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Editorial on the Research Topic
Graft preservation

Solid organ transplant outcomes have tremendously benefited from innovations in
graft preservation strategies (1). Ex-vivo (or ex-situ) machine perfusion (EVMP) for
organ preservation protects donor organs from the injuries traditionally encountered by
cold static preservation (CSP), thus maintaining the organs in a “physiologic” state,
minimizing rates of primary graft dysfunction (PGD) and promising functional
recovery of marginal organs. EVMP has already demonstrated the capability to extend
preservation periods well beyond what is considered acceptable after CSP for the
kidney, liver, lung, and heart (2). EVMP strategies have expanded the donor pool and
pushed the limits of the extended criteria toward donor organs previously excluded
from transplantation (3). In this landscape, the use of donation after circulatory
death (DCD) organs has been a game- changer that, before the emergence of the
normothermic regional perfusion (NRP) technology (4), seemed strictly dependent
on the availability of a platform to evaluate the organ ex-situ. The potential to
recondition organs that could otherwise be discarded represents the “holy grail” of
the new frontiers of EVMP (warm or cold). The challenge of extending preservation
time and the growing use of EVMP during organ procurement have introduced the
potential for administering therapeutics during this period to improve organ quality
and mitigate post-transplantation complications. The already hot topic of heart
allocation promises to be entirely revolutionized by the perspective of reducing the
impact of ischemic time and broadening the area for the allocation, also encompassing
immunologic compatibility, to a broader supranational geographic region (North
America, Europe, Australia).

The primary objective of this research topic was to collect expert opinions, original
research articles (clinical, translational, basic), case reports, and reviews (both brief and
expansive) that address critical gaps in knowledge in the field of graft preservation and
recent developments in applications of EVMP.

Lechiancole et al. set the stage for this collection by providing an extensive review
of the use of various CSP and EVMP strategies in clinical heart transplants. The
authors summarized the available clinical data and provided perspectives on technical
aspects and limitations to current preservation techniques. Similarly, Iske et al.
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Bowles et al.

provided an interdisciplinary overview of the current abdominal
and thoracic EVMP systems and organ-specific preservation
protocols and summarized relevant EVMP applications beyond
organ preservation for allogeneic transplantation.

Kasinpila et al. described an unusual case of a 55-year-old
successfully retransplanted (21 years after the prior) with a DCD
donor heart from a distant location, necessitating an extended
transport period (>7 h) with normothermic EVMP. This article
highlights the imbrication between perfusion technology and the
expansion of DCD donation and shows how leading institutions
are pushing the limits through EVMP.

There remains an unmet clinical need for a biomarker or a tool
to ascertain organ quality during preservation. Mendiola Pla et al.
applied video kinematic evaluation (Vi.Ki.E.) and assessed the
feasibility of using this method to measure ex vivo cardiac
kinematics. Porcine donor hearts underwent normothermic
EVMP on the TransMedics® Organ Care System (OCS™).
ViKi.E. performed while the donor’s hearts beat on the OCS™
could be applied to predict cardiac fitness and allow a reliable
organ assessment.

Radomsky et al. compared the concentration levels of
cytokines/chemokines in different perfusion solutions during
ex vivo lung perfusion (EVLP) after 1 and 9h of CSP using a
porcine cardiac arrest model. While the concentrations of many
inflammatory cytokines increased across all experimental groups,
a longer period of CSP before EVLP did not result in an
enhanced inflammatory protein secretion into perfusates. This
knowledge may define the optimal lung preservation method that
could potentially increase the donor lung pool.

A study by Niroomand et al. (from the Lund group in Sweden,
which has driven the field of cytokine absorption in EVLP) utilized
mass spectrometry-based proteomics and bioinformatics approaches
to understand molecular mechanisms of how cytokine absorption
impacts lung function when used during EVLP. This study
revealed characteristic inflammatory, immunomodulatory, and
coagulation pathway differences between the lungs treated with
and without cytokine adsorption, which may lead to more targeted
approaches to improve lung function.

Vervoorn et al’s literature review focused on administering gene
therapies delivered by EVMP. This review examined 23 studies of
gene therapy applied to the heart during both hypothermic and
normothermic EVMP conditions, using different vectors, perfusion
conditions, duration of exposure to the vector, doses, and perfusion
composition. Gene therapy delivered via EVMP has applications in
both allo- and auto-cardiac transplantation. Autotransplantation
during support with cardiopulmonary bypass may be the “moon-
shot” to repair ex-situ a heart with a pathogenic mutation.

Ughetto et al. provide a comprehensive review of the
mechanisms involved in ischemia- reperfusion injury to the heart
during transplantation and existing targeted strategies useful to
minimize injury leading to PGD. Treatments reviewed include
pharmacological agents, gene therapy, cell therapy, metabolic
modulation, and targeted drug delivery, all of which can be
provided during EVMP. The most attractive solutions highlighted
are blocking apoptosis and necrosis pathways, extracellular vesicle
therapy, and donor heart-specific gene therapy.
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McCully et al overview of

mitochondrial transplantation’s potential as a novel methodology

provided an impressive
for rescuing cell viability and function following ischemia-
reperfusion injury and its potential applications. The thoughtful
amount of data supports the versatility and durability of such an
approach, stimulating the interest in imbricating this technology
with the current standard of graft preservation.

Andrijauskaite et al. utilized a newly developed portable
hypothermic oxygenated machine perfusion device (the VP.S
Encore) to evaluate unused human donor hearts. After placing
these hearts on this innovative and simple-to-use cardiac
preservation device for an extended period of time, the authors
evaluated cardiac function by placing them in a Langendorff
system for reperfusion and evaluation of cardiac contractility.
These data constitute a step toward the clinical use of a device
warranting hypothermic oxygenated perfusion. Provoost et al.
report the first experience with the portable LUNGguard showing
short-term outcomes that were safe and beneficial and the
possibility of converting the transplant procedure to a diurnal
activity. The opportunity to imbricate prolonged cold ischemic
time and prolonged perfusion coupled with a reliable possibility
of evaluating organ function offers further opportunities to
redesign organ transplantation logistics.

Spencer et al. report efforts from the Extracorporeal Life
Support Laboratory (University of Michigan) to prolong safe
EVMP. Prior studies from this group demonstrated that the
metabolic and biological basis for graft failure associated with
prolonged EVMP was due to changes in blood composition over
the perfusion period. In the current report, incorporating plasma
exchange or ultrafiltration to the OCS circuits enabled successful
perfusion of 24 h. In contrast, the majority of hearts perfused
without these interventions failed between 10 and 21 h, with only
one of these hearts lasting 24 h. The addition of intermittent left
atrial (iLA) perfusion enabled real-time objective, quantifiable
cardiac function assessment, a unique feature with a significant
impact during the assessment of marginal and DCD donor hearts.

Opverall, the underlying intention of this collection of articles was
to emphasize the opportunity landscape for organ preservation
techniques envisioned in Figure 1 and the betterment of perfusion
outcomes, taking a closer look into cellular, molecular, and
pathophysiological aspects of this continuously evolving area of
research. The contributing papers provide extensive insight into
clinical and engineering tools currently utilized to stimulate the
development of better organ preservation techniques, supported by
the most up-to-date research, device development, and clinical
data. We hope that this issue serves as a foundation for further
research in the areas that some of these articles have identified as
lacking scientific information. These scientific gaps form the basis
for identifying devices that can support prolonged graft perfusion
and for moving from the current hurried logistical organization of
transplant activities to a new logistics model involving organ repair
centers where DBD and DCD organs can be repaired and possibly
optimized during perfusion or optimized preservation. This new
logistic may relaunch the organ transplant field, encountering the
unmet clinical need of the many patients not receiving an organ
or receiving an organ late when outcomes may be less enthusiastic.
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Bowles et al. 10.3389/fcvm.2024.1478730
FIGURE 1
The challenges of extending machine perfusion length. Illustrated by Megan Llewellyn, MSMI (2024), copyright Duke University, licensed under
CC BY-ND 4.0 with permission.

The availability of a new device that allows non-ischemic
preservation of the heart through cold hypothermic blood
perfusion, significantly reducing the risk of PGD (risk ratio 0.39)
and adverse outcomes (5) promises to revolutionize the field
further. If EVMP also expands the technologic armamentarium to
pediatric donors and recipients, more patients will be transplanted
whose needs are currently not encountered (6).
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Video analysis of ex vivo beating
hearts during preservation on the
TransMedics® organ care system

Michelle Mendiola Pla", Silvia Berrettoni”, Franklin H. Lee’,
Giacomo Rozzi’, Federica Marrano®, Ryan T. Gross', Amy Evans®,
David C. Wendell’, Paul Lezberg®, Margherita Burattini*®,

Francesco Paolo lo Muzio’, Lorenzo Fassina’, Carmelo A. Milano’,

Marie-Louise Bang®’, Dawn E. Bowles' and Michele Miragoli***

'Department of Surgery, Duke University Medical Center, Durham, NC, United States, 2Department of
Medicine and Surgery, University of Parma, Parma, Italy, *Perfusion Services, Duke University Medical
Center, Durham, NC, United States, “Duke Cardiovascular Magnetic Resonance Center, Duke University
Medical Center, Durham, NC, United States, *TransMedics, Inc., Andover, MA, United States, *Department
of Surgical Sciences, Dentistry, and Maternity, University of Verona, Verona, Italy, "Department of
Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy, ®Institute of Genetic and
Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy, °lRCCS Humanitas
Research Hospital, Milan, Italy

Background: Reliable biomarkers for assessing the viability of the donor hearts
undergoing ex vivo perfusion remain elusive. A unique feature of hormothermic
ex vivo perfusion on the TransMedics® Organ Care System (OCS™) is that the
donor heart is maintained in a beating state throughout the preservation period.
We applied a video algorithm for an in vivo assessment of cardiac kinematics,
video kinematic evaluation (Vi.Ki.E.), to the donor hearts undergoing ex vivo
perfusion on the OCS™ to assess the feasibility of applying this algorithm in this
setting.

Methods: Healthy donor porcine hearts (n = 6) were procured from Yucatan pigs
and underwent 2 h of normothermic ex vivo perfusion on the OCS™ device.
During the preservation period, serial high-resolution videos were captured at
30 frames per second. Using ViKi.E., we assessed the force, energy, contractility,
and trajectory parameters of each heart.

Results: There were no significant changes in any of the measured parameters of
the heart on the OCS™ device over time as judged by linear regression analysis.
Importantly, there were no significant changes in contractility during the duration
of the preservation period (time 0-30 min, 918 + 430 px/s; time 31-60 min,
1,386 + 603 px/s; time 61-90 min, 1,299 + 617 px/s; time 91-120 min, 1,535+
728 px/s). Similarly, there were no significant changes in the force, energy, or
trajectory parameters. Post-transplantation echocardiograms demonstrated robust
contractility of each allograft.

Conclusion: Vi.Ki.E. assessment of the donor hearts undergoing ex vivo perfusion is
feasible on the TransMedics OCS™, and we observed that the donor hearts
maintain steady kinematic measurements throughout the duration.

KEYWORDS

ex vivo perfusion, normothermic, video, kinematics, biomarker, cardiac transplantation
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Introduction

Ex wvivo machine perfusion has transformed organ
transplantation outcomes by minimizing ischemic injury and
reconditioning the organs prior to transplantation (1-3). Its use
in clinical practice continues to grow as it has permitted for
longer preservation times and for the utilization of the organs
that would have traditionally been excluded from transplantation.
In cardiac transplantation, normothermic ex vivo perfusion
(NEVP) has allowed for the expansion of the donor pool
through the utilization of hearts from donors after circulatory
death (4).

functionality and health quality of the donor heart remains elusive.

However, reliable measures for assessing the

Currently, lactate measured in the perfusate is viewed by many
as a proxy for injury and stress of the donor heart over time.
Despite this, it has been well described that lactate is a poor
predictor of post-operative graft outcomes (5, 6). A unique feature
of NEVP is that the donor heart is maintained in a beating state
throughout the preservation period and can be directly observed
to assess the quality of the donor organ (7). Cardiac transplant
surgeons can qualitatively assess the contractility of a donor heart
as a parameter to determine its fitness for transplantation.

We applied a well-characterized video method for in vivo
assessment of cardiac kinematics called video kinematic evaluation
(Vi.KiE.) (8-10) and assessed the feasibility of using this method
to measure ex vivo cardiac kinematics while a porcine donor heart
is undergoing NEVP on the TransMedics” Organ Care System
(OCS™). A successful measurement of cardiac kinematics while
S™ could allow for this
technology to be applied as a biomarker to predict cardiac fitness.

the donor hearts are beating on the OC

Methods

Donor heart procurement and ex vivo
perfusion

This study was approved by the Duke University Institutional
Animal Care and Use Committee. Female Yucatan pigs (Sinclair
Bio Resources, Auxvasse, MO, United States) aged 7-9 months
were utilized for this study. Baseline cardiac troponin I values and
cardiac magnetic resonance imaging (cMRI) were obtained prior
to surgery. In preparation for surgery, the animals were
anesthetized and intubated for mechanical ventilation. The donor
hearts (n=6) were procured in a standard fashion through a
sternotomy. The hearts were then prepared on a back table and
subsequently mounted on an OCS™ and underwent 2 h of NEVP
at 34°C-35°C as described by Mendiola Pla et al. (11). During this
time, the perfusion parameters of aortic flow, aortic pressure, heart
rate, perfusion temperature, venous oxygen saturation (SvO,),
perfusate lactate, and perfusate hematocrit (Hct) were obtained.

Video acquisition

Video recordings were obtained using either a Nikon D5600
equipped with a Nikon 18-55mm f{/3.5-5.6G VR lens (Nikon
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Inc., Melville, NY, United States) or a Canon EOS Rebel T8i
equipped with a Canon EFS 18-55mm lens (Canon, Inc,
Melville, NY, United States). Once perfusion of the donor heart
was established on the OCS™ and the heart was beating, the
camera was positioned approximately 30-40 cm perpendicularly
in front of the heart (Figure 1). The distance between the
camera and the heart, the focus, lighting, and orientation of the
heart remained unchanged during and between recordings once
these parameters were established. Serial high-resolution videos
were recorded every 15 min during the perfusion period at a
recording frequency of 30 frames per second (fps). All hearts
were in normal sinus rhythm during the recordings.

Heterotopic heart transplantation and
follow-up

Following the ex vivo perfusion and video acquisition, the
hearts were cooled to 14°C-16°C, then arrested and removed
OCS™.  The
transplantation in a standard fashion and transplanted into the

from the heart was then prepared for
recipient pig in an intra-abdominal position with the graft aorta
anastomosed to the recipient aorta and the graft pulmonary
artery anastomosed to the recipient inferior vena cava (11).
Echocardiographic assessments of each transplanted heart were

obtained between 2-6 post-operative days.

Quantitative analysis

Cardiac performance on the OCS™ was evaluated using
ViKiE. by extraction of the kinematic parameters every 15 min
during spontaneous beating, while monitoring the heart for 2 h
(Figure 1). As shown in Supplementary Video S1, a virtual
marker was placed on top of the beating heart and followed using
a video spot tracker (VST), an open-software (https://cismm.web.
unc.edu/resources/software-manuals/video-spot-tracker-manual/)
capable of returning the XY coordinates of the marker movement for
every cardiac beat. The selected VST kernel followed the heart
movement and created the trajectory of contraction and relaxation
(Figure 2) in the XY plane.

The coordinates are then analyzed using the ViKi.E. system,
which is written in MATLAB programming language
(MathWorks, Inc., Natick, MA, United States) and returns the
kinematic parameters such as contractility (maximal contraction
velocity), cardiac force, energy expenditure, and trajectory
perimeter (tissue compliance), as previously described by Rozzi
et al. (10).

To investigate whether the kinematic parameters such as
velocity),
contraction force (indicating cardiac fatigue), energy (expenditure

contractility ~(expressed as maximal contraction
of energy during contraction/relaxation), and trajectory perimeter
(indication of cardiac compliance) were modified over time, data
acquisition was divided into four temporal windows (0-30, 31-60,

61-90, and 91-120 min) (Figure 3).
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Experimental overview of video acquisition and kinematic analysis. Schematic representation of the camera positioned in front of the heart while it is
undergoing normothermic ex vivo perfusion on the OCS. Using a Vi.Ki.E.-customized software, the trajectory of contraction (left to right) and
relaxation (right to left) for every cardiac cycle was traced. A ViICG showing the displacement of a video marker with contraction/relaxation peaks and
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video kinematic evaluation; ViCG, video cardiogram.
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FIGURE 2
Representative evaluation of trajectory and displacement of marker 1 over time. (A) Displacement of video marker 1 with contraction/relaxation peaks and
trajectory of contraction (left to right) and relaxation (right to left) for every cardiac cycle at O min. (B—D) Same as A for 30-60-105 min, respectively.
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FIGURE 3
Overview of cardiac kinematic parameters over time. Cardiac kinematic parameters, such as cardiac fatigue (A), energy (B), contractility (C), and trajectory
perimeter (D), grouped in range of 30 min, to evaluate the trend over time. The data used were obtained from a high-resolution video acquired every
15 min for 2 h, and analyzed with Vi.Ki.E. Data expressed as mean + SD, using one-way ANOVA (significance set at P<0.05). ViKi.E., video kinematic
evaluation.
Statistics The composition of OCS™ perfusate is shown in

Data are expressed as mean + SD. Normality was assessed by
the Kolmogorov-Smirnov test. Comparisons were performed
using one-way ANOVA with Bonferroni post-hoc test for
multiple comparisons. Statistical analyses were performed using
GraphPad Prism version 9.5.1 (GraphPad Software, San Diego,
CA, United States). The details of the specific test used for each
experiment are reported in the figure legends. P-values <0.05
were considered statistically significant.

Results

Pre-operative donor heart function and
perfusion parameters

The
compromised function in any of the donor hearts with the ejection

baseline cardiac MRI demonstrated no evidence of

fraction (EF) measuring >50%. The representative MRI data are
shown in Supplementary Figure S1 and Supplementary Video
S2. The baseline troponin levels for each pig are shown in
Supplementary Table S1. The median cardiac troponin I value
was 22ng/L with an interquartile range from 19 to 31 ng/L.
Cardiac troponin I was elevated in only one of the pigs (865 ng/L)
for unknown reasons. However, on gross inspection of the heart at
the time of sternotomy, there was no evidence of cardiac injury or
compromised activity.
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supplemented with several additives to maintain near physiologic

Supplementary Table S2. is donor

function of the donor heart throughout the perfusion period.

Supplementary Figure S2 demonstrates the OCS™

perfusion
parameters measured throughout the perfusion period. The
parameters were largely consistent between each of the donor
hearts: average aortic flow, 0.61-0.72 L/min; average aortic
pressure, 56.2-65.6 mmHg; average heart rate, 56-105 bpm;
temperature, 33.9°C; SvO,, 88.4%-96.0%; and Hct, 18.7%-28.4%.
The average total perfusion time was 140 min with a standard
deviation of 18 min. Supplementary Figure S3 shows the plotted
lactate trends of each heart during perfusion on the OCS, with
minimal differences noted between each heart and each

remaining within normal limits (<1.5 mmol/L).

Video kinematic parameters

While monitoring the heart for 2 h, we did not observe changes
in spontaneous beating frequency (Figure 2).
heart to the new

This may be
attributed to the accommodation of the
environment. Despite the wide distribution of the data, likely due
to differences between each of the hearts, we did not observe
significant changes in both contractility and energy parameters
over time in any of the hearts. This kinematic parameter ranged
from 918.0 £430 px/s at the start of perfusion to 1,535+
728.5 px/s at the (Figure 3A).

end of perfusion Force
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measurements ranged from 3,776 + 1,357 (px/sz)/beat at the start
of perfusion to 3,350 + 897.4 (px/s>)/beat at the end of perfusion
(Figure 3B). Energy measurements ranged from 6,274+
3,240 (pX/s)z/beat at the start of perfusion to 16,948 + 11,262 (px/
s)’/beat at the end of perfusion (Figure 3C). Finally, the
trajectory perimeter measurements ranged from 199.3 + 72.52 px/
beat at the start of perfusion to 241.7 £ 83.59 px/beat at the end
of perfusion (Figure 3D).

This was further assessed and confirmed by linear regression
analysis (Figure 4). Contractility and energy showed a slightly
increasing slope in the regression lines y=6.260 x x + 969.8 and
y=91.49 X x + 8,296, respectively. On the other hand, force and
trajectory perimeter exhibited a nearly flat regression over time
in the regression lines y=2.937 x x+ 3,844 and y=0.4509 X x +
198.3, suggesting that cardiac fatigue and tissue compliance
remained constant over the period of the experiment.

Post-operative donor heart function

Each heart demonstrated robust biventricular contractility on
post-operative echocardiography, which were all consistently
performed by MMP. A representative recording is shown in
Supplementary Video S3.

Discussion

We present the first report describing the utility of the Vi.Ki.E.
system to assess the kinematics of ex vivo beating hearts
the TransMedics
OCS™. This technology could potentially be utilized to provide
quantitative assessments for the

undergoing normothermic perfusion on

of cardiac fitness hearts

10.3389/fcvm.2023.1216917

preserved on the OCS™ that could aid surgeons to decide
whether a donor heart is suitable for transplantation. There are
currently no reliable quantitative measures to assess donor heart
fitness prior to transplantation. The utility of such a measure is
important to be able to medically prepare for or even prevent
outcomes of moderate or severe primary graft dysfunction
(PGD). This is of great value since moderate PGD is associated
with a 12% risk of mortality or re-transplantation and severe
PGD with a 40%-50% risk (12). Lactate measured from the
perfusate is the most used biomarker; however, it has been
shown to correlate modestly with post-transplantation outcomes.

In this study, we chose to investigate four kinematic parameters
that are essential for evaluating cardiac kinematic function:
contractility, force, energy, and trajectory perimeter. Contractility
refers to the maximal contraction velocity of the heart muscle,
while force is an indication of cardiac fatigue. Energy represents
the expenditure of energy during contraction and relaxation, and
trajectory perimeter is an indicator of cardiac compliance. By
monitoring these parameters over time, we aimed to determine if
the performance of the heart changes during the ex vivo
preservation time. To this end, we utilized healthy donor hearts
to perform these studies. The results showed that there were no
significant changes in any of the kinematic parameters over time.
This suggests that the function and performance of the heart
remain stable throughout the ex vivo preservation period on the
TransMedics OCS™. Following the preservation period, we
demonstrated that the cardiac allografts maintained robust
contractility on post-transplantation echocardiography.

Given the ability to analyze cardiac fitness prior to
transplantation in a non-invasive manner, future studies are
warranted where ViKiE. is applied to analyze the kinematic
parameters of human hearts undergoing NEVP on the OCS™
and correlated with The

post-transplantation  outcomes.
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FIGURE 4
Overview of cardiac kinematics parameters over time with linear regression. Cardiac kinematic parameters [cardiac fatigue (A), energy (B), contractility (C),
and trajectory perimeter (D)] were assessed over time using linear regression. Contractility and energy showed a slightly increasing slope, while force and
trajectory perimeter had a nearly flat regression over time suggesting that cardiac fatigue and tissue compliance remained constant over time.

Frontiers in Cardiovascular Medicine

12

frontiersin.org


https://doi.org/10.3389/fcvm.2023.1216917
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

Mendiola Pla et al.

association of the kinematic measures with clinical outcomes could
be used to develop an artificial intelligence (AI) platform that can
predict PGD outcomes in patients based on the beating activity of
the donor heart on the OCS™., The application of Vi.Ki.E. to guide
Al assessments of the heart has been previously described (13).
Potential translation of this technology to clinical practice would
help to reduce subjective clinical decision making when assessing
the donor hearts for transplantation and provide a possible
standardized measure.

In conclusion, our study provides valuable insights into the
performance of ex vivo beating hearts on the OCS™ system
using the ViKi.E. system. The results suggest that the cardiac

S™ which is

function and performance remain stable on the OC
an encouraging finding for the expansion of the utility of
normothermic ex vivo perfusion for donor heart preservation

during transplantation.
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SUPPLEMENTARY FIGURE S1

Representative baseline cardiac magnetic resonance imaging (MRI) of a
donor heart. (A) Freeze frame of cine image during diastole (B) T1 mapping
of cardiac MRI taken of donor heart prior to transplantation.

SUPPLEMENTARY FIGURE S2
Summary of measured OCS perfusion parameters.

SUPPLEMENTARY FIGURE $3
Plotted lactate trends measured from the OCS perfusate.

SUPPLEMENTARY VIDEOS1
Representative video of virtual marker tracing of a beating heart using Video
Spot Tracker.

SUPPLEMENTARY VIDEO S2
Representative baseline MRI cine of donor heart before transplantation.

SUPPLEMENTARY VIDEO S3
Representative  post-operative
transplantation

echocardiogram  of  allograft post-
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Heart transplantation (HTx) represents the current best surgical treatment for
patients affected by end-stage heart failure. However, with the improvement of
medical and interventional therapies, the population of HTx candidates is
increasingly old and at high-risk for mortality and complications. Moreover, the
use of “extended donor criteria” to deal with the shortage of donors could
increase the risk of worse outcomes after HTx. In this setting, the strategy of
donor organ preservation could significantly affect HTx results. The most widely
used technique for donor organ preservation is static cold storage in ice. New
techniques that are clinically being used for donor heart preservation include
static controlled hypothermia and machine perfusion (MP) systems. Controlled
hypothermia allows for a monitored cold storage between 4°C and 8°C. This
simple technique seems to better preserve the donor heart when compared to
ice, probably avoiding tissue injury due to sub-zero °C temperatures. MP
platforms are divided in normothermic and hypothermic, and continuously
perfuse the donor heart, reducing ischemic time, a well-known independent risk
factor for mortality after HTx. Also, normothermic MP permits to evaluate
marginal donor grafts, and could represent a safe and effective technique to
expand the available donor pool. However, despite the increasing number of
donor hearts preserved with these new approaches, whether these techniques
could be considered superior to traditional CS still represents a matter of
debate. The aim of this review is to summarize and critically assess the available
clinical data on donor heart preservation strategies employed for HTx.

KEYWORDS

heart transplantation, donor organ preservation,
hypothermic perfusion, graft preservation

normothermic ex situ perfusion,

1. Introduction

Heart transplantation (HTx) is the current gold standard surgical treatment for
end-stage heart failure. However, despite improvement in the management of HTx
recipients, the rate of primary graft dysfunction (PGD) continues to be relatively high,
being a severe complication that still represents the leading cause of 30-day mortality after
HTx (1-3). A recent national study from Sing et al. reported an overall incidence of PGD
after HTx of 36%, with moderate-to-severe PGD rate of 32% (4). The interaction of
donor, recipient and procedural variables has been shown to predispose to this
life-threatening complication.
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Continuous improvements of medical and interventional
therapies, as well as the wide employment of mechanical
circulatory support supports (MCS), have allowed an increasingly
old population with multiple comorbidities to be considered as
HTx candidates. On the other hand, the use of extended donor
criteria to face graft shortage has increased the risk of worse
outcomes after HTx. Therefore, in this setting, the strategy of
donor organ preservation could play a central role in improving
HTx recipient outcomes and in preventing PGD.

The use of static cold storage (SCS) for donor graft
preservation, aims to stabilize biological tissues by influencing
metabolic pathways. Such strategy slows the cellular and
extracellular biochemical processes that are responsible for organ
degradation during ischemic storage, thus extending a safe
storage time up to several hours. On the other hand, machine
perfusion (MP) systems permit to continuously perfuse the
coronary arteries, reducing ischemic time and potentially mitigate
the deleterious effects of ischemia/reperfusion injury. Despite the
increasing number of donor hearts preserved with MP, whether
MP could be considered superior to traditional CS still represents
a matter of debate.

The aim of this paper is to summarize and critically assess the
available clinical data on the donor heart preservation strategies
currently employed for HTx.

2. Static cold storage

Employment of SCS aims to stabilize biological tissues by
slowing the cellular and extracellular biochemical processes that
are responsible for organ degradation during ischemic storage,
thus The
dependence of chemical reaction rates follows the “Arrhenius

extending the safe storage time. temperature
equation”, used to describe the temperature-depending metabolic
changes: for every 10°C reduction of temperature below the
physiological temperature the metabolic rate for living biological
tissues reduces by 50%. Hence, cold storage slows but does not
completely arrest cellular metabolism. Consequently, progressive
ischemic injury is an inevitable consequence of prolonged SCS
and the results of HTx are suboptimal when graft ischemic time

is greater than 6 h.

2.1. Cold solution and ice

The traditional ice-cold SCS remains the most commonly used
technique for donor graft preservation, being both user friendly
and cost-effective. In brief, after the donor heart is retrieved, it is
placed into a sterile bag filled with 1,000 ml of preservation
saline solution at 4°C which is then sealed into a second bag
containing 1,000 ml of cold solution, and eventually in a third
bag. Then, the heart is placed in a rigid sterile container filled
with cold solution which is sealed and inserted into a cooler
filled with ice for transportation.

Using conventional ice-cold SCS, prolonged ischemic time is
known to be an independent risk factor for PGD and mortality
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after HTx (5-7). Moreover, the negative impact of graft ischemic
time is considerably influenced by other donor characteristics, as
age, left ventricular hypertrophy, mild-to-moderate coronary
artery disease and catecholamine support (7).

As reported by the ISHLT Consensus Statement on donor heart
and lung procurement (8), the ideal donor graft temperature
during storage should probably be kept between 5°C and 10°C.
In fact, freezing of any part of the heart is undesirable because
freezing and subsequent thawing may cause tissue damage
potentially responsible for PGD (9). Indeed, possible freeze injury
was detected in 7% of autopsies done on patients deceased for
clinically diagnosed PGD (1).

2.2. Controlled hypothermia with Paragonix
SherpaPak cardiac transport system

The Paragonix SherpaPak™ cardiac transport system (PSP) is
able to guarantee a constant, homogeneous and controlled
temperature of the donor heart between 4°C and 8°C, thus
minimizing tissue injury due to ice-cold temperature exposure.

The PSP device consists of two canisters, one internal and one
external (Figure 1A). The internal canister is filled with cold
storage saline solution (4°C-8°C), and the donor heart is
submerged into it, after being connected to the canister lid by
means of an aortic connector (Figure 1B). The most widely used
solutions for heart preservation are the Celsior, the University of
Wisconsin  (UW) and the Custodiol
ketoglutarate—HTK). Then, the inner canister is placed into the

(histidine-tryptophan-

outer one, creating an insulating air chamber, and outside this
system is surrounded by single-use cooling ice packs. A
thermometer connected with the internal canister allows
continuous monitoring of the temperature (Figure 1C).

The GUARDIAN study is a post-market, observational registry
of adult and pediatric patients who received a donor heart
preserved and transported using either the PSP or standard
preservation methods. Using data of 877 patents enrolled in the
Guardian heart registry by 16 US centers, two cohorts of 249
patients were propensity matched according to the technique of
graft preservation. Although the 1-year survival did not
statistically differ between the two cohorts (p=0.12), PSP
preservation significantly reduced severe PGD rate, compared to
ice-cold storage (4% vs. 10%, p=0.01) (10). The use of PSP has
also proved to be cost-beneficial. In a recent study that compared
two groups of 87 matched patients (PSP and ice-cold storage),
post-HTx costs were significantly lower when donor organs were
preserved with PSP. This figure reflected a significant role of PSP
in reducing incidences of severe PGD (5.7% vs. 16.1%, p =0.03)
and employment of mechanical circulatory support after HTx
(21.8% vs. 40.2%, p=0.009), and thus the recipient hospital
length of stay (11).

Histological analyses of myocardial biopsies taken as soon as
the donor hearts were reperfused during HTx, showed that grafts
preserved with PSP appeared to have less interstitial edema and
myocyte damage compared to those preserved with traditional

ice storage (12).

frontiersin.org


https://doi.org/10.3389/fcvm.2023.1253579
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

Lechiancole et al.

10.3389/fcvm.2023.1253579

FIGURE 1

The transmedics organ care system. (A) Wireless monitor/controller. (B) Heart perfusion module: (1) aortic flow probe; (2) aortic perfusion line. (C)
Instrumented heart: (1) aortic connector; (2) pulmonary artery cannula; (3) left ventricular venting tube

3. Machine perfusion systems

Differently from static cold storage, MP systems represent
dynamic methods of preservation that prevent extra ischemic
time and thus potentially provide better preservation of the
donor heart. Two types of MP systems are currently used in
HTx: hypothermic (HMP) and normothermic (NMP) machine
perfusion. As reported below in this paper, NMP could also
provide the opportunity to assess the metabolic and functional
status of the donor graft.

However, MP generally expensive and require well-trained and
specialized personnel to set up the devices and manage any
complications and malfunctions, which could otherwise damage
the donor organ. Unfortunately, these limitations hamper a
adoption of MP, and their
employment is made even more difficult in centers with a low

routine therefore extensive

volume of activity and with scarce economic resources.

3.1. Hypothermic MP

The rationale of HMP preservation consists in reducing the
metabolic requirements of the heart with an optimal and
homogeneous cooling (below 10°C), while providing continuous
metabolic support though perfusion with oxygenated, nutrient-
enriched medium to limit as much as possible intracellular
anerobic metabolism and consequent acidosis. Experimental
studies performed on large animal models have suggested that
compared to SCS, HMP could attenuate tissue injuries and
HTx (13);
nevertheless, clinical adoption of HMP has been limited due to

provide superior myocardial function after
the concerns about a reliable functional assessment of this
system. Another major concern is related to the risk of edema
during HMP preservation and after reperfusion. However, using
a perfusate of high osmotic and/or oncotic power at low

perfusion pressures could prevent edema formation. Moreover,
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edema related to HMP employment was reported to be more
likely interstitial and reversible, with limited impact on post-HTx
cardiac function (14).

Three single-center clinical studies have so far analyzed the
effects of HMP using three different perfusion solutions: Wicomb
et al. in 1984 used crystalloid cardioplegic solution in 4 patients
(15), Hill et al. in 1997 used colloid cardioplegic solution in 8
patients (16), and more recently, in 2020, Nilsson et al. reported
their experience employing a home-made MP with hyper-oncotic
cardioplegic  solution supplemented with hormones and
erythrocytes, so called “non-ischemic hypothermic perfusion”
(NIHP) (17). In their series, 6 patients who received donor
hearts preserved with NIHP showed better outcomes 6 months
after HTx compared to 25 recipients who received SCS preserved
grafts (100% vs. 84% survival rate). Based on these preliminary
promising results, the Xvivo Perfusion AB (Goteborg, Sweden)
has patented the NIHP and further developed it to a
commercially available device; currently, a randomized clinical
trial is ongoing to assess patient and graft survival comparing
NIHP to SCS (18).

The Lifecradle™ Heart Preservation System is a HMP, currently
under development, that uses hypothermic, oxygenated, nutrient
perfusion at 5°C, in a controlled and monitored environment.
The safety and efficacy of this device will be defined on the basis
of clinical evidence, currently pending.

3.1.1. XVIVO perfusion

The XVIVO Heart Perfusion System consists of a roller pump,
an oxygenator, a leukocyte filter and a cooler/heater. After
cardiectomy, the donor heart is connected to the XVIVO device
with an aortic cannula. Then, it is submerged into the reservoir,
filled with 2.5 L of perfusion solution to which 500 ml of donor
and recipient immunologically-compatible irradiated blood are
added. The oxygenated perfusion solution (with a hematocrit of
about 15%) is pumped into the aortic root to maintain the
pressure of 20 mmHg to provide a coronary blood flow between
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150 and 200 ml/min in a non-beating heart state. The temperature
is constantly maintained at 8°C and the pH at 7.4 value. During
transportation the XVIVO device does not need continuous
monitoring and power source.

The initial Australian experience on 13 patients with the Xvivo
NIHP for HTx showed promising results. In fact, there was no
post-operative mortality and only 1 patient required veno-arterial
extracorporeal membrane oxygenation (ECMO) due to secondary
graft failure. The authors reported a median donor graft ischemic
time of 404 min but since the period of non-ischemic perfusion
was included this data could be misleading (19).

The XVIVO innovative technology was employed for xenograft
the
xenotransplantation performed at the Maryland University on
January 2022 (20).

preservation  during modified pig-to-human cardiac

3.2. Normothermic MP

Normothermic MP systems perfuse the heart with oxygenated
blood and enriched solutions, keeping it beating and at a near-
physiological temperature of about 34°C. Currently the Organ
Care System (OCS, TransMedics Inc, Andover, MA) represents
the only NMP system commercially available for clinical use in
HTx. Ex vivo perfusion with this device is particularly attractive
when “extended criteria” for donor organs procurement have to
be further evaluated; this system, besides limiting graft ischemic
time, allows a real-time monitoring of the donor graft assessing
hemodynamic parameters and lactate concentration, the latter
being the main marker of organ metabolism, with a timely
identification of potentially unsuitable grafts. Moreover, for these
reasons, OCS is increasingly employed in resuscitation and
assessment of organs from donation after circulatory death (DCD).

3.2.1. The organ care system

The OCS consists of a portable platform and is composed of a
wireless monitor/controller (Figure 2A) and a circuit in which the
donor blood perfuses the beating and empty donor heart

10.3389/fcvm.2023.1253579

(Figure 2B). The donor blood is mixed with a specific priming
solution which contain mainly mannitol, electrolytes, vitamins
and antibiotics; during ex vivo perfusion two other solutions are
infused into the circuit: the catecholamine solution, containing
epinephrine to replenish the depleted catecholamine level and the
maintenance solution enriched with adenosine, aiming to
modulate the coronary artery resistance.

The donor blood is oxygenated and maintained at 34°C by a
heater-membrane oxygenator module, and it is delivered into the
aortic inflow cannula by a peristaltic pump, after both venae
cavae are closed. The blood perfuses the coronary vessels, reaches
the coronary sinus and eventually the pulmonary artery, where
an outflow cannula collects it closing the perfusion circuit
(Figure 2C). The blood that does not reach the coronary sinus
(because of aortic regurgitation and bleeding from cut surfaces),
is collected and re-infused into the circuit. Flow and pressure of
the blood are registered by probes. Stopcocks permit sampling of
blood for arterial and venous lactate concentration monitoring.
Coronary resistance, arterial pressure and coronary flow can be
modified by acting on the pump flow speed and/or the
maintenance solution infusion rate. OCS settings are adjusted to
keep the mean aortic pressure between 80 and 100 mmHg, and
coronary blood flow between 700 and 900 ml/min. Graft
function is assessed by continuous monitoring of aortic pressure,
coronary flow and the total arterial and differential artero-venous
lactate profile. An arterial lactate level >5 mmol/L is considered
an index of myocardial damage and thus a contraindication
to use the graft, as well as an unfavorable artero-venous
lactate production pattern as evidenced by a venous lactate
concentration higher than arterial lactate level. The OCS device
can be transported either by car, plane, or helicopter.

4. NMP employment

During the last decade, normothermic ex vivo perfusion has
emerged as a key factor in expanding the cardiac donor pool, as
it favors a safer employment of donor hearts selected using

FIGURE 2

The paragonix sherpa-Pak system. (A) Internal (1) and external (2) canisters of Paragonix Sherpa-Pak. (B) The donor heart connected to the internal
canister lid. (C) Overview of the system: (1) display and bluetooth data transmission module.
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extended criteria by limiting ischemic time and allowing
graft assessment. The following are some of the advantages of
using NMP.

4.1. To shorten the ischemic time

The continuous coronary perfusion by means of oxygenated
enriched blood is the main advantage of normothermic machine
perfusion. The results of the PROCEED II controlled trial
demonstrated the non-inferiority of the NMP compared to the
traditional ICS. Although patient and graft survival between both
study arms were similar, the OCS group reported a significantly
shorter graft ischemic time. Interestingly, the 4 hearts of OCS
group that were discarded because of an increasing lactate
concentration, after histological analysis revealed signs of
infarction, contusion and severe unrecognized left ventricular
hypertrophy (21).

The OCS could be an effective tool to ensure graft quality when
the expected graft ischemic time exceed the traditional “safe
threshold” of 4h, favoring long-distance organ retrieval. Two
case reports presented successful HTx after preservation times of
a donor heart as long as 10 h (22) and 16 h (23). The relatively
safe non-ischemic “out of body time” could also be advantageous
in particular situations, such as when an unexpected finding is
discovered during organ retrieval that needs a histological
definition (24).

In Table 1 are reported graft ischemic and “out of body” time
data derived from single-center and retrospective studies (25-31)
when grafts were preserved with OCS.

4.2. To assess organ adequacy

NMP has shown interesting and promising results when utilized
in extended-criteria DBD donors, and DCD. Extended-criteria were
generally defined according to these parameters: >50 years of age, a
history of drug abuse, cardiac resuscitation, coronary artery disease
(CAD), expected graft ischemia time >4 h, left ventricular ejection
fraction (LVEF) <50%, or interventricular septum thickness (IVS)
>14 mm.

10.3389/fcvm.2023.1253579

Data regarding marginal DBD donors are derived mainly
from single-center observational studies. A previous report from
our group demonstrated that NMP, compared to ICS in
extended-criteria donor hearts, seemed to provide more stable
hemodynamic conditions after HTx, reducing complications
and allowing optimal outcomes. In fact, 5-year survival of
OCS-preserved-heart group was 100% vs. 73% of CS control
group (p=0.04). These results also supported by
histopathological and ultrastructural evidence, suggesting better
myocardial preservation in NMP grafts (28).

The EXPAND trial, which was designed as a single-arm
multicenter study, evaluated the impact of OCS preservation in

are

extended-criteria donor hearts. Out of 93 donor hearts evaluated,
75 were utilized for HTx (81% utilization rate). The 30-day post-
HTx survival rate was 94.6% and the incidence of severe PGD in
the first 24 h was 10.7%. Moderate to severe PGD was observed
in 14.7% of patients (32).

In our experience, out of 74 grafts preserved with NMP, a total
of 9 grafts were discarded (88% utilization rate) due to a progressive
increase in lactate concentration, expression in most cases of severe
left ventricle hypertrophy, scarring and undiagnosed coronary artery
disease. In one case, NMP real-time evaluation of lactate trend
permitted to discard an apparently adequate organ which, at gross
pathological examination, revealed a dissection of the right
coronary artery at 4 mm from its origin (33). Considering organ
assessment and expansion of donor pool, interestingly at our
center a donor heart with a myocardial bridge, which should be a
relative contraindication to Htx, was successfully and safely
transplanted in a 66-year-old recipient. This was possible owing to
the continuous evaluation of cardiac function, which allowed to
consider such graft suitable for HTx (34).

In case of DCD, the heart is exposed to prolonged periods of
warm ischemia and to right atrial and ventricular over-distension
during cardiocirculatory arrest, with possible irreversible
myocardial injury. Thus, a post-asystolic functional assessment is
of paramount importance when evaluating these hearts. In
clinical practice, DCD hearts are retrieved with either direct
procurement and perfusion (DPP) or normothermic regional
(NRP). In DPP, the
confirmation of death and expeditiously reperfused using the
OCS (35-38). Instead, in NRP the employment of ECMO or

cardiopulmonary bypass (CPB) facilitates cardiac resuscitation.

perfusion heart is removed after

TABLE 1 Studies of normothermic machine perfusion for hearts from DBD with and without ICS as control group.

Author OCS group ICS group
no. of pts  Donor age | Recipient age | Outof body = Graft ischemic | no. of pts = Donor age Recipient age | Graft ischemic
(range) (range) time (min) time (min) (range) (range) time (min)

Ardehali et al. (21) 67 35 (18-58) 56 (20-75) 324+79 113 +27 63 34 (13-60) 57 (20-76) 195+ 65
Garcia Saez et al. (25) 26 37+12 43+13 371 +102 87+ 15 - - - -
Kaliyev et al. (26) 13 43 +£15.5 40+12 330.3 83+8 - - - -
Koerner et al. (27) 29 36 (17-54) 50 (37-64) 297 52 130 50.7 (37-64) -
Sponga et al. (28) 14 46 £11 64 (35-75) 452 132 +£28 24 44+13 57 (30-73) 225+48
Sponga et al. (29) 21 47+11 58 (24-66) 27265 145 +29 79 48+13 60 (28-73) 213+63
Sato et al. (30) 16 - 52+15.5 362 +153 114 +51 18 - 59+16 183 +34
Rojas et al. (31) 68 37 49+13 381+74 115+43 51 44.5 59+13 228 £43

DBD, donation after brain death; OCS, organ care system; ICS, ice-cold storage.
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After the donor is weaned from circulatory support, the heart is
assessed “in situ” and if adequate recovery is observed it is
retrieved and preserved with OCS or ICS (39, 40).

The introduction of NMP in clinical practice has permitted to
utilize DCD donor hearts with gratifying results (35-40).
Furthermore, when compared with the current “gold standard”
ICS-preserved DBD hearts, the OCS-preserved DCD grafts have
(36, 40). A
randomized controlled trial compared the outcomes of 90 HTx

shown to provide comparable results recent
using DCD hearts reanimated, preserved and assessed with the
OCS with that of 90 HTx perfomed by using DBD hearts
preserved with ICS. The use of OCS resulted in a high rate of
graft utilization rate (89%) in DCD group, and criteria for graft
non-use were rising lactate concentrations, visual contractility
anomalies or both. The 6 months risk-adjusted survival of HTx
from DCD grafts (94%) was that after
transplantation of DBD hearts (90%). However, the rate of severe
PDG was higher in HTx from DCD (15%) vs. DBD (5%) grafts (41).

The method of retrieval (DPP or NRP) was not associated with
different outcomes after HTx according to the results reported in

noninferior to

the experience of Messer et al. (40).

4.3. To facilitate HTx in high-risk patients

Heart MP could also play a protective role in high-risk
recipients, particularly in those supported by durable mechanical
circulatory support or who have undergone previous complex
operations (25, 29, 31). HTx in these patients might be
technically demanding and often requires a tedious dissection
and prolonged CPB to complete the removal of intrathoracic
ventricular assist devices or the isolation of the cardiac structures.
The use of MP allows optimization of coordination between
retrieval and implanting teams, favoring a meticulous and stress-
free preparation of the recipients while the donor graft remains
perfused. Moreover, this might reduce post-procedural bleeding
and transfusions of blood products with improvement of
hemodynamic stability after HTx. In a previous report from our
group, in a series of patients bridged to HTx with MCS, OCS
perfusion conferred a protective role regarding PGD development
after HTx, compared to CS (7% vs. 42%, p = 0.03) (29).

4.4. To recover the injured graft

Sarcomere changes, such as Z-line thickening and/or non-
orthodox banding were reported in donor hearts immediately
after retrieval (28). After in situ reperfusion during HTX, hearts
preserved with ICS are frequently affected by myocardial injury,
with damage of contractile myofilaments and organelles,
including mitochondria. The ex situ perfusion with OCS is
reported to be effective in reconditioning donor hearts, that are
maintained metabolically active and able to heal ultrastructure
changes (28, 42).

Donor hearts, selected according to expanded-criteria, appear
to be best treated by NMP, especially when severe hypotension

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2023.1253579

or cardiac arrest occurs during the retrieval phase and since this
technique could hamper the negative effect of cold storage on
ultracellular cardiac function (42).

5. Future perspectives

MP systems could be useful platforms for cardiac conditioning
before transplantation, since they create a “safe period” between
procurement and transplantation during which the organ could
potentially be manipulated. Graft immunomodulation, via
infusion of viral vectors (43, 44) or mesenchymal stem cells
(MSC) injection (45), could modify its immunogenic capacity
and reactivity.

In HTx, donor infusion of MSCs has been shown to prolong
the survival of a semi-allogeneic HTx in a mouse model through
the generation of regulatory T cells (46). In addition to MSC,
also the injection of extracellular vesicles secreted from
cardiomyocytes (iCM-EVs) derived from induced pluripotent
stem cells have been demonstrated to lead to functional recovery
hearts injured from pathologic hypertrophy. Since their content
is mainly composed of miRNAs that modulate specific cardiac
processes, they could represent a promising cell free alternative
for cardiac recovery (47). MP could also represent the ideal
platform for the introduction of viable and competent
mitochondria into the graft tissue prior to reperfusion to
improve the heart metabolic function and to reduce the
ischemia-reperfusion injury (48). Preliminary scientific reports,
confirming the potential for clinical application of these
techniques, underline the need for prolonged graft manipulation
in order to achieve a significant effect, making NMP an
irreplaceable method (43-49).

In an effort to further suppress tissue metabolism and thus
increase a safe preservation duration, sub-zero preservation
techniques have been investigated in preclinical studies (50).
Isochoric supercooling, that limits the cristallization of ice by
controlling temperature and volume systems, and vitrification,
that involves a large amount of cryopreservation and a rapid
cooling scheme, are two intriguing techniques for “freezing
biological time”. Despite experimentary results on cells, tissues
and small-animal organs are encouraging, successful employment
to larger-volume organs remains to be demonstrated (51).

Various pharmacological agents have also been investigated in
order to better preserve the graft by interfere with the ischemia-
reperfusion injury mechanism. Donor simvastatin treatment
might significantly improve graft function after transplantation
(52), while valproic acid seems to stimulate cardioprotective
immune-metabolomic pathways (53).

Interfering with the immune system during graft preservation
could lead to a smooth immunological response of the recipient
against the organ, and thus reduce the degree and number of
rejections. Antioxidative agents, and inhibitors of cytokines
production and activity and maturation of lymphocytes, as well
as inhibitors and modulators of cellular receptors involved in
signalling pathways and adhesion molecules expression are
described as intriguing potential treatments (54).
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TABLE 2 Characteristics of current preservation techniques for cardiac grafts.

‘ Temperature control | Reduction of IT Expertise/complexity | Graft manipulation
ICS + + - - + -

PSP ++ +++ -
OCS +++ +++ +++
NIHP +++ +++ ++

- + -
++ +++ +
- ++ NA

IT, ischemic time; ICS, ice cold storage; PSP, Paragonix SherpaPak; OCS, organ care system; NIHP, non-ischemic hypothermic perfusion; NA, not available.

6. Conclusions

The field of graft preservation is subject of notable innovations.
ICS was the standard technique for 50 years, but it does not allow
temperature monitoring and exposes the heart to freezing damage.
Increasingly, the use of ICS is being replaced with controlled
hypothermic preservation using the Paragonix SherpaPak™
device, that in preliminary reports seems to offer advantages over
ICS in therms of better organ preservation and clinical outcomes.
Paragonix SherpaPak™ transport system has all the premises to
be considered the near-future standard for donor heart cold
storage, being able to allow temperature control, avoid tissue
freezing, be relatively cheap and simple to use.

On the other hand, MP systems can represent the opportunity
to assess and recondition the donor heart and are increasingly
employed worldwide in an attempt to expand the donor pool for
HTx. However, despite interesting results, the role of MP in HTx
remains still debatable, mainly because of higher costs and
training needs than those required for CS.

At present, while the clinical effectiveness of HMP has to be
investigated, NMP with the OCS seems to allow safe utilization
of DCD and extended-criteria donor organs, combining two
major advantages: to limit the graft ischemic time and to verify
cardiac function by direct visual inspection and through
assessment of metabolic values, and haemodynamic parameters.
Maintenance of myocardial aerobic metabolism during
preservation could lead to better donor heart quality compared
to traditional CS. Thus, the NMP represents an effective
technique that permits to expand the donor pool, allowing
acceptance of grafts which would have otherwise been refused,
while maintaining satisfactory safety levels. In fact, NMP allows
grafts
transplantation, reducing the risk of PGD and its life-threatening
sequelae (20, 27, 31).

Some issues related to MP systems should be more thoroughly

to identify unsuitable and discard them before

investigated in the near future to further improve this technique,
such as additional metabolic support, solution components and
optimal perfusion settings. Also, the identification of other
functional parameters or biomarkers, apart from lactate levels,
could be of paramount importance to increase the sensitivity of
MP to help clinicians in assessing suitability of perfused
donor grafts.

The main drawback of NMP is that it requires an experienced
and well-trained professional team, to manage the interaction
between the donor organ and the ex vivo perfusion, and to
promptly intervene in case of machine malfunction or user
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error. In fact, since the donor heart is preserved in a
beating normothermic state, the margin of safety is limited in
case of complications or non-appropriate NMP management
due to the risk of catastrophic and irreversible warm ischemia of
the graft (Table 2).

In conclusion, the satisfactory results reported in HTx with
high-risk recipients and extended-criteria donors highlight the
of NMP in
unfavorable combinations of donor, procedural and recipient

effectiveness complex cases, particularly in
characteristics. The results of ongoing multicenter clinical trials
investigating on heart MP are required to confirm these

expectations.
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Case report: Heart retransplant
from a donor after circulatory
death and extended transport
period with normothermic
perfusion

Patpilai Kasinpila, Chawannuch Ruaengsri, Tiffany Koyano
and Yasuhiro Shudo®

Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States

A 55-year-old man with end-stage heart failure, who had an orthotopic heart
transplant 21 years prior, underwent heart retransplantation using a heart from a
donor with circulatory death in a distant location and an extended transport
period with normothermic ex vivo perfusion. Owing to the persistent and
worsening shortage of donor hearts, this case illustrates that expanding the
donor acceptance criteria to include more distant donor locations and enrolling
recipients with extended criteria (e.g., heart retransplantation) is feasible.

KEYWORDS

heart retransplantation (RTx), normothermic ex vivo perfusion, donor distance, donor after
circulatory death, organ preservation

Introduction

Orthotopic heart transplantation remains the gold standard of treatment for end-
stage heart failure. Recently, heart transplantation from donors after circulatory
death (DCD) has expanded, which was enabled by the usage of the FDA-approved
transportable Organ Care SystemTM (OCS) (TransMedics, Andover, MA, USA) (1).
This innovative device preserves the standard and extended-criteria for ex vivo
donor hearts during normothermic ex vivo perfusion. Improvements in
preservation and transportation conditions can improve organ quality at the time
of transplantation, shorten the acceptable maximum allograft ischemic time, and
optimize patient outcomes.

We describe our successful experience with a normothermic ex vivo perfusion system,
using a heart from a DCD, for an extended transport period >7 h using our modified
strategy. To our knowledge, this is the first report of heart retransplantation using a

normothermic ex vivo perfusion system in DCDs.

Case description

A 55-year-old man with heart failure and reduced ejection fraction (EF 30%) following a
heart transplant in 2001 was listed for heart retransplantation (2). Despite maximal medical
therapy, the patient’s condition deteriorated, requiring an implantable cardioverter and
heart
retransplantation. A 24-year-old male with a compatible blood type was identified as a

multiple hospitalizations. The patient was considered a candidate for
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suitable donor; the donor’s heart had an acceptable size and sex
match with the recipient (predicted heart mass, 1.36; height,
110%; body weight, 126%) and normal biventricular function.
The heart was retrieved after circulatory death of the donor in a
hospital located 700 miles away.

Organ donation and the subsequent withdrawal of life support
were performed in the intensive care unit, which was separate from
the thoracic and abdominal organ retrieval teams. Heparin was
administered to the donor 5 min before withdrawal. The donor
was observed after the cessation of circulation for 2 min, declared
deceased, and quickly transferred to the operating room.

Median
simultaneously with a venous cannula placed directly into the

sternotomy and laparotomy were performed
grossly distended right atrium to enable rapid collection of 1.2 L
of blood to prime the ex vivo perfusion apparatus.

Heparin was added to the blood collection bags. An aortic
cross-clamp was applied on the ascending aorta, and 1 L of cold
del Nido cardioplegia solution was delivered via the aortic root.
The heart was vented by cutting across the left lower pulmonary
vein and the inferior vena cava at the pericardial reflection (3).

After cardioplegia was delivered, the heart was explanted with
transection at the mid-aortic arch, distal to the main pulmonary
artery bilaterally, across the superior vena cava at its confluence
with the innominate vein.

Ex vivo preservation

The donor heart was attached to the Organ Care System
(OCS™) after cannulation of the aorta and pulmonary arteries.
according to the manufacturer’s instructions (4), the Organ Care
System circuit prime was made up by mixing 1.2 L of donor blood
that had been passed through a leucocyte filter (Pall LeukoGuard
BC2; Pall Corporation, Port Washington, NY, USA) with 500 ml
of TransMedics Priming Solution containing buffered electrolytes
and mannitol. Multi-vitamins, antibiotics, albumin and steroids
added to the proprietary
maintenance solution (1 L) containing isotonic electrolytes, amino

were system. A TransMedics
acids, dextrose-insulin, and low-dose adenosine was infused at a
rate of 0-30 ml/h during ex vivo perfusion to maintain the
coronary flow within an acceptable range of 650-900 ml/min. The
heart started beating spontaneously in a sinus rhythm and did not
require pacing. A vent was placed via the left atrium to
decompress the left ventricle. There was no PFO or atrial septal
defect found in this donor. The right atrial appendage incision
which was made previously for donor blood collection, superior
and inferior vena cavae were securely closed. The heart was
positioned such that oxygenated blood directly entered the
ascending aorta, flowed down the coronary arteries, returned to
the right side of the heart, and diverted into the pulmonary artery
This
principally uses aortic pressure, coronary flow, and arteriovenous

before draining into the circuit reservoir. apparatus
lactate concentrations to assess cardiac function; a lower venous
concentration indicates lactate uptake and satisfactory myocardial
function. An infusion of low-dose adenosine, another infusion

containing adrenaline, and adjustable circuit pump flow were used
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to control coronary vascular resistance and heart rate to keep
parameters within the following ranges: aortic pressure 65-
90 mmHg, coronary flow 650-900 ml/min, and heart rate 65-
100 beats per min. The coronary inflow and effluent ports on the
perfusion circuit were simultaneously sampled at regular intervals
to measure myocardial lactate extraction. Lactate concentrations in
the perfusate were measured using an automated iSTAT analyzer
(Abbott, Princeton, NJ, USA).

We began the transplantation when the perfusion and lactate
profiles met the OCS parameters. Once stable OCS pump flow,
several initial downward trends in serum lactate concentrations,
and Dbiventricular motion were confirmed, we administered
general anesthesia and placed arterial and venous monitoring
lines. The difference in arteriovenous lactate levels improved and
remained stable at less than 5 mmol/L. While the heart was
being transported, the recipient underwent a repeat median
sternotomy. Following successful sternal reentry, extensive
dissection was performed, confirming hemostasis.

As soon as the OCS arrived in the operating room, the
transportable ex vivo perfusion was turned off, supplemented
cold del Nido cardioplegia solution was delivered to the donor
heart with prompt electromechanical arrest, and the heart was
removed from the OCS for implantation. This reduced the total
ex vivo heart perfusion time.

Cardiopulmonary bypass was initiated at 34°C with aortic and
bicaval cannulations, and cardiectomy was performed. During this
process, the heart was cooled on ice for 30 min, which was
expected to reduce oxygen demand and afford adequate cellular
protection (5).

