundation for the development of the MLG
hazard chain. Situated within a typical alpine canyon landscape,
this region lies at the structural heart of the Qinghai-Tibet-Yunnan-
Burma-Indonesia tectonic complex. It encompasses north-south
trending structures prevalent in the Sichuan-Yunnan region and
arc-shaped structures in the Xiaojin-Jintang composite area. The
study area is adjacent to the Xianshuihe fault belt, characterized by
intense tectonic activity and the development of structural fractures,
resulting in frequent regional seismic events. Extensive research
has demonstrated that the aftermath of earthquakes significantly
amplifies the availability of loosematerial sources in affected regions
(Fan et al., 2019). Earthquakes disrupt the original integrity of rock
and soil structures, thereby facilitating the transition of weathered
surface rock masses into potential debris flow sources (Keefer,
1984). Moreover, they lower the rainfall threshold required to
initiate instability in these material sources. The study area has
witnessed several strong earthquakes in its history, with seven
earthquakes identified as having significant impacts on soil stability,
based on earthquake data acquired from the China Earthquake

TABLE 2 Calculation table of debris flow density.

Sample Weight (kg) Volume
(m3)

Density
(g/cm3)

PJ1 13.04 7.5 1.739

PJ2 14.92 8.46 1.764

PJ3 15.2 8.6 1.767

PJ4 11.13 6.25 1.781

PJ5 13.22 7.32 1.806

PJ6 12.5 6.95 1.799

PJ7 14.23 7.85 1.813

PJ8 14.82 8.25 1.796

PJ9 14.51 8.15 1.780

PJ10 14.35 8.35 1.719

PJ11 14.23 8.1 1.757

PJ12 14.51 8.5 1.707

Data Center (http://data.earthquake.cn) from 1 January 1970, to
17 June 2020. Notably, the most recent three seismic events,
including the 8.0 magnitude Wenchuan earthquake in 2008, the
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TABLE 3 Calculation of debris flow velocity and discharge of different cross-sections.

Position Mud depth Hc
(m)

Channel
gradient Ic

Roughness
coefficient 1/n

Velocity Vc
(m/s)

Area (m2) Discharge
(m3/s)

S1 4.50 0.229 3.7 4.88 99.00 483.12

S2 12.80 0.220 2.5 6.35 153.60 975.36

S3 5.20 0.214 3.7 5.53 208.00 1150.24

S4 4.80 0.213 3.7 5.62 168.00 944.16

S5 4.60 0.212 3.7 5.45 161.00 877.45

S6 4.55 0.213 3.7 4.78 180.00 860.40

FIGURE 4
Daily rainfall data of two adjacent rainfall stations nearby (A) Daily rainfall at Xiaojin and Danba Station (B) Daily rainfall at MLG.

7.0 magnitude Lushan earthquake in 2013, and the 6.3 magnitude
Kangding earthquake in 2014, all had substantial effects on material
source stability within the watershed. These earthquakes have
provided the necessary material sources for debris flows and
subsequent hazard chains (Figure 5). Past research (Ding et al., 2020;
Wang et al., 2022a; Liu et al., 2022; Yan et al., 2023) has indicated
that in major tectonic zones, debris flows often concentrate in areas

containing metamorphic rock formations like slate, phyllite, gneiss,
mixed granite, and quartzite, along with softer rock formations
such as mudstone, shale, marl, coal-bearing series, and Quaternary
deposits. According to geological maps and field investigations, the
exposed strata in the study area predominantly comprise granitic
metamorphic rocks, slate, and phyllite from the Weiguan Group
of the Devonian System (Dwg), in addition to lose deposits from
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FIGURE 5
Historical earthquake impact map around the MLG.

the Quaternary System. These geological characteristics, coupled
with the impact of earthquakes, establish a solid foundation for the
initiation of the hazard chain.

Field investigations show that loose solid material sources
are very abundant in the MLG watershed, and the main types
of material sources in MLG are landslide-type material sources,
channel accumulation-type material sources, slope-type material
sources and freeze-thaw-type material sources (Figure 6). A total
of 212 material sources points were investigated in the study
area. Preliminary statistics reveal that there are 112 landslide
accumulation solid material source points in the watershed, with
a total volume of 7709.73×104 m3 and a potential dynamic storage
volume of 1285.48×104 m3 that may contribute to debris flow
activities. There are 28 channel accumulation solid material source
points, with a total volume of 503.14×104 m3 and a dynamic storage
volume of 175.68×104 m3. Additionally, there are 48 slope erosion
solid material source points, with a total volume of 101.11×104 m3

and a dynamic storage volume of 10.45×104 m3. There are 22 freeze-
thaw material source points, with a total volume of 1731.17×104 m3

and a dynamic storage volume of 141.72×104 m3. Furthermore,
there are 2 artificial waste slag disposal points, with a total volume
of 0.71×104 m3 and a dynamic storage volume of 0.19×104 m3. In
total, the loose solid material sources amount to 10045.86×104 m3,
with a potential dynamic storage volume of 1613.52 ×104 m3 that
may contribute to debris flow activities (Table 4).

The material sources found in the MLG watershed exhibit
distinct characteristics and distribution patterns, each playing
a role in debris flow dynamics under the influence of heavy
rainfall and floods. Landslide accumulation material sources are
concentrated points of distribution and actively participate in debris
flow movement as they are scoured and entrained by heavy rainfall
and floods. Channel material sources primarily originate from the
accumulation of the original channel, often evolving from landslide
material sources and slope erosion material sources. Slope erosion
material sources are predominantly located in the surface residual
slope deposits on both sides of various tributaries and primarily

contribute to debris flow activities through soil erosion. Freeze-thaw
material sources, on the other hand, are typically situated near the
snowline, representing frozen and thawed collapse material sources
located on the thin ridges adjacent to the snowline. The abundance
of loose solid materials in the MLG watershed is of paramount
importance in understanding the occurrence of large-scale, low-
frequency debris flow events, aligning with findings from prior
research in this field (Bovis and Jakob, 1999; McGuire et al., 2017).

