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Health assessment of natural larch
forest in arxan guided by forestry
remote sensing integrated with
canopy feature analysis

Ana Ri and Huijun An*

College of Forestry, Inner Mongolia Agricultural University, Hohhot, China

This work aims to propose a more accurate assessment method for forest health
in natural larch pine forests of the Arxan by integrating remote sensing technology
with tree crown feature analysis. Currently, forest health assessment of natural
Larch pine forests relies mainly on ground surveys, and there is a gap in the
application of remote sensing technology in this field. This work introduces deep
learning technology and proposes a spectral-Gabor space discrimination and
classification model to analyze multi-spectral remote sensing image features.
Additionally, quantitative indicators, such as tree crown features, are incorporated
into the forest health assessment system. The health status of natural Larch pine
forests is evaluated using forest resource survey data. The results show that the
health levels of natural Larch pine forests in different areas vary and are closely
related to factors such as canopy density, community structure, age group, and
slope. Both quantitative and qualitative indicators are used in the analysis. The
introduction of this innovative method enhances the accuracy and efficiency of
forest health assessment, providing significant support for forest protection and
management. In addition, the classification accuracy of the health assessment
model suggested that the maximum statistical values of average classification
accuracy, average classification effectiveness, overall classification accuracy, and
Kappa were 74.19%, 61.91%, 63.18%, and 57.63%, respectively. This demonstrates
that the model can accurately identify the health status of natural larch forests.
This work can effectively assess the health status of the natural larch forest in the
Arxan and provide relevant suggestions based on the assessment results to offer a
reference for the sustainable development of the forest system.

KEYWORDS

forestry remote sensing, health assessment, natural larch forests, spectrum-gabor,
sustainable development

Introduction

As one of the important components of the Earth’s ecosystem, forests contain substantial
species essential for soil and water conservation, climate improvement, and air purification
(Torres et al., 2021; Ecke et al., 2022). Statistics show that the Three-North Shelter Forest
Program extends fromnortheast China to northern China and northwest China, with a total area
of nearly 1.5 million square kilometers. Its afforestation area in desertified areas has exceeded
300,000 square kilometers, and the total proportion of green area has reached more than 80% of
the desertification land area in China (Cherubini et al., 2021). The resources and services
provided by this protective forest are highly correlated with the health of the forest ecosystem. For
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example, species rich and healthy forests produce sufficient timber and
ecological services while maintaining the food chain and biodiversity in
the forest well; forests with simple structures and in a critical state of
health are only able to sustain basic tree survival (Iglhaut et al., 2019;
Guimarães et al., 2020; Carnegie et al., 2022). The natural Larch pine
forests in the Greater KhinganMountains are currently facing a state of
system destabilization, decreased vitality, and forest area reduction due
to various factors, including climate change, human activities, and
pests. These changes have resulted in more frequent occurrences of
severe weather phenomena, such as dust storms, which have had
adverse effects on both the ecological environment and socio-
economic development in the area. Therefore, the understanding of
tree characteristics and health assessment in forest ecosystems has
become the focus of research scholars in related fields.

Of course, due to the complexity of the forest ecosystem, the
understanding of the health status of forest trees in the forest isn’t the
same, and there is no unified forest health assessment standard. Saha
et al. (2021a) employed advanced geospatial techniques to evaluate the
forest health status of the Buxa Natural Reserve in the Himalayan
Mountains, revealing varying degrees of forest pests and human
interference in the region. In a similar vein, Malik et al. (2020)
utilized geospatial analysis to investigate seasonal changes in the
vegetation status of the subtropical deciduous forest, indicating
significant fluctuations throughout the seasons. Moreover, Saha
et al. (2021b) assessed and analyzed forest cover dynamics using a
forest canopy density model, which demonstrated a close correlation
between forest cover spatial distribution and changes in topography
and land use types. Forestry remote sensing technology has been
extensively studied by scholars as a means of evaluating forest
species, structure, growth, and health status using airborne or
satellite remote sensing data. Pal et al. (2018) combined the forest
canopy density model with satellite data to achieve remote sensing
monitoring and mapping of forest cover in the Sali Basin of West
Bengal. Ahmadi et al. (2023) used high-resolution remote sensing
technology to predict the distribution of major tree species in forests
with insufficient climate data. Their findings suggested that integrating
high-resolution remote sensing data could improve the accuracy of
species distribution models. Despite these advancements, a unified
standard for forest health assessment has yet to be established.
Additionally, remote sensing data quality is affected by factors such
as clouds, fog, and occlusion, resulting in limited accuracy in tree crown
feature extraction. Therefore, the effective extraction of spectral features
in remote sensing images is extremely important. The deep learning
algorithm canmine the relationship between data through independent
learning of remote sensing images, which can greatly improve the
accuracy and stability of image classification and recognition while
improving efficiency, like reference (Tian et al., 2021).

In conclusion, it is of great significance to explore the health
status and assessment methods of natural larch forests under the
guidance of forestry remote sensing integrated with the analysis of
canopy characteristics for the sustainable development of
subsequent forest systems and the formation of biodiversity. The
innovations of this work are as follows. First, the health status of
natural larch forests is analyzed by collecting 2A sentinel standard
reflectance images with a spatial resolution of 10 m and forest class II
survey data using Gurban Forest Farm of the Arxan Forestry Bureau
as the study area. Secondly, the health of natural larch forests is
assessed by quantitative and qualitative indicators. Third, a feature

extraction and classification model based on spectral-Gabor spatial
discriminant analysis is proposed to analyze the features of the
acquired multi-spectral remote sensing images. Finally, the
performance of the health assessment method and model
reported here is verified through experimental analysis to provide
a reference for the follow-up health status analysis and ecologically
sustainable development of the forest system.

Recent related work

Advances in forest health evaluation and
analysis

Many scholars have researched the state of forest health. Cortés
et al. (2020) discussed predictive genomic approaches. They found
that these approaches promise to increase the accuracy of adaptive
selection and reduce generation intervals. Besides, exploring
genome-wide prediction methods can help detect novel allelic
variants in tree germplasm and reveal the genomic potential for
adaptation to different environments. Jakovljević et al. (2021) con-
ducted passive ozone measurements and monitoring of forest health
indicators in holly oak (Quercus ilex L.), brash oak (Quercus stellata),
Larch pine (Pinus koraiensis Sieb. et Zucc.), and black pine (Pinus
thunbergii Parlatore) forests. Results showed that the ozone levels of
all species were close to reaching a reasonable upper limit (100 ppb)
for passive monitoring of air quality in forest sites, with the highest
values for the uptake-based indicator on black pepper. At the same
time, the relationship between environmental variables and forest
health response indicators could be found to be significantly related
to the soil moisture content at different depths of canopy defoliation;
besides, tree growth is related to different forest health response
indicators. Kayet et al. (2022) assessed and predicted the forest
health risk in forest areas affected by mining based on the Analytic
Hierarchy Process model of multi-criteria analysis. In total, they
considered parameters including climate, natural or landform,
forestry, topography, environmental, and anthropogenic factors.
Very high-risk grades were found in mines surrounding forest
subdivisions, based on FHR assessment and prediction results,
with FHR negatively correlated with distance from mine and leaf
flour dust concentration. Their research provided fundamental
guidance for effective planning and management of forestry
research in mining-affected areas. Tan et al. (2021) assessed the
impact of nature-based solutions in urban design on forest
ecosystem service performance based on a spatially explicit
modeling approach by using a recent nature-centered town in
Singapore as a case study. The authors found that designing
towns with ecosystem services in mind and incorporating nature-
based solutions into the urban design can help improve performance
in delivering ecosystem services, with significant benefits for tree
health assessments in forests.

Current situation of AI applied to remote
sensing image recognition

Since each sample in hyperspectral remote sensing images
consists of high-dimensional features and contains rich remote
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sensing features, feature selection, and mining become even more
difficult. Algorithms such as deep learning in artificial intelligence
technology can independently learn and mine features in images,
effectively improving the ability to identify features in remote
sensing images. Scholars in many related fields have conducted
research. Ge et al. (2020) compared the classification performance
of k-nearest neighbor, random forest (RF), support vector machine
(SVM), and artificial neural network (ANN) in land use and cover
change (LUCC) in Chinese oases. They found that ANN, SVM, and
RF achieved statistically similar accuracy. The RF algorithm
performed well in several aspects, such as stability, ease of use,
and processing time during parameter adjustment. It was capable
of analyzing spectral indices (e.g., NDVI, MSAVI2, and MNDWI)
and providing a reference for the extraction of LUCC information
in arid regions with oasis-desert mosaic landscapes. Alam et al.
(2021) applied the convolutional neural network to the semantic
segmentation of remote sensing images. The authors also
improved the encoder-decoder CNN structure SegNet with
index pool-ing and U-net, making it suitable for remote sensing
Multi-object Semantic Segmentation of Images. The results
showed that the comprehensive algorithm could segment multi-
object remote sensing images. Cai et al. (2021) proposed a multi-
attention residual integrated network algorithm. The analysis of
multiple multi-class public data sets revealed that the algorithm
adds feature fusion while reducing redundant features, which
makes the recognition capability of hyperspectral images
effectively improved. Han et al. (2022) presented a building
extraction method for remote sensing images combining
traditional digital image processing methods and convolutional
neural networks. Experiments showed that the method improves
detection accuracy and reduces computation time compared with
the Region-CNN algorithm.

To sum up, the research and analysis of the above-mentioned
scholars indicate that forests, as one of the important components of
the Earth’s ecosystem, are closely related to the sustainable
development of the economy and the improvement of social
benefits to evaluate the health of forests.

Research area and methodology

Study area

Arxan Forestry Bureau is located in the northeast of the Inner
Mongolia Autonomous Region and the middle and low
mountainous area in the south of the main line of the Greater
KhinganMountains. It belongs to the transitional zone type of forest
and forest grassland and has a typical volcanic landform type
(Quesada-Román and Mata-Cambronero, 2021). Figure 1
displays the geographical location of the study area.

As shown in Figure 1, the research area is located in the Gurban
Forest Farm of Arxan Forestry Bureau. The dominant tree species
are white birch and larch, and the natural larch forest is taken as the
research object. The elevation of Gurban Forestry Station of the
Arxan Forestry Bureau gradually decreases from east to west, with
an average elevation of 1023m; the annual average temperature
is −3.2°C; the annual extreme maximum temperature is 34.1°C; the
annual ex-treme minimum temperature is −45.7°C; the frost-free
period is 77 days; the rainfall is 451.2 mm. Overall, it is characterized
by cold and humid, long winter, and large temperature differences
between day and night. At the same time, due to the influence of
climate factors, the snow cover is thinner in sunny slopes and river
valleys where there are no trees and vegetation, and the snow cover is
unevenly distributed due to the effect of wind blowing (Dainelli
et al., 2021). Ruidas et al. (2022b) and Ruidas et al. (2021) have
conducted a vulnerability assessment of water resources based on
hydro-geochemical characteristics. The study revealed that water
resources in lakes were impacted by both human activities and
natural processes, emphasizing the importance of effective
management and planning of water resources.

The soil in the study area was gray forest soil and brown
coniferous forest soil in order with the elevation increasing.
Moreover, the regional distribution law is mainly reflected in
the formation of different recessed soils due to the redistribution
of water and heat caused by changes in topography and landform.
For example, meadow soil is distributed on both sides of rivers

FIGURE 1
Geographical map of the study area.
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and valleys and in the low and flat areas of marshes; swamp soil is
distributed lower than meadow soil, and the soil is humid, with
seasonal or perennial water accumulation on the surface; stony
soil is only distributed on the gravel ejected by modern volcanoes,
and there are large pores. The Gurban Forest Farm of the Arxan
Forestry Bureau is located on the gentle slope of the middle
section of Greater Khingan Mountains, a forest-grass transition
area from forest land to meadow, and the soil type is brown
coniferous soil (Chen et al., 2022). Ruidas et al. (2022a) proposed
a metaheuristic optimization process integrating rainfall and
geological data to develop 15 flood-susceptibility factors. The
study found that this approach could accurately assess flood
susceptibility.

The vegetation types of the Arxan Forestry Bureau
include forest, shrub, meadow, swamp, and aquatic plants. Its
forest vegetation is clearly distributed vertically and
roughly divided into four vegetation zones: the forest zone
domi-nated by the zonal plant Xing’an larch (Larix gmelinii
(Rupr.) Kuzen) (above 1200 m in elevation), the mixed
conifer-broad forest formed by Xing’an larch and white birch
(Betula platyphylla Suk.) (1000–1200 m in elevation), the forest-
steppe zone (below 1000 m), and the stone pond forest
(1100–1250 m) (Wang et al., 2021; Yang, 2022). The larch

forest in Gurban Forest Farm of Arxan Forestry Bureau has
neat margins and is a middle-aged forest with a forest age of
29 years. The average tree height is 16 m; the average diameter is
15 cm; the canopy density is 0.85; the soil type is brown
coniferous soil. The understory shrub is rose thorn with a
coverage of 5%, and the herb is sedge with a coverage of 60%.
There are logging residues piled up under the forest. The birch
forest is a natural forest with an age of about 21 years. The average
tree height is 7 m, the average diameter is 8 cm, and the canopy
density is 0.7.

Data acquisition and processing

This work downloads the Sentinel-2A remote sensing image
data of the research area of the study area from https://scihub.
copernicus.eu/. The Sentinel-2A data has a spatial resolution
of 10 m. Among all the optical images, the Sentinel-2A data is
the only one that contains three bands in the red edge range. This
feature is useful for monitoring the vegetation health of
the natural larch forest in the study area. The information is
very effective. The image was produced at 12 September
2019 and radiation calibration and atmospheric correction are

FIGURE 2
Sentries in the study area: 2A preprocessing result map (four sample plots, namely, (A1–A4)).
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further performed on the Sentinel-2A image. Figure 2 reveals the
preprocessed Sentinel-2A image in the study area.

As shown in Figure 2, the acquired Sentinel-2A image is
preprocessed to obtain a Sentinel-2A image pixel with a size of
2000 * 2000. It is evenly divided into four sample plots for
research, namely, A1, A2, A3, and A4. The natural larch forest
remote sensing images in the study area were extracted from the
sentinel spectral image. The classification accuracy was evaluated
for the health status of the larch forest in the study area by using
the following spectral-Gabor spatial discriminant method (Diez
et al., 2021).