Implantation

Donor heart implantation was performed with left atrial
anastomosis, followed by ascending aortic anastomosis. During
heart reperfusion, the remaining cardiac anastomoses, such as the
pulmonary artery, inferior vena cava, and superior vena cava,
were performed using an end-to-end anastomosis technique. This
modified implantation technique (6) shortened the second warm
ischemic time, reduced the aortic cross-clamp time, and secured
an additional reperfusion period for the implanted heart.
Although no electrical activity or ventricular squeezing was
150 min of the
atrioventricular conduction and normal sinus rhythm were

found in the initial reperfusion period,

promptly regained. At the time of separation from

cardiopulmonary bypass, an inotropic agent was administered to
maintain a cardiac index of 2.5 L/min/m>.

The total ex vivo heart perfusion time was 423 min. The
allograft ischemic time was 107 min, including the first and
times of 9 min and 15 min,

second warm ischemic

respectively. The recipient cardiopulmonary bypass and
233 min

respectively. The patient recovered well and was discharged

aortic  cross-clamp times were and 50 min,

on postoperative day 17. Six months after transplantation,
the patient continued to have excellent graft function

without any evidence of rejection.
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Discussion

This
retransplantation using a heart from a DCD with an extended

report describes a successful clinical Theart
transport period and an ex vivo cardiac perfusion device.

The use of organs from DCDs has been successful for heart
transplantation, which has helped reduce the discrepancy between
the number of patients awaiting transplantation and the number
of suitable donors. Strong endorsements for such transplants by
national and international regulatory bodies have led to the wider
adoption of this strategy, with organs from DCDs contributing to
an increasing percentage of the total number of donors worldwide.
Donor selection in DCD donations is the same as donation after
brain death (DBD) scenarios, avoiding size mismatch based on
predicted heart mass ratio. According to OCS heart EXPAND
trial, marginal donors with an anticipated total ischemic time
more than 4 h or age >50 years are now included. Further cardiac
evaluations, echocardiography and cardiac catheterization, are
required prior to withdrawal of life support (7).

Our retrospective outcomes after 50 years of experience of heart
retransplantation demonstrated inferior short-term survival compared
to primary transplantation. The decision of heart retransplantation
listing is made by our multidisciplinary team based on case-by-case
basis and we do not reluctant to offer heart retransplantation for
candidates with severe graft dysfunction and have no other options.
careful candidate
recommended to optimize donor heart utilization (2).

Following DCD transplant, the incident of severe primary graft
dysfunction (PGD) is found to be higher compared to similar
DBD recipients. The pathophysiology of PGD is not well addressed
in DCD hearts but thought to be due to functional warm ischemia

Given the inferior outcomes, selection is

10.3389/fcvm.2023.1212886

occurring during and post withdrawal of life support. The study
showed DCD recipients with severe PGD required shorter duration
of mechanical circulatory supports (MCS) and spent fewer days in
ICU and hospital compared to similar DBD recipients suggests
DCD heart procurement process may contribute to a period of
delayed graft function with subsequent rapid recovery which may
differ from what we observed in DBD recipients with severe PGD
(8). Therefore, our institution has low threshold of using MCS
postoperatively in extended-criteria donor heart recipients. We
considered using peripheral veno-arterial extracorporeal membrane
oxygenation (VA-ECMO) as the main strategy to support PGD
patients not only it is less invasive and promptly available but also
promote lower rate of mediastinal infection. Intra-aortic balloon
pump (IABP) support is routinely combined with VA-ECMO for
the treatment of severe PGD requiring ECMO therapy for the
benefit of augmentation of coronary perfusion, provide peripheral
pulsatility and promote afterload reduction. MCS will be
discontinued as soon as heart function returns to normal to
prevent further complications that increase with time (9).

Several cardiac perfusion devices are currently commercially
available and more are being trialed. Commercially available
portable ex vivo heart preservation systems have made it possible
to maintain physiological perfusion of a donor organ coming
device has been used for both the
resuscitation and assessment of marginal hearts from DCDs for

from a distance. The

transplantation. Approximately 20% more transplantations could
be done if hearts were donated after circulatory deaths (4).

We proposed a modified strategy, as shown in Figure 1, aiming
to reduce the normothermic ex vivo perfusion period, provide
30-45 min of the organ-stabilizing period before implantation,
reduce the second warm ischemic time, and secure additional
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reperfusion time (10). This method can reduce the cardiopulmonary
bypass and aortic cross-clamp times by optimizing the timing of the
initiation of cardiopulmonary bypass and aortic cross-clamp,
together with the timing of turning off the ex vivo perfusion device
(10). We anticipate that the overall outcomes will improve
transplantation methods with reduced cardiopulmonary bypass and
aortic cross-clamp times.

Owing to the shortage of donor hearts, this case illustrates that
expanding the donor acceptance criteria to include more distant
donor locations and enrolling recipients with extended criteria is
feasible. The expansion of heart transplantation from DCDs
would maximize transplantation opportunities and reduce the
time spent on transplantation waiting lists. Considering the
increasing number of patients with end-stage heart failure
awaiting cardiac transplantation, we believe that a regulated
normothermic ex vivo perfusion device for DCDs is a useful
strategy for maximizing organ allocation in select recipients.

Author’s note

This subject was enrolled in the OCS Heart Perfusion Post-
Approval Registry (NCT 05047068). The OCS Heart system is
FDA approved for commercial use and patients will be followed
per transplant center’s standard of care protocols. A waiver of
consent has been granted for the data collection by WCG IRB.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.
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Composition of ex vivo perfusion
solutions and kinetics define
differential cytokine/chemokine
secretion in a porcine cardiac
arrest model of lung preservation

Lena Radomsky’, Achim Koch?, Carolin Olbertz’, Yongjie Liu’,
Kerstin Beushausen’, Jana Keil', Ursula Rauen®, Christine S. Falk**",
Jenny F. Kilhne™' and Markus Kamler”

Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany, *Department of
Thoracic and Cardiovascular Surgery, West German Heart Center, University Hospital Essen, Essen,
Germany, ‘Institute of Biochemistry, University of Duisburg-Essen, Essen, Germany, *DZIF, German
Center for Infectious Diseases, Germany, TTU-1ICH, Hannover—Braunschweig site, Braunschweig,
Germany, °DZL, German Center for Lung Diseases, BREATH site, Hannover, Germany

Background: Ex vivo lung perfusion (EVLP) uses continuous normothermic
perfusion to reduce ischemic damage and to improve post-transplant
outcomes, specifically for marginal donor lungs after the donation after
circulatory death. Despite major efforts, the optimal perfusion protocol and the
composition of the perfusate in clinical lung transplantation have not been
identified. Our study aims to compare the concentration levels of cytokine/
chemokine in different perfusion solutions during EVLP, after 1 and 9 h of cold
static preservation (CSP) in a porcine cardiac arrest model, and to correlate
inflammatory parameters to oxygenation capacities.

Methods: Following cardiac arrest, the lungs were harvested and were categorized
into two groups: immediate (I-EVLP) and delayed EVLP (D-EVLP), after 1 and 9 h of
CSP, respectively. The D-EVLP lungs were perfused with either Steen or modified
Custodiol-N solution containing only dextran (CD) or dextran and albumin (CDA).
The cytokine/chemokine levels were analyzed at baseline (0 h) and after 1 and 4 h
of EVLP using Luminex-based multiplex assays.

Results: Within 4 h of EVLP, the concentration levels of TNF-q, IL-6, CXCLS8, IFN-y,
IL-10, and IL-1p increased significantly (P<0.05) in all experimental groups. The
CD solution contained lower concentration levels of TNF-q, IL-6, CXCL8, IFN-y,
IL-2, IL-12, IL-10, IL-4, IL-1RA, and IL-18 (P<0.05) compared with those of the
Steen solution. The concentration levels of all experimental groups have
correlated negatively with the oxygenation capacity values (P<0.05). Protein
concentration levels did not reach statistical significance for |-EVLP vs. D-EVLP
and CD vs. CDA solutions.

Abbreviations

CSP, cold static preservation; DBD, donation after brain death; DCD, donation after circulatory death;
D-EVLP, delayed ex vivo lung perfusion with Steen solution; D-EVLP/CD, delayed ex vivo lung perfusion
with Custodiol-N solution supplied with dextran; D-EVLP/CDA, delayed ex vivo lung perfusion with
Custodiol-N solution supplied with dextran +albumin; EVLP, ex vivo lung perfusion; I-EVLP, immediate ex
vivo lung perfusion; IRI, ischemia-reperfusion injury; LTX, lung transplantation; PCA, principal component
analyses; UHC, unsupervised hierarchical cluster analyses.

28 frontiersin.org


http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2023.1245618&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2023.1245618
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1245618/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1245618/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1245618/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1245618/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1245618/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2023.1245618
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

Radomsky et al.

10.3389/fcvm.2023.1245618

Conclusion: In a porcine cardiac arrest model, a longer period of CSP prior to EVLP did not
result in an enhanced protein secretion into perfusates. The CD solution reduced the
cytokine/chemokine secretion most probably by iron chelators and/or by the protecting
effects of dextran. Supplementing with albumin did not further reduce the cytokine/
chemokine secretion into perfusates. These findings may help in optimizing the
preservation procedure of the lungs, thereby increasing the donor pool of organs.

KEYWORDS

graft preservation, ex vivo lung perfusion, porcine, Steen solution, Custodiol-N, dextran, albumin,

cytokines/chemokines

1. Introduction

Lung transplantation (LTX) is the ultimate treatment option
for patients suffering from end-stage lung disease. However,
there is a huge discrepancy between available donor organs and
patients with demand, resulting in high waiting list mortality (1).
To overcome this disparity, transplantation centers have extended
their selection criteria (2-4), and few countries have legalized the
donation after circulatory death (DCD), aside from the donation
after brain death (DBD). Ex vivo lung perfusion (EVLP) has
been discussed as an alternative preservation technique to
improve the outcome of marginal or DCD organs. In contrast to
cold
preservation (CSP) and thus reduced metabolism, the donor

the standard procedure, which is based on static
organ is perfused with normothermic solution during EVLP (5).
EVLP reduces the cold ischemic time and the

ischemia-reperfusion injury (IRI) of the organ (6). Furthermore,

Therefore,

EVLP allows to evaluate the condition of the graft and to
therapeutically treat donor organs prior to implantation (7, 8). In
experimental studies and human clinical trials, EVLP has shown
promising results (9-11). Still, it is not clear whether the donor
organ needs to be perfused directly after procurement or if a
prolonged CSP prior to perfusion is harmful to the lungs.
Moreover, the optimal composition of the perfusion solution in
reducing IRI has not been defined.

This study aimed to examine whether immediate EVLP
(I-EVLP), after only 1 h of CSP, or delayed EVLP (D-EVLP),
after 9 h of CSP, would result in different cytokine/chemokine
concentrations in perfusates. We used a porcine model as an
established alternative to human LTX, in which we previously
demonstrated a comparable lung function of immediate vs.
delayed perfusion (12). Moreover, a Custodiol-N solution
supplied with dextran was shown to have a positive impact
on the functional parameters of the EVLP-preserved porcine
lungs (13). In the present study, we investigated the impact of
modified Custodiol-N
patterns in perfusates and correlated the data to oxygenation

solution on cytokine/chemokine
capacity measurements collected from the same lungs (12,
13). The differences in cytokine/chemokine concentrations
could help identify the ideal start point of perfusion and the
optimal composition of the perfusion solution to preserve the
DCD with IRI,
transplant engraftment, survival, and wultimately increased

lungs reduced resulting in improved

donor pool.

Frontiers in Cardiovascular Medicine

2. Material and methods

2.1. Animals

All animals included in this study received human care
compliant with the “Principles of Laboratory and Animal Care”
and the Guide for the Care and Use of Laboratory Animals,
which was composed by the Institute of Laboratory Animal
Resources and published by the National Institutes of Health
(NH publication no. 86-23, revised 1996). The study only
involves organ procurement from animals because none of them
underwent medical treatment prior to euthanasia. According to
the applicable German law (§1 VIMVO), the study was reported
to the local Natur,
Verbraucherschutz NRW and supervised by the Central Animal

Landesamt  fir Umwelt und

Laboratory of the University Duisburg-Essen.

2.2. Chemicals

The compositions of the different perfusate solutions are
displayed in Table 1. Steen Solution™ and Perfadex™ were
purchased from XVIVO Perfusion (Gothenburg,
Custodiol-N  was F. Kohler
(Bensheim, Germany). Pyrogen-free dextran 40 (AppliChem,
Darmstadt, Germany) was added to the modified Custodiol-N
solution in a concentration of 50g/L. The D-EVLP with
Custodiol-N solution supplied with dextran + albumin (D-EVLP/
CDA) solution was additionally supplemented with 7 g/L of

Sweden).

acquired from Dr. Chemie

bovine serum albumin (Carl Roth, Karlsruhe, Germany). The
sterilization process of the solution was performed by filtration
using a 0.22 pm filter (Filtropur BT25, Sarstedt, Niimbrecht,
Germany). Directly before use, a 10 ml of 10% glucose solution
(G-10, B. Braun, Melsungen, Germany) was added to 1L of the
CD and CDA solutions.

2.3. Experimental procedure

Mature domestic pigs (age=13-15 weeks) were sedated
using ketamine (30 mg/kg; im.) combined with azaperone
(0.05 mg/kg; im.), and these pigs were anesthetized afterward
with midazolam (0.1 mg/kg; i.v.) and ketamine (0.3 mg/kg; i.v.).
This DCD model

represents euthanasia without previous
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TABLE 1 Composition of perfusion solutions.

CD (Custodiol-N | CDA (Custodiol-N
+ dextran and

plus dextran)

albumin)
Sodium 16 16 86
Potassium 10 10 4.6
Magnesium 8 8 0.8
Calcium 0.02 0.02 1.5
Chloride 30.04 30.04
Histidine 124 124
N-Acetylhistidine 57 57
Sucrose 33 33
o-Ketoglutarate 2 2
Aspartate 5 5
Glycine 10 10
Alanine 5 5
Tryptophan 2 2
Arginine 3 3
Deferoxamine 25 25
(umol/L)
LK 614 (umol/L) 7.5 7.5
Dextran (g/L) 50 50 5
Albumin (g/L) 7 70
Glucose 11
Phosphate 1.2
pH 7.0° 7.0° 7.4
Osmolarity 306 306
(mOsm/L)

All concentrations are given in mmol/L unless stated otherwise.
At 20°C.
PAdjusted to pH 7.4 with sodium hydroxide.

treatment for lung protection because the pigs were neither
heparinized nor ventilated during anesthesia. Sternotomy was
performed after cardiac arrest (Maastricht category IIT) (14), and
visible safe signs of death were observed as previously described
(5, 15). Warm ischemia time was on average 60 min, and the
ensuing lungs were then flushed antegradely and retrogradely
with 4L of 4°C cold low potassium dextran (LPD) solution
(PerfadexTM; XVIVO Perfusion, Gothenburg, Sweden) added
with trometamol (1 mmol/L) and heparin (100 TU/L).

2.4. Experimental groups

Through a random selection process, four experimental
groups were formed. The lungs were either prepared for the
following processes: (i) I-EVLP (n=10) after 1h of technical
CSP followed by perfusion, or placement in standard
preservation bags for 9h in 1L of 4°C LPD solution and
subsequent perfusion (delayed perfusion). For the perfusion of
the D-EVLP lungs, different acellular solutions were used: (ii)
Steen solution (D-EVLP; n=8) or modified Custodiol-N
solution containing either (iii) dextran alone (D-EVLP/CD; n =
8) or (iv) dextran and albumin (D-EVLP/CDA; n=38). The
Toronto protocol (6) and the perfusion system XPS™ (XVIVO
Perfusion, Gothenburg, Sweden) were used to perform 4h of

EVLP on all the four groups (Supplementary Figure S1A).
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2.5. Cytokine and chemokine quantification

The perfusion solution samples were obtained at the beginning of
perfusion (0 h) and after 1 and 4 h of perfusion. The samples were
stored at —80°C. To quantify the concentration levels of 13 soluble
molecules in the perfusates at the different time points, Luminex-
based multiplex assay (Millipore porcine cytokine/chemokine 13-
Plex, Merck, Darmstadt, Germany) was used according to the
manufacturer’s instructions. Standard curves and concentrations
were calculated using the Bio-Plex Manager 6.1 software.

2.6. Oxygenation capacity measurement

Oxygenation capacity is defined as the difference between the
pulmonary arterial pressure and the venous oxygen pressure. In
this study, it was measured hourly during EVLP by blood gas
analysis of the perfusates (ABL 700, Radiometer, Copenhagen,
Denmark) at an FiO, of 1.0.

2.7. Statistical analyses

For descriptive statistical analyses, the GraphPad Prism software
(version 9, La Jolla, CA, USA) was used. According to the
D’Agostino-Pearson omnibus normality testing, the cytokine/
chemokine concentrations were not normally distributed. Therefore,
nonparametric two-tailed unpaired t-test (Kruskal-Wallis test) was
used to compare the two groups. When comparing different time
points between individuals of the different experimental groups, a
paired t-test (Wilcoxon test) was used. For correlation analyses,
Spearman test and linear regression were applied. Principal
component analysis (PCA) plots and heatmaps were generated
using the Qlucore Omics Explorer software (version 3.5, Lund,
Sweden). Two-group or multigroup comparisons were used to
identify cytokines/chemokines that differed most significantly
between the experimental groups. Therefore, the data were log,
transformed and scaled to mean zero, variable one, and a threshold
of 0.001. The statistical test used in each analysis and the g-value
used as a cut-off are indicated in the figure legends. Significance was
considered for P-values <0.05.

3. Results

To better understand the inflammatory reperfusion response
induced during ischemia prior to implantation of the donor lung,
we analyzed the cytokine/chemokine pattern in perfusates of the
DCD lungs comparing different preservation protocols in a
porcine model. The lungs were prepared for (i) immediate EVLP
(I-EVLP) with Steen solution, (ii) cold storage for 9h and
subsequent EVLP with Steen solution (D-EVLP), (iii) subsequent
EVLP with Custodiol-N solution added with dextran (D-EVLP/
CD) alone, or (iv) subsequent EVLP with Custodiol-N solution
added with dextran and albumin (D-EVLP/CDA; Table 1,
Supplementary Figure S1A).
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3.1. D-EVLP and I-EVLP samples separate by
perfusion time point rather than by CSP
duration

To analyze for a potential effect of longer CSP times on the
cytokine/chemokine pattern in the perfusates, we compared the I-
EVLP samples with the D-EVLP samples. Interestingly, we found
protein concentrations of the immediate and delayed EVLP
samples to divide by perfusion time point rather than by CSP
duration in PCA, displaying comparable cytokine/chemokine
concentrations in perfusates of the groups using Steen perfusion
solution (Figure 1A, Supplementary Figure S1). The samples
obtained after 4 h of EVLP clearly separate from the other time
points and generally show higher protein concentrations
(Figure 1A). Unsupervised hierarchical cluster analyses (UHC)
identified nine cytokines/chemokines with significantly different

10.3389/fcvm.2023.1245618

levels in perfusates between the start (0 h) and the end (4 h) of
perfusion, namely, the pro-inflammatory cytokines/chemokines,
such as TNF-q, IL-6, CXCL8/IL-8, IFN-y, IL-12, IL-1q, and IL-1,
and IL-10 and IL-1RA, which are known to suppress the
inflammatory response (P = 0.01; Figure 1B). Perfusates of the D-
EVLP I-EVLP group
concentrations after 4 h of perfusion of typical Thl cytokines
(TNF-0, IFN-y, IL-12), Th2 cytokine IL-10, pro-inflammatory
factors (IL-1a, IL-1B, IL-6, CXCL8), and the regulatory IL-1RA
when compared with those found in the samples obtained at the
beginning of perfusion (0 h) (INF-y only for D-EVLP). Of note,
TNF-o and CXCLS8 levels were already significantly elevated after
1h of immediate or delayed EVLP (P<0.05). For all other
analytes, the main increase in concentration was detected between
1 and 4h of EVLP (Figure 1C), which indicates an intensified
secretion of the proteins by the lung, reflecting the IRL

and contained significantly higher
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FIGURE 1
D-EVLP and I-EVLP samples separate by perfusion time point rather than by CSP duration. Perfusion samples were obtained directly at the beginning (0 h)
and 1 and 4 h after perfusion and assessed for cytokine/chemokine secretion by Luminex-based multiplex assays. (A) Principal component analysis of the
13 cytokines according to delayed or immediate perfusion and time point (P = 0.01 and g = 0.001) and (B) unsupervised hierarchical clustering are shown.
Two-group comparisons were used to identify variables differentially expressed between the two groups. Blue color indicates lower expression, and
yellow color indicates higher expression. (C) Cytokine concentrations are displayed in time response for the two experimental groups. For statistical
analysis, the different time points of each group were compared using a paired t-test (Wilcoxon). To compare the D-EVLP and I-EVLP groups at the
different time points, a two-tailed, unpaired t-test (Kruskal-Wallis) was applied. Data are shown as mean + SEM; asterisks indicate P-values with
*P<0.05, **P<0.01, ***P<0.001, and ****P < (0.0001.
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3.2. D-EVLP/CD samples show a trend
toward reduced protein secretion especially

after 4 h of perfusion compared with the
D-EVLP/CDA group

Elucidating whether albumin in addition to dextran affects the
protein secretion of the allografts, we compared the cytokine/
chemokine concentrations in D-EVLP/CD and D-EVLP/CDA
perfusion samples. The samples were separated by analysis time
point in PCA, with a significant increase in concentrations after
4h of EVLP (Figure 2A). This finding indicates a comparable
protein secretion and accumulation in the Custodiol-N groups.
In line with this observation, the D-EVLP/CD and D-EVLP/
CDA samples were clustered together, when comparing all four

10.3389/fcvm.2023.1245618

cytokines/chemokines were identified by UHC with significantly
different levels in perfusates at the different sampling time
points: the pro-inflammatory TNF-a, IL-6, CXCLS8, IFN-y, IL-12,
and IL-1B and the anti-inflammatory IL-10 and IL-1RA
(P=0.01; Figure 2B). Interestingly, both UHC and PCA revealed
a slight separation of the D-EVLP/CD and D-EVLP/CDA
samples after 4 h of perfusion, showing the D-EVLP/CD samples
trending toward lower concentrations when compared with the
CDA samples.

Comparing the different analysis time points for the D-
EVLP/CD and D-EVLP/CDA groups, we found significant
differences in protein concentrations for both groups were
detected between the 0 and 1h time points for TNF-a and
CXCL8. However, the main increases were observed when

experimental groups (Supplementary Figure S1). Eight comparing the samples obtained at 4h with the samples
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FIGURE 2
D-EVLP/CD and D-EVLP/CDA samples show separation by time point rather than by adding supplements to the perfusion solution. Samples were
obtained and measured as described in Figure 1. (A) Principal component analysis of the 13 cytokines according to experimental groups and time
point (P=0.01 and g =0.004) and (B) unsupervised hierarchical clustering are shown. Two-group comparisons were used to identify variables
differentially expressed between the two groups. Blue color indicates lower expression, and yellow color indicates higher expression. (C) Cytokine
concentrations are displayed in time response for the two experimental groups. For statistical analysis, the different time points of each group were
compared using a paired t-test (Wilcoxon). To compare the D-EVLP/CD and D-EVLP/CDA groups at the different time points, a two-tailed, unpaired
t-test (Kruskal—Wallis) was applied. Data are shown as mean + SEM; asterisks indicate P-values with *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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obtained at earlier time points. Between O h and the end of
perfusion (4h) in both the D-EVLP/CD and D-EVLP/CDA
groups, the concentrations of TNF-a, IL-6, CXCLS8, IL-10, IL-
12, IL-1a, and IL-1B were significantly elevated. An increase of
protein concentration comparing 1 and 4 h time points in both
groups was measured for TNF-o, CXCLS8, IL-1o, and IL-1B.
Remarkably, we detected a trend to lower concentrations and
less increase in protein concentrations over time in the D-
EVLP/CD group compared with the D-EVLP/CDA group. IL-
1RA levels did not increase in the D-EVLP/CD group but were
significantly elevated at 1 and 4 h in the D-EVLP/CDA group
(P<0.01; Figure 2C). These findings suggest less cytokine/
chemokine secretion of D-EVLP/CD lungs when compared
with the D-EVLP/CDA organs.

In conclusion, the D-EVLP/CD and D-EVLP/CDA samples
showed no significant differences at the individual sampling
time points, but a trend to lower protein concentrations in the
D-EVLP/CD group was observed, indicating that there was no
reducing effect of albumin on the protein secretion of the
allograft.

3.3. Lowest cytokine/chemokine
accumulation in the D-EVLP/CD group
compared with all other experimental
groups

In the next step, we dissected the differences in protein
concentrations in the groups at 4h of EVLP in more detail
(Figure 3). The D-EVLP/CD samples reached significantly lower
protein concentrations of TNF-o, IL-6, IL-12, IL-10, and IL-4
when compared with those in the delayed and immediate

10.3389/fcvm.2023.1245618

perfusion samples with Steen solution (I-/D-EVLP; P <0.05;
Figure 3). IFN-y, IL-2, and IL-1RA were significantly less
concentrated in the D-EVLP/CD samples compared with the
D-EVLP (Steen) samples, but not in the I-EVLP samples. IL-18
concentrations displayed a slightly different pattern from the rest
by showing significantly lower concentrations in the D-EVLP/
CDA samples compared with the D-EVLP samples after 4 h of
perfusion. Furthermore, IL-1p levels were significantly reduced in
the D-EVLP/CD group compared with the I-EVLP group.
Although significantly lower CXCL8 levels were quantified at
0 and 1h of EVLP in the D-EVLP/CD and D-EVLP/CDA
samples compared with Steen solution samples (Supplementary
Figures S2A,B), no differences were detected after 4 h of EVLP,
as all groups reached the highest measurable concentrations. To
highlight the reduced cytokine/chemokine concentration in the
D-EVLP/CD and D-EVLP/CDA groups, we performed a relative
comparison of these experimental groups with the D-EVLP
group. Therefore, the mean values were calculated for each group
and time point. Subsequently, the mean values of the D-EVLP
group were normalized to 100%, and relative percentages of the
other groups were calculated. The most extensive reduction of
concentrations after 4 h of perfusion was detected for IL-4 in the
D-EVLP/CD group with only 3% of the compared D-EVLP
concentrations. Also, IL-1RA, IL-1B, IL-2, IL-6, IL-10, IL-12, IL-
18, and TNF-o have shown a reduction of >50% when
comparing the D-EVLP/CD group with the D-EVLP group. The
cytokine concentrations in perfusates using Custodiol-N solution
supplied with dextran and albumin also displayed a relative
reduction, but not as pronounced as in the D-EVLP/CD group
(Supplementary Figure S3).

These findings suggest a reducing effect of Custodiol-N plus
dextran, but not albumin, on the IRI and subsequent cytokine
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FIGURE 3
Lowest cytokine/chemokine accumulation in the D-EVLP/CDA group compared with all other experimental groups. The samples were obtained and
measured as described in Figure 1. Cytokine/chemokine concentrations in the different perfusion solutions are displayed for each cytokine after 4 h
of perfusion. For statistical analyses comparing the concentrations in the different experimental groups, a two-tailed, unpaired t-test (Kruskal—Wallis)
was applied. Data are shown as mean + SEM; asterisks indicate P-values with *P<0.05, **P<0.01, ***P<0.001, and ****P <0.0001; non-significant
differences were not labeled specifically.
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secretion of the allograft, resulting in less protein accumulation in
perfusates after 4 h of EVLP.

3.4. Negative correlation of oxygenation
capacities and cytokine/chemokine
concentrations in perfusates

In order to reveal the potential effects of the different EVLP
solutions on lung function, we correlated oxygenation capacities,
measured in perfusates of all groups during EVLP, with the
cytokine/chemokine concentrations. After 4h of EVLP, higher
oxygenation capacities were found to significantly correlate with
lower concentrations of TNF-a, IL-6, IL-2, IL-12, IL-4, IL-1,
and IL-18 in all four experimental groups (P <0.01; Figure 4).
This negative correlation was evident for all measured cytokines/
chemokines, except for granulocyte-macrophage colony-
stimulating factor (GM-CSF), when including not only the 4h
time point, but also all the time points in the analysis (P < 0.05;
Supplementary Figure S4). Taken together, these findings
confirmed for EVLP to reduce IRI in the donor organs as

evidenced by reduced cytokine/chemokine secretion.

4. Discussion

Ex vivo perfusion is a tool to preserve and improve especially
marginal donor organs prior to transplantation. Despite major
the the
composition of the perfusion solution in clinical LTX have not

efforts, optimal perfusion protocol and precise

10.3389/fcvm.2023.1245618

been identified. Our study aimed to investigate whether the CSP
prior to EVLP (immediate vs. delayed) and the composition of the
perfusion solution (Steen solution vs. Custodiol-N solution
supplied with dextran or dextran/albumin) have impacts on the
cytokine/chemokine secretion of the graft during EVLP and on the
inflammation of the donor organ during the preservation process.
We made use of an established surrogate porcine LTX model. The
protein concentrations in perfusates were quantified at different
time points during EVLP using Luminex-based multiplex assays
and were then correlated to oxygenation capacities (12, 13).

We did not observe significant differences in the protein
concentrations in perfusates (0 h) when comparing immediate
and delayed EVLP after 1 and 9 h of CSP, respectively, indicating
no further ischemic injury induced due to longer period of CSP.
Interestingly, also after 1 and 4h of perfusion, the protein
concentrations in perfusates of the D-EVLP and I-EVLP samples
remained comparable.

Consequently, longer period of CSP prior to EVLP seemed not
to impact the cytokine/chemokine secretion of the graft during
reperfusion. This is in line with previous findings, demonstrating
that the pulmonary function of the harvested pig lungs was not
impaired after a prolonged CSP when compared with immediate
perfusion (12, 16). Of the analyzed proteins, only IL-18 showed a
trend toward higher concentrations in perfusates of the D-EVLP
samples, although not reaching significance. Similar observations
were made in a porcine liver transplant model with elevated IL-
18 concentrations in perfusate after a prolonged CSP (17), and
IL-18 enhances the secretion of pro-inflammatory IFN-y (18, 19).
Remarkably, we did not detect increased IFN-y concentrations in
the delayed perfusion samples, suggesting that longer period of

4h (all groups)

0.01, ***P<0.001, and ****P < 0.0001

TNF-a IL-6 .- .51 CXCL8 IFN-y IL-2 r=0.53 IL-12
300087 L - 0 46 50020- T 1500009 _ 047 300007, _ 090 2500+ : 6000
=0 o kx =0 ° r=-=. o r=-0.55 o IEVLP
AR 40000 n.s. n.s. 2000{ ., *keo e DEVLP
—=20000{s, o.® 100000} @e seses co = = 20000 y e ° 4000
g .o 30000 K 1500 .. o D-EVLP/CD
. . .
g10000 200001 3 50000 * 100004— %" o001 & 2000, ° ¢ D-EVLPICDA
3 . 1° 1 o R * 1. .
©ONG 1000 L oy ?t\.'-"’-‘fr' 5001 . Tw,
. °, . 2’ ¢ K ‘ » . ce % WY
ofe—° 0 —— 0 ——— 0 — o o4
0 200 400 600 [] 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600
IL-10 IL-4 IL-1a IL-1B8 IL-1RA IL-18
150007 r=-0.27 6020- r =-0.65 1000 r=-0.30 60007 1= g 53 6000 r =-0.23 200007 1 =.0.46
n.s. Fkkke soo] M-S- ** o n.s.e %
— 150004 *
€ 10000+ o a000{ ° . ° 4000 4000 . .'. °
£ . 600{ o .
=2 o ¢ . e o 100004 .
o v ® . 4004 *. o RS
5000 © 20004 °e e 2000 ° 2000 K CICRR »
32 p s w0l S . \:ﬁ\' 5000+ ..
T A : 1% ° o3 S . el :
N L ofell s o . et s L 0 — fo 2.
0 200 400 600 0 200 400 600 0 200 400 600 O 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600
ApO, [mmHg] ApO, [mmHg] ApO, [mmHg]  ApO, [mmHg] ApO, [mmHg] ApO, [mmHg] ApO, [mmHg]
FIGURE 4

Negative correlations of oxygenation capacity and cytokine/chemokine concentrations in perfusates. Perfusion samples for cytokine/chemokine
quantification were obtained and measured as described in Figure 1. Oxygenation capacity (ApO,) was measured as described in the methods
section. The different perfusates were labeled in colors; blue: D-EVLP; green: I-EVLP; pink: D-EVLP/CD; orange: D-EVLP/CDA. Correlation analyses
(Spearman) of the oxygenation capacity and cytokine/chemokine concentrations after 4 h of perfusion were calculated. To highlight the negative
correlation between these two variables, a linear regression of perfusion samples was performed. Asterisks indicate P-values with *P<0.05, **P <
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CSP in the D-EVLP lungs did not translate into an enhanced
secretion of inflammatory mediators (i.e., IFN-y). Consequently,
delayed ex vivo perfusion (9 h CSP) might represent a feasible
strategy of lung preservation.

In addition, there could be beneficial effects of hypothermia on the
donor organs, not only via suppression of pro-inflammatory mediators
but also via enhanced secretion of tissue-protective cytokines such as IL-
22 (20, 21). Moreover, lower expression of GSK-3B and reduced
activation of NF-kB, two key players of the inflammatory cascade,
were demonstrated in a rat model of hemorrhagic shock (22-24).
Recent research focused on controlled hypothermia with stable
temperatures of approximately 4°C-10°C to prevent freezing of the
tissue. In this regard, it was shown that for heart and lung TX, the
organs preserved with controlled hypothermia not only showed a
normal perioperative function but also showed a reduced severity of
primary graft dysfunction (21, 25, 26). However, our results have
shown neither positive nor negative effects of longer period of CSP on
the cytokine concentrations in perfusates.

Aside from the cold injury, the lung allograft is damaged upon
reperfusion during EVLP and after implantation in the recipient
not only through the inflammatory cascade involving immune
cells but also through the response of both endothelial and
epithelial cells. It was shown in several studies and in different
organs that epithelial cells, as well as endothelial cells, are
capable of secreting cytokines and chemokines after stimulation
with danger signals or pro-inflammatory mediators (27, 28).

As aresult of the ongoing IRI in the graft, cytokines/chemokines
likely accumulate during 4h of perfusion. Due to augmenting
concentrations over time, the first hours of reperfusion rather than
the duration of CSP seem crucial for the inflammation of the
donor organ. Consequently, the aim is to optimize the reperfusion
process, resulting in a reduced IRI. However, the analysis of the
reperfusion upon implantation of the perfused donor organ was
beyond the scope of our study. Although in a porcine model of
LTX, lower cytokine/chemokine concentrations in perfusates
(through EVLP combined with cytokine absorption) lead to an
improved organ function even after TX (29).

Aside from the CSP duration, the chemical composition of the
perfusion solutions could also affect the reperfusion process, hence
potentially causing inflammation of the graft. The standard
perfusion solution for EVLP is acellular Steen solution containing
human serum albumin. However, in recent years, several alternative
perfusion solutions have been developed, such as Custodiol-N, a
modified cardioplegic solution designed for cold storage of solid
organs (30-33). In contrast to the Steen solution, Custodiol-N
contains the iron chelators deferoxamine and LK614, binding
redox-active ions that might otherwise lead to the production of
highly reactive oxygen species and subsequently lead to graft injury.
A central role of iron ions in cold-induced cell injury (consisting of
hypothermic injury and subsequent rewarming injury) and the
protective effects of iron chelators were demonstrated in diverse cell
types, including hepatocytes, endothelial cells, and cultured lung
epithelial cells (34-36). Based on these observations, we hypothesize
that Custodiol-N reduces the cytokine/chemokine secretion of the
allograft during EVLP when compared with Steen solution, thereby
reducing the inflammatory response of the transplanted graft.
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Therefore, another experimental group perfused with Custodiol-N,
supplemented with Dextran40 (D-EVLP/CD) (33, 37), was included
in our study. Along with maintaining colloid osmotic pressure,
Dextran40 is known for its anti-thrombotic features and for
protecting the endothelium from excessive leukocyte interactions by
coating the endothelial surface (38). Finally, the perfusion solution
of the fourth experimental group in our study was additionally
supplemented with albumin (D-EVLP/CDA), which has been
shown to stabilize and protect the endothelial glycocalyx by
contributing to the endothelial surface layer (39).

Comparing cytokine/chemokine concentrations in perfusates, we
observed significant differences depending on the perfusion solutions
used. The groups employing Steen solution displayed higher
concentrations of nearly all measured proteins when compared with
groups perfused with Custodiol-N + Dextran40, with the difference
being most pronounced after 4 h of perfusion. Endothelial protection
by deferoxamine and LK614 possibly reduces the inflammatory
reperfusion response in the lungs, although protection by other
components of the solution and the protective effects on lung
epithelial cells might also contribute to reducing inflammatory
response. Moreover, lower concentrations of cytokine/chemokine
could be the result of dextran inhibiting leukocyte interactions by
coating and thereby protecting the endothelium. Yet, in the present
study, it was not possible to assess the secretion of endothelial
adhesion molecules (ie., porcine intercellular adhesion molecule
(ICAM) and vascular cell adhesion molecule (VCAM)) in the
perfusates of the different experimental groups.

The beneficial effects of albumin on edema formation during
heart perfusion were shown in a porcine study (40). Thus, we
conceived that albumin could have a positive effect on the
inflammation of the lungs by protecting the glycocalyx during the
rewarming period. Contrary to our expectations, the addition of
albumin to the perfusion solution had no reducing effect on
cytokine/chemokine secretion during 4 h of EVLP since we did not
detect significant differences in cytokine/chemokine concentrations
at any sampling time point when comparing the D-EVLP/CD and
D-EVLP/CDA groups. However, the D-EVLP/CD group showed a
trend toward lower concentrations of the measured proteins. We
lately reported slightly improved oxygenation capacities of pig lungs
after 4h of EVLP when perfused with Custodiol-N solution
supplemented with dextran and albumin when compared with the
addition of dextran only (13). The beneficial effects of albumin
during prolonged period of EVLP might be due to improved
oncotic support as evidenced by somewhat lower wet/dry weight
ratios (13). Superior lung function in our cohort could result from
the reduced inflammation due to elevated anti-inflammatory
mediators (i.e., IL-10, IL-1RA) in the D-EVLP/CDA group.

Recently, it was shown that higher cytokine/chemokine levels in
serum (i.e., [L-6, CXCL8) after transplantation are associated with
worse clinical outcomes (41, 42). The correlation of the cytokine/
chemokine concentrations with the oxygenation capacities of the
lungs after 4h of EVLP in our study revealed higher protein
concentrations in perfusates to correlate with worse lung function.
In line with our findings, it was shown that lower concentrations
of pro-inflammatory IL-1B in perfusates are associated with better
lung function 24 h post-transplantation (43). Moreover, cytokine
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absorption prior to LTX resulted in an improved lung function,
decreased inflammation, and less primary graft dysfunction in a
porcine model, underlining the importance of reducing cytokine
and chemokine concentrations during preservation (29, 44, 45).
Therefore, D-EVLP/CD would provide the most usable donor
organs for transplantation by reaching the lowest concentrations
of cytokine/chemokine in the perfusate.

In our experimental groups, the D-EVLP/CD samples
contained the lowest protein concentrations of e.g. the pro-
inflammatory cytokines/chemokines CXCL8 and IL-6, known to
be involved in the pathogenesis of primary graft dysfunction, and
the elevated levels of CXCL8 in perfusates were suggested to
predict the risk of the primary graft dysfunction (42, 46).
Interestingly, the concentrations of the anti-inflammatory
cytokines IL-10 and IL-1RA were also reduced in the D-EVLP/
CD perfusate samples, suggesting a decreased secretion of pro-
and anti-inflammatory mediators in the D-EVLP/CD group.
Hence, the suppression of immune cells with hypothermia will
reduce not only the pro-inflammatory cytokine secretion from
these cells but also the anti-inflammatory cytokine secretion (47).

5. Conclusion

A prolonged CSP (9 h) does not affect the cold injury of the
lung, while the first hours of reperfusion seem to be crucial for
the damage of the allograft. Moreover, Custodiol-N supplied with
dextran showed a reducing effect on the cytokine/chemokine
secretion, while albumin exhibited no additional effect during 4 h
of EVLP. The cytokine/chemokine concentrations in perfusates
of Custodiol-N solution supplied with dextran and albumin
negatively correlated with the oxygenation capacities, suggesting
their usage as an alternative perfusion solution to the standard
Steen solution. Possibly, by using Custodiol-N solution with
dextran and albumin, more organs would reach the clinically
relevant threshold of oxygenation capacity of >350 mmHg, and
thus the transplant volume could be increased. Along with
the composition of perfusate solutions, cytokine/chemokine
concentrations in perfusates can be lowered by applying cytokine
absorption filters. The latter were demonstrated to improve lung
function of transplanted organs due to reduced IRI (29, 44, 45).

6. Limitations

The limitation of our study is focusing on the ex vivo perfusion
period. The lungs were not transplanted, and there were no
data with
Moreover, we only captured the oxygenation capacities as data

available regard to the post-perfusion period.

displaying the lung function of the grafts.
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Introduction: In recent years, the field of graft preservation has made considerable
strides in improving outcomes related to solid organ restoration and regeneration.
Ex vivo lung perfusion (EVLP) in line with the related devices and treatments has
yielded promising results within preclinical and clinical studies, with the potential
to improve graft quality. Its main benefit is to render marginal and declined
donor lungs suitable for transplantation, ultimately increasing the donor pool
available for transplantation. In addition, using such therapies in machine
perfusion could also increase preservation time, facilitating logistical planning.
Cytokine adsorption has been demonstrated as a potentially safe and effective
therapy when applied to the EVLP circuit and post-transplantation. However, the
mechanism by which this therapy improves the donor lung on a molecular basis
is not yet fully understood.

Methods: We hypothesized that there were characteristic inflammatory and
immunomodulatory differences between the lungs treated with and without
cytokine adsorption, reflecting proteomic changes in the gene ontology
pathways and across inflammation-related proteins. In this study, we investigate
the molecular mechanisms and signaling pathways of how cytokine adsorption
impacts lung function when used during EVLP and post-transplantation as
hemoperfusion in a porcine model. Lung tissues during EVLP and post-lung
transplantation were analyzed for their proteomic profiles using mass
spectrometry.

Results: We found through gene set enrichment analysis that the inflammatory
and immune processes and coagulation pathways were significantly affected by
the cytokine treatment after EVLP and transplantation.

Conclusion: In conclusion, we showed that the molecular mechanisms are using a
proteomic approach behind the previously reported effects of cytokine adsorption
when compared to the non-treated transplant recipients undergoing EVLP.

KEYWORDS

lung transplantation, mass spectrometry, ex vivo lung perfusion, cytokine adsorption,
proteomics
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Introduction

The improvement of graft preservation remains a key goal in
lung transplantation, with the ultimate objective of increasing the
number and quality of transplants. Graft preservation is a key
topic given the necessity of maintaining the quality of the
harvested organ after it has been removed from the donor and
remains in a vulnerable state, subject to ischemic damage. Ex
vivo lung perfusion (EVLP) is a platform for evaluating and
potentially treating donor lungs using machine perfusion with
ventilation and perfusion support. This system was initially used
for evaluating lung function in lungs from uncontrolled donation
after circulatory death and later for evaluating marginal donor
lungs, with the Lund group performing the first transplant using
EVLP in 2005 (1-5).
development has allowed for a stable EVLP protocol that can run

marginal lungs after Subsequent
for hours and evaluate suboptimal lungs (6, 7). The system also
allows for implementing targeted therapies that could be used to
recondition or ameliorate marginal and damaged lungs (8). The
benefits of delivering a specific intervention during EVLP include
using an isolated system in which the treatment can be
administered directly to the target organ, bypassing any effects
treatment may have in the systemic circulation.

The restoration or regeneration of damaged organs is a
particularly important goal given the number of lungs that are
declined for transplantation due to poor quality. Donor organ
availability limits the number of possible transplantations, resulting
in waiting list mortality. An estimated 60% of donor lungs are
rejected after evaluation for acceptance, with the fear that damaged
lungs will result in higher complication rates (9, 10). Refusal of
lung grafts can caused by acute lung injury (ALI) stemming from
several etiologies, such as aspiration, infection, trauma, and
neurogenic edema, with the most severe form of ALI manifesting
as acute respiratory distress syndrome (ARDS) (11).

Thus, EVLP allows for treating lungs that are damaged by ALI
and ARDS to recuperate them for transplantation. Several
potential therapies have been tested for graft preservation using
EVLP, such as the use of mesenchymal stem cells, dialysis, and
cytokine adsorption, to name a few. In particular, cytokine
adsorption has been investigated given the established significance
of cytokines in mediating inflammatory processes. Adsorbers rely
on polymer beads that target the middle and low-molecular-
weight molecules, which have been shown to reduce cytokine
levels in severe sepsis (12-16). They have also been used in other
transplantation types, such as orthotopic heart and kidney
transplants (17, 18). We previously reported on the use of
cytokine adsorption in a porcine model of transplantation (19)
and human transplants (20). In recipients with lungs treated
during EVLP
pulmonary function improved, and the incidence of primary graft

and post-transplantation, inflammation and
dysfunction was reduced. The mechanisms and pathways involved
in graft improvement with cytokine adsorption both from this and
other EVLP studies have not been fully elucidated. Data on the
proteomic profiles characterizing lung transplantation using tissue
are extremely limited, particularly from models after the transplant
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in the recipients and none as far as we identified specific to
cytokine adsorption (21, 22). We hypothesized that a proteomic
approach would demonstrate what pathways were altered by the
treatment. Using lung biopsies obtained during EVLP and post-
transplantation in our model, we compared the treated grafts to
the non-treated grafts and compared both to the normal lungs,
finding significant alterations to pathways related to immune and
inflammatory processes.

Methods
Porcine model

Ethical considerations for porcine experiments
The study was approved by the local Ethics Committee for
Animal Research (DNR 5.2.18-4903/16 and DNR 5.2.18-8927/16)
of the Lund University. All animals received care according to
the USA Principles of Laboratory Animal Care of the National
Society for Medical Research, Guide for the Care and Use of
Laboratory Animals, National Academies Press (1996).

Animal preparation

A total of 24 male and female adult farm-raised wild-type
American Yorkshire pigs (Sus scrofa domesticus) were used in this
study, with 12 designated as donors and 12 designated as recipients.
These animals were previously described in a prior publication,
which includes alternate variables and outcomes that were not re-
reported in this publication (19). Seraclone™ Anti-A blood
grouping reagent (Bio-Rad, Medical Diagnostics GmbH, Dreieich,
Germany) was used to determine the blood types of animals prior to
the experiment, and these animals were then matched as donor-
recipient pairs according to blood type and weight. Premedication,
preparation, and ventilatory settings were previously described (19),
such as xylazine (Rompun vet. 20 mg/kg, Bayer AG, Leverkusen,
Germany), ketamine (Ketaminol vet. 20 mg/kg, Farmaceutici Gellini
S.p.A., Aprilia, Italy), peripheral line insertion, urinary catheter, and
endotracheal intubation. Mechanical ventilation (Servo 900C,
Siemens, Solna, Sweden) was set to volume-controlled ventilation
with a 1:2 inspiration-to-expiration ratio and a tidal volume of 6-
8 ml/kg. All animals were monitored with a pulmonary artery
CCOmbo V and Edwards
Lifesciences Services GmbH, Unterschleissheim, Germany).

catheter (Swan-Ganz Introflex,

ARDS induction in donor animals

ARDS was induced using lipopolysaccharide (LPS) from the
(O111:B4, Sigma
Aldrich, Merck KGaA, Darmstadt, Germany), as previously

Gram-negative bacterium Escherichia coli
described (19). The endotoxin was administered as an infusion

diluted in saline over 1 h (2 pug/kg/min) and then at a lower rate
for another 1 h. All animals developed hemodynamic instability,

frontiersin.org


https://doi.org/10.3389/fcvm.2023.1274444
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

Niroomand et al.

which was treated with a continuous infusion of norepinephrine
(40 pg/ml, 0.05-2 pg/kg/min) (Pfizer AB, Sollentuna, Sweden)
and dobutamine (2 mg/ml, 2.5-5 pug/kg/min) (Hameln Pharma
Plus GmbH, Hameln, Germany). Fluid loss was compensated
with Ringer’s acetate (Baxter Medical AB, Kista, Sweden). A total
volume of 6 ml of blood sample was collected before induction
of lung injury and thereafter every hour from the injured donor
who was used for the analyses as previously reported (19). In
addition, 1 ml of blood sample was collected for blood gas
measurements every 30 min.

The Berlin criteria were used to define the ARDS stage based
on the PaO,/FiO, ratio taken using arterial blood gases. Blood
gases were analyzed every 30 min (ABL 90 FLEX blood gas
analyzer, Radiometer Medical ApS, Brenshej, Denmark) and
were normalized to a blood temperature of 37°C. Pulmonary
harvest only proceeded after two arterial blood gases taken
15min apart demonstrated a PaO,/FiO, ratio of less than
300 mmHg and an absence of heart failure.

Pulmonary harvest, EVLP, and left lung
transplantation in the recipients

Pulmonary harvest, EVLP, and transplantation have been
previously described in detail (19). In brief, pulmonary harvest
was performed according to clinical practice and proceeded in an
en bloc fashion through a median sternotomy and cannulation of
the pulmonary artery and clamping of the superior vena cava,
inferior vena cava, and ascending aorta. The lungs were
anterogradely flushed with cold Perfadex® PLUS solution
(XVIVO perfusion, Gothenburg, Sweden).

The en bloc lungs were placed on a Vivoline LS1 (XVIVO
perfusion, Gothenburg, Sweden) for EVLP with a target perfusion of
40% of cardiac output and a tidal volume of 7 ml/kg of the donor
body weight (23, 24). The system was primed with Steen™ Solution
(XVIVO perfusion) and set to a circuit hematocrit of 15%-20%
using donor red blood cells collected prior to ARDS induction. An
additional Steen solution was added when the perfusate levels in the
reservoir dropped below 300 ml. The lungs were cooled to 8-12°C
for approximately 45 min before transplantation.

The left lung transplantation was performed according to
clinical practice and as previously described, including the post-
transplantation follow-up and immunosuppression (19). All animals
(0.15 mg/kg, PO)
(Sandoz AS, Copenhagen, Denmark) and methylprednisolone

were immunosuppressed using tacrolimus
(1 mg/kg, intravenously, twice daily) (Solumedrol, Pfizer, New York,
USA). Bronchoscopy was used to confirm an open bronchial
anastomosis.

Recipient follow-up and right
pneumonectomy on the third day
post-transplantation

The animals were kept under anesthesia for 3 days as
previously described in detail (19). The recipient ventilatory
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strategy included the use of the lowest possible pressures while
maintaining adequate oxygenation and ventilation with a positive
end-expiratory pressure between 5 and 10 cmH,O and a peak
pressure below 30 cmH,O. Arterial blood gases were monitored
every hour post-transplantation. The pulmonary hilum was
dissected through a mid-sternotomy, and a pneumonectomy of
the right lung and accessory lobe allowed for an isolated
assessment of the transplanted left lung. The recipient was
followed for an additional 4 h during single-lung ventilation, and
the tidal volume and respiratory rate were adjusted to maintain a
peak pressure <30 cmH,0.

Treatment with cytokine adsorption

As previously described (19), an adsorbent filter (CytoSorb® ,
CytoSorbents Europe GmbH, Berlin, Germany) was used to
continuously filter the perfusate during EVLP through a veno-
venous shunt from the reservoir at a rate of 300 ml/min. The
filter was in place throughout EVLP and was followed up post-
transplantation with an additional 12h of extracorporeal
hemoadsorption connected to the cytokine adsorber via a veno-
venous shunt using a hemodialysis catheter (Power-Trialysis®™
Slim-Cath™, Becton, Dickinson and Company, NJ, USA)
inserted in the jugular vein. The roller pump ran at a rate of
300 ml/min (19).

Mass spectrometry analysis

Sample preparation and protein digestion

Biopsies were taken from the right lung after intubation as
baseline samples with random selection from both the treated
and non-treated groups (n=6 baseline samples). Biopsies were
also obtained from the right lung after 4h of EVLP and from
the left lung post-transplantation on day 3 of observation from
both the treated and non-treated groups (n=6 per baseline,
treated EVLP, non-treated EVLP, and non-treated post-transplant
groups and n =5 for treated post-transplant group after analysis).
Proteins were extracted from homogenized tissues and were
solubilized in a 2% sodium dodecyl sulfate (SDS, Sigma Aldrich,
Darmstadt, Germany). A bicinchoninic acid (BCA) assay (Pierce,
Thermo Fisher Scientific, Waltham, MA, USA) was performed to
determine protein concentration. Subsequently, 30 ug of protein
was digested using an S-Trap digestion protocol. Samples were
reduced with 20 mM dithiothreitol (DTT, Sigma Aldrich) for
45 min at 56°C and then incubated with 40 mM iodoacetamide
(TAA, Sigma Aldrich) in the dark at room temperature for
30 min. Samples were acidified with 2.5% phosphoric acid and
washed with buffer before binding to an S-Trap CO,-micro-80
column (ProTifi, Fairport, New York, USA) and were double
digested overnight at 37°C with lysine-C (Promega mass spec
grade at a 1:50 ratio of enzyme to protein by ng, Promega,
Madison, WI, USA) and trypsin (Promega sequence grade at a
1:50 ratio of enzyme to protein by ng).
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Peptide mixing and pre-fractionation

Fractionation was carried out using a Waters XBridge BH130 C18
35um, 2.1 mmx150 mm column, on an Ultimate 3000 rapid
separation high-performance liquid chromatography (RS HPLC)
(Thermo Scientific, Waltham, MA, USA) operating at 200 ul/min.
The mobile phases were solvent A, 10 mM ammonium formate at
pH 10, and solvent B, 90% acetonitrile and 10% water containing
10 mM ammonium formate at pH 10. Peptides were separated using
the following gradients: 0 min 0% B; 3 min 0% B, 97 min 35% B;
98 min 80% B; and 108 min 80% B. The column was operated at RT,
and the detection wavelength was 214 nm. We collected 96 fractions
at 1 min intervals that were further concatenated to 48 fractions by
combining two fractions that are 24 fractions apart, ie., #1 and #25
and #2 and #26. The fractions were dried in the SpeedVac.

LC-MS/MS data acquisition

DDA data acquisition on timsTOF Pro 2

The fractions were resuspended in 0.1% formic acid, and
peptide determination was performed in a NanoDrop system
(DeNovix, Wilmington, DE, USA) before liquid chromatography
tandem mass spectrometry (LC-MS/MS) analysis. A total of
400 ng of each fraction was loaded on Evosep tips (Evosep
Biosystems, Odense, Denmark) for separation with nanoflow
reversed-phase chromatography with an Evosep One LC system
(Evosep Biosystems). Separation was performed with the 30 SPD
method (gradient length of 44 min) using a 15cm x 150 pum
Evosep column (Evosep Biosystems) packed with 1.5um
ReproSil-Pur C18-AQ particles. The Evosep One was coupled to
a timsTOF Pro 2 ion mobility mass spectrometer (Bruker,
Billerica, MA, USA) operated in data dependent acquisition -
parallel accumulation - serial fragmentation (DDA PASEF) with
10 PASEF scans per acquisition cycle and accumulation and
ramp times of 100 ms each. Singly charged precursors were
excluded, the “target value” was set to 20,000, and dynamic
exclusion was activated and set to 0.4 min. The quadrupole
isolation width was set to 2 Th for m/z <700 and 3 Th for m/z >
800. All subsequent DDA files were used to build a spectral
library in Fragpipe v 180 (25-28), with the following parameters,
i.e, missed cleavages=2, min peptide length=7, max peptide
length =50, and common internal retention time peptides
(CiRTs), that were used for spectral library retention time
calibration. UniProt UP000008227 FASTA (release 2023_01) was
used as a database with reversed target sequences as decoys. The
generated library consisted of 10,296 protein groups in total. A
py_diAID method (29) was generated by subjecting the 48 DDA
fraction runs and was used to run all individual samples in the
study in diaPASEF on the timsTOF Pro 2.

DIA data acquisition on timsTOF Pro 2

The samples were loaded onto Evosep tips (Evosep

Biosystems) and separated with the same gradient as for DDA
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data acquisition. MS data were acquired using the diaPASEF
method. The accumulation and ramp times were set to 100 ms.
DIA scans were acquired with 25m/z isolation windows
spanning 247-1,350 m/z and 0.60-1.60 1/KO ion mobility
of 2.76s. The
collision energy was ramped linearly as a function of the
mobility from 59 eV at 1/K0=1.6 Vs cm™> to 20 eV at 1/KO0 =
0.6 Vs cm ™.

ranges and an estimated cycle time

Bioinformatic analysis of LC-MS/MS data

Raw LC-MS/MS data were analyzed using DIA-NN v 1.8.1.
The quantification mode was set to Robust LC (high precision),
with default RT-dependent normalization and the Fragpipe
spectral library. Subsequently, the output files were loaded into
RStudio v 2022.12.0 with R v 4.2.2. The MS-DAP package v
1.05 (30) was used for normalization and differential expression
analysis. The identified proteins were first filtered at 75% of
identifications per contrast. Normalization was performed using
variance stabilizing normalization followed by mode between
protein normalization. Differential expression analysis was
performed using the DEqMS R package (31). Log(2)-fold
change thresholds were inferred through bootstrapping in the
MS-DAP package. Significantly changed proteins were defined
as false discovery rate (FDR)-corrected p-values (g-values) of
>0.05 and Log (2)-fold change of +0.313, 0.344, and 0.354 for
the non-treated vs. treatment, baseline vs. treatment, and
baseline vs. non-treated groups, respectively. For the heatmap,
the MaxLFQ values were normalized using z-scores and plotted
using the pheatmap package v 1.0.12 with Euclidean clustering.
Gene set enrichment analysis (GSEA) analysis was performed
by examining all proteins found through bioinformatic analysis
after the

clusterProfiler

and normalization using the
v 444. The

proteomics data have been deposited to the ProteomeXchange

filtering steps

package mass spectrometry
Consortium via the PRIDE partner repository with the dataset

identifier PXD044413.