4.1.3 Multiple cycles of dry-wet cycle in the early
stages facilitated the occurrence of the hazard
chain in MLG

Multiple dry-wet cycle events in the early stages provided the
triggering material source for the outbreak of the MLG debris
flow in the hazard chain, promoting the occurrence of the hazard
chain. The Standardized Precipitation Index (SPI) can be used to
assess drought characteristics and determine the cycle of drought
events (Schneider et al., 2013; Keyantash, 2021; Pei et al., 2023).
The 1-month SPI results obtained from the analysis of the long-
duration rainfall in the study area over a period of 70 years, from
1950 to 2020 (Figure 7), it indicates that at least 27 dry-wet cycle
events occurred in MLG watershed prior to the outbreak of the
debris flow. Among these 27 dry-wet cycle events, there were 6
moderately dry-moderately wet events, 8 extremely dry-moderately
wet events, 1 extremely dry-severely wet event, 8 severely dry-
moderately wet events, 3 moderately dry-extremely wet events and
1 severely dry-extremely wet event. A severe drought with an SPI
value of −1.69 occurred in March 2020, the year of the MLG debris
flow. Subsequently, a short but intense rainfall event on 17 June
2020 triggered the formation of the MLG debris flow. Dry-wet
cycle events cause cracking of the soil surface, enhanced physical
weathering, and reduced soil strength by altering the structure of
the soil mass (Chiarle et al., 2007; Wei et al., 2010; Chen et al., 2014;
Yang et al., 2023a), thusmaking itmore susceptible to damage under
heavy rainfall conditions. Therefore, the preceding occurrence of
27 moderate or higher intensity dry-wet cycle events significantly
facilitated the outbreak of large-scale debris flow in MLG by
reducing the strength of the soil mass and increasing the number
of potential triggering material sources.

4.1.4 The cascading failure of large-scale
landslides and channel-blocking boulders
amplified the scale of the hazard chain

In order to analyze the evolution process of theMLG debris flow
discharge, six cross-sections were selected (Tables 2, 3) within the
MLGwatershed, and the density, velocity, and discharge of the debris
flow at each cross-section were calculated. Additionally, based on
remote sensing images and field investigation, three major landslide
dam breach points were identified within the MLG channel,
namely, theDongfengpengzi (DFPZ) landslide, Danyi village (DYV)
landslide, and Meilong village (MLV) landslide (Figure 1). The
discharge of the debris flow after the breach of these three dampoints
were as follows: No. 1 discharge was 483.12 m3/s, No. 2 discharge
was 975.36 m3/s and No. 3 discharge was 1150.24 m3/s (Figure 8).
These three landslide dam breach points represent a sharp increase
in the debris flow discharge during the evolution process. DFPZ
landslide is located on the left bank slope of the main channel of
MLG, approximately 3.43 km away from the outlet. The channel at
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FIGURE 6
Typical material sources in MLG.

TABLE 4 Typical material sources statistics.

Solid material source Points Volume (104m3) Dynamic reserve (104m3)

Landslide 112 7709.74 1285.48

Channel 28 503.14 175.68

slope 48 101.11 10.45

Freeze-thaw 22 1731.17 141.72

waste slag 2 0.71 0.19

Total 212 10045.86 1613.52

the foot of the slope is narrow, with a width of about 3 m–10 m,
while its upstream channel has a width of about 40 m–80 m, with an
average width of about 60 m. DYV landslide is situated on the right
bank slope of the main channel of MLG, approximately 2.78 km
away from the outlet. The channel at this location is narrow, with a
width of about 3 m–9 m, and exhibits overall meandering with local
blockages and clear traces of lateral erosion.MLV landslide is located
on the right bank slope of the main channel of MLG, approximately
1.65 km away from the outlet. The channel at the foot of the slope is
highly meandering, with a width of about 6 m–10 m, and boulders
all over the ditch, and is scattered with boulders ranging from 3 m
to 6 m in size. Its upstream channel is slightly wider, with an average
width of about 15 m–20 m.

When the debris flow reaches the foot of the DFPZ landslide, the
narrow channel and reduced cross-sectional area result in a rapid
increase in flow velocity. The high-speed debris flow causes intense
lateral erosion at the foot of the landslide. Additionally, continuous
rainfall infiltration over a prolonged period weakens the stability of
the DFPZ landslide. The intense lateral erosion leads to secondary
sliding at the front edge of the landslide (Wang et al., 2022b;
Ma et al., 2023), resulting in a blockage that accumulates loose
material carried by the debris flow. Simultaneously, the increasing

upstream water level and the accumulation of energy lead to the
abrupt breaching of the landslide dam. As the debris flow moves
towards the DYV landslide, the blockage effect further amplifies
the flow velocity and discharge. This intensifies the erosion of the
channel bed and banks, resulting in the unloading of the front edge
of the DYV landslide to slide. Additionally, the direct impact of the
debris flow at the channel diversion points lead to significant sliding
at the front edge of the bank slope, causing a secondary blockage
(Qiu et al., 2022).When the debris flow continues tomove to the foot
ofMLV landslide, the narrowing of the channel results in a reduction
in the cross-section, and an increase in flow velocity, enhancing the
erosion process. Furthermore, the debris flow, which has already
experienced the secondary blockage at DYV landslide, has its flow
velocity and discharge multiplied several times, resulting in more
intense erosion of the MLV landslide. This leads to extensive sliding
at the front edge of the landslide, with a large number of debris
and boulders occupying the channel, forming another blockage.The
“6.17”MLG debris flowwas significantly enhanced by the large-scale
cascading blockage of the DFPZ landslide, DYV landslide, MLV
landslide and the boulders in the channel, leading to a large amount
of solid material being discharged at the outlet of the channel,
triggering subsequent secondary hazard chains.
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FIGURE 7
1-month SPI values in the study area over the period 1950-2020(Interpretation: SPI≥2, extremely wet; 1.5<SPI≤1.99, severely wet; 1.0<SPI≤1.49,
moderately wet; −0.99<SPI≤0.99, near normal; −1.49<SPI≤−1.0, moderately dry; −1.99<SPI≤−1.5, severely dry; SPI≤−2, extremely dry).

4.2 Mitigation measures analysis of
chain-breaking

The hazard chain is generally classified into four sections: the
hazard pregnancy ring, the triggering ring, the evolution ring, and
the damage ring. In the MLG watershed, lithology, geomorphology,
pre-seismic activity and dry-wet cycle impacts provide the material
and energy basis for the occurrence of the hazard chain, constituting
the hazard pregnancy ring. Heavy rainfall as the triggering factor,
representing the triggering ring. The amplification process of debris
flows and the deformation process of landslides constitute the
evolution. The resulting debris flows, landslides, barrier lakes and
outburst floods form the damage ring.