Further, the forest resource type II survey data were collected in
the study area. The type II data includes community conditions such
as tree species structure canopy density, understory shrub coverage,
herbaceous coverage, and tree crown characteristics, as well as
environmental conditions such as slope, aspect, soil type, and soil
thickness. Arc GIS 10.1 software was utilized to confirm the sample
data, reasonably move slightly to reduce the edge effect, and divide
the obtained samples into training samples and verification samples.
There are 337 training samples and 186 validation samples. Table 1
lists the specific statistics.

Analysis of health assessment methods of
natural larix pine

According to the characteristics of the basic data used here, this
work uses different indicators to comprehensively evaluate the health
level of each evaluation object (small class) in the study area. The state
of each indicator is divided into several grades. Then, a score is assigned
to each grade. Finally, the health evaluation index system of the natural
larch forest is constructed, as shown in Figure 3.

The health evaluation system illustrated in Figure 3 presents a
comprehensive approach for assessing the health status of natural larch
forests in the Gurban Forest Farm, utilizing both quantitative and
qualitative indicators. In addition to the quantitative indicators such as
depression, shrub cover, herbaceous cover, soil thickness, and humus
thickness, this study incorporates canopy characteristics including tree
height, diameter at breast height, crown width, and regeneration as
qualitative indicators. The quantitative indices are categorized into five
classes based on index values measured in the forest resources second-
class survey data. The qualitative indices, such as community structure,
age group, slope, slope direction, and soil texture, are classified into 3 to
8 classes according to the forest resources second-class survey protocols

TABLE 1 List of data sources.

Type of data Resolution Acquisition method

Sentinel-2A remote sensing image map data 10 m Public data (from https://scihub.copernicus.eu/)

Forest resources type ii survey data - Survey data

FIGURE 3
Health evaluation index system of natural larch forest.

FIGURE 4
Classification of quantitative indicators for forest health
assessment.
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in China. The inclusion of both quantitative and qualitative indicators
provides a more comprehensive evaluation of forest health status.

Among the quantitative indicators, the indicator of
depression reflects the proportion of the total projected area of
the tree canopy on the ground in direct sunlight to the total area
of the forest stand and the density of the stand. Both un-derstory
shrub cover and herbaceous cover indicators influence forest
ecosystem health from the perspective of forest community
hierarchy and species diversity. Soil and humus provide
support for various life activities of trees, shrubs, and grasses
in the forest through nutrient supply. Therefore, soil layer
thickness and humus thickness ultimately affect the health of
the forest ecosystem. In addition, the tree height, DBH, crown
width, and regeneration of pine trees in natural deciduous forests
reflect the health status of forest resources from the perspective of
system vitality (Falťan et al., 2021; Pan et al., 2022). Figure 4
illustrates the classification of each indicator.

As shown in Figure 4, among the quantitative indicators, the
scores of each level are calculated as follows. Level 1 means
100 points; level 2 means 80 points; level 3 means 65 points;
level 4 means 50 points; level 5 means 35 points.

The qualitative indicators used in this work include community
structure, age group, slope, slope direction, and soil texture, as
shown in Table 2. Community structure reflects the species
diversity and stability of the forest community, age group is used
to assess the age structure in the forest, while slope and slope
direction are important factors affecting the moisture in the
terrain. Soil texture is another important physical property that
influences soil aeration, water retention, and fertility status.

The weight value of the health evaluation index of the larch
forest was determined by AHP to evaluate the health degree of the
natural larch forest in the forest. Finally, the health level is divided
into four levels according to the health value of each index and the
specific conditions of the research area: healthy (>4 points), sub-
health (3-4 points), general health (2-3 points), and unhealthy
(<2 points).

Spectral feature extraction and health
classification model design and analysis

This work preprocesses the acquired spectral data information
to obtain the Sentinel-2A multi-spectral map and extracts its
features to reduce the information redundancy caused by the
high-dimensionality and band nature of the data set.

First, the principal component analysis (PCA) method is used to
obtain the principal components of remote sensing images.
Secondly, Gabor filters of different scales and directions are
performed on the extracted principal component images to
obtain Gabor spatial features of many different scales and
directions. Third, the original spectral features and the obtained
Gabor space features are fused in a certain way to form a fusion
feature. Besides, the fusion feature is further modeled. The scatter
matrix between classes and the scatter matrix within a class in the
fusion feature space is constructed to describe the compactness of
different types of objects and the same type of objects. The optimal
transformation matrix is obtained by transforming the feature space.
Finally, the transformation matrix is used to transform the original
high-dimensional data into the fusion space to enhance the
nonlinear feature learning ability and generalization performance
of subsequent classifiers, thereby improving the overall classification
accuracy.

When using the spectral-Gabor space discriminant method to
extract information from the Sentinel-2A multi-spectral image, the
training sample set is defined as, which can be written as Eq. 1.

χ � xi: xi ∈ Rd{ } m*n( )
i�1 (1)

In Eq. 1, d stands for the number of band features of the original
image data, that is, the number of original spectral features; m*n
signifies the size of each spectral remote sensing image. Assume that
the data set has c categories, and each category contains ni pixels.
m*n is expressed as Eq. 2.

m*n( ) � ∑c

i�1ni (2)

TABLE 2 Forest health evaluation qualitative indicator ranking.

Indicator
factors

Affiliation level

1 2 3 4 5 6 7 8

Community
structure

Complete
structure
(100 points)

Relatively complete
structure
(80 points)

Simple structure
(60 points)

Age group Young forest
(60 points)

Middle-aged forest
(80 points)

Near mature
forest
(90 points)

Mature forest
(100 points)

Overripe forest
(60 points)

Slope Flat slope
(100 points)

Gentle slope
(90 points)

Slopes
(75 points)

Steep slopes
(60 points)

Rapid slope
(50 points)

Dangerous
slope
(35 points)

Slope direction Southwest slope
(100 points)

Southeast slope
(90 points)

Western slope
(80 points)

Eastern slope
(70 points)

Northwest
slope
(60 points)

Northeast slope
(50 points)

South slope
(40 points)

North slope
(30 points)

Soil texture Loam
(100 points)

Sandy loam
(90 points)

Light loamy soil
(80 points)

Heavy loam
(70 points)

Sandy soil
(60 points)

Silt (50 points) Clay
(40 points)

gravel soil
(30 points)
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The data set needs to be preprocessed before feature extraction
due to the high dimensionality of the acquired spectral remote
sensing image data set and the correlation and redundancy between
bands. Firstly, PCA (Cruz-Ramos et al., 2021) is used to extract
pi(1≤ i<d) principal components. Secondly, Gabor filters of
different scales and directions are performed on the extracted pi

principal components to obtain 40*pi individual spatial features.
Usually, a two-dimensional Gabor filter is a Gaussian kernel
function adjusted by a complex sinusoidal plane wave, which is
defined as Eq. 3.

ψf,θ �
f2

πγη
exp −x′

2 + γ2y′2

2σ2
( ) exp j2πfx′ + ϕ( ) (3)

In Eq. 3, f refers to the central angular frequency of the complex
sinusoidal plane wave; ϕ represents the phase; σ denotes the
standard deviation; γ refers to the space ratio used to specify the
ellipticity supported by the Gabor function. x′ and y′ indicate
different scales and different directions, which can be written as
Eq. 4 and Eq. 5.

x′ � x cos θ + y sin θ (4)
y′ � −x sin θ + y cos θ (5)

In Eq. 4 and Eq. 5, θ refers to the normal parallel stripe direction
of the Gabor function. The Gabor filters with different scales μ and
different directions ] are defined to ensure that the frequency and
direction of Gabor filtering can be changed within a certain range to
cover the entire two-dimensional image area:

fμ � π

2
×

	
2

√ μ
(6)

θ] � π

8
× ] (7)

The two-dimensional convolution result Gi of the Gabor
features of each scale and direction of the principal component
of the spectral remote sensing image is obtained through the
convolution of the spectral remote sensing image Ai and the
Gabor filter cluster, as shown in Eq. 8.

Gi � Aiψfμ ,θ]
(8)

Denote Zi(1≤ i<d) as the spatial filtering features of the image
at different scales μ and different directions ], as shown in Eq. 9.

Zi � Z1, Z2,/, Zpi[ ] (9)

Moreover, the spectral feature matrix Yi is fused with the
obtained Gabo, space feature matrix Zi, generating the Spectral-
Gabor spatial fusion feature matrix Fi, as presented in Eq. 10.

Fi � Yi, Zi[ ] (10)
It is necessary to minimize the distance within a class while

maximizing the distance between classes to improve the
classification performance of spectral features in spectral remote
sensing images. Therefore, the fusion feature optimization model
shown in Eq. 11 is established.

W � argmax
W

WTSSGb W

WTSSGw W

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (11)

In Eq. 11, SSGb refers to the inter-class scatter matrix of the
spectral-Gabor space, and SSGw represents the intra-class scatter
matrix of the spectral-Gabor space. Assume that (d + 40*pi)
training samples of dimensions can be obtained from the
spectral-Gabor space fusion feature matrix Fi. SSGb and SSGw are
expressed as Eqs 12, 13.

SSGb � ∑c
i�1
ni fi − f0( ) fi − f0( )T (12)

SSGw � ∑c
i�1
∑ni
j�1

xj
i − fi( ) xj

i − f( )T (13)

In Eqs 12, 13, c refers to the number of classes; ni represents the
number of training samples in the ith class; fi stands for the mean
vector of the ith class; f0 signififes the mean vector of all training
samples; xj

i denotes the jth fused feature vector of the ith class.
The projection feature matrix x a test sample f can be obtained

through optimal transformation W2, as shown in Eq. 14.

x � WT
2f (14)

Eqs 9, 10 indicate the Gabor space feature matrix Zi and the
Spectral-Gabor space fusion feature matrix Fi of the test set I in the
spectral remote sensing image data set, respectively. In actual
analysis, the fusion feature optimization model in Eq. 11 can be
transformed into the eigenvalue problem in Eq. 15.

SSGb W � λSSGw W (15)
In solving Eq. 15, the first step is to maximize the inter-class

scatter matrix in the spectral-Gabor space by Singular Value
Decomposition (SVD). The second step is to solve the
generalized eigenvalue problem. The key problem of using SVD
to maximize the inter-class scatter matrix in the spectral-Gabor
space is to deal with the optimization problem shown in Eq. 16. First,
it is essential to deal with the following optimization problem A.

A � argmax
ATA�I

tr ATSSGb A( ) (16)

Based on the above discussion, the spectral remote sensing
image dataset L acquired in this work is processed by PCA
method. Then the spatial features are extracted by Gabor filter
clusters, which can be written as Eq. 17.

F � fi: fi ∈ R d+40*pi( ){ } m*n( )
i�1 (17)

Then, the feature space transformation is used to obtain effective
feature vectors to reduce the computational complexity while
improving the classification accuracy. Eq. 18 describes the
optimal transformation matrix W2

′.

W2
′ � Ub1∑−1

2

b1
Uw∑−1

2

w
∈ R d+40*pi( )×r (18)

In Eq. 18, Ub1 ∈ R(d+40*pi)×r refers to a column-orthogonal
matrix; ∑b1 ∈ Rr×r represents a diagonal matrix with non-
increasing and positive diagonal elements; Uw ∈ Rr×r signifies an
orthogonal matrix; ∑w ∈ Rr×r denotes a diagonal matrix.

The Sentinel-2A multi-spectral remote sensing image
obtained is used as a data set to evaluate the performance of
the spectral feature extraction and health classification model

Frontiers in Environmental Science frontiersin.org07

Ri and An 10.3389/fenvs.2023.1171660

11

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1171660


based on spectral-Gabor spatial discrimination reported here. It
provides rich detailed features for the subsequent nonlinear
feature learning of the classifier from different scales and
different directions, including a total of 14 features. They are
consistent with the quantitative and qualitative indicators
mentioned above. At the same time, the model reported here
is compared with the benchmark model PCA, linear
discriminant analysis (LDA) (Dos Reis et al., 2020), Kernel
PCA (KPCA) (He et al., 2021), Kernel Discriminant Analysis
(KDA) (Shen et al., 2019), and the model proposed by Kayet et al.
(2022) in terms of four evaluation metrics for performance

verification. The four assessment criteria are the average
classification accuracy (AA), the average classification
effectiveness (AV), the overall classification accuracy (OA),
and Kappa.

Results

Result analysis of factor indicators

Figures 5, 6 provide the analysis results of the quantitative and
qualitative indicators to evaluate the health status of natural larch
forests in different sites in the study area.

As shown in Figure 5, among the quantitative indicators, the
scores of canopy density, understory shrub coverage, herbaceous
coverage, soil layer thickness, and humus thickness in the A3 sample
plot are all higher than 9.5 points, which are in a certain range.
Specifically, the canopy density is 0.5–0.7; the understory shrub
coverage is 0.4–0.6; the herb coverage is 0.4–0.6; the soil layer
thickness is higher than 60 cm; the humus thickness is higher
than 30 cm. In addition, the scores of plots A1 and A2 are all
between 60 and 90, meaning that each quantitative index is at the
second or third level. The score of plot A4 is about 50, indicating that
each quantitative indicator performs at level four. In addition, the
tree height, DBH, crown width, and regeneration grading effects
reflecting the vitality of the forest system in each site are discussed. It
is found that the overall performance is still the same as in A3 plots.
The tree height, DBH, crown width, and regeneration in plots
A1 and A2 are grade 2 or grade 3, while the scores of tree
height, DBH, crown width, and re-generation in plot A4 are the
lowest, which are grade 4. The health of natural larch forests in each
sample plot is best in A3, followed by A1 and A2, and the worst
in A4.

According to Figure 6, the scores of all qualitative indicators
in the A3 sample plots are at level 1. In other words, the

FIGURE 5
Results of quantitative indexes in various fields (A) quantitative indicators (B1: canopy density; B2: understory shrub coverage; B3: herb coverage; B4:
soil layer thickness; B5: humus thickness); (B) quantitative indicators related to tree crown characteristics (B51: tree height; B52: DBH; B53: crown width;
B54: renewal).

FIGURE 6
Score results of qualitative indicators of forest health assessment
(C1: community structure; C2: age group; C3: slope; C4: aspect; C5:
soil texture).
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community structure is basically intact, the number of age
groups is mostly mature forests, the slope is basically flat, the
slope orientation is basically southwest, and the soil texture is
loamy. However, plots A1 and A2 are classified as grade two or
grade three; plot A4 has the worst performance in classification
and is basically simple in terms of com-munity structure, age
group, slope, aspect, and soil texture. In terms of structure, young
forests or over-mature forests account for more, and the slope is
steeper, and the slope also shows a northward direction, and the
soil texture is mostly gravel soil type. From the analysis of the
qualitative index factors, it can be found that the health of
natural larch forests in each sample site is best in A3,
followed by A1 and A2, and the worst in A4.