Calculations and statistics

Continuous variables were reported as median and
interquartile range (IQR). Statistically significant differences
between groups were tested with the Student’s f-test when
comparing the two groups and within groups using ANOVA
when data were normally distributed. Most analyses were
conducted with the Mann-Whitney test and the Kruskal-Wallis
tests when data were not normally distributed. A chi-squared
test was performed to analyze the observed frequencies of the
categorical variables. These statistical analyses were performed
using GraphPad Prism 9.1. The statistics used within mass
spectrometry analysis are reported in the “Bioinformatic
analysis of LC-MS/MS data” section. Significance was defined as
p<0.001 (***), p<0.01 (**), p<0.05 (*), and p>0.05 (not

significant).
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Results

Mass spectrometry analysis showed
significant differences in protein expression
after cytokine adsorption treatment in EVLP

Lung biopsies obtained prior to injury induction were collected as
baseline samples and subsequently compared to the lung biopsies
obtained after EVLP from both the treated and non-treated groups.
After induction of lung injury, we found no significant differences in
the PaO,/FiO, ratios between the treated (208.2 + 55.5 mmHg) and
non-treated groups (225.3 + 33.6 mmHg, p =01733). By the end of
EVLP, the treated lungs had increased their ratio to 324+
70 mmHg, whereas the non-treated lungs did not pass the clinical
acceptance with a PaO,/FiO, ratio of 249+ 143 in the 10 pigs
assigned to the non-treated group.

Figure 1A shows the volcano plots depicting the upregulated and
downregulated proteins across the three comparison types. In the
comparison between the baseline and the non-treated groups, 5,399
proteins were identified, of which 620 were statistically differentially
expressed. Of those proteins that were differentially expressed, 373
were downregulated and 247 were upregulated. In the comparison
between the baseline and the treated groups, 164 proteins were
downregulated, and 157 were upregulated. Furthermore, in the
comparison between the non-treated and treated groups, 57 proteins
were downregulated and 112 were upregulated. Within the three
groups, an unsupervised hierarchical clustering that was performed
on the differentially expressed proteins demonstrated clustering of
the groups (Figure 1B). The baseline, treated, and non-treated
groups were discretely sorted based on the clustering of the proteins,
showing the significantly different protein expression profiles at this
point in EVLP.

In examining the clustering of protein expression profiles
further, several comparison groups were considered separately
and displayed to the left of the heatmap. This includes the
significantly differentially expressed proteins found in the
comparisons between the baseline and non-treated samples
(yellow column, Figure 1B) and those between the baseline and
treated samples (green column, Figure 1B). Of those proteins,
the overlap in identities is displayed in the Venn diagram, as
shown in Figure 1C. In addition, the specific pathways identified
from the GSEA were highlighted to demonstrate the distribution
of identified proteins across their locations in the heatmap
(Figure 1B). Specifically, the immune system process pathway
[gene ontology (GO) term GO:0002376] is displayed in the red
column and blood coagulation (GO:0007596) in the purple
column (Figure 1B). The immune system process term consists
of a protein set size of 276 proteins and had a normalized
enrichment score (NES) of 1.54 (g-value 0.028) when comparing
the baseline and non-treated samples. Within the baseline and
treated samples, the NES of the immune system process was 1.72
with a g-value of 0.027. For the term blood coagulation, when
comparing the baseline group and the non-treated group, the
pathway had an NES of —2.11 and a g-value of 0.002, and when
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comparing the baseline group and the treated group, the pathway
had an NES of —1.84 and a g-value of 0.09.

GSEA analysis across the comparisons between the baseline vs.
non-treated and baseline vs. treated groups yielded enriched
pathways, as shown in Figure 2. The hierarchical clustering was
performed on the GO terms to demonstrate the overarching
biological processes underscored by the GO terms. The clustering
of enriched terms relied on pairwise similarities of the terms, and
these terms were divided largely into five groups. These groups
included mainly immune responses and responses to external
stimuli, cell motility terms, coagulation terms, lipid transport,
and leukocyte immunity, respectively.

Individual proteins were identified for comparison across all
three groups (Figure 3 and Table 1). Proteins related to
to be
significantly increased in the non-treated group compared to

inflammation and cytokine processes were found
those in the baseline group. These proteins include toll-like
receptor 2 [TLR2, log(2)-fold change 1.14, g-value 0.007],
apoptosis-associated speck-like protein containing a CARD
[PYCARD, log(2)-fold change 0.84, g-value 0.005], and
chemerin-like receptor 1 [CMLKI, log(2)-fold change 1.64,
g-value 0.0005]. The interleukin-1 receptor accessory protein
(IL-1 RAP) was numerically higher in the treated and non-
treated groups, but this was not a statistically significant elevation
[log(2)-fold change 0.50, g-value 0.25].

Several comparisons were not statistically significantly different
but showed a numerical change between the treated and non-
treated groups, such as the interleukin-1 receptor antagonist
protein [IL-1 RN, log(2)-fold change —0.27, g-value 0.41],
pro-interleukin-16 [IL-16, log(2)-fold change —0.22, g-value
0.24], and TLR 2 [log(2)-fold change —0.06, g-value 0.86]. Other
observed numerical decreases in expression included PYCARD
[log(2)-fold change —0.33, g-value 0.17], interleukin-6 cytokine
family signal transducer [IL-6ST, log(2)-fold change —0.08,
g-value 0.83], chemerin-like receptor 1 [CMLKI, log(2)-fold
change —0.22, g-value 0.42], and REL proto-onco [REL, log
(2)-fold change —0.19, g-value 0.57].

In addition, numeric, though not statistically significant,
decreases in proteins related to neutrophils (Figure 4) between
the treated and non-treated groups were found. These proteins
include azurocidin [AZUI, log(2)-fold change —0.08, g-value
0.92], proteinase 3 [PRTN3, log(2)-fold change —0.55, g-value
0.18], myeloperoxidase [MPO, log(2)-fold change —0.003, g-value
0.99], protein S100A8 [log(2)-fold change —0.21, g-value 0.69],
dipeptidyl peptidase 1 [DPPI1, log(2)-fold change —0.28, g-value
0.07], and neutrophil-related elastase [ELANE, log(2)-fold change
—0.15, g-value 0.76]. Moreover, there were numeric decreases in
proteins related to macrophage-related proteins, such as CD163
[log(2)-fold change —0.48, g-value 0.13] and nitric oxide synthase
[NOS, log(2)-fold change —0.20, g-value 0.66]. This coincided
with an increase in the nitric oxide synthase trafficking protein
when comparing the treated and non-treated values [nitric oxide
synthase trafficking inducer (NOSTRIN), log(2)-fold change 0.45,
g-value 0.07].
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FIGURE 1

Treated and non-treated lungs could be clearly distinguished by their proteomic profiles based on differential expression of proteins found at the end of
EVLP. Comparisons between the groups and those with normal lung tissue (baseline) showed significant differences in the overall distribution of protein
expression. (A) Volcano plots of the proteins identified across the three comparison groups (non-treated vs. treated, baseline vs. treated, and baseline vs.
non-treated). For those that were statistically significantly differentially expressed, blue marks the underexpressed proteins, and orange marks the
overexpressed proteins within the comparisons. (B) Unsupervised hierarchical clustering was performed on the proteins to produce the heatmap
across the three groups. GSEA showed pathways from the biological processes. The proteins from GO terms are highlighted in columns to the left of
the heatmap: the immune system process pathway (red, GO Term GO:0002376) and coagulation (purple, GO:0007596). The proteins that were
differentially expressed in the non-treated group compared to the baseline group are shown separately in the yellow column to the left of the
heatmap. The differentially expressed proteins in the treated group are shown in the green column to the left. (C) Of those proteins that were
differentially expressed between baseline vs. treated groups and baseline vs. non-treated groups, the Venn diagram demonstrates the distribution of
unique or shared identities. All graphs represent data from the treated group (n = 6), non-treated group (n = 6), and baseline group (n = 6). Statistically
significant differences are reported as FDR-corrected p-values (q-values) using log(2)-fold change differences between groups.
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FIGURE 2

Key responses to injury were enriched in the treated and non-treated groups using GSEA during EVLP. Enriched pathways from the GSEA are shown for
both the non-treated and treated groups in the dot plot. Unsupervised hierarchical clustering of the GO terms was performed to show the overarching
biological processes involved. All graphs represent the data from the treated group (n =6), non-treated group (n=6), and baseline group (n =6)
Statistically significant differences are reported as FDR-corrected p-values (g-values) using log(2)-fold change differences between groups.
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Pathways related to the immune system and
inflammatory responses were significantly
altered in the treated group after lung
transplantation

Samples collected from the third day after the transplantation
were compared between the non-treated and treated groups and
additionally analyzed compared to the same baseline samples as
previously described. By the end of the experiment, the PaO,/
FiO, ratio of the treated group (442.0+90.2 mmHg) was
significantly higher than that of the non-treated group (174.9 +
31.0 mmHg, p =0.0022).

Based on the expression profiles of the identified proteins, the
hierarchical clustering again showed the separation of the groups
into baseline, treated, and non-treated groups (Figure 5A). The
same immune system process pathway and coagulation pathway
were highlighted in separate columns to the left of the heatmap to
demonstrate the location of the proteins identified within these
sets. When comparing the treated and non-treated groups, the
immune system process had an NES of —1.78 with a g-value of
5.22 x 107%, whereas the stress response had an NES of 1.65 and a
g-value of 5.21x107% Furthermore, the proteins differentially
expressed in the baseline to non-treated comparison (yellow
column, Figure 5A) and the baseline to treated comparison (green
column, Figure 5A) were placed adjacent to the heatmap to show
protein locations. From the expressed proteins, a greater extent of
identity overlaps with 582 proteins in common can be found
between the baseline to non-treated and baseline to treated
comparisons, as shown in the Venn diagram in Figure 5B.

GSEA analysis of the proteins found within the comparisons
showed a number of similar pathways as found within the EVLP.
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Several pathways were identified as either activated or suppressed
within the non-treated vs. treated comparison (Figure 6). The
only statistically significantly activated process was the term
“toxin metabolic process.” All others were suppressed in the
treated group, which included pathways involving immune
responses, stress responses, wound healing, and defense
responses. In addition, blood coagulation and hemostasis were
identified as suppressed pathways.

The individual proteins compared after EVLP were again
examined after transplantation (Figures 7, 8 and Table 2).
Between the treated and non-treated groups, decreases in
proteins involved in inflammation were observed, such as in
IL-16 [log(2)-fold change —0.28, g-value 0.55], IL1-RAP [log(2)-
fold change —0.68, g-value 0.28], and TLR2 [log(2)-fold change
—0.15, g-value 0.89] with values trending toward baseline values
(Figure 7). In addition, there were decreases in the same
neutrophil-related proteins, such as AZU1 [log(2)-fold change
—1.97, g-value 0.16], PRTN3 [log(2)-fold change —2.07, g-value
0.11], MPO [log(2)-fold change —1.80, g-value 0.15], and
neutrophil-related elastase [ELANE, log(2)-fold change —1.84,
g-value 0.15] (Figure 8). There was also an increase, though not
statistically significant, in the macrophage-related regulator
protein NOSTRIN [log(2)-fold change 0.68, g-value 0.24]

(Figure 8).

Discussion

Given the low utilization of donor organs paired with the high
demand, the regeneration and subsequent preservation of
otherwise discarded lungs are greatly needed. One methodology

frontiersin.org


https://doi.org/10.3389/fcvm.2023.1274444
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

Niroomand et al.

10.3389/fcvm.2023.1274444

IL-1 RAP IL-1 RN IL-16 TLR2
S T—
3k 3k
125 * 15 I
1.2
E E S S
z 2 z Z s .
o o o o
Y = . 5 5
10.0
1.5
o5 106
95
Baseline  Non-Treated  Treated Baseline  Non-Treated  Treated Baseline  Non-Treated Treated Baseline  Non-Treated Treated
PYCARD IL-6 ST CMLK1 REL
* % k%
%k 3k 3k
| 1.6 13.0 ——— 11.0 .
120 Py |
125
N | o112 o ~ 105
g, § | £ . §
g g wa g :
- 100
1.0 ’
1.0
104
10.5 95 .
Baseline  Non-Treated Treated Baseline  Non-Treated Treated Baseline  Non-Treated Treated Baseline  Non-Treated Treated
FIGURE 3
Proteins involved in inflammation and related to cytokine processes were upregulated in both the non-treated and treated groups compared to healthy
lung (baseline) after EVLP; however, the extent of upregulation was attenuated by the treatment. All graphs represent data from the treated group (n = 6),
non-treated group (n =6), and baseline group (n = 6). The boxplots represent the median and interquartile range (box) with minimum and maximum
values (whiskers). Statistically significant differences are reported as FDR-corrected p-values (g-values) using log(2)-fold change differences between
groups. IL-1 RAP, interleukin-1 receptor accessory protein; IL-1 RN, interleukin-1 receptor antagonist protein; IL-16, pro-interleukin-16; TLR2, toll-like
receptor 2; PYCARD, apoptosis-associated speck-like protein containing a CARD; IL-16 ST, interleukin-16 cytokine family signal transducer protein;
CMLK1, chemerin-like receptor 1; REL, REL proto-onco, NK-kB subunit.

for addressing this issue would be treatment with cytokine
adsorption, which can be administered during EVLP. However,
the biological processes affected by this treatment are not fully
characterized. This current study leverages the proteomic
analyses performed on lung tissues collected from the lungs
treated with cytokine adsorption during EVLP and post-
transplantation and non-treated lungs, to better understand this
type of graft preservation. The that the
inflammatory- and immune-related pathways were modulated by
the treatment devicee The GSEA analysis revealed altered
processes related to inflammatory responses, immune responses,
stress responses, and leukocyte-mediated immunity pathways.
By the end of the observational period after transplantation, the
humoral immune response, inflammatory response, and defense
response were all significantly downregulated in the treated group
compared to those in the non-treated group. This approach of
studying treated and non-treated donor lung grafts allowed for a

results show
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more global understanding of the protein processes affected by
cytokine adsorption and showed that the treatment causes broad
changes in the inflammatory pathways.

This is important given the existing literature on cytokine
adsorption as a treatment that currently focuses on the presence
and quantification of particular cytokine levels. In contrast, this
study aims to extend our understanding of the treatment effect
beyond those parameters to see how larger, more global
pathways are affected on a tissue level. As noted, cytokine
adsorption has been explored as a treatment modality in the
context of EVLP. The adsorber removes the middle- and low-
molecular-weight molecules through adsorption to polymer
beads, with promising results when applying the adsorber to the
treatment of ischemia-reperfusion injury and prolonged EVLP
(32-34). For lungs kept in cold ischemia for prolonged periods,
such as up to 24 h followed by a longer EVLP duration of 12 h,
positive findings of improved compliance and edema have been
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TABLE 1 Proteins identified related to the inflammation and cytokine
processes compared between the treated and non-treated groups at the
end of EVLP.

Log(2)old change

IL-1 RN -0.27 0.41
IL-16 -0.22 0.24
TLR2 —0.06 0.86
PYCARD -0.33 0.17
IL-6ST —0.08 0.83
CMLK1 -0.22 0.42
REL -0.19 0.57
AZU1 —-0.08 0.92
PRTN3 —-0.55 0.18
MPO —0.003 0.99
S100A8 -0.21 0.69
DPP1 —0.28 0.07
ELANE —0.15 0.76
CD163 —0.48 0.13
NOS —0.20 0.66
NOSTRIN 0.45 0.07

IL-1 RN, interleukin-1 receptor antagonist protein; IL-16, pro-interleukin-16; TLR2,
toll-like receptor 2; PYCARD, apoptosis-associated speck-like protein containing a
CARD; IL-6ST, interleukin-6 cytokine family signal transducer; CMLK1, chemerin-
like receptor 1; REL, REL proto-onco; AZU1, azurocidin; PRTN3, proteinase 3;
MPO, myeloperoxidase; DPP1, dipeptidyl peptidase 1; ELANE, neutrophil-related
elastase; NOS, nitric oxide synthase; NOSTRIN, nitric oxide synthase trafficking
protein.

demonstrated. The integration of the cytokine adsorber in this case
allowed for longer periods of cold storage in the lungs that were
healthy at the time of acquisition. In our previous study on
cytokine adsorption, the adsorber was used to restore lung
function in discarded lungs with signs of ARDS to increase the
available donor pool. We showed that the treatment improved
pulmonary function during EVLP and post-transplantation,
along with a decreased incidence of primary graft dysfunction
(19). However, in both of these studies that used adsorption for
either longer preservation of healthy lungs or preservation of
severely damaged grafts, there has not yet been an exploration of
the types of molecular processes affected by the treatment. This
current study expands on those translational findings to augment
them with a more in-depth proteomic evaluation.

Such work is needed given the number of donor lungs that are
routinely discarded. Donor grafts may be rejected due to several
etiologies, and ALI due to infection is an important cause. To
model this type of infection-induced injury, an LPS-induced
ARDS injury was utilized in this porcine model. LPS which is an
endotoxin derived from E. coli results in endothelial damage that
ultimately causes lung injury similar to human pathology. In this
study, the resulting ARDS that developed after LPS was given
would have resulted in lungs typically declined for use in
transplant. Instead, these lungs were harvested and then placed
on EVLP. The addition of the cytokine adsorber in line with
EVLP allowed for an isolated system in which the lungs could be
both treated and evaluated. Subsequently, the lungs were
transplanted where they then received further treatment with the
cytokine adsorber and were found to have improved function
when compared with those in the non-treated group.
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Among a small number of studies focusing on cytokine
adsorption in the context of EVLP, there are none yet to our
knowledge that have investigated the proteomic profiles of the
treatment. In this study, proteins were identified using mass
spectrometry to characterize the proteome found within the
tissues. The resulting differential expression of proteins was
computed, and the results showed that each group could be
clearly distinguished from one another. Furthermore, the overall
differences as shown in the heatmaps both after EVLP and lung
transplantation follow-up were significant enough to differentiate
the treated group from the non-treated group, as well as each
from healthy lung tissue.

Transitioning from the holistic view of the proteome, the
biological processes were identified by the GSEA analysis to
characterize the biological processes found within the identified
proteins. This analysis allowed for the observation of activity
patterns across the dataset to see the pathways with biological
relevance. From this analysis, the pathways related to
inflammatory and immune responses were highlighted, as seen in
the GSEA dot plots. In EVLP, the GO terms such as “immune
system process” and “coagulation” were further examined
particularly given the significance of the terms in relation to
ARDS. Post-transplantation, an effect of cytokine adsorption, can
be appreciated in the treated group, where biological processes
such as humoral immune response, external stimulus response,
defense response, and stress response were all suppressed.
Cytokine adsorption has been tested in studies for its effect on
particular individual cytokines, and these results have introduced
the hypothesis that the treatment modality has an overall effect
on larger immune responses.

In addition, the biological processes related to coagulation and
hemostasis were found to be suppressed in the treated group when
compared to the non-treated group at the end of observation after
transplantation. This suggests a positive effect on coagulation
hemostasis, which would be important in both the setting of the
ARDS induced in the donor lung in this experiment and in
surgical procedures in general, where the risk of bleeding is an
important consideration. This model aims to test whether lungs
that had experienced sepsis-induced ARDS could be recovered
for lung transplantation using cytokine adsorption, which is
significant given the number of grafts declined for use due to
infection damage. To this point, coagulation dysfunction is a
known sequela of ARDS with activation of the coagulation
pathway that is known to perpetuate further damage in lung
disease (35). Furthermore, states of inflammation further drive
pathological clotting (36). The finding of coagulation hemostasis
regulation with the treatment is important, particularly since the
observed differences in the coagulation-related gene ontology
pathways had a lasting effect since the analysis was performed at
the end of the 3-day observation period.

To augment the analysis of pathways, individual proteins were
observed to look for patterns across proteins involved in
inflammation and immune processes. This included decreases in
the treated group that were numeric but not statistically
significant in proteins linked to inflammation, such as ILI6,
TLR2, PYCARD, IL-6ST, CMLKI, and cREL. Pro-interleukin-16
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FIGURE 4
Neutrophil- and macrophage-related proteins were less upregulated in the treated group relative to the baseline group compared to the non-treated
group as individually analyzed after EVLP. All graphs represent the data from the treated group (n = 6), non-treated group (n = 6), and baseline group
(n=6). The boxplots represent the median and interquartile range (box) with minimum and maximum values (whiskers). Statistically significant
differences are reported as FDR-corrected p-values (g-values) using log(2)-fold change differences between. groups Azul, azurocidin; PRTN3,
proteinase 3; MPO, myeloperoxidase; ELANE, elastase, neutrophil expressed; DPP1, dipeptidyl peptidase 1; PBP, platelet basic protein; NOS, nitric
oxide synthase; NOSTRIN, nitric oxide synthase trafficking.

served as the precursor to interleukin-16, a pro-inflammatory
cytokine that is a chemoattractant and has a direct correlation
with the number of infiltrating CD4" T cells (37). Other
cytokine-related proteins identified within the study were related

Frontiers in Cardiovascular Medicine

to interleukin-1 and interleukin-6. The interleukin-6 cytokine
family is defined by their signal transduction through IL-6ST,
which was decreased in this study (38). IL-6 is a significant
cytokine given its stimulatory effect on B and T cells and its
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FIGURE 5

The treated group could be clearly differentiated from the non-treated group based on proteomic profiles the end of the post-transplant observational
period and both demonstrated a difference from healthy lung tissue (baseline). (A) Unsupervised hierarchical clustering was performed on significantly
differentially expressed proteins to produce the heatmap across the three groups (baseline, treated and non-treated). Gene set enrichment analysis
(GSEA) showed pathways from the biological processes. The proteins from gene ontology (GO) terms are highlighted in columns to the left of the
heatmap: the immune system process pathway (red, GO Term GO:0002376) and blood coagulation (purple, GO:0007596). The proteins which were
differentially expressed in the non-treated group compared to the baseline are shown separately in the yellow column to the left of the heatmap.
The differentially expressed proteins in the treated group are shown in the green column to the left. (B) Of those proteins which were differentially
expressed between baseline vs treated and baseline vs non-treated, the Venn diagram demonstrates the distribution of unique or shared identities. All
graphs represent data from the treated group (n=5), non-treated group (n=6), and baseline group (n = 6). Statistically significant differences are
reported as FDR corrected p-values (g-values) using log(2)-fold change differences between groups.

described correlation with worsening morbidity and mortality in  transplant, with the potential to differentiate donor graft
human ARDS (38-40). Moreover, IL-1 has been specifically = performance (41, 42). RNA levels of IL-6 and IL-1 from human
identified as a prognostic indicator of outcomes in lung  donor lungs were also correlated with increased risk of mortality
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FIGURE 7
By the end of the post-transplantation observational period, the same reduction of proteins involved in inflammation and related to cytokine processes in
the treated group was observed after cytokine adsorption in EVLP. All graphs represent the data from the treated group (n = 5), non-treated group (n = 6),
and baseline group (n = 6). The boxplots represent the median and interquartile range (box) with minimum and maximum values (whiskers). Statistically
significant differences are reported as FDR-corrected p-values (g-values) using log(2)-fold change differences between groups. IL-1 RAP, interleukin-1
receptor accessory protein; IL-1 RN, interleukin-1 receptor antagonist protein; IL-16, pro-interleukin-16; TLR2, toll-like receptor 2; PYCARD,
apoptosis-associated speck-like protein containing a CARD; IL-16 ST, interleukin-16 cytokine family signal transducer protein; CMLK1, chemerin-like
receptor 1; REL, REL proto-onco, NK-kB subunit.

post-transplantation, supporting the hypothesis that these
cytokines and their related pathways are important in mitigating
poor outcomes (43). Furthermore, TLR2 is a cell membrane
receptor that, similar to other toll-like receptors, recognizes
pathogen molecular patterns or pathogen associated molecular
pattern (PAMPs) and activates immune cells after PAMP
detection. TLR2 has a wide range of PAMP detection including
Gram-positive and Gram-negative bacteria and was observed in
lower amounts in the treated group in this study (44). The
decreases from within the treated group relative to the non-
treated group were observed during both EVLP and the post-
transplantation period. This points to a sustained effect,
particularly given that the cytokine adsorption treatment was
given immediately post-transplantation while the lung biopsies
were acquired after 3 days of observation.

In terms of proteins related specifically to neutrophils and

macrophages, there were several related identities singled out for

Frontiers in Cardiovascular Medicine

51

comparison. Azurocidin, proteinase 3, neutrophil elastase, and
myeloperoxidase were detected across the three groups, with
modestly lower values in the treated group. These proteins are
involved in neutrophil degranulation and neutrophil extracellular
traps (45-47). DPPI1 plays a role in neutrophil maturation as it
activates serine proteinases, and inhibitors of DPP1 have been
explored in lung disease as a method of decreasing neutrophil
activity (48). The reduction of neutrophilic involvement is a key
target in a lung transplantation setting, given the known
contribution of neutrophil (NETs)
pathological states with worse post-transplant outcomes (20, 49).
In addition, platelet basic protein is a neutrophil chemoattractant
and activator, with increasing levels shown to correlate with
other forms of lung disease (50).

In proteins related to macrophage function and identity, the
macrophage marker CD163 was detected, and a decrease was
the treated and non-treated groups.

extracellular traps to

appreciated between
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FIGURE 8
Proteins related to neutrophils and macrophage processes that were reduced after ex vivo lung perfusion were again reduced in the treated group when
compared to the non-treated group after the end of the post-transplantation observation period. All graphs represent the data from the treated group
(n =5), non-treated group (n =6), and baseline group (n =6). The boxplots represent the median and interquartile range (box) with minimum and
maximum values (whiskers). Statistically significant differences are reported as FDR-corrected p-values (g-values) using log(2)-fold change differences
between groups. Azul, azurocidin; PRTN3, proteinase 3; MPO, myeloperoxidase; ELANE, elastase, neutrophil expressed; DPP1, dipeptidyl peptidase 1;
PBP, platelet basic protein; NOS, nitric oxide synthase; NOSTRIN, nitric oxide synthase trafficking.

endothelial cells and inhibited adhesion of macrophages (51). In
this study, NOSTRIN was observed at higher values in the
treated group compared to the baseline and non-treated groups,
both at the end of EVLP and post-transplantation, which implies

Moreover, nitric oxide synthase catalyzes the production of nitric
oxide needed by macrophages for their oxidative burst. On the
other hand, the NOSTRIN is a regulator of nitric oxide, resulting
in attenuation of its production through sequestration in
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TABLE 2 Proteins identified related to the inflammation and cytokine
processes compared between the treated and non-treated group at the
end of observation after left lung transplantation.

Log(2-10ld change

IL-1RAP —0.68 0.28
IL-16 —0.28 0.55
TLR2 —-0.15 0.89
AZU1 -1.97 0.16
PRTN3 —2.08 0.11
MPO —1.80 0.15
ELANE —1.84 0.15
NOSTRIN 0.68 0.24

IL-1 RAP, interleukin-1 receptor accessory protein; IL-16, pro-interleukin-16; TLR2,
toll-like receptor 2; Azul, azurocidin; PRTN3, proteinase 3; MPO, myeloperoxidase;
ELANE, elastase, neutrophil expressed; NOSTRIN, nitric oxide synthase trafficking.

the presence of different angles from which macrophage
involvement is regulated with the treatment. Collectively, the
pattern observed both after EVLP and post-transplantation
demonstrates that neutrophils and macrophages are affected by
the cytokine adsorption treatment. Neutrophils are known to be
mediators of inflammation, with NETs contributing to the
escalation of inflammatory responses, thrombogenesis, and
damage to lung tissue, which manifests as primary graft
dysfunction in lung transplantation (49). In addition, the
regulation of macrophages is an important process to control
within lung transplantation, given the known associations with
escalating inflammation and donor macrophages to worsening
reperfusion injury (52-54). The finding of reduced markers and
effector proteins from within these two immune cell types in the
treated group points to an effect of the cytokine adsorber that
implies a broader effect. The reduction of cytokines has been
explored in other studies when using the cytokine adsorber;
however, this study demonstrates that the consequences of the
treatment can be more expansive on the immune system and its
associated pathways.

The extended effect of the cytokine adsorption treatment can
be appreciated when looking at the proteomic changes from the
individual level up through the biological processes and then
beyond when seeing the changes in overall protein expression
profiles within the identified proteome. We observed first that
there were global changes that clearly distinguished the treated
that further
distinguished the treated group from the group with healthy
both during EVLP and post-
transplantation. Furthermore, immune, inflammatory, and

group from the non-treated group and

lungs, after treatment
defense processes were observed to change throughout the
experimental timeline, and the treatment had a further effect
on the impact of coagulation, particularly seen post-
transplantation. This demonstrates the important effects of the
therapy on processes that extend beyond the examination of
individual cytokine levels. As cytokine adsorption emerges as a
promising therapy for the recovery of marginal and discarded
lungs in transplantation, an understanding of the processes
that underlie its efficacy is important. We demonstrate here
the overarching effects that show that the treatment modulates

the immune, inflammatory, and coagulation pathways to
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change the response in discarded lungs. The findings of this

study augment the clinical and  histopathological
improvements previously seen within studies on cytokine
adsorption in line with EVLP and demonstrate the efficacy of

using the treatment in graft preservation.
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Ex vivo machine perfusion (EVMP) is an emerging technique for preserving explanted
solid organs with primary application in allogeneic organ transplantation. EVMP has
been established as an alternative to the standard of care static-cold preservation,
allowing for prolonged preservation and real-time monitoring of organ quality while
reducing/preventing ischemia—reperfusion injury. Moreover, it has paved the way to
involve expanded criteria donors, e.g., after circulatory death, thus expanding the
donor organ pool. Ongoing improvements in EVMP protocols, especially expanding
the duration of preservation, paved the way for its broader application, in particular
for reconditioning and modification of diseased organs and tumor and infection
therapies and regenerative approaches. Moreover, implementing EVMP for in vivo-
like preclinical studies improving disease modeling raises significant interest, while
providing an ideal interface for bioengineering and genetic manipulation. These
approaches can be applied not only in an allogeneic and xenogeneic transplant
setting but also in an autologous setting, where patients can be on temporary organ
support while the diseased organs are treated ex vivo, followed by reimplantation of
the cured organ. This review provides a comprehensive overview of the differences
and similarities in abdominal (kidney and liver) and thoracic (lung and heart) EVMP,
focusing on the organ-specific components and preservation techniques,
specifically on the composition of perfusion solutions and their supplements
and perfusion temperatures and flow conditions. Novel treatment opportunities
beyond organ transplantation and limitations of abdominal and thoracic EVMP are
delineated to identify complementary interdisciplinary approaches for the
application and development of this technique.

KEYWORDS

transplantation, transplantation heart, ex vivo organ perfusion, machine perfusion, ex vivo
machine perfusion, organ modification, ex vivo surgery
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1. Introduction

The initial idea of isolated organ perfusion was first described in
1812. However, the potential clinical use was only investigated in
detail after the introduction of solid organ transplantation to
reduce ischemia-reperfusion injury (IRI) caused by the gold
standard static-cold organ preservation (SCP). Nowadays, ex vivo
machine perfusion (EVMP)
nutrition-

enables organ perfusion with

and  oxygen-enriched perfusion solutions in
hypothermic to normothermic temperature conditions. These
protocols led to significantly prolonged preservation times allowing
for extended evaluation and potential reconditioning prior to
transplantation. Moreover, EVMP dampened IRI associated with a

reduction of alloimmune responses (1) (Figure 1). Several (pre-)

10.3389/fcvm.2023.1272945

clinical studies in abdominal and thoracic organ transplantation
confirmed the significant benefits of EVMP over SCP, finally
improving graft function and outcomes after transplantation (2-4).
In addition, EVMP application resulted in significantly higher
graft utilization rates due to an expansion of the procurement area
by organ (5) and the
improvement of otherwise non-utilized marginal donor organs,

enabling long-distance transport
particularly those retrieved from donors after circulatory death
(DCD) and extended criteria donors (ECD) (6). These positive
experiences paved the way for the continued implementation of
EVMP as a daily routine and standard preservation technique for
thoracic and abdominal organ transplantation.

In recent years, major efforts have been made to improve

preservation strategies throughout all disciplines, employing
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FIGURE 1

warming of the organs and perfusion-derived anti-inflammatory effects.

Protective effects of EVMP against ischemia—reperfusion injury. EVMP constitutes an interface to administer a broad range of therapeutic components
that have focused on dampening IRI. Various (A) anti-inflammatory drugs and (B) antioxidants have been recruited to sufficiently dampen IRI-derived
inflammation both experimentally as well as in human studies. (C) Moreover, a leukocyte filter can be recruited to deplete inflammatory cells and
inhibit graft infiltration with ambiguous results. (D) Cellular therapies involving mesenchymal stroma cells have delivered promising results on
dampening IRl during experimental EVMP. (E) Gene therapies targeting anti-inflammatory pathways such as IL-10 have led to a significant reduction
of IRl during lung EVMP. (F) Gaseous supplementation during EVMP aims to promote vasodilation and compromise adverse physical effects on the
microcirculation of perfused organs. (G) Mitochondrial transplantation constitutes a novel approach with beneficial effects on IRl in experimental
settings for all organs used for transplant. (H) EVMP itself has been delineated to ameliorate IRl by reducing ischemic times, allowing for graduated
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EVMP not only for transplantation but also for a broadened field of
applications. These developments focused on the extension of the
organ-specific preservation time by optimized preservation
protocols, including the improvement of perfusion solutions with
the ideal composition of components (e.g., oxygen, nutrition,
antibiotics), the perfusion temperature, and flow conditions (e.g.,
continuous vs. pulsatile) (7). Furthermore, standardized and
validated tools for the assessment of organ function during
EVMP were established and are currently the subject of
investigation to enable the measurement of treatment success and
these
EVMP became available for novel treatment

predict post-perfusion outcomes (6). Based on
achievements,
concepts, such as the reconditioning and modification of diseased
organs ex vivo, and for specific tumor and infection therapies
during surgical procedures. Furthermore, regenerative approaches
in autologous settings are being explored, where patients are on
temporary organ support while the diseased organs are being
treated ex vivo, followed by reimplantation of the cured organ
(8-10). In addition, EVMP has emerged as an important tool
for preclinical research enabling in vivo-like preclinical
pharmacological studies with the potential to accelerate the
clinical transition of novel therapeutic approaches.

This review provides an interdisciplinary overview of the
current abdominal and thoracic EVMP systems and their organ-
specific preservation protocols followed by a summary of the
relevant EVMP applications beyond organ preservation for
allogeneic transplantation. The interdisciplinary application of
this new technique may pave the way for researchers to go
beyond the boundaries of their own professional discipline, learn
from each other, and introduce new ideas in research and
clinical practice for the benefit of the patients.

Finally, the authors are aware that a shift of paradigm is
currently performed concerning the formerly used term ex vivo,
which should nowadays only be used when talking about organs
from living organisms, e.g, in the case of autologous
reimplantation of ex vivo cured organs. In the context of
allogeneic transplantation, ex situ should be used instead, as the
organs are recruited from brain-dead or circulatory dead donors.
Nevertheless, for better readability, the authors agreed to

continuously use ex vivo throughout the manuscript.

2. Ex situ machine perfusion
2.1. General components and technique

Starting from the simple isolated and research-oriented organ
perfusion in the 19th century, the continuous development of
medical technology nowadays facilitates the routine application
of ex vivo perfusion for solid allogeneic organ transplantation.
Although a broad range of preservation protocols involving
EVMP for different organs have been developed, all ex vivo
perfusion systems consist of overlapping, general components.
These components are combined harmoniously with each other
but can be monitored separately to secure the base circulation
providing a “near-physiological” condition.
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The organ chamber contains the respective organs connected
by vascular ports to the perfusion system. The organ is perfused
by an integrated centrifugal or roller pump that ensures either a
continuous or pulsatile blood flow via the arterial inflow cannula
while blood is drained via the venous outflow tract. The
downstream reservoir collects the circulating perfusion solution,
also facilitating the optical control of a sufficient level of liquid to
avoid air aspiration. Through the heater/cooler system, the
perfusion solution is constantly tempered hypo-, subnormo-, or
rather normotherm, depending on the underlying perfusion
The
nutrition supply, while the oxygenator provides the required

protocol. supplement-enriched perfusate guarantees a

oxygenation and decarboxylation of the perfusate as a
prerequisite for sufficient cell metabolism. To compromise IRI
and alloimmune responses and allow removal of accumulating
toxic metabolites during ex vivo perfusion, the integration of
leukocyte filters has been tested for several organs. However, its
efficacy remains unclear as no differences in proinflammatory
cytokines and leukocytes or clinical outcome parameters could be
observed, probably due to rapid saturation of the filter with
donor leukocytes as examined in porcine lung EVMP (11).
Although all ex vivo perfusion systems operate as closed systems,
ports at various locations are incorporated for additive supply
and perfusate replacement or sample collection. Finally, a
monitoring unit controls not only general (e.g., venoarterial

pressures) but also organ-specific features (e.g., heart rate).

2.2. Organ-specific perfusion systems

To fulfill the “near-physiological” environment for the
respective ex vivo perfused organ, distinct additional components
are included in the basic circulation and are realized in various
organ-specific ex vivo perfusion systems, which are explained
below and summarized in Table 1.

2.2.1. Kidney systems

In general, a urine reservoir, ports to extract perfusate or urine
for assessing graft function, and special cannulas for potential
abnormal kidney vasculature are organ-specific components for
kidney machine perfusion devices. After the first clinical
feasibility study demonstrated safe and promising outcomes in
ECD using an EVMP system with a pediatric cardiopulmonary
bypass technology (Medtronic) (12), several kidney EVMP
systems have been developed, which are currently in clinical
use. These involve the LifePort Kidney Transporter (Organ
Recovery Systems), Waters RM3 (Waters Medical Systems),
Kidney Assist (XVIVO Perfusion), and WAVES System
(IGL Group). Although several perfusion solutions are under
investigation, the only clinically proven fluid for kidney
hypothermic machine perfusion (HMP) is Kidney Perfusion
Solution-1 (KPS-1%).

The LifePort Kidney Transporter can be used for both pulsatile
and non-pulsatile perfusion at 1°C-5°C and is portable with the
possibility of unaccompanied transport, thus reducing logistical
efforts and costs. It can be used with any certified machine
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TABLE 1 Established EVMP systems for experimental and clinical use for each organ.

10.3389/fcvm.2023.1272945

Organ System Application Perfusate Perfusion Parameters for ex vivo
solution temperature monitoring
Kidney | LifePort Kidney In clinical and | KPS-1® HMP Lightweight, portable, continuous Perfusion pressures, renal blood
Transporter (Organ | experimental use monitoring, unaccompanied flow, temperature, vascular
Recovery Systems) transport, ultrasonic detector to resistance
prevent air from entering the
vasculature, SCS backup, pressure-
controlled pump
Waters RM3 In clinical and Any certified HMP Pulsatile perfusion, dual perfusion Perfusion pressures, renal blood
(Waters Medical experimental use | machine perfusion possible flow, temperature
Systems) preservation solution
eligible for pulsatile
flow
Kidney Assist In clinical and Any certified NMP, SNMP, Pulsatile perfusion, choice of setting | Perfusion pressure, renal blood flow,
(XVIVO Perfusion) | experimental use | machine perfusion HMP the preferred perfusion temperature | temperature, reservoir temperature,
preservation solution vascular resistance
WAVES System In clinical and WATERS IGL® HMP Lightweight, portable, pulsatile Perfusion pressure, renal blood flow,
(Groupe-IGL) experimental use | Pulsatile Perfusion perfusion, unaccompanied transport | temperature, vascular resistance
Solution
Liver Organ Care In clinical and OCS solution with NMP Portable, approved for DBD and Hepatic artery flow (HAF), portal
System™ Liver experimental use | RBC DCD livers vein flow (PVF), oxygen saturation
(TransMedics, Inc.) (SvO,), hematocrit (HCT),
temperature, Hepatic Artery
Pressure (HAP), and Portal Vein
Pressure (PVP)
Metra® (OrganOx) | In clinical and Any certified NMP Portable, allows perfusion for up to HAF, PVF, pH, lactate clearance,
experimental use | perfusion solution 24 h and a “back-to-base”-mode bile production
compatible with (NMP following initial SCP)
OrganOx guidelines
Liver Assist (Organ | In clinical and Any certified NMP Enables perfusion at every Perfusion time, flow, pressure,
Assist) experimental use | machine perfusion HMP/HOPE/D- | temperature between hypothermic temperature, reservoir temperature,
preservation solution | HOPE and normothermic, pulsatile arterial | vascular resistance
and continuous venous flow, Cf-miRNAs from perfusate and bile
automatically adjusts the flow to the | samples have been used to assess
natural resistance of the graft graft viability and function
Medtronic Portable | In clinical and Vasosol machine HMP Already established in Perfusion time, flow, pressure,
Bypass System experimental use | perfusion solution cardiopulmonary bypass and temperature, reservoir temperature,
(PBS®) extracorporeal membrane vascular resistance
oxygenation
Lung Organ Care In clinical and OCS solution with NMP Portable, potential use for split lung | Flow (PF), pressure (PAP), VR,
SystemTM Lung experimental use | RBC preservation, and ex vivo surgery, temperature, Sa0,, SvO,, HCT,
(TransMedics, Inc.) pulsatile flow, oxygenator can also be | PAWP, PEEP, RR, TV
used to deoxygenize the perfusate and
thus evaluate the oxygenation
capacity of the graft
XPS™ (XVIVO In clinical and STEEN Solution™ NMP X-ray and CT-scan possibilities, in- | PA and LA pressure, temperature,
Perfusion) experimental use line gases with real-time tracking flow, pH, pCO,, pump speed
(pO2, pH), separate sterile area and
perfusionist non-sterile area
Lung Assist™ In clinical and | Any certified NMP Evaluation in hypothermic and Perfusion time, flow, pressure,
(Organ Assist) experimental use | machine perfusion normothermic conditions, compatible | temperature, reservoir temperature,
preservation solution with any ventilators, enables vascular resistance
perfusion at every temperature
between hypothermic and
normothermic, portable
Heart Organ Care In clinical and OCS solution with NMP Portable, allows for DCD donations, | Flow (pump, AOF), flow (CF),
System™ Heart experimental use | RBC accepting marginal hearts temperature (temp), pressure (AOP,
(TransMedics, Inc.) PAP), heart rate, hematocrit (HCT),
saturation (SvO2)
Heart Box (XVIVO | In clinical and XVIVO Perfusion HMP Non-ischemic heart preservation Flow (CF), pressure (AOP, PAP)
Perfusion) experimental use | Solution (NIHP), used in experimental and
clinical xenotransplants

perfusion solution eligible for HMP. Investigating the clinical
benefits of the system, a reduced risk of delayed graft function,
and an improved graft survival in the first posttransplant year
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when compared to SCS were shown (13). As of today, the
LifePort Kidney Transporter is the most used perfusion device
for clinical kidney HMP.
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The Waters RM3, in turn, is a portable system that provides
pulsatile flow for HMP at temperatures between 3°C and 8°C
and can be used with any certified perfusion solution eligible for
addition to

simultaneous perfusion of two explanted kidneys is possible, and

pulsatile flow. In single kidney perfusion,
the system comes with trident adapters for the cannulation of
grafts with anatomical anomalies, such as multiple renal arteries.
Experimental dog studies comparing the flow-driven RM3 with
the pressure-driven LifePort found no significant differences in
transplant outcomes (14).

Another device for kidney EVMP, ie., the Kidney Assist
(XVIVO Perfusion), allows for pulsatile perfusion at a flexible
temperature range (12°C-37°C), thus representing the only
device capable of kidney normothermic perfusion (NMP). It is
FDA-approved and can be used with any certified machine
preservation solution, but it is non-portable. Clinical feasibility
and safety have been shown with comparable outcomes for both
oxygenated and non-oxygenated perfusion (15).

At least, the WAVES System (IGL Group) provides pulsatile
HMP (2°C-8°C) using the WATERS IGL® Pulsatile Perfusion
Solution. It is portable and designed for unaccompanied
transport. Clinical safety has been reported with improved
functional outcomes of machine-perfused kidney grafts (16, 17).
Of note, it can also be used for combined kidney-pancreas

preservation.

2.2.2. Liver systems

Organ-specific modifications of liver perfusion systems include
a bile reservoir and a second influx cannula for portal vein
perfusion. Currently, three distinct EVMP devices for liver
preservation are available for clinical use, namely, Liver Assist
(Organ Assist), Organ Care System™ Liver (TransMedics, Inc.),
and Medtronic Portable Bypass System (PBS®™).

The Liver Assist (XVIVO Perfusions) is the most used EVMP
device for liver perfusion that is compatible with any certified
machine preservation solution. Providing pulsatile flow at
temperatures between 12°C and 37°C, it represents the only
currently available device capable of liver HMP or hypothermic
oxygenated machine perfusion (HOPE). However, it is non-
portable, thus requiring a combinatorial approach with other
preservation strategies. Several clinical studies have shown
improved transplant outcomes and reduced graft injury in
HOPE-treated DCD (18-20) and ECD (21) organs and beneficial
effects of NMP and combinatorial approaches (22, 23). The
portable OrganOx Metra™ allows for extended preservation times
of up to 24h during NMP. The biggest RCT on NMP
demonstrated a 50% reduction in discard rates and a 50% lower
level of graft injury when compared to CSP (24).

The Organ Care System™ Liver (TransMedics, Inc.) is also
portable and uses OCS solution with red blood cells (RBCs) for
pulsatile NMP at 34°C. The recent PROTECT trial comparing
OCS preservation with SCS found reduced posttransplant
allograft dysfunction and biliary complications and an increased
use of DCD organs in the OCS group (25). It is FDA-approved
for both DCD and DBD donor livers.
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The PBS® (Medtronic), originally designed for cardiopulmonary
bypass or extracorporeal membrane oxygenation, has also been used
for clinical liver HMP (4°C-6°C). It provides pulsatile flow while
utilizing Vasosol Organ Perfusion Solution. Clinical studies on the
PBS demonstrated a reduction of proinflammatory cytokine
production (26). However, there is a lack of recent experimental
or clinical data.

2.2.3. Lung systems

For lung EVMP, specific components include a respirator
for lung ventilation during machine perfusion, enabling also for
different ventilation modes, and an additional port allowing
for bronchoscopy. This is based on experimental evidence that
has shown the beneficial effects of continuous mechanical
ventilation during machine perfusion. In porcine experimental
animal models, mechanical airway pressure release ventilation
following donation after circulatory death has been shown to
reduce lung injury with improved oxygenation and compliance
27) preserved
recruitment (28). Moreover, preclinical data show that EVMP

while flow-controlled ventilation alveolar
can also be used conversely in this setting to deoxygenate the
perfusate, thereby assessing the oxygenation capacity of the lungs
(29). Other experimental approaches such as airway pressure
release ventilation and negative pressure ventilation have also
been studied in experimental lung EVMP and were associated
with improved pulmonary function (27) and reduced lung
injury (30), respectively.

Currently, there are three systems for clinical lung EVMP
available including the Organ Care System'™ Lung
(TransMedics, Inc.), XPS™ (XVIVO Perfusion), and Lung
Assist™ (Organ Assist). Although all systems use NMP for graft
preservation in clinical settings, they differ in some technical
parameters and the utilized perfusate.

The Organ Care System™ Lung uses an OCS solution
containing RBCs with an open left atrium (LA) and is the only
portable device. It uses pulsatile perfusion for NMP at 34°C-37°C.
Clinical safety and non-inferiority compared to SCS have been
proven in the INSPIRE trial (5). Moreover, the OCS Lung™ has
been evaluated for split lung preservation and ex vivo surgery (31).
FDA approval has been granted for both standard criteria donor
and ECD lung preservation, thereby including both DBD and
DCD organs.

The XPS™ system (XVIVO) is non-portable and operates with
STEEN™ solution and a closed LA while providing continuous
NMP at 35°C-37°C. The NOVEL trial demonstrated the clinical
safety and efficacy of the system (32). Of note, the XPS™ has
been designed to allow radiographic imaging, thus facilitating x-
rays and CT scans of the graft during perfusion (33).

The Lung Assist™ device is compatible with any certified
machine preservation solution and operates with the LA being
closed. It is also non-portable and provides pulsatile flow. Of
additional interest, it allows for isolated in and ex vivo perfusion
in both hypothermic and normothermic conditions (12°C-37°C).
The ventilator is not included in the device, yet any pre-existing
ventilator is compatible for use.
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2.2.4. Heart systems

In addition to other organs, heart EVMP also demands for
organ-specific modifications of the machine perfusion system
including cables for defibrillation or pacing. Two machine
perfusion systems for the heart are currently in clinical use
including the Organ Care System™ Heart (TransMedics, Inc.)
and the Heart Box (XVIVO Perfusion).

The Organ Care System™ Heart is portable, uses NMP at
34°C-37°C, and provides pulsatile flow to the graft while being
perfused with OCS solution containing RBC and donor blood. In
2015, a non-inferiority study showed non-inferiority compared to
SCS preservation and paved the way for clinical application (34).
Moreover, clinical studies revealed that the OCS enables heart
transplantation from extended criteria DBD (35) and DCD
(36, 37) donors. In 2021, FDA approval was granted for organs
from DBD donors and, most recently, also for DCD organs,
making it the currently only FDA-approved device.

The Heart Box (XVIVO Perfusion), in contrast, uses HMP at a
temperature of 8°C and perfuses the heart with an oxygenated
cardioplegic nutrition-hormone solution and ABO-compatible
packed red cells. It is portable and provides continuous flow. The
first-in-human study published demonstrated the feasibility and
of this heart
transplantation (38) and a multicenter clinical trial that started in
2020 (NCT03991923). Of note, the Heart Box has most recently
been used in the first xenogeneic pig-to-human xenotransplant (39).

safety preservation technique in clinical

2.3. Perfusion solution

Under (sub)normothermic conditions, perfusion solutions
enable the preservation of organs in a pseudo-physiological
environment with adequate oxygen, nutrients, and metabolic
supply. Perfusates are required to balance cellular hydration and
electrolyte homeostasis for edema prevention and also to reduce
free radical peroxide scavengers to minimize oxidate injury (40).
However, to date, the optimal perfusion characteristics and
perfusate compositions for EVMP modes remain undefined and
therefore lack standardization. This vagueness is mainly due to
the of EVMP application,
temperature, and flow conditions. Accordingly, a broad spectrum

variability system duration,
of solutions with different cellular compositions and additives is

available.

2.3.1. Base perfusion solutions

Perfusates are categorized into extracellular (i.e., high-sodium
and low-potassium composition) and intracellular (low-sodium
and high-potassium formula) solutions. Both variants have been
successfully tested in EVMP studies, with their superiority
seemingly depending on the case- and organ-specific conditions
(41).
perfusion

Of additional importance, the composition of base
solutions may fluctuate depending on the set
it
temperature levels during the entire perfusion process (42).

temperature. Therefore, is important to ensure correct

Although the safety and feasibility of extracellular-like Ringer’s
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lactate have been demonstrated in human clinical trials of EVMP
(43), the University of Wisconsin (UW)
solution also has its raison d’étre in organ preservation. When

intracellular-type

using these solutions clinically, perfusion temperatures were
maintained at 34°C and 21°C, respectively (8, 44). More recently,
the Institut Georges Lopez (IGL-1) solution emerged as an
alternative to UW, featuring lower viscosity and potassium levels
and replacing hydroxyethyl starch (HES) with polyethylene glycol
(PEG) as an oncotic agent. This solution was used at a
temperature of 4°C-6°C (45) (NCT01317342).

The XVIVO Goteborg STEEN Solution is a buffered
extracellular solution with well-documented value in the field of
lung and liver EVMP and is used at a temperature of 37°C (46).
It includes human serum albumin and dextran to provide strong
osmotic pressure and coat the endothelium from leucocyte
interaction. As such, STEEN perfusion and circuitry have been
found to maintain organ stability and functionality—even during
prolonged EVMP (46). Notably, this
supplemented with RBCs or remain acellular

can be
(41). The
armamentarium of perfusates furthermore involves a wide array
the Custodiol-MP  histidine-
tryptophan-ketoglutarate (HTK) solution with high-flow, low-

solution

of modifications, such as
potassium, and anti-nitrosative/oxidant properties designed for
oxygenated EVMP at 4°C (47), the cellular Organ Care System
solution with a low-potassium dextran formula (at 37°C) (48),
Perfadex as an extracellular and dextran-based electrolyte
preservation solution (at 37°C-38°C) (49), or the Celsior solution
as a colloid-free extracellular-type solution (at 2°C-8°C) (50).
Next to the abovementioned preservation solutions, various

others have been described (8, 51, 52).

2.3.2. Cellular and gaseous composition

While hypothermic MP can be conducted with or without active
oxygenation, in normothermic MP, adequate oxygenation remains
vital and can be delivered either by RBCs, synthetic oxygen
carriers, or diffused oxygen by carbogen gas mixtures (53). Since
whole blood-based perfusates may exert pathogenic effects
deriving from hemolysis and residual blood components including
cells, complement, and inflammatory factors (54) while also being
hurdles supply  (55),
leukocyte-/thrombocyte-depleted and plasma-free perfusates have

associated with logistic and limited
gained popularity in preclinical and clinical studies (12, 56-58).

In most studies, red blood cell-based perfusion solutions have
been used. Such perfusates are known to efficiently transport
oxygen while their constant flow can mitigate shear stress (59).
However, blood-based solutions inherently harbor the risk of
infection transmission and transfusion-related incidents including
hemolysis. Therefore, a variety of alternatives have been proposed
ranging from artificial oxygen carriers such as polymerized
bovine hemoglobin-based oxygen carriers and pyridoxylated
bovine hemoglobin to acellular oxygen-carrying media such as
STEEN (60, 61). These modern solutions also offer the advantage
of convenient storage and transport—at similar effectiveness and
rheological-hemodynamic characteristics (62, 63).

Uniquely, cell-free perfusates allow for gradual rewarming of
the graft from hypothermia to normothermic conditions. This
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advantage is significant since the increase in metabolic rate, which
is associated with the abrupt restoration of normothermia, is
postulated to be a secondary cause of IRI (64, 65). While
mixtures with supraphysiological concentrations of oxygen are
commonly implemented in EVMP protocols, hyperoxemia and
varying further
particularly when combined with acellular perfusates (41).

oxygen tensions warrant investigations,
Interestingly, hydrogen sulfide has been identified as a potential
additive to induce a hypometabolic state and reduce oxygen
consumption, thereby paving the way for the use of normoxic
mixtures (66). Further gaseous supplementation may involve
carbon monoxide, which was found to promote vasodilation and
reduce IRI (67, 68), or argon, which is currently being

investigated (69).

2.3.3. Supplementary substrates
A potpourri of supplementary and modifiable components can
be blended into the perfusion solutions, to mimic normal
metabolism and recreate a near-physiological milieu. Additives
that have been investigated include metabolic substrates, buffers,
oncotic agents, anticoagulants, vasodilators, antioxidants, anti-
inflammatory molecules, and hormones. Substrates for energy
metabolism and nutrients, for example, are essential to
perpetuate cellular metabolism during perfusion, thus enhancing
cell viability. Additives such as glucose 5% or insulin are popular
for all types of EVMP. In addition, pyruvate has been
investigated as a metabolic substrate in cardiac EVMP and was
found to enhance myocardial metabolism (70). Moreover,
buffering agents are essential to maintain near-to physiological
pH levels, since variations have been observed to adversely affect
other physiological parameters such as pCO2 and HCO37(71).
Sodium bicarbonate and calcium gluconate, for example, may
serve as universal pH and calcium buffers. Oncotic agents are
included in various organ preservation solutions with the
rationale of limiting tissue edema and subsequent cell death.
Molecules such as HES and PEG have been used and could have
further beneficial effects such as mitochondrial and glycocalyx
protection (72). In addition, mannitol 10% is a well-established
cross-organ applicable ingredient to elevate osmolality (41).
Blood-based perfusates are readily supplemented with
anticoagulants to prevent clotting within the tubing lumen and
decrease the thrombosis risk. For this purpose, the perfusate is
usually heparinized or mesh-filtered (8, 41, 73, 74). Furthermore,
nitric oxide (NO) levels are reduced during reperfusion, causing
vasoconstriction and ultimately leading to prolonged cellular
(75). For this

vasodilators such as verapamil or prostacyclin can be applied to

ischemia and aggravated necrosis reason,
offset the transient vessel constriction upon reperfusion (76). Of
note, the value of such medication [i.e., smooth blood (micro)
circulation and organ perfusion] in acellular perfusates is yet to
be defined (41, 77). Interestingly, in cell-free solutions, the
biopolysaccharide dextran has emerged as an essential ingredient,
preventing pathological leukocyte-endothelial interaction via
antithrombotic properties and protecting the integrity of
endothelium-rich organs. Thus, the addition of dextran to the
perfusate may contribute to healthy vasculature and stable organ
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functionality (55). Antioxidants and anti-inflammatory molecules
have also been under extensive investigation as supplements
since they scavenge reactive oxygen species (ROS) arising from
IRI and dampen the immunological response (78). As such,
various agents including vitamin C, quercetin, and resveratrol
have shown beneficial effects (79, 80). In addition, it is worth
mentioning that vitamin C also improves microcirculation and
reduces inflammation during EVMP. However, clinical benefits
remain controversial (81). Hormones represent another group of
potential additives with wide-ranging functional properties (82).
In experimental liver NMP, for example, melatonin has been
found to prevent oxidative stress and improve vascular
conductivity (83). Moreover, dopamine reduced histological signs
of damage and improved bile production (84). Other hormones
investigated include erythropoietin and glucagon (82, 85, 86).
Furthermore, EVMP provides a potential avenue for the
administration of therapeutic drugs including chemotherapeutics
or antibiotics, antivirals, and antimycotics, to decrease the
microbial, bacterial, viral, and fungal load of infected organs and/
or in the sense of prophylactic treatment (87). It is worth
mentioning that the published protocols reveal a wide variance
regarding the additives used. The supplements listed herein,
therefore, represent only a selection.

2.4. Perfusion temperature

EVMP techniques can be classified according to the
temperature applied during preservation roughly distinguished
into cold, subnormothermic, and NMP that have found different
implementations in the clinics depending on the organ of
interest (Table 2).

2.4.1. Hypothermic preservation

Hypothermic preservation at temperatures between 4°C and
10°C allows for the elimination of debris, toxic metabolites, and
free radicals produced during hypothermia that would otherwise
accumulate during cold static storage (88). First applied in
kidney and liver preservation, the hemodynamic stimulation of
the graft vasculature was found to compromise endothelial
damage while pulsatile flow promoted vascular stress exerting
beneficial effects on endothelial gene expression and function.
Thus, HMP in both kidney (89) and liver (90) preservation has
been found to enhance endothelial NO synthase (eNOS)
phosphorylation, thereby preventing vasospasm while promoting
NO-dependent vasodilatation at reperfusion.