Chain breaking refers to interrupting the development of the
hazard chain at a certain link of the chain. For the MLG hazard
chain, different chain breaking measures should be implemented
in different rings (Figure 9). The MLG hazard chain is initiated
by heavy rainfall, and the hazardous area is large in scope. It
poses a major threat to the reconstructed National Highway G350
and vehicle operations through debris flow impact, siltation, and
flood submergence, etc. and at the same time, threatens the
lives and property of 99 individuals in 18 households at the
gully mouth. So, breaking the hazard chain is necessary. Due
to the huge amount of material sources in the MLG watershed,
it is impractical to completely remove all debris flow sources.
Therefore, engineering measures can be taken at the damage

ring, such as constructing sediment retaining dams within debris
flow channel, and establishing debris flow drainage canal at the
gully mouth. Based on the sediment transport capacity of the
XJC River segment, it is recommended to limit the debris flow
discharge into the river to within 50,000 cubic meters per event
to ensure the flood control and sediment transport capacity of
the XJC River.

5 Discussion

The formation and amplification process MLG hazard chain
are dominated by the material sources, and the increase in the
amount of material sources can be influenced by strong regional
tectonic activity and earthquakes (Figure 10). MLG watershed is
located in the Sichuan-Yunnan north-south trending tectonic zone
and the arc-shaped Xiaojin-Jintang tectonic zone, belonging to
Tibetan-Yunnan-Burma-Indonesian tectonics. The tectonic system
in the area is complex, with intense metamorphism, which favors
the transformation of weathered surface rock masses into debris
flow and landslide material sources. In addition, the study area
and its neighboring regions experience frequent seismic activities,
with multiple strong earthquakes have occurred in history. The
latest strong earthquake to the time before the debris flow occurred
was the 8.0 magnitude mega-earthquake that occurred on 12 May
2008 in Yingxiu Town, Wenchuan County. This earthquake had a
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FIGURE 8
The discharge evolution process and photos of blockages of MLG debris flow.

FIGURE 9
Suggestions on chain breaking measures in each link of hazard chain.

certain impact on the formation ofmaterial sources in thewatershed,
as an 8.0 magnitude earthquake can affect landslides up to a
distance of 393 km (Delgado et al., 2011), while the study area is
approximately 300 km away from the epicenter of the Wenchuan

earthquake. Furthermore, previous research has indicated that the
2008 Wenchuan earthquake generated between 5 and 15 billion
cubic meters of loose solid material within an area of 13,800 km2

(Parker et al., 2011).
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FIGURE 10
The whole process of MLG debris flow hazard chain.

Currently, the amount of loose solid material sources in the
MLG watershed that may be involved in debris flow activities
are estimated to be 1613.52×104 m3. These sources are distributed
in the main channel and various tributaries, but they do not all
participate in debris flow activity simultaneously. Furthermore, not
all loose solid material sources involved in a single debris flow
activity event will be completely washed out of the debris flow
channel and enter into themain river. First of all, theMLGwatershed
has a large area, and rainfall distribution cannot be completely
uniform. There may be areas within the watershed where loose solid
materials are present but do not meet the conditions for rainfall
initiation or there may be no distribution of loose solid materials in
areas of heavy rainfall. This rainfall distribution of the unevenness
also determines the uneven participation of loose solid materials
in debris flow activity. Secondly, not all loose solid materials in
tributary channels can participate in debris flow activity in the main
channel. With changes in channel slope and width, water-sediment
separation can occur in certain sections, resulting in sediment
accumulation in the channel. Therefore, the transformation of
debris flow sources is a complex process (Yang et al., 2023c;
Zhao et al., 2023), and the design of prevention and control
engineering is mainly based on the historical records of debris
flow disasters and the calculation results of previous debris flow
characteristics.

In addition, the on-site investigation has revealed that the
sliding of the avalanche deposits at the front edge of the ANZ
landslide drove the collapse of the strongly weathered bedrock to
form the accumulation at the foot of slope, creating the illusion
of bedrock sliding. Salt efflorescence refers to the phenomenon
where underground water containing soluble salts flows to the
surface and, due to the decrease in atmospheric pressure and
increase in temperature, the minerals precipitate and crystallize.
Previous studies have shown that the shear strength of the soil
decreases continuously after the precipitation of soluble salts,

leading to slow deformation of the slope. The cyclic process of
leaching and precipitation of soluble salts in groundwater ultimately
results in the instability or reactivation of landslides (Zhang et al.,
2020b). The boundary between the landslide deposits and the
highly weathered bedrock in ANZ landslide is marked by the
presence of salt efflorescence. Therefore, it can be inferred that
this boundary represents the discharge point of the previous
groundwater, and the lower part of the landslide deposit serves
as the shear outlet of the landslide. The identification of the
salt efflorescence outcrops can help to determine whether the
ANZ landslide is characterized by local surface sliding or overall
sliding, which is a guide for determining the morphologic
characteristics of the blocked barrier dam and the formulation
of hazard prevention and mitigation measures. Additionally,
it provides new insights and references for understanding
the mechanisms of landslide formation, identifying slope
instability and the reactivation of paleolandslides in mountainous
urban areas.

The MLG hazard chain and the formation of material sources
for debris flows and landslides share similarities with other regions
around the world that have experienced strong tectonic activity
and earthquakes. For example, the 2011 Tohoku earthquake in
Japan triggered numerous landslides and debris flows, leading to
significant damage and loss of life (Mukunoki et al., 2016). In
2018, the Sulawesi earthquake in Indonesia triggered landslides that
buried entire villages, causing widespread devastation (Watkinson
and Hall, 2019; Zhao, 2021). In both cases, the formation of
material sources for debris flows and landslides was influenced
by the seismic activity. The impact of rainfall distribution on the
participation of loose solid materials in debris flow activity is also
a common factor in other regions. For instance, in the Himalayan
region, the uneven distribution of rainfall and the presence of loose
solid materials in steep slopes have led to frequent landslides and
debris flows (Burtin et al., 2009; Das et al., 2022). In the Andes
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Mountains, the combination of steep topography, intense rainfall,
and the presence of loose sediments has resulted in frequent debris
flows and landslides (Moreiras and Dal Pont, 2017; Angillieri et al.,
2020). The role of salt efflorescence in influencing the stability
of slopes and the cyclic process of leaching and precipitation of
soluble salts leading to slow deformation is also a mechanism that
may have relevance in other regions with similar geological and
topographical characteristics. For example, in the Ebro Valley (NE
Spain), the presence of salt efflorescence on slopes has been linked
to the destabilization of slopes and the occurrence of landslides
(Gutiérrez et al., 2023).