Figure 7 classifies the health classes of natural larch forests
from healthy, sub-healthy, generally healthy, and un-healthy
according to the specific conditions of various places in the
study area.

According to the weights of each index in Figure 7, the health
classification of natural larch forests in the four sample plots A1, A2,
A3, and A4 are not the same. In plot A1, the health evaluation score
of the natural larch forest is 3.1798 points, which can be divided into
the sub-health level. In plot A2, the health evaluation score of the
natural larch forest is 2.9687 points, which can be divided into the
general health grade. In plot A3, the health evaluation score of the
natural larch forest is 4.3354 points, which can be divided into the
health grade. In plot A4, the health evaluation score of the natural
larch forest is 1.8764 points, which can be classified as unhealthy.

Classification accuracy analysis

Furthermore, the spectral feature extraction based on the
Spectrum-Gabor space discrimination and health classification
model is employed to analyze the recognition accuracy of each
index. The model is compared with benchmark models PCA, LDA,
KPCA, KDA, and the model proposed by Kayet et al. (2022) in terms

of four evaluation indicators: AA, AV, OA, and Kappa coefficient, as
shown in Figure 8.

As shown in Figure 8, the statistical values of AA, AV, OA, and
Kappa are analyzed with the Sentinel-2A multi-spectral remote
sensing image as the data source. It can be found that with the
increase in the number of features, the statistical values of AA, AV,
OA, and Kappa all first increase rapidly and then reach a relatively
stable state. The AA, AV, OA, and Kappa statistical values of the
model reported here are the highest. This may be due to the fact that
the method used here can demonstrate its superb feature extraction
ability and the nonlinear feature learning ability and generalization
performance of the subsequent classifier. The model proposed by
Kayet et al. (2022) has the second-highest classification accuracy,
and the KDA algorithm has the worst classification results.
Moreover, the classification accuracy of the model reported here
is optimal when the feature data is 7 or 8; the maximum statistical
values of AA, AV, OA, and Kappa are 74.19%, 61.91%, 63.18%, and
57.63%, respectively. Therefore, the model can accurately identify
the health status of natural larch forests.

Discussion and suggestion

Discussion

This work reveals that an accurate assessment of the health
status of natural larch forests in the Arxan Forestry Bureau can be
achieved through the analysis of remote sensing data and feature
extraction methods. The results highlight significant differences in
the health status of different plots. Plot A1 showed the lowest health
status and was classified as sub-healthy, while plot A4 exhibited the
worst health status and was classified as unhealthy. The most
significant indicators for assessing the health status of natural
forests were found to be quantitative indicators such as canopy
density, understory shrub cover, humus thickness, tree height, and
canopy regeneration. Among these, age group, soil texture, and
community structure were identified as having the most significant
impact on the health status of natural forests.

Further analysis of the spectral-Gabor spatial discriminant
method proposed in this work for spectral feature extraction
reveals higher precision and accuracy than those achieved by
scholars in related fields (Reddy, 2021; Thakur et al., 2021).
Compared with Fernandez-Carrillo et al. (2020), this study uses
more refined remote sensing data and feature extraction methods,
providing better reflection of the health status of natural Larch pine
forests.

This work has some limitations that need to be acknowledged.
Firstly, the sample size is relatively small, including only four plots,
which may not comprehensively reflect the health status of natural
larch forests in the Greater Khingan Mountains. Secondly, the
impact of human activities and climate change has not been
considered, indicating the need to include more factors in
assessing the health status of natural larch forests. Therefore,
future research should focus on increasing the sample size,
integrating more data sources and feature extraction methods,
and comprehensively considering the effects of various factors on
natural larch forest health to improve the accuracy and reliability of
health assessment.

FIGURE 7
Health classification results of natural larch forests in various
fields.
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Suggestion

Based on the aforementioned discussion, this work proposes
three recommendations:

Firstly, it is highly recommended to manage and protect the sub-
healthy and unhealthy natural larch forests. The density of forest
stands in natural larch forests can be optimized by adopting
ecological thinning, replanting, understory mowing and
irrigation, and pruning and shaping (Weller et al., 2021). In this
way, the natural larch and understory irrigation can grow normally
in the natural larch forest, increasing the health grade in the
study area.

Secondarily, the community hierarchy in natural larch forests
should be adjusted to enhance intra-forest permeability and
ventilation by strengthening the management of canopy and
depression and by thinning, single plant selection, or pruning
(Schuldt et al., 2020; Lin et al., 2022). Ultimately, the natural
larch forest will have a multi-level community structure. It is
feasible to achieve biodiversity by adjusting the age structure, soil
texture, and other measures. Therefore, the richer the biodiversity,
the more stable the community structure, and the more pronounced
the forest benefits.

Lastly, it is recommended to integrate multiple data sources for
the health assessment of natural forests. Along with remote sensing
data, other data sources such as topography and hydrological data
should be incorporated to enhance the accuracy and reliability of the
health assessment. Additionally, regular monitoring of the
distribution and health status of natural Larch pine forests
should be performed using remote sensing technology. The
timely data acquisition capability of remote sensing should be
combined with field survey data to promptly assess the health
status of natural Larch pine forests.

Conclusion

In this work, a novel approach is proposed for assessing the
health status of natural larch forests in the Arxan by incorporating
tree crown features and utilizing a spectral-Gabor space
discrimination analysis and classification model to extract
multispectral remote sensing image features. The results
demonstrate the effectiveness of this approach in accurately
assessing the health status of natural larch forests. Furthermore,
this work highlights the close relationship between forest health

FIGURE 8
Classification results of each evaluation index under different algorithms (A) AA; (B) AV; (C) OA; (D) Kappa).
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status and environmental factors, human disturbances, and other
factors, providing scientific evidence for developing targeted
protection and management measures for sustainable
development of natural larch forests. This work also presents a
promising method for monitoring forest health on a global scale,
which can rapidly and accurately evaluate forest health status and
provide critical support for forest protection and management. The
findings of this work have significant implications for the sustainable
utilization of forest resources and ecological environment
protection, indicating its substantial scientific research value and
social significance. Still, there are some deficiencies here. For
example, natural larch is the dominant species in natural larch
forests in the study area, and a few other replanting species still
present, such as artificial larch forests. Therefore, future research will
further distinguish the tree species in the study area to enhance the
precision and confidence of the results.
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Vegetation indexes have been widely used to qualitatively and quantitatively 
evaluate vegetation cover and its growth vigor. To further extend the study 
of vegetation indexes, this paper proposes to study the spatial and temporal 
distribution characteristics and specific driving mechanisms of vegetation indexes 
based on the example of Yunnan Province, China, and also adds the study of spatial 
and temporal prediction methods of vegetation indexes. This paper used data on 
this region’s normalized vegetation index (NDVI), three meteorological factors, 
and eight social factors from 1998 to 2019. The dynamic change in and driving 
mechanism of the NDVI were studied using mean value analysis, univariate linear 
trend regression analysis, and partial correlation analysis. In addition, the Fourier 
function model and the CA–Markov model were also used to predict the NDVI of 
Yunnan Province from 2020 to 2030 in time and space. The results show that: (1) 
The NDVI value in Yunnan Province is high, showing a significant growth trend. 
The increased vegetation coverage area has increased in the past 22 years without 
substantial vegetation degradation. (2) The positive promotion of meteorological 
factors is greater than the negative inhibition. The partial correlation of relative 
humidity among meteorological factors is the highest, which is the main driving 
factor. (3) The NDVI value is significantly positively correlated with population and 
economy and negatively correlated with pasture land and agricultural area. (4) 
The NDVI values are predicted well in time (R = 0.64) and space (Kappa = 0.8086 
and 0.806), satisfying the accuracy requirements. This paper aims to enrich the 
theoretical and technical system of ecological environment research by studying 
the dynamic change, driving mechanism, and spatiotemporal prediction of the 
normalized vegetation index. Its results can provide the necessary theoretical 
basis for the simulation and prediction of vegetation indexes.
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normalized vegetation index, spatiotemporal distribution, driving mechanism, 
CA-Markov model, Fourier function model, prediction
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1. Introduction

Vegetation is an essential component of terrestrial ecosystems and 
is the link between elements of natural geography such as the 
atmosphere, water, organisms, rocks, and soil (Hédl et al., 2017; Xiao 
et al., 2018; Li et al., 2021), and it is the most fundamental component 
of the ecosystem on which all organisms need to depend directly or 
indirectly. Any change in terrestrial ecosystems will inevitably affect 
vegetation type, quantity, or quality (Torres-García et  al., 2022). 
Especially as a result of global warming, which has led to a series of 
changes in vegetation phenology events (Huang et al., 2019; Liu et al., 
2020), the frequency of extreme climate events has increased 
significantly worldwide, causing severe negative impacts on 
agricultural production, water resources, and the socioeconomic 
development of ecosystems (Zhao et al., 2018). Therefore, long-term 
dynamic monitoring and the study of vegetation changes and their 
driving factors are of great value to understanding global changes’ 
impact and achieving effective ecosystem management (Tong et al., 
2019). Ecological problems such as global natural disasters, accelerated 
desert degradation, and soil erosion are frequent, especially in 
northern latitudes (Myneni et al., 1997; Tucker et al., 2001). In the past 
30 years, ecosystems in more than half of the global regions and 
countries have experienced different degrees of degradation due to 
economic development and population growth. Issues such as land 
degradation, soil erosion, and desertification have occurred in China, 
especially in the northern regions (Wang et al., 2002). This has led 
researchers to conduct studies focusing on the northern part. In 
contrast, Yunnan Province, China, is a rare region with ultra-high 
vegetation cover and diverse vegetation, which needs to be studied due 
to the area’s unique geomorphological and vegetation characteristics. 
Therefore, a timely, scientific, and accurate assessment of the dynamics 
of vegetation indices in Yunnan, understanding the driving 
mechanisms of vegetation indexes changes, and modeling and 
predicting the development of vegetation indexes are essential 
references for the ecological effects in other similar regions.

The NDVI is closely related to vegetation cover, leaf area index, 
biomass, and land use, which can reflect the greenness of vegetation 
from macroscopic aspects and is related to photosynthesis in the 
vegetation canopy (Zhu, 2016). Studies addressing the dynamics of the 
NDVI and its response characteristics to climate change and human 
activities have been better developed in recent years. For example, 
nationwide, Jin et al. (2020) used time series data of the NDVI and 
meteorological factors such as precipitation and temperature to 
establish a residual analysis model to achieve quantitative separation 
of climate change effects on the NDVI and arrived at the conclusion 
that there are significant spatial differences in the impact of climate 
change and human activities on the NDVI changes, but the positive 
contribution is generally dominant. Liu et al. (2014) analyzed the 
differences in the correlation between the NDVI and climate change 
for different vegetation types in China, and the differences in the 
relationship between NDVI change trends and temperature and 
precipitation in different eco-geographical zones were also studied. 
Piao et al. (2015) analyzed the driving factors of vegetation change in 
China based on the leaf area index and believed that the increase in 
atmospheric CO2 concentration and nitrogen deposition might be the 
main reasons for promoting vegetation recovery in China. Li et al. 
(2020) analyzed the dominant factors of vegetation productivity 
changes in China from 1992 to 2013, and the results showed that 
radiation made the largest contribution to vegetation productivity 

changes, followed by temperature and precipitation. Chen et al. (2020) 
explored the response of vegetation to precipitation anomalies under 
different climatic and eco-geographical conditions in China. With the 
refinement of the research scale, Wang et al. (2013) found that climate 
warming had caused the edge of the cold-temperate forest in the 
southern part of the Greater Hinggan Mountains to retreat 140 
kilometers northward in the past century. The combined effects of 
moisture conditions and temperature promoted the growth of 
vegetation in the arid-humid transition zone in northern China (Sun 
R. et al., 2021). Decreased temperature led to reduced evaporation of 
soil moisture, alleviating the slight drought trend in southwestern 
China and resulting in a general increase in the vegetation index in 
the region (Sun et al., 2021a). The continuous warming of the climate 
has affected the senescence period and growing season length of 
grasslands in the temperate zone of China to varying degrees (He 
et al., 2022). Precipitation plays a decisive role in the changes in the 
NDVI in the Yarlung Zangbo River Basin on the Tibetan Plateau (Sun 
et al., 2019), while temperature is the dominant factor in the changes 
in the NDVI during the growing season in the permanently frozen 
area of Northeast China. Li et al. (2018) took the Inner Mongolia 
Plateau of China as their research object and concluded that the NDVI 
was positively correlated with extreme precipitation and extreme low 
temperature, negatively correlated with extreme high temperature, 
and that the sensitivity of different vegetation types to extreme climate 
was not the same. Many studies have analyzed the relationship 
between the NDVI and regional and meteorological factors (Tucker 
and Choudhury, 1987). Still, only a few studies have examined the 
driving mechanisms between the NDVI and relative humidity and 
other social factors, especially in Yunnan Province, China.

Therefore, this paper selects annual normalized difference 
vegetation index (NDVI) spatial distribution data (1998–2019) in 
China to study the dynamics of the vegetation index in Yunnan 
Province and analyzes the spatial and temporal changes in 
meteorological factors using air temperature, relative humidity data, 
and precipitation data and explores the partial correlation and 
significance with the NDVI. In addition, the influence of eight social 
factors on the NDVI is also investigated. These studies reveal the 
dynamics of the 22-year NDVI in Yunnan Province and its specific 
driving mechanisms in relation to meteorological and social aspects. 
Finally, the spatial distribution of the NDVI in Yunnan Province from 
2020 to 2030 is predicted through simulations using mathematical and 
statistical models (Fourier function model) and physical statistical 
models (CA-Markov model). This paper is intended to provide 
theoretical support and a reference basis for ecological protection 
construction in the region.

2. Materials and methods

2.1. Study area

Yunnan Province lies between 21° 8′ and 29° 15′ north latitude 
and 97° 31′ and 106° 11′ east longitude, with a total area of 394,100 
square kilometers, accounting for 4.1% of the total land area of the 
country and ranking eighth in size in China. In addition, the region is 
known as the Kingdom of Plants. It is the province with the most 
significant number of plant species, mainly including tropical, 
subtropical, temperate, and cold-temperate plants, among which 
ancient, derived, and exotic plants are abundant. Yunnan accounts for 
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more than 60% of China’s 30,000 species of higher plants. More than 
150 tree species are classified as national priorities for protection and 
development at the first, second, and third levels. The vegetation 
resources of Yunnan Province are remarkable, and the study of local 
vegetation indexes has essential reference values for ecological 
planning and conservation (Figure 1).