However, due to the hypothermic state, the metabolic
activity of the organ is dramatically impeded during perfusion
restricting functional organ assessments (91). More importantly,
hypothermically preserved grafts still sustain a cold ischemic
injury through the inactivation of Na'/K* pumps (92, 93). In
kidney grafts, for instance, functional declines following HMP
due to mitochondrial perturbations, decreased cell survival, and
endothelial activation have been observed (94, 95). It is
noteworthy that marginal donor organs from ECD and DCD
donors have been delineated to be even more sensitive to cold
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TABLE 2 Different preservation strategies.
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e s
37

Temperature (°C) | 4-10 20-32
Oxygenation Both Yes
Advantages Elimination of debris, toxic metabolites, and free

radicals
Reduced endothelial damage, especially with pulsatile

perfusion to NMP

Collection of waste products

Disadvantages Damage of the cold

Reduced metabolism limits functional assessment

Mitochondrial perturbations and endothelial injury

activation

Lower compliance in lung HMP

Less suitable for DCD and ECD organs
Ex vivo therapeutic interventions restricted

ischemia (96, 97), particularly if the cold ischemic time (CIT) is
prolonged (98). Therefore, the utilization of marginal kidneys
remains limited while a significant prolongation of HMP
preservation times is not feasible (99, 100). Supporting the
evidence from kidney HMP, hypothermic preservation during
lung EVMP was also associated with impaired metabolism and
lower lung compliance (101). The application of ex vivo therapies
as a promising approach during EVMP is thus restricted due to
diminished exposure times of the graft during HMP and
compromised pharmacodynamics at low temperatures. This may
in contrast also promote the accumulation of the agent with
harmful effects following reperfusion.

2.4.2. Subnormothermic perfusion

Subnormothermic machine perfusion (SNMP) involves the
preservation of explanted organs at 20°C-32°C and is currently
undergoing experimental evaluation. In comparison with HMP,
cold-induced graft injury is significantly reduced, while the
augmentation of metabolic activity occurring during NMP is
dampened at the same time. Thus, a metabolic state requiring
additional oxygen carriers for adequate oxygenation is not
reached (102). In experimental studies, the beneficial effects of
SNMP on DCD grafts have been demonstrated (103). In kidney

EVMP, for instance, subnormothermic perfusion at 22°C
significantly = reduced histological ~kidney damage and
proinflammatory responses (103). Using SNMP in an

experimental model of porcine liver EVMP improved endothelial
cell function and bile duct injury (104), whereas oxygenated
SNMP on human livers preserved liver function with minimal
damage and sustained hepatobiliary parameters (44). In a rat
DCD model of lung EVMP, subnormothermic perfusion at 28°C
cytokine
such as

was associated with decreased proinflammatory
expression and improved biochemical parameters
compromised lactate and potassium levels and higher ATP and
carbonylated protein levels (29). However, clinical data on the
translational relevance of this procedure are sparse, and the
Kidney Assist is the only commercially available device for SNMP.
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Damage from the cold is reduced
Possible use as a resuscitation platform
Drug administration is possible but inferior

No need for oxygen carriers

Collection of waste products

Metabolic activity is dampened
Does not fully protect from reperfusion

Yes

Metabolically active state

No damage from the cold

Superior for DCD and ECD grafts

Ex situ graft assessment possible
Novel interface for ex vivo drug therapies and
bioengineering

Longer preservation times are possible
Collection of waste products

Higher costs and logistical effort

High level of ATP depletion

Risk of infection

Less investigated

2.4.3. NMP

NMP allows organ tissue to remain metabolically active and
precludes exposure to the cold, thus minimizing CITs. Graft
preservation thereby enables normal cellular metabolism and
recovery of ATP production in almost physiological conditions
(58), whereas graft metabolites can be flushed, nutrient supply
can be optimized, and microvascular circulation can be
maintained. Therefore, NMP is considered the treatment of
choice for marginal donor organs with successful clinical studies
on the liver, lung, and heart (105-107), including DCD and ECD
organs. Moreover, NMP of marginal kidneys has shown
beneficial effects in porcine experimental models (108).

Furthermore, NMP is the only form of machine perfusion that
enables pretransplant ex vivo assessment of the organ that could
both alleviate decision-making in graft utilization and allow graft
assessment during ex vivo therapy (109). Therefore, a broad
range of viability criteria, such as lactate clearance, bile
production, perfusate pH, glucose metabolism, flow rates, and
perfusate transaminases, has been evaluated in liver EVMP (22,
110,
established as clinical guidelines because most studies are

111). However, none of these parameters has been

invariably based on small series with low case numbers despite
being randomized or blinded. Larger collaborative studies that
aim to confirm the potential biomarkers or shared databases
allowing for the collation of obtained data are necessary and may
support clinical translation.

Of further on heart EVMP
demonstrated the feasibility of utilizing solid-phase microextraction

interest, previous studies
(SPME) microprobes with subsequent metabolomic profiling to
uncover dynamic metabolic changes associated with organ injury
and recovery (112), which may expand the range of parameters
monitored during EVMP in future studies.

In addition to functional assessment, NMP constitutes a novel
interface for ex situ therapies as pharmacokinetics and
pharmacodynamics of drugs should not be altered by low
temperature during HMP. Most relevantly, NMP has enabled a

significant prolongation of preservation times throughout all
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organ types with 24 h in kidney (113), 1 week in liver (114), 3 days
in lung (115), 24 h in heart (116) EVMP. Prolonged preservation
times, in turn, provide the opportunity to perform ex vivo
therapies that demand long application times including gene
therapies and bioengineering and ex vivo surgery.

Of note, approaches combining NMP with HMP have also
been tested in livers and demonstrated improved functional
results (117).

2.5. Flow conditions

Flow conditions are crucial parameters of EVMP as they
regulate graft supply with oxygen and nutrients and clearance of
CO, and metabolic products. In addition, flow conditions have
been shown to influence the organ protective effects of perfusion
solutions and mediate the occurrence of graft edema (8).

Considering the form of flow, pulsatile and continuous
flow applications can be distinguished. Pulsatile flow during
cardiopulmonary bypass, for instance, has been found to
significantly improve vital organ recovery throughout several types
of animal models associated with a preserved microcirculation
when compared to continuous flow (118, 119). The pulsatile flow,
in turn, generates vascular shear stress, which has been considered
to influence endothelial gene expression and function (5, 38).
Indeed, pulsatile pressure can enhance renal flow in isolated
kidney perfusion, improving vascular conductivity that translates
into increased clearance of creatinine, sodium reabsorption, and
reduced tubular cell injury (120). Mechanistically, better vascular
conductance upon pulsatile perfusion in kidneys could be
attributed to improved endothelial release of NO and reduced
secretion of endothelin-1 (121). However, studies comparing
continuous to pulsatile perfusion in kidney pairs found no
significant differences in graft survival and kidney function (7). In
addition, an experimental study on porcine lungs reported no
significant improvement in lung function parameters upon
integration of a modified roller pump generating pulsatile flow
(122). Taken together, clinically applicable evidence is scarce, and
more research on flow forms is needed, especially considering
temperature, perfusate, and the respective organ perfused.
Although clinical studies in cardiopulmonary bypass patients
indicate beneficial effects of pulsatile perfusion (118), it remains to
be elucidated whether this also applies to clinical EVMP.

In addition to the form of flow application, the flow rate
constitutes another important parameter for organ protective
perfusion that has been mainly studied in lung EVMP. Several
protocols using different percentages of the donor cardiac output
or fixed flow rates exist including the Lund protocol (100% of
cardiac output) (123), the Toronto protocol (40% of cardiac
output) (124), and the OCS protocol (2-2.5L/min) for lung
EVMP (5). Since all studies investigating these protocols compare
outcomes to SCS, no direct comparison between protocols can be
made. Moreover, differences in study design, lung transplant
type, and patient characteristics do not allow for statistically
these (125).
Noteworthy, experimental studies have also investigated lower

significant ~ comparisons  between protocols
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flow rates comparing EVMP flows of 40%-20% in porcine DCD
lungs. Intriguingly, improved lung function, reduced edema, and
attenuated inflammation after transplant were observed when
using flow targets of 20% (126). Supporting clinical evidence
derives from studies comparing high-flow cellular to low-flow
acellular machine perfusion, demonstrating higher transplant
suitability, higher wet-to-dry ratio change, and decreased
histological lung injury in the low-flow group (127).

3. Potential of EVMP beyond ordinary
graft preservation

With a broad range of EVMP systems being available for both
clinical as well as experimental applications, novel treatment
concepts for both the allo- and xenogeneic environment are
being explored. Of translational interest, significant efforts are
also being made to investigate innovative approaches for the
autologous setting, where the diseased organ will be treated ex
vivo, while the patient is subjected to temporary organ support
followed by replantation of the cured organ. In the meantime,
the patient is subjected to temporary organ support such as
hemodialysis for the kidney or the molecular adsorbent
recirculating system for liver compensation and extracorporeal
membrane oxygenation for mechanical heart-lung support
(Table 1). Most notably, this procedure precludes complications
deriving from disproportional organ size and the detrimental
side effects of immunosuppression associated with allo- and
xenogeneic transplantation while being timely limited only by the
ex vivo preservation times.

3.1. Ultima-ratio drug therapies

As EVMP enables isolated ex vivo perfusion of the explanted
organs, it provides a novel interface to treat them by high-dosage
medication without the otherwise significant disadvantage of
dose-limiting systemic side effects, resulting in more effective
therapeutic success. In this context, EVMP has been established
as a therapeutic platform to administer ultima-ratio therapies of
failing organs in patients with otherwise poor prognoses and
non-tolerable contraindications for systemic administration.

This is of particular relevance for the lungs, as severe bacterial
lung infections are one of the most frequent reasons for hospital
mortality due to sepsis and systemic organ failure (128).
Numerous competing factors in critically ill patients have been
characterized to impede effective antimicrobial drug dosing
required to eliminate pathogens including increased or decreased
renal blood flow, renal and hepatic dysfunction, changing volume
of distribution, and initiation of mechanical support devices such
as continuous renal replacement therapy or extracorporeal
membrane oxygenation (129). Thus, high-dosage antimicrobial
agents during EVMP with subsequent re-transplantation could
provide an option to achieve augmented in-organ doses of
while side effects.

antimicrobial agents

Strikingly, subjecting explanted lungs infected with incurable,

sparing systemic
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multidrug-resistant pseudomonas aeruginosa to a high dosage of
colistin during EVMP enhanced overall survival in a porcine
lung autotransplant model (130). Of note, colistin has been
shown to exert tremendous side effects causing renal and
neurological toxicity with higher cumulative doses, therefore
limiting its effective in vivo application (131). Consistent with
this study, a high dosage of empiric antimicrobial agents added
to the EVMP perfusate of marginal donor lungs caused an
(132),
pulmonary lung function with increased oxygenation, better

effective reduction in microbial burden improving
pulmonary compliance, and reduced PVR (133). Moreover,
isolating the infected organ from the organism for EVMP
the

restricting septicemia and associated systemic immune responses,

treatment concomitantly removes source of infection
which otherwise have been associated with accelerated multi-
organ dysfunction, compromised antimicrobial drug efficiency,
and death (134, 135). In order to further attenuate infectious
organ injury during EVMP, novel cellular therapies involving

mesenchymal stem cells (MSCs) are currently evaluated in

10.3389/fcvm.2023.1272945

preclinical and clinical trials. Thus, tracheal instillation of MSCs
during EVMP of E. coli-injured human lungs increased bacterial
clearance and dampened inflammatory infiltration and
proinflammatory cytokine production while improving alveolar
fluid clearance (136) (Figure 2A).

Allowing for isolated, high-dosage therapy without systemic
distribution of thrombolytic drugs, EVMP may furthermore
display an alternative treatment approach to surgical pulmonary
embolectomy in patients with large-scale pulmonary embolism
and significant contraindications for fibrinolysis. In support, a
recent case report demonstrated the feasibility of thrombolysis
during EVMP in a donor lung affected by dispersed embolization
with improved paO,, dynamic compliance, and less pulmonary
edema allowing for subsequent, successful transplantation (137)
(Figure 2B).

High-dose application of therapeutic agents such as antibiotic
drugs during EVMP demands biomonitoring tools to assess the
tissue concentration of the drug. Therefore, novel methods such

as ex vivo SPME coupled to liquid chromatography/mass
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FIGURE 2

Potential of EVMP beyond transplantation. (A) Ultima-ratio therapies involving antimicrobial treatment for severe infections and (B) thrombolytic drugs for
severe embolism. (C) Isolated chemotherapy allowing for high dosing of chemotherapeutic drugs despite systemic side effects. (D) Improving
chemotherapy efficiency through recruitment of hyperthermic preservation or (E) anti-inflammatory therapies or hypothermic preservation. (F)
Bioengineering approaches involving decellularization and recellularization. (G) Ex vivo surgery facilitating tumor resection, pulmonary embolectomy,
and vascular reconstructive interventions. (H) Providing a preclinical research interface for in vivo-like drug testing.
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spectrometry allowed for rapid quantification of doxorubicin in
porcine lung tissue by inserting a microfiber for 20 min (138).
Considering that many agents with potential for EVMP
application display short lifespans, further investigation to define
the ideal time point and duration of therapy administration is
required. Notably, a recent report demonstrated the utilization of
anti-CD31 to enhance the delivery of nanoparticles to explanted
human kidney endothelium during EVMP, which can serve as
depots for long-term drug release ensuring organ-specific therapy
continuation following reimplantation (139). Finally, EVMP
could augment the potential of novel gene therapies. Although
approved by the FDA within the recent decade, they are
associated with a significant economic burden, often requiring
multiple applications due to insufficient delivery (140, 141).
Here, EVMP could uphold drug levels by isolated target organ
perfusion without systemic drug distribution, which would
significantly reduce costs and could lead to a more optimized
therapeutic effect. Concomitantly, drugs that have shown
promising effects, but whose clinical implementation had been
hindered due to systemic side effects (142), could find new

upwind through EVMP sparing systemic exposure.

3.2. Improved effectiveness of
chemotherapy

At this point, EVMP usage focuses exclusively on the
autologous setting, where organs will be treated ex vivo, while
the patients are on temporary organ support, followed by
the autologous replantation of the cured organ. In addition
to the aforementioned high-dosage application of various
medications, chemotherapeutics, hyperthermic conditions, and
attenuated local enhance the

organ inflammation may

effectiveness of the chemotherapy.

3.2.1. Improving chemotherapy efficiency by
increased drug doses

Chemotherapeutic drugs display a dose-dependent efficacy on
tumor cells in a broad range of cancer types. Thus, platinum-
based chemotherapeutics, for instance, that are frequently
administered in small-cell lung cancer, have been shown to
achieve a significantly higher complete response rate, overall
survival, and the number of 2-year survivors when applied at
high dosages including cisplatin and carboplatin in contrast to
carboplatin alone (143). However, side effects arising from high
doses of chemotherapeutic regimens limit their efficacy, thus
(144-146). In
particular, platin doses are limited by kidney damage arising

compromising outcomes of this therapy
from acute tubular necrosis and proximal tubule apoptosis (147)
and liver toxicity due to hepatocyte necrosis and perisinusoidal
fibrosis (148). These systemic side effects could be spared
during EVMP, while the lungs could benefit from high-dosage
application with significantly improved therapeutic efficiency,
thus providing an option for end-stage cancer patients. As a
proof of concept, high dosing irinotecan with 20 times higher
concentration (2,000 mg/L) than the concentration for systemic
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which
gastrointestinal toxicity in patients (149), did not induce drug-

application, engenders strong neutropenia and
dependent reperfusion edema or toxic injury to the lung
parenchyma (150) (Figure 2C).

Moreover, the tumor microenvironment has been shown to
exhibit an unbalanced starling mechanism in addition to
increased vascular permeability as well as a malfunctional
lymphatic system inside the tumor mass, leading to an increased
tumor interstitial fluid pressure (TIFP), which in turn impedes
drug distribution in many tumors. A significant increase in the
composition of the extracellular matrix furthermore
compromises drug delivery. Administering additional drugs to
the perfusion solution of EVMP to lower the TIFP or augment
additional

chemotherapeutic efficacy. Indeed, the angiotensin inhibitor

convection may allow an improvement  of
losartan has been shown to reduce stromal collagen and
hyaluronan production, therefore reducing TIFP and resulting in
increased vascular perfusion potentiating chemotherapy (151).
Moreover, blocking the VEGF receptor type 3 was found to
decrease lymphatic drainage, thus compromising TIFP and

consequent drug removal (152, 153).

3.2.2. Improving chemotherapy efficiency by
hyperthermic conditions

A complete explantation of the target organ with subsequent
into an EVMP
however, unique features of modern EVMP systems may improve

implantation system appears detrimental;

adjuvant therapies due to the opportunity to influence
preservation parameters and the application of therapeutic agents
to the perfusate solution. In particular, EVMP enables fine-tuned
regulation of the perfusate temperature that could exert beneficial
effects during cancer therapy. Indeed, hyperthermia has shown
significant antitumor effects by affecting tumor growth directly
and improving chemotherapy efficacy (42). Thus, hyperthermic
treatment of cancer cells has been shown to induce the DNA
damage response by promoting DNA strand breaks, histone
g-H2AX foci formation, and ATM phosphorylation, while
decelerating DNA replication and repair through downregulated
DNA polymerase and topoisomerase activity (154). In the
clinics, hyperthermia is already frequently combined with
chemotherapeutic regimens leading to higher fluidity of the
phospholipid bilayer in tumor cells, thus augmenting drug
permeability. Consequently, cisplatin has been shown to exhibit
synergistic effects with hyperthermia at 43°C on cell growth
inhibition (155). During EVMP, hyperthermia can be easily
induced and applied locally targeted to the preserved organ
facilitating synergistic cancer treatment with chemotherapeutic
drugs and hyperthermia. Further supporting this concept,
local hyperthermia in addition to neoadjuvant chemotherapy
effect of the

doxorubicin regimen on soft tissue sarcoma with higher

augmented the etoposide, ifosfamide, and
treatment response rate, compromised local progression, and
overall improved survival (156). In addition, regional inductive
hyperthermia in patients with liver metastasis deriving from
breast cancer increased the overall treatment efficacy with a

33.9% higher regression rate (157) (Figure 2D).

frontiersin.org


https://doi.org/10.3389/fcvm.2023.1272945
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

Iske et al.

3.2.3. Improving chemotherapeutic efficiency by
dampening local organ inflammation

A broad range of chemotherapeutics including platin, taxanes,
5-FU, and doxorubicin have been delineated to promote a
prominent proinflammatory tissue response with the expression
of IL-6, IL-8, TNF-o, and INF-B, which in back turn impedes
their efficiency and enables metastasis formation (158). Paclitaxel,
for instance, induces augmented cytokine production including
IL-6, which was mediated via TLR-4 in breast cancer cells.
TLR4- expression, in turn, was correlated with conferring
resistance to the drug by promoting anti-apoptotic proteins
(159), while IL-6 was found to endorse tumor progression
inducing angiogenesis and proliferation via the STAT-3 pathway
(160). Inhibiting chemotherapy-derived inflammatory signaling
has been shown to compromise drug resistance. Neutralizing
IL-6 with antibodies, for instance, sensitized multiple tumor types
toward distinct chemotherapeutic regimens (161, 162). Since
EVMP provides an interface to administer anti-inflammatory
agents, utilizing EVMP during ex vivo chemotherapy could
thus
augmenting therapy efficiency. In support of this approach, the

restrain  chemotherapy-derived  organ  inflammation,
administration of various anti-inflammatory reagents has been
tested in clinical EVMP studies showing significant amelioration of
donor organ inflammation with compromised inflammatory
cytokine expression including IL-6 which ultimately translated into
improved function. In lung transplantation, for instance, inhibiting
adenosine signaling with A2AR agonists during EVMP inhibited
TNF-a, IL-1, and IL-6 expression (163). Similarly, IL-6 receptor
blockade with tocilizumab (164), as well as melatonin
administration (165) during EVMP, inhibited IL-6-derived IRI in
cardiac transplantation. Moreover, in liver transplantation,
administration of an anti-inflammatory cocktail comprising
alprostadil, n-acetylcysteine, and carbon monoxide in addition to
subnormothermic temperature during EVMP restrained TNF-o.
and IL-6 expression following transplantation (68). At least, the
integration of a cytokine filter during lung (166) and kidney
perfusion (167) cytokine

expression with diminished edema formation and improved blood

reduced overall proinflammatory

flow, respectively.

In addition to compromising chemotherapy efficiency, the
inflammatory response induced by chemotherapeutic drugs
furthermore aggravates the function of the target organ. Cisplatin
is commonly recruited to treat biliary cancer both in a
neoadjuvant as well as palliative setting, thus co-exposing the
liver to its toxicity. Notably, platin-based chemotherapeutics have
been delineated to promote hepatic injury via oxidative stress
and augmented inflammation leading to cellular necrosis
(168-170) and organ fibrosis. In contrast, EVMP has been
demonstrated to reduce oxidative stress and inflammation in
preserved organs, which may in turn dampen chemotherapy-
derived organ injury. Metabolomic profiling during liver EVMP,
for example, revealed increased ATP levels as well as higher
NADPH/NADP ratios associated with reduced lactate levels in
liver tissue in the kinetics of 3 h of liver perfusion (171), which
stress.

may also diminish platin therapy-related oxidative
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Furthermore, administration of enkephalin, an §-opioid agonist
with
compromised oxidative stress and prevented mitochondrial

antioxidative  properties, during liver  perfusion
dysfunction, resulting in higher ATP and glutathione in addition
to lower AST and malondialdehyde levels in a rat liver EVMP

model (172) (Figure 2E).

3.3. Bioengineering and organ modification

Bioengineering is considered an innovative and promising
future approach with the potential to recondition diseased organs
(173). Hereby, EVMP is proposed as a promising interface to
deliver cellular products exclusively to the target organ.
Strikingly, a recent study reported for the first time the successful
engraftment of cholangiocyte organoids into the intrahepatic
biliary tree during EVMP, while providing proof of concept that
these organoids can repair injured bile ducts. In detail, red
fluorescent protein (RFP)-expressing cholangiocyte organoids
were injected into the terminal branch of the intrahepatic duct of
human, of EVMP.
Subsequently, organoids exhibited expression of key biliary
markers (KRT7, KRT1x9, CFTR, GGT) and improved bile

production with increased pH and higher volume despite

ischemic injured livers at the start

showing no trans-differentiation into other hepatic lineages (174).

In addition to treating diseased organs during EVMP with
subsequent reimplantation, bioengineering is furthermore
envisioned to enable the recreation of tissue parts for
subsequent implantation as an alternative strategy to organ
transplantation. Therefore, EVMP has been proposed as an
interface for the decellularization and the recellularization of
with

general,

bioartificial organs under physiological conditions

(175, 176). In
decellularization was achieved in a broad range of organs

subsequent  implantation
during EVMP with preserved organ architecture and ECM
components in addition to low levels of DNA and physiological
abundance of glycosaminoglycans and chemical and mechanical
components of the ECMs (177). Moreover, administration of
human placenta-derived endothelial progenitor cells (EPCs)
during EVMP was shown to induce successful recellularization
with proliferative EPCs repopulating kidneys, lungs, and hind
limb vascular intimae. Of note, a vascular chimerism with
human EPCs lining the luminal surface of rat blood vessels,
alongside rat cells within the tunica media and beyond,
artificially generating vascular chimerism (176). In addition,
various studies have demonstrated the effective decellularization
of organs from different animals preserving extracellular matrix
composition and architecture to engineer bioartificial organs via
repopulation with human cell lines (173). Notably, infusing
human endothelial cells ex vivo through the renal artery and
vein of decellularized rat kidneys resulted in homogenous
distribution in the vasculature compartments with site-specific
endothelial specialization (178). Similarly, administering human
perivascular and endothelial cells through the pulmonary artery
and pulmonary vein in isolated and decellularized rat lungs and
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human lung lobes resulted in successful endothelial cell coverage
with functional vascular lumen structures being detected (179).
Underscoring the clinical feasibility of bioengineering, this
study also examined the transplantation of the recellularized
lungs into rats showing the formation of continuous, polarized
that
transplantation (179). Similarly, transplanting clinically scaled

vascular lumens remained perfusable 3 days after

porcine liver scaffold with human umbilical endothelial cells

(HUVECs) revealed HUVECs localization within sinusoidal

regions in addition to expression of a liver sinusoidal
endothelial  cell-like  phenotype.  Strikingly, subsequent
heterotopic transplantation into immunosuppressed porcine

recipients resulted in 15 days of continuous in vivo perfusion of
the revascularized bioengineered liver (rBEL) (180) (Figure 2F).

Mitochondrial transplantation constitutes an additional and
very novel approach to modify tissue homeostasis and diseased
organs, which may be of translational relevance for EVMP-
based (181).
transfer has been demonstrated to improve IRI in a broad

regenerative therapies Indeed, mitochondrial
range of organs while also ameliorating pathological tissue
dysfunction. Injecting mitochondria into the hearts of diabetic
rats following IRI, for instance, resulted in the recovery of left
ventricular function and a reduction of infarct size (182).
into the

improved liver function while administration via pulmonary

Likewise, mitochondrial transplantation spleen
artery vascular delivery or tracheal aerosol delivery improved
lung mechanics and reduced lung tissue damage following IRI
(183). Similar effects had been observed when performing
with

protective effects against renal IRI (184). Noteworthy, the effects

mitochondrial transplantation through renal arteries
of mitochondrial transplantation on organ reconditioning have
also been delineated with isolated mitochondria of HepG2 cells
injected into high-fat diet-fed mice, effectively improving non-
alcoholic fatty liver disease (185).

Of relevance, most studies have indicated that the therapeutic
effects of a single administration of mitochondria may be
transient. Therefore, EVMP may allow higher doses and
prolonged exposure to mitochondrial-carrying vectors while
providing an interface to determine the time point and route of
administration as well as the impact of repetitive cycles (186).

Bioengineering approaches using EVMP are also recruited to
create immunotolerance to effectively counteract both the lifelong
intake of immunosuppressive drugs and the risk of chronic
rejection. One approach focused on the genetic modification of
the MHC complex and the minor histocompatibility antigens
(mHag) of the vascular endothelium. Notably, administration of
short hairpin56 RNAs targeting beta-2 microglobulin and class II
transactivator transcripts using lentiviral vectors during EVMP
resulted in durable MHC I and II complex suppression without
affecting cell viability or tissue integrity (187-189). Another
approach utilized adenoviral vectors to induce IL-10 expression
in donor lungs to prevent the development of primary graft
dysfunction in a large animal survival model. Indeed, this
approach was shown to be safe, to improve lung function, and to
have an immunological advantage in both innate and adaptive
immune responses (190).
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3.4. Ex vivo surgery

Allowing for increasingly prolonged ex vivo preservation of
organs, EVMP has paved the way for surgical ex vivo procedures.
Utilizing stained perfusion solutions (e.g., methylene blue) in
addition to altering flow conditions hereby allows for
visualization and therefore suturing of even smaller leakages
avoiding significant blood loss over time. Moreover, enabling the
visualization and access to all organ sites and a prolonged period
of time for accurate tissue preparation and reconstruction, this
technique has raised significant interest throughout all disciplines
utilizing EVMP.

For surgical management of renovascular diseases, ex vivo
surgery is associated with significant technical advantages
Thus,

laparoscopic nephrectomy with subsequent autotransplantation

allowing for wvascular reconstructive interventions.
was successfully utilized for renal artery aneurysms affecting
distal vascular branches (191) and for nephron-sparing resection
in the case of a large renal tumor (192). Integration of an EVMP
system for ex vivo vascular kidney surgery, in turn, was
associated with improved assessment of the perfusion
characteristics of the remodeled kidney, in a study performing ex
vivo surgery in patients with a solitary kidney and either
dysplastic aneurysm, Takayasu disease, or fibrodysplasia lesions
(193), thus preventing nephrectomy and lifelong dialysis.

Liver and intrahepatic bile duct cancers and hepatic metastases
deriving from other extrahepatic tumors account for the most
prevalent tumors in humans (194). Surgical resection hereby
displays the gold standard therapy for most of these pathologies.
However, compromised liver function and lesions at difficult
anatomic sites, for instance, with the involvement of larger
vessels constitute a contraindication for curative surgery. Since
then,

complicated hepatic

various studies utilizing ex wvivo surgery to resect

malignancies including hepatocellular

carcinoma, cholangiocellular carcinoma, and focal nodular
hyperplasia and hepatic metastasis, achieving significant RO
(93,4%, CL 81.0%-97.9%). these
interventions had been associated with high 30-day mortality
(9.5% CI: 5.9%-14.9%) (195). Integrating EVMP during ex vivo

surgery could enable a prolonged preparation and aftercare

resection rates However,

during the operation in addition to ameliorated IRI upon
reimplantation. Moreover, recruiting hyperthermia and ex vivo
chemotherapy during surgery may further adjuvate tumor
elimination. Of note, ex vivo liver resection has also been
introduced as a curative approach for non-resectable, end-stage
(HAE)
dissemination into the intrahepatic conduits and adjacent

hepatic  alveolar  echinococcosis associated  with
structures. Thus, a recent study reported a curative treatment in
29 of 31 patients with long-term recovery and no HAE
recurrence (196).

The feasibility of EVMP-supported operations in thoracic
surgery has been demonstrated in porcine models of large
tracheobronchial leakage with successful implantation of a
pericardial patch and replacement of the distal trachea with an
aortic graft using the OCS (197). Moreover, EVMP has already

been applied in the clinical setting with successful lung
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autotransplantation for centrally located and locally advanced lung
cancer to spare lung parenchyma by avoiding pneumonectomy,
which underscores the potential of this procedure (198).
Noteworthy, integrating an EVMP system could furthermore
enable the application of topical, high-dosage therapeutic drugs
avoiding systemic side effects, which is of particular interest in
supporting the long-lasting success of ex vivo tumor resections in
lungs (199). Moreover, surgical procedures can be performed
in the absence of ventilation improving surgical accuracy, which
otherwise is hardly possible during in-human surgery, in
particular in patients with threatening decreased lung function.

Exploiting the improved access routes to critically located
tumors, various case studies in cardiac surgery have reported
successful ex vivo resections of cardiac sarcoma (200), complex
atrial myofibroblastic tumors (201), and giant large atria
following chronic mitral valve disease on an ex vivo beating heart
(202). Moreover, single centers also have reported on larger case
numbers of cardiac autotransplantation with ex vivo tumor
resection for malignant complex primary left heart tumors (203)
(Figure 2G).

3.5. Preclinical in-human research

Being able to preserve solid organs in a perfused, physiological
environment enables a new field for in vivo-like preclinical studies
with the potential to accelerate the clinical transition of novel
therapeutic approaches. Therefore, a large choice of animal
models for kidney, liver, and thoracic organ EVMP have been
developed, which simultaneously facilitate the investigation of
therapeutic regimens for diverse disease models. However,
multiple differences, for example, between rodent and human
perfusion models restrict the translational relevance of these
studies due to lower EVMP perfusion flow in rat models (204)
and hypersensitivity toward dextran-based perfusion solutions,
which does not occur in humans (205). Moreover, a broad range
of diseases, in particular various malign tumor animal models,
are still lacking substantial transferability with regard to the
strong heterogeneity of tumorigenesis (206).

Utilizing organs from deceased patients in contrast enables the
opportunity to test novel pharmacotherapeutic therapies in
relevant human disease models and allows for more precise
prediction of therapy efficacy when compared to animal models.

For lungs, acute respiratory distress syndrome (ARDS), for
instance, represents an acute life-threatening pathology frequently
deriving from severe infection, which evolves rapidly and confers
high mortality on the afflicted (207). Advances in clinical care
have significantly improved ARDS outcomes (208); however, no
appropriate pharmacotherapy has emerged. A wide range of
anti-inflammatory agents (e.g., corticosteroids, prostaglandins,
n-acetylcysteine) had provided promising results in both rodent
and large animal models, however without translational
relevance, as clinical trials failed to achieve significant benefit for
patients (209). In contrast, a recent study applied EVMP in
human donor which were not

lungs, acceptable for

transplantation, to successfully establish a model of endotoxemia-
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derived lung injury via lipopolysaccharide (LPS) instillation into
the pulmonary artery (210). Tightly reflecting the clinical setting,
this approach resulted in a robust cytokine response, along with
decreased pulmonary venous oxygen content over five hours as
during ARDS. Supporting the
pharmacological studies using EVMP, evaluating a novel small

seen concept of early
molecule, BC1215, which suppresses NF-«kB signaling, in the
ARDS model resulted in reduced induction of IL-1, IL-6, and
IL-10 as measured by ELISA of BALF. RNA sequencing
furthermore revealed that BC1215 administration after LPS
exposure significantly blunted the NF-kB transcriptional response
and preserved venous partial oxygen pressure (210).

In addition to evaluating the efficiency of pharmacotherapies,
EVMP could furthermore support clinical phase 1 and 2 studies
allowing for the delineation of organ-specific side effects, which
are of crucial relevance for clinical transition. Commonly used
animal models to test the hepatotoxicity of novel drugs, for
example, display significant discrepancies from the human setting
due to differences in drug metabolism and mostly homogeneous
environmental and genetic conditions in inbred animal strains.
In contrast, an EVMP model investigating the impact of
acetaminophen-induced liver injury utilized human liver tissue
from partial liver resections to mimic the clinical setting.
Notably, the EVMP system allowed for hourly perfusate sampling
and live assessment of clinical parameters showing compromised
liver function during APAP poisoning with lower glucose
consumption and lactate production rates while hepatocyte
synthesis capacity had been preserved (211). Of note, evaluating
liver function by clearance of indocyanine green revealed stable
hepatocellular function during the entire perfusion period
indicating a clinically relevant setting (211).

Finally, the utilization of EVMP models to initiate clinical trials
could lower the ethical burdens of testing novel pharmacological
drugs, thus accelerating the transition of promising candidates
into the clinics (Figure 1H).

4. Outlook and limitations

EVMP—oprimarily applied in allogeneic organ transplantation
—concomitantly provides an interface to investigate perfused
organs in an almost physiological setting but with improved
accessibility, which was the basic requirement to transfer and test
out this technique in a broader spectrum. Applying ex vivo
therapies to regenerate or cure diseased organs constitutes a
feasible approach, which will be further expanded in the future
for selected clinical indications thus having the potential to
minimize the gap between demand and supply in organ
transplantation. This can be implemented on the one hand by
the improvement of otherwise discarded, marginal donor organs,
in particular from donors after DCD and those retrieved from
ECD (6). On the other hand, treating diseased organs ex vivo
followed by autologous replantation of the cured organ may
reduce the number of patients in need of organ transplantation
(8-10). This autologous application should be limited to clinics
that display profound experience in the field of temporary organ
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support systems and organ transplantation. It is noteworthy that, at
the current state, the broad majority of studies investigating ex vivo
supported organ reconditioning are still executed on a purely
experimental level and derive from small study series.

Overall, there are two main factors to further advance this
At first, further
improvements in preservation protocols enabling >24 h ex vivo

innovative research field in the future.

perfusion or even more without significant organ damage need
to be established. On the other hand, interdisciplinary exchange
and cooperation need to look beyond the boundaries of the own
professional discipline to learn and pick up ideas from related
ones. The translation into the own clinical or research-associated
area may enhance the welfare of patients, true to the saying “You
dont have to reinvent the wheel.”
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Mats T. Vervoorn', Jantijn J. G. J. Amelink’, Elisa M. Ballan"*’,
Pieter A. Doevendans®*, Joost P. G. Sluijter*’, Mudit Mishra’,
Gerard J. J. Boink®’, Dawn E. Bowles® and Niels P. van der Kaaij**

'Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht,
Utrecht, Netherlands, Laboratory of Experimental Cardiology, Division Heart & Lungs, Department of
Cardiology, University Medical Center Utrecht, Utrecht, Netherlands, *Netherlands Heart Institute,
Utrecht, Netherlands, “Department of Cardiology, Division Heart & Lungs, University Medical Center
Utrecht, Utrecht, Netherlands, Regenerative Medicine Utrecht, Circulatory Health Research Center,
University Utrecht, Utrecht, Netherlands, °Amsterdam Cardiovascular Sciences, Department of Medical
Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands, "Amsterdam Cardiovascular
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Ex situ organ preservation by machine perfusion can improve preservation of
organs for transplantation. Furthermore, machine perfusion opens up the
possibilities for selective immunomodulation, creation of tolerance to ischemia-
reperfusion injury and/or correction of a pathogenic genetic defect. The
application of gene modifying therapies to treat heart diseases caused by
pathogenic mutations during ex situ heart perfusion seems promising, especially
given the limitations related to delivery of vectors that were encountered during
clinical trials using in vivo cardiac gene therapy. By isolating the heart in a
metabolically and immunologically favorable environment and preventing off-
target effects and dilution, it is possible to directly control factors that enhance
the success rate of cardiac gene therapy. A literature search of PubMed and
Embase databases was performed to identify all relevant studies regarding gene
therapy during ex situ heart perfusion, aiming to highlight important lessons
learned and discuss future clinical prospects of this promising approach.

KEYWORDS

gene therapy, heart transplantation (HTx), heart failure, regenerative medicine, ex situ heart
perfusion

Introduction

With the introduction of machine perfusion for organ preservation, a new era within
transplantation medicine has emerged. While conventional static cold storage is still the
most commonly employed method for organ preservation, it is associated with a number
of limitations, including tissue damage by prolonged hypothermia, limited possibilities for
injury
reperfusion, and limited options for organ reconditioning. With the growing use of

quality assessment, inevitable ischemia-reperfusion upon rewarming and
organs of marginal quality from extended criteria donors, these limitations impair clinical
transplantation and contribute to the increasing supply-demand mismatch of donor
organs (1, 2). By using machine perfusion, it is possible to overcome these limitations by

providing a controlled flow of perfusate with a desired composition at a prespecified

Abbreviations

ESHP, ex situ heart perfusion; Ad, adenovirus; AAV, adeno-associated virus; PFU, plaque-forming units.

76 frontiersin.org


http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2023.1264449&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2023.1264449
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1264449/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1264449/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1264449/full
http://orcid.org/0000-0002-3669-5209
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2023.1264449
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

Vervoorn et al.

temperature, thereby facilitating the maintenance of tissue
metabolism and removal of waste-products, while also serving as
a platform for quality assessment and organ reconditioning (1).
In the context of the heart, the introduction of ex situ heart
perfusion (ESHP) has increased the pool of available donors. It
has done so by facilitating transplantation of hearts from
extended-criteria donors, hearts from donors in remote
geographical areas, and hearts donated after circulatory death, all
with satisfactory clinical outcome (3-9). Following the increasing
clinical use of ESHP, one can speculate about other uses for
ESHP besides facilitating organ preservation, such as biological
modification to improve clinical outcome (10-12). One such
approach is cardiac gene therapy. In short, gene therapy can be
defined as the delivery of therapeutic genetic material by
different carriers (vectors) to cells with the aim of preventing or
curing a disease by modification of a critical pathophysiological
pathway or correction of a genetic defect (13). Most clinical in
vivo trials, however,

cardiac gene therapy

unsatisfactory outcomes,

yield overall
to an important extent due to
inadequate delivery and uptake of the viral vectors and
expression of the gene product (14-17). These studies mostly
used direct myocardial injection, or (percutaneous) intracoronary
infusion as a means of vector delivery. In addition, concerns
surrounding systemic side effects limit its applicability. This is
perhaps best reflected by very high vector dose requirements for
the most frequently used viral vector system, adeno-associated
viral (AAV) that result

transduction of other organ systems such as the liver (18),

vectors, in substantial (undesired)
leading to inflammatory stimulation (19) and potential activation
of proto-oncogenes or disruption of tumor suppressor genes due
to viral vector integration (13, 20-22).

ESHP provides the unique opportunity for

intracoronary delivery of high concentrations of vectors without

local or

significant systemic off-target organ or immunological side
effects. By isolating the heart in a metabolically favorable
environment during ESHP, higher concentrations of vectors can
be administered without systemic side effects. This opens up the
possibility to modulate the inflammatory response associated
with thereby
immunosuppression in recipients (23); improve tolerance to

allotransplantation, reducing the need for
ischemia-reperfusion injury to reduce the risk of primary graft
dysfunction; or excision and selective treatment of the heart to
correct a pathogenic genetic defect at an early stage in a known
carrier, followed by reimplantation of the heart into the same
The latter would

prevent the need for heart transplantation in this subset of

patient (autotransplantation) (Figure 1).
patients altogether. Given the fact that genetic causes play a
substantial role in the etiology of many cases of heart failure
(24-27), ESHP  followed by
autotransplantation might be especially relevant as a potential

gene  therapy  during
treatment option for carriers of known pathogenic mutation,
preferably at earlier stages before a clinical phenotype has
developed. Furthermore, interventions to treat these pathogenic
mutations during ESHP could also be applied during isolated in

situ loco-regional perfusion of the heart (28), which is currently
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being developed for clinical application [e.g, DINAQOR AG
(Schlieren, Switzerland)].

The objective of this systematic review is to summarize the
available literature regarding the application of gene therapy
during ESHP and discuss future clinical prospects based on the
evidence found in the literature.

Materials and methods

A literature search of the PubMed and Embase databases was
conducted up to the 1st of July 2023. The search string is available
in the appendix. Identified articles were uploaded to EndNote
(Clarivate Analytics, Philadelphia, USA) for duplicate removal.
After duplicate removal, the remaining studies were uploaded to
Rayyan.ai for title/abstract screening. Studies were included if
gene therapy was investigated during ESHP and ESHP was
specifically used as a platform for intervention in small and
large animal models. ESHP was defined as any form of
coronary perfusion through the aortic root after excision of the
heart, including bolus injection. Studies not adhering to this
definition of ESHP (for instance selective intracoronary infusion
or single flush after aortic cross clamping but before excision)
were excluded. Remaining studies were subjected to full-text
analysis before inclusion into our review. Reference lists of
included articles were searched to identify additional studies.
Title/abstract screening and full-text analysis was conducted by
two authors independently (MTV, JJGJA). Disagreements were
resolved by discussion and, if necessary, consultation of a third
researcher not involved with the search and selection process
(MM).

Results

A total of 2,462 studies were identified after duplicate
removal. After screening and full-text analysis, a total of 23
studies that specifically addressed the application of gene
therapy during ESHP were retained. Based on the identified
studies, we made a distinction between gene therapy applied
during hypothermic ESHP (Table 1) and normothermic ESHP
(Table 2), with hypothermic ESHP being the focus of most

papers.

Gene therapy during hypothermic ex situ
heart perfusion

Most research into gene therapy during hypothermic ESHP
involved adenoviral (Ad) mediated gene transfer (29-41). Three
studies could be identified that involved AAV (42) or liposome-
mediated gene transfer (43, 44). Hearts were mostly harvested
from rats (29-33, 36, 37, 39-42, 44) or rabbits (34, 35, 43), one
study involved porcine hearts (38).
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FIGURE 1

Schematic overview of potential applications of gene therapy during ex situ heart perfusion (ESHP). (A) Gene therapy of a heart with a pathogenic
mutation, followed by autotransplantation. The patient is connected to a cardiopulmonary bypass (CPB) circuit during ex situ treatment of the
diseased heart. (B) Gene therapy during ex situ heart perfusion for biological modification, e.g. immunomodulation, followed by orthotopic heart

transplantation. The figure was constructed using Biorender.com.

Perfusion conditions

The identified studies universally defined hypothermic
machine perfusion as perfusion of the cardiac vasculature at
+4°C. The perfusate solution consisted of acellular University
of Wisconsin solution (29-31, 34, 35, 37-42), saline (36, 43)
or fetal calf serum (32), and reported perfusion duration
varied between 5s (n=2 studies), 15min (n=6 studies),
20 min (n=2 studies), 30 min (n=2 studies) and 60 min

Frontiers in Cardiovascular Medicine

(n =3 studies), with most studies using perfusion duration of
15-30 min.

When comparing continuous perfusion to a single bolus
injection, multiple studies have demonstrated that transduction
efficiency is superior with continuous perfusion compared to
single bolus injection (34, 35, 37, 40). Evidence suggests that
administration of the vector with a pulsatile perfusion pressure
might  further improve

efficiency and  transmyocardial
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TABLE 1 Studies that utilize hypothermic ex situ heart perfusion.

10.3389/fcvm.2023.1264449

A 0 ea A ed Vecto ed Pe 0 e g Re
ode ene
Adenoviral vectors
Shiraishi 1996 | Rat Adenovirus LacZ 20 ml of virus-containing UW solution at 4°C Infection and gene delivery had no
et al. (29) (AdCMVLacZ) for 20 min at a flow of 1 ml/min with different adverse effect on graft survival.
titers and total preservation time, followed by Gene expression returned to baseline after
heterotopic transplantation. 14 days.
Gojo al. (30) | 1998 | Rat Adenovirus LacZ 50 ml of virus-containing UW solution at 4°C Infection and gene delivery had no
(Adex1CALacZ) for 60 min with different titers and total adverse effect on graft survival.
preservation time, followed by heterotopic Gene expression universally returned to
transplantation. baseline after 5 weeks.
Increased leukocyte infiltration with titers
>1x 10 (10) PFU/ml, with earlier
reduction in gene expression
Abunasra 2003 | Rat Adenovirus LacZ, 5 ml of virus-containing UW solution at 4°C Infection and gene delivery had no
et al. (31) (AdCMVLacZ, AdeNOS | eNOS, Mn- | for 15 min at a flow of 0.75 ml/min with adverse effect on contractile function.
& AdMnSOD) SOD different titers, followed by heterotopic Improved recovery of contractile functions
transplantation. after induced ischemia-reperfusion insult
in the eNOS and Mn-SOD groups.
Yap et al. 2001 | Rat Adenovirus LacZ Virus-containing 2% fetal calf serum at 4°C for Increased infection and gene delivery with
(32) (AdCMVLacZ) 5 s with different titers into the aortic root, longer exposure times
followed by 60 min of storage and heterotopic Increased infection and gene delivery with
transplantation. higher titers [up to 1.x 10 (10) PFU/ml].
Preferred gene expression in
cardiomyocytes over other cell types.
Accentuated expression in areas of
ischemia.
No inflammatory cell infiltration after 4
days.
Pellegrini 1998 | Rat Adenovirus LacZ Virus-containing [1 x 10 (9) PFU/ml] 2% fetal Preferred gene expression in
et al. (33) (AdCMVLacZ) calf serum at 4°C for 5 s into the aortic root, cardiomyocytes over other cell types.
followed by 60 min of storage and heterotopic Accentuated expression in areas of
transplantation. ischemia.
No inflammatory cell infiltration after 1
week.
Brauner 1997 | Rabbit Adenovirus IL10, TGF- | 20 ml of virus-containing UW solution at 4°C Increased infection and gene delivery with
et al. (34) (AdSVIL10 & beta 1 for 15 min at a flow of 1 and 0.5 ml/min, continuous perfusion compared to bolus
AdCMVTGE-p1) followed by heterotopic transplantation. injection.
Significant IL10 and TGF-beta 1
expression in infected hearts, that
increased with higher titers.
Brauner 1997 | Rabbit Adenovirus IL10, TGF- | 20 ml of virus-containing UW solution at 4°C Myocardial distribution improved after
et al. (35) (AdSVIL10 & beta 1 for 15 min at a flow of 1 and 0.5 ml/min, increasing perfusion pressure and adding
AdCMVTGEF-B1) followed by heterotopic transplantation. pulsatility.
Acute allograft rejection was decreased
after cytokine gene therapy.
Yang et al. 1999 | Rat Adenovirus LacZ, 1 ml of virus-containing [1 X 10 (11) PFU/ml] AdCTLAA4Ig-treated hearts demonstrated
(36) (AdCTLA4Ig & AdLacZ) CTLA4Ig saline solution at 4°C for 10-15 min followed indefinite survival in non-
by heterotopic transplantation in in non- immunosuppressed mismatched
immunosuppressed mismatched rats. recipients.
No lymphocytic cell infiltration was noted
in the AACTLA4Ig-treated hearts.
Gene expression was abundant in the
endo-myocardium
Gene expression was not detected after
100 days.
Pellegrini 2000 | Rat Adenovirus LacZ 5 ml of virus-containing UW solution at 4°C Increased infection and gene delivery with
et al. (37) (AdCMVLacZ) for varying infection intervals with different continuous perfusion compared to bolus
flows and pressures, followed by heterotopic injection.
transplantation.
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TABLE 1 Continued

Author Year | Animal Used Vector Perfusion setting

model

Preferred gene expression in
cardiomyocytes over other cell types.
Higher titers were associated with higher
levels of inflammatory infiltration.
Perfusion pressures >50 mmHg were
associated with more tissue damage.

Oi et al. (38)

2006

Porcine

Adenovirus
(AdCMVLacZ)

LacZ

200 ml of virus containing UW solution at 4°C
with varying titers, for 30 min with a perfusion
pressure of 50 mmHg, followed by heterotopic
heart transplantation.

Increased infection and gene delivery with
higher titers [up to 1 x 10 (9) PFU/ml].
Homogeneous distribution across the
myocardium was achieved.

Virus titers did not correlate with edema
formation.

Rao et al.
(39)

2007

Rat

Adenovirus
(AdCMVLacZ)

LacZ

5 ml of virus-containing [3.5 x 10 (8) PFU]
UW solution at 4°C for 15 min at a flow of
0.75 ml/min with different titers, followed by
heterotopic transplantation.

Infection and gene delivery had no
adverse effect cardiac allograft
vasculopathy development.

Abunasra
et al. (40)

2006

Rat

Adenovirus
(AdCMVLacZ &
AdMnSOD)

LacZ, Mn-
SOD

5 ml of virus-containing UW solution at 4°C
for 15 min at a flow of 0.75 ml/min with
different titers, followed by heterotopic
transplantation.

Increased infection and gene delivery with
continuous perfusion compared to bolus
injection.

Infection and gene delivery had no
adverse effect on contractile function.
Improved recovery of contractile functions
after induced ischemia-reperfusion insult
in the Mn-SOD group.

Ricci et al.
(41)

2010

Rat

Adenovirus
(AdCMVhNIS)

NIS

5 ml of virus-containing [1 x 10 (9) PFU/ml]
UW solution at 4°C, followed by heterotopic
transplantation and injection of '*'I after 3
days.

Successful gene transfer of the NIS-gene
could be confirmed.

Graft survival was significantly higher in
AdCMVhNIS-treated hearts following
injection of 'L

No inflammatory infiltrates were found in
AdCMVhNIS-treated hearts following
injection of '*'I.

Adeno-associated viral vectors

Miyagi et al.
(42)

2008

Rat

Adeno-associated virus
(rAAV9CMVLacZ)

LacZ

5 ml of virus-containing UW solution at 4°C
with different titers for 20 min at a flow of
0.75 ml/min, followed by heterotopic
transplantation and injection of '*'I after 3
days.

Increased infection and gene delivery with
higher titers (up to 2 x 10 (12 vector
genomes/ml).

There was no difference in gene
expression between ESHP perfusion and
intravenous injection.

Durable and stable gene transfer was
achieved for 3 months.

Liposome-based vectors

Furukawa
et al. (43)

2005

Rabbit

Liposome (pSVhIL-4,
pSVhIL-10

1L4, IL10

10 ml of liposome-containing saline solution at
4°C for 30 min with a flow of 20 ml/min,
followed by heterotopic transplantation in
mismatched recipients

Successful gene transfer could be
confirmed.

Expression reached a peak at 7-8 days,
followed by a slow decline.

Increased infection and gene delivery with
higher titers.

No systemic wash-out was noted in
recipients.

Preferred gene expression in
cardiomyocytes over other cell types.
Mean allograft survival was significantly
prolonged from 9 to 135 days.

There was a synergistic effect on allograft
survival when both genes were delivered,
potentially due to suppression of T
lymphocyte infiltration induced by
localized overexpression of 114 and IL10.
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TABLE 1 Continued

Used Vector

Jayakumar 2000 | Rat HSP70

et al. (44)

Liposome (HVJ-
liposome containing
HSP70 DNA)

days for ischemia-reperfusion challenge during
Langendorff perfusion.

aortic root, followed by heterotopic
transplantation and subsequent excision after 4 | o

10.3389/fcvm.2023.1264449

s | e

1 ml of liposome-containing fluid through the | «

Successful gene transfer could be
confirmed.

Improved recovery of contractile functions
after induced ischemia-reperfusion insult
in the HSP70 group.

« Significantly higher recovery of
endothelial function after induced
ischemia-reperfusion insult in the HSP70
group.

UW, University of Wisconsin; PFU, plaque-forming units; eNOS, endothelial nitric oxide synthase; Mn-SOD, manganese superoxide dismutase; NIS: sodium-iodide

symporter; HVJ, Hemagglutinating Virus of Japan; HSP, heat-shock protein.

distribution of the infused vector (35). Furthermore, perfusion
pressure seems to be inversely associated with the required
perfusion duration for satisfactory transduction, i.e., an increase
in perfusion pressure results in a reduction in the time needed
to achieve the same level of transduction (35, 37). It must be
noted, however, that higher perfusion pressures (70-80 mmHg)
are associated with increased histological tissue damage and
edema formation compared to lower perfusion pressures
(<50 mmHg) during hypothermic ESHP, and might damage the
graft (37). Regarding edema formation, one study mentioned
that Ad vector titers up to 1x10(9) plaque-forming units
(PFU)/ml did not correlate with increased edema formation.
Suggesting that any edema formation observed at titers lower
than 1x10(9) PFU is most likely the result of the perfusion
itself (38).

Based on the available literature, we can assume that there is a
dose-dependent effect for Ad mediated gene therapy, with
improved transduction at higher viral titers. However, due to
heterogeneity among studies regarding specific titer definition
(i.e., PFU as single vector dose, per unit perfusate volume or unit
of heart weight) it is difficult to define the optimal titer range on
the basis of prior literature. Furthermore, optimal titer range
might also be dependent on the specific subtype of Ad (32, 34,
38). However, too high doses might result in microcirculatory
obstruction [reported single vector dose >1 x 10(11)] (29) and an
increased inflammatory response in the myocardium [reported
single vector dose >1 x 10(10)] (30), resulting in poor myocardial
function and a reduced length of gene expression (>4 weeks with
lower doses vs. 3 weeks with higher doses). The inflammatory
response associated with too high doses consisted of increased
leukocyte infiltration surrounding transducted cells distributed
across the myocardium up to 21 days after heterotopic
transplantation.(30) These findings also suggest that the level of
inflammation can negatively impact duration of expression, and
thus effectivity, of gene therapy during ESHP. A positive dose-
dependent relationship has also been reported in liposome
mediated delivery of genes (43) and with the use of AAV-based
vectors (42).

In summary, these results suggest that during hypothermic
ESHP continuous, pulsatile perfusion pressures with a mean
pressure of 50 mmHg seem optimal. The most appropriate titer

Frontiers in Cardiovascular Medicine

for optimal transduction is up to debate, but seems to follow a
parabolic trend based on evidence that suggests a dose-
dependent effect below a certain threshold, followed by a range
of optimal transduction and eventually a point where higher
titers are associated with graft dysfunction and reduced efficacy
of transduction and expression.

Myocardial distribution

Reported myocardial distribution of transgene expression is
heterogeneous and studies mainly report perfusion pressure and
pulsatility as factors of influence. The effects of perfusion
solution, reperfusion strategy, position of the heart and
antegrade vs. retrograde perfusion on myocardial distribution
was not reported. Among studies using Ad vectors, both Gojo
(30), Pellegrini (33, 37) and Yap (32) reported preferred
expression in cardiomyocytes over endothelial cells, while
Brauner et al. (34) reported high expression in subepicardial
perivascular regions (100% transduction rate) and lower in mid-
wall and subendocardial regions (5%-20%). This difference in
expression pattern among regions, however, was reduced by
increasing perfusion pressure and adding pulsatility, resulting in
a more equal distribution (25%-40%) across the myocardium.
On the contrary, Yang et al. (36) report abundant expression in
the endomyocardial tissue, but lower in the mid layers of
myocardium using an antegrade perfusion approach. They did
not report on specific perfusion pressure to explain these
differences in distribution. Pellegrini et al. (33, 37) also report
accentuated transgene expression in the right ventricle,
especially in the subepicardial region, upon infusion of 1x 10
(9) PFU/ml Ad vector at different perfusion pressures (up to
40-50 mmHg) and exposure times. They also noted increased
that endured

possibly due to locally increased endothelial permeability

expression around zones (warm) ischemia,
associated with (warm) ischemia (33). Oi et al. (38) report a
homogeneous distribution of expression across a multitude of
left ventricular segments after using a continuous perfusion
pressure suggesting  that

distribution is less of a concern when higher perfusion

of 50 mmHg, heterogeneous

pressures are used. In models using liposome-mediated transfer,

one study reported homogeneously distributed transfection after
30 min of cold perfusion at a non-specified perfusion pressure
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TABLE 2 Studies that utilize normothermic ex situ heart perfusion.

10.3389/fcvm.2023.1264449

Animal Used Vector Perfusion setting
model
Adenoviral vector
Donahue 1997 Rabbit Adenovirus LacZ 50 ml of virus-containing oxygenated KHB at Increased infection and gene delivery at
et al. (45) (AdCMVLacZ) 37°C, flows between 10 and 40 ml/min, pressures flows >30 ml/min.
between 10 and 70 mmHg, varying infection Increased infection and gene delivery with
intervals up to 180 min. longer exposure times.
Increased infection and gene delivery with
higher virus titers [up to 1.6 x 10 (9)
PFU/ml].
Donahue 1998 Rabbit Adenovirus LacZ Virus-containing oxygenated KHB at 37°C with Increased infection and gene delivery with
et al. (46) (AdCMVLacZ) varying flows, pressures and infection intervals, longer exposure times.
for a total Langendorff time of 180 min. Increased infection and gene delivery with
Pretreatment with calcium-KHB, KHB higher titers [up to 1.6 x 10 (9) PFU/ml].
supplemented with bradykinin, serotonin, L- Increased infection and gene delivery after
NAME, heparinized blood. pretreatment with agents that increase
microvascular permeability.
Synergistic effect after combination of the
above mentioned factors.
Nagata et al. | 2001 Rabbit Adenovirus LacZ Virus-containing [1 x 10 (8)PFU/ml oxygenated Increased infection and gene delivery after
(47) (AdCMVLacZ) KHB at 37°C. Infection interval was fixed at pretreatment with agents that increase
2 min, for a total Langendorff time of 180 min. available nitric oxide.
Pretreatment with VEGF, TNG, 8Br-cGMP, L- Synergistic effect after combination of agents
NMMA, ODQ, sildenafil, zaprinast. that increase available nitric oxide.
Lehnart et al. | 2000 Rabbit Adenovirus LacZ & 25 ml of virus-containing [1.6 x 10 (9) PFU/ml] No adverse effect on contractile and diastolic
(48) (AdCMVLacZ & Luciferase | oxygenated KHB at 37°C recirculated for 60 min properties over 48 h of functional evaluation.
AdRSVLuc) at a flow of 30 ml/min. Infection and gene delivery had no adverse
effect on response to beta-adrenergic
stimulation.
Bishawi et al. | 2019 Porcine Adenovirus Luciferase | Virus-containing [5 x 10 (13) PFU/ml] solution Complete inhibition of infection and gene
(49) (AdCMVLuc) mixed with crystalloid prime and washed RBC’s, delivery by plasma and serum. This effect
perfusion for 2 h at a flow of 600 ml/min, was minimized by using washed RBC’s in
perfusion pressure of 65-70 mmHg, followed by combination with crystalloid prime.
flushing and heterotopic transplantation. Successful infection and gene delivery across
all areas of the heart, as well as the coronary
arteries.
Accentuated infection and gene delivery in
right ventricular and septal areas when
compared to the left ventricle.
No systemic wash-out after flushing and
heterotopic transplantation
Adeno-associated viral vectors
Mendiola 2023 Porcine | Adeno-associated Luciferase | Virus-containing solution with different titers High transduction efficiency of SASTG
Pla et al. (50) virus mixed with crystalloid prime and washed RBC’s, Most uptake (83.82%) within the first
(AAV3b SASTG) perfusion for 2 h at a flow of 600 ml/min, 30 min
perfusion pressure of 60-70 mmHg, followed by Solid transgene expression up to 35 days
flushing and heterotopic transplantation. without off-target effects or signs of rejection
Dose-dependent effect.