In conclusion, the MLG hazard chain and the mechanisms of
debris flow and landslide formation share similarities with other
regions around the world that have experienced strong tectonic
activity, earthquakes, and intense rainfall. Studying international
cases with similar geological and environmental characteristics
could provide valuable insights for understanding and managing
hazards related to debris flows, landslides, and slope instability in
various parts of the world.

6 Conclusion

In order to investigate the triggering mechanism of landslide-
debris flow hazard chain in mountainous urban areas, this study
focuses on the hazard chain of MLG debris flow-ANZ landslide-
barrier lake -outburst flood that occurred in Danba County,
Sichuan Province, on 17 June 2020. Through on-site investigations,
model calculations, rainfall analysis, seismic impact analysis, and
drought index analysis, the characteristic parameters of the MLG
hazard chain were obtained, the hazard pregnancy factors were
analyzed, the triggering mechanism of the MLG hazard chain
was revealed, and measures to break the hazard chain at different
links were proposed. It is helpful to improve the early warning
and forecasting system of urban monitoring in western Sichuan
mountainous area and grasp the key direction of engineering
prevention and control. The conclusions of our research are
as follows:

(1) The low-frequency large-scale debris flow disaster in
MLG, which occurred on 17 June 2020, has a recurrence
interval of approximately 70 years, with an average density
of 1.769 g/cm3. The flow velocity of the debris flow at
the outlet of the gully is 4.78 m/s, and the peak flow
discharge is 860.40 m3/s. The tremendous energy of the
debris flow forms the basis for the destructive power of the
hazard chain.

(2) The unique geomorphology and lithology of the study area
provide favorable conditions for the occurrence of the hazard
chain in MLG. Seven seismic events, including the Wenchuan
8.0 magnitude earthquake in 2008, have had a significant
impact on the stability of the soil mass in the MLG watershed.
The occurrence of the large-scale debris flow in MLG was
facilitated by the occurrence of 27 moderate and above dry-
wet cycle events in the previous period, which reduced the
soil strength and increased the availability of material sources.
Under the influence of internal and external dynamic forces
such as earthquakes, drought, and rainfall, the structure of

geotechnical bodies in the MLG watershed was continuously
damaged, which accelerated the weathering and erosion of
the geotechnical bodies and led to a significant increase in
the amount of loose material sources in the watershed. The
abundant loose solid material sources in the MLG watershed
are the key factors contributing to the outbreak of this large-
scale low-frequency debris flow.

(3) TheMLGhazard chain is characterized by the presence of three
large landslides, namely, DFPZ landslide, DYV landslide, and
MLV Village landslide, along with the cascading blockage and
breach caused by giant boulders within the channel. This has
resulted in a 2.38-fold increase in the debris flow discharge
within the 1.78 km-long channel, significantly enhanced the
energy of the debris flow and leading to the ejection of a large
amount of solidmaterial from the outlet, triggering subsequent
secondary disaster chains.

(4) The rainstorm-induced hazard chain in MLG is a complete
composite geological hazard chain, forming a hazard
chain of rainstorm, debris flow, landslide, barrier lake and
outburst flood. For the hazard chain of MLG, chain-breaking
measures are proposed at different links. It is recommended
to take chain-breaking measures from the damage ring,
strengthen the monitoring and early warning during flood
season, and construct debris flow blocking dams and
drainage canals.

While the specifics of hazard chains may vary across different
geographic locations, the principles of hazard chain analysis and
the importance of implementing chain-breaking measures are
universally applicable. Therefore, our study also provides insights
into the triggering mechanisms and characteristics of the MLG
hazard chain, offering valuable lessons for similar hazard chains
in other regions worldwide. Our findings contribute to the
broader understanding of hazard chain dynamics and can inform
disaster risk reduction strategies in other settings. The information
about the casualties and destruction caused by the hazard chain
serves as a reminder of the devastating impact of such disasters
and underscores the urgency of proactive measures to mitigate
their effects.
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The Newmark method is a classic method for evaluating the permanent
displacements of a slope under seismic loads. This study aims at proposing
a three-dimensional nested Newmark method (3D-NNM) in the framework
of the kinematic theorem of limit analysis. The classical three-dimensional
rotational failure mechanism is discretized into a series of nested rotating
wedges, each of which is subjected to a corresponding yield acceleration
determined by employing the work rate balance, and each of which produces
relative displacements under seismic excitations when it exceeds the yield
acceleration. The total permanent displacement profile is further obtained by
integration of the relative displacements from the slope toe to the slope crest.
The obtained results show that the proposed 3D-NNM can effectively evaluate
the permanent displacement profile of slopes under earthquakes, and the
proposed 3D-NNM improves the Leshchinsky’s 2D nested Newmark method by
30.7%; the obtained total horizontal displacement at the slope middle height
reduces with the number of nested blocks, but increases with the increasing
of the slope-width-to-height ratios. Besides, the traditional Newmark method
with a single sliding block tends to overestimate the permanent displacements
of slope under seismic shakings.

KEYWORDS

seismic slopes, Newmark displacements, kinematic theorem of limit analysis, three-
dimensional, nested Newmark method

1 Introduction

Accurate assessment of slope deformations is a classical problem in geotechnical
engineering, since it is key to assess the slope stability for resilience design in
earthquake-prone regions (Du and Wang, 2013; Zhang et al., 2023; Zhang et al., 2024). The
methods used for assessing seismically-induced permanent displacements of slopes include
numerical simulations with finite element method and the Newmark-based sliding block
approach (Jibson, 2011).