2.2. Data

2.2.1. Normalized difference vegetation index 
data

China’s annual normalized vegetation index data comes from the 
registration and publication system of resources and environmental 
science data.1

2.2.2. Other data
The air temperature data were obtained from the National Centre 

for Atmospheric Sciences in the UK.2 The relative humidity data were 
obtained from the National Earth System Science Data Center3 in 
China. The TRMM precipitation data were obtained from NASA 
Release 7 data, and the monthly precipitation data from 1998 to 2019 
were selected to calculate the annual average rainfall. In addition, the 
social factors associated with the NDVI changes were obtained by 
statistically and categorically classifying the statistical yearbook data.4

2.3. Methods

2.3.1. Average analyses of the normalized 
difference NDVI

In this paper, the annual NDVI and the three meteorological data 
were processed into an overall average of 22 years using the maximum 
value synthesis method. And the NDVI and the three meteorological 
factors are analyzed temporally and spatially. In addition, the annual 
data are analyzed temporally using the average of the NDVI and three 
meteorological data from raster images. The Maximum Value 
Composite (MVC) method is employed, with the specific calculation 
process as follows:

	
M NDVI i , , ; j , ,NDVI iji

� � � � �� �max 1 2 12 1 2 12 

	 (1)

In the formula, MNDVIi represents the maximized NDVI value for 
the i year; i is an integer from 1 to 22, representing the years from 1998 
to 2019; NDVIij represents the monthly NDVI values for the i year, 
and j is an integer from 1 to 12, representing January to December.

2.3.2. Spatial trend analysis methods
A one-dimensional linear regression analysis model was used to 

quantitatively analyze the change in vegetation cover trends in Yunnan 
Province from 1998 to 2019, calculated as follows:

1  http://www.resdc.cn

2  https://crudata.uea.ac.uk/

3  http://www.geodata.cn

4  https://www.stats.gov.cn
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Where S represents the slope of the trend line, Ni represents the 
NDVI value in the first year of the image, and t = 22 (1998–2019) 
represents the observation time series of the data; S > 0 represents an 
increase in the NDVI value and an increasing trend of vegetation 
cover; S < 0 illustrates a decrease in the NDVI value and a decreasing 
trend of vegetation cover. We use the Mann-Kendall significance test 
to evaluate the significance of the NDVI spatial trends. The M-K test 
is a non-parametric method suitable for detecting trends in time series 
data. By calculating the test statistic and the corresponding value of p, 
we can determine whether the NDVI spatial trend is significant.

2.3.3. Partial correlation analysis
Partial correlation analysis is a standard method for examining 

the relationship between changes in the NDVI (Normalized Difference 
Vegetation Index) and the climatic factors. In this study, we employed 
a second-order partial correlation analysis model to identify the 
primary driving factors of the NDVI. Among the four variables, the 
partial correlation coefficient between any two variables is calculated 
by excluding the influence of the other two variables, which is referred 
to as the second-order partial correlation coefficient. The significance 
of partial correlation coefficients is assessed using an F-test based on 
the partial correlation analysis. The calculation formula is as follows:

	

r
r r r

r r
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(3)

A positive correlation is indicated by r > 0, while a negative correlation 
is represented by r ≤ 0. In this context, i, j, h, and m denote the 
combinations of the NDVI, the temperature, the precipitation, and the 
relative humidity, respectively. For instance, when investigating the 
partial correlation relationship between the NDVI and the temperature, 
the influence of the precipitation and the relative humidity is eliminated. 
This study also analyzes the spatiotemporal variations of the NDVI with 
the temperature, the precipitation, and the relative humidity, and explores 
the relationships between the NDVI and these factors. In addition, 
we  integrate and select eight social factors to analyze the impact of 
anthropogenic factors on the NDVI based on local statistical bureau 
information. IBM SPSS statistical software is used for the analysis of the 
NDVI. By utilizing 22 years of average the NDVI data, this study 
examines the correlation between the NDVI and the eight social factors.

2.3.4. Prediction model

2.3.4.1. Fourier function model
This paper predicts the future NDVI over the study area based on 

the historical data from 2000 to 2019. Three functions (i.e., the 
polynomial function, trigonometric function, and Fourier function) 
are selected for fitting the NDVI variation during 2000–2019. Then, 
the mathematical and statistical parameters (i.e., R2, SSE, and RMSE) 
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were calculated to compare the capacities of these fitting functions. 
Finally, the best-fit process was selected to predict the future NDVI 
over the study area for 2020–2030.

2.3.4.2. CA-Markov model
The Markov chain is a “non-sequential” state of affairs process, 

where the state of the change process Sn at time n + 1 is only related to 
the state at time n and is not related to the state before Sn (Mokarram 
and Pham, 2022; Sun et al., 2022; Zhou et al., 2022). Thus, Pij represents 
the probability of shifting from a vegetation index type Ei to another 
type of Ej and is calculated as:

	 P P S j S iij n n� � �� ��1 / 	 (4)

In this paper, the number of NDVI change-type areas in 2012 and 
the NDVI change-type area in 2015 are constructed as a Markov 
transfer matrix:
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(5)

The NDVI type transfer state, where X(0) is the initial state vector, is 
calculated in this paper to obtain the probability of change of each the 
NDVI type in 2012 to each the NDVI type change in 2015 and the area 
size of each the NDVI type in 2017 and 2018 is inferred with this 
probability. The Markov model focuses on simulating quantitative 
changes. The CA model and Markov model were coupled to compensate 
for the deficiency of the Markov model in spatial analysis. Adaptive 
inertia mechanism-based meta-cellular automata simulations were 
applied to predict the distribution of each the NDVI type for 2020–2030.

2.4. Data preprocessing steps

To ensure the accuracy and consistency of the data, we adopted 
the following preprocessing steps:

	 1.	 The NDVI data preprocessing: Firstly, we used ArcGIS software 
and the maximum value composite method to eliminate the 
influence of clouds, atmosphere, and solar zenith angle, 
generating monthly the NDVI data. Next, we  obtained the 
annual NDVI data by calculating the average values of the 
monthly data.

	 2.	 Data consistency processing: We projected all data to the same 
coordinate system and used ArcGIS to resample to achieve the 
same spatial resolution (1 km x 1 km). Furthermore, for the 
lower spatial resolution of the TRMM precipitation data, 
we applied the Kriging spatial interpolation method to achieve 
the same resolution.

	 3.	 Data synthesis: We integrated temperature, precipitation, and 
relative humidity data into yearly data for 1998–2019, 
ensuring they have the same temporal resolution. Then, 
we  calculated the annual averages of the NDVI and 
meteorological data using the multivariate analysis - band 
collection statistics method.

	 4.	 Data clipping: By applying mask extraction and raster clipping, 
we retained the data required for the study area.

	 5.	 Data classification: Based on the spatial distribution of the 
meteorological data and the NDVI data, we divided them 
into five classes. At the same time, we  classified the 
significance of the NDVI trends into five categories: 
significant degradation, moderately significant 
degradation, no significant change, moderately significant 
improvement, and significant improvement.

	 6.	 The NDVI spatial prediction preparation: Before conducting 
spatial predictions, we reclassified the NDVI, dividing it into 
five categories: Lower (<0.5), Low (0.5–0.6), Normal (0.6–0.7), 
High (0.7–0.8), and Higher (>0.8).

FIGURE 1

Location of the study area and its basic geomorphology.
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	 7.	 Correlated data selection: We selected eight statistical yearbook 
data closely related to the NDVI, including population density, 
GDP, industrial output, agricultural output, construction 
production output, forest area, grassland area, and cultivated 
land area, covering annual data from 1998 to 2019.

3. Results

3.1. Characteristics of NDVI time 
dimensional changes

In this study, we extracted the annual average NDVI values from 
raster images generated by the maximum value composite method 
and analyzed their temporal changes (Figure 2). We found that the 
NDVI values in Yunnan Province showed an overall upward trend, 
with an average NDVI of 0.768 and an annual increase of 0.00614. 
We also discovered that, over the 22-year period, the temporal changes 
in the NDVI values only experienced a continuous decline from 2009 
to 2011, reaching the lowest point in 2011 and then steadily 
rebounding until 2014. These results indicate that the temporal 
changes in Yunnan Province’s NDVI values not only reflect a 
significant increase in vegetation but also exhibit only one substantial 
fluctuation, further justifying our selection of this study area. 
Moreover, based on the unique change trends in the study area, 
research on the temporal changes in NDVI values in the study area is 
more targeted and facilitates the identification of the main driving 
factors behind vegetation changes.

In this section, we have discussed in detail the temporal change 
characteristics of the NDVI, analyzing its change trends and patterns 
on different time scales. To gain a deeper understanding of the 
dynamic change characteristics of the NDVI, in the following sections, 
we  will focus on studying the spatial distribution and changes in 
the NDVI.

3.2. Characteristics of NDVI spatial 
distribution variation

In this paper, we analyzed the spatial variation in the NDVI in 
Yunnan Province over a 22-year period using the maximum value 
synthesis method (Figure 3A). We found that high vegetation cover 
areas and higher vegetation cover areas in Yunnan Province 
accounted for 51.45 and 34.17%, respectively, and low vegetation 
cover areas accounted for 0.95%. The NDVI values in Yunnan 
Province show an overall increase from northeast to southwest, with 
scarce vegetation areas mainly in the northwest and some central 
urban peripheral areas; high vegetation areas are distributed 
primarily in the southwest, some significant sites, and the northeast 
Zhaotong (ZT) area. We analyzed the spatial trends of the NDVI in 
Yunnan Province over a 22-year period using a one-dimensional 
linear regression equation model at the metascale (Figure  3B). 
We found that the direction of increasing NDVI values accounted 
for 95.02% and decreasing NDVI values accounted for 4.98%, with 
a vast difference between the two. The NDVI values were only 
reduced in urban and mountainous areas, such as Kunming (KM) 
and Yuxi (YX) in the central part of the study area, and urban areas 
in Lijiang (LJ) and Dali (DL) in the north-central part of the study 
area as well as in the spreading areas of the Hengduan Mountains in 
the northwest. We further tested the significance of the regression 
trend by using the F-trend test method (Figure 3C). We found that 
the significant increase and decrease in the NDVI accounted for 89.3 
and 0.3%, respectively. The size of regions with an increasing trend 
in the NDVI was much larger than that of sites with a decreasing 
trend. Among them, the NDVI was significantly reduced in urban 
areas such as Yuxi (YX) and Qujing (QJ), and there was no significant 
change in many places in the northwest mountain range area and 
other mountain range areas. The distribution trend is more dispersed 
and patchier.

Therefore, the spatial variation and spatial movement of the NDVI 
and the spatial trend significance test results indicate that the areas 
with high NDVI values and the regions with increasing trends are 
much greater than the areas with low NDVI values and areas with 
decreasing trends in Yunnan Province.

In this section, we explored the spatial change characteristics of 
the NDVI and analyzed its distribution patterns in detail. To gain a 
deeper understanding of the various factors influencing the 
spatiotemporal changes in the NDVI, in the following sections, 
we focused on investigating the impact of climatic and socio-economic 
factors on the NDVI and attempted to identify the relationships and 
mechanisms involved.

3.3. Correlation analysis of the NDVI and 
climate factors

3.3.1. Impact of air temperature, precipitation, and 
relative humidity on the NDVI time dimension

This paper analyzes the temporal variation between meteorological 
factors and NDVI values through the annual mean values of air 
temperature, precipitation, and relative humidity extracted from raster 
images generated by the maximum value synthesis method (Figure 4). 
In terms of temporal variation, we found that the multi-year averages 
of NDVI values, air temperature, precipitation, and relative humidity 

FIGURE 2

Temporal variation of NDVI in Yunnan from 1998 to 2019.
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in Yunnan Province showed multi-peaked variations, with the annual 
average maximum value of NDVI occurring in 2019 at 0.833. The 
average yearly maximum values of air temperature, precipitation, and 
relative humidity occurred in 2019, 2001, and 2018, with maximum 
values of 15.7°C, 1377 mm, and 74.5%, respectively.

We further found that by comparing the temporal variation in 
NDVI values over the years the temporal variation in the NDVI 
values from 1998 to 2002 was not insignificant, while air 
temperature reached a minimum value of 14.5°C in 2000 and 
precipitation and relative humidity were much higher than other 
years during this period; the annual average NDVI values from 
2014 to 2019 were much higher than other years, and vegetation 
grew better. However, the air temperature during this period 
differed significantly from the NDVI temporal variation, while 
precipitation and relative humidity were in solid agreement with 
the NDVI temporal variation. Therefore, air temperature showed 
a negative correlation with NDVI material changes, and 
precipitation and relative humidity correlated positively.

3.3.2. Effects of air temperature, precipitation, 
and relative humidity on the spatial dimension of 
the NDVI

This paper uses the maximum value synthesis method to process 
the three examined meteorological data into an overall average of 
22 years to generate spatial variations in raster images (Figure 5). In 
terms of spatial variation, combined with (Figure 3), we found that the 
spatial distribution in the NDVI with air temperature, precipitation, 
and relative humidity all showed a decreasing trend from south to 
north. The relative humidity matched the spatial distribution of the 
NDVI the best.

We further found that the air temperature and relative humidity 
were numerically higher in the northeastern part of the study area, 
Zhaotong, at 15.5°C and 78.5%, respectively, while the precipitation 
was lower at 1050 mm, the NDVI was generally greater than 0.7, and 
the vegetation increased; in the central part of Kunming, the air 
temperature were higher at 16.9°C. The amount of precipitation and 
the relative humidity were lower at 67%, and 700 mm, respectively, 

FIGURE 3

Spatial change and significance test distribution of NDVI in Yunnan from 1998 to 2019. (A) Spatial variation of NDVI values. (B) Trend changes in NDVI. 
(C) NDVI significance test. SR, significantly reduced; MR, moderately reduced; NC, no significant change; MI, moderately increased; SI, significantly 
increased.