KHB, krebs-henseleit buffer; PFU, plaque-forming units; L-NAME, N(w)-nitro-L-arginine methyl ester; VEGF, vascular endothelial growth factor; TNG, trinitroglycerin; 8Br-

cGMP, 8-Bromoguanosine 3',5'-cyclic monophosphate; L-NMMA, N©-monomethyl-L-arginine; ODQ, Oxadiazolo-[4,3-a]-quinoxalin-1-one.

(43). No reports on myocardial distribution were identified using
AAV.

Taken together, these results suggest that pulsatile perfusion
pressures centered around a mean pressure of 50 mmHg seems
optimal to achieve a
hypothermic ESHP.

homogeneous distribution ~ during
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Therapeutic interventions
Regarding therapeutic potential, some studies assessed the

efficacy of gene therapy during ESHP for immunomodulation, or
to increase tolerance of the graft to ischemia-reperfusion injury
(Table 3; Figure 2). One study assessed the influence of Ad
vectors on the development of cardiac allograft vasculopathy.
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TABLE 3 Studies that investigated the therapeutic potential of gene therapy during hypothermic ESHP.

Author Year | Animal Used Vector Perfusion setting
model
Adenoviral vectors
Brauner 1997 | Rabbit Adenovirus IL10, TGF- | 20 ml of virus-containing UW solution at 4°C Significant IL10 and TGF-beta 1 expression
et al. (34) (AdSVIL10 & beta 1 for 15 min at a flow of 1 and 0.5 ml/min, in infected hearts, that increased with

AdCMVTGE-B1) followed by heterotopic transplantation. higher titers.

Brauner 1997 | Rabbit Adenovirus IL10, TGF- | 20 ml of virus-containing UW solution at 4°C Acute allograft rejection was decreased after
et al. (35) (AdSVIL10 & beta 1 for 15 min at a flow of 1 and 0.5 ml/min, cytokine gene therapy.

AdCMVTGE-B1) followed by heterotopic transplantation.

Yang et al. 1999 | Rat Adenovirus LacZ, 1 ml of virus-containing [1 x 10 (11) PFU/ml] AdCTLA4Ig-treated hearts demonstrated
(36) (AACTLA4Ig & CTLA4lIg saline solution at 4°C for 1015 min followed by indefinite survival in non-
AdLacZ) heterotopic transplantation in in non- immunosuppressed mismatched recipients.
immunosuppressed mismatched rats. No lymphocytic cell infiltration was noted
in the AACTLA4Ig-treated hearts.
Abunasra 2003 | Rat Adenovirus LacZ, 5 ml of virus-containing UW solution at 4°C for Improved recovery of contractile functions
et al. (31) (AdCMVLacZ, eNOS, Mn- | 15 min at a flow of 0.75 ml/min with different after induced ischemia-reperfusion insult in

AdeNOS & SOD titers, followed by heterotopic transplantation. the eNOS and Mn-SOD groups.

AdMnSOD)

Abunasra 2006 | Rat Adenovirus LacZ, Mn- | 5 ml of virus-containing UW solution at 4°C for Infection and gene delivery had no adverse
et al. (40) (AdCMVLacZ & SOD 15 min at a flow of 0.75 ml/min with different effect on contractile function.

AdMnSOD) titers, followed by heterotopic transplantation. Improved recovery of contractile functions
after induced ischemia-reperfusion insult in
the Mn-SOD group.

Ricci et al. 2010 | Rat Adenovirus NIS 5 ml of virus-containing [1 x 10 (9) PFU/ml] Graft survival was significantly higher in
(41) (AdCMVhNIS) UW solution at 4°C, followed by heterotopic AdCMVhNIS-treated hearts following
transplantation and injection of **'I after 3 days. injection of 1.
No inflammatory infiltrates were found in
AdCMVhNIS-treated hearts following
injection of 'L
Liposome-based vectors
Jayakumar 2000 | Rat Liposome (HVJ- HSP70 1 ml of liposome-containing fluid through the Improved recovery of contractile functions
et al. (44) liposome containing aortic root, followed by heterotopic after induced ischemia-reperfusion insult in
HSP70 DNA) transplantation and subsequent excision after 4 the HSP70 group.
days for ischemia-reperfusion challenge during Significantly higher recovery of endothelial
Langendorff perfusion. function after induced ischemia-
reperfusion insult in the HSP70 group.
Furukawa 2005 | Rabbit Liposome (pSVhIL-4, | IL4, IL10 10 ml of liposome-containing saline solution at Mean allograft survival was significantly
et al. (43) pSVhIL-10 4°C for 30 min with a flow of 20 ml/min, prolonged from 9 to 135 days.
followed by heterotopic transplantation in There was a synergistic effect on allograft
mismatched recipients survival when both genes were delivered,
potentially due to suppression of T
lymphocyte infiltration induced by
localized overexpression of IL4 and IL10.

UW, University of Wisconsin; PFU, plaque-forming units; eNOS, endothelial nitric oxide synthase; Mn-SOD, manganese superoxide dismutase; NIS, sodium-iodide

symporter; HVJ, Hemagglutinating Virus of Japan; HSP, heat-shock protein.

A total of 5 studies have shown that it is possible to modulate
the immune response associated with allograft implantation.
Brauner et al. (34) constructed Ad vectors expressing viral
interleukin-10 (AdSvIL10) or transforming growth factor-beta 1
(AACMVTGF-beta 1), two anti-inflammatory cytokines, and
delivered them to rabbit hearts. Following ESHP, the hearts were
heterotopically transplanted in recipient rabbits. They reported
successful expression of TGF-beta 1 and IL10 in the grafts,
especially with higher vector concentrations, and no evidence of
neoplastic side-effects, such as intimal proliferation, or pro-
fibrotic effects, assessed after 4 days of follow-up. In a subsequent

Frontiers in Cardiovascular Medicine

study (35), using the same model, the authors showed a significant
allograft
immunosuppressive cytokine gene delivery, prolonging graft
survival. Building on this experience, Yang et al. (36) used Ad
vectors (AdCTLA4Ig) to deliver the CTLA4Ig gene to promote
survival of grafts in a heterotopic transplantation model of Lewis

inhibitory action on acute rejection  through

and Brown Norway rat hearts. They reported abundant cardiac
expression of the CTLA4Ig transgene after transplantation in non-
immunosuppressed Wistar Furth recipients. Although progressive
diminution of CTLA4Ig mRNA expression was noted over time,
the allografts survived indefinitely with a sufficient degree of
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Gene therapy during ESHP has been investigated for immunomodulation and to decrease ischemia-reperfusion injury (IRl). Immunomodulation was
conducted by transduction of cardiomyocytes with adenoviral vectors that carried genes encoding anti-inflammatory cytokines (IL-4, IL-10, TGF-
beta, and CTLA4IG. IRl was attenuated by adenoviral mediated gene transfer of manganese superoxide dismutase, nitric oxide synthase and heat
shock protein 70. ESHP: ex situ heart perfusion. IL: interleukine. PGD: primary graft dysfunction. DAMPS: damage-associated molecular pattern. The

localized immunosuppression. Ricci et al. (41) studied the effects of
gene transfer of human iodide symporter and subsequent treatment
with "*'T on acute allograft rejection using Ad vectors in a
heterotopic rat transplantation model. They demonstrated
significantly longer survival and reduced myocardial damage in
grafts perfused with the Ad vectors containing the gene that
received treatment with "' Finally, Furukawa et al. (43) used a
liposomal-mediated approach to deliver a combination of IL4 and
IL10 in a heterotopic transplantation model of rabbit hearts. They
reported successful gene transfer and were able to prolong
allograft survival in hearts that received both interleukins (9 +2
days vs. 135+3 days) with a great improvement of histological
rejection grades, indicating a synergistic action of both cytokines.
reduced alloreactivity of

This was presumably due to

T-lymphocytes induced by localized overexpression of the
interleukins. By reducing this alloreactivity, long-term survival of
cardiac allografts without systemic immunosuppression was
possible. Taken together, these results indicate that (local)
immunomodulation of transplanted grafts is possible during
ESHP, which might enable a less restrictive immunosuppressive

regimen to prevent rejection in recipients.

Frontiers in Cardiovascular Medicine

A total of three studies demonstrated that the authors were able
to enhance myocardial tolerance to ischemia-reperfusion injury,
preserving both contractile and endothelial function of treated
grafts. Abunasra et al. (31, 40) used a heterotopic transplantation
model to demonstrate the protective effects of Ad mediated gene
transfer of manganese superoxide dismutase and nitric oxide
synthase into rat hearts. After heterotopic transplantation, the
hearts were procured and reperfused on a Langendorft system for
After
demonstrating successful gene transfer and expression, they

assessment and induction of an ischemic insult.
noted improved recovery of contractile function after the
ischemic insult in treated hearts. Jayakumar et al. (44) used a
similar model to assess the effects of heat shock protein 70
(Hsp70) gene transfection on rat hearts using liposomal vectors
for delivery. They demonstrated improved postischemic recovery
of contractile function and recovery of coronary flow, together
with reduced creatinine kinase release in hearts that were treated
with Hsp70. These results indicate that myocardial ischemia-
reperfusion injury can potentially be attenuated using gene therapy.

Finally, Rao et al. (39) used a heterotopic heart transplantation

model to study the effects of Ad mediated gene transfer on the later
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development of cardiac allograft vasculopathy due to concerns over
the potential effects of adenoviral therapy on the development of
allograft vasculopathy. They concluded that Ad mediated gene
transfer did not result in accelerated allograft vasculopathy
development compared to non-treated controls after 120 days.

Gene therapy during normothermic ex situ
heart perfusion

Gene therapy research during normothermic ESHP mostly
involved Ad mediated gene transfer (45-49) using rabbit (45-48)
or porcine hearts (49). One study involved AAV mediated gene
transfer in porcine hearts (50). The identified studies were
notably lower in number compared to studies that assessed gene
therapy during hypothermic ESHP (6 vs. 17).

Donahue et al. (45, 46) studied the optimal conditions for
delivery of gene products during normothermic ESHP using Ad
vectors in rabbit hearts. They found that transduction increased
incrementally with coronary flow (up to 40 ml/min), exposure
time (up to 120 min) and administered viral dose [up to 1.6 x 10
(9) PFU/ml] (45). They also report further improvements in
efficacy by minimizing calcium concentration in the perfusate
and implementing pretreatment of the hearts with several
pharmacological agents that increase microvascular permeability,
such as bradykinin, serotonin and L-NAME. As an example they
noted a transduction rate of over 90% in just two minutes of
perfusion by combining hypocalcemia and = serotonin
administration, confirming the hypothesis that required exposure
time could dramatically be reduced by modulating viral dose and
vascular permeability (46). In a follow-up study using the same
model, Nagata et al. (47) report that pretreatment with vascular
endothelial growth factor combined with a phosphodiesterase
inhibitor, such as nitroglycerin or sildenafil, could also increase
the efficiency of gene transfer in a dose-dependent fashion.
Furthermore, Lehnart et al. (48) demonstrated that transduction
of cardiomyocytes with Ad vectors does not adversely affect
contractile function of perfused hearts, strengthening the belief
that gene therapy using Ad vectors has potential as a safe
modality for therapeutic intervention. Further proof-of-concept
was provided by Bishawi et al. (49), who demonstrated safe and
efficacious Ad mediated gene transfer in a porcine heterotopic
transplantation model. In this study, the authors used 2h of
normothermic ESHP as a platform to deliver 5x 10(13) total
viral particles of an Ad luciferase vector (AdCMVLuc) prior to
allograft implantation in a blood type compatible recipient pig.
Enzymatic assessment of luciferase activity obtained 5 days after
transplantation revealed global and uniform luciferase activity in
the allograft and coronary arteries, without systemic off-target
expression. Interesting lessons learned during these experiments
include the apparent inhibitory influences of plasma and serum
on transduction efficiency. However, these inhibitory -effects
could be minimized when cell-salvaged erythrocytes were mixed
with the priming solution instead of whole blood, although some
effects on  transduction remained.

inhibitory efficiency

Nevertheless, by using a perfusate solution based on crystalloid
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prime and cell-salvaged erythrocytes, they reported satisfactory
expression across all areas of the heart after heterotopic
transplantation into recipient pigs. Based on these findings, the
authors conducted a subsequent study into the efficacy of AAV
based delivery and transduction during ESHP using a similar
model (50). Their most important finding was that they were
able to achieve durable transgene expression using AAV-
mediated gene transfer for up to 35 days following heterotopic
transplantation, without signs of systemic off-target expression,
rejection or inflammation in the graft. Furthermore, they
identified SASTG, a myocardial-enhanced AAV3b variant, as the
most efficient vector to deliver transgenes when used during
normothermic ESHP. Regarding kinetic profile, they reported
first 30 min of
perfusion and confirmed the existence of a dose-dependent

that most transduction occurred within the
response, with increased transduction rates with incremental
titers infused.

Discussion

The results summarized in this review highlight the feasibility
and clinical potential of cardiac gene therapy during ESHP,
especially considering the fact that both hypothermic (51) and
normothermic (7, 8) ESHP have already been introduced in
clinical practice. The evaluation of gene therapy in both
temperature ranges is an interesting challenge by itself. Contrary
to what might be expected, successful transduction could be
achieved under hypothermic conditions, followed by expression
of the inserted gene after heterotopic transplantation. This may
be surprising, since hypothermia is associated with a significant
reduction of enzymatic activity, reduced cellular respiration and
metabolism (52), and, subsequently, reduced genetic processing
of nucleic-acids used for genomic modification. Although the
latter might be the result of subsequent rewarming (and hence
restoration of metabolism with subsequent processing of the
delivered genetic material) after transplantation, these result
indicate that hypothermia does not have to limit vector viability
or entry into cardiomyocytes and suggest that normothermic
metabolism isn’t a prerequisite for successful transduction. This
is supported by the prolonged expression that was noted after
gene therapy during hypothermic ESHP in multiples studies (36,
41-43). Furthermore, effective transduction during hypothermic
ESHP might also be the result of the absence of components in
the perfusate solution that negatively influence vector delivery,
such as and plasma, since all studies use a crystalloid-based
perfusate. Nonetheless, these results can be interpreted as
evidence that the association between metabolism and efficacy of
gene therapy might be more complex in nature than expected
and also dependent on multiple other factors, like the specific
vector used (53, 54) and composition of the perfusate solution
(cellular vs. acellular).

Another important finding is that perfusion conditions, such as
perfusion pressure and viral dose, seem to impact the efficiency of
transduction in both hypothermic and normothermic conditions.
Although heterogeneity regarding optimal vector dose is quite
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substantial, a pulsatile perfusion pressure around a mean of
50 mmHg seems required for optimal vector delivery and
transduction. Endothelial integrity also plays an important role.
Under normal physiological circumstances, the endothelium
constitutes an uninterrupted barrier between the intravascular
and extravascular compartment. When the endothelium becomes
activated by pathological triggers, such as inflammation or
excessively high pressures, gaps start to occur between the cells
that facilitate diapedesis of leukocytes and contributes to edema
formation. In the context of gene therapy, however, a certain
degree of endothelial activation seems to be a prerequisite for
success, as is evidenced by the finding that transduction
efficiency during normothermic perfusion is improved by the
addition of agents that increase microvascular permeability, a
phenomenon that has also been previously observed for in vivo
delivery studies (55). The harvesting of a donor heart is
inherently associated with some degree of (warm) ischemia, even
when ESHP is utilized. The subsequent reperfusion-associated
injury will result in a varying degree of endothelial permeability
(56, 57), which facilitates efficient gene transfer. This might
hypothetically obviate the need for supplementation of agents
that affect microvascular permeability in clinical situations that
are associated with substantial (warm) ischemia, although this
should be investigated in future studies. Increased microvascular
permeability might also partially explain the observed
transduction rates during hypothermia, as hypothermia in itself
is associated with reversible morphological and functional
changes to the endothelium that increase permeability (58).
These findings are in accordance with what is known from
studies that assess vector uptake in the myocardium during in
vivo administration (17). However, given the fact that the above
is investigated in preclinical models, one should be aware of a
potential translational gap between small and large animal
models and clinical efficacy in humans, as is evidenced by
multiple clinical studies that failed to demonstrate efficacy in
humans after convincing preclinical results in small and large
animals (17, 20, 22). Future research, specifically designed to
address these questions, seems a prerequisite before successful
clinical implementation.

Central to the successful application of gene therapy, is
efficiency of delivery (20). Efficiency of delivery in itself is
dependent on the vector and the route of administration, both of
which can be extensively controlled and manipulated during
ESHP. Currently, potential vectors can be subdivided into viral
and non-viral vectors. Non-viral vectors include liposomes, while
extensive experimentation has indicated that two viral vector
systems are effective at cardiac gene transfer, being Ad vectors
and AAV vectors (13, 20). Generally speaking, Ad vectors have a
high efficiency for delivery and expression of their genome
within the target cells. They are effectively produced at high
titers, are associated with rapid gene expression kinetics and can
carry large genes due to their substantial insert capacity, in
particular when considering the use of third generation, so-called
“gutless” Ad vectors (59). However, important disadvantages are
the significant associated immune response, triggering both
innate and adaptive immunity which limits the duration of gene

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2023.1264449

expression, and their innate tropism for many human tissues
other than the heart, which can be circumvented during ESHP
(17, 20). On the other hand, AAV vectors have the advantage
that they are principally non-pathogenic and can have a high
tropism for myocardium depending on serotype (60-62). They
are also associated with sustained transgene expression.
Disadvantages include their limited insert capacity, limiting the
size of genes that can be transported, and relatively high
production costs. They are also quite prone to evoking an
immune response, antibody development and it seems that a
large proportion of the general population seems to possess
neutralizing antibodies for different AAV serotypes before
treatment (63, 64), although this might be less of a problem
during an ESHP approach. Based on the above, one can imagine
that selection of the appropriate vector for delivery of the desired
gene is not a straightforward process and depends upon many
factors that influence outcome, including intention of treatment.
Based on the available literature, Ad vectors currently seem the
preferred vector for gene delivery during ESHP due to their large
gene carrying capabilities, efficiency of transduction, the relatively
low costs and favorable expression kinetics, which abrogates the
theoretical advantages of AAV over Ad in the setting of ESHP.
The higher immunogenic response that is associated with Ad
therapy might also not be an issue during ESHP as it is possible
to use a leukocyte-depleted perfusate, which may be
supplemented with additional immunosuppressants (65), or use a
perfusion approach that might not need any blood constituents,
such as hypothermic ESHP. However, the limited long-term
expression rate of genes delivered with Ad vectors might be an
important barrier to long-lasting effects of gene therapy to treat
pathogenic genetic mutations in carriers, unless they are used for
gene-editing purposes (e.g., CRISPR-CAS). For gene delivery,
however, this might be an important argument for the use of
AAV over Ad in situations where a long-lasting expression of
gene products is warranted, e.g., for replacing certain genetic
defects or when long-lasting immunosuppression is desired (66),
especially with the development of highly cardioselective
serotypes, such as SASTG, that could greatly enhance efficiency
of transduction (17, 20, 22, 67).

If implemented correctly, ESHP offers a unique opportunity for
direct biological modification of a (defective) heart without the
risks of systemic toxicity or side-effects. By isolating the organ in
a metabolically and immunologically favorable condition, it is
possible to directly investigate and manipulate the factors that
influence important obstacles related to delivery and uptake that
were encountered during in vivo clinical trials and potentially
improve the success rate of cardiac gene therapy. By doing so,
ESHP opens up the possibilities to improve quality of grafts,
allow for selective immunomodulation to minimize the need for
immunosuppression, improve tolerance to ischemia-reperfusion
injury and further extend the donor pool. Ultimately, it could be
used for correction of a genetic defect in known carriers of a
pathogenic mutation after careful excision of the heart,
preservation by machine perfusion and autotransplanting it into
the same patient, which is supported by cardiopulmonary bypass

during ESHP. By identifying and selectively treating these
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patients at an early stage, this could potentially ameliorate the need
for heart transplantation altogether, thereby improving the current
supply-demand mismatch and catalyzing a transition towards a
new era of regenerative medicine and organ transplantation.
Furthermore, lessons learned from experience with gene therapy
during ESHP could also be employed in newly developed
techniques for loco-regional isolated in situ heart perfusion, as
previously described by White et al. (28) and which are currently
being developed for clinical application (e.g, DINAQOR AG
(Schlieren,
developments in gene-editing techniques that might benefit from

Switzerland). Especially in the light of recent
direct, isolated exposure to the target organ (e.g., CRISPR-CAS,
TALENS) (68-70) and the recent successes in clinical application
of gene therapy in other fields (71-74), these future prospects
might be closer to reality than initially anticipated.

To summarize, key messages from the literature regarding the
application of gene therapy during ESHP are that gene therapy is
possible in both hypothermic and normothermic conditions,
using Ad, AAV and liposomes. Perfusion conditions, such as
pressure, duration of exposure to the vector, dose and perfusion
composition seem to influence efficiency of transduction, while
some degree of microvascular permeability is a prerequisite to
successful application. To date, local immunomodulation and
enhanced myocardial tolerance to ischemia-reperfusion injury
have been achieved using gene transfer during ESHP in rodent
models. Future studies should focus on replicating these findings
in large animal models and humans, and the efficacy of gene
therapy for the treatment of known mutations that affect heart
function, such as mutations in phospholamban, lamin A/C,
PKP2 or titin genes, using ESHP.
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Heart transplantation, the gold standard treatment for end-stage heart failure,
is limited by heart graft shortage, justifying expansion of the donor pool.
Currently, static cold storage (SCS) of hearts from donations after brainstem
death remains the standard practice, but it is usually limited to 240 min.
Prolonged cold ischemia and ischemia-reperfusion injury (IRI) have been
recognized as major causes of post-transplant graft failure. Continuous ex
situ perfusion is a new approach for donor organ management to expand
the donor pool and/or increase the utilization rate. Continuous ex situ
machine perfusion (MP) can satisfy the metabolic needs of the myocardium,
minimizing irreversible ischemic cell damage and cell death. Several
hypothermic or normothermic MP methods have been developed and
studied, particularly in the preclinical setting, but whether MP is superior to
SCS remains controversial. Other approaches seem to be interesting for
extending the pool of heart graft donors, such as blocking the paths of
apoptosis and necrosis, extracellular vesicle therapy, or donor heart-specific
gene therapy. In this systematic review, we summarize the mechanisms
involved in IRl during heart transplantation and existing targeting therapies.
We also critically evaluate all available data on continuous ex situ perfusion
devices for adult donor hearts, highlighting its therapeutic potential and
current limitations and shortcomings.

KEYWORDS

PGF primary graft failure, MP machine perfusion, ESNP ex situ normothermic perfusion,
heart tranplantation, heart preservation, hypothermic machine perfusion (HMP)

Abbreviations

ATP, adenosine triphosphate; BSD, brainstem death; DCD, donation after circulatory death; PGF, primary graft
failure; MP, machine perfusion; ECMO, veno-arterial extracorporeal membrane oxygenation; ESNP, ex situ
normothermic perfusion; HIF1, hypoxia inducible factor 1; HMP, hypothermic machine perfusion; HT,
heart transplantation; IPC, ischemic preconditioning; IRI, ischemia-reperfusion injury; NO, nitric oxide;
NOS, nitric oxide synthase; NRP, normothermic regional perfusion; PGI2, prostaglandin 2; ROS, reactive
oxygen species; SCS, static cold storage.
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Introduction

Heart transplantation (HT) serves as the gold standard therapy
for advanced heart failure (1). The global count of HT procedures
has consistently risen each year, surpassing 5,000 cases (2).
Nevertheless, this figure remains constrained due to the scarcity
of available organ donors, a scenario in which demand far
outpaces supply. In France, the shortage of donors remains
relatively constant, with only 1 donor for every 2-2.25 transplant
candidates (3). This scarcity significantly restricts the viability of
HT (4).

Consequently, grafts sourced from extended criteria donors are
now under consideration. These donors are typically over the age of
55 years, possess mild left ventricular hypertrophy, exhibit non-
obstructive coronary artery disease, are recipients of high doses
of vasopressors/inotropes, or show indications of left ventricular
dysfunction due to brain death interaction (5-7). In addition, the
complexity of recipients is on the rise, with a greater prevalence
of comorbidities, redo surgeries, and pre-transplant veno-arterial
extracorporeal membrane oxygenation (ECMO). Furthermore,
there have been recent alterations to graft allocation strategies in
France and the United States of America that are associated with
more frequent pretransplant ECMO usage and less favorable
outcomes when considering waiting list mortality and post-
transplant mortality. However, these effects may not be evident
in every dataset and country (8-12). For example, among
patients who underwent transplantation between 2010 and 2017,
the highest risk of 1-year mortality was linked to the need for
end-organ support with ECMO (HR 1.59) and mechanical
ventilation (HR 2.11) (13).

The evolving scenario of marginal graft acquisition and the
growing complexity of recipients have extended the duration of
cold ischemia and subsequent ischemia-reperfusion injury (IRI),
both of which contribute to a heightened risk of primary graft
failure (PGF) (1, 3). PGF is generally defined by the requirement
for high-dose inotropes and/or mechanical support immediately
following transplantation. As per the International Society for
Heart and Lung Transplantation registry, survival rates diminish
with prolonged ischemic periods (14).

Current standard practice involves static cold storage
(SCS) for hearts from donors following brain death. This
which
substantially reduces the energy needs of the donor heart.

method combines cardioplegia and hypothermia,
Nevertheless, an ischemic time (between aortic clamping in
the donor wuntil aortic declamping in the recipient)
exceeding 240 min is linked to an elevated risk of PGF (OR
3.01) (15, 16).

Allograft injury can manifest as transient myocardial
12-24h  post-HT (17),
definitive myocardial stunning (18). However, PGF remains

stunning, which lasts for or as
the primary cause of early mortality, accounting for up to
40% of deaths within the initial 30 days after transplantation.
The incidence varies between centers based on the definition
and acceptance criteria for grafts and ranges from 15% to

40% (3, 19-21).
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Ischemia reperfusion injury in heart
transplantation

Currently, the standard approach involves utilizing SCS for
hearts obtained following brainstem death (BSD). However, this
method is linked to significant occurrences of IRI (16, 18).
Recent advancements in understanding IRI have brought this
syndrome to the forefront of transplantation discussions. The
mechanisms underlying IRI operate at both the organ and
cellular level through hypoxia and re-oxygenation processes,
which play a substantial role in various pathophysiological
processes that contribute to the onset of PGF. Integrating this
newfound knowledge about IRI is particularly crucial in the
context of HT, which still grapples with prolonged periods of
ischemia and the immediate repercussions of IRI on cardiac
function upon organ reperfusion.

The cellular and molecular mechanisms underlying IRI are
intricate and diverse. Among these, impaired mitochondrial
function and the depletion of energy metabolites are particularly
important for the heart given its close interdependence with
energy metabolism. A synthesis of the principal mechanisms and
some of their resultant effects is presented in Table 1. It is vital
to acknowledge that these processes exhibit high levels of
interconnectedness (as illustrated in Figure 1) and are influenced
by other factors, such as brain death, donor age, or the pre-
existing presence of cardiomyopathy.

Consequences of brain death

Brain death has a significant impact on heart graft function and
transplantation. It precipitates an intense systemic inflammatory
response often referred to as the “cytokine storm”. This
inflammatory response is characterized by an excessive activation of
the immune system, leading to the release of inflammatory
mediators (cytokines, chemokines, coagulation factors) into the blood.

Myocardial damage resulting from this cytokine storm can
compromise the heart’s ability to function properly after
This reduced ventricular

transplantation. can manifest as

TABLE 1 Cellular and molecular processes during IRI.

‘ Damages Consequences

Oxygen and energy substrate High-energy substrates deprivation
deprivation

Mitochondrial function failure Damage of oxidative phosphorylation
Damage of mitochondrial permeability
Cytochrome C release

Apoptosis

Increase of Ca*, Na*, H"
Microvascular damage, nitric oxide loss
(NO)

Reactive oxygen species production

Tonic damage

Endothelial damage

Oxidative stress
Protein oxidation
Immune system stimulation

Inflammation Immune system stimulation, vasculopathy

Ca*, calcium ion; Na*, sodium ion; H*, proton; NO, nitric oxide.
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STORAGE

Ischemia

FIGURE 1

€33

Primary Graft Failure / Late Graft Dysfunction / Death

Ischemia-reperfusion process. Ischemia reperfusion: major cellular and clinical consequences in heart transplantation. DAMP: damage-associated
molecular pattern; HIFla: hypoxia inducible factor 1a; NFxB: nuclear factor kB; ROS: reactive oxygen species.

| TRANSPLANTATION ]

Reperfusion

function, decreased contractility, and an increased susceptibility to
IRI during transplantation.

Additionally, the period of brain death may be associated with
hemodynamic and metabolic disturbances in the donor, which can
also impact cardiac function.

Ischemia

Ischemia is traditionally defined as a mismatch between the
supply of oxygen and energy substrates, and the cellular
requirements for proper function and survival. This disparity can
lead to various forms of cellular damage. In the context of heart
transplantation, the ischemia phase is initiated after the donor’s
aortic clamp, when the heart is no longer perfused.

Mitochondrial damage

In the presence of insufficient oxygen supply, mitochondria are
unable to carry out oxidative phosphorylation, a vital process for
producing triphosphate  (ATP).
anaerobic glycolysis becomes the primary means of generating
ATP, but the levels are inadequate for fulfilling the cellular

adenosine Consequently,

energy demands. Prolonged hypoxia results in an ATP deficit
that hampers the activity of essential transporters, such as the
Na*/K"-ATPase pump. Consequently, cytoplasmic sodium (Na*)
levels increase, with a corresponding reduction in potassium
(K%). This heightened Na" concentration triggers cellular
swelling, loss of structural integrity, and the activation of Na
+/Ca®* channels, causing an elevation in cytoplasmic calcium
(Ca") levels (22). The excessive influx of calcium due to elevated
Na* and inefficient Ca®" removal from the cytoplasm plays a
pivotal role in the context of IRI. This surge in calcium activates

Frontiers in Cardiovascular Medicine

enzyme systems reliant on calcium, contributing to the initiation
of pro-inflammatory processes through the synthesis of lipid
mediators, such as prostaglandins. Moreover, this calcium influx
which disrupt the
cytoskeleton and promote cell apoptosis, ultimately leading to
cell death.

triggers the activation of proteases,

Oxidative stress

Oxidative stress is characterized by an excessive production of
reactive oxygen species (ROS), which is often observed during re-
establishment of the oxygen supply. The generation of ROS
triggers substantial cellular damage, primarily through processes
such as lipid peroxidation, which in turn leads to sterile
inflammation, causing vascular permeability. Furthermore, ROS
production contributes to impairment of mitochondrial function.
The modifications in mitochondrial structure, coupled with
calcium accumulation and the generation of free radicals, initiate
apoptosis via mechanisms increased membrane
permeability, resulting in opening of the mitochondrial transition
pore; the release of cytochrome C; and the subsequent activation

involving

of caspase 9, followed by other apoptotic proteases. These
processes are modulated by the Bcl-2 protein family situated
within  the
ischemic conditions prevail, adaptive responses to hypoxia

mitochondrial membrane. Nevertheless, when
manifest (23). An enzyme called xanthine oxidase, which is
activated by elevated levels of calcium ions, is responsible for
generating superoxide anions under such circumstances. The
renowned mechanism relies on the activity of the heterodimeric
transcription factor hypoxia-inducible factor 1 (HIF1), which
becomes activated in response to decreased tissue oxygen levels.

HIF1 triggers the expression of proteins involved in various
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processes, including erythropoiesis, angiogenesis, and metabolic
adaptation.

Endothelial damage

The primary target of ischemic conditions is the endothelial
cell. The effects of ischemia on endothelial cells significantly
impact the vascular damage that contributes to the long-term
outcome of heart grafts. These damages arise from various
factors, such as hypothermia, elevated intracellular calcium
(Ca®") levels, or the composition of graft preservation solutions
(e.g., containing high potassium concentrations). Under normal
physiological conditions, the endothelium facilitates the release of
molecules that regulate the homeostasis of the vascular wall.
These molecules include nitric oxide (NO), prostaglandin (PGI2),
and endothelium-derived hyperpolarizing factor. However,
ischemia disrupts the endothelium’s ability to regulate these
functions, particularly by altering the expression and activity of
nitric oxide synthases (NOSs), leading to a reduction in NO
production (24).

Endothelial cells lose their ability to maintain the integrity of
the endothelial barrier under ischemic conditions. However, they
become activated, resulting in the expression of cytokines,
that are
responsible for recruiting leukocytes. These processes play a

chemokines, receptors, and adhesion molecules
crucial role in the formation of lesions during the reperfusion
phase (25). Ultimately, prolonged ischemia leads to irreparable

cellular damage and disorganization.

Inflammation

Brain death and IRI trigger the production of proinflammatory
molecules and ROS, which exert a significant impact on graft
performance both before and after transplantation (26, 27). The
process of brain death leads to the synthesis of proinflammatory
molecules (Table 2) during the ischemic phase. These molecules
are generated by monocytes, macrophages, and neutrophils that
persist in the vasculature following organ removal; endothelial
cells and myocardial tissue also contribute to their production
(28). Furthermore, even cardiac

myocytes can synthesize

TABLE 2 Pro-inflammatory molecules produced by heart transplantation.

Fanly  wokeass .

Cytokines Interleukins (IL-1B, IL2, IL6, IL-10, IL-12)
TNF-o

IFN-y

MCP-1

ICAM-1

VECAM-1

PECAM -1

Integrin

Chemokines

Adhesion molecules

L-selectin
Others iNOS

Cyclooxygenase -2
IL, interleukin; TNF-a, tumor necrosis factor alpha; IFNy, interferon gamma; MCP-1,
monocyte chemoattractant protein-1; ICAM-1, intercellular adhesion molecule-1;

VECAM-1, vascular cell adhesion molecule-1; PECAM-1, platelet endothelial cell
adhesion molecule-1, iNOS, nitric oxide synthase inducible.
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cytokines during the ischemic period (29). These proinflammatory
components continue to be generated during the reperfusion
phase, driven by the infiltration of the graft by leukocytes and the
activation of neutrophils and macrophages.

Inflammation can affect the transplanted heart graft via various
mechanisms that are complex and multifaceted and could impact
overall graft performance and patient outcomes. Here are some
possible mechanisms and manifestations of inflammation that
can negatively impact graft function: IRI, endothelial dysfunction
(leading to reduced NO production, vasoconstriction, increased
vascular permeability, and impaired blood flow), leukocyte
infiltration (neutrophils and macrophages), myocardial edema
(impairing cellular metabolism and ijon channel function),
allograft rejection (inflammation and immune response leading
to tissue damage), fibrosis (impairing cardiac contractility and
electrical conduction), cytokine storm (causing widespread tissue
damage, hemodynamic instability, and multi-organ dysfunction),
microvascular dysfunction (compromising oxygen delivery to
cardiac cells), impaired electrical conduction (leading to
arrhythmias and conduction disorders), and impaired metabolic
balance.

Opverall, the impact of inflammation on heart graft function is a
complex interplay of immune responses, cytokine signaling,
oxidative stress, and cellular interactions. Strategies aimed at
mitigating inflammation, such as immunosuppressive therapies
and anti-inflammatory agents, may be crucial for maintaining
graft function and promoting successful HT outcomes.

Reperfusion

In the context of HT, the reperfusion phase initiates upon
aortic declamping in the recipient, at which point the heart is
perfused with warm blood, enabling it to restore contractility.

Vascular dysfunction and increased oxidative
stress

Reperfusion involves the reinstatement of oxygenated blood
supply to the tissue. During this phase, two mechanisms
Firstly, the
phenomenon arises due to inadequate microvascular reperfusion,

contribute to reperfusion injuries. no-reflow
often linked to hemostasis disorders marked by increased platelet
and complement activation, as well as leukocyte aggregation.
Microvascular dysfunction emerges from an imbalance between
vasodilator and vasoconstrictor agents. Secondly, the sudden
surge in oxygen levels gives rise to an overwhelming production
of oxidative stress, surpassing the capacity of cellular antioxidant
systems that were already compromised by the preceding
ischemic phase. Though oxidative stress is accentuated during
reperfusion, its initiation occurs during brain death and is
exacerbated by ischemia. The concurrent generation of ROS and
NO yields peroxynitrite ions (ONOO-), which are recognized for
their cytotoxic effects, as they curtail the availability of NO, a
potent vasodilator. The detrimental consequences of reintroduced
involve the mitochondrial

oxygen also opening of the

permeability transition pore, leading to mitochondrial edema,
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complete inhibition of mitochondrial functions, including ATP
production, and the release of cytochrome C. This sequence of
events activates the proapoptotic pathway (23). Consequently, IRI
stimulates multiple cell death pathways encompassing apoptosis,
necrosis, and autophagy.

Though ischemic damage predominantly results in necrosis,
reperfusion injury can also trigger apoptosis (25, 30). In a rabbit
model, markers of apoptosis detected in reperfused tissue were
absent in normal tissue or tissue exclusively injured by ischemia
(25). Other investigations have noted the emergence of apoptotic
cells within the peri-necrotic region during reperfusion (31, 32).

Reperfusion and immune response

The reperfusion phase is also marked by the initiation of an
within  the
transplantation, followed by an adaptive immune response that

innate immune response initial days post-
plays a role in the development of a chronic immune reaction
(33, 34). Thus, in the initial week of reperfusion, the innate
immune system orchestrates the recruitment and activation of
monocytes, neutrophils, and dendritic cells. This process is
facilitated by the generation of immunoreactive molecules during
cellular stress, including damage-associated molecular patterns
(DAMPs) and ligands for Toll-like receptors (TLRs) expressed
within the ischemic tissue; the release of cytokines and
chemokines; and the activation of endothelial cells, coupled with
the expression of adhesion molecules, such as selectins.

These intricate processes intersect with the recruitment of T
cells and the ensuing adaptive immune response, which occurs a
few days following reperfusion and intensifies in response to the
degree of graft allogenicity (35). This adaptive immune response
contributes to the reduction of capillaries and leads to chronic

hypoxia, ultimately contributing to delayed graft dysfunction.

Clinical correlates

of IRI
dysfunction,
arrhythmias
After
mitochondria may struggle to restore or maintain their inner

Clinical ~presentations encompass arrhythmias,

microvascular and  myocardial  stunning.

Reperfusion-induced may be influenced by

mitochondrial ~ dysfunction. prolonged ischemia, the
membrane potential, leading to destabilized action potentials and
heightened vulnerability to arrhythmias (36).

Myocardial stunning denotes a temporary myocardial
dysfunction that arises post-reperfusion. It is thought to stem
from a combination of factors, such as oxidative stress,
myocardial edema, and persistent calcium overload, even after
reperfusion (37). This
injury,
myocardial function is observed when the microvasculature

condition is also intertwined with

microvascular and enhanced regional and global
remains structurally intact (38-40). As myocardial stunning is
reversible over time, short-term administration of inotropic
agents can enhance cardiac function and organ perfusion.
Initially, the inflicted damage is reversible and, if blood flow is
reinstated during this period, the structures and functions can

recuperate to their normal state. However, if ischemia persists for
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an extended duration, the damage becomes irreparable,
culminating in cell death. Before cell death is a vulnerable
window during which ischemic myocytes are viable but prone to
further injury upon blood flow restoration (ie., reperfusion
injury). The restoration of blood flow triggers three events that
additional

obstruction, deposition of red blood cells (hemorrhage), or

can inflict harm on myocytes: microvascular
localized inflammation that could exacerbate microcirculation
damage. Myocardial edema, both intracellular and interstitial,
exhibits a bimodal pattern following reperfusion. The initial
surge occurs shortly after reperfusion and diminishes within a
few days, whereas the second wave emerges days later and

coincides with the healing process (41).

Cardioprotective strategies

Over the past few decades, numerous strategies have been
proposed to mitigate IRI, capitalizing on a deeper understanding of
its mechanisms and its repercussions (42). These strategies can be
categorized into different groups based on their protective
approach, the timing of their application, their targeted cells, and
intracellular components (Figure 2). The principal modes of
cardioprotection encompass ischemic conditioning, administration
agents,

of chemical and the implementation of physical

interventions, such as hypothermia. These cardioprotective
strategies can also be classified by when they are applied in relation
to the ischemic event (i.e., prior to, during, or after) (43). Ideally,
that should be

administered at the earliest opportunity, as the majority of cellular

treatments confer protection against IRI

injuries manifest during the initial moments of reperfusion.

Static graft preservation

Hypothermia: static cold storage

SCS is the most widely employed technique for heart
preservation. This method involves the prompt removal of blood
from the organ, meticulous cleansing of the vascular system with
a cold preservation solution and maintaining the heart in a
hypothermic state of rest until it is ready for transplantation.
Typically, the heart is placed within a sterile bag filled with the
preservation solution, then nestled in a container equipped with
ice for transportation. These measures are implemented to
induce diastolic arrest in the heart, thereby curtailing its
metabolic demands and mitigating the adverse impacts of
ischemia during transport.

Although hypothermia does not bring cellular metabolism to a
complete halt, it does decelerate the degradation of vital
compounds essential for cellular viability (44). Furthermore,
hypothermia curtails the rate of lysosomal organelle breakdown
within cells, thereby preventing the release of autolytic enzymes
and subsequent cell death. As per Vant Hoff’s rule, metabolic
activity at 4°C is approximately 10%-12% of the baseline
observed under normothermic conditions (45). Thus, the optimal
storage temperature is a controversial issue. Low temperatures
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instead, passively enters the cell. This creates a hyperosmolar
intracellular environment, causing water to flow into the cell,
resulting in cell edema. To counteract this swelling, colloids are
introduced into preservation solutions.

Cold storage within the temperature range of 0-4°C triggers
rapid intracellular ATP depletion. Within 4 h, nearly 95% of
ATP is hydrolyzed,
becoming the predominant nucleotide. This metabolic shift

leading to adenosine monophosphate

results in acidosis, with the production of two lactic acid
molecules (46). The impact of acidosis on ischemic injury is pH-
dependent. Profound acidosis activates enzymes, including
phospholipases and proteases, causing damage to lysosomes and
ultimately resulting in cell death. Thus, effective pH regulation is
a vital role of preservative solutions.

SCS has been associated with the promotion of ROS
production, likely due to mitochondrial impairment. Free or
chelated iron catalyzes the formation of ROS and directly
contributes to hypothermia-induced damage by causing
mitochondrial dysfunction and initiating apoptosis. ROS rapidly
react with other molecules, causing extensive damage to lipids,
nucleic acids, and proteins (47). The ensuing mechanism of cell
death seems to be dependent on ATP.

The process of rewarming can also induce harmful effects.
Systemic collapse and cellular lesions may occur due to the
elevation in temperature and oxygen pressure. Upon restoration
of blood flow, the oxidation of hypoxanthine and xanthine
produces ROS. These free radicals lead to lipid peroxidation,
increased membrane permeability, oxidation of membrane
proteins, and DNA damage, culminating in enzyme dysfunction.
In addition, the accumulated hypoxanthine diffuses out of cells,
impeding the cell’s capacity to replenish its energy reserves
(48, 49). These injuries may be accountable for the delayed
recovery of myocardial function, acute graft failure, and long-
term coronary atherosclerosis.

Paragonix Technologies (Cambridge, MA) has developed the
single-use, disposable Paragonix SherpaPak®™ Cardiac Transport
System for non-perfusing storage. Its purpose is to sustain
donor heart temperatures between 4°C and 8°C for extended
durations. The system involves suspending the donor heart in a
preservation solution, which is de-aired to allow complete
submersion of the heart to facilitate even cooling. Subsequently,
the inner cannister is inserted into the outer cannister and
surrounded by disposable cooling packs. These cooling packs,
in contrast to regular ice that undergoes a phase change at 0°C,
undergo a phase change at 5°C, thereby maintaining the desired
preservation temperatures. In preclinical and clinical studies,
various preservation solutions, such as Celsior, University of
(Uw),

have been employed with this

Wisconsin and  histidine-tryptophan-ketoglutarate
(HTK), (50-52).
Preliminary findings from an ongoing large multicenter registry

system

involving 10 sites and 569 patients (comprising 255 ice
transports and 314 SherpaPak® transports) have shown
favorable early clinical outcomes in the intervention group,
including reduced rates of primary graft dysfunction (PGD) and
shorter stays in the intensive care unit (53). Thus, this system,
which guarantees a stable temperature, provides protection
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against cold-related injuries, as well as real-time monitoring
of data.

Ischemic conditioning

Strategies centered around ischemic conditioning encompass
both preconditioning and postconditioning. The mechanisms
underlying ischemic conditioning remain somewhat elusive due
to their multifaceted nature. Ischemic preconditioning (IPC)
serves to prevent the uncoupling of NOS and the subsequent
generation of reactive oxygen and nitrogen species. In addition, it
boosts signaling through proteins, such as protein kinase G,
reperfusion injury rescue kinase, and survivor activation factor,
in reperfused cardiomyocytes (43). IPC also seems to impact
mitochondrial function (54, 55).

Preconditioning’s effects can be triggered by pharmacological
agents that act on identified targets and have demonstrated
that
specifically open mitochondrial K-ATP channels, diazoxide has

protective effects in animal models. Among agents

demonstrated promising outcomes, though it can induce
hypotension due to its broad effects. Another potential avenue
involves inducing these mechanisms through gene transfer. Gene
transfer can be used to induce protective pathways akin to IPC
in the context of HT. Certain genes are associated with protective
mechanisms that mimic IPC. For example, genes encoding heat
shock proteins (HSPs), adenosine receptors, and protein kinase C
(PKC) isoforms have been identified as key players in mediating
the protective effects of IPC. These genes can be transferred to
the graft to induce similar protective pathways. In some cases,
gene transfer can also be performed in vivo, where the viral
administered to the after

vector is directly

transplantation. This approach allows for targeted gene delivery

recipient

to the transplanted heart. The transferred genes induce cellular
responses that mimic the effects of IPC: reducing oxidative stress,
improving cellular energy metabolism, promoting anti-
inflammatory processes, and inhibiting apoptotic pathways. By
inducing these protective pathways, the transplanted heart
becomes more resistant to the detrimental effects of ischemia
and reperfusion, leading to improved graft survival, reduced
ischemic injury, and enhanced overall function.

However, the practical applicability of preconditioning in
clinical settings remains uncertain. Effective administration of the
required substances would necessitate their use prior to donor
death, which is currently prohibited by ethical and legal
considerations. Furthermore, the impact of such treatment would
be systemic and could affect all donor organs, potentially
compromising the retrieval of specific organs due to their
toxicity. A possible alternative is the in-situ administration of
pharmacological agents via the preservation solution to replicate

the effects of preconditioning.

Heart preservation solution

To mitigate the adverse effects of IRI, a range of heart
preservation solutions have been developed, each containing
varying
electrolytes, and antioxidants. The first solution, Euro Collins,
was formulated in 1960, followed by the introduction of the UW

concentrations of cellular nutrients, metabolites,
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solution in 1988 (56). Subsequently, modifications and the
development of new solutions have grown substantially, with more
than 150 different solutions commercialized to date (57, 58).
The three most commonly used solutions currently are HTK
solution (Perisoc, Kholer Chemie Pharmaceuticals, Germany),
UW solution (SPS-1, Poland), and Celsior solution (Institut
Georges Lopez, France).

The different solutions for heart graft preservation are designed
with specific compositions to optimize the viability and function of
the heart during the storage period prior to transplantation. Each
solution aims to maintain cellular integrity, prevent IRI, and
support the necessary metabolic processes for effective recovery
post-transplantation. The main reasons underlying the distinct
compositions of heart graft preservation solutions include:

o Nutrient and electrolyte provision: Preservation solutions must
contain essential nutrients, such as carbohydrates, amino
acids, and electrolytes to sustain fundamental metabolic
processes and maintain electrolyte balance in cardiac cells
during the storage period.

o Oxygenation and antioxidants: Preservation solutions may
incorporate antioxidant agents to shield cardiac cells from
damage caused by free radicals produced during ischemia-
reperfusion. Adequate oxygenation in the solution can also
support aerobic metabolism of cells.

o Acid-base balance and pH maintenance: Preservation solutions
need to uphold acid-base equilibrium and appropriate pH
levels to prevent metabolic acidosis that can occur during
ischemia.

o Cellular edema reduction: Some solutions contain osmotic
agents to minimize water accumulation in cardiac cells,
reducing the risk of cellular edema and structural damage.

o Inhibition of inflammatory responses and apoptosis: Certain
solutions may include anti-inflammatory agents or substances
that inhibit apoptotic pathways to mitigate cellular damage
induced by ischemia-reperfusion.

o Support of mitochondrial function: Mitochondria are critical for
ATP production and cell survival. Some solutions may contain
energy substrates and cofactors to support mitochondrial
function.

o Prevention of endothelial injury: Preservation solutions aim to
preserve vascular endothelial integrity to promote adequate
blood flow and minimize the risks of thrombosis or

endothelial dysfunction.

Ultimately, the compositions of heart graft preservation solutions
aim to optimize cellular viability and cardiac function during the
storage period to mitigate ischemia-reperfusion-related damage
and maximize the success of HT. Each solution may offer
specific advantages based on its composition, route of
administration, and capacity to protect the heart against various
consequences of ischemia and reperfusion.

Numerous studies have attempted to compare post-
transplantation outcomes associated with various preservation
solutions. However, the results have been inconsistent (59) and
have not clearly established the superiority of one solution over

another (60-63). In a larger observational and retrospective
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study, UW solution (n=3,107) demonstrated a significantly
higher 1-year survival rate than Celsior solution (n=1,803),
though this difference may not have clinical relevance (89.6% vs.
87.0%, p<0.01) (64). of different
preservation solutions are strongly influenced by confounding

Comparative analyses
factors related to extended criteria for organ donation, duration
of cold ischemia, complex recipient surgical conditions (e.g., redo
surgery and mechanical circulatory support), and the effects of IRI.

Regardless of the preservation solution used, optimal results
with SCS are achieved when the ischemia time remains under
4 h. Each additional hour of ischemia beyond 4 h amplifies the
risk of graft failure by 43% and increases the 1-year post-
transplant mortality risk by 25% (21).

Additive drugs during preservation

Targeting cellular signaling pathways that contribute to IRI
outcomes is promising as a therapeutic approach. Numerous
potential therapies are being explored. Antioxidants and NO
transport agents are of particular interest due to the pivotal role
of oxidative stress and endothelial damage (48, 49). In addition,
drugs that reduce graft immunogenicity before transplantation
could help mitigate post-transplantation damage. An alternative
approach involves incorporating valproic acid into perfusate,
which has had encouraging results (65, 66). The application of
metabolomics, proteomics, and genomics techniques to organ
preservation offers a promising avenue for identifying new
markers of IRI-related damage and subsequent development of
novel therapeutic targets.

Anti-inflammatory therapies have also emerged as intriguing
targets, though they have been comparatively underexplored in
this context. Colchicine, which exerts diverse anti-inflammatory
effects by inhibiting neutrophil chemoattraction, the inflammasome
network, and pro-inflammatory cytokines, stands out as a potential
candidate (67). By disrupting tubulin, colchicine interferes with
multiple inflammatory pathways, leading to diminished neutrophil
function and reduced migration across the vascular endothelium.
Proinflammatory cytokines and adhesion molecule expression are
also potential targets for colchicine, thereby impeding local
production of coronary chemokines, such as MCP-1 (68), and the
secretion of tumor necrosis factor-o. by macrophages. Colchicine
may even exhibit some anti-fibrotic effects. Various animal
studies investigating its cardioprotective effects have found that
lower doses of colchicine can inhibit heart apoptosis in rat
models (69) and generate anti-fibrotic effects in vitro (70),
potentially through microtubule cytoskeleton remodeling and/or
direct anti-inflammatory actions. Its anti-inflammatory effects
are characterized by a reduction in cytokines involved in the
post-ischemic inflammatory response, including IL-6, MCP-1, and
IL-10 (71, 72).

Dynamic graft preservation
Ex situ machine perfusion

Ex situ machine perfusion was initially proposed to prolong the
duration of organ preservation, with the added benefit of
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potentially expanding the donor pool and improving utilization
rates. By supplying the metabolic needs of the myocardium,
perfusion can effectively minimize irreversible ischemic cell
injury and subsequent cell death. Various heart perfusion
systems, categorized as either hypothermic machine perfusion
(HMP) or ex situ normothermic perfusion (ESNP), have
demonstrated successful preservation of animal and/or human
hearts (73). Notably, the longest reported successful human heart
preservation time, 16 h, was achieved using ESNP (74).

These perfusion devices are designed to be portable and enable
an extended and secure preservation window, facilitating the use of
hearts from donors located at a distance. Currently, a single
commercially available perfusion system is available for clinical
applications, known as the Organ Care System™ (OCS,
TransMedics, Andovers, USA) (ESNP). In Europe, a multicenter
randomized clinical trial is currently underway to explore the
safety and potential advantages of the XVivo®™ technology for
heart preservation (XVivo Perfusion AB, Goteborg, Sweden)
(HMP) (NCT03991923) (75, 76). The clinical significance of
broad,
preservation duration, assessment of extended-criteria donors,

these devices is encompassing an expansion of
and the utilization of re-perfused donor hearts retrieved
following controlled circulatory death. Detailed summaries of
studies with robust methodologies investigating ex situ machine

perfusion are provided in Table 3.

Ex situ normothermic perfusion

OCS configuration

Following the retrieval of the heart graft previously preserved
using a hypothermic solution, the graft is prepared and
positioned on a dedicated module designed for isolated perfusion

10.3389/fcvm.2023.1248606

(see Supplementary Figure S1). The OCS perfusion system
consists of a reservoir and an oxygenator, both connected to a
centrifugal pump. An aortic cannula is affixed to the graft’s aorta
and is responsible for perfusing the aortic root and coronary
arteries with nutrient-enriched donor blood. An additional
cannula is placed in the pulmonary artery to collect blood
returning from the coronary sinus, enabling the measurement of
blood lactate, which is the only available predictive factor
(modest sensitivity and specificity) of myocardial viability to date
and, consequently, of the quality of ex situ perfusion (74-77).
Lastly, a third cannula is introduced into the left atrium to
relieve pressure in the left ventricle.

The regulated by
maintaining a minimum pressure of 40 mmHg to ensure

anterograde coronary perfusion is
sufficient coronary flow and avoid inadequate perfusion at lower
pressures (75-77). Pseudo-pulsatility is induced through external
pacing of myocardial contractions at a rate of 80 beats per
minute. This stimulation aids in emptying the right ventricle,
facilitating the collection of coronary venous return while
maintaining the capillary bed open and enhancing extracorporeal
perfusion (77). A drainage cannula is inserted via the mitral
valve to prevent coronary gas embolisms and to offer passive
unloading of the left ventricle during preservation.

After the arterial shunt is activated, the heart is gently
massaged during the rewarming process. The heart may regain
its spontaneous rhythm or fibrillate, necessitating an external
defibrillator shock. When electrical activity resumes, the inferior
vena cava is tied off. Gradually, the assisted flow is increased to
reach a target range of 650-850 ml/min measured at the return
to the pulmonary artery, indicating the coronary flow. This is
achieved to maintain a desired mean arterial pressure of

TABLE 3 Complete or recruiting studies investigating ex vivo machine perfusion for heart transplantation.

Location  n Protocol

Type of

device

Primary endpoint

NCT03991923 | XVIVO Europe (15 202 | RCT 30 days mortality and 30 days graft dysfunction
centers) XVIVO heart preservation devices VS
cold static storage
NCT04066127 | NIHP Sweden 66 | RCT Survival free of acute cellular rejection and re-transplantation

Non-ischemic heart preservation (NIHP)
VS Standard ischemic cold static storage

NCT03831048 | OCS United States | 180 | RCT

OCS heart System VS Cold Storage

Patient survival 6 months post-transplant

NCT03835754 | OCS United States | 75
Single Group Assignment

OCS heart System

Observational prospective study

Patient survival 30 days post transplant

NCT03150147 | NIHP Sweden 47 | RCT

NIHP VS Ischemic cold static storage

Composite endpoint of patient death due to graft failure, re-transplantation
due to graft failure, severe primary graft dysfunction (PGD), need for extra
corporal mechanical support such as ECMO within 7 days post
transplantation, or acute cellular rejection (ACR) >grade 2.

NCT05741723 | OCS United States | 276
Single Group Assignment

OCS heart System

Observational prospective study

Patient survival through 5 years post-transplant

NCT00855712 | OCS United States | 128 | RCT

Organ Care System VS cold static storage

30-day patient survival following transplantation with the originally
transplanted heart and no mechanical circulatory assist device at day 30

NCT05047068 | OCS United States | 350
Single Group Assignment

OCS heart System

Observational prospective study

Patient survival at one-year post- heart transplant.

ECMO: extracorporeal membrane oxygenation; OCS: organ care system; RCT: randomized controlled trial.
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70-85 mmHg. Adjustments are made to the mean aortic pressure
and coronary flow to ensure the extraction of myocardial lactate,
which is evident by a positive arterio-venous difference.

Clinical use and applications

Several prospective non-randomized trials comparing SCS with the
use of the OCS™ demonstrated similar survival rates at 30 days, 1
year, and 2 years (76, 78, 79). The implementation of OCS was
associated with extended overall preservation times, reduced cold
ischemia duration, and a trend toward decreased PGF rates. In
addition to preserving standard donor grafts, clinical interest has
been directed towards employing OCS® for marginal donors or
cases with long anticipated preservation times. This approach
aims to overcome the constraints of the current limited donor
pool. The EXPAND trial (80) encompassed grafts with an
expected total ischemic time of either >4 h or >2h combined
with specific criteria, such as left ventricular hypertrophy,
ejection fraction of 40%-50%, circulatory arrest time >20 min, or
age exceeding 55 years. Eighty-one percent of the included grafts
were utilized, resulting in 30-day and 6-month survival rates of
94.7% and 88.0%, respectively. Severe early graft dysfunction
within the in 10.7%
Nevertheless, the absence of a comparative group somewhat

initial 24h was observed of cases.
limits the robustness of these findings and their applicability in
clinical practice. Various institutions have independently reported
their experiences utilizing OCS® for expanded criteria donors
(81). Certain studies have described marginal donor series that
were transplanted following OCS preservation, with an average
total preservation time of 284 min. In these cases, the 1-year
survival rate reached 96.2% (82).