Numerical simulations are able to provide a realistic response regarding stresses and
strains of real-world slopes during earthquakes but subjected to large computational burden
(Du et al., 2023; Li et al., 2023). Because of its advantage of easy to use and practical
rationality, the Newmark-based sliding block approach has been widely used to assess
the seismic permanent displacements of a variety of engineering structures (Newmark,
1965; Saygili and Rathje, 2008; Leshchinsky, 2018; Mathews et al., 2019; Song et al., 2019;
Zhou et al., 2019; Zheng et al., 2020). The Newmark s approach originally proposed by
(Newmark, 1965) is able to give the permanent displacement of a pre-assumed translational
rigid block with a linear sliding surface in a slope once the input acceleration of a seismic
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wave exceeds the yield acceleration of the slope at the limit
equilibrium condition which is determined by the pseudo-static
method. The Newmark-based sliding block approach was modified
by many researchers by, for example, building empirical formulas
that relate the Newmark displacement with the ground motion
(e.g., Arias intensity) and the critical acceleration of a slope
(Hsieh and Lee, 2011; Chousianitis et al., 2014; Zhu et al., 2024),
accounting for the model uncertainty and soil variability in the
probabilistic framework (Yegian et al., 1991; Du et al., 2018; Li et al.,
2020; Pan et al., 2021), and extending the translational rigid block to
a rotational rigid block with a curved sliding surface (Nadukuru and
Michalowski, 2013).The rotational failuremechanismwith a curved
sliding surface of slopes under dynamic loadings was observed in
centrifugal model tests (Kutter and James, 1989) and in shake table
model tests (Wartman et al., 2005).

However, the traditional single-block Newmark approach
suffers from the drawback of neglection of the presence of multiple
shear zones or regions of dispersed shear movement inside the
slope under dynamic loadings that were observed in physical
model tests (Kutter and James, 1989; Wartman et al., 2005). Besides,
the traditional Newmark method fails to consider the complex
constitutive properties and the time-varying properties of the soil
materials under seismic loads (Pang et al., 2018b; Pang et al., 2021;
Xu et al., 2023; Lu et al., 2024). The theoretical deficiency may
result in bias prediction on seismic slope deformations using the
traditional single-block Newmark approach. In order to address
this issue, Leshchinsky (Leshchinsky, 2018) proposed a new nested
Newmark approach to assess the permanent displacements of
slopes subjected to earthquakes, based on the builds upon the
well-accepted Newmark sliding block approach. In the proposed
nested Newmark approach, the sliding block is discretized by
a series of nested critical failure wedges, each yielding a critical
yield acceleration. The proposed nested Newmark approach has the
benefit of considering multiple shear zones or regions of dispersed
shear movements of a slope under seismic loadings. The conceptual
nested Newmark approach attract significant attention in the
geotechnical community, and many authors published subsequent
articles (Song et al., 2019; Zhou et al., 2019; Zheng et al., 2020).
Zheng et al. (Zheng et al., 2020) extended the Nested Newmark
method from the limit equilibrium framework to the upper-
bound limit analysis framework and studied the influences of
soil dynamic responses (including slope height, soil shear wave
velocity and input ground motion) on the permanent Newmark
displacement of slopes. Song et al. (Song et al., 2019) proposed a
multi-block sliding approach to calculate the permanent Newmark
displacement of slopes by considering a series of rigid blocks and the
interactions between two neighbouring sliding blocks. They found
that the single-block Newmark method produces unconservative
estimates of permanent displacements of a shallow sliding mass
when a deep-seated sliding subsequently occurs in a slope subjected
to earthquakes. Zhou et al. (Zhou et al., 2019) incorporated the
tensile strength cut-off into the Nested Newmark method and
studied the seismic slope permanent displacements in the light
of the kinematical approach of limit analysis. They found that
neglecting the tensile strength of soils may underestimate the
permanent displacements of slopes subjected to an earthquake.
The aforementioned researches extended the nested Newmark
approach and provided valuable academic contribution to seismic

displacement assessments of slopes during earthquakes. However,
these researches failed to include the three-dimensional (3D) effect
of a slope when assessing the permanent displacements using the
Newmark approach. In real-word scenario, slope failure often
exhibits three-dimensional feature (Michalowski and Drescher,
2009; Gao et al., 2013; Liu Y. et al., 2023). Three-dimensional
stability analysis of slopes has attracted great attention in academia
(Chen et al., 2023; Dai et al., 2023; Liu W. et al., 2023). This study
aims to fill this gap. Three-dimensional displacement analysis of
slopes subjected to seismic loads is investigated by using the Nested
Newmark method.

This paper aims at proposing a three-dimensional nested
Newmark method (3D-NNM) in the framework of the kinematic
theorem of limit analysis. The second section presents the nested
3D rotational failure mechanism, together with the formulation of
the yield acceleration and the relative displacement of each block.
The 3D-NNM is compared with the original Nested Newmark
method of Leshchinsky (Leshchinsky, 2018) in the third section,
which is followed by performing parametric analysis on checking
the influences of the number of nested blocks, the slope-width-to-
height ratios, the peak ground acceleration and the slope inclination
angle.This paper finally ends upwith a conclusion in the last section.

2 Proposed 3D Nested Newmark
method

It is practically necessary to assess and monitor geotechnical
structure deformations under seismic loadings, which attract great
attentions from researchers (Mi et al., 2023; Zhao et al., 2024). The
Nested Newmark method, based on the classical Newmark single
sliding method, originally proposed by Leshchinsky (Du et al.,
2023), considers a two-dimensional translational failure model of
a simple homogeneous slope at the ultimate limit state under a
seismic excitation. In theNestedNewmarkmethod (Du et al., 2023),
the moving body with a linear sliding surface is discretized into
multiple nested sliding wedges, each of which is subjected to a
constant seismic yield acceleration assessed in the framework of
limit equilibrium method. The original Nested Newmark method
(Du et al., 2023) provides a prototype to assess post-earthquake
slope movements, no matter what kind of failure mechanisms
are involved. Generally, the original Nested Newmark method
have four main procedures (Du et al., 2023): (1) discretizing the
sliding body into a series of nested sub-bodies based on a given
failure model; (2) evaluating the seismic yield acceleration of each
nested body by using the pseudo-static method; (3) calculating
the relative velocity of each nested body by employing the input
of a given acceleration time history and the time-dependent
exceedance of a yield acceleration at the given time, and obtaining
the relative discplacement of each nested body by integrating the
relative velocity over time increments; (4) assessing the cumulative
displacement profile at the given time t by integrating the relative
displacements along the slope height from the slope toe to the slope
crest upwards. This paper aims to extend the Nested Newmark
method to incorporate the three-dimensional rotational failure
mechanism in the framework of the upper-bound limit analysis
method. These four basic procedures are introduced below.
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FIGURE 1
Nested 3D rotational failure mechanism.