FIGURE 4

Evolution of annual mean air temperature, annual mean precipitation, and annual mean relative humidity in Yunnan from 1998 to 2019. (A) Time 
variation of NDVI and temperature. (B) Time variation of NDVI and precipitation. (C) Time variation of NDVI and relative humidity.
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and the vegetation did not increase as much as in the northern 
Zhaotong area. In the southern and southwestern parts of the study 
area, the air temperature, precipitation, and relative humidity were 
generally high in numerical values, 18.4°C, 2138 mm, and 79%, 
respectively, with the NDVI being 0.85, and the area observed the 
highest increase in vegetation. In the Northwest Transverse Range 
region, the air temperature, precipitation, and relative humidity were 
generally shallow, and vegetation showed an insignificant increase.

Therefore, there is some regional variability in the spatial 
variability and a spatial correlation between air temperature, 
precipitation, relative humidity, and the NDVI.

3.3.3. Partial correlation analysis between the 
NDVI and climatic factors

The related research results indicate that climate change is an 
important cause of increases in the NDVI, while air temperature, 
precipitation, and relative humidity are important indicators of 
climate change (Mao et al., 2022; Xu et al., 2022). Based on the findings 
of this paper on the temporal and spatial variation of the NDVI with 
air temperature, precipitation, and relative humidity, we  further 
validated our results through a partial correlation model based on the 
image metric scale (Figures 6A–F).

We found an overall positive spatial correlation between the 
NDVI and air temperature, with this accounting for 61.6%. The 
positively correlated areas were mainly Pu’er (PE), Xishuangbanna 
(XSBN), Wenshan (WS), and Honghe (HH) in the south-central part 
of the study area. Negative correlations were dominant in areas such 
as Nujiang (NJ) in the northwestern part and Qujing (QJ) in the 
northeastern region. The positive and negative correlations were only 
0.4% and were speckled in the study area. A total of 30.4% of the 
spatially negative correlations were found between NDVI and 
precipitation. The positive correlations were mainly in Zhaotong (ZT) 
and Wenshan in the northeastern part of the study area. The negative 
correlation was primarily in the central and western regions. 
Significant positive and negative correlation areas accounted for 1.70 
and 11.20%, respectively. A significant positive correlation was found 
in southern Qujing (QJ) and Wenshan (WS) in the northeastern part 
of the study area. A significant negative correlation was found between 
Diqing and Nujiang (NJ) in the northwestern part of the study area. 
A total of 69.6% of the NDVI was spatially positively correlated with 
the relative humidity. The positive correlation areas were mainly 

Chuxiong (CX) and Yuxi (YX) in the central part of the study area and 
Pu′er (PE), Lincang (LC), and Baoshan (BS) in the west. The negative 
correlation was dominant in the Zhaotong (ZT) area in northeast 
China and Qujing (QJ) and Wenshan (WS) areas in south-central 
China. Significant positive and negative correlation areas accounted 
for 19.10 and 7.20%, respectively, with substantial positive correlation 
areas distributed in the central and western Dali (DL), Chuxiong 
(CX), and Lincang (LC) regions. The significant negative correlations 
were distributed in the local areas of Zhaotong (ZT), Qujing (QJ), and 
Wenshan (WS) in the north. They were especially significant in 
Zhaotong (ZT) and Qujing (QJ).

Figure  5 shows the spatial distribution of temperature, 
precipitation, and relative humidity within the entire study area, which 
helps to explain the differences in the spatial correlations between the 
NDVI and the climatic factors observed in Figures 6A–F. Notably, in 
Figure 5, we found that the spatial distribution of relative humidity 
was most closely aligned with the spatial distribution of the NDVI, 
which is consistent with the highest positive spatial correlation 
between the NDVI and the relative humidity shown in Figures 6A–F. It 
is the spatial distribution differences in the climatic factors within the 
study area, as shown in Figure 5, that cause significant disparities in 
the spatial correlations between the NDVI and climatic factors in 
various parts. These differences contribute to our in-depth 
understanding of the impact of climate change on vegetation growth 
in different regions, thereby providing a basis for developing 
appropriate vegetation conservation and management strategies.

Therefore, there is some regional variability in the spatial 
correlation between the NDVI and meteorological factors, which is 
consistent with previous findings (Cheng et al., 2022). There is an 
overall positive spatial correlation between the NDVI and air 
temperature and relative humidity, with the highest positive spatial 
correlation with relative humidity. The negative spatial correlation 
being with precipitation further suggests that a combination of 
meteorological factors influences the NDVI.

3.4. Characteristics of NDVI time 
dimensional changes

A social–ecological system (SES) is a complex adaptive system 
closely linked between humans and nature, with unpredictable, 

FIGURE 5

Spatial characteristics of air temperature, precipitation and relative humidity in Yunnan, 1998–2019. (A) Spatial distribution of temperature. (B) Spatial 
distribution of precipitation. (C) Spatial distribution of relative humidity.
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self-organizing, and non-linear characteristics, and vegetation is an 
essential part of the ecosystem with it being more inextricably linked 
with society (Tong et al., 2016). In this paper, we analyzed the correlation 
between the NDVI of vegetation and eight social factors in Yunnan 
Province from 1998 to 2019 by using a bias correlation model (Table 1). 
As seen in Table 1, the NDVI had the strongest positive correlation with 
population density (R2 = 0.951) and the weakest positive correlation with 

arable land. The NDVI was negatively correlated with agricultural and 
pasture area changes with R2 of −0.460 and −0.724, respectively. There 
were also strong positive correlations between the NDVI and changes 
in gross product, industry, gross construction product, and forest area.

Following our previous research, we  have gained a thorough 
understanding of the spatiotemporal distribution characteristics of the 
NDVI and analyzed the influence of climatic and socio-economic 

FIGURE 6

Partial correlation coefficients and significance of NDVI and meteorological factors in Yunnan Province from 1998 to 2019. (A) The partial correlation 
coefficient between NDVI and temperature; (B) the significance of the correlation between NDVI and temperature; (C) the partial correlation 
coefficient between NDVI and precipitation; (D) the significance of the correlation between NDVI and precipitation; (E) the partial correlation 
coefficient between NDVI and relative humidity, and (F) the significance of the correlation between NDVI and relative humidity. SNC, significantly 
negative correlation; MNC, moderately negative correlation; MPC, moderately positive correlation; SPC, significantly positive correlation.
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factors on the NDVI. In the following sections, we employed advanced 
modeling methods to precisely simulate and predict the NDVI in both 
temporal and spatial dimensions.

3.5. Normalized vegetation index spatial 
and temporal simulation projections for 
2020–2030

3.5.1. Impact of air temperature, precipitation, and 
relative humidity on the NDVI time dimension

A linear function and two periodic functions were constructed to 
fit the annual NDVI temporal variation for 1998–2019 (Table 2). The 
results show that the polynomial function includes the linear function 
better. In addition, the periodic functions (Fourier and trigonometric 
functions) performed much better than the linear function (primary 
function). The accuracy analysis (Table 2) showed that the Fourier 
function was the best-fitted function among the three functions 
constructed in this study. It effectively depicted the annual NDVI 
time-series variation in the study area.

The results of the prediction of the NDVI in Yunnan Province 
from 2020 to 2030 using the constructed Fourier function show 
(Figure  7) that the NDVI values in Yunnan Province show 
fluctuating changes. However, the NDVI values show a slight 
upward trend in general (0.0015/per year), reaching a maximum 
weight of 0.703  in September 2027 and a minimum of 0.498  in 
March 2030.

3.5.2. Modeled prediction of NDVI spatial 
distribution in 2020–2030

In this paper, based on the regional NDVI data of 2012 and 2015, 
the probability transfer matrix of each type of NDVI from 2012 to 
2015 was obtained. The simulated data for 2017 and 2018 were 
obtained using the CA-Markov model. The decomposition results of 
the NDVI for 2017 and 2018 were compared with the simulation 
results (Figure 8). The simulation results were also verified with Kappa 
coefficients. The predicted Kappa coefficient values of the NDVI for 
2015 and 2018 were 0.8086 and 0.806, respectively (generally, when 
the Kappa coefficient is greater than or equal to 0.75, the simulation 
prediction is considered to be more accurate) (Fu et al., 2018), so the 

TABLE 1  Correlation between NDVI and social factors in Yunnan, 1998–2019.

NDVI Population 
density

Gross 
production

Industry Agriculture Gross 
building 
product

Forests Pasture Cropland

NAVI 1

Population 

density

0.951** 1

Gross 

production

0.922** 0.916** 1

Industry 0.922** 0.947** 0.971** 1

Agriculture −0.460* −0.552** −0.363 −0.464* 1

Gross 

building 

product

0.901** 0.886** 0.991** 0.946** −0.295 1

Forests 0.932** 0.880** 0.924** 0.890** −0.410 0.922** 1

Pasture −0.724** −0.671** −0.838** −0.705** 0.089 −0.886** −0.803** 1

Cropland 0.277 0.355 0.199 0.220 −0.097 0.184 0.177 −0.105 1

*The correlation is significant at the 0.05 level (one-tailed). **At the 0.01 level (two-tailed), the correlation is significant.

TABLE 2  The accuracy analysis of the results by different fitting functions.

Fitting 
function

Function expression Number 
of terms

R2 SSE RMSE

Polynomial 

function

y = −4.4984E11 + 1.35304E9*x−1695626.94655*x2 + 1133.25223*x3 − 0.42601*x4 + 8.5408E−5*x5 

−7.13413E−9*x6

6 0.18** 1.40 0.006

Trigonometric 

function

y = 0.59975−18.38915*sin(pi*(x + 0.49874)/0.08951) – 0.61** 0.66 0.002

Fourier 

function

y = 0.5996 – 0.006659*cos(x*3.151)-0.005518*sin(x*3.151)−0.08763*cos(2*x*3.151) 

−0.01923*sin(2*x*3.151) + 0.002304*cos(3*x*3.151)−0.003563*sin(3*x*3.151)  

+ 0.001095*cos(4*x*3.151) + 0.01228*sin(4*x*3.151)  

+ 0.001425*cos(5*x*3.151) + 0.003636*sin(5*x*3.151)−0.007611*cos(6*x*3.151)  

+ 0.004719*sin(6*x*3.151)−0.001563*cos(7*x*3.151) + 0.005697*sin(7*x*3.151)

7 0.64** 0.62 0.050

*The correlation is significant at the 0.05 level (one-tailed). **At the 0.01 level (two-tailed), the correlation is significant.
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simulation prediction of each type of NDVI change passed the 
accuracy test.

In this paper, the CA-Markov model further predicted the spatial 
variation in the NDVI values from 2020 to 2030 (Figure 9). Combined 
with Figure 10, we found that the NDVI Lower type will basically 
remain unchanged over the next 11 years from 2020 to 2030 and is still 
distributed in urban areas and the northwestern highlands. The NDVI 
Low type decreased by 0.4%. The NDVI Normal and High types 
decreased by 0.9 and 2.8%, respectively, while the NDVI Higher type 
increased by 4%. This indicates that the NDVI Normal and High types 
were transformed into Higher types, where by the decreasing and 
increasing areas were mainly distributed in the northwestern and 
eastern regions, respectively, with a scattered distribution. Therefore, 
the vegetation in Yunnan Province still has a clear increasing trend 
from 2020 to 2030.

Up to now, we have comprehensively understood the spatiotemporal 
distribution characteristics of the NDVI in the study area, the degree of 
influence of climatic factors on the NDVI, and successfully predicted 
the spatiotemporal change trends of the NDVI in the study area for 
2020–2030. In the subsequent sections, we will continue to delve deeper 
into the relevant issues highlighted by these findings to ensure that our 
research conclusions are more rigorous and logical.

4. Discussion

4.1. Spatial and temporal distribution of the 
normalized difference vegetation index

Studying changes in vegetation dynamics in Yunnan Province is 
essential to improve vegetation ecological vulnerability assessment, 
especially as a result of climate change (Fernández et al., 2012; Min 
et al., 2015; Wang et al., 2016). In this study, we found a high increase 
in vegetation cover in Yunnan Province over the past 22 years 
(Figures 2, 3), with an annual growth rate of 0.00614, like previous 
results based on VIs (Li et al., 2021; Sun et al., 2021b). We also found 

that the temporal variation in NDVI values showed a significant 
decreasing trend in the mean NDVI values around 2011, with a faster 
rate of vegetation recovery in the subsequent years. On the one hand, 
this is attributed to the fact that meteorological factors (Figure 4) were 
at low values in around 2011, which made it unsuitable for vegetation 
growth. On the other hand, during this period, when the 11th and 
12th Five-Year Plans converged, the development of industry and 
agriculture was promoted nationwide, and many natural areas in 
Yunnan Province were reclaimed. A total of 24.4% of agriculture and 
56.7% of industrial enterprises above the scale were increased 
cumulatively in 4 years. The scale of arable land and buildings was 
fully expanded, and the vegetation growth environment was damaged, 
resulting in a sharp decrease in natural vegetation.

The spatial variation in NDVI values shows a trend of 
decreasing from south to north (Sun et al., 1998; Xie et al., 2021). 
The low NDVI values are mainly in the northwestern plateau, Gobi 
region, and urban areas. The plateau Gobi region indicates that the 
natural environment primarily influences vegetation, while the 
urban areas suggest that human activities affect vegetation changes. 
The higher NDVI values in the southern and southwestern regions 
are due to the favorable climate and more distribution of rivers in 
these regions, on the one hand, and a greater emphasis on vegetation 
ecosystem construction in these regions. Regarding spatial trend 
changes in NDVI values, vegetation in northwestern Yunnan 
Province is severely reduced, while vegetation in the southern and 
southwestern areas is better developed. This shows that the trend of 
plateau globalization in the northwest is due to the harsh natural 
environment. However, a series of policy measures implemented by 
the state to improve the ecological environment, such as ecological 
restoration and the planting of plantation forests, enhanced the 
environmental climate in the northwest (Du et al., 2019; Hu et al., 
2022); more time is still needed for the poorer economy and small 
population in the northwest. In contrast, the environment is very 
suitable in the southern and southwestern regions, the population 
density is low, and the vegetation improvement shows more of a 
natural progression.

FIGURE 7

Fourier function model fitted prediction results of NDVI values for 2020–2030. The brown box represents the monthly NDVI values, the solid black line 
represents the finished prediction results, and the gray dashed line represents the linear fit. The linear fit function is y = 0.0015*x-2.4.
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4.2. Effects of temperature, precipitation, 
relative humidity, and social factors on the 
normalized difference vegetation index

Meteorological factors influence vegetation growth, providing 
vegetation’s necessary water and heat conditions (Aili et al., 1907). Air 
temperature, precipitation, and relative humidity are the main controls 
among meteorological factors that affect vegetation index changes 
(Jiang et  al., 2019). We  found that the vegetation index showed a 
significant decreasing trend in regions with lower air temperature, 
precipitation, and relative humidity, most likely due to the 
inconvenience caused by low temperature, low precipitation, and low 
humidity regions to the natural growth of vegetation and the artificial 
cultivation of vegetation and other behaviors. Therefore, beneficial 
human activities in warmer climatic regions are conducive to 
increasing vegetation growth and the vegetation index.