Hypothermic machine perfusion (HMP): X VIVO
NIHP technology

Initial research efforts in the field of machine heart perfusion
concentrated on hypothermic oxygenated perfusion methods
(83). Numerous preclinical studies investigating hypothermic
oxygenated perfusion have demonstrated the successful
preservation of hearts for periods of up to 48 h (84, 85). The
XVIVO® Heart Preservation System (XVIVO Inc, Gothenburg,
Sweden) (Supplementary Figure 2) is currently undergoing
testing in a phase II clinical trial. In contrast to warm graft
reperfusion, HMP hinges on the utilization of cardioplegia and
hypothermia to induce heart arrest, thereby minimizing
metabolic demand during perfusion (75, 86). During this process,
the heart is subjected to perfusion with a cold solution (8°C) that
is enriched with nutrients and hormones. This cardioplegia
solution also includes red blood cells, which serve to restore the
depleted ATP levels within myocardial cells, as supported by

preclinical studies (87-89).

HMP configuration

The HMP procedure involves the use of a serial roller pump, an
oxygenator, a leukocyte filter, and a heater/cooler component. To
sustain the perfusion circuit, 2.5L of perfusion solution and
500 ml of compatible irradiated and leuko-reduced donor/
recipient blood are required, with a target hematocrit of 18%.
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The heart is connected to the HMP system using an aortic
cannula. Once the heart is in position, the ex-situ circulation
process is initiated. Oxygenated blood is introduced into the
aortic root, aiming for a perfusion pressure of 20 mmHg and
a coronary flow rate of 150-250 milliliters per minute. The
heater/cooler mechanism maintains the temperature at 8°C and
the pH at 7.4.

Clinical use and applications

HMP studies in the context of HT are limited, but they have shown
promising results, particularly in the field of lung preservation and
evaluation of expanded criteria lung transplant donors. Early
clinical applications of the HMP system have also yielded
heart
nonrandomized open-label phase 2 trial (75), 6-month mortality

positive outcomes for donor preservation. In a
was lower for patients who underwent HMP compared to those
who underwent SCS. The SCS group experienced four deaths
within 6 months after transplantation and three cardiac-related
adverse events, whereas the HMP group reported no deaths or
cardiac-related adverse events. The median preservation times
were 223 min for HMP and 194 min for SCS. Importantly, no
significant PGF cases were reported. This trial marked the first-
in-human study demonstrating the feasibility and safety of
normothermic isolated heart perfusion (NIHP) for clinical HT.
Overall, though HMP studies in HT are relatively limited, the
outcomes observed thus far are promising and suggest that HMP
could play a crucial role in improving donor heart preservation

and transplantation outcomes.

Ex situ machine perfusion limitations

However advantageous these techniques may be, they are not
devoid of substantial limitations. In addition to their high cost
and the need for specialized transportation, these methods also
demand intricate technical expertise for graft retrieval, device
implementation, and oversight during transit as outlined in
Table 4. Furthermore, the process of ex situ normothermic
perfusion (ESNP) introduces successive bouts of ischemia-
reperfusion during organ harvesting and transplantation,
potentially heightening the risk of cellular and myocardial damage.

The current assessment of graft performance during ESNP is
confined to observing lactate kinetics and clearance within a
perfused, beating heart devoid of afterload conditions. This
evaluation approach restricts the comprehensive appraisal of
heart function, limiting it to a Langendorf perfusion model,
which falls short in terms of sensitivity and specificity. Critical
aspects, such as systolic and diastolic functions, cannot be
accurately gauged in the absence of preload and afterload
considerations, constraining the scope of graft evaluation.

Preclinical studies are imperative to comprehensively
understanding the intricate dynamics of IRI across different
levels, ranging from the tissue to the microcirculation and
endothelium, as well as cellular calcium homeostasis. For
example, a porcine model demonstrated a correlation between
lactate kinetics and the success or failure of normothermic ex
situ preservation, as determined by left ventricular contractility

measurements (90). In another study, the normothermic ex situ
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TABLE 4 Comparison of different techniques for heart graft preservation.

Static cold storage

Transmedics organ care system

10.3389/fcvm.2023.1248606

XVIVO perfusion XHPS

o Uses preservation

Price 800-1,000 euros 30-35,000 euros Not available
(preservation solution)
Weight 2.5Kg 45Kg 25Kg
Ergonomics +++ + ++
Storage temperature 4°C 34-36°C 8°C
Storage duration 4h Until 4-6 h Until 24-48 h
Storage solution Static Dynamic Dynamic
o 2L of preservation « 15L of donor leukoreduced blood o 251 of perfusion solution
solution o +500 ml of perfusion solution e +500 ml of compatible donor/recipient blood
irradiated and leukoreduced
Perfusion pressure - 70-85 mmhg 20 mmhg
Coronary flow - 650-850 ml/min 150-250 ml/min
Advantages « Safe organ storage «  Monitor organ function (aortic pressure, coronary flow, |« Uses preservation solution

heart rate, blood temperature)

o Monitor pO2 and pH of perfusate

« Easy to use

o No electrical power
required

solution.
o Cheap
« Homogeneous o Allows x-ray
temperature
o Immersed graft « Housing enables ultrasound assessment and blood « Console is reusable but Perfusion set is once use
sampling

« Handling .

o Energy reserves
preservation

Console is reusable but Perfusion set is one time use .

Proven superiority

Disadvantages o Ischemic reperfusion .

injury

Expensive

« Expensive

o Short Storage duration | «

Needs more staff and qualified personnel .

Needs more staff and qualified personnel

o Cell swelling « No functional working mode

o Increased Ca2+ « No proven superiority

o Damage to cell o Successive periods of ischemia-reperfusion
membranes.

model exhibited superiority over hypothermic crystalloid solution
preservation, demonstrating protective effects by inhibiting
apoptosis and oxidative stress in coronary arteries, enhancing
both

vasorelaxation, and promoting antioxidant production to prevent

endothelium-independent and endothelium-dependent
ONOO-free radical formation. This approach also resulted in
increased ICAM-1 expression in grafts (91). Paradoxically, when
comparing three preservation methods after a 30-minute delay in
warm ischemia (including warm oxygenated blood, 4°C
crystalloid HTK, and a novel HTK-N solute at 4°C), contractility
indices were more favorable in the HTK-N and HTK groups
compared to the warm blood perfusion group. In addition,
immunohistochemical markers, immunoreactivity, and cellular
edema were notably reduced in the HTK-N group compared to
the warm reperfusion group (92).

Given these complexities, there is a pressing need for additional
data to
immunohistochemical

comparative elucidate the inflammatory and

phenomena  between  ex  vivo

normothermic perfusion (ESNP) and the conventional cold static
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preservation approach. Such data could provide a more
comprehensive understanding of the underlying processes and
aid in refining these preservation techniques.

Perspectives
Ex situ therapeutic interventions

Ex situ perfusion systems present a significant opportunity to
serve as a prominent conduit for the administration of
therapeutic interventions to donor hearts without causing adverse
effects on other donor or recipient organs. The central objective
of these interventions is to mitigate the impact of IRIL, with a
particular focus on the potential to rejuvenate marginal organs
Although  these
applications are still in the preclinical phase and have not yet

for viable transplantation. therapeutic

undergone clinical testing, their preliminary outcomes are
promising. The prospective integration of ex situ therapies has
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the potential to not only enhance graft viability, but also contribute
to expanding the existing donor organ pool, a prospect that has
significant potential for the field of transplantation.

There are several potential therapeutic strategies that can be
explored within the ex-situ perfusion context:

- Pharmacological agents: Various pharmacological agents, such
as antioxidants, anti-inflammatory drugs, and vasodilators, can
be administered to the donor heart during ex situ perfusion.
These agents aim to counteract oxidative stress, reduce
inflammation, and improve vascular function, ultimately
protecting the heart from IRI-related damage.

- Gene therapy: Gene transfer techniques can be utilized to
introduce specific genes into the donor heart during ex situ
perfusion. These genes can encode for protective factors or
enzymes that
introducing genes that promote antioxidant production or

counteract IRI processes. For example,
inhibit apoptosis could enhance the heart’s resistance to IRIL.

- Cell-based therapies: Ex situ perfusion systems can facilitate the
delivery of therapeutic cells, such as stem cells or genetically
modified cells, directly to the donor heart. These cells have the
potential to promote tissue repair, regeneration, and
immunomodulation, further enhancing the heart’s viability.

- Metabolic modulation: Manipulating the metabolic pathways
within the donor heart during ex situ perfusion could
promote energy production and reduce the negative
consequences of metabolic disruption during IRI

- Targeted drug delivery: Nanoparticles and other drug delivery
systems can be designed to target specific cellular pathways and
deliver therapeutic compounds directly to the heart tissue,

minimizing systemic effects and maximizing efficacy.

Though these strategies have shown great promise in preclinical
studies, it is important to note that translating them into clinical
practice requires rigorous testing and validation. Clinical trials
are needed to assess the safety, efficacy, and long-term outcomes
of these interventions in human donor hearts. If successful, ex
situ perfusion-based interventions could revolutionize the field of
organ transplantation by expanding the pool of viable donor
organs, reducing the incidence of IRI-related complications, and
improving overall graft quality.

Blocking apoptosis and necrosis pathways
Interception of the apoptosis pathway in porcine hearts
using hypothermic perfusion solutions infused with small
interfering  RNA molecules targeting key apoptotic and
had

diminishing cellular apoptosis and mitigating myocyte injury.

inflammatory enzymes has notable outcomes in
Furthermore, this approach has resulted in enhancement of
donor myocardial function (93-95). In a distinct porcine
transplantation model, the introduction of oxygen-derived free
radical scavengers into the perfusion process has shown the
potential to enhance graft functionality while concurrently
ameliorating cellular edema (54).

Yet another preclinical investigation unveiled the efficacy of a

therapeutic regimen that couples two inhibitors of the necrosis
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pathway, resulting in a discernible reduction in IRI among rat
cardiomyocytes (95, 96). Therapies that foster angiogenesis have
also garnered attention. Examples encompass interventions
involving the inclusion of vascular endothelial growth factor
(VEGF) (97), prokinectin receptor-1 (98), or human multipotent
stromal cells (98, 99). These interventions have manifested the
capacity to elevate the survival rate of cardiomyocytes subjected
to ischemia.

Extracellular vesicle therapy

Extracellular vesicles (EVs) derived from various cell lines have
exhibited a range of beneficial properties in both in vitro and in
vivo studies, including immunomodulation, antioxidant activity,
anti-inflammatory effects, and tissue repair capabilities. These
EVs possess the ability to enter target cells and modulate
signaling pathways that contribute to tissue healing. EVs have
also demonstrated the capacity to hinder left ventricular
dilatation and enhance cardiac contractility. At the cellular level,
EVs have been effective in mitigating energy depletion, reducing
oxidative stress, and curtailing the infiltration of neutrophils and
macrophages by activating the protein kinase B and glycogen
synthase kinase 3 (AKT/GSK3) pathways. Various animal models
have revealed that the administration of EVs prior to, during, or
after IRI can counteract inflammatory responses, diminish infarct
size, and promote reparative processes (100) while operating
independently of circulating cells such as leukocytes and platelets.
The use of EVs originating from human lymphoid T cell lines to
deliver Sonic hedgehog (SHH) has also demonstrated therapeutic
efficacy (101).

In the context of myocardial IRI in murine models, EVs
derived from cardiac progenitor cells (CPCs) have demonstrated
significant cardioprotective effects (102). When administered
intramyocardially following IRI, CPC-derived EVs effectively
restrain  oxidative stress and myocardial apoptosis by
transferring protective mRNA molecules, suggesting that these
EVs exert their cardioprotective influence by influencing cellular
(103).
underscore the potential of diverse EV types in safeguarding the
heart from IRL In the realm of HT, the timing of EV

administration offers flexibility, including options such as

signaling pathways Collectively, these investigations

before ischemia (aortic clamping), during organ preservation

(ex situ perfusion), before reperfusion, or post-organ
reperfusion. Despite the challenges inherent in this field, several
clinical trials are anticipated in the upcoming years to evaluate
the therapeutic promise of EVs in patients undergoing solid

organ IRIL

Donor heart-specific gene therapy

Some studies employing a porcine model of HT with
normothermic ex situ perfusion have delved into the utilization
of adenoviral vectors and adeno-associated viral vectors for gene
administration using the ocs® system (104, 105). The
investigations aimed to ascertain the feasibility of employing ex
situ perfusion as a conduit for delivering a viral vector to a
donor heart during storage, with a focus on evaluating the
resultant biodistribution and expression levels of the transgene in
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the recipient post-transplant. The impact of various components
within the OCS®, such as the proprietary solution, donor blood,
and ex situ circuitry tubing and oxygenators, was scrutinized. A
refined ex situ perfusion strategy optimized for efficient
adenoviral vector transduction was employed to introduce 5 x
10" total viral particles of an adenoviral firefly luciferase vector
harboring a cytomegalovirus promoter into porcine donor hearts
before heterotopic implantation. The comprehensive assessment
encompassed levels of expression, protein activity, and dispersion
of the firefly luciferase protein, and was conducted over a series
of three heart transplants with a post-transplant endpoint of 5
days. Notably, though the perfusion solution and ex situ circuitry
had no influence on viral vector transduction, the serum or
plasma components of the donor blood significantly hindered the
transduction process (104).

Another study within this domain explored the administration
of recombinant adeno-associated viral vectors (rAAVs) during
normothermic ex situ perfusion to facilitate transgene delivery to
porcine cardiac allografts. A myocardially enhanced variant
known as SASTG was utilized to assess the transduction
efficiency in OCS perfusate. Employing normothermic ex situ
perfusion, the introduction of SASTGs containing the firefly
luciferase transgene into porcine donor hearts was executed
across four heterotopic transplantation procedures. This approach
yielded
allografts within 30 days, showing no indications of off-target
This
feasibility and efficacy of using AAV vectors during ex situ

sustained, dose-dependent transgene expression in

transgene  expression. investigation underscores the
perfusion to achieve gene delivery to a large animal allograft (105).

Subsequent experiments pertaining to gene delivery to the
explanted pig heart involved a method of blood washing prior to
the secondary infusion of blood into the perfusate, thereby
removing undesired plasma or serum components from the donor
blood before its incorporation into the circuit. The enzymatic
assessment of luciferase activity within tissues (native heart,
allograft, liver, etc.) obtained on days 5 (104) and 30 (103) post-
transplant unveiled robust and widespread luciferase activity
throughout all sections of the allograft (right and left atria, right
and left ventricles, coronary arteries), in contrast to the recipient’s
native organs. Crucially, luciferase activity in the recipient’s heart,
liver, lung, spleen, or psoas muscle remained within baseline limits.
Luciferase protein expression in the allograft exhibited uniformity
and vigor across myocardial areas and coronary arteries.

Taken together, these two investigations collectively establish
the feasibility of employing two distinct types of viral vectors to
achieve potent and comprehensive transgene expression through
administration utilizing the OCS®. This innovative approach to
viral vector delivery introduces the prospect of biological
modification of the allograft prior to implantation, which could
potentially enhance post-transplant outcomes.

Donation after circulatory death

As the demand for donor hearts continues to rise, transplant
centers are increasingly considering the utilization of expanded-
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criteria donors. This resurgence in interest also extends to the
population of donation after circulatory death (DCD), which has the
potential to substantially augment the pool of available transplants.
Furthermore, DCD can offer grafts from donors who typically possess
lower comorbidity levels and are often younger (106). Nonetheless, a
primary criticism of this approach revolves around the necessity for
the heart to undergo cardiac arrest upon withdrawal of life support,
leading to ischemic injury. Several strategies are currently employed
and have been investigated, either involving or not involving initial
regional normothermic perfusion (NRP), followed by subsequent SCS
or normothermic reperfusion using the OCS® during transport prior
to transplantation. Nonetheless, a universal consensus regarding the
acceptability of NRP has not yet been reached across various
countries and transplantation centers.

Encouraging outcomes are also being observed with direct
harvesting of DCD hearts combined with ex situ reperfusion.

A recent preclinical study (107) utilizing a porcine model
compared three different strategies for heart preservation after
circulatory death: (1) normothermic regional perfusion combined
with SCS, (2) normothermic regional perfusion combined with
oxygenated HMP (X-VIVO® system), or (3) direct procurement
combined with oxygenated HMP. Following preservation, HT
was performed. The study found that only hearts transplanted in
the HMP groups exhibited a significant increase in biventricular
contractility 2h
significantly less dobutamine to maintain cardiac output than in

after cardiopulmonary bypass, requiring
the SCS group. These results provided strong support for the
potential applicability of the HMP device in human HT.

Messer and colleagues shared their 5-year experience involving
DCD donation, encompassing 79 transplants derived from DCD
donors (22 with NRP and 57 with direct harvesting using OCS™).
This approach notably amplified the transplant activity of the
center by an impressive 48% (164 transplants in total). Survival
rates at 30 days [DCD: 97% vs. brainstem death (BSD): 99%; p =
1.00] and 1 year (DCD: 91% vs. BSD: 89%, p=0.72) were
comparable between the two groups. The US Food and Drug
Administration granted approval for application of the OCS® in
heart preservation after DCD donation in April 2022, and the
results of a dedicated clinical trial (NCT03831048) are anticipated.

In a recent randomized non-inferiority trial, the 6-month survival
following transplantation with a resuscitated donor heart assessed via
non-ischemic extracorporeal perfusion after circulatory death was on
par with survival rates after conventional transplantation involving
donor hearts preserved using cold storage after brain death. Notably,
6-month survival was 94% among recipients of a heart from a
circulatory-death donor, compared to 90% among recipients of a
heart from a brain-death donor (least-squares mean difference, —3
percentage points; 90% CI, —10 to 3; p < 0.001 for noninferiority) (81).

Early outcomes stemming from DCD donation have been
promising and present a potential avenue for tapping into an
underutilized donor pool. Current projections suggest that
widespread adoption of DCD donation could elevate the annual
count of adult heart transplants in the US alone by 300-600
(108). Given that this avenue has only recently been re-explored,
the long-term performance of DCD grafts remains relatively
uncharted territory.
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Conclusion

Transplantation stands as the most efficacious approach to
addressing end-stage heart disease, yet the insatiable demand for
donor organs is anticipated to persistently outpace the available
supply. The success of HT hinges upon the preservation of grafts
against the detrimental effects of IRI. Capitalizing on the ongoing
advancements in techniques and technologies, transplant centers are
actively seeking to enlarge the donor pool by pushing the boundaries
of established practices and constraints on ischemia time. In this
pursuit, the evolution of ex situ perfusion machines has emerged as a
pivotal development. These systems offer a dual advantage of
enhanced preservation and more precise assessment of organs
procured from expanded criteria and donation after circulatory death.
Furthermore, the versatility of these ex-situ perfusion platforms
extends to their potential as conduits for targeted therapies directed at
donor organs prior to transplantation. As the landscape of HT
continues to evolve, these innovations promise to redefine the limits
of graft viability and optimize outcomes for both recipients and donors.
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Mitochondrial transplantation provides a novel methodology for rescue of cell
viability and cell function following ischemia-reperfusion injury and applications
for other pathologies are expanding. In this review we present our methods and
acquired data and evidence accumulated to support the use of mitochondrial
transplantation.

KEYWORDS
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1. Introduction

The heart is an obligate aerobic organ and is dependent upon oxygen delivery to the
mitochondria to ensure function. Mitochondria represent approximately 30% of
cardiomyocyte cell and extract >75% of coronary arterial oxygen just to meet homeostatic
requirements (1). Increased functional demands are therefore dependent on increased
oxygen delivery either through increased coronary blood flow and/or oxygen extraction.

Interruption or limitation in coronary blood flow limits oxygen delivery to the
myocardium such that it is no longer sufficient to meet metabolic demands and results in
myocardial ischemia. It is generally accepted that the limitation or cessation of coronary
blood flow to the myocardium is the initial step in the myriad of processes leading to
myocardial ischemia injury and these processes primarily effect the mitochondria (2-4).

With the onset of myocardial ischemia, alterations occur in mitochondrial structure and
function that negatively impact mitochondrial function (5-8). The mitochondria become
swollen and there is cristae disruption and mitochondrial calcium accumulation and the
electron transport chain complexes I-V show decreased activity leading to decreased high
energy phosphate synthesis that is needed to maintain cellular function. Mitochondrial
DNA is also damaged leading to decreased mitochondrial transcriptomics, proteomics
and metabolomics and the intrinsic apoptotic pathway is activated, leading to loss of
cellular viability (6, 8-11). Accompanying these changes are alterations in transcriptomic,
proteomic and metabolomic pathway regulation that are directly associated with
mitochondrial and contractile function (12-15). All these events occur during ischemia
and despite the restoration of coronary blood flow and oxygen delivery to the
myocardium, they persist during reperfusion to significantly compromise myocardial
cellular viability and function (8-10).

Interventions to limit mitochondrial dysfunction during ischemia and reperfusion have
mainly been directed to mechanisms or pathways up- or down-stream of the mitochondrion.
While somewhat efficacious, these interventions have provided only minimal clinical utility
for the amelioration of the effects of ischemia-reperfusion injury. As an alternative we have
proposed organelle transplant, mitochondrial

transplantation, to directly address

mitochondrial dysfunction. Mitochondrial transplantation is premised on the observed
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alterations in mitochondrial function that manifest during
ischemia and persist through reperfusion. We hypothesized that
the replacement or augmentation of damaged mitochondria
through the transplantation of viable, respiration competent
and then
delivered to the ischemic organ would enhance post-ischemic

mitochondria, isolated from non-ischemic tissue,
myocardial functional recovery and myocellular viability (14).
Mitochondrial transplantation provides a novel methodology
for the rescue of cell viability and cell function following
other
pathologies are expanding. A systematic review of animal and

ischemia-reperfusion injury and applications for
human studies supports the beneficial effects of mitochondrial
transplantation for the amelioration of ischemia- reperfusion
injury (16). In this review we present our methods and acquired
data and the accumulated evidence to support the use of

mitochondrial transplantation.

2. Mitochondrial uptake and functional
integration

The earliest example of naked mitochondrial uptake into cells
was reported by Clark and Shay (17). The authors used simple
coincubation of isolated mitochondria from antibiotic resistant
cells with antibiotic sensitivity to show that antibiotic resistance
could be transferred. The authors showed that the antibiotic
resistant mitochondria were taken up by the antibiotic sensitive
cells by endocytosis and that the transferred mitochondria were
functional and conferred antibiotic resistance. These early
studies, termed mitochondrial transformation by the authors,
were mostly observational and were posited as a novel means for
studying mitochondrial genetics in mammalian cells and
provided early seminal evidence for the uptake and functional
integration of exogenous mitochondria.

The uptake of mitochondria into cells has been demonstrated
by numerous authors using a variety of methods (18-23).
Katrangi et al. (18) showed that co-incubation of isolated
mitochondria from human mesenchymal stem cells (hMSC) with
non-respiration functional A5490 p° cells having fully depleted
mtDNA, rescued cell function and restored cellular respiration.
Uptake was confirmed by fluorescent labelling and PCR analysis.

Kitani et al. (19) used DsRed2 mitochondria isolated from
human uterine EMCs-DsRed2 cells to demonstrate uptake and
functional integration of mitochondria into recipient H9¢2 cells,
stably expressing green fluorescent protein (GFP). The authors
used co-incubation and showed the engulfment of exogenous
mitochondria. The exogenous mitochondria were evident in the
perinuclear space inside the recipient cells within 1-2h. The
transferred mitochondria were able to rescue the mitochondrial
respiratory function and improved the cellular viability in
mitochondrial DNA-depleted cells and these effects lasted six days.

Pacak et al. (20) also showed that co-incubation of naked
mitochondria with non-functional Hela p° lacking
mitochondrial DNA, resulted in the rapid uptake of the
mitochondria.

cells

exogenous Uptake was visualized using

mitochondria labelled with pHrodo a label that specifically
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detects
fluorogenic dye that is non-fluorescent at neutral pH and bright

phagocytosis and endocytosis with a pH-sensitive
red upon acidification inside the cytosol. The internalized
mitochondria rescued mitochondrial oxygen uptake and ATP
synthesis and replaced mitochondrial DNA. These effects were
present for 53 cell divisions over 23 days.

Cowan et al. (24) used three-dimensional super-resolution

(3-D SR-SIM) and
(TEM) to
intracellular position of endocytosed mitochondria in human

structured  illumination  microscopy

transmission electron microscopy reveal the
induced pluripotent stem cell-derived cardiomyocytes and human
cardiac fibroblasts. These studies used a human cardiac fibroblast
cell line as the source of mitochondria for transplantation and a
human iPS cardiomyocyte cell line as the recipient cell line to
demonstrate the uptake and functional integration of
mitochondria into human cells.

Cowan et al. (24) used distinct fluorescent labeling of human
induced pluripotent stem cell-derived cardiomyocytes and human
fibroblasts
mammalian fusion genes containing fluorescent probes (green;
GFP or red; RFP) fused to the leader sequence of El alpha

pyruvate dehydrogenase. Pyruvate dehydrogenase is a matrix

cardiac using baculovirus-mediated transfer of

associated protein and fusion labeling provides a reliable
methodology for imaging and detection. The authors labeled
mitochondria in human induced pluripotent stem cell-derived
cardiomyocytes with RFP while mitochondria in human cardiac
fibroblasts were labeled with GFP.

Cowan et al. (24) co-incubated the GFP labeled mitochondria,
isolated from human cardiac fibroblasts with human induced
pluripotent stem cell-derived cardiomyocytes containing RFP
labeled mitochondria. These experiments were replicated by
coincubation of human induced pluripotent stem cell-derived
cardiomyocytes with mitochondria isolated from human cardiac
fibroblasts labelled with gold nanoparticles with subsequent TEM
analysis.

Cowan et al. (24) showed that mitochondrial uptake into cells
is rapid and can be seen at 2.5 min post-delivery, the shortest time
frame allowable for experimental determination. The authors
showed that the transplanted mitochondria were detected
adjacent to the apical cell surface, undergoing endocytosis and
then being taken up and released from early and late endosomes
and then fusing with intrinsic mitochondria within the cell. The
transplanted mitochondria were of the proper size and shape and
contained the mitochondrial fusion proteins MFN1, MFN2 and
OPAl. A small amount of DRP1 was detected but was not
phosphorylated, suggesting fission did not occur. Greater than
80% of the transplanted mitochondria could be detected in
association with early endosomes and late endosomes and then
released into the cell to fuse with the endogenous mitochondria.
Greater than 70% of the endocytosed mitochondria co-localized
and fused with endogenous mitochondria.

Kesner et al. (21) have also shown mitochondrial uptake into
cells. In these studies mitochondria labelled with DsRed were co-
incubated with HepG2 cells where they fused with the intrinsic
mitochondria. The authors reported that internalization of
exogenous mitochondria can occur in as little as 10 min and
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showed that uptake of the exogenous mitochondria lasted for at
least 6 days. Further experiments using patient cells showed the
transplanted  mitochondria increased cell viability —and
mitochondrial activity.

These studies have been recently confirmed by Rossi et al. (25)
who have also shown that co-incubation of isolated mitochondrial
with recipient cells results in the internalization of isolated
mitochondria. The authors demonstrated that mitochondria
isolated from renal proximal tubular cells were biologically active
of ATP production that the

mitochondria could be actively internalized by renal proximal

and capable and isolated

tubular cells in a dose dependent manner. The transplanted
and ATP
significantly ~ decreased

mitochondria increased proliferative  capacity

production and proliferation and
cytotoxicity in an in vitro ischemia-reperfusion injury model.

Ali-Pour et al. (23) were also able to demonstrate mitochondria
uptake into cardiomyocytes; however, in contrast to reports by
others, increased bioenergetics lasted only 2 days (13, 19-21, 26, 27).

In our early experiments we used fluorescent mitochondrial
specific labels such as MitoTracker CMXros and pHrodo to
demonstrate mitochondrial uptake into cells (14, 20). The use of
these fluorescent labels is informative but is not definitive as
dissociation and re-association events have been postulated to
occur.

To unequivocally demonstrate mitochondrial uptake, we have
used human mitochondria for transplantation into animal
(13, 15, 26-30).
mitochondrial transplantation in a rat, murine or swine model

models The use of xenogeneic human
allows for the differentiation between native mitochondria and
transplanted mitochondria based on immune reactivity to a
monoclonal anti-human mitochondria antibody (24, 27). The use
of human mitochondria in the rabbit and swine heart, kidney,
lung and skeletal muscle has allowed us to track the fate of
transplanted ~ mitochondria ~ across  time. ~ We  use
immunohistochemical selectivity to the human mitochondrial
antibody as our primary marker with secondary markers of size
and shape and function to confirm mitochondrial uptake. The
transplanted human mitochondria in the rabbit and swine heart,
kidney, lung and skeletal muscle induced no immune response as
determined by ELISA and multiplex analysis and appear to
maintain viability. Increased ATP content was detected at both
2h and at 28 days after transplantation in the areas of
mitochondrial transplantation (13, 15). No DAMPs (damage-
associated molecular patterns) response or apoptosis or necrosis
is evident in the areas receiving xenogeneic mitochondrial
transplantation (13, 15, 26, 31).

It must be clearly noted that we do not recommend xenogeneic
mitochondrial transplantation as the mtDNA differs and sufficient
mitochondrial sources are available such that arguments for

xenogeneic mitochondrial transplantation are moot (32).

2.1. Stability of functional integration

Our in vivo studies have shown that mitochondrial uptake is
stable and can be visualized for at least 28 days post-
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transplantation in in vivo transplantation (13, 15, 26). The
transplanted mitochondria are evident in both myocardial and
non-myocardial cells at 2, 4, 8 and 24h and at 28 days post-
delivery. The exogenous mitochondria enhance cardiac function
(increased left ventricular pressure, systolic shortening, decreased
end diastolic pressure), enhance tissue viability (decreased tissue
caspase 3 activity and necrosis) and enhance total tissue energy
content (increased total ATP content) following
transplantation (13, 15, 26). These effects are evident at 2h
reperfusion and at 28 days recovery. Significantly our results

tissue

show that there is no increase in peri-infarct size and that
functional improvements in myocardial contraction remain intact
throughout the recovery time of 28 days, verifying the enduring
effects of mitochondrial transplantation on cellular viability and
function.

2.2. Mechanism of uptake

The mechanisms for mitochondrial transplantation are distinct
from mitochondrial transfer (20). Mitochondrial transfer involves
the horizontal transfer of mitochondria from one cell to another.
The transfer of mitochondria has been shown to occur through
tunnelling nano tubes (TNT) which can occur either by uni- or
bi-directional transfer (33). Spees et al. (34) demonstrated that
co-culture of A549 cells with non-functional A549 p° cells
lacking mitochondrial DNA resulted in some of the non-
functional cells acquiring functional mitochondria. This rescue
was shown to occur through active mitochondrial transfer along
cytoplasmic projections that made contact between donor and
target cells. The authors were not able to establish whether
mitochondria were transferred to the target cells directly through
structures such as tunneling nanotubes or through uptake of
vesicles containing mitochondria that budded off from the donor
cells. Interestingly the authors showed that there was no passive
transfer of mitochondria. Naked mitochondria isolated by
differential centrifugation did not provide for rescue of A549
p° cells.

Liu et al. (33) and Han et al. (35) were able to detect TNT-like
structures allowing for intracellular transfer of mitochondria.
Further studies by Berridge and Tan (36) and Tan et al. (37)
confirmed the acquisition of mtDNA from host cells. Hayakawa
et al. (22) have also shown that mtDNA and intact mitochondria
can be transferred from other cells. These authors showed that
extracellular mitochondria from astrocytes rescued neuronal
viability and function.

3. Mitochondrial transplantation

3.1. Tissue source

The need for viable respiration competent mitochondria is
essential for mitochondrial uptake and functional integration. In
our initial publication on mitochondrial transplantation for
cardioprotection we showed that the use of frozen mitochondria
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with reduced mitochondrial oxygen consumption and membrane
potential did not provide for ischemia- reperfusion protection
(14). We also showed that the use of mitochondrial proteins,
mitochondrial RNA and DNA or ATP did not provide for
cardioprotection (14). These findings have been confirmed by
Hayashida et al. (38) who have shown that frozen-thawed
mitochondria have reduced membrane potential and were not
efficacious for resuscitation following cardiac arrest in rats. This
agrees with Kesner et al. (21) who have shown that disruption of
the mitochondrial membrane decreases uptake of mitochondria
into recipient cells. The importance of having intact respiration
competent mitochondria has also been demonstrated by Cloer
et al. (39) who have confirmed these earlier findings in a human
DCD lung transplantation model where they showed that only
intact mitochondria and not organelle secretions provided for
therapeutic activity.

To allow for mitochondrial transplantation an appropriate
tissue source must be available. Autologous tissue obtained from
a non-ischemic site from the patient’s own body offers the most
clinically relevant source. In our studies, the source of tissue for
mitochondrial isolation varies depending upon the incision site
This
application without the need for secondary surgical intervention.

required for surgical access. allows for therapeutic
In our procedures where a mini-thoracotomy or a sternotomy is
performed, tissue from the pectoralis major or the rectus
abdominus is obtained. When a carotid cut down is performed,
tissue from the sternocleidomastoid can be obtained or when a
femoral cut down is performed, tissue from the vastus medialis
can be obtained. Other sources of tissue would depend on the
incision site. The use of liver tissue may be appropriate when a
laparotomy is performed.

A variety of cell lines have also been used as the source material
for mitochondrial isolation. Pacak et al. (20) used mitochondria
isolated from HeLa cells, Ali Pour et al. (23) used L6 skeletal
cells, while Chang et al. (40) and Gollihue et al. (41) each used
PC12 cells and Caicedo et al. (42) have used mitochondria
isolated from mesenchymal stem cells. The potential for
heterologous sources of tissue is great and could allow for readily
available application in clinical settings and could allow for
therapeutic treatment of mitochondrial associated mitochondrial
myopathies.

We have used atrial appendage tissue, skeletal muscle, liver and
cell culture as source material for mitochondrial isolation. We have
found no advantage using organ specific or high or low glycolytic
capacity mitochondria for ischemia-reperfusion protection (13-15,
20, 24, 26, 27).

Once exposed the tissue is dissected from the skeletal muscle
using a number 6 biopsy punch. Usually two small pieces of
tissue (>0.1 g) are harvested and stored in cold (4°C) phosphate
buffered saline (clinical grade) and used for mitochondrial
isolation. There are many methods for the isolation of
mitochondria. The earliest published accounts of mitochondrial
isolation date to the 1940s and these methods
expanded upon and modified (43-45). Most mitochondria

have been

isolation protocols use tissue homogenization followed by

differential centrifugation (46-48). Purification by Percoll
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gradient or sucrose step gradient -centrifugation is often
incorporated to purify the isolated mitochondria; however, the
added centrifugation and washing time greatly extends the

isolation process (49, 50).

3.2. Mitochondrial isolation

In our initial studies we isolated mitochondria using
differential centrifugation (47, 48). The isolation of mitochondria
was completed in approximately 90 min and required a starting
tissue of approximately 5 grams (14). This amount of tissue is
not available clinically and the viability of the isolated
mitochondria using these methods is variable (51), for a more
in-depth review of mitochondrial isolation techniques the reader
is directed to (46-48, 52, 53). In addition, the time required for
the isolation of mitochondria using this methodology would
require extension of the surgical time and could result in
complications that would be injurious to the patient (Figure 1).

To meet clinical demands, we have developed a novel
methodology that allows for the rapid isolation and purification of
filtration (53, 54). This

mechanical homogenization to minimize

mitochondria using differential
methodology uses
operator variability of homogenization. The tissue is obtained from
the site of incision and is homogenized in a volume of 5ml of
sterile isolation buffer consisting of 300 mmol/L sucrose, 10 mmol/
L HEPES-KOH

acid—potassium

[4-(2-hydroxyethyl)-1-piperazineethanesulfonic
hydroxide], EGTA-KOH
(Ethylenediaminetetraacetic acid—potassium hydroxide), pH 7.4,

1 mmol/L

and then treated to 10 min of Subtilisin A enzymatic digestion, on
ice. The digested tissue is then filtered through a series of filters by
gravity filtration, and the mitochondria are subsequently
precipitated by centrifugation at 9.5 x G for 5 min at 4°C (53, 54),
The
required for mitochondrial isolation using this procedure is 20-

https://sites.google.com/mccullylab.org/mccullylab). time
30 min and does not delay the surgical procedure.

The usual mitochondrial number obtained from the tissue
samples (>0.1g) using this methodology is 0.5-1.0x 10"
mitochondria. The isolated mitochondria are of the correct size
and shape, as assessed by particle size counter and by
transmission electron microscopy and have normal cristae and
membranes and show no damage or injury (13, 24, 27, 28). The
isolated mitochondria maintain membrane potential and oxygen
consumption as determined by MitoTracker Red CMZXRos
staining and FACs analysis and mitochondrial complex I-V
activity is maintained.

The isolated mitochondria have no detectable cytosolic,
that
reticulum,

include

golgi
apparatus, nucleus, and cytosol. We have performed enzymatic

nuclear, or microsomal components would

fragments from endoplasmic endosomes,
analysis of mitochondria isolates for detection of cytosolic and
cytoplasmic contaminant markers glyceraldehyde 3-phosphate
dehydrogenase and lactate dehydrogenase and the microsome
contaminate markers 5'nucleotidase and glucose-6-phosphatase,
and have found no detectable contamination by any of these

contaminants. Western blot analysis also showed no detectable
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Mitochondria are isolated from tissue obtained at the site of the surgical incision. (A) Skeletal muscle tissue for mitochondrial isolation is shown at incision
sites commonly used in cardiac surgery for sternotomy and mini thoracotomy. (B) Tissue is obtained using a #6 biopsy punch. Only two small pieces of
viable tissue are needed. (C) From these two small pieces of tissue weighing approximately 0.1 gram 1 x 10 10 mitochondria can be obtained using the
isolation methodology as described by (53, 54), and described at Available at: https://sites.google.com/mccullylab.org/mccullylab. (D) The isolated
mitochondria are of consistent size as determined by particle counter. (E) The purity of the isolated mitochondria can be seen by transmission
electron microscopy. (E) The mitochondria maintain membrane potential as determined by MitoTracker Red CmxRos staining. (F) Flow cytometry
analysis of isolated mitochondria stained with Mitotracker Red CMXRos shows 98.6% of isolated mitochondria maintain membrane potential. (H)
Complex |-V activity is maintained and (I) Mitochondrial oxygen consumption and (J) Respiratory Control Index (state 3/state 4) for malate induced
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presence of any contaminant markers in the isolated mitochondrial
preparations (13, 24, 27, 28).

In all our studies, we have used total mitochondria for
mitochondrial transplantation. The bioenergetic function of this
population includes that of sub-sarcolemmal and intra-fibrillar
mitochondria (55-57). We have found that total mitochondria
offer the same level of cardioprotection as that provided by
purified intrafibrillar or subsarcolemmal mitochondria sub-
populations (14). The ease of obtaining total mitochondria and
the reduced time for isolation make this choice clinically relevant.

3.3. Mitochondrial buffer for delivery

Following isolation, the mitochondria are suspended in buffer.
In our early studies we suspended the isolated mitochondria in
respiration buffer. This buffer contained 0.25 M sucrose, 0.002 M
KH,PO, (potassium dihydrogen phosphate), 0.1 M MgCl,
(magnesium chloride), 0.2 M HEPES-KOH (pH 7.6), 0.0005M
EDTA-KOH (pH 8.0), 0.005M glutamate, 0.005 M malate, and
0.001 M ADP (adenosine diphosphate) (14). Respiration buffer
needs to be made fresh as the glutamate, malate and ADP can be
degraded. Following several trials, we found that we could
suspend the mitochondria safely in isolation buffer (300 mmol/L
sucrose, 10 mmol/L. HEPES-KOH, 1 mmol/L EGTA-KOH, pH
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7.4) and that the isolated mitochondria maintained viability and
function (15, 28, 58-60). The use of isolation buffer allows for
ease of use in clinical applications as the multiple steps needed
to make “fresh” respiration buffer are not required.

Modifications of this buffer have been used successfully by
others. Hayashida et al. (38) have used buffer containing 250 mM
sucrose, 2 mM KH,PO,, 10 mM MgCl,, 20 mM K-HEPES-KOH
(pH 7.2), 0.5 mM EGTA-KOH (pH 8.0). Huang et al. (61) have
used 70 mM sucrose, 220 mM mannitol, 10 mM KH,PO,, 5 mM
MgCl,, 2mM HEPES, 1.0mM EGTA and pH 7.2, for their
studies in the rat. Gollihue et al. (41) suspend their isolated
mitochondria in 215 mM mannitol, 75 mM sucrose, 0.1% bovine
serum albumin, 20 mM HEPES, pH adjusted to 7.2 with KOH.

3.4. Stability after isolation

Our studies demonstrate that following isolation, oxygen
consumption rate in isolated mitochondria is stable for at least
2h with Mitochondrial
consumption for malate (complex I) immediately following
1066 £16.0 (nM O,/min/mg mitochondrial
protein). No significant difference in oxygen consumption rate
was observed at 30, 60, 90, or 120 min after isolation with

storage on ice. state 3 oxygen

isolation was

storage on ice. Oxygen consumption rate was 101.6+.17.3;
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943+12.3; 913+156; and 94.6+12.6nM  O,/min/mg
mitochondrial protein respectively. Oxygen consumption rate at
3 h storage was significantly decreased to 63.6 +24.6 nM O,/min/
mg mitochondrial protein. These results demonstrated that
autologous mitochondria isolated using our methodology, in less
than 30 min, were viable and suitable for clinical use for up to
2h following isolation when stored on ice
unpublished data McCully et al.).

At present, only autologous tissue and cell culture have been used

(Figure 2,

as sources for mitochondria isolation for use in mitochondrial
transplantation. Cell culture as a source for mitochondrial isolation
could provide a ready and available source of mitochondria that
could be used for immediate use in settings such as acute heart
“of-the-shelf”
product that would allow for immediate usage, however, the

attack. The best scenario would be to have an

methodology for such a product remains to be developed.

3.5. Delivery methods

A variety of for mitochondrial

transplantation have been developed and these range from simple

delivery  methods

naked co-incubation to sophisticated mechanical delivery. Chang
et al. (40) have proposed the use of a cell-penetrating peptide
(Pep-1) to aid in the uptake and internalization of mitochondria.
The authors used Pep-1 conjugated mitochondria in a rat model
of Parkinson’s disease and have reported improvement of
rotational and locomotor behaviors in this model.

Liu et al. (62) have developed a method where isolated
mitochondria are linked to a carrier that allows the systemically
injected mitochondria to be directed to the liver. The authors

10.3389/fcvm.2023.1268814

used asialoglycoprotein linked to listeriolysin O to form
complexes with freshly isolated liver mitochondria. This complex
forms a mitochondrial-carrier protein

capable of being

recognized, bound, and internalized by asialoglycoprotein
receptors in the liver. Listeriolysin O was added to facilitate the
release of internalized mitochondria from endosomes. Using this
complex the authors reported targeted delivery of mitochondria
by intravenous delivery in the rat with 27% of the injected
mitochondria being found in the liver.

Kim et al. (63) have shown in cell cultures that isolated
mitochondria can be transferred into recipient cells by simple
low speed [1,500 x g (gravity) for 5 min at 4°C.] centrifugation.
The transferred mitochondria maintained bioenergetic function
and increased intracellular ATP content and metabolic activity,
and also delivered mtDNA to the recipient cells.

MitoCeption, proposed by Caicedo et al. (42) also uses
centrifugation but adds thermic shock to enhance mitochondria
uptake in cells. The authors added isolated mitochondria to cells
grown on a cell plate surface. The culture plates were then
centrifuged at 1,500 x g for 15 min at 4°C. They were then placed
in a 37°C cell incubator for two hours, prior to a second
centrifugation. The authors showed that MitoCeption increased
mitochondrial DNA concentrations, oxygen consumption rate
and ATP production.

Mechanical approaches have also been proposed to facilitate
mitochondrial delivery. Wu et al. (64) have proposed the use of a
photo-thermal nanoblade which induces a transient membrane
opening to allow for mitochondrial uptake into cells. These
transient and localized openings are thought to allow for specific
another modification for

uptake of mitochondria. In

mitochondrial uptake Wu et al. (65) have proposed the use of a

NS

100 -

Mitochondrial Oxygen Consumption
nM O2/min/mg mitochondrial protein

FIGURE 2

Time (min.)

Isolated mitochondria are stable at 4°C for 120 min No significant difference (NS) was observed in mitochondrial oxygen consumption at 0, 30, 60, 90 or
120 min after isolation. Mitochondrial oxygen consumption significantly decreases at 180 min * = p <0.05 vs. time 0.
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stamp-type multi-needle injector. The device has been used for the
delivery of mitochondria to restore aging-related hair loss.

Macheiner et al. (66) have developed Magnetomito Transfer
which uses a mitochondrial specific antibody to TOM-22 linked
to an iron bead that binds to the outer mitochondrial membrane
to stimulate mitochondrial uptake under a magnetic field. The
methodology was developed to allow for transfer of healthy
allogenic mitochondria to a patient’s own stem cells prior to
autologous stem cell transplantation. The authors report a trend
for higher density of mitochondria in magnetomito-transferred
cells.

Recently, Yang et al. (67) have suggested the use of gelatin
nanospheres to enhance mitochondrial uptake into cells. In their
studies isolated mitochondria were first modified by electrostatic
attachment of gelatin nanospheres to the outside of the
mitochondria. The nano-sphere-mitochondria were then co-
incubated with H9c2 cardiomyoblasts where functional uptake
was confirmed by ATP synthesis.

Another approach to delivery of genes or pharmaceuticals to
the mitochondria is Mito-porter developed by Yasuzaki et al.
(68). This methodology does not use mitochondria but rather
uses a liposome-based carrier that permits macromolecular
cargos to enter mitochondria via membrane fusion. The authors
have used mito-porter in a series of studies to demonstrate that
mtDNA and other products can be delivered effectively to the
mitochondria (69).

3.5.1. Co-incubation

For cell culture studies, most authors resuspend the isolated
mitochondria in media. In our studies the cell culture media
Dulbecco’s Modified Eagle’s Medium contains 1.8 mM calcium,
We and others (13, 20, 21, 70) have found no stability problems
of the isolated mitochondria in these physiological calcium
concentrations.

3.6. Stability in Serum and blood

Shi et al. (71) investigated isolated mitochondrial stability in rat
serum. The authors added isolated mitochondria to mouse blood
serum and incubation at the mixture at 37°C for 0, 15, 30, 60,
120 min, respectively. The authors then measured mitochondrial
viability using MitoTracker Red CMXRos and mitochondrial
membrane potential at each time point. The authors reported
that there was no difference in mitochondrial viability or
mitochondria membrane potential (A¥m) observed at the
different time points (0 min, 15min, 30, 60 and 120 min)
suggesting that the mitochondria remained stable in serum for at
least 120 min.

Intact mitochondria have been detected in plasma in healthy
patients and in patients having pathological conditions. Proof for
the existence of cell-free respiratory competent mitochondria in
blood was first reported by Amir Dasche et al. (72). The authors
showed mitochondria from a normal cell line (CCD-18Co) and
from human colon cancer cell lines (DLD-1/SW620) were able to
secrete their mitochondria. The authors went on to show the
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of circulating cell-free mitochondria in healthy

individuals and in cancer patients. The cell free circulating

presence

mitochondria were structurally intact and not fragmented and
had preserved mtDNA integrity and were not surrounded by bi-
or multi-layer phospholipid membrane, supporting the
observation that they were free circulating mitochondria and not
enclosed in extracellular vesicles such as exosomes or
microvesicles or autophagosomes. The cell free circulating
mitochondria were also respiration competent.

These findings have been replicated by Stephens et al. (73) who
showed that intact, cell free mitochondria are present in blood and
these mitochondria maintained transmembrane potential and were
able to reenter cells.

Amir Dasche et al. (72) and Stephens et al. (73) estimated the
presence of cell-free and respiratory competent mitochondria in
human blood to be between 200,000 to 3.7 million per mL and
822,000 to 2.3 million per mL plasma in humans, respectively.
The mechanisms through which mitochondria are able to survive
in serum and their relevance in non-pathological human organ

maintenance are unknown.

3.7. Direct injection

Direct injection into the tissue is the simplest methodology for
clinical delivery of mitochondria for transplantation. For direct
injection, the isolated mitochondria are suspended in buffer and
are delivered to the organ using a 1 ml tuberculin syringe with a
28 or 32 gage needle. The mitochondria can be delivered directly
to affected areas in the organ. In the heart this may be areas of
hypo-kinesis or a-kinesis as determined by epicardial
echocardiography. The mitochondria are delivered in 50-100 ul
injections. This volume is rapidly taken up by the neonatal,
pediatric and adult myocardium and no flushback occurs and
there is no need for purse string sutures. Similar uptake is
observed in skeletal muscle. The angle of injection is not limited
to oblique delivery as in stem cell injection (13-15, 26, 27, 29,
30, 74, 75).

The isolated mitochondrial dosage amounts in the heart were
determined to be 2 x 10 to 2 x 10° mitochondria per gram tissue
wet weight (13, 14, 28). Mitochondrial concentrations >2 x 108
were not consistently fully suspended in vehicle buffer.

Direct injection of mitochondria has no effect on
arrhythmogenicity (13). Our studies in the in vivo heart have
demonstrated that there is no proarrhythmia as determined by
serial ECG, no change in QRS duration and no change in
corrected QT

echocardiography also demonstrated that there was no evidence

interval.  Serial electrocardiography  and

of wall motion disturbances, no evidence of left ventricle
hypertrophy, valve dysfunction, fibrosis or pericardial effusion at
4 weeks following transplantation of mitochondria.

To ensure no proarrhythmia was associated with mitochondrial
transplantation we also performed optical mapping studies using
isolated mitochondria at a concentration of 8.4 x 10”/gram tissue
wet weight as compared to 2x10° to 2x 10%gram heart wet
weight. This concentration of mitochondria was used in order to
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detect any possible arrhythmogenic response (13). Our results
demonstrated that there was no change in isopotential mapping
associated with mitochondrial transplantation and confirming
that mitochondrial transplantation is not proarrhythmic.

3.8. Intra-arterial delivery

Intra-arterial delivery of mitochondria simplifies mitochondrial
delivery to tissue and allows for widespread distribution of
mitochondria within the tissue. Intra-artery delivery to the heart
is achieved via carotid cutdown (28). For the lung we deliver via
the pulmonary artery (76) while for the kidney we perform a
femoral artery cutdown (29).

The artery is exposed and accessed, and an arterial sheath is
positioned in the artery and an angiography catheter is
introduced through the arterial sheath, and floated to the
delivery site, the coronary ostium in the case of the heart or the
infrarenal arteries in the case of the kidney. This procedure is
performed under fluoroscopy (28, 29, 58, 77). A 4 s or 5s
catheter can be used. The isolated mitochondria are suspended in
5 ml of buffer and injected as a bolus and then chased with 5 ml
of buffer.

To ensure that intra-coronary delivery was safe and did not
affect coronary patency we have performed in vivo studies in the
pig heart (28). The pig heart provides a standardized model for
the human heart having similar vascular architecture, capillary
diameter and morphology as that in the human heart (78, 79).
In these studies, intra-coronary delivery was investigated using
mitochondria concentration of 1x 10° to 1x 10'! in the presence
of increased myocardial demand, coronary vasoconstriction or
tachycardia with increased afterload. Our results demonstrated
that intracoronary injection of mitochondria at concentrations of
1x10% to 1x 10" has no adverse effects on coronary patency,
cardiac rhythm, or function. We also showed that mitochondria
can be safely injected into severely constricted coronaries as well
as under significant hemodynamical stress of tachycardia and
hypertension, all of which often accompany various pathological
conditions of the heart. As with direct injection of mitochondria
there is no proarrhythmia associated with intra-arterial delivery
of mitochondria.

3.9. Aerosol delivery

To increase applicability and allow for early, non-surgical
intervention and post-surgical intervention we have extended our
research to show that autologous mitochondria can be delivered
by nebulizer to the lungs. In a study of acute lung injury, we
compared aerosol delivery of naked mitochondria via the trachea
and intra-vascular delivery, via the pulmonary artery (76).
Vascular delivery of mitochondria to the left lung was achieved
by injection of mitochondria in buffer directly into the left
pulmonary artery. Aerosol delivery of mitochondria was achieved
by nebulization using the FlexiVent nebulizer system (FlexiVent

FX2, SCIREQ, Montreal, Quebec, Canada). Our results
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demonstrated that delivery of mitochondria by pulmonary artery
infusion and by nebulization was efficacious.

3.10. Nasal delivery

In the brain, delivery of exogenous mitochondria to the
ventricles has been shown to be effective, but clinically, the
impermeability of the blood-brain barrier poses a major
restriction for use. Orreogo et al. (80) have reported that the
delivery of mitochondria to the brain can be achieved using
osmotic disruption of the blood-brain barrier followed by carotid
artery infusion of the mitochondria. The authors report that in
the absence of osmotic disruption, few mitochondria were
detected in the
transplanted mitochondria were detected in all regions of the

brain but following osmotic disruption,
cortex and across the parenchyma.

Alexander et al. (81), and Alexander et al. (82), have shown that
nasal administration of mitochondria isolated from human
mesenchymal stem cells restored executive functioning, working
and spatial memory in mice with cisplatin-induced cognitive
deficits. The authors showed human mitochondria gained rapid
entry into the brain of mice. The transplanted mitochondria were
seen entering the brain from the pia mater v and glial limitans
and were present at 30 min and 18 h after administration and
repaired cisplatin-induced loss of white matter integrity and
synaptic damage. The transplanted mitochondria also induced
transcriptomic alterations in the hippocampus, up-regulating
cognitive related restorative pathways. These findings agree with
Chiu et al. (83) and Galeano et al. (84) and Danielyan et al. (85)
who have each shown uptake of nasal delivered mesenchymal
stem cells in the brain.

3.11. Delivery to the spinal cord

Delivery of mitochondria to the spinal cord has been shown to
Golihue et al. (41) studied mitochondrial
transplantation in a rat model of spinal cord injury. The authors

be troublesome.

showed that exogenous mitochondrial were taken up by the
injured spinal cord and were evident at 24- and 48 h, and 7 days
post-injection and increased bio-energetics. The mitochondria
co-localized with multiple resident cell types, although they were
absent in neurons. Unfortunately, mitochondrial transplantation
did not yield long-term functional neuroprotection as assessed by
overall tissue sparing or recovery of motor and sensory functions.
This group have since gone on to promote new techniques for
mitochondrial transplantation for spinal cord injury (86).

4. Uptake occurs in healthy cells and in
ischemic cells

The uptake of mitochondria has been shown in many different
cell types and pathologies. In our studies we have found that
mitochondria are taken up by all cell types. To visualize

frontiersin.org


https://doi.org/10.3389/fcvm.2023.1268814
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

McCully et al.

mitochondrial uptake and distribution subsequent to direct
injection or infusion through the coronary vasculature, we have
labelled mitochondria with '®F-Rhodamine-6G (**F-R6G) or

8E_R6G and iron oxide nanoparticles (27-30, 87). The
distribution and uptake of labelled mitochondria was
determined by positron emission tomography (PET),

microcomputed tomography (uCT), and magnetic resonance
imaging (MRI) with subsequent microscopic analyses of stained
tissue sections to confirm the uptake and distribution of
transplanted mitochondria (27). In these studies, we showed
that direct injection of mitochondria resulted in discrete
localized uptake of the labelled mitochondria while vascular
delivery of mitochondria through the coronary arteries resulted

in their rapid integration and widespread distribution
throughout the heart. Both modes of delivery provided
cardioprotection ~ from  ischemia-reperfusion  injury by

significantly preserving systolic shortening and cell viability.

Notably we showed that mitochondria are taken up in
myocardial areas that were not subjected to regional ischemia
and reperfusion. The uptake in non-ischemic areas was less than
that observed in the regional ischemic area in the heart, and we
speculate that this increased organelle uptake was due to
myocardial cell swelling and loss of cellular integrity.

5. Dosage

The dosage of mitochondria varies in different studies. Both
mitochondrial protein and absolute mitochondrial number have
been used to standardize dosage (13, 19, 21, 23, 41). In all our
studies we have used particle counting to estimate the dose of
mitochondria used. Our studies have shown that mitochondria
concentrations of 2 x 10° to 2 x 10° mitochondria per gram wet
weight heart tissue is efficacious (13, 26, 28, 58, 77). This
represents approximately 1x 10° mitochondria in the adult 400 g
heart. Concentrations less than 2x10° to 2x 10° mitochondria
per gram wet weight heart tissue were associated with decreased
cardioprotective efficacy while concentrations greater than 2 x 106
per gram wet weight heart tissue failed to increase efficacy (28).
We have found that this dosage concentration is also applicable to
the kidney (29) and the lung (76); however, for skeletal muscle
increased mitochondrial concentrations were required (30).

Our studies have shown that only a small number of
mitochondria are needed to alter organ function. These studies
and those of others suggest that the number of mitochondria
required for cardioprotection is not a function of the absolute
number of mitochondria residing within the cell (14, 28, 88, 89).
This would agree with Shoffner (90)
demonstrated that only 2%-6% of mtDNA needs be wild type to
effects of the
mitochondrial myopathy MERRF (Myoclonic epilepsy and

et al who have

alter oxygen uptake and the devastating
ragged-red fiber disease) and with Chomyn et al. (91) who have
reported that levels of only 6% wild type mtDNA are sufficient
effects of MELAS (Mitochondrial

Encephalopathy, Lactic acidosis, and Stroke-like episodes).

to modulate the
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6. Safety of mitochondrial
transplantation

Enzyme-linked immunosorbent spot (ELISpot), enzyme-linked
immunosorbent assay (ELISA), fluorescence-activated cell sorting
(FACS) and multiplex analysis has demonstrated there is no
indirect immune there are no

direct or response and

inflammatory  effects  associated ~ with  mitochondrial
transplantation (13, 26, 28, 31).

Masuzawa et al. (13), showed using serial ELISA analysis that
there was no significant increase in TNFa, IL-6 or high-sensitive
c-reactive protein at 1-, 3- and 7- days post mitochondrial
transplantation and provided evidence suggesting that the level of
inflammation was ameliorated by mitochondrial transplantation.
RNAseq analysis confirms this observation as a cardio-protective
mechanism associated with mitochondrial transplantation in the
heart (15).