2.1 Nested 3D rotational failure mechanism

Figure 1 gives a schematic representation of a three-dimensional
rotational failure mechanism proposed by Michalowski and
Drescher (Xu et al., 2023) in a homogeneous soil slope subjected to
the seismic shakings at the ultimate limit state. The slope inclination
is represented by the angle β; the slope height and width are denoted
respectively by H and B. The sliding soils are presumed to rotate
around the horizontal axis OX with an angular velocity ω. The
failure of homogeneous soils is characterized by Mohr-Column
yield criterion whose shear strength is represented by the internal
friction angle φ and the soil cohesion c. The soil unit weight is
denoted by γ. The 3D rotational failure mechanism is composed of a
3D curved horn body and a plane-strain insert. The 3D curved horn
body is split in half along its longitudinal symmetry plane, between
which the plane-strain body is inserted. The plane-strain body is
distinguished from the three-dimensional rotation body, when the
slope width becomes large, which makes the three-dimensional
analysis results reduce to two-dimensional analysis. Readers are
referred toMichalowski andDrescher (Xu et al., 2023) for the details
of constructing the three-dimensional failure mechanism.

The 3D rotational failure mechanism (Xu et al., 2023) is
kinematically admissible on the condition that it obeys the plastic
flow rule associated with the Mohr-Column yield criterion of soils.
This requires that the geometrical shape of 3D rotational failure
mechanism in the longitudinal symmetry plane is defined by two
logarithmic spirals, the below one of which represents the sliding
surface (see A1C1 in Figure 1). The logarithmic spiral of A1C1 is
formulated as,

r = r0e(
θ−θ0) tan φ (1)

where r represents the radius of A1C1 to the rotational center O,
the angle θ is measured from the horizontal plane, as sketched
in Figure 1.

In the proposed 3D nested Newmark method, the sliding body
bounded by the critical sliding surface A1C1 is discretized into
N nested blocks, each of which is bounded by the sliding curved
surface AiCi in the longitudinal symmetry plane, see Figure 1.
For the i-th nested rotating block, the sliding surface AiCi in the

longitudinal symmetry plane starts at the left hand at the point Ai-1
on the slope crest and ends above the point Ci-1 on the slope face,
ensuring that nested sliding 3D body does not overlap. The profile
in the longitudinal symmetry plane of the sliding curved surface
AiCi is a logarithmic spiral whose rotational center may be different
from the one of A1C1. It should note that the thickness of the sliding
body bounded by the sliding curved surface Ai-1Ci-1 and the sliding
curved surface AiCi tend to become infinitely small as the number
of nested blocks become extremely large. This may enhance the
predictive accuracy but cause a high computational burden in the
proposed 3D nested Newmark method.

2.2 Seismic yield acceleration

Making reference to Nadukuru and Michalowski (Du et al.,
2018), the pseudo-static approach is firstly used to evaluate the
critical seismic acceleration associated with the critical 3D curved
sliding surface (the first nested body) in the framework of the
upper-bound limit analysis. Based on the upper-bound limit analysis
method, an upper-bound estimation of the seismic acceleration can
be obtained by using the work balance equation, for which the
external work rates are equal to the internal energy dissipations,

Wi
γ + kW

i
s = D

i (2)

where Wi
γ represents the work rates of gravity with respect to the

i-th 3D failure mechanism defined by the sliding curved surface
AiCi; W

i
s is the work rates of seismic forces with respect to the i-th

3D failure mechanism, and k is the horizontal seismic acceleration
coefficient; Di represents the internal energy dissipations along the
curved surface AiCi. The details of calculating the three terms in
Eq. 1 can be found in Nadukuru and Michalowski (Du et al., 2018).
The upper-bound estimation of the seismic acceleration coefficient
ky

i can be determined by minimizing k using Eq. 1 in terms of the
position of the sliding curved surface AiCi.

Once the critical seismic acceleration coefficient of the first
nested body is determined, the critical seismic acceleration
coefficient ky

i for each nested sliding body defined by the sliding
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curved surface AiCi can be determined following the same
procedure presented above.

2.3 Nested Newmark cumulative
displacements

Once the seismic acceleration kt from the acceleration-time
history exceeds its critical value ky

i of the i-th nested sliding 3D
body, the soil mass tends to rotate around the rotating center of
the associated critical failure mechanism. At this moment, the work
balance equation does not hold any more. The rotation results in
the inertial moment of the nested sliding body with the angular
acceleration

⋅⋅
Ω. The inertial moment Mi

s of the i-th nested body
induced by the angular acceleration

⋅⋅
Ωi is expressed in Eq. (3),

Mi
s = (IG

i +mili)
⋅⋅
Ωi (3)

where mi is the mass of the i-th rotating nested body, and li is the
distance between the rotation axis and the mass center of the i-th
rotating nested body; IG

i is the mass moment of inertia with respect
to the axis passing through the mass center. Thus, when the seismic
acceleration kt exceeds its critical value ky

i, the moment balance for
the i-th nested sliding 3D body can be formulated as,

Wi
γ + ktW

i
s = D

i + (IG
i +mili)

⋅⋅
Ωi (4)

With Eqs 1–4, the angular acceleration
⋅⋅
Ωi can be obtained as,

⋅⋅
Ωi =

Wi
s

IG
i +mili
⋅ (kt − ky

i) (5)

The rotation angle of the i-th rotating nested 3D body, Ωi, can be
obtained by double-integration with respect to time for which the
angular velocity is greater than zero. The horizontal displacement
uy

i at the ending position Ci on the slope surface can be further
formulated in Eq. (6):

uy
i = r0

ie(θh
i−θ0

i) tan φ sin θh
i∬

t

⋅⋅
Ωidtdt (6)

in which θ0
i, θh

i, r0
i are geometrical parameters that determine

the position of the sliding surface AiCi, as sketched in Figure 1.
Substitution of Eq. 5 into Eq. 6 leads to,

uy
i =

r0
ie(θh

i−θ0
i) tan φ sin θh

iWi
s

(IG
i +mili)

∬
t
(kt − ky

i)dtdt (7)

The horizontal seismic acceleration kt in Eq. 7 is time-
dependent. It is assumed that the critical acceleration ky

i of the i-
th nested sliding 3D body is constant during the seismic shaking.
In nested Newmark method, the total cumulative horizontal
displacement at the given time t of the i-th nested sliding block
is obtained by integrating along the slope height form the slope
toe to the i-th nested sliding surface upwards. The total horizontal
displacementuy at the given time t of the nested sliding block is given
by Eq. (8),

uy = ∫
H

0
uy

idt (8)

TABLE 1 Model parameters for comparisons.