Our analysis of the biased relationship between vegetation and 
meteorological factors revealed an overall positive spatial correlation 
between the NDVI and air temperature and relative humidity, with 
the highest positive spatial correlation being with relative humidity. In 
addition, there is a negative spatial correlation between the NDVI and 
precipitation, further indicating that the NDVI is affected by multiple 

meteorological factors. It was found that air temperature and relative 
humidity had different effects on the growth and development of 
vegetation at various stages due to climate warming. In general, they 
promoted vegetation growth (Liu et al., 2018). We further found that 
the areas with a negative correlation between the NDVI and 
precipitation were mainly in the south-central region, attributed to the 
fact that this region is mostly in the tropics, where precipitation itself 
is high. If precipitation increases further, it will weaken vegetation 
photosynthesis and, thus, reduce vegetation.

In addition, the vegetation/land change caused by human 
activities is the main factor that affects the NDVI (Zhang et al., 2016; 
Bai and Li, 2022) and an essential driver of vegetation cover change 
(Zhang et al., 2011, 2019). We found the strongest positive correlation 
between the NDVI values and population density. Negative 
correlations were found with changes in agricultural and grazing land 
areas. The influence of population density on vegetation dominated 
densely populated areas, cities, and peri-urban areas. The balanced 
population growth in Yunnan Province has exceeded 20% in the last 
22 years. The continuous rise of economic growth and urban 
population has led to the expansion of metropolitan construction land 
area, resulting in a decreasing trend in vegetation cover in some areas. 
Still, overall, it remained significantly and positively correlated with 

FIGURE 8

Comparative analysis of NDVI accuracy projections for 2017 and 2018. (A,B) Represent the original images for 2017 and 2018, respectively, while 
(A1,B1) represent the simulated prediction images. Note that lower indicates NDVI values <0.5; low represents NDVI values 0.5–0.6; normal denotes 
NDVI values 0.6–0.7; high corresponds to NDVI values 0.7–0.8; higher signifies NDVI values >0.8.
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the NDVI, stemming from the concentrated distribution of population 
growth in the study area.

We found that NDVI values were negatively correlated with 
changes in agricultural and grazing land areas. The increase in 

agriculture is attributed to the fact that, on the one hand, it represents 
an increase in agricultural land. On the other hand, excessive 
agricultural exploitation destroys the natural environment, causing 
problems such as land desertification, soil erosion, and soil pollution, 

FIGURE 9

Projected spatial distribution of NDVI in Yunnan Province from 2020 to 2030.
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which in turn leads to a significant decrease in vegetation cover. The 
livestock industry in the study area is more developed and has been 
further developed in recent years, leading to a further increase in 
grazing land. The increase in grazing land represents an increase in 
grazing, which mainly transforms the vegetation structure 
morphology and reduces the vegetation cover through behaviors such 
as animal foraging and trampling.

The NDVI is also significantly and positively correlated with GDP, 
industry, and construction GDP, indicating that improved socio-
economics can increase natural vegetation cover. Since the 21st 
century, the state has attached great importance to preventing and 
controlling stone desertification and ecological restoration in Yunnan. 
It has implemented a series of environmental engineering measures 
that have played a vital role in the restoration of vegetation, not only 
improving the vegetation cover in the study area but also playing an 
essential role in improving the survival environment of vegetation 
communities, effectively reducing the degree of regional stone 
desertification, and improving the regional vegetation cover (Cheng 
et al., 2022).

Combining the results shown in Figure 6, we found that climatic 
and social factors synergistically affected vegetation index changes. 
The vegetation growth in the study area was positively and negatively 
inhibited by social factors, and the overall positive promotion of 
regional vegetation growth dominated. The development of ecological 
projects has led to an increase in vegetation cover. Still, the inhibitory 
effect of unreasonable human development in the development of the 
economy on vegetation growth should be addressed.

4.3. Normalized vegetation index spatial 
and temporal simulation prediction

In this paper, three functions were used to fit the time series of the 
historical NDVI in Yunnan Province, and it was found that the 
periodic function of the Fourier function performed the best. Roy 
et al. predicted future changes in the NDVI by using machine learning 
methods, but large data sets are needed for prediction (Ahmad et al., 
2023). In contrast, this paper predicts the NDVI in Yunnan Province 
based on historical NDVI data in a simple and effective mathematical, 

statistical way (i.e., Fourier function). As confirmed by previous 
studies (Tchepel and Borrego, 2010; Güler and Özcan, 2019), these 
studies also used the Fourier function for analysis and prediction. 
Notably, the curve fit predicted using monthly data was better than 
that indicated by their use of interannual data by comparing it with 
Zhou et al. (2022). Thus, the Fourier function model was more suitable 
for relevant monthly data. In addition, the current use of CA-Markov 
models lies mainly in the simulation and prediction of land use 
patterns (Xu et al., 2022; Luan et al., 2023), and fewer research cases 
have been used for the simulation and prediction of the NDVI, which, 
as a type of cover, is a dynamic change in land cover. Simulating and 
predicting a single vegetation change is more straightforward than the 
interconversion between different land use types. Simulating and 
predicting a single vegetation change is shorter than the 
interconversion between different land use types.

Of course, there are uncertainties in the prediction set out in this 
paper. In time series prediction, the Fourier function is a mathematical, 
statistical method that uses historical data to fit and predict the NDVI, 
limited by the information provided by historical data; in addition, it 
can superimpose periodic information from historical data into the 
future predicted values. In spatial distribution prediction, since this 
study is the first attempt to directly simulate and predict the NDVI 
distribution now using the CA-Markov model, it focuses on affecting 
the spatial and temporal patterns under natural evolutionary 
conditions. At the same time, NDVI change is a complex process 
influenced by various uncertainties such as nature, human activities, 
and land use development policies. Therefore, how to adjust the model 
parameters based on a comprehensive analysis and integrated 
consideration of the effects of multiple factors also needs to be further 
explored in depth. In response to these situations, it is strongly 
recommended to use new and better methods in future investigations.

5. Summary and conclusion

To further expand upon research on the vegetation index, this 
paper plans to take Yunnan Province as an example; in addition to 
studying the spatiotemporal distribution characteristics and specific 
driving mechanism of its vegetation index, a new spatiotemporal 

FIGURE 10

Percentage change of NDVI by type in Yunnan from 2020 to 2030.
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prediction method of the vegetation index is also added. In this paper, 
the normalized vegetation index (NDVI) data from 1998 to 2019, three 
meteorological factors, and eight social factors were used to analyze the 
topographic characteristics of the region. The dynamic change and 
driving mechanism of the NDVI were are studied using mean value 
analysis, univariate linear trend regression analysis, and partial 
correlation analysis. In addition, the Fourier function and CA-Markov 
models were used to predict the time and space of the NDVI in Yunnan 
Province from 2020 to 2030. The main conclusions are as follows:

	 1.	 From 1998 to 2019, the NDVI value of Yunnan Province 
showed a significant growth trend, and the annual growth rate 
was 0.00614. In terms of time, the NDVI value fluctuated but 
showed an upward trend. In space, the NDVI gradually 
increased from north to south.

	 2.	 The NDVI has a positive spatial correlation with air 
temperature and relative humidity and a spatial correlation 
with precipitation. The positive promotion of meteorological 
factors is more significant than negative inhibition. The partial 
correlation of relative humidity among the meteorological 
factors is the highest, which is the main driving factor.

	 3.	 The NDVI values had the strongest positive correlation with 
people, the weakest positive correlation with cropland, and a 
negative correlation with pasture and agricultural area.

	 4.	 In the time series prediction, The NDVI values in Yunnan 
Province fluctuated, but there was a slight upward trend in the 
NDVI values (0.0015/per year). In the spatial distribution 
projection, the vegetation in Yunnan Province still has a 
significant increasing trend from 2020 to 2030.

This study provides necessary theoretical support for NDVI 
simulation and forecasting. The predicted NDVI values offer valuable 
information for decision-makers and strategists in ecological  
environments.
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Cloud-based data mapper (CDM):
application for monitoring dry
deposition of reactive nitrogen

Shailesh K. Kharol1*, Cameron Prapavessis2, Mark W. Shephard2,
Chris A. McLinden2 and Debora Griffin2

1AtmoAnalytics Inc., Brampton, ON, Canada, 2Environment and Climate Change Canada, Toronto, ON,
Canada

Spatiotemporal monitoring of reactive nitrogen atmospheric deposition is
essential for understanding its impact on sensitive ecosystems and quantifying
cumulative effects. However, the sparsity of direct surface flux measurements
combined with barriers in dissemination aremajor limiting factors in providing this
information to decision makers and non-experts in a timely manner. This work
addresses both aspects of this information gap by, 1) utilizing satellite-derived
reactive nitrogen dry deposition data products that can be used by decision-
makers to supplement the sparse direct surface flux measurements and 2) fill in
measurement gaps. Therefore, we have developed a Reactive Nitrogen Flux
Mapper (RNFM) component of the interactive Cloud-based Data Mapper
(CDM) for providing easy access of satellite-derived reactive nitrogen (defined
here as nitrogen dioxide (NO2) and ammonia (NH3)) dry deposition flux spatial
maps/data to decision-makers/stakeholders over North America. The RNFM
component of CDM has a Graphical User Interface (GUI) that allows users to
specify the geographical regions and time periods for computing the average
fluxes on the fly using an integrated cloud-based computing platform. The CDM
architecture is flexible and can be upgraded in the future to take advantage of
upstream satellite data directly on cloud platforms to provide results in near real-
time.

KEYWORDS

reactive nitrogen, deposition, satellite, RNFM, cloud-computing, CDM

Introduction

Atmospheric deposition is the process whereby gases and particles are removed from the
atmosphere and transferred to the earth’s surface. The main modes of transfer are wet
(through precipitation) and dry (through a diffusive transfer process at the surface)
deposition (Vet et al., 2014). The deposition of reactive nitrogen (defined here as
nitrogen dioxide (NO2) and ammonia (NH3)) represents an essential source of nutrients
to plants and a limiting element for growth in many ecosystems. However, when reactive
nitrogen is in excess it has harmful effects on terrestrial and aquatic ecosystems, including
soil acidification (Galloway et al., 2003), eutrophication (Bergstrom and Jansson, 2006) and
loss of biodiversity (Fenn et al., 2010; Simkin et al., 2016). Human activities (i.e., burning of
fossil fuels and production of nitrogen-based fertilizers) have doubled the reactive nitrogen
inputs to the environment with a proportional increase of atmospheric deposition on the
earth’s surface since the start of the 20th century (Fowler et al., 2013).
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FIGURE 1
Schematic of the process flow of the Reactive Nitrogen Flux Mapper.

FIGURE 2
Domain boundaries of RNFM.
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In light of its importance, comprehensive monitoring of reactive
nitrogen dry deposition flux is required to assess its ecological
impacts. Yet, obtaining direct monitoring of dry deposition fluxes
is limited as it is more challenging than wet deposition monitoring
(Wolff et al., 2010), thus, at present, none of the measurement
networks provide direct measurements of the former. The
measurement networks for reactive nitrogen dry deposition are
sparse in nature and lack the required spatial coverage. The
existing measurement networks provide dry deposition flux
estimates using the inferential method (which combines the
concentration measurements with modelled dry deposition
velocities; Wesely, 1989; Zhang et al., 2003), and can not be
spatially interpolated like those of wet deposition due to the
heterogeneity of dry deposition fields (Schwede and Lear, 2014).

On the contrary, satellite measurements of NO2 and NH3 with a
daily global coverage offer a valuable data source to fill the
measurement gaps and provide an opportunity to analyze the
reactive nitrogen dry deposition fluxes spatially using the
inferential method (Nowlan et al., 2014; Kharol et al., 2018).
However, the processing of large datasets from satellites or
models requires high-performance supercomputers that are not

readily available to most users. Thus, providing easy access to
this large data product to end-users (i.e., decision-makers and
stakeholders) remains challenging. Presently, there is not any
existing platform where decision-makers and stakeholders can
easily access the spatiotemporal satellite-derived reactive nitrogen
dry deposition flux information. The model or model-measurement
fusion annual maps are available through regional/federal agencies
(e.g., US EPA; https://www3.epa.gov/castnet/drydep.html),
however, they do not provide the flexibility to users for custom
selection (i.e., geographical region and time period) and
require >2 years to be produced. In recent years, commercial
cloud-computing platforms are becoming popular in the scientific
community and have become a valuable alternative for large data
processing and complex earth science model runs with its massive
computing power and data storage capability. For example, recently,
Amazon Web Services (AWS) cloud-computing platforms have
successfully been used to run the Goddard Earth Observing
System (GEOS)-Chem global 3-D chemical transport model
(Zhuang et al., 2020) at 50-km horizontal resolution.

In an attempt to fill this gap we have utilized a cloud-computing
platform for space-based earth observations. Here, we describe the

FIGURE 3
Popup that allows the user to define the search parameters and stylize the specified searched layer or clip the specified searched layer by Southwest/
Northeast Latitudes/Longitudes bounds that were right-clicked from the layer tree.
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newly developed Reactive Nitrogen Flux Mapper (RNFM)
component of the interactive Cloud-based Data Mapper (CDM)
with user-friendly features (such as custom selection of geographical
region and date range through the Graphical User Interface (GUI))
that provides easy access of satellite-derived reactive nitrogen dry
deposition fluxes to end-users.

Reactive nitrogen flux Mapper

The overall schematic of the processing flow describing the
RNFM is provided in Figure 1. The upstream preprocessed daily
reactive nitrogen dry deposition fluxes are currently computed
offline (as described in Appendix A, B) and uploaded to a cloud
computing platform together with NH3 and NO2 dry deposition
velocities and concentrations information. Statistical information
and pre-rendered files (i.e daily, monthly, yearly) are then processed,
and hosted on the cloud virtual machine (VM) using a Web Map
Service (WMS) server. Gridded averages of concentrations, dry
deposition velocities and fluxes (i.e., monthly, annual) are

calculated using the equations described in Appendix C on the
cloud virtual machine (VM). Using the RNFMGUI, users can search
for pre-rendered data and retrieve datasets hosted on the VM to be
displayed using the WMS on the interactive map as described in
Figure 1. TheWMS server on the cloud in tandem with our GUI will
dynamically load and display the pre-rendered datasets on an
interactive map. This allows users to zoom/scroll along the
interactive map while the dataset is dynamically loaded from the
WMS. In addition to that, the RNFMGUI provides custom selection
(i.e., date range and geographical region) flexibility to users where
they can select any date range during 2018-to-2020 and geographical
coordinates over North America to calculate the averages on the fly.
This process is shown in Figure 4. Even though the RNFM GUI
provides the flexibility to define a user-specified date range, we
recommend using at least a month-long date range selection as this
will significantly increase the flux signal compared to the noise in the
measurements.