To confirm the ELISA results Masuzawa et al. (13) also
performed multiplex analysis of cytokines and chemokines. In
this assay, both intact mitochondria and sonicated mitochondria
were used with in vitro analysis. The sonicated mitochondria
were used to determine the effects of mitochondria degradation
products. Separate analysis was performed to determine innate
chemokine and cytokine activation in human peripheral blood
mononuclear cells. Masuzawa et al. (13) showed that there was
no upregulation of cytokines associated with the immune
response (IL-1, IL-4, IL-6, IL-12, IL-18, IP-10, macrophage
inflammatory protein (MIP-loo and MIP-1B).
Masuzawa et al. (13) showed that mitochondrial transplantation
upregulated epidermal growth factor (EGF), growth-related
oncogene (GRO), IL-6 and monocyte chemotactic protein-3
(MCP-3). These cytokines have been shown to be associated with
enhanced post-infarct cardiac function.

Importantly,

Ramirez-Barbieri et al. (31) investigated alloresponse and

allorejection to  syngeneic and allogeneic mitochondrial
transplantation. This study examined immune response to single
injections of mitochondria at concentrations of 1 x 10°, 1x10°
and 1x 107 and serial injections given a concentration of 1 x 107
mitochondria on days —6, —3 and day 0. These concentrations
are equivalent to 10-, 20- and 30-fold, and 90-fold respectively,
the concentration of mitochondria used in our animal and
clinical studies (13, 14, 26-28, 58, 74, 77, 92). Ramirez-Barbieri
(31

mitochondria. Experiments were conducted using the BALB/cJ

et al investigated both syngeneic and allogeneic

mouse strain to allow for human relevance. Allogeneic
mitochondria were obtained from C57BL/6] mice. Mitochondria
were delivered by intraperitoneal injection to maximize immune
reaction. This was done as previous studies have shown that by
intraperitoneal injection elicits a greater immune reaction than
either intra-venous or direct injection by creating a greater
distribution of the antigen to the lymph nodes and to different
organs in the body. Immune response was measured at 10-17
days post-injection as the immune response in the BALB/c]
mouse strain is not evident prior to 7 days post antigen

presentation.
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Using this stringent protocol, Ramirez-Barbieri et al. (31) were
able to show that there was no detectable direct or indirect B-cell or
T-cell response as determined by ELISpot and FACS analysis and
that multiplex analysis did not detect any increase in any of the
cytokines or chemokines associated with the innate or acquired
immune response for either syngeneic or allogeneic
mitochondrial transplantation. Ramirez-Barbieri et al. (31) also
showed there was no mitochondrial DAMPs (damage-associated
molecular patterns) response associated with mitochondrial
transplantation, no evidence of myocardial cellular damage or
increased collagen content and no increase in circulating free
mitochondrial DNA.

Masuzawa et al. (13) also showed there was no autoimmune
response to mitochondrial transplantation and that there were no

detectable anti-mitochondrial antibodies.

7. Biodistribution

Direct injection, intra-coronary, pulmonary and intra-renal
artery infusion of mitochondria have been shown to provide
delivered  the
mitochondria rapidly enter the cells and remain present for at
least 28
experimentation. In a series of studies, separate analysis using

discrete  mitochondrial  uptake.  Once

days, the terminal time for our animal
autologous or xenogeneic human mitochondria each labelled
with '®F-Rhodamine-6G (*®F-R6G) have been performed.
Results from these studies, in the in vivo swine model, have
shown that the mitochondria are rapidly taken up by the cells
in the end organ and are not present in other tissues. This
localization of mitochondria following delivery was confirmed
using mitochondria at concentrations 6-fold greater than we
recommend. In our heart studies PET imaging demonstrated
that distributes

specifically to the cardiac vascular supply, displaying signals

intracoronary  delivery mitochondria
only in the left ventricle when mitochondria were injected into
the left coronary ostium. The tracer signal was not detected in
other

concentrations (six fold) of mitochondria than that used for

organs, despite the injection of much higher
therapeutic dosage. Similar findings were observed in the lung
by pulmonary artery delivery (76), and in the kidney by intra-
renal infusion (29), respectively.

Our studies show that in the heart, lung and kidney
mitochondria rapidly crossed the vascular endothelial cells. '®F-
Rhodamine-6G
cardiomyocytes at 10 min following coronary artery delivery,
kidney the distributed

throughout the tubular epithelium of cortex and medulla

labeled mitochondria were found inside

while in the mitochondria were
following renal artery delivery (28, 29). In the lung the
transplanted mitochondria were detected within and around lung
alveoli and connective tissue (76).

The mechanism(s) of vascular extravasation of mitochondria
remain to be fully elucidated; however, the rapidity of
mitochondria transport to cardiac cells is likely to involve
mechanisms similar to bacterial or viral uptake.
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8. Mechanisms of mitochondrial
transplantation

We now have sufficient experimental proof to speculate on the
overall mechanisms of mitochondrial transplantation.

8.1. Reactive oxygen Species

McCully et al. (14) investigated some of the mechanisms that
may be involved in mitochondrial transplantation. These early
experiments showed there was no increase in organ specific
reactive oxygen species associated with  mitochondrial
transplantation. Thiobarbituric acid reactive substances (TBARS)
that

transplantation significantly decreased reactive oxygen species.

assay, of lipid peroxidation showed mitochondrial
Collaborative experiments using the reactive oxygen species
scavenger, N-(2 mecaptopropionyl) glycine (MPG) when used
throughout reperfusion or when added to mitochondria also
failed to block the cardioprotection afforded by mitochondrial
transplantation. Myocardial cell function as determined by
sonomicrometry and cellular viability (necrosis and apoptosis) by
triphenyl tetrazolium chloride staining was not altered with the
addition of MPG.

These studies showed that mitochondrial transplantation did
not increase reactive oxygen species (ROS) and that ROS was not
involved in the mechanisms associated with mitochondrial
transplantation. These initial findings agree with that of Kim
et al. (63) who showed that mitochondrial delivery via centrifugal
force did not cause intracellular damage, increase in oxidative
stress (intracellular ROS and mROS) or apoptosis. Recently, Rossi
et al. (25) have also shown that mitochondrial transplantation
was associated with lower ROS production. The authors showed
that mitochondrial transplantation decreased ROS generation as
determined by the ROS-sensitive fluorescent probe MitoSOX
together with the coherent decrease of TBARS production. In
total these studies indicate that the effects associated with
mitochondrial transplantation are not modified by reactive
oxygen species. We have done no experiments using anti-oxidant

enzymes.

8.2. Inflammation

It has been suggested that inflammation due to an acute
immune response and inflammatory macrophage activation
may play a role in tissue repair (93). Masuzawa et al. (13) has
shown using serial blood samples over 4 weeks of recovery,
that TNFo, IL-6 and high sensitivity C-reactive protein,
sensitive markers of inflammation were significantly decreased
in hearts receiving mitochondrial transplantation as compared
hearts receiving vehicle alone suggesting that the level of
inflammation was ameliorated by mitochondrial
transplantation. Similar results were observed by Kaza et al.

(26) who, using multiplex assay showed that there was no

frontiersin.org


https://doi.org/10.3389/fcvm.2023.1268814
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

McCully et al.

immune or inflammatory response or cytokine activation
associated with mitochondrial transplantation.

Ramirez-Barbieri et al. (31) have shown by ELISpot assay that
inflammatory cytokines INFy, IL-2 (type 1 cytokines) were not
increased with mitochondrial transplantation even at 90- fold the
recommended mitochondrial concentration. Ramirez-Barbieri
et al. (31) also examined cytokine profiles, involving a population
Thl, Th2 cytokines.

demonstrated that there was no detectable increase in the levels

of macrophages, Multiplex analysis
of any cytokine for either syngeneic or allogeneic mitochondria
transplantation at any mitochondrial concentration (1 x 10% 1x
10° or 1x107). Guariento et al. (94) have shown in a clinical
study of patients requiring extracellular membrane oxygen
support for postcardiotomy ischemia-reperfusion injury, that
mitochondrial transplantation was not associated with
inflammatory response. In total, these studies indicate that the
effects associated with mitochondrial transplantation are not

modified by inflammation.

8.3. Adenosine receptors and Karp channels

with
intracoronary delivery of mitochondria, namely a sustained

An interesting phenomenon was observed
increase in coronary blood flow. This effect on coronary blood
with
maximal hyperemia achieved with an intracoronary injection

flow was immediate and concentration-dependent,
of 1x10° mitochondria (28). The increase in coronary blood
flow was also accompanied by an increase in systolic
shortening with no change in heart rate or mean arterial
pressure. The mitochondria-induced increase in coronary
blood flow was achievable only through intracoronary delivery
of intact, respiration-competent mitochondria. Direct injection
of mitochondria into the heart muscle or intracoronary
delivery of devitalized mitochondria or intact HeLa pO-
mitochondria, which lack respiration capacity, had no effect
on coronary blood flow or systolic shortening. This finding is
consistent with earlier findings by us and others that the
transplanted mitochondria must be intact and respiratory
competent.

The mechanism for this was found not to be attributable to
ATP (adenosine triphosphate) produced by the mitochondria or
changes in oxygen saturation. In vivo inhibition of key coronary
vasodilatory pathways: nitric oxide synthase (NOS), cyclo-
oxygenase (COX), adenosine-receptors, potassium-ATP (Karp)
channels and oxygen saturation were also found to have no
effect on the changes in coronary blood flow and systolic
shortening. Interestingly, mitochondria-induced coronary
vasodilation was attenuated in part by the inhibition of the
inward-rectifying potassium (K;z) channels, consistent with
studies that implicate Kjr-channels in mechanisms of ATP-
mediated vasodilation (28). These results are in agreement
with earlier studies (14) that showed that in the Langendorff
perfused heart with the non-selective adenosine receptor
inhibitor
potassium-ATP (Karp) channel blocker glibenclamide or pre-

8-sulfophenyltheophylline or the non-selective
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incubation of isolated mitochondria with these drugs had no
effect on the observable increases in systolic shortening and
infarct  size mitochondrial

decreased obtained by

transplantation (Figure 3). For review of the role of

potassium-ATP (Katp) channels the reader is directed to (8, 95).

8.4. Chemokines, cytokines

Masuzawa et al. (13) showed that there was up-regulation of
cardioprotective cytokines. These cytokines, epidermal growth
factor (EGF), GRO, IL-6 and monocyte chemoattractant
protein-3 (MCP-3) have been shown to play key roles in
angiogenesis, arteriogenesis, immunomodulation, progenitor
cell migration, prevention of apoptosis and enhanced cell
salvage and post-ischemic functional recovery. EGF has been
shown to play a key role in ischemic injury protection in the
heart by stimulating cell growth, proliferation, and migration.
After cardiac infarction, GRO participates in the improvement
in function and reconstitution of tissue mass and acts with
IL-6 as
vascularization, protection against cardiomyocyte apoptosis,

a chemo-attractant which allows for enhanced
and improved functional cardiac recovery. These chemokines
have been shown to act with MCP-3 to enhance post-
infarction cardiac function and improve cardiac remodeling

independent of cardiac myocyte regeneration.

8.5. ATP

We and others have shown that mitochondrial transplantation
improves bioenergetics and oxygen consumption both in vitro and
in vivo (19-21, 23, 25). These beneficial effects are dependent upon
the respiratory capacity and integrity of the transplanted
mitochondria (13, 21, 28, 39).

We have demonstrated in the in vivo model that the
mechanism of action of mitochondrial transplantation involves
in part the prolonged increase in total tissue ATP content.
Doulamis et al. (15) has shown that in the in vivo heart,
mitochondrial uptake in the area at risk is evident at 2 h, 3
days and at 28 days post mitochondrial transplantation and is
associated with significantly increased total tissue ATP content
at both 2h and at 28 days. The mechanism for this increase
has been investigated by Rossi et al. (25) who have shown that
mitochondria transplantation in a model of ischemia-
reperfusion injury was able to restore the activity of the TCA
cycle enzymes citrate synthase, alpha-ketoglutarate, succinate,
and malate dehydrogenase and the enzymes of the electron
transport chain, leading to increased intracellular ATP levels
such that there was no difference as compared to non-
ischemic controls. This agrees with the findings of Masuzawa
et al (13), who showed that oxygen consumption rate in
cardiomyocytes was significantly increased with mitochondrial
transplantation and with Guariento et al. (58) who showed
that

myocardial oxygen consumption.

mitochondrial transplantation significantly increased
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Safety and putative mechanisms associated with mitochondrial transplantation in the ischemia-reperfusion injured heart.
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8.6. Transcriptomic, proteomic and
metabolomic responses to mitochondrial
transplantation

Previously we have shown by microarray and proteomic
analysis that cardioprotection following ischemia reperfusion
modulated by RNA-
mechanisms (12, 96). Transcriptomic and proteomic enrichment

injury is and  protein-dependent
analyses indicated that ischemia downregulated genes/proteins
associated with mitochondrial function and energy production,
cofactor catabolism, and the generation of precursor metabolites
of energy. In contrast, cardioprotection with cardioplegia
significantly increased differentially expressed genes/proteins
associated with the mitochondrion and mitochondrial function
and significantly upregulated the biological processes of muscle
contraction, involuntary muscle contraction, carboxylic acid and
fatty acid catabolic processes, fatty acid b-oxidation, and fatty
acid metabolic processes (12, 96). The transcriptomic and
proteomic data demonstrated that the mitochondrion plays a
significant role in both ischemia and in cardioprotection.

To the underlying  global
transcriptomic, proteomic and metabolomic changes conferred

ascertain early expressed
by mitochondrial transplantation we have performed RNAseq,
SOMAscan and Metabolomic analysis to identify pathways up-
and down-regulated with mitochondrial transplantation.

(13) that
transplantation was associated with up-regulation of proteomic
pathways. situ that

mitochondrial transplantation beneficially altered proteomic

Masuzawa, et al showed mitochondrial

These in experiments demonstrated

pathways early in reperfusion, allowing for enhanced post-
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ischemic functional recovery and enhanced post-ischemic
myocellular viability. Functional annotation clustering (p < 0.05,
Enrichment Score>2.0) indicated that the mitochondrion, the
generation of precursor metabolites for energy and cellular
respiration were enriched with mitochondrial transplantation and
there were no down regulated clusters.

(15) also showed that mitochondrial
(fold >1.5, p<0.05)

proteomic pathways for multicellular organismal processes,

Doulamis et al.

transplantation  up-regulated change
response to organic substance, stimulus and external stimulus,
and multicellular organ and system development at 2 h and at 28

days recovery. All these pathways are associated with
mitochondrial function and biosynthesis. Gene ontology
localization analysis showed that the modulations in

transcriptomics were affected by mitochondrion. No other
organelle was implicated.

(15) showed that the
transcriptomics were consistent with proteomic alterations and

showed that biological processes for regulation of multicellular

Doulamis et al. changes in

organismal processes, regulation of biological quality, regulation
of system processes, regulation of signaling, response to organic
substance and response to oxygen containing compound were
significantly upregulated in both RNA-seq and proteomic analysis.

These studies agree with the earlier studies by McCully et al.
(96) and Black et al.
mitochondrion in ischemia and in cardioprotection. These

(12) confirming the role of the

studies are also consistent with the findings of Rossi et al. (25)
who have shown that mitochondrial transplantation up-regulates
transcriptomic pathways associated with mitochondrial biogenesis
[Peroxisome proliferator-activated receptors (PPAR) pathway],
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FIGURE 4
Clinical uses for mitochondrial transplantation.

mitochondrial metabolism (IL-17, Ca2+, cAMP, and cAMP
response element (CREB) signaling.

Cumulatively, these findings support the observations of
Guariento et al. (58) who demonstrated that mitochondrial
transplantation enriched metabolomic pathways for mitochondrion
function and muscle function.

The physiological, functional, and biochemical results obtained
in our animal studies in the ischemic-reperfused heart model
support the pathways suggested by transcriptomic, proteomic and
metabolic analysis. Our data clearly show that there is no
immune or inflammatory response associated with mitochondrial
transplantation. In agreement with the findings of Alexander
et al. (81) who investigated mitochondrial transplantation by
nasal delivery and showed that there was no evidence for
activation of inflammatory pathways in the brain following
mitochondrial transplantation and that there was no up-
regulation of transcriptomic inflammatory signaling. The authors
showed that the top canonical pathways upregulated by the nasal
administration of mitochondria were the Nrf2-mediated oxidative
ERK/MAPK and
synaptogenesis signaling. It was speculated that Nrf2-mediated

stress response, along with telomerase,
response may regulate antioxidant proteins towards minimizing
oxidative damage and that protein repair and clearance may also
be triggered by ubiquitination, proteosome degradation and
regulation of chaperone and stress response proteins. The
authors suggested that mitochondrial transplantation may repair
the acceptor cells like neurons, macrophages, and GFAP + cells
possibly by changing their metabolic programming towards
restoration of the damage and/or a more restorative phenotype.
The down-regulation of pathways for DNA damage are supported
by the findings of Pacak et al. (20) who showed that mitochondrial
transplantation rescued cell function and replaced mtDNA.
Down-regulation of pathways for proteolysis and apoptosis and
up-regulation of the pathway for anti-apoptosis with mitochondrial

Frontiers in Cardiovascular Medicine

transplantation also agree with our findings that mitochondrial
transplantation significantly decreases myocardial necrosis and
apoptosis (13-15, 26-28, 58, 77). Reduction in myocardial injury
has been confirmed by significant decreases in CK-MB and cTnl
and a significant decrease in caspase-3 like activity.

Up-regulation of transcriptomic pathways for muscle contraction
and muscle development and proteomic pathways for muscle
function and metabolomic pathways for muscle function also agree
with our measured contractile indices where we have shown that
mitochondrial transplantation enhances post-ischemic myocardial
function that
developed pressure, maintenance of left ventricular end diastolic

contractile includes increased left ventricular

pressure, increased systolic shortening, increased ejection fraction.
The up-regulation of proteomic and metabolomic pathways

mitochondrial ~ function, cellular

respiration and mitochondrial function and the metabolic

for energy production,

pathway for mitochondrial function agree with our studies
showing that mitochondrial transplantation increases total tissue
ATP content, MVO2 and cellular respiration.

In total, these data show that the responses to mitochondrial
transplantation are rapid and enduring. Changes in
transcriptomics are evident at 2 h and remain upregulated for at
least 28 days, the extent of our current experimental recovery
duration in our animal studies. Transcriptomic and proteomic

changes occur rapidly and persist for at least 28 days.

9. Conclusion

The uses for mitochondrial transplantation are increasing.
Mitochondrial transplantation has been used in the heart, lung,
kidney, liver, skeletal muscle, brain and the eye (Figure 4). The
importance of mitochondria as a therapeutic target and

mitochondrial transplantation as a therapeutic modality is
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evident and is expanding to involve a myriad of pathologies.
Specific usage and procedural indices have been suggested and
further modification and elucidation will occur. The data to date
suggests that mitochondrial transplantation may provide new and
improved approaches to many pathologies and conditions. This
review provides the observations obtained from our studies with
those of others in the area and does not include the many
variations now being proposed. We hope that mitochondrial
transplantation as a methodology will continue to increase in
usage and for disease and non-disease states and that this review
will stimulate further investigation.
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Novel portable hypothermic
machine perfusion preservation
device enhances cardiac viability
of donated human hearts

Kristina Andrijauskaite'™, Rafael J. Veraza', Riley P. Lopez’,

Zach Maxwell’, Isabella Cano’, Exal E. Cisneros’, Israel J. Jessop’,
Maria Basurto', George Lamberson’, Michelle D. Watt',

Joseph Nespral’, Masahiro Ono’ and Leonid Bunegin'

Vascular Perfusion Solutions, Inc., San Antonio, TX, United States, *Texas Organ Sharing Alliance
(TOSA), San Antonio, TX, United States, *Division of Cardiovascular and Thoracic Surgery,
Department of Surgery and Perioperative Care, Austin Dell Medical School, University of Texas, Austin,
TX, United States

Introduction: Heart transplant remains the gold standard treatment for patients
with advanced heart failure. However, the list of patients waiting for a heart
transplant continues to increase. We have developed a portable hypothermic
oxygenated machine perfusion device, the VP.S ENCORE®, to extend the
allowable preservation time. The purpose of this study was to test the efficacy
of the VP.S. ENCORE® using deceased donors derived hearts.

Methods: Hearts from brain-dead donors not utilized for transplant (n = 11) were
offered for research from the Texas Organ Sharing Alliance (TOSA), South
and Central Texas'" Organ Procurement Organization (OPO) and were
preserved in the VP.S ENCORE® for 4 (n=2), 6 (n=3), and 8 (n = 3) hours or
were kept in static cold storage (SCS) (n=3). After preservation, the hearts
were placed in an isolated heart Langendorff model for reperfusion and
evaluated for cardiac function.

Results: The mean donor age was 37.82 + 12.67 with the youngest donor being
19 and the oldest donor being 58 years old. SCS hearts mean weight gain (%) was
—1.4 4+ 2.77, while perfused at 4 h was 5.6 + 6.04, perfused at 6 h 2.1+ 6.04, and
8 h was 7.2 +10.76. Venous and arterial lactate concentrations were less than
2.0 mmol/L across all perfused hearts. Left ventricular contractility (+dPdT,
mmHg/s) for 4 h (1,214 + 1,064), 6 (1,565 + 141.3), and 8 h (1,331 + 403.6) were
within the range of healthy human heart function. Thus, not significant as
compared to the SCS group (1,597 + 342.2). However, the left ventricular
relaxation (mmHg/s) was significant in 6-hour perfused heart (p<0.05) as
compared to SCS. Gene expression analysis of inflammation markers (IL-6, IL-
1B) showed no significant differences between SCS and perfused hearts, but a
6-hour perfusion led to a downregulated expression of these markers.
Discussion: The results demonstrate that the VP.S ENCORE® device enhances
cardiac viability and exhibits comparable cardiac function to a healthy heart.
The implications of these findings suggest that the VP.S ENCORE® could
introduce a new paradigm in the field of organ preservation, especially for
marginal hearts.

KEYWORDS

organ preservation, hypothermic machine perfusion, cardiac grafts, heart transplant,
VP.S ENCORE™ preservation device, deceased DBD donors, prolonged preservation
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Introduction

Heart transplants (HT) remain the gold standard treatment for
patients with advanced heart disease (1). However, worldwide,
there are simply not enough heart donors available to meet the
demand (2). In the United States alone, about 20% of patients on
the heart transplant waiting list die or become too sick to remain
good transplant candidates (3). Approaches to decrease organ
shortage include the use of extended-criteria donors (ECDs) or
donation after circulatory death (DCD) as well as the emergence of
ex-situ machine perfusion (MP) systems as an alternative to the
standard of care, the static cold storage (4). It has been estimated
that DCD heart transplantation can increase the heart donor pool
by about 30% (5). According to the United Network for Organ
Sharing (6), 2022 was a record-setting year with a significant
increase in DCD heart transplants in the United States. In DCD
transplantation, only two techniques can be used: direct
procurement and ex-situ perfusion (DPP) using TransMedics
OCS, the only approved DCD technology in the United States, and
the normothermic regional in situ perfusion (NRP) (7). The latter
has emerged as a cost-effective alternative with promising early
patient outcomes and high organ recovery rates (8, 9). After blood
flow restoration, normothermic regional perfusion is followed by
the SCS or MP (8). There are two types of machine perfusion
technologies: normothermic (NMP) and hypothermic (HMP).
Although both of them have their advantages and disadvantages,
nevertheless, hypothermic perfusion is deemed to have a safer
profile in the event of system failure, as opposed to normothermic
machine perfusion (NMP), which carries the risk of causing
irreversible damage to the heart (10). While in hypothermic
preservation, the organ is cooled to a more standard static cold
storage (SCS) temperature ranging from 5 to 10°C, a range
considered by the International Society for Heart and Lung
Transplantation (ISHLT) as an optimal temperature for the heart
(11). Further, NMP involves additional surgical and technical
support and appropriate transport, inevitably resulting in a more
expensive management cost. While HMP holds tremendous
potential for cardiac transplantation, most perfusion devices are
quite complex and expensive, requiring blood-based products to be
added to the proprietary perfusion solutions. Here, we present data
on the HMP of human donor-derived hearts using the VP.S
ENCORE®, an innovative and simple-to-use cardiac preservation
device, which shows promising preclinical results for prolonged
cardiac graft preservation.

Methods
Human donor heart procurement

Heart retrieval was performed in a standard fashion through a
median sternotomy. The heart was exposed, and the donor was
systemically heparinized with 30,000 units of heparin. After
sufficient time for heparin circulation, the aorta was cross-clamped
and one liter of cold cardioplegia was administered to arrest the
heart. The heart was decompressed through the inferior vena cava
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and left atrial appendage. The donor cardiectomy was completed,
and the graft was immersed in a cold saline solution for
preparation and inspection.

Ex vivo hypothermic machine perfusion
(HMP) and static cold storage preservation

Human donated hearts were either preserved using the VP.S
ENCORE" or were kept in static cold storage. After Plasma-Lyte
A (1L) flush, donor hearts in the HMP group were cannulated
with aortic and superior vena cava cannula to collect perfusate
samples from both arterial and venous ports via oxygen probes.
The heart was lowered into the organ storage canister filled with
cold (4°C) Belzer MPS® UW Machine Perfusion solution and the
perfusion module was secured to the canister with clamps for a
liquid-tight seal. The prepared device was lowered into a
temperature-regulated vessel and maintained at a hypothermic
temperature. The VP.S ENCORE® device is lightweight, portable,
and simple to use. The technology is based on hypothermic
oxygenated machine perfusion that combines electro-fluidics and
mechano-elastic principles to recover the energy inherently stored
in compressed oxygen to drive preservation fluid through the
coronary arteries of hearts. Compressed oxygen supplies an
oxygenator while simultaneously driving fluid through the system
into the aorta utilizing a novel diaphragm pump which allows the
compact nature of the device and eliminates the need to use roller
or centrifugal pumps (Figure 1). During HMP, perfusion flow,
pressure, and temperature were recorded at a two-hour interval.
Hearts in the static cold storage group were submerged in 1 L of
Belzer UW® Cold Storage Solution double-bagged in ice slush and
placed in an ice cooler for around 4 h. The perfusate temperature,
flow, and pressure were monitored continuously.

Metabolic and cardiac edema assessment

During HPM, perfusate samples were collected from arterial
and venous ports 30 min post the start of perfusion and every
two hours afterward. Perfusate samples were analyzed for different
blood gases using an i-STAT 200 analyzer (Abbott Laboratories)
and cartridges for CG8 (general blood gases), CG4 (lactate),
creatinine kinase-muscle/brain (CK-MB) and cardiac Troponinl
(cTnl). Lactate expression was measured from both arterial and
venous samples, whereas CK-MB and cTnl expression was
obtained from only venous samples. The difference in lactate
expression was calculated by subtracting arterial values from
venous. Cardiac edema was determined by measuring the weights
of hearts prior to and after each preservation method.

Oxygen consumption during perfusion and
reperfusion

Myocardial oxygen consumption (MVO2 mlO2/min/100 g)
was measured during perfusion and reperfusion. In the latter
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FIGURE 1
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Schematic illustration of the (A) VP.S ENCORE™ device. An external oxygen tank provides oxygen by pulsing at 50 pulses/min via a micro-solenoid at a fluid
driving pressure of 10-20 mmHg. Oxygen travels both to the pump to drive fluid through the system and into the oxygenator to provide oxygen to the
solution. The diaphragm pump directs oxygenated fluid directly to the aortic root. The perfusate provides oxygen and nutrients to the heart and fluid exits
through the coronary sinus. The pressure gradient drives fluid from the canister and back into the head for reoxygenation. Deoxygenated fluid flows into the
oxygenator and carbon dioxide and excess oxygen are vented into the atmosphere. This cycle continues throughout the entire preservation time. Perfusate
samples are taken from a cannulated coronary sinus and from the arterial line. The arterial line has sensors to measure pressure, flow, and temperature. A
second pressure sensor measures the pressure in the canister, and (B) schematic representation of the reperfusion on the Langendorff system where the
numbers indicate the major components. To initiate a process, a flush solution consisting of 3l of modified Krebs buffer is circulated through the system
using a peristaltic pump. This solution traverses through an oxygenator and bubble trap before entering the aorta. Subsequently, the flush solution is
directed to waste. Once the temperature reaches 30°C, the solution is then switched to the main solution containing HBOC. As the heart gradually
warms to 39°C, the perfusion flow rate is adjusted accordingly to meet the escalating oxygen demands, facilitating the process of stabilization.
Different sensors are instrumented to collect reperfusion parameters, and the data has been continuously recorded using the Data Logging System.
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phase, oxygen consumption was measured throughout an initial  oxygen partial pressure (mmHg) data of the solution before

30 min of the rewarming stage (before defibrillation) and after  entering the coronary arteries (arterial) and after exiting the

defibrillation. Two oxygen probes (Pyro FireSting™) collected ~ cannulated pulmonary artery (venous), whereas flow was
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measured using the Sensirion flow meter. Oxygen consumption
was captured using the following formula, (([O2] a- [02] v) *
Q)/heart weight) * 100. [O2] a and [O2] v are defined as the
oxygen content of arterial and venous perfusate respectively. [O2]
was calculated as (1.34 * Hb* SO2) + (K * pO2); where 1.34 is ml
O2/Hb (g), Hb is the concentration of hemoglobin measured in
g/dl, SO2 is the oxygen saturation ratio calculated using the
equation developed by Severinghaus (12), where K is the oxygen
solubility coefficient adjusted for the perfusate temperature at
every data point, pO2 is the partial pressure of oxygen in mmHg
for the perfusate sample, and Q is a coronary flow in mL/min.

Assessment of cardiac function

After preservation, hearts were placed on a Langendorft system
with a perfusate mixture of Krebs-Henseleit buffer, PEG-20kD, and
hemoglobin-based oxygen carriers (HBOCs). The left ventricular
function was expressed as the rate of pressure change over time
dP/dT (mmHg/sec) and was measured by placing a pressure
catheter (Millar, 5F) in the left ventricle. Data was analyzed using
PowerLab (LabChart 8.1.16) blood pressure analyzer. Data was
selected from the left ventricular pressure waveform as an average
of 30 beats after stabilization (approximately 30 min after
defibrillation). Contractility after ionotropic support was measured
less than 5min after administration of epinephrine (0.5 mg
injected arterial). The end-diastolic pressure of the left ventricle
was maintained by administering perfusate directly into the left
ventricle through the mitral valve and venting to the atmosphere.

Myocardial histological assessment

Tissue biopsies (2.5-4 mm) were obtained pre and post-
preservation from left and right ventricle vasculature for
histological evaluation. Biopsies were placed in 10% formalin for
24 h and then stored for 3 days in 70% ethanol and embedded in
paraffin. Samples were sectioned into 5pum slides, stained with
hematoxylin and eosin (H&E), and were scanned by Amscope
microscope-scanner at 20x magnification. Myocardial injury was
assessed based on the presence and severity of myofiber necrosis
and degeneration, hemorrhage, interstitial edema, endothelial
changes, and acute inflammation (13) and it was graded in a
semiquantitative scale by an independent, blinded pathologist.
Additionally, a subset of the hearts was sent to the cardiac
pathology laboratory at the Texas Heart Institute for gross and
microscopic evaluation by a blinded certified pathologist.

Gene expression

Total RNA from cardiac tissue biopsies was extracted following
the TRIzol RNA isolation method. The concentration of total RNA
was evaluated and measured at 260/280 nm by spectrophotometer
(NanoVue Plus, GE Healthcare). Synthesis of cDNA was
performed from 025ug of total RNA, which was reverse
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transcribed using (iScript ¢DNA Synthesis Kit, Bio-Rad)
according to the manufacturer’s instructions. Gene-specific pre-
designed oligonucleotide primers were purchased from Sigma.
qRT-PCR was done using SsoAdvanced Universal SYBR Green
Supermix and SFX96 Touch real-time PCR detection system
(Bio-Rad, T100 Thermal Cycler). The cycling parameters were as
follows: initial denaturation 95°C, 2 min; denaturation 95°C, 5's;
annealing/extension 60°C, 30 s; number of cycles 40; melt curve
65°—95°C (0.5°C increments). The comparative CT (2-AACT)
method was used for all quantification. Values were normalized

to the housekeeping gene.

Statistical analysis

All graphing and statistical analyses were performed using
Prism 9 (GraphPad Software Inc., La Jolla, CA, USA). Results
were expressed as means * standard deviation (Std) or means +
standard error of the mean (SEM). Graphs were presented as
overall means + standard deviations/errors. Differences between
the groups were assessed using a two-tailed Student’s T-test for
unpaired data. Statistical tests and corrections for multiple
comparisons are described in each figure panel.

Results

Donor characteristics and reasons for
transplant rejection

To avoid any potential bias, donor hearts were allocated into
different preservation groups randomly. Most donor hearts have
derived from females (60%) with no significant differences
detected among other characteristics prior to heart procurement,
such as donor age, ejection fraction, body max index (BMI), and
sex (Figure 2). Further, human hearts were not utilized for
transplant due to many different reasons, including donor age
(n=2), organ size (n=1), rapid recovery (n=1), unacceptable

A go— Donor Mean Age B Ejection Fraction (%)
60— ~and ¢
0 - 5% T €
3 . 5 - L
> 40 404
Sol & 4 o Eaq .
< : 5 .
20+ u A S 20
2,
w
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SCS 4hr 6hr 8hr SCS 4hr 6hr 8hr
FIGURE 2

Donor characteristics prior heart procurement based on the
preservation group including (A) donor mean age, and (B) donor
ejection fraction (%). Each color represents a different preservation
group, while each point represents an individual heart. Values
plotted as means + SEM. Graphs depicting age and ejection
fraction of donors exhibit a distribution of data points with
indicators for the mean, lowest, and highest values
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organ-specific test (n = 1), organ anatomical defect (n = 1), or due to
no match run/medical rule out (n = 5). Drug overdose was the main
cause of death for most donors (n=4), while other causes were
accidents, stroke, trauma, sepsis, or unknown reasons (Table 1).

Preservation parameters during HMP and
static cold storage (SCS)

Human donor hearts were offered for research by the local
procurement organization within a very short distance. We
calculated both the time it took from the cross-clamp (CC) to
start preservation as well as the total preservation duration
(Figure 3A). Our data show no significant difference in cc—
preservation time among different groups as well as no profound
differences in perfusion parameters. The average coronary flow for
all groups combined was 41.86 + 5.09 ml/min with an average flow
not exceeding 50 mL/min for each group individually. The average
perfusion pressure recorded 12.61 +4.04 mmHg, and the average
temperature was 7.99 +1.5°C (Figures 3B-D). Thus, every heart
was assessed for edema by weighing the heart prior to and post-
preservation. Our results show no significant change in weight
gain (%) following any preservation method (See Figure 3E).

Biochemical markers of myocardial injury:
lactates, CK-MB, and cardiac troponin |

Lactate was measured from the coronary sinus and arterial
samples to determine the tissue anaerobic state. Study results show
lactate expression not exceeding 2 mmol/L across all groups
(Figure 4). The lowest expression was detected in the 4-hour
perfusion group with arterial lactate measured at 0.31 +£0.02 and

TABLE 1 Donor demographics and reasons for transplant rejection.

Donor characteristics

Preservation group SCS (n=3) 4h (n=2) 6h (n=3) 8h (n=3)
Age 37.67 £9.71 | 39.00 £16.97 | 34.00 £ 11.27 | 41.00 + 19.97
Ejection fraction (%) | 50.83 +11.27 | 45.00 + 14.14 | 40.83 +11.81 | 54.33 + 14.01
BMI 2070 +6.16 | 23.30+1.28 | 2477 +£3.32 | 27.23+4.29
Sex (M/F) 2/1 1/1 2/1 0/3
Rejection for transplant

Donor age 1 1
Organ size 1
Rapid recovery 1

Unacceptable organ 1

specific test

Organ anatomical 1

defect

No match run/ 1 3 1
medical rule out

Cause of death

Drug intoxication 1 1 2

Accidents 1
Stroke 2 1

Trauma 1

Sepsis 1
Uknown 1
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venous 0.32 + 0.02 mmol/L. The 6-hour perfusion group resulted in
arterial lactate concentration of 1.72 +0.19, while venous expression
was 1.95+0.22 mmol/L, and the 8-hour group had arterial lactate
expression of 0.95+0.06, while venous had 0.92 +0.04 mmol/L
indicating a shift from lactate production to lactate consumption.
Further, the negative lactate difference (venous—arterial) was
observed in a 6-hour preservation group which may indicate a
higher level of lactate clearance or lower lactate production in the
venous circulation compared to the arterial circulation. This could
be indicative of improved tissue perfusion and oxygenation, which
are critical factors in the preservation of donor hearts. Next, we
assessed the expression of one of the creatine phosphokinases
(CPK) isoenzymes, creatine kinase myocardial band (CK-MB),
which is commonly obtained after heart transplantation (HT) as an
indicator of a myocardial injury of the donor heart (14)
(Figures 5A-B). Another common marker for cardiac cell damage
is cardiac troponins. The specific isoform I (cTnl) is commonly
detected in heart transplant recipients as an indicator of graft
failure (15). There was no significant difference detected of c¢Tnl
expression among different perfusion groups with 4-hour perfusion
resulting in 2.32 +2.09 ng/mL, while 6 and 8-hour perfusion groups
460+3.87 and 3.08+2.81 ng/mL
(Figures 5C-D). Due to insufficient research on assessing CK-MB

resulting in respectively
and cTnl expression in human hearts during HMP, drawing
conclusions about the levels of these markers’ is challenging. Yet,
when focusing on fold change over total concentration, a consistent
fold change of 3.2 was found in all groups for CK-MB expression.
In contrast, the 6-hour preservation group exhibited the lowest fold
change in c¢Tnl expression at 3.96 + 0.44.

Myocardial oxygen consumption

Myocardial consumption correlates with energy

oxygen
utilization from the cells and is considered a good marker
to assess energy production and uptake by the myocardial
tissue (16, 17). In this study, we assessed oxygen consumption
during the perfusion and reperfusion phases (Figure 6). The
average oxygen consumption for 4-hour preservation during HMP
was  0.70 £0.1 mlO,/min/100 g, while for 6 and 8-hour
preservation was 0.50 +0.09 and 0.23 +0.05 respectively. Hearts in
different preservation groups show similar oxygen consumption
trends which fall under the error band area representing the 95%
confidence interval. Thus, our data is in alignment with findings
from other investigators (18, 19). Oxygen consumption during the
re-reperfusion stage shows normal oxygen consumption ranging
from 2 to 5 mlO2/min/100 g across all groups (20).

Assessment of cardiac function

After preservation, hearts were removed from the VP.S
ENCORE® and placed in a Langendorff system for reperfusion
and evaluation of cardiac contractility. This system assesses left
thereby
allowing the evaluation of the intrinsic contractility of the left

ventricular dP/dT without preload and afterload,
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ventricle. No substantial change in left ventricle (3) contractility
with all of them
corresponding to a normal range> 1,200 mmHg/s (Figure 7A)

was detected among different groups
(21). However, there was a significant (p <0.05) increase in LV
relaxation in hearts perfused for 6h (Figure 7B) and no
significant difference in LV maximum pressure (Figure 7C).

Myocardial histological assessment

Representative histological images from hearts collected pre and
post-preservation from the apex area showed no obvious ventricular
differences within each heart (Figure 8A). Myocardial histological
assessment post-preservation, characterized by the myocardial injury
score, revealed a significant (p<0.04) reduction in myofiber
degeneration in the 4-hour preservation hearts group compared to
the SCS group as characterized by the presence of leaky nuclei. There
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were no significant differences in other myocardial assessment

parameters (myocardial hemorrhage, interstitial edema, and

endothelial changes) between the standard of care and HMP groups.

Gene expression analysis

Gene expression analysis of inflammation markers interleukin
(IL)-6 and interleukin (I1)-1B assessed in tissues collected at the
end of each preservation method, showed no significant difference
among different groups (Figure 9). However, some groups had
profound downregulation of these inflammation markers, although
not significant. As such, 6-hour perfusion led to a 45%
downregulated expression of IL-6 and a 74% downregulation of
IL-1B as visualized by the median dotted line in violin plots. Also,
4-hour perfusion led to a 34% downregulated expression of IL-1p.
Elevated levels of these markers are known to be associated with
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Arterial and venous lactate expression for different preservation
groups including (A) 4 h, (B) 6 h, and (C) 8 h during hypothermic
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concentration, is also depicted on the graph. This provides insights
into the net production or consumption of lactate by the heart
during hypothermic perfusion. Samples were collected every two
hours, and data displayed as means + Std.

inflammatory responses, cardiac remodeling, and heart failure
(22, 23). However, their precise role in HMP and implications for
clinical outcomes are yet to be delineated in future studies.

Discussion

The growing demand for heart transplants remains a
significant challenge, outpacing the availability of suitable organs,
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Total expression and fold change of circulating markers creatine
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perfusion groups. (A) total expression of CK-MB followed by (B)
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change. Values were obtained from venous samples at the
beginning and at the end of perfusion. The fold change is
calculated by dividing the expression level at the end by the
baseline expression level. Each point represents an individual heart
with indicators for the mean, lowest, and highest values. Data
expressed as means + SEM.

which is largely attributed to improved overall survival post-
myocardial infarction and the aging global population (2). The
availability of suitable hearts for transplantation continues as a
major limit on the growing demand for heart transplantation.
The primary component of this limitation is the 4-hour cross-
clamp to cross-clamp preservation time imposed by the current
standard of care, static cold storage. Each hour exceeding 4h
increases the probability of delayed graft function and primary
graft failure leading to poorer morbidity and mortality (24, 25).
As such, only hearts recovered within 4 h of the transplant site
are typically accepted with a large proportion of suitable hearts
being left unclaimed. Addressing this organ shortage is crucial,
and machine perfusion technology, particularly when it is
accessible and user-friendly, holds promise as a key strategy to
enhance heart transplant utilization rates both in the United
States and globally. The VP.S ENCORE®, a single use-device,
weighing less than 23 Kg (50 pounds), and may be accompanied
by only one technician with very minimal training (<30 min).
This study aimed to evaluate the feasibility of the VP.S
ENCORE® device to preserve human donor-derived hearts not
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utilized for transplant for prolonged time. Study results revealed
that hypothermic machine perfusion (HMP) between 4 and 10°C
contributes to the reduction of the active metabolic state in
cardiac grafts, as measured by low lactate and other myocardial
markers expression, risk of the
accumulation of toxic metabolites while maintaining cardiac
viability (26). Examination of various metabolic markers,
including oxygen consumption and lactate levels, demonstrated
notable correlations with myocardial function during machine
perfusion (4). The Arrhenius equation can be used to estimate
the organ’s oxygen demand during cardiac preservation. This
equation the metabolic
characteristics of human hearts preserved for a specific duration,
and it provides insights into the rate of cellular processes and
cardiac mitochondrial protection (27). Results indicate that the
oxygen consumption during HMP was with
the Arrhenius prediction at 7°C for each of the groups and the

thereby minimizing the

is relevant to understanding

consistent
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results demonstrate that the VP.S ENCORE® delivered more
than adequate levels of oxygen to the myocardium to cover its
metabolic demand. Oxygen consumption prior to and post-
defibrillation on the Langendorf was comparable in all groups
and within the confidence interval predicted by the Arrhenius
Equation at 37°C. Notably, study findings align with, and
support results reported by other studies, reinforcing the
consistency and significance of our observations. Additionally,
the low perfusion pressures (<20 mmHg) minimized hydrostatic
edema development to less than 8%. While the extent of the
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edema may not be the only factor in determining the suitability for
transplantation, severe edema can impact the success of organ
transplantation (28). One of the advantages of the VP.S
ENCORE® device is no need for blood or blood-based products
to be used. The solution of choice in this study was the Belzer
MPS® UW Machine Perfusion solution, designed to keep the
heart in diastolic arrest and to slow down cellular metabolism,
reduce edema, and maintain cell integrity (17). While left
ventricular contractility in the perfusion groups was similar to
the SCS control, left ventricular relaxation following 6h of
perfusion was significantly greater. These findings are of
particular significance in that cardiac function appears to have
been maintained after an extended time of preservation. In
addition,

inflammation markers gene expression are consistent with the

myocardial histological assessment and lower
oxygen consumption and contractility data further reinforcing
the notion that VP.S ENCORE® provides a superior preservation
environment for cardiac grafts.

Despite these promising outcomes, it is essential to acknowledge
the limitations of this study. Further testing and validation,
particularly in larger cohorts and diverse clinical scenarios, are
necessary to establish the generalizability and robustness of these
findings. Additionally, the long-term effects of the VP.S ENCORE®
device and its compatibility with various donor types warrant
thorough exploration before widespread clinical application. The
complexities and variability associated with human hearts, especially
those procured from donation after circulatory death (DCD)
donors, underscore the need for continued research and refinement
of machine perfusion technologies. Preliminary data collected on
using the VP.S ENCORE® to preserve DCD porcine hearts (data
not shown) presents a promising avenue for the preservation of
such hearts, potentially revolutionizing organ transplantation
practices. Through controlled hypothermic perfusion and
sophisticated monitoring capabilities, the VP.S ENCORE® device
aims to mitigate ischemic injury, maintain metabolic homeostasis,
and minimize the risk of organ rejection post-transplantation.
Furthermore, the VP.S ENCORE® device may offer flexibility in
transportation logistics and extend the window of opportunity for
organ retrieval, enhancing accessibility to viable organs for
transplantation. As ongoing research continues to explore its
efficacy and refine its functionalities, the VP.S ENCORE® emerges
as a promising tool in addressing the challenges associated with
DCD heart preservation and advancing the field of organ
transplantation.

The current study contributes valuable insights into the
potential of the VP.S ENCORE®™ cardiac preservation device as a
means to address the ongoing heart utilization challenges in
heart transplantation. By building upon established principles of
hypothermic machine perfusion and exploring innovative
applications such as gene therapy and xenotransplantation, this
research lays the groundwork for future advancements in organ
preservation and transplantation strategies. While acknowledging

further

encouraging findings from this study emphasize the role of

the need for investigation and refinement, the

machine perfusion technology in shaping the future landscape of
heart transplantation.
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Conclusions

The study’s results demonstrate that human-derived donor
hearts preserved in the VP.S ENCORE® for a prolonged time (4-
8h) had comparable and in most cases better outcomes than
hearts stored using the standard of care preservation method.
Given the hearts used in this study were rejected for transplant
and had an initial lower ejection fraction (40%-50%) than
typically accepted for transplantation, study findings suggest that
the VP.S ENCORE® holds promise in preserving not only
standard criteria but also “marginal” donor hearts, potentially
further amplifying the utilization rates of heart transplants.
Extending heart preservation time has the potential to improve
organ allocation, increase transplant success rates, and enhance
the overall efficiency of organ transplantation systems. However,
careful consideration of associated challenges and risks is
essential in implementing and optimizing these practices.
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Extending heart preservation to
24 h with normothermic
perfusion
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Kristopher A. Urrea', Daniela Pelaez Palacio’, Robert H. Bartlett",
Daniel H. Drake'* and Alvaro Rojas-Pena"**

*Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan Medical School,
Ann Arbor, MI, United States, ?Department of Cardiac Surgery, University of Michigan Medical School,
Ann Arbor, MI, United States, *Department of Surgery, Section of Transplantation, University of Michigan
Medical School, Ann Arbor, MI, United States

Cold static storage (CSS) for up to 6 h is the gold standard in heart preservation.
Although some hearts stored over 6 h have been transplanted, longer CSS times
have increased posttransplant morbimortality. Transmedics® Organ Care System
(OCS™) is the only FDA-approved commercial system that provides an
alternative to CSS using normothermic ex situ heart perfusion (NEHP) in
resting mode with aortic perfusion (Langendorff method). However, it is also
limited to 6h and lacks an objective assessment of cardiac function.
Developing a system that can perfuse hearts under NEHP conditions for >24 h
can facilitate organ rehabilitation, expansion of the donor pool, and objective
functional evaluation. The Extracorporeal Life Support Laboratory at the
University of Michigan has worked to prolong NEHP to >24h with an
objective assessment of heart viability during NEHP. An NEHP system was
developed for aortic (Langendorff) perfusion using a blood-derived perfusate
(leukocyte/thrombocyte-depleted blood). Porcine hearts (n=42) of different
sizes (6—55 kg) were divided into five groups and studied during 24 h NEHP
with various interventions in three piglets (small-size) heart groups: (1) Control
NEHP without interventions (n=15); (2) NEHP + plasma exchange (n=5); (3)
NEHP + hemofiltration (n =10) and two adult-size (juvenile pigs) heart groups
(to demonstrate the support of larger hearts); (4) NEHP + hemofiltration
(n=5); and (5) NEHP with intermittent left atrial (iLA) perfusion (n=7). All
hearts with NEHP + interventions (n = 27) were successfully perfused for 24 h,
whereas 14 (93.3%) control hearts failed between 10 and 21 h, and 1 control
heart (6.6%) lasted 24 h. Hearts in the piglet hemofiltration and plasma
exchange groups performed better than those in the control group. The larger
hearts in the iLA perfusion group (n =7) allowed for real-time heart functional
assessment and remained stable throughout the 24 h of NEHP. These results
demonstrate that heart preservation for 24 h is feasible with our NEHP
perfusion technique. Increasing the preservation period beyond 24 h, infection
control, and nutritional support all need optimization. This proves the concept
that NEHP has the potential to increase the organ pool by (1) considering
previously discarded hearts; (2) performing an objective assessment of heart
function; (3) increasing the donor/recipient distance; and (4) developing heart-
specific perfusion therapies.

KEYWORDS

heart preservation, normothermic, ex situ, ex vivo, prolonged, perfusion, extracorporeal
support
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Introduction

Cold static storage (CSS) for up to 6 h has historically been the
gold standard in heart preservation. Although some hearts stored
over 6 h have been transplanted, longer CSS times have increased
posttransplant morbimortality secondary to cold ischemia,
endothelial damage, and loss of vasomotor tone. Recently, there
has been increased research on normothermic ex situ heart
perfusion (NEHP) for prolonged storage of heart tissues prior
to transplantation.

Transmedics Organ Care System (OCS™) is the only FDA-
that
alternative to CSS using NEHP in resting mode with aortic

approved commercial perfusion system provides an
perfusion at the rate of coronary perfusion (Langendorff
method). However, it is also limited to 6 h and lacks an objective
assessment of cardiac function.

Over the past 7 years, the Extracorporeal Life Support
Laboratory at the University of Michigan has worked to prolong
NEHP. We demonstrated that hearts could be routinely perfused
and preserved for 3 days when an aliquot of plasma was
continuously exchanged between the blood perfusate and a live
paracorporeal animal (sheep). Something is removed and/or
added that allows long-term successful NEHP. These factors are
humoral (not cellular) and present in plasma (1). We conducted
a series of experiments to identify those factors without the
paracorporeal animal. This was done in a stepwise fashion
beginning with fresh donor plasma exchange for 24 h in piglet
(small-size) hearts (2). These experiments demonstrated that the
critical factors are added/removed by plasma exchange alone.
Next, we evaluated hemofiltration to assess the toxic factor
removal component of plasma exchange. Hemofiltration at 1 cc/
g/h allowed successful 24-h perfusion. We evaluated the filtrate
to determine which critical molecules are removed. The only
nutrition in this series of studies was glucose added in the
filtration replacement fluid (3). All of these studies were done
with an aortic perfusion of the coronary circulation at around
1 mL/min/g of cardiac tissue. Studies are ongoing to evaluate left
atrial (working mode) perfusion to measure heart function
during NEHP (publication pending). In this report, we
summarize our published and ongoing experience with NEHP
without a paracorporeal animal.

Methods
Animals

Forty-two healthy pigs (6-55kg) were utilized during 24 h
NEHP runs with various interventions. Piglet (small-size) hearts:
(1) Control NEHP without interventions (n=15); (2) NEHP +
plasma exchange (n=5); (3) NEHP + hemofiltration (n=10).
Juvenile pig (adult-size) hearts were used to prove the adequate
support of larger hearts NEHP + hemofiltration (n=5) and the
assessment of heart function in real time while on NEHP with
intermittent left atrial (iLA) perfusion (n=7). All animals
received humane care in accordance with the National Institutes
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of Health Guide for the Care and Use of Laboratory Animals,
and protocols were approved by the University of Michigan
Institutional Animal Care and Use Committee (Protocol # 11170,
Approved 18 January 2023).

Surgical procedure

The surgical procedure was previously described by Tchouta
et al. (2) and Johnson et al. (3) and is unchanged from prior
experiments. A brief description is as follows. Isoflurane-inhaled
general anesthesia was induced with ketamine-zolazepam (7 mg/
kg) combined with xylazine (3 mg/kg). The skin was prepared
and draped in a standard sterile manner, and intravenous
antibiotics were administered (nafcillin 25 mg/kg and gentamicin
2.25 mg/kg). Lidocaine (1 mg/kg) was administered intravenously
before midline sternotomy. The pericardium was left intact to
minimize tissue desiccation. The extrapericardial great vessels
were isolated and loosely encircled with ligatures. The animals
received intravenous unfractionated heparin 400 IU/kg (Sagent
Pharma, Schaumburg, IL, USA). Following documentation of
adequate systemic anticoagulation, a cardioplegia needle was
placed in the proximal innominate artery and the distal
innominate and left subclavian arteries were ligated. The
proximal intrathoracic inferior vena cava (IVC) and the left
azygous vein were ligated, and the pig was exsanguinated
through the distal IVC using a 20-24Fr cannula and standard
sterile blood collection bags. Concomitantly, the mid-descending
thoracic aorta was cross-clamped, the superior vena cava (SVC)
was ligated, and 1L of cold (5°C) del Nido cardioplegia (CAPS
Inc., Detroit, MI, USA) was subsequently administered through
the proximal innominate artery. The left heart was decompressed
by transecting the right pulmonary veins. Sterile saline ice slush
was applied to the heart during cardioplegia administration.
After the administration of cardioplegia and confirmation of
cessation of heart function, the hearts were excised with the
pericardium intact, weighed, and placed in an ice bath for back
table preparation aiming for <60 min of cold ischemia time (CIT).

Back table preparation

A 10Fr venous drainage cannula (Medtronic, Minneapolis,
MN, USA) and a customized high-compliance balloon, secured
to the cannula (Dynarex, Orangeburg, NY, USA), connected to a
pressure transducer apparatus, were inserted into the left
ventricle (LV) to monitor LV pressure. A 5-0 polypropylene
suture was placed into the posterior leaflet of the mitral valve
and secured to the cannula to prevent balloon migration. The
modified LV compliance balloon was used for all NEHP studies
except for the ones where iLA perfusion was performed, as LV
ejection was required. A 20Fr DLP venous drainage cannula
(Medtronic Inc., Dublin, Ireland) was placed into the right
ventricle (RV) via the pulmonary artery (PA). A customized 1/
4x3/8-in connector with Luer Lock (Medtronic, Minneapolis,
MN, USA) was secured in the aortic arch for antegrade coronary
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perfusion (Langendorff). All remaining branches were ligated,
including the SVC, IVC, subclavian artery, and innominate
artery. The heart and cannulae were de-aired and connected to
the NEHP system.

Circuit, circuit priming, and blood-derived
perfusate

The perfusion circuit (Figure 1) consisted of a reservoir
(Terumo, Ann Arbor, MI, USA), an FX05 Baby Capiox
Oxygenator (Terumo CVS, Ann Arbor, MI, USA), and an
Mpump (peristaltic-modified roller pump) (Daris LLC, Ann
Arbor, MI, USA). The priming of the circuit contained several
steps: (1) 400-500 mL of Plasma-lyte A (balanced crystalloid
solution) to remove any air in the system; (2) Plasma-lyte A is
removed from the system (as much as possible); and (3) addition
of a blood-derived perfusate from the IV transfer bag (see below)
into the NEHP reservoir.

Under general anesthesia, healthy pigs (100-120 kg) were
exsanguinated and used as blood donors. Blood (5-6L) was
collected using the three-bag Teruflex® (Terumo Corp., Tokyo,
Japan) blood bag system with citrate phosphate dextrose adenine
solution (CPDA-1) anticoagulant. The volume of blood per kit
was 450 mL. The collected blood was then stored in a 5°C
refrigerator for up to 10 days on a rocking system until its use.
Whole blood was then separated using the collecting blood bags
via centrifugation (Sorvall Legend XFR Centrifuge—Thermo
Fisher Scientific, Waltham, MA, USA) for 20 min at 25°C with
3,600 RPM. Plasma and packed red blood cells (pRBCs) were
then collected using the plasma extractor and Fenwal transfer set
(Fresenius Kabi AG, Bad Homburg, Germany), and the buffy
coat (platelet and white blood cells) was discarded.

The priming volume was approximately 250-300 mL of
platelet- and leukocyte-reduced blood with a hemoglobin (Hb)

10.3389/fcvm.2024.1325169

concentration goal >8 g/dL and hematocrit >24% for all studies.
The then
conditioned to normothermic conditions

blood-derived perfusate was oxygenated and
(37°C) prior to
connecting the heart to NEHP. Washed pRBCs from our animal
blood bank were used to maintain Hb >8 g/dL. Normal saline
was used to wash pRBCs if the K values were >9 mmol/L. In
addition, calcium was monitored immediately after pRBC and
hourly during NEHP and replenished if ionized Ca <1.1 mmol/L
with 250 mg calcium gluconate (1cc bolus). Glucose was
replaced if perfusate levels were <60 mg/dL, but this situation
rarely occurs during NEHP with the addition of plasma exchange

or hemofiltration, unless contamination with bacteria is observed.

Perfusion protocol

Aortic blood flows were slowly increased and adjusted to
maintain coronary blood flow between 0.5 and 1.0 mL/min/g of
cardiac tissue (mL/min/g) with a mean flow of 0.7 mL/min/g
concordant with physiologic coronary blood flow using
Langendorff perfusion. PA outflow and LV drainage were
collected and returned to the reservoir of the perfusion circuit.
The LV compliance balloon was inflated to maintain initial end-
diastolic pressure within 8-10 mmHg; the initial volume required
to reach this pressure was kept consistent throughout the
duration of the prep. PA venous saturations were targeted to
75%-90%, accordingly. The
temperature was maintained at 37 °C using a water heater (CSZ
Cincinnati Sub-Zero ECMO Heather, Cincinnati, OH, USA). The
sweep gas (50% O,, 45% N,, and 5% CO,) was adjusted to
maintain pCO, at 40+5 mmHg. If fibrillation occurred, the
heart was defibrillated with 5-107] using internal defibrillation
paddles (Philips, Andover, MA, USA). The perfusate was

exchanged at 60 min of NEHP to eliminate residual cardioplegia

and coronary flow adjusted

and toxins that may have accumulated from reperfusion. The

FIGURE 1

perfusion

Diagrams of NEHP circuits. (A) An NEHP circuit used for pediatric hearts with plasma exchange (piglet hearts) using a plasma separator (Plasmaflo OP-
O5WIA] (Asahi Kasei Medical MT Corp., Oita, Japan); (B) An NEHP circuit used for pediatric (piglet) and adult (juvenile pigs) heart models with
hemofiltration [Prismaflex HF1000 filter (22Kd) Baxter Inc., Deerfield, IL, USA]; and (C) NEHP circuit modifications for adult (juvenile pigs) heart iLA
perfusion studies. Ao, aortic root line; FRF: Filtrate Replacement Fluid; LV: Left Ventricle; PA: Pulmonary Artery line. , clamping of line for iLA

22kD

Immll—" Filter
=
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perfusate exchange followed cardiopulmonary bypass practices.
The volume in the reservoir was depleted to a safe level (—30 cc),
and the new perfusate was added while the outflow from the
heart was collected and discarded. This maneuver mitigated air
embolism, while most of the perfusate was exchanged without a
stoppage of perfusion of the heart.