Slope geometry Values

Heigh (H) 20.0 m

Inclination angle (β) 45.0°

B/H 2.0–10.0

Soil properties

Unit weight (γ) 20.0 kN/m3

Cohesion (c) 15.0 kPa

Friction angles (φ) 34.0°

3 Comparisons

In order to validate the proposed Nested Newmark method
using 3D rotational failure mechanism, it is compared with the
original Nested Newmark method of Leshchinsky (Du et al., 2023).
Since that original Nested Newmark method of Leshchinsky
(Du et al., 2023) considers a two-dimensional translational failure
model, the ratio of slope width to its height is set to change from 2.0
to 10.0 in this study, which is large enough to allow the 3D failure
mechanism reduce to 2D analysis. The model parameters regarding
slope geometry and soil properties used in this paper are listed in
Table 1. In the calculations, the nested blocks, which are evenly-
spaced, are set to 150 in this section. The acceleration time history
records of 1999 Chi-Chi earthquake, station TCU072-000 are taken
for estimating post-earthquake slope deformations, which are also
used in Leshchinsky (Du et al., 2023) and plotted in Figure 2.

Figure 3 presents the relative displacement profiles along slope
height provided by the proposed 3D nested Newmark method and
by Leshchinsky (Du et al., 2023). It is observed both in the proposed
3D-NNM method and in Leshchinsky’s 2D model that the relative
displacements decrease from the slope base towards the slope crest,
and are close to zero above the slope height midpoint. This means
that the slope above the slope height midpoint does not produce
relative deformations, and its final deformations is purely caused
by the sliding of underlying nested blocks. For example, the slope
relative displacements, estimated by the proposed 3D-NNMmethod
for the case of B/H being 5.0, increase from 0.05 m at the slope
height of 5.0 m–0.22 m at the slope base. Besides, it is interesting
to see that the relative horizontal displacements along the slope
height of the Leshchinsky’s 2D nested Newmark method tends to
be bigger than the solutions estimated by the proposed 3D nested
Newmark method.

Figure 4 presents the total horizontal permanent displacement
profiles along slope height estimated by the proposed 3D-NNM
method and given by the Leshchinsky’s 2D model (Du et al., 2023).
The solution of the classical single-sliding block Newmark method
is also plotted in the figure for a comparison. In contrast to the
relative displacements, the final permanent displacements estimated
both by the proposed method and by Leshchinsky (Du et al.,
2023) increase from the slope base towards the slope crest, and
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FIGURE 2
Acceleration time history records of 1999 Chi-Chi earthquake, station TCU072-000.

FIGURE 3
Relative horizontal displacement profiles along slope height for the
two models.

tends to remain stable above the slope height midpoint. The
maximum total horizontal permanent displacement estimated by
the Leshchinsky’s 2D nested Newmark method (Du et al., 2023)
is around 1.34 m, while it reaches 0.50 m when B/H = 2.0 and
1.08 m when B/H = 5.0 for the proposed 3D nested Newmark
method. This indicates that the Leshchinsky’s 2D nested Newmark
method may overestimate the post-earthquake deformation profile
of slopes. The proposed 3D nested Newmark method improves
the Leshchinsky’s 2D nested Newmark method by 30.7%, due to
the fact that the proposed method yields a rigorous upper-bound
estimation to the post-earthquake deformations. This divergence

FIGURE 4
The total permanent displacement profiles along slope height for the
two models.

is due to the fact that the proposed 3D-NNM assumes a three-
dimensional velocity field while Leshchinsky’s 2D model (Du et al.,
2023) takes a translational velocity field. The finding agrees well
with the statement that 2D analysis of slope stability delivers more
conservative results compared with 3D analysis, which is well-
known in the geotechnical community. Besides, the horizontal
permanent displacement estimated by the classical single-sliding
block Newmark method is only 0.25 m, which is smaller than
the proposed 3D-NNM. This means that the traditional Newmark
method with a single sliding block tends to underestimate the
permanent displacements of slope under seismic shakings.
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FIGURE 5
Influences of the number of nested blocks on total horizontal
permanent displacement profiles.

4 Parametric analysis

4.1 Influence of the number of nested
blocks

This section discusses the influence of the number of nested
blocks on the total Newmark displacement estimated by the
proposed method. Figure 5 shows the profiles of the total horizontal
displacements along the slope height for the number of nested blocks
ranging between 10 and 200. It is seen that the number of nested
blocks has a large influence on the estimated profiles of the total
horizontal displacements along the slope height, which increases
with the number of nested blocks. For example, the maximum total
horizontal displacement at the slope crest is approximately 0.58 m
for N = 10, and slowly converges around 1.08 m for N = 200,
increasing by 86.2%. However, it should note that the computational
burden is positively correlated with the number of nested blocks;
the computational cost is around 3 min for the case of N = 10,
but increases to around 20 min for the case of N = 200, on a
desktop computer with a CPU of Core (TM) i5-12600K, 3.69 GHz.
This means that the computational accuracy of the permanent
displacements with more nested blocks is at the expense of high
computational burden. Thus, in this paper, the number of nested
blocks is set to 150 in the subsequent calculations to compromise
between the computation burden and the computational accuracy.