There are two processing streams used for generating datasets
for the user through the WMS server on the cloud. The first is the
aforementioned pre-rendering of data into standard time-series

FIGURE 4
The layer tree of RNFM with different functions that can be performed on individual layers by right-clicking or selecting one.
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(i.e., daily and monthly files) where the intensive workload is already
done allowing for very quick viewing and loading of the datasets, and
the second being more custom dynamic searches for subsets of data

that have not already been rendered (pre-processed). An example of
the custom dynamic process flowwould be good if the client makes a
request to the cloud using the RNFM custom selection that has not

FIGURE 5
Example of clipped 3 year mean reactive nitrogen (Nr) dry deposition flux data for the period of 1/1/2018–12/31/2020 from Southwest to Northeast
bounding box.

FIGURE 6
An example of RNFM with the inputted search parameters and the resultant map of 3-year average reactive nitrogen dry deposition flux map for
1/1/2018 to 12/31/2020 over North America.

Frontiers in Environmental Science frontiersin.org05

Kharol et al. 10.3389/fenvs.2023.1172977

36

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1172977


already been pre-processed (i.e., the weighted average of data from
15 March 2018 to 31 July 2018). In this case, the algorithms on the
cloud are used to process and render the requested data in real time
that will then be displayed on the user’s local machine when
completed. Since the rendering needs to be done, the trade-off

for this is that it takes some time to complete before being
displayed on the client’s local machine. This means that for both
workflows all intensive work is already pre-done on the cloud or will
be done on the cloud. This provides a user-friendly way for users to
quickly view and analyze various complex datasets with minimal

FIGURE 7
Three-year average dry deposition flux map of NH3, NO2, and Nr (NH3+NO2) for 1/1/2018 to 12/31/2020 over North America.
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system requirements and performance. The RNFM application can
be accessed through https://atmoanalytics.com/rnfm.html.

Figure 2 shows the study area domain map of RNFM where
the points represent the latitude/longitude coordinates for which
samples were attempted on each day. This region is defined by the
GEM regional model output, but can be expanded depending on the
availability of model outputs as the satellite observations themselves
are global. Fill values (i.e., Nan) are assigned if good quality satellite
observations for a specific region are not available (e.g., due to cloud
cover). While the majority of data processing is currently performed
offline on supercomputers, there are some extra steps needed to
format this preprocessed data in such a way that it can be served via
the WMS server hosted on the cloud to the end-users.

Since satellite observations are typically not on a regular grid, a
Triangular Interpolation Network technique is used to format the
satellite data into a gridded raster format that also allows datasets to
be served to the end-users via the WMS from the cloud. Then these
gridded raster files are clipped by the border file (as shown above in
Figure 2), which is generated using a convex hull algorithm on all
sampled point data. Once these steps are complete, the raster files are
uploaded to the WMS server on the cloud and accessed from the
RNFM. These algorithms are already performed for standard time-
series, or are done on-the-fly from custom user searches on the cloud
as stated earlier.

In order to visualize the datasets (which are residing on the
cloud platform) on a user’s local machine, the user will first need to
specify the required inputs using the “Range” and “Dataset” tabs in
the search parameters as shown in Figure 3. Here the daily,
monthly, and yearly search parameters will display pre-
rendered datasets from the specified day/month/year, whereas
the custom search parameter will display datasets that will be
dynamically processed on the cloud for the specified date range.
After this, the user can specify the dataset (one selection at a time)
to view the surface concentration, dry deposition velocity, and dry
deposition flux for nitrogen dioxide and ammonia. Once these
parameters are specified, the user can search for the specified
dataset, with the option of providing a user-specified name for the
layer that will be displayed on the map. If the layer name is not
defined by the user, then a name will be generated automatically for
the layer based on their search parameters. Optional parameters
include displaying the layer with a custom color palette and
searching for data within a specified geographical region. These
optional parameters can also be changed later on for that layer as
the user sees fit.

After searching for a specified dataset through search parameters
(an example shown in Figure 3), the layer will be added to the layer
tree with user-specified or automatically generated layer name as
shown in Figure 4. The layer tree is a powerful tool that allows users

FIGURE 8
Seasonal maps of reactive nitrogen dry deposition fluxes for winter (December-January-February), spring (March-April-May), summer (June-July-
August) and fall (September-October-November) over North America for the period of December 2019 to November 2020.
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to work with multiple datasets on a single map. The layer tree also
allows the users to select their choice of basemap, topographical
layer, state/province boundaries to be displayed together with the
selected datasets map. In addition to that, the interactive layer tree
allows users to add/remove layers to the map by checking/

unchecking their corresponding check box. Checked layers are
then displayed in order from the bottom to top where the
bottom layers of the layer tree overlay the layers above it on the
map. The base maps at the top of the layer tree are rendered first on
the map and are overlaid by the following checked layers. Users can

FIGURE 9
Average dry deposition flux map of NH3, NO2, and Nr (NH3+NO2) for 3-year period (1/1/2018 to 12/31/2020) over Alberta, Canada.
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also drag and drop layers on the layer tree to new positions, which
will affect the order they are displayed on the map.

Since layers have their own unique features, various functions
can be performed on individual layers. The user has multiple options
to customize the layer as they see fit including changing the layer’s
style, opacity and clippings by selecting (or “right-clicking”) a layer
in the layer tree. The general statistics for that given layer (i.e., min,
max, average, percentage of points affected by cloud coverage) will
be displayed by selecting a layer (as shown in a blue highlight when
selected), and provide the flexibility to user’s to modify the selected
layer throughmultiple tools. These tools are selectable on the top left
corner of the interactive map and allow the user to clip the layer by
drawing rectangles or their own custom polygons as shown in
Figure 5, and also provide an option to change the opacity of the
layer using the opacity function.

Figure 6 shows the 3-year mean (2018–2020) reactive nitrogen
dry deposition flux map generated by RNFM in real time using the
custom range selection and preprocessed data files uploaded on the
cloud. Similar to reactive nitrogen dry deposition flux map, users
can generate the average map of any datasets (e.g., reactive
nitrogen concentration, NH3 and NO2 concentration etc.)
defined in search parameters under the datasets option for their
choice of custom date range and geographical region. The selection
of a custom date range is one of the key features of RNFM which
provides more flexibility to users to select any time-period to
generate the average maps instead of pre-defined averages within
the RNFM domain region.

Application

To illustrate RNFM’s ability to readily provide the reactive
nitrogen flux information for interpretation we have applied it to
example case studies. An overall example is provided in Figure 7
showing 3-year average maps of NH3, NO2 and reactive nitrogen
(Nr (NH3+NO2)) dry deposition fluxes across North America that
were generated using the RNFM’s custom range on-the-fly options.
The individual spatial distribution maps of NH3 and NO2 dry
deposition fluxes in Figure 7 shows that the elevated NH3 dry
deposition generally coincides with the agricultural regions,
whereas the NO2 dry deposition hotspots are mainly located over
the cities and industrial regions across North America (Kharol et al.,
2018). The combined spatial map of reactive nitrogen dry deposition
flux provides cumulative information of the reactive nitrogen
deposition from both atmospheric species.

Another example application is the use of RNFM to investigate
the changes in the reactive nitrogen dry deposition fluxes by season.
Figure 8 shows the seasonal maps of reactive nitrogen dry deposition
fluxes for winter (December-January-February), spring (March-
April-May), summer (June-July-August) and fall (September-
October-November) over North America for the period of
December 2019 to November 2020. The NH3 and NO2 emissions
and lifetime (McLinden et al., 2014; Shephard et al., 2020) as well as
their dry deposition velocities (Zhang et al., 2003) vary by season
and affect the ambient concentrations and its deposition. It is
evident from Figure 8 that the reactive nitrogen deposition from
NH3 is greater during the growing season (i.e., spring and summer)
over the agricultural regions (Shephard et al., 2020), whereas

deposition from NO2 is greater during fall and winter seasons in
urban/industrial regions (Nowlan et al., 2014; Kharol et al., 2018).

As previously noted, the RNFM also provides an opportunity for
users to zoom into a region of interest and visualize/analyze the
reactive nitrogen dry deposition in greater detail for that area.

To demonstrate this, here we have clipped the 3-year average of
NH3, NO2 and Nr dry deposition fluxes over the province of Alberta,
Canada as shown in Figure 9. The province of Alberta, Canada is a
good example as it has separated source regions of NH3 and NO2. As
seen in Figure 9 the NO2 dry deposition hotspots are mostly located
near/over the Athabasca oil sands region (Latitude: 57.02 N,
Longitude: 111.65 W), urban and industrial regions. Also shown
in the figure are the large NH3 hotspots in and around Lethbridge
(Latitude: 49.69 N, Longitude: 112.84 W), which has many
concentrated animal feeding operations (CAFOs)) and the main
agricultural regions of the province. These example applications
demonstrate how easily RNFM can make new research results
available to make informed decisions on mitigation strategies for
environmental protection in a timely manner.

Summary

The RNFM component of interactive CDM allows users to
obtain easy access to the new satellite-derived dry deposition of
reactive nitrogen fromNO2 and NH3 using a user-friendly GUI. The
RNFM component provides researchers, stakeholders, and other
interested parties with access to new scientific research information
on the cumulative effects of reactive nitrogen in land and water
ecosystems that can lead to soil acidification, biodiversity loss, and
eutrophication (e.g., algal blooms). The CDM is a powerful cloud-
based platform application that generates and displays large
satellite-derived datasets alleviating numerous hurdles that would
otherwise make it much more difficult, time consuming, and
resource demanding (storage and computational burden) for
users to work with in a meaningful way. The RNFM component
of CDM helps overcome the scarcity of ground-based reactive
nitrogen dry deposition flux measurements by providing
additional new satellite-based information that decision-makers
can use to make more informed and timely decisions on
mitigation strategies for environmental protection. This CDM
architecture can also be enhanced in the future to take advantage
of upstream near real time observations directly available on cloud
computing platforms.
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Appendix A:

Datasets

Ammonia (NH3)
We use the NASA/NOAA SNPP Cross-Track Infrared Sounder

Satellite (CrIS, v1.6.3) retrieved level-3 gridded surface NH3

concentrations obtained from the CrIS Fast Physical Retrieval
algorithm (CFPR), which is described in detail by Shephard and
Cady-Pereira (2015), and with updates in Shephard et al. (2020) and
White et al. (2023) for the period of 2018–2020 over North America.
CrIS is an infrared nadir pointing instrument in a sun-synchronous
orbit (824 km) with a mean local daytime overpass time of 13:30,
and a mean local nighttime overpass time of 1:30 in the descending
node. Here, we only used daytime (i.e., 13:30 LST) satellite
observations and filtered the data for clouds.

Nitrogen dioxide (NO2)
Unlike NH3, the main retrieved parameter of NO2 from the

Sentinel-5P (S5P) TROPOspheric Monitoring Instrument
(TROPOMI) version 2 (S5P-PAL) data is a total column values
that then must be converted to a surface concentration values in a
two-step process that utilizes output from the Environment and
Climate Change Canada (ECCC) Global Environmental Multi-scale
- Modelling Air quality and Chemistry (GEM-MACH) regional air
quality model. First, the tropospheric vertical column densities
(VCDs) are improved for North American monitoring using the
approach described in Griffin et al. (2019), and then the VCDs are
converted to surface concentrations following the approach
described in McLinden et al. (2014) by scaling the satellite
derived VCDs by the ratio of the model surface concentration to
model VCD:

C � Vt satellite ×
C

Vt
( )

model

(1)

Where C is the surface concentration (ppb), and Vt is the
tropospheric VCD. For the model profile and surface
concentrations, the GEM-MACH operational model is utilized
(Moran et al., 2010; Pendlebury et al., 2018) with a 10 × 10 km2 grid
cell size for the North American domain. The operational forecast
makes use of 2013 emissions information (Zhang et al., 2018). For
the conversion we select the daily model output with the closest
coincidence to the observation. Since the operational
GEM-MACH model is missing sources in the free troposphere,
such as lightning and aircraft, a monthly mean GEOS-Chem free
tropospheric VCDs (Bey et al., 2001) are added to the
GEM-MACH VCDs. These correspond to adjustments of ~0.3-
1e15 molec/cm2.

TROPOMI is a nadir-viewing spectrometer on board the S5P
satellite, launched on 13 October 2017. TROPOMI is in a sun-
synchronous orbit with an overpass time of 13:30 LST and provides
near-daily global coverage of NO2 with a ground spatial resolution of
3.5 × 5.5 km2. More details about TROPOMI are described in Griffin
et al. (2019). Here, we only use the TROPOMI observations with
“quality assurance value” (qa_value) ≥ 0.75 (the recommended pixel
filter, https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-
Nitrogen-Dioxide-Level-2-Product-Readme-File), which remove the

less accurate observations (i.e., cloud-covered observations, snow/ice
covered observations, errors, and problematic retrievals).

Appendix B:

DRY deposition flux calculation

The daily reactive nitrogen dry depositionfluxes are computed using
an inferential method, which combines modeled dry deposition
velocities according to the resistance analogy (Wesely, 1989; Zhang
et al., 2003) and satellite-derived near-surface observations of NH3 and
NO2 over NorthAmerica between 2018–2020. The deposition velocity is
a function of the surface type and properties, and meteorological
parameters. Here, we calculated the dry deposition velocities of NO2

and NH3 according to Zhang et al. (2003) approach and used the
meteorological inputs produced by the Environment and Climate
Change Canada’s Global Environmental Multiscale Model (GEM)
together with MODIS land-use/land-cover and leaf area index (LAI)
inputs. More details on this approach is described in Kharol et al. (2018).

The dry deposition fluxes are calculated on a 15 km × 15 km GEM
grid. The satellite-derived surface concentration of NH3 and NO2 are
first calculated on 0.1 × 0.1 (~10 × 10 km) grid and regridded to the
GEM grid (i.e., 15 km × 15 km). The Gaussian distance weighting from
the centre of the grid is used to place the averaged surface NH3

concentrations on a 0.1 × 0.1 grid. The total sum of the weights
also provides information on howwell the area in the grid is sampled by
the satellite observations. For example, low total weight in a grid
indicates that a grid is not sampled well for a given day (e.g., due to
cloud cover), where a high weight total indicates the grid was well
sampled by the satellite observations (e.g., under clear-sky atmospheric
conditions). Missing days are taken care of in the flux calculations by
assigning a weight value of 0 for days with no observations. These
weights are applied to the weighted average calculations in the scene as
described in Appendix C. To easily manage missing observations in the
gridding and averaging of TROPOMI measurements we also assign
weights to the NO2 surface concentrations of either 0 or 1, where 0
represents no NO2 observations available, and 1 represents available
NO2 observations. Similar to the CrIS NH3, these weights are applied to
the weighted average calculation described in Appendix C.

Appendix C:

The averages of concentrations, dry deposition velocities and dry
deposition fluxes are calculated on the cloud VM as follows:

FluxAverage Fsat
wavg( ) � ∑n

d�1F
sat

d × Weightd∑n
d�1Weightd

� ∑n
d�1 Csat

d × Vd( ) × Weightd∑n
d�1Weightd

(2)

ConcentrationAverage Csat
wavg( ) � ∑n

d�1C
sat

d × Weightd∑n
d�1Weightd

(3)

DepositionVelocityAverage Vwavg( ) � ∑n
d�1Vd × Weightd∑n

d�1Weightd
(4)

Where,
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Fsat
d = Satellite-derived daily dry deposition flux of reactive

nitrogen from NH3 or NO2

Csat
d = Satellite-derived daily surface concentration of NH3 or NO2

Vd = Daily dry deposition velocity of NH3 or NO2

Weightd = Weight assigned to the satellite-derived surface
concentration of NH3 or NO2

d = number of days (i.e., 1,2,3. . ..n)

The reactive nitrogen concentrations and dry deposition fluxes
of NH3+NO2 is calculated as follows:

Csat
wavg( )

NH3+NO2
� Csat

wavg( )
NH3

+ Csat
wavg( )

NO2
(5)

Fsat
wavg( )

NH3+NO2
� Fsat

wavg( )
NH3

+ Fsat
wavg( )

NO2
(6)

Where.

(Csat
wavg)NH3 = Satellite-derived average concentration

of NH3

(Csat
wavg)NO2 = Satellite-derived average concentration

of NO2

(Fsat
wavg)NH3 = Satellite-derived average dry deposition flux of

reactive nitrogen from NH3

(Fsat
wavg)NO2 = Satellite-derived average dry deposition flux of

reactive nitrogen from NO2
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Vegetation coverage reflects the degree of environmental degradation. Timely

and effective monitoring of vegetation conditions is the basis for promoting

vegetation protection and improving the ecological environment of mining

areas. Exploring vegetation coverage extraction methods and selecting the

optimal vegetation index in mining areas can provide scientific reference for

estimating vegetation coverage based on vegetation index in mining areas.

Uncrewed aerial vehicles (UAVs) are widely used because of their fast real-time

performance, high spatial resolution, and easy accessibility. In this study, the

performances of nine visible vegetation indices and two threshold segmentation

methods for extracting vegetation coverage in a post-gold mining area in the

Qinling Mountains were comprehensively compared using visible spectrum UAV

images. Of the nine indices, the excess green index (EXG) and visible-band

difference vegetation index (VDVI) were the most effective in discriminating

between vegetation and non-vegetation by visual interpretation. In addition, the

accuracy of the bimodal histogram threshold method in extracting vegetation

coverage was higher than that of Otsu’s threshold method. The bimodal

histogram threshold method combined with EXG yielded optimal extraction

results. Based on optimal methods, the total percentages of fractional vegetation

coverage in 2019, 2020, and 2021 were 31.47%, 34.08%, and 42.77%,

respectively, indicating that the vegetation in the mining area improved. These

results provide valuable guidance for extracting vegetation information and

evaluating vegetation restoration in mining areas.

KEYWORDS

remote sensing, uncrewed aerial vehicle, vegetation coverage, eco-monitoring, post-
mining area
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1 Introduction

Vegetation restoration and reconstruction are key components of

ecological restoration in mining areas and are effective ways to

improve the quality of the local ecological environment (Li et al.,

2019). Therefore, obtaining vegetation information quickly and

accurately in mining areas to evaluate the status of local ecological

restoration is an urgent issue. As an important indicator of vegetation

status, fractional vegetation coverage (FVC) is defined as the

percentage ratio of the vertical projection area of vegetation

(including leaves, stems, and branches) on the ground in a

statistical area (Jia et al., 2015). FVC is not only the main indicator

of regional environmental status and quality assessment but also an

important part of terrestrial ecosystem research. Thus, accurate and

rapid extraction of vegetation coverage requires timely monitoring of

vegetation change, which is crucial for protecting biodiversity and

promoting economic development.

Currently, remote sensing observations and land surface

measurements are primarily used to monitor FVC (Lu et al.,

2020). As a low-cost and highly efficient monitoring technology,

remote sensing can provide objective and accurate environmental

monitoring for large-scale mining areas. With the rapid

development of satellite remote sensing technologies, many

vegetation products, such as those derived from NOAA/AVHRR

(Boyd et al., 2002), TM/Landsat (Voorde et al., 2008; Leng et al.,

2019), and Terra & Aqua/MODIS (Song et al., 2017), have

facilitated large-scale monitoring of vegetation coverage.

However, for small-scale areas, such as mining areas with

complex topography and heterogeneous habitats, monitoring

FVC using satellite remote sensing technologies is challenging

because of their relatively coarse spatial resolution and long

revisit period. Furthermore, although in situ measurements have

high accuracy, they are usually time consuming and labor intensive,

rendering them unsuitable for real-time and long-term monitoring.

Notably, uncrewed aerial vehicles (UAVs) have the advantages of

strong real-time performance, high spatial resolution, and easy

access; thus, they have attracted wide attention as a novel and

improved method to extract vegetation coverage with high

efficiency and precision on small spatial scales in agriculture,

forestry, surveying, mapping, and other related fields (Watanabe

et al., 2017; Schofield et al., 2019; Ana et al., 2021; Guo et al., 2021;

Park et al., 2022; Mishra et al., 2023).

Compared with multispectral, hyperspectral, and other sensors,

visible light sensors are better options for extracting vegetation

coverage via UAV technology owing to their outstanding

advantages, such as low cost and are less affected by weather and

light (Coy et al., 2016; Jay et al., 2019; Ren et al., 2021). The

vegetation index can effectively reflect vegetation vitality and

information and is a commonly used method for extracting

vegetation coverage (Woebbecke et al., 1995; Hague et al., 2006;

Rasmussen et al., 2016; Kim et al., 2018; Geng et al., 2022). Various

vegetation indices have been developed based on the spectral

characteristics of green vegetation in the visible light band, such

as the green leaf index (Shane et al., 2021), green-red vegetation

index (Zhang et al., 2019), and difference-enhanced vegetation
Frontiers in Ecology and Evolution 0245
index (Zhou et al., 2021). An increasing number of studies have

shown that vegetation coverage can be extracted using a vegetation

index derived from UAV-visible images. Therefore, the limited

wavelength information of UAV visible-light images must be used

to construct a universally applicable and highly accurate vegetation

index and effectively extract green vegetation information. Another

key aspect of vegetation coverage extraction by vegetation indices is

the determination of a suitable threshold, which can be based on

threshold segmentation methods (Akash et al., 2019). However, few

studies have used this method to determine the thresholds in

mining areas, and the effectiveness of vegetation indices in

mountainous mining areas has not yet been evaluated.

The Qinling Mountains are an important ecological security

barrier in China and provide many ecosystem services, such as

climate regulation, water yield, carbon sequestration, and

biodiversity preservation (Fu et al., 2022). Rich gold mineral

resources in the Qinling Mountains provide a good foundation for

mining activities; however, long-term mining has resulted in serious

vegetation destruction (Li et al., 2022), which has plagued sustainable

local development (Huo et al., 2022). Therefore, a rapid and accurate

method for acquisition of mine vegetation cover is required. Currently,

research on vegetation coverage extraction based on visible vegetation

index focuses mostly on cities, forests, grasslands, and farmlands with

well-growing plants (Geng et al., 2022). However, an optimal

vegetation index for extracting vegetation coverage suitable for

Qinling gold mining areas with sparse vegetation and complex

terrain has not yet been determined. Furthermore, previous studies

focused on extractionmethods for the current vegetation situation and

lacked long-term monitoring. Therefore, an abandoned gold mining

area in the Qinling Mountains was selected as the research area, and

high spatial resolution visible spectrum images obtained by a UAV

were used as the data source. The objectives of this study were to

(1) compare the performances of nine visible light vegetation indices

(RGRI, BGRI, EXG, EXGR, NGRDI, NGBDI, RGBVI, VDVI, and

VEG) and two threshold segmentation methods (bimodal histogram

method and Otsu’s threshold method) in the extraction of vegetation

coverage information; (2) select the optimal combination of the

vegetation index and threshold segmentation method with high

extraction accuracy and wide applicability; and (3) analyze the

interannual variation of FVC in the study area using results obtained

by the optimal combination. This study provides scientific guidance for

rapidly and accurately extracting vegetation coverage and offers

technical support for evaluating vegetation restoration inmining areas.
2 Materials and methods

2.1 Study area

The study area is located in the southeastern part of Shangluo

City, Shaanxi Province, China (Figure 1). It is between 108°34′20′′–
111°1′25′′ E and 33°2′30′′–34°24′40′′ N. The study area is located

in the Qinling Mountains and has a warm, temperate climate. The

mean annual temperature is 12.2°C, the mean annual precipitation

is 804.8 mm, and the mean annual sunshine duration is 1947.4 h.
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The soil type is yellow cinnamon. It is high in the northwest and low

in the southeast. A gold production company in the research area

began operations in 1999 and ceased production after a dam failure

in 2006. Even after several years, bare slag still poses a serious threat

to human health, and this research area has been listed as a key area

for heavy metal prevention and control (Chen et al., 2022).
2.2 UAV image acquisition and processing

Field and UAV aerial surveys were conducted in August 2019,

2020, and 2021 to monitor the vegetation coverage at the research

site in the post-mining area. The UAV flight test was conducted

using a DJI Phantom 4 Pro on clear and cloudless days, and RGB-

visible images were acquired. The flight parameters are listed in

Table 1. The automatic cruise mode was used for route planning

during the flight. The flight area and route were designed prior to

conducting the experiment. The flight was 0.68 km2. Orthoimages

of the study area are shown in Figure 1B.
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2.3 Calculation of visible light
vegetation index

The basic principle behind the construction of a vegetation

index is that vegetation absorbs and reflects light of different

wavelengths. The corresponding vegetation index can be obtained

by combining different bands of remote sensing images to enhance

vegetation (Guilherme et al., 2018). The visible vegetation index is

mainly constructed based on the red, green, and blue bands of the

image because healthy green vegetation has a strong reflection in the

green band and weak reflections in the red and blue bands. The nine

commonly used visible light vegetation indices are listed in Table 2.
2.4 Vegetation information extraction
based on threshold

The vegetation index threshold method is effective for

discriminating between vegetation and non-vegetation
TABLE 1 Flight setting of the UAV and image parameters.

Flight setting Parameter Acquired image content Parameter

Flight speed 14.1 m/s Number of original images 300+

Photo interval 2 s Picture resolution 72 dpi

Number of routes 13 Graphic form JPEG

Number of waypoints 26 Shutter speed 1/1600

Course overlap rate 80% ISO 800

Side overlap rate 60%

Flight altitude 140 m
BA

FIGURE 1

(A) Geographical location and (B) UAV image with a spatial resolution of 0.0436 m of the study area.
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information in an image. Three steps are required to extract the

vegetation coverage using the visible light vegetation index. The first

step is to calculate the vegetation index, the second is to set an

appropriate threshold, and the final is to separate the vegetation and

non-vegetation parts. The accuracy of vegetation coverage

extraction largely depends on threshold selection (Wang et al.,

2015). Two commonly used methods, the bimodal histogram

threshold method and Otsu’s threshold method, were applied to

determine the threshold for each vegetation index.

2.4.1 Bimodal histogram method
A bimodal histogram is an image with two obvious peaks in a

gray histogram (Zhou et al., 2021). These two wave peaks

correspond to the internal and external target points. The wave

trough between the two wave peaks corresponded to the target

point near the edge of the object. Typically, the value at the wave

trough is selected as the threshold. The calculation process of the

bimodal histogram used in this study is as follows. (1) Calculate the

average gray value (avg) and standard deviation of the pixels.

(2) Considering the average pixel value as the dividing point, find

the positions of the maximum values of the left (small peak) and

right (large peak) parts. (3) If the two peak positions are close

(within the standard deviation range), then one of the two peaks of

the histogram is very low; hence, another low peak position must be

found; otherwise, proceed to step (7). (4) Determine the position of

the pixel gray median point (midpoint). (5) If midpoints>avg, then

the small peak is on the left side of the large peak (lower gray level);

otherwise, the small peak is on the right side of the large peak

(higher gray level), and the position of the dividing point should be

adjusted accordingly. (6) Re-find the positions of the large and small

peaks. (7) The wave trough of the two peak positions is considered

the required threshold (Liang, 2002).
2.4.2 Otsu’s threshold method
Otsu’s threshold method, also known as the maximum

between-cluster variance method, is a global threshold selection

method (Otsu, 2007). This method divides an image into

background and target images based on a threshold. When the

optimal threshold is considered, the variance between the
Frontiers in Ecology and Evolution 0447
background and target and the difference between the two parts

of the image are the largest; that is, the optimal threshold is

determined based on the maximum between-cluster variance. The

calculation process of Otsu’s method is as follows. (1) Identify the

highest gray level in the image. (2) Take each gray level as a

threshold. (3) Calculate the number of pixels and the average

value of the two categories segmented by the threshold.

(4) Calculate the variance between the two clusters. (5) Determine

the threshold of the maximum variance (Xu et al., 2022).
2.5 Extraction accuracy evaluation

Accuracy, Precision, and Recall were calculated as follows to

evaluate the classification accuracy (Shukla and Jain, 2020):

Accuracy =
TP + TN

TP + TN + FP + FN
=
TP + TN
P + N

Presicion =