Summary of individual experiments
Plasma exchange

Plasma was infused into the aortic catheter in the experimental
hearts and filtered out at a similar rate from the reservoir drainage
line. The previous plasma cross-circulation experiments included
removal of plasma from the perfusion circuit and return to the
paracorporeal animal, creating continuous plasma exchange (2).
In the current experiments, continuous plasma exchange was
done by a continuous infusion of bank plasma and continuous
removal of the same amount of plasma by a plasma separator
[Plasmaflo OP-05W(A), Asahi Kasei Medical MT Corp., Oita,
Japan] (Figure 1A).

Hemofiltration

Perfusion was performed in parallel with hemofiltration (3). The
hemofilter was Prismaflex HF1000 (Baxter Inc., Deerfield, IL, USA),
which filters molecules up to 22 kD. Perfusate hemofiltration was
maintained at 1 mL/h/g using an IV pump. Isotonic filtrate
replacement fluid (FRF) was added to the perfusate at a 1:1 ratio.
One liter of FRF consisted of 750 mL 0.9% saline solution and
250 mL with 3.3 g of glucose, 400 mg calcium gluconate, 30 mEq
bicarbonate, 160 mg magnesium, 4 mEq potassium, 250 mg
nafcillin, and 40 mg of gentamicin (Figure 1B).

iLA perfusion

For the iLA perfusion, a 10Fr venous drainage cannula was
inserted into the LV for LV drainage. A 20Fr DLP venous
drainage cannula (Medtronic Inc., Dublin, Ireland) was placed
into the RV via the PA. A 1/4 x 3/8-in connector with Luer Lock
(Medtronic, Minneapolis, MN, USA) was secured in the aortic
root for antegrade coronary perfusion. A 20Fr malleable venous
drainage cannula (Medtronic Inc., Dublin, Ireland) was placed
into the left atrium (LA) for right atrial perfusion as well as an
8Fr-angled cannula for LA pressure monitoring. All the
remaining branches were ligated. The heart and cannulae were
de-aired and connected to the perfusion apparatus (Figure 1C).

End of perfusion

Experimental data were collected for up to 24 h or until end
criteria were met. The end criteria were defined as follows: (1)
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asystole or intractable arrhythmia; (2) LV systolic pressure
consistently <30 mmHg for piglet heart experiments and <50%
of NEHP baseline for juvenile pig heart experiments; or (3)
lactate >7 mmol/L on two consecutive assays separated by 1h
(1). We used all three of these parameters as a benchmark for
viability in addition to overall visual appearance of the heart and
its contractility. We were required to alter our LV systolic
pressure cutoff as we had lower baseline LV pressure readings in
the adult heart studies. At the end of 24 h, the hearts were
decannulated, drained, weighed, and sent to pathology in formalin.

Tissue analysis

The hearts were weighed immediately after procurement before
ex situ perfusion and again immediately following the end of
perfusion. The weights were compared and data presented as
percent weight change. Sections from each cardiac chamber were
sampled, weighed (wet weight), and stored in a desiccator for 7
days. These tissue samples were then weighed (dry weight) and
the ratio of the wet weight to the dry weight was calculated
(wet—dry ratio).

The hearts were sent to pathology for routine hematoxylin and
eosin staining. The samples were examined and scored by a
veterinary pathologist using a previously described myocardial
injury scoring system (1-3). Injury scores ranged from 0 to 3
based on myofiber degeneration, myocardial hemorrhage,
interstitial edema, and endothelial changes, with O representing
no damage and 3 denoting severe. Average scores using the
ordinal data for each injury type were reported for each cardiac

chamber as well as a combined average for each heart.

Data collection

The primary goal of this study is to evaluate heart function for
a period of 24 h using the modified extracorporeal circuit. During
each experimental run, hemodynamic parameters including heart
rate, aortic flow, pulmonary artery flow, aortic root, and left
ventricular and left atrial pressures were continuously monitored
and recorded every 30 min. In addition, blood gases, electrolyte
panels, and lactate levels were recorded on an hourly basis
(Radiometer A/S, Copenhagen NV, Denmark) with electrolyte
replacement as needed. Coronary vascular resistance (CVR,
mmHg/min/mL) was calculated as a measurement of mean
aortic root pressure (mmHg) divided by PA flow (mL/min).
Cardiac function was assessed using LV systolic pressures, LA
pressures, coronary vascular resistance, and lactate levels. Oxygen
content and glucose concentration were measured in the infusion
(i.e, AO) and drainage (i.e., PA) blood, and oxygen kinetics
(consumption and extraction) were calculated hourly.

CVR was calculated as follows:

CVR ( mmHg ) __ Aortic root mean arterial pressure (mmHg)

mL/min Pulmonary artery blood flow (mL/min)
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Oxygen consumption was calculated as follows:

L
O, consumption (m—) = (Arterial O, Content—
min

Venous O, Content) x Pulmonary artery blood flow

Statistical analysis

Continuous variables are reported as mean + standard error.
Comparisons between continuous variables were conducted using
Student’s t-test. Heart survival rates were calculated using the
Kaplan-Meier method. p-values less than 0.05 were considered
test
performed using GraphPad Prism version 10.0.0 for Windows
(GraphPad Software, Boston, MA, USA; www.graphpad.com).

statistically = significant. A multiple comparison was

Results

An NEHP system was developed for Langendorff perfusion
using a blood-derived perfusate (leukocyte/thrombocyte depleted
blood). Of the 42 animals, 27 were part of intervention groups
including plasma exchange or hemofiltration experiments and 15
were control animals. All 27 hearts in the experimental groups
(plasma exchange and hemofiltration) survived up to 24h.
Fourteen (93.3%) control hearts failed between 10 and 21 h and
one control heart (6.6%) lasted 24 h (Figure 2).

10.3389/fcvm.2024.1325169

Pediatric model with plasma exchange

In the plasma exchange experiments, 10 piglet hearts from
animals weighing a median 9 kg (8-10 kg) were utilized. Five
separate piglet hearts were perfused for 24h, maintaining
physiologic rhythms, contractility, and response to epinephrine
challenge, prior to elective termination. An additional five
controls were perfused without plasma exchange, none of which
were successful through 24 h (failure at 15, 16, 17, 17, and 24 h).

Plasma exchange hearts maintained higher, although not
statistically significant, LV systolic pressures at the end of
perfusion compared with controls (63 +10.9 vs. 37 £ 22.0 mmHg,
p>0.1). However, this trend was seen throughout the life of the
prep as the plasma exchange hearts were able to recover to 80%
of baseline LV systolic pressure compared with 50%-60% of
baseline for the control hearts (Figure 3A). Coronary resistance
was on average similar for the plasma exchange hearts (1.39 +
0.36 vs. 01.46 +0.79 mmHg/mL/min per 100 g of cardiac tissue,
p>0.05). However, in the control group, only one heart lasted
24 h, which increased during the life of the experiment;
otherwise, the control group had lower coronary resistance values
(Figure 4A). Cardiac metabolism demonstrated significantly
higher lactate levels for the control hearts (3.6-7.6 vs. 2.8-
4.2 mmol/L), which was statistically significant for most of the
experiments (Figure 5A). Increased oxygen metabolism was seen
in the plasma exchange hearts (2.89+0.1 vs. 1.8 0.1 mL/min/
100 g, p < 0.05), compared with the control ones.

The final rate of weight change (from start to end of perfusion)
was <2% in the plasma group and >50% in the control group,

Experimental Groups and Success to 24 hour of NEHP

NEHP
(n=42)

—

Small-size Hearts

~,

Adult-size Hearts

Control = No intervention

FIGURE 2

(n=30) (n=12) «
s A 4 A A4 A 4
Control Plasma Hemofiltration Hemofiltration Hemofiltration + iLA
(n=15) Exchange (n =5) (n=10) (n=5) (n=7)
100% 100% 100% 100%
24hr 24hr 24hr 24hr

A flow chart summarizing experimental groups and survival to 24 h of NEHP.

iLA = Intermittent left atrial perfusion
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Left Ventricle Systolic Pressure During NEHP (small-size hearts)

Left ventricle systolic pressure during NEHP. (A) Pediatric hearts with plasma exchange; (B) pediatric hearts with hemofiltration.
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Coronary Resistance During NEHP (small-size hearts)

Coronary vascular resistance during NEHP. (A) Pediatric hearts with plasma exchange; (B) pediatric hearts with hemofiltration.

B

--- Control (NEHP + no intervention)
51 — NEHP + Hemofiltration

p <0.005. The wet-dry ratio of the plasma exchange piglet hearts
was similar between both groups” LV (5.2+0.2 vs. 5.1+0.2) and
RV (5.0 £0.5 vs. 4.7 £ 0.3).

Pediatric model with hemofiltration

In the pediatric hemofiltration experiments, there were 28
piglet hearts from animals with an average weight of 8 kg (6-
10 kg). Ten hearts received NEHP with hemofiltration and 10
controls were perfused with NEHP alone. Every hemofiltration-
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treated heart maintained viability at 24 h and the experiment was
electively terminated. Only four control hearts were considered
viable at 24 h (two failed at 16 h, three at 17 h, and one at 21 h).

LV systolic pressures were significantly higher in the
hemofiltration group than in the control group at the 24-h mark
(53.5+6.21 vs. 36.3+4.58 mmHg, p<0.05). In addition, the
hemofiltration hearts maintained a statistically equivalent LV
systolic pressure from start to end of the experiment (71.7 +
10.30 to 53.5+6.21 mmHg, p<0.21), while the control hearts
saw a decreased pressure over the life of the experiment (55.4 +
562 to 36.3+4.58 mmHg, p<0.01) (Figure 3B). Coronary
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resistance was maintained from baseline through the end of
perfusion in hemofiltration experiments (0.70 +0.14 to 0.83
0.11 mmHg/mL/min/100 g p>0.05). In
contrast, the coronary resistance doubled from baseline to end of
experiment in the control hearts (0.66 +0.15 to 1.32 + 17 mmHg/
mL/min/100 g of cardiac tissue, p<0.01) (Figure 4B). At
perfusion end, the hemofiltration hearts had a significantly lower
coronary resistance than control hearts (p<0.05). Throughout
the perfusion period, lactate levels in the hemofiltration hearts

of cardiac tissue,

were consistently lower in comparison with those in the control
group (p<0.01). At the termination of perfusion, lactate levels
were measured at 3.67 +0.27 mmol/L in the hemofiltration group
and 6.20+0.84 mmol/L in the group (p<0.01)
(Figure 5B). Although the control hearts saw a dip in total

control

oxygen consumption from baseline to end of perfusion (0.030 +
0.005 to 0.018 +£0.003 mL/min/g tissue, p=0.05), there was no
difference between hemofiltration and control hearts.

The final rate of weight change (start to end of perfusion) was
<2% in the hemofiltration group and 8%-12% in the control group.
The wet-dry ratio of piglet hearts in the hemofiltration group was
lower than that of control hearts for both the LV (3.9 + 0.5 vs. 6.1 +
0.7, p=0.024) and the RV (4.5+0.6 vs. 5.7 £ 0.4, p = 0.048).

An adult-size heart model with
hemofiltration

A scientific and translational critique of the piglet (small-size)
hearts experiments was the applicability of the results to a larger
model. In response, the subsequent two experiments were
devised with juvenile pigs to represent an adult model using a
second-generation perfusion circuit (Figure 1B). The following
data are unpublished and currently under review.
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The first experiment successfully perfused five consecutive
juvenile pigs, with an average weight of 48.2+3 kg for 24 h.
Contractility of the heart was maintained throughout perfusion
with a baseline average of 36.6 + 7.9 mmHg compared with 27 +
5.5 mmHg at perfusion end (24 h). Similarly, coronary resistance
was preserved from baseline 0.79 +0.10 mmHg/L/min through
the end of perfusion 0.93+0.28 mmHg/L/min. The lactate
average at 24 h was 2.6 + 0.3 mmol/L.

The final rate of weight change (start to end of perfusion)
was <2%.

iLA perfusion

The following experiment maintained Langendorff perfusion
with intermittent 30-min episodes of left atrial (iLA) perfusion
every 4-6 h in seven (n=7) hearts (Figure 1C). Otherwise, the
same experimental parameters were maintained.

Mean hemodynamic pressures were continuously monitored with
an LV systolic pressure of 18.0 + 6.3 mmHg, an LA pressure of 5.6 +
2.6 mmHg, and a calculated coronary vascular resistance of 170 +
58 mmHg/mL/min. During iLA assessment of the cardiac function,
no differences were observed throughout the perfusion process
during the 30-min iLA tests at low flows. During iLA, cardiac
pressures and waveforms were measured and assessed (Figure 6).

The final rate of weight change (start to end of perfusion) was
8%-10%.

Histopathology and tissue analysis

The pathology scores for each cardiac chamber in the hearts
of the control group were higher than those of all experimental
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FIGURE 6
Pressure waveform during iLA perfusion low-flow working mode.
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FIGURE 7
A summary of pathological scores for each experimental group. Pediatric (small-size) hearts: (A) Control, (B) NEHP + plasma exchange,, and (C) NEHP
+ hemofiltration; Adult-size hearts: (D) NEHP + hemofiltration and (E) NEHP + hemofiltration + iLA.

groups (Figure 7A). All experiments in which the hemofilter was
used throughout the NEHP period demonstrated lower
interstitial edema and endothelial changes for all chambers of
the heart (Figures 7B-E). The hearts in the iLA group had
significantly lower scores for all chambers of the heart when
compared with those in all other groups (Figure 7E). The
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scores in the adult-size hearts after NEHP + hemofiltration had
a higher value (not significant) compared with the results of
the pediatric hearts because of positive contamination of
bacteria in the samples. This was due to the fact that biofilm
formation was observed in reused plastic components of the
NEHP system.
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Discussion

This manuscript details experiments performed in our
laboratory using NEHP for 24h, based on our previous
with
paracorporeal animal experiments. The reported experiments

successful 3-day perfusion with plasma exchange
were performed in both piglet (small-size) and juvenile pig
(adult-size) with  varying Both
hemofiltration and plasma exchange groups for piglet hearts
than

consistently demonstrating adequate perfusion parameters for the

hearts interventions.

performed better control hearts (no interventions),
duration of the experiment. The juvenile pig hemofiltered hearts
also lasted 24 h and had stable parameters. In our iLA perfusion
prep of adult-size hearts, we were able to adequately assess
heart function using this model for 24h and continued to
demonstrate adequate heart perfusion and function for the
duration of the experiment. These experiments add to the
current extended perfusion literature in heart perfusion as well as
other organs and demonstrate the feasibility of our circuit and
experimental model.

Normothermic ex situ heart perfusion has been utilized since
1970,

retrogradely through the aorta in order to evaluate left

when isolated canine hearts were blood-perfused
ventricular performance (4). More recently, studies worked to
extend the preservation time with NEHP. Trahanas et al. were
able to achieve 12 h of normothermic ex situ heart perfusion by
perfusing the heart with platelet- and leukocyte-reduced blood
supplemented with dextran 40, cell culture media, insulin, and
antibiotics with perfusate exchange every 2h. The successful
hearts had lower potassium, lactate, percent weight gain, and
pathological injury scores than the hearts that did not achieve
12h of perfusion (5). Then, McLeod et al. demonstrated that
normothermic ex situ heart perfusion for up to 72 h using cross-
plasma circulation (XC-plasma) from a live, awake paracorporeal
sheep was feasible (1). In this study, six ovine hearts were
perfused for 72h using plasma cross-circulation at a rate of
1 L/min with a live, awake paracorporeal sheep. Controls were
seven perfused hearts without cross-circulation. Experiments
were electively ended at 72h, and epinephrine (0.1 mg) was
delivered to demonstrate hormonal responsiveness. All controls
failed at 6-1h. All six hearts perfused for 72h maintained
normal heart function, metabolism, and responsiveness to
epinephrine. Blood gases, electrolytes, and lactate levels were
normal and stable throughout the study. From this experience,
our group has focused on preserving hearts for 24 h or longer by
not only providing warm oxygenated blood, but also filtrating the
perfusate and adding nutrition during NEHP.

Clinically, the only commercially available normothermic ex
situ heart perfusion device is the OCS Heart (Transmedics,
Andover, MA, USA). Transplanted hearts that utilized the OCS
Heart were shown to have superior 1- and 2-year survival rates,
less primary graft failure, less severe acute rejection, and less
acute renal failure than transplant hearts preserved with cold
Custodiol (6). Patients who received an OCS Heart—perfused
heart transplant had comparable 30-day survival rates (7), 2-year
survival rates, freedom from cardiac allograft vasculopathy, non-
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fatal major cardiac events, and biopsy-proven cellular rejection or
antibody-mediated rejection to cold storage-preserved hearts (8).
In transplants in which a long total ischemic time was expected,
patients with OCS Heart-perfused hearts had 30-day and 6-
month survival rates of 94.7% and 88%, respectively, and severe
LV or RV primary graft dysfunction (PGD) rates of 10.7% (9).

A few cases of successful heart transplantation in humans after
extended normothermic perfusion using the OCS system have been
reported. The first case was reported by Stamp et al. (10), in which
a heart was preserved for 8.5 h with successful transplantation into
a 39-year-old recipient. In this case, extracorporeal membrane
oxygenation (ECMO) was used immediately after transplant for
17.5 h, and the recipient was extubated after 72 h and discharged
after 15 days. The second report with successful human
transplantation was published by Kaliyev et al. (11), where
hemofiltration was added to the OCS system to preserve a heart
for 16 h. The graft was successfully transplanted to a 48 year-old
recipient. Similar to the report by Stamp et al., in this second
case of prolonged OCS preservation, ECMO was required for
44 h after transplant, and the patient was extubated at 72 h and
discharged home after 24 days with normal biventricular function.

These reports corroborate our results from animal data (pig
that
normothermic perfusion with the addition of a hemofilter can

and sheep) and prove the fundamental principle
support organs for prolonged periods of time. Further, both
groups concluded that despite optimal perfusion parameters and
lactate levels, there was PGD and ECMO was required to support
recipients immediately after transplant. This is one of our main
conclusions, that current biomarkers and parameters used to
assess organ viability lack the objectivity to assess organ function
as electrolytes and products of cellular metabolism are removed
during hemofiltration. Currently, OCS cannot provide direct
measurements of donor heart hemodynamic function. Our
perfusion apparatus and perfusion protocols allowed for the
monitoring of physiological parameters in a working heart, as we
discussed in the iLA studies, in a low-flow environment. Other
groups have reported the use of pressure-volume loops and
surface echocardiography as methods to assess heart function
during NEHP (12). iLA also provides a “working” heart mode
setting where echocardiography and pressure/volume curves can
be used to not only assess the function of hearts but also to
monitor the effects of different interventions to improve graft
viability during NEHP. In addition, perfusing hearts in working
mode has shown some benefits by mitigating oxidative stress, as
reported by Dr. Freed’s group (13), and myocardial injury, as
demonstrated by the pathology in the iLA group. Working mode
NEHP has its limitations, as reported by Olkowicz et al. (14).
This group reported the relationship between dysregulation of
the cardiac metabolome and declining myocardial function
during 8 h of NEHP using the STEEN solution™ and red blood
cells. They performed physiological measurements by loading the
left ventricle to a pressure of 8 mmHg three times during NEHP.
In addition, they demonstrated that several metabolic pathways
are altered during NEHP, with
inflammatory and oxidative stress response and compromised

emphasis on increased

substrate utilization.
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There are lessons from prolonged perfusion of other organs
that may impact NEHP. Chapman et al. perfused bovine livers
with normothermic blood for 24 h (15). Vogel et al. transplanted
porcine livers after perfusing with blood for 48 h. They showed
that the livers sustained bile production and metabolic activity
for 5 days and there was a 100% survival rate (16). Another
focus of ex situ liver perfusion studies is the rehabilitation of
damaged organs. Schon et al. showed that 4 h of normothermic
perfusion was sufficient to recover liver function after an hour of
warm ischemia (17). St Peter et al. perfused porcine livers for
24 h after an hour of warm ischemia and the perfused livers
demonstrated superior synthetic function, substrate utilization,
and perfusion hemodynamics as well as less cellular injury
compared with livers preserved with cold storage after warm
ischemia (18). This rehabilitation can be applied to heart
perfusion if we can further extend ex situ heart perfusion to
cardiac grafts from marginal donors or from donors after
circulatory arrest.

Ex situ lung perfusion has also shown the ability to maintain
lung function and rehabilitate damaged lungs. Steen et al.
demonstrated that porcine lungs perfused for 6h and then
transplanted and reperfused for 24 h all maintained baseline
blood gas transfer and pulmonary vascular resistance (19). Spratt
et al. showed that 24h of ex situ lung perfusion improved
hemodynamics and compliance after warm ischemia (20). They
then transplanted those lungs, reperfused them for 4 h, and
found that lung function in the first 8 h of ex situ lung perfusion
was able to predict lung function posttransplant (21).

Our work adds to the expanding research on normothermic ex
situ organ perfusion, specifically on heart resuscitation and
function assessment. The addition of iLA perfusion enables real-
time objective quantifiable cardiac function assessment during
NEHP, a unique feature with significant impact during the
assessment of marginal donor hearts and hearts from donors
after circulatory death.

Limitations

This is a translational model of heart preservation in piglets
(small-size hearts) and juvenile pigs (adult-size hearts). The
animal model does not simulate the scenario of human heart
donation (brain death or cardiopulmonary death physiology) as
the animals are young and healthy. In addition, the use of blood
products from the blood bank showed negative effects during
NEHP, as reported by Chew et al. (22). However, this was a
single case report that did not account for the effects of the
citrate-based anticoagulant and the age of the blood. Another
limitation of our results is related to contamination with bacteria
of the histology from the adult-size studies in the NEHP +
hemofiltration series. This is due to the fact that some of the
NEHP system components were reused during the early studies
with juvenile pigs, and we observed a contamination of bacteria
and biofilm formation in some plastic components that affected
the histological scores.
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Conclusion

Prolonged (24 h or more) heart preservation is feasible with
our NEHP perfusion technique. LA perfusion, even in coronary
flow (working) mode, enables real-time functional assessment
during NEHP. To increase the preservation period beyond
24 h, infection control and nutritional support need to be
optimized. The current work proves the concept in a large
animal model that NEHP has the potential to increase the
organ pool by (1) increasing the possible donor/recipient
distance; (2) enabling an objective assessment of heart function
with the addition of working mode perfusion; (3) considering
and (4)
developing heart-donor-type-specific therapies during NEHP.

previously discarded hearts for transplantation;
Further studies that include working mode NEHP, objective
parameters to assess heart function, and the development of
novel biomarkers to assess heart viability are required to
translate prolonged NEHP successfully and routinely into
clinical practice.
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European experience
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Introduction: Compared with traditional static ice storage, controlled
hypothermic storage (CHS) at 4-10°C may attenuate cold-induced lung injury
between procurement and implantation. In this study, we describe the first
European lung transplant (LTx) experience with a portable CHS device.

Abbreviations

BMI, body mass index; BREATHE, Laboratory of Respiratory Diseases and Thoracic Surgery; CF, cystic
fibrosis; CHS, controlled hypothermic storage; CLAD-BOS, chronic lung allograft dysfunction
bronchiolitis obliterans syndrome; COPD, chronic obstructive pulmonary disease; DBD, donation after
brain death; DCD, donation after circulatory death; ECMO, extracorporeal membrane oxygenation; FiO2,
fraction of inspired oxygen; GUARDIAN-LUNG, Global Utilization And Registry Database for Improved
preservAtion of doNor LUNGs; HU, high-urgency; ICU, intensive care unit; ILD, interstitial lung disease;
IQR, interquartile range; ISHLT, International Society for Heart and Lung Transplantation; LTx, lung
transplantation; NA, not applicable; PaO2, partial oxygen pressure; PGD, primary graft dysfunction;
PGD3, primary graft dysfunction grade 3; POD, postoperative day; PVD, pulmonary vascular disease;
RCT, randomized controlled trial; SIS, static ice storage; UG, ungradable; VA, venoarterial; V'V, venovenous.
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1 Introduction

10.3389/fcvm.2024.1370543

Methods: A prospective observational study was conducted of all consecutively
performed LTx following CHS (11 November 2022 and 31 January 2024) at two
European high-volume centers. The LUNGguard device was used for CHS. The
preservation details, total ischemic time, and early postoperative outcomes are
described. The data are presented as median (range: minimum-—maximum) values.

Results: A total of 36 patients underwent LTx (i.e., 33 bilateral, 2 single LTx, and
1 lobar). The median age was 61 (15-68) years; 58% of the patients were
male; 28% of the transplantations had high-urgency status; and 22% were
indicated as donation after circulatory death. In 47% of the patients,
extracorporeal membrane oxygenation (ECMO) was used for perioperative
support. The indications for using the CHS device were overnight bridging
(n =26), remote procurement (n =4), rescue allocation (n=2), logistics (n=2),
feasibility (n=1), and extended-criteria donor (n=1). The CHS temperature was
6.5°C (3.7°C-9.3°C). The preservation times were 11 h 18 (2 h 42-17 h 9) and 13
h 40 (4 h 5-19 h 36) for the first and second implanted lungs, respectively,
whereas the total ischemic times were 13 h 38 (4 h 51-19 h 44) and 15 h 41 (5 h
54-22 h 48), respectively. The primary graft dysfunction grade 3 (PGD3)
incidence rates were 33.3% within 72 h and 2.8% at 72 h. Intensive care unit stay
was 8 (4-62) days, and the hospital stay was 28 (13-87) days. At the last follow-
up [139 (7-446) days], three patients were still hospitalized. One patient died
on postoperative day 7 due to ECMO failure. In-hospital Clavien—Dindo
complications of 3b were observed in six (17%) patients, and 4a in seven (19%).

Conclusion: CHS seems safe and feasible despite the high-risk recipient and donor
profiles, as well as extended preservation times. PGD3 at 72 h was observed in 2.8%
of the patients. This technology could postpone LTx to daytime working hours.
Larger cohorts and longer-term outcomes are required to confirm these observations.

KEYWORDS

controlled hypothermic storage, lung preservation, overnight bridging, preservation
temperature, preservation time, primary graft dysfunction, total ischemic time

The portable device for CHS (LUNGguard™) maintains the
temperature between 4 and 8°C (15). The system was used for the first

Optimal donor lung preservation is a critical determinant of
successful lung transplantation (LTx). For decades, static ice
storage (SIS) has been the standard for organ preservation.
However, the vulnerability of lung tissue to cold-induced injury
caused by near-freezing temperatures may increase the risk of
severe primary graft dysfunction (PGD) (1-3). Moreover,
preservation on ice is limited to a maximum of 8 h. Therefore,
SIS constrains the donor pool and frequently necessitates LTx
to be performed overnight under suboptimal working
conditions with limited staff. The flaws of SIS have fueled a
renewed interest in optimizing donor lung preservation to
further improve outcomes after LTx (3-10). Pioneering animal
research in the 1990s, followed by the first recent clinical
application in Toronto, showed that controlled hypothermic
storage (CHS) at 10°C better preserves mitochondrial integrity
(3, 4, 6, 8, 11-14). This approach effectively maintains tissue
metabolism and mitigates lung injury during the interval
between procurement and implantation. Furthermore, CHS
enables the prolongation of preservation times, facilitating a
shift to planned semi-elective transplant procedures and
expanding the donor pool by increasing geographic reach and
optimizing donor-recipient matching.

Frontiers in Cardiovascular Medicine

time in North America in February 2021 (at Duke University
Hospital, North Carolina, USA), and introduced in Europe on 11
November 2022 (with the first European LTx performed using the
device at the University Hospitals Leuven, Belgium) (16, 17). No
manuscripts on the clinical outcome have been published, to our
knowledge. The aim of this study is to provide a descriptive cohort
analysis of the first European experience on lung CHS with this device
by reporting the perioperative characteristics and short-term outcome.

2 Methods
2.1 Study design

A prospective observational study of all consecutive cases that
underwent LTx between 11 November 2022 and 31 January 2024
was conducted at two European high-volume centers: (1) the
University Hospitals Leuven (Leuven, Belgium) and (2) the Motol
University Hospital (Prague, Czech Republic). The sole inclusion
criterion was lung preservation with the CHS device, and there
were no exclusion criteria. Data were collected from written and
electronic patient files, as well as donor data prospectively
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collected by Eurotransplant. The study was approved by the research
Ethics Committees of Leuven (S67697) and Prague (EK387/23).
Written informed consent was obtained from each patient. The
follow-ups were reported until 31 January 2024.

2.2 Controlled hypothermic storage

All lungs were stored in a portable CHS device (LUNGguard)
developed by Paragonix Technologies (Waltham, MA, USA).
The SherpaCool phase-changing technology enables CHS by
maintaining preservation temperatures at 4-8°C for 40h. The
system received the Food and Drug Administration (FDA) clearance
in the United States, and the CE (for Conformité Européenne or
European Conformity) mark in Europe. A smartphone application
connected to a logger and thermometer in the CHS device permits
remote continuous real-time monitoring of location and
preservation temperature (15).

Routinely, during procurement the lungs were flushed in
an antegrade fashion: in Leuven, 4 L OCS™ lung solution
(TransMedics, Inc., Andover, MA, USA) was used, whereas in
Prague, 6 L Perfadex™ (XVIVO AB, Goteborg, Sweden). After
procurement the lungs were split at the donor center and
additionally flushed in a retrograde fashion with 0.5-1 L per lung. A
maximum of 250 g of ice was used on the bench table, and in Leuven
the donor lung surface temperature was controlled by infrared
thermal camera prior to storage. Next, the lungs were packed
separately in three plastic bags as in our standard approach, and
stored in the CHS device: the first bag included the organ itself
immersed in 1 L of preservation solution, the second bag was filled
with 1 L saline and the first bag, and the third bag contained the first
two bags without additional solution. The preservation solution and
saline were stored in a fridge at 6°C at the recipient center, and were
placed in the CHS device for transport to the donor center, and only
removed from the CHS device just prior to its utilization. Finally,
after packing, the lungs were stored simultaneously in the CHS
device, and the storage temperature was measured continuously
through the built-in thermometer of the device.

The clinical protocol for overnight bridging gradually changed
with growing experience. At first, lung preservation was only
extended with the CHS device for cases with expected cold-flush
after 10:00 PM and with recipient anesthesia at 7:30 AM.
Eventually, the window of extended preservation was prolonged
to cases with expected cold-flush after 6:00 PM.

2.3 Recipient, donor, and procedural
variables

The recipient characteristics included the recipient center
(Leuven, Prague), sex (male, female), age, body mass index
(BMI), indication for LTx [chronic lung allograft dysfunction
(CLAD-BOS),
obstructive pulmonary disease (COPD), cystic fibrosis (CF),

bronchiolitis ~ obliterans  syndrome chronic
interstitial lung disease (ILD), pulmonary vascular disease

(PVD)], time on waiting list, high-urgency (HU) listing, duration
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of preoperative hospitalization, and need for preoperative
extracorporeal membrane oxygenation (ECMO).

Donor characteristics were sex (male, female), age, BMI, type of
donation [donation after brain death (DBD), donation after
circulatory death (DCD)], cause of brain injury (cardiac arrest,
cerebral ischemia, intracerebral hemorrhage, status epilepticus,
suicide, trauma), intensive care unit (ICU) stay, partial arterial
oxygen pressure over the fraction of inspired oxygen [partial oxygen
pressure (PaO2)/fraction of inspired oxygen (FiO2)], Oto-score
for secretions (0=none, 1=minor, 2 =moderate, 3 =major), and
Oto-score for chest x-ray findings (0 = clear, 1 = minor, 2 = opacity
1 <lobe, 3 = opacity > 1 lobe) (18).

Lung preservation variables included indication for CHS,
preservation temperature, preservation time for the first and second
implanted lung, distance between donor and recipient center, and
mode of transport. Preservation time was defined as the interval
between the moment the lungs were inserted and removed from the
CHS device.

The surgical variables were type of LTx (single, bilateral, lobar),
surgical approach (anterolateral thoracotomy, clamshell), need and
indication for intraoperative ECMO, blood product transfusion
(packed cells, fresh frozen plasma, platelets), total ischemic time
of the first and second implanted lung, and surgical time. The
total ischemic time was defined as the interval between cardiac
arrest for DCD, or cross-clamp for DBD, until lung reperfusion
in the recipient, hence including both cold and warm ischemic
times. Surgical time was defined as the time from the initial
incision to final skin closure.

The postoperative outcomes were as follows: need for ECMO, time
on the ventilator, extubation status (successful first extubation,
reintubation, tracheostomy, death before extubation), PGD at 0/24/
48/72 h after LTx, Clavien-Dindo score, ICU stay, and hospital stay.
PGD was based on the International Society for Heart and Lung
Transplantation (ISHLT) consensus definition and was assessed by
pulmonary edema on chest x-ray and PaO2/FiO2 at 0/24/48/72 h
post-LTx (19). PGD grade 3 (PGD3) was assigned when the chest x-
ray revealed pulmonary edema with a PaO2/FiO2 <200 or when the
combination of ECMO with bilateral pulmonary edema on chest x-
ray occurred. Data on arterial blood gases were acquired by
automated extraction of electronic patient files. The chest x-rays
were evaluated retrospectively by two experienced physicians.
Postoperative surgical complications were graded according to the
Clavien-Dindo classification (20). The longer-term outcomes
included follow-up and patient survival.

2.4 Lung transplant procedure and
immunosuppression protocol

In Leuven, a routine LTx is performed via bilateral anterolateral
thoracotomy in a sequential single LTx fashion, with selective use of
ECMO to anticipate and overcome hemodynamic and respiratory
PGD,
ventilatory limitations). In Prague, the surgical approach involves a

instabilities  (hypercapnia, pulmonary  hypertension,
clamshell thoracotomy with sequential single LTx, and protocol

use of intraoperative central venoarterial (VA) ECMO. In case of a
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single LTx, in both centers a unilateral anterolateral thoracotomy is
performed without ECMO.

Immunosuppression consisted of triple therapy with
tacrolimus, mycophenolate mofetil, and steroids. The induction
immunosuppression used was rabbit antithymocyte globulin

(Leuven) or basiliximab (Prague).

2.5 Statistical analysis

Descriptive  statistical
Microsoft 365 Excel (Windows). The graphs were plotted with
GraphPad Prism10 (San Diego, CA, USA). The continuous
variables were summarized as median (range: minimum-

analyses were performed using

maximum) values, and the categorical variables as observed
frequencies and percentages.

3 Results
3.1 Recipient and donor characteristics

A total of 160 patients underwent LTx in Leuven (n=85;
53.1%) or Prague (n=75; 46.9%). CHS storage was carried out
in 36 LTx cases: 24 (66.7%) in Leuven and 12 (33.3%) in
Prague. Most of the patients were men (n=21; 58.3%) aged
61 (15-68) years. The BMI was 262 (13.5-29.9) kg/mz.
Indications for LTx were as follows: 17 (47.2%) COPD, 14
(38.9%) ILD, 3 (8.3%) PVD, 1 (2.8%) CF, and 1 (2.8%) CLAD-
BOS after LTx. Time on the waiting list was 97.5 (1-826) days. A
total of 10 (27.8%) patients were transplanted in a HU setting,
following pretransplant hospitalization of 9.5 (2-106) days, with
3 (8.3%) preoperative venovenous (VV) ECMO.

The donor population was predominantly female (n=20;
55.6%), aged 56 (29-94) years, with a BMI of 25.6 (18.0-
34.9) kg/m>. There were 28 DBD (77.8%) and 8 (22.2%)
DCD procedures, of which 7 were DCD class 3 (DCD-III)
and 1 DCD-IV. The causes of death were varied, with 19
(52.8%) patients dying because of intracerebral hemorrhage, 6
(16.7%) trauma [head injury (n=1) and falling (n=5)], 5
(13.9%) cardiac arrests, 3 (8.3%) cerebral ischemia, 2 (5.6%)
suicide [drug intoxication (n=1) and gunshot (n=1)], and 1
(2.8%) status epilepticus. Preoperative ICU stay was 3
(1-12) days. PaO2/FiO2 was 413.5 (264-545). Oto-score for
secretions was 1 and chest x-ray findings 0, indicating minor
secretions and absence of opacities, respectively. The recipient
and donor characteristics are presented in Table 1 and the
Supplementary Material.

3.2 Controlled hypothermic storage

Indications for using the CHS device were overnight bridging
(n=26; 72.2%), remote procurement (n=4; 11.1%), rescue
allocation (n=2; 5.6%), logistics (n=2; 5.6%), feasibility (n=1;
2.8%), and extended-criteria donor (n=1; 2.8%) (advanced
donor age: 94 years). Preservation temperature was 6.5°C (3.7°C-
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9.3°C), and CHS preservation time was 11 h 18 (02 h 42-17 h 09)
and 13 h 40 (04 h 05-19 h 36) for the first and second implanted
lungs, respectively. The distance between donor and recipient
center was 148 (0-980) km, with air transport in 10 (27.8%)
cases. The details on lung preservation are summarized in Table 2.

3.3 Surgical variables

Most recipients underwent a full-size bilateral LTx (n=33;
91.7%), while two (5.6%) a single LTx, and one (2.8%) a
bilateral LTx (pediatric CF).
thoracotomy was the approach

Bilateral anterolateral
in 25 (69.4%)
patients, clamshell in 9 (25%), and a unilateral anterolateral

lobar
surgical

thoracotomy in 2 (5.6%). In 18 (50%) patients intraoperative
ECMO was used, of which 1 (2.8%) was due to reperfusion
edema of the first implanted lung. Altogether 19 (52.8%)
patients required blood products intraoperatively [0.5 (0-20)
units]. Total ischemic time was 13 h 38 (04 h 51-19 h 44) and
15h 41 (05h54-22h48) for the first and second implanted
lungs, respectively. The surgical time was 07 h 00 (02h 57-
13h 19). The surgical variables are listed in Table 2 and the
Supplementary Material.

3.4 Short-term outcomes

Five (13.9%) patients required ECMO postoperatively of
which two (5.6%) for suboptimal oxygenation and ventilation
caused by lung edema, and three (8.3%) for non-hypoxic
reasons. One (2.8%) patient was switched from VV ECMO to
VA ECMO due to cardiogenic shock. She died at POD7 after
withdrawal of supportive therapy because of irreversible
ischemic-hypoxic encephalopathy. Postoperative time on
ventilator was 25.5 (6-526) h. Two (5.6%) patients required
tracheostomy due to failure from weaning. Within and at
72h PGD3 was present in 12 (33.3%) patients and one
(2.8%) patient, respectively (Figure 1A). ICU stay was 8
(4-62) days, while hospital stay was 28 (13-87) days. During
hospitalization, six (17%) patients suffered from a Clavien-
Dindo 3b scoring, and seven (19%) from a 4a classification
(Figure 1B). 139 (7-446) At the
final date of follow-up, three (8.3%) were still
hospitalized, and patient survival was 97.2% (n=35). The

Follow-up was days.

patients

postoperative outcomes are outlined in Table 3 and the
Supplementary Material.

4 Discussion

This first European experience with the portable LUNGguard
shows safe and good short-term outcome for preservation
through CHS, and the possibility of converting the transplant
procedure to a diurnal activity. The median preservation
temperature was 6.5°C. The main indication for using CHS was
overnight (n=26; 72.2%).

bridging Although maximum
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TABLE 1 Recipient and donor characteristics.

10.3389/fcvm.2024.1370543

Recipient Donor

Sex | Age Indication for Time on High Sex | Age Type of ICU stay Pa02/

(M/F) | (years) LTx waiting list (days) ~ urgency | (M/F) (years) donation (CEYD)] FiO2
M 55 | ILD 121 Yes M 44 | DCD-II 12 457
2 |F 15 | CF 77 No M 37 | DBD 4 374
3 | M 66 | COPD 515 No M 35 | DCD-III 6 326
4 |M 63 | ILD 277 Yes F 63 | DBD 2 420
5 |F 66 | COPD 826 No F 54 | DCD-III 2 486
6 |F 53 | PVD® 500 Yes F 68 | DBD 1 448
7 |Mm 66 | ILD 56 No M 44 | DBD 3 361
8 |F 64 | COPD 651 No F 59 | DCD-II 5 376
9 |M 54 | ILD 297 No M 54 | DCD-IV 9 264
10 | F 64 | ILD 235 No F 74 | DBD 4 339
11 | F 62 | COPD 57 No F 56 | DBD 2 340
2 |M 61 | COPD 460 No M 94 | DCD-III 8 440
13 |F 64 | COPD 261 No F 71 | DBD 4 471
14 | M 63 | COPD 20 No M 46 | DBD 2 321
15 | M 22 | PVD™ 27 No M 49 | DBD 4 463
16 |F 59 | COPD 507 No F 75 | DBD 3 513
17 | F 63 | COPD 161 No F 30 | DBD 2 442
18 | F 52 |ILD 18 No F 87 | DBD 3 486
19 |F 61 | COPD 168 No F 70 | DBD 2 276
20 | M 59 | PVD*™ 2 Yes M 69 | DBD 7 345
21 |F 64 | COPD 7 No F 67 | DBD 2 396
2 |M 48 | ILD 6 Yes M 60 | DBD 3 391
23 | M 53 | ILD 11 Yes M 68 | DBD 1 515
24 | M 55 | COPD 320 No M 71 | DCD-II 8 421
25 | M 56 | ILD 227 No F 56 | DBD 4 435
26 | M 61 | COPD 9 No M 45 | DBD 1 545
27 | M 68 | ILD 483 No F 35 | DBD 1 407
28 | M 49 | ILD 1 Yes F 65 | DBD 2 327
29 | M 65 | COPD 88 No M 29 | DBD 3 377
30 | M 47 | COPD 107 Yes M 48 | DCD-III 3 427
31 | M 68 | ILD 26 Yes F 59 | DBD 1 363
32 |F 56 | ILD 113 No F 66 | DBD 5 465
33 |F 60 | CLAD-BOS 48 Yes F 44 | DBD 2 390
34 |F 65 | COPD 72 No F 36 | DBD 7 431
35 | M 57 | ILD 3 No F 54 | DBD 4 510
36 |M 67 | COPD 60 No M 40 | DBD 12 337
MV | — 61 | — 97.5 — — 56 | — 3 4135

CF, cystic fibrosis; CLAD-BOS, chronic lung allograft dysfunction bronchiolitis obliterans syndrome; COPD, chronic obstructive pulmonary disease; DBD, donation after
brain death; DCD, donation after circulatory death; F, female; FiO2, fraction of inspired oxygen; ICU, intensive care unit; ILD, interstitial lung disease; LTx, lung
transplantation; M, male; MV, median value; PaO2, partial oxygen pressure; PVD, pulmonary vascular disease.

2Chronic thromboembolic pulmonary hypertension.
®Pulmonary capillary hemangiomatosis.
“End-stage sarcoidosis with secondary pulmonary hypertension.

preservation (19h36) and total
importantly exceeded the current limits

ischemic times (22 h 48)
of 8 and 10h,
respectively, PGD3 incidence at 72 h was 2.8%.

The hypothesis suggesting CHS is associated with improved
post-reperfusion outcome compared with SIS was first proposed
by the group of Joel Cooper (Toronto) between 1989 and 1993,
based on animal research on donor lung preservation
temperature (11-14, 21-23). The conclusion of this preclinical
research was that the optimal lung preservation temperature was
around 8-10°C, allowing the option of extended preservation up
to 24h (11, 21). Three decades later, in 2021, there was a

reinstated interest in preservation temperature by Ali et al. and

Frontiers in Cardiovascular Medicine

Cypel et al. from the Toronto group, with a first clinical
evaluation of five patients receiving LTx after a CHS at 10°C (4).
The purpose was overnight bridging and starting the LTx
procedure in the morning. Preservation time was 10h 24
(09 h 55-14 h 48) and 12 h 06 (10 h 54-16 h 30) for the first and
second implanted lung, respectively. There was no PGD3 at 72 h,
median time on the ventilator was 2 (0-7) days, median hospital
stay was 17 (14-26) days, and 30-day survival was 100%. Based
on these promising results, the research group led by Cypel set
up a prospective non-randomized clinical trial assessing the
extension of the static donor lung preservation at 10°C (1 =70)
vs. SIS (n=140) (9). The lungs were procured and transported in
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TABLE 2 Controlled hypothermic storage device and lung transplantation characteristics.

Controlled hypothermic storage device

Lung transplantation details

Indication for CHS = Preservation | Preservation = Type of | Surgical @ Intraoperative Blood | Total ischemic | Surgical
device temperature = time CHS LTx approach ECMO products time time (h)
(°Q device (units) first/second
first/second lung (h)
lung (h)
1 Feasibility 6.9 04 h 30/06 h 44 BLTx BAT No 0 07 h 31/09 h 17 07 h27
2 Overnight bridging 5.9 07 h 56/11 h 20 Lobar BLTx | BAT No 4 11h26/14h 29 08 h 25
3 Overnight bridging 58 09h13/12h 05 BLTx BAT Yes 6 11 h 35/14 h 40 07 h 20
4 Remote procurement 4.0 07h46/10h 06 | BLTx BAT Yes 20 10h42/13h 12 11ho01
5 Overnight bridging 6.1 12h42/15h 38 | BLTx BAT No 3 15h 53/18 h 55 06 h 36
6 | Overnight bridging 63 14h15/18h23 | BLTx BAT Yes 1 17h43/22h02 | 12h12
7 Rescue allocation 6.4 06 h 03/NA Single LTx | UAT No 0 09 h 11/NA 03h23
8 Overnight bridging 8.8 12h 15/15h 20 BLTx BAT No 2 13h58/17h 18 13h 19
9 Overnight bridging 9.3 12h 12/14h 20 BLTx BAT No 0 14h 59/16 h 51 05 h 39
10 | Overnight bridging 57 07 h 43/09 h 07 BLTx BAT No 0 09 h 41/10 h 59 04h43
11 | Remote procurement 8.9 04 h 36/06 h 32 BLTx BAT No 0 06 h 59/08 h 39 04h31
12 | Extended-criteria donor® 6.9 02 h 42/04 h 20 BLTx BAT No 1 05 h 05/06 h 52 05h 07
13 | Overnight bridging 7.0 08 h 40/11 h 58 BLTx BAT Yes 3 12h 03/15h 23 08 h 35
14 | Overnight bridging 7.6 12 h 40/15 h 44 BLTx BAT No 0 15h 41/18 h 53 07 h 10
15 | Overnight bridging 6.4 13 h 52/16 h 59 BLTx BAT Yes 5 16 h 40/19 h 45 07 h 39
16 | Overnight bridging 5.0 14h 11/16 h 08 BLTx BAT No 0 16 h 49/20 h 03 07 h 04
17 | Logistics 9.0 04 h 14/05 h 38 BLTx BAT No 0 06 h 32/08 h 50 05 h 00
18 | Overnight bridging 4.2 15h 59/17 h 36 BLTx BAT No 0 18 h 05/19 h 48 06 h 09
19 | Overnight bridging 54 13 h 14/16 h 57 BLTx BAT No 1 16 h 11/20 h 15 09 h 48
20 | Overnight bridging 8.7 11 h 42/16 h 42 BLTx BAT No 0 15h 27/20 h 24 12h 29
21 | Overnight bridging 8.6 13 h27/15h 01 BLTx BAT Yes 0 15h 40/17 h 55 05h 27
22 | Overnight bridging 6.6 17 h 09/19 h 36 BLTx BAT Yes 14 19 h 44/22 h 48 08 h 21
23 | Overnight bridging 6.5 11 h 43/15h 47 BLTx BAT No 6 15h 05/18 h 59 09 h o1
24 | Overnight bridging 55 15 h 40/18 h 02 BLTx BAT No 0 18h 03/21 h 16 07h23
25 | Overnight bridging 8.1 10 h 30/12h 32 BLTx Clamshell Yes 0 12h35/14h 32 06 h 30
26 | Overnight bridging 9.0 13 h 35/15h 50 BLTx Clamshell Yes 4 16 h 25/18 h 28 08h11
27 | Rescue allocation 5.5 10 h 50/NA Single LTx | UAT No 0 13 h 32/NA 02h 57
28 | Overnight bridging 6.9 11 h45/13h 35 BLTx Clamshell Yes 0 14 h 00/15 h 48 07 h 00
29 | Remote procurement 37 03 h 07/04 h 05 BLTx Clamshell Yes 2 04 h 51/05 h 54 05h 05
30 | Overnight bridging 6.4 12h 19/13 h 55 BLTx Clamshell Yes 2 14h37/15h 52 04 h 02
31 | Overnight bridging 9.0 10 h 50/12 h 38 BLTx Clamshell Yes 0 13 h 19/15 h 04 06 h 40
32 | Overnight bridging 5.6 09 h 49/11h 26 BLTx Clamshell No 0 11 h 50/13 h 45 05h 55
33 | Remote procurement 5.9 11 h 45/13 h 45 BLTx Clamshell Yes 20 13 h 44/15h 35 08 h 00
34 | Logistics 7.6 10h 34/12h 27 BLTx Clamshell Yes 0 13h 14/14h 16 05h 20
35 | Overnight bridging 6.7 08 h 32/11h 50 BLTx BAT Yes 2 11 h 38/14 h 00 07 h 00
36 | Overnight bridging 6.0 10 h 55/12h 27 BLTx BAT Yes 2 12h 53/14h 37 05 h 45
MV | — 6.5 11 h 18/13 h 40 - — - 0.5 13 h 38/15h 41 07 h 00

BAT, bilateral anterolateral thoracotomy; BLTx, bilateral lung transplantation; CHS,

controlled hypothermic storage; ECMO, extracorporeal membrane oxygenation;

LTx, lung transplantation; MV, median value; NA, not applicable; UAT, unilateral anterolateral thoracotomy.

294-year-old male donor.

an ice cooler for 03h 30 [interquartile range (IQR), 02h 18-
04h09], and after arrival in the recipient center, they were
preserved in a 10°C temperature-controlled incubator for 07 h 48
(IQR, 05h46-09h37) until implantation. Preservation time
(including lung implantation in this study) was 12h28 (IQR,
10 h 14-14 h 12) and 14 h 09 (IQR, 12 h 03-15 h 45) for the first
and second implanted lungs, respectively. PGD3 incidence at
72 h was 5.7% vs. 9.3%, and 1-year patient survival was 94% vs.
87%, for the CHS vs. SIS groups, respectively. Minor differences
were observed in ICU stay (5 vs. 5 days), hospital stay (25 vs. 30
days), and need for postoperative ECMO (5.7% vs. 9.3%).
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In February 2022, the commercially portable CHS device
LUNGguard was first implemented in North America. Specifically
this device, the clinical non-randomized post-market
registry study “Global Utilization And Registry Database for
Improved preservAtion of doNor LUNGs’ (GUARDIAN-LUNG)
(NCT04930289) was started, with the objective of comparing the
outcomes after LTx by CHS vs. SIS (24, 25). Preliminary registry

for

data about the North American experience was presented at ISHLT
2023, enrolling 86 LUNGguard and 90 SIS patients. The median
preservation temperature was 4.9°C, total ischemic time was
7h26+1h51, and PGD3 incidence at 72h was 8.1% (7/86).
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FIGURE 1
(A) Longest total ischemic time (h) and PGD grade (0-1-2-3) at 72 h. (B) Longest total ischemic time (hours) and Clavien—Dindo classification (none:
grade 1-2, minor: grade 3a-3b, major: grade 4a—4b-5).

The CHS cohort had a clinically relevant 54% reduction in PGD3
incidence at 72 h (p=0.058) compared with SIS, and was also
associated with significantly improved 1-year estimated patient
survival [CHS 92.7% vs. SIS 82.2% (p = 0.02)] (26).

Our manuscript describes the implementation of this CHS
device over a 14-month period in two European centers. It is
worth mentioning that the preservation temperature in our
cohort was higher compared with the GUARDIAN-LUNG (6.5°C
vs. 4.9°C). Both Leuven and Prague attempt to reach higher
temperatures, based on the favorable outcome of lungs preserved
at 10°C (4, 8, 9). Therefore, we adopted a strategy in which we
use maximum 250 g of ice on the bench table, and target a
donor lung surface temperature between 8°C and 12°C prior to
storage in the CHS device. We observed that the starting surface
temperature of the donor lung directs the average preservation
temperature afterward: starting temperatures >10°C vs. 8-10°C
vs. <8°C were associated with average preservation temperatures
above 8°C vs. 6-8°C vs. 4-6°C, respectively. The duration of
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preservation also influences the temperature curve, which
changed during storage, finding equilibrium around 6°C.

Another major difference from the GUARDIAN-LUNG
analysis concerns total ischemic time. Compared with the
registry with total ischemic time of 7h26+1h 51, we report
considerably longer total ischemic times with 15h 41 (05 h 54-
22 h 48) for the second implanted lung. In 52.8% (n=19) of the
patients, total ischemic times exceeded 15 h, with a maximum of
22 h 48. Nevertheless, PGD3 at 72 h was only 2.8% in our series.
The promising findings of this first European experience with
extended preservation and total ischemic times have encouraged
Leuven and Prague to implement and standardize overnight
bridging (n=26; 72.2%) allowing a shift toward transplantation
during the daytime. The literature suggests that nocturnal
transplantation might be associated with worse outcomes because
of limited resources, shortage of personnel, and lesser technical
expertise (27-32). Moreover, fatigue and sleep deprivation of the
LTx team might have a negative repercussion on the cognitive
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TABLE 3 Postoperative outcomes.

10.3389/fcvm.2024.1370543

Postoperative ECMO | Time on ventilator (h) PGD at 0/24/48/72 h | ICU stay (days) Hospital stay (days) A Clavien-Dindo score

1 No 37 0/0/0/0 5 19 2
2 No 44 3/2/0/0 14 26 3a
3 No 42 0/0/0/0 6 31 3a
4 No NA 3/3/3/2 62 87 4a
5 No 48 0/0/0/0 9 30 3b
6 Yes 108 UG/UG/UG/0 16 32 4a
7 No 16 0/0/2/1 4 18 4a
8 | Yes NA 3/3/3/2 7 7 5
9 No 29 3/2/0/0 8 16 3b
10 | No 42 0/2/2/2 7 21 2
11 | No 19 1/0/0/0 7 83 4a
12 | No 15 0/0/0/0 4 31 2
13 | Yes 86 3/3/3/0 15 45 3a
14 | No 22 0/0/1/0 5 30 3a
15 | Yes 64 UG/UG/UG/0 14 34 4a
16 | No 20 3/2/2/2 8 28 2
17 | No 19 0/0/0/0 7 40 2
18 | No 49 0/0/3/0 12 27 4a
19 | No 57 3/0/1/0 9 24 2
20 | No 17 2/2/3/3 5 20 2
21 No 18 0/0/0/0 7 19 2
22 | Yes 39 2/3/2/0 8 Ongoing 2
23 | No 57 1/3/0/0 Ongoing Ongoing 3b
24 | No 19 2/1/3/2 Ongoing Ongoing 2
25 | No 6 0/0/0/0 11 20 3a
26 | No 7 0/0/0/0 11 34 3b
27 | No 10 0/0/0/0 7 13 2
28 | No 17 0/0/0/0 7 20 2
29 | No 31 0/0/0/0 11 19 2
30 | No 21 0/0/0/0 8 19 2
31 No 41 0/0/0/0 46 52 3b
32 | No 8 0/0/0/0 7 20 2
33 | No 526% 0/0/2/0 44 51 4a
34 | No 12 0/0/0/0 9 34 3a
35 | No 47 2/1/1/2 14 26 3a
36 | No 6 0/0/0/0 20 32 3b
MV | — 255 — 8 28 —

ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; PGD, primary graft dysfunction; MV, median value; UG, ungradable.

“Tracheostomy due to failure from weaning.
®Death on day 7 postoperatively.

and psychomotor skills. Accordingly, the LTx policies of Leuven
and Prague have considerably changed, with focus on flexibility
and overnight bridging when donor cross-clamp time is planned
after 6:00 PM. After procurement, the lungs are stored in the
CHS device unattended in the surgical theater of the recipient
center. Patient induction occurs the next day at 7:30 AM, and
the LTx is performed during the daytime in optimal conditions
with a well-rested team and maximal medical expertise. In
addition, extended preservation and ischemic times allow
expansion of the donor pool through long-distance lung
procurement, rescue allocation, facilitation of immunological
crossmatch test, and acceptance of a second pair of donor lungs
in case of simultaneous or overlapping LTx.

Last but not least, we reported a higher number of DCD
procedures (n=8; 22.2%) compared with the registry [CHS n =
15/85 (17.6%) and SIS n=6/90 (6.7%)] (26). These findings can
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be attributed to the rapidly growing experiences of Leuven with
DCD procedures (Leuven n =7 vs. Prague n=1). In fact, based
on the favorable long-term survival in DCD-III and DBD lung
donor recipients, as reported by ISHLT in 2019, Leuven
increasingly performs DCD procurements to expand the donor
pool (33).

Several questions on CHS remain, concerning the ideal
temperature, extended vs. short preservation, long-term outcome,
and potential benefits for extended-criteria donors. Randomized
controlled trials (RCTs) and a propensity-matched study from a
large GUARDIAN-LUNG cohort (n=500) are awaited (24, 25).
Furthermore, a multicenter RCT is currently being conducted by
Toronto (X°Port Lung Transport Device, Traferox Technologies
Inc.): “Safety of 10°C Lung Preservation Versus Standard of Care:
A Multi-Center Prospective Non-Inferiority Trial” (NCT05898776),
comparing 160 CHS vs. 160 SIS (24, 34) cases.
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5 Conclusion

CHS by LUNGguard seems feasible and safe, despite the
relatively high-risk recipient and donor profiles (DCD 22.2%)
and extended preservation periods. PGD3 at 72h of 2.8% was
observed in this series. The CHS technology potentially allows
overnight bridging and shifting toward daytime transplantation,
optimizing working conditions.

However, several questions

remain and multicenter randomized trials are awaited.
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