4.2 Influence of the slope-width-to-height
ratios

This section aims to discuss the influences of the slope-width-to-
height ratios, represented by B/H, on the seismic yield acceleration
and the total horizontal displacement in the framework of the

FIGURE 6
Influences of B/H ratio on the seismic yield acceleration profiles.

proposed Nested Newmark method. Figure 6 shows the profiles of
seismic yield acceleration along the slope height for the B/H ratio
changing from 2.0 to 20.0. For the case of B/H=3, the seismic yield
acceleration increases from 0.18 g at the slope base to 0.42 g at the
slope middle heigh, and finally raising to 2.0 g at the slope crest.
Besides, at the slope middle heigh, the seismic yield acceleration
decreases slightly with the increasing of the slope B/H ratio, which
declines from 0.42 g at B/H=2 to 0.30 g at B/H=20.

Figure 7 plots the profiles of the total horizontal displacements
along the slope height for the B/H ratio changing from 2.0 to 10.0.
For the case of B/H=3, the total horizontal displacement increases
from 0.0 m at the slope base to 0.84 m at the slope middle heigh,
beyond which the total horizontal displacement remains stable.
This is because that the peak acceleration on the acceleration time
history records of 1999 Chi-Chi earthquake, station TCU072-000, is
around 0.375 g, as illustrated in Figure 1, which is smaller than the
seismic yield acceleration at the slope middle height. Besides, the
total horizontal displacement at the slope middle height increases
with the increasing of the slope B/H ratio, which increases from
0.50 m at B/H=2 to 1.2 m at B/H=20. This phenomenon agrees well
with what are observed in Nadukuru and Michalowski (Du et al.,
2018), who assessed three-dimensional slope displacements under
seismic loads using the traditional Newmark displacements.

4.3 Influence of the peak ground
accelerations

This section studies the influences of the peak accelerations
of ground motions, ac, on the seismically induced cumulative
displacements of slopes by the proposed 3D-NNM.Thepeak ground
acceleration time history records of 1999 Chi-Chi earthquake at
station TCU072-000, plotted in Figure 2, are scaled to 0.40 g, 0.45 g,
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FIGURE 7
Influences of B/H ratio on the total horizontal displacement profiles.

FIGURE 8
Influences of the peak ground accelerations on the total horizontal
displacement profiles.

and 0.60 g, without changing the frequency. Figure 8 plots the
profiles of the normalized total horizontal displacement profiles
along the slope height for the peak accelerations of ground
motions being 0.40g, 0.45g and 0.60 g. It is under expectation
that the cumulative horizontal displacement profiles increase with
the peak ground accelerations. Specially, the maximum cumulative
horizontal displacement normalized the slope height is 0.055 for
the case of ac = 4.0 g, and increases to 0.10 at 0.45 g and to 0.15 at

FIGURE 9
Influences of the slope inclination angles on the total horizontal
displacement profiles.

0.60 g.This indicates that the peak ground acceleration poses a great
influence on the estimated cumulative horizontal displacements.

4.4 Influence of the slope inclination
angles

This section studies the influences of the slope inclination angles,
β, on the seismically induced cumulative displacements of slopes
by the proposed 3D-NNM. The slope inclination angles are set to
change from 30° to 60°, with an increment of 15°. Figure 9 plots
the profiles of the normalized total horizontal displacement profiles
along the slope height for the slope inclination angles being 30°, 45°
and 60°. It is observed that the cumulative horizontal displacement
profiles are positively correlated with the slope inclination angles.
Particularly, the maximum cumulative horizontal displacement
normalized the slope height is 0.047 for the case of β = 30°, and
increases to 0.53 at 45° and to 0.58 at 60°.

5 Conclusion

This paper aims at proposing a three-dimensional nested
Newmark method (3D-NNM) in the framework of the kinematic
theorem of limit analysis. The proposed 3D-NNM is compared
with the original Nested Newmark method, which shows that
the proposed 3D-NNM can effectively evaluate the permanent
displacement profile of slopes under earthquakes. The conclusions
of this paper are summarized below:

(1) The proposed 3D-NNM is compared with the original Nested
Newmark method of Leshchinsky (Du et al., 2023), whose
work inspires this study. The comparisons are made with
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respect to the relative displacement profiles along slope height
and the total horizontal permanent displacement profiles
along slope height. Similar displacement profiles along slope
height are observed both in proposed 3D-NNM and in the
Nested Newmark method of Leshchinsky. It is interesting
to find that the Leshchinsky’s 2D nested Newmark method
may overestimate the post-earthquake deformation profile of
slopes. Specifically, the maximum total horizontal permanent
displacement is 1.34 m estimated by the Leshchinsky’s 2D
nested Newmark method but is 1.08 m by the proposed 3D
nested Newmark method with B/H = 5.0. This means that
the proposed 3D nested Newmark method improves the
Leshchinsky’s 2D nested Newmarkmethod by 30.7%, since the
proposed method gives a rigorous upper-bound estimation to
the post-earthquake deformations.

(2) The performance of the proposed 3D-NNM is highly
dependent on the number of nested blocks. It is interesting
to find that the estimated total horizontal displacements
converge after the number of nested blocks increase to 200.
The higher the number of nested blocks, the better estimation
of slope permanent displacements by the proposed 3D-NNM.
However, the computational burden is positively correlated
with the number of nested blocks. In order to balance the
computation burden and the computational accuracy, the
number of nested blocks is set to 150 in all the calculations
in this study. This provides a way to determine the optimal
number of nested blocks. The readers should note that the
optimal number of nested blocks may be problem-dependent,
but it is not difficult to determine the optimal one by following
the above procedure. Besides, the traditional Newmark
method with a single sliding block tends to underestimate
the permanent displacements of slope under seismic shakings.

(3) The total horizontal displacement at the slope middle height
increases with the increasing of the slope-width-to-height
ratios. This further indicates that the two-dimensional
analysis tends to provide conservative results of the proposed
Newmark method.

It would be better if the proposed 3D-NNM could be compared
with real-data experiments. However, a shaking table test of seismic
slope stability is beyond the scope of this study. It will be the topic
of future study of doing shaking table tests to check the presence
of multiple shear zones or regions of dispersed shear movements
of a slope subjected to seismic loads. Besides, two possible future
research directions include: (1) the inclusion of reinforcement effect
of soil nails in the proposed method, since soil nails are used

to stabilize slopes in earthquake-prone zones; (2) considering the
uncertainties of soil properties and seismic loadings that poses
important influences on slope stability analysis.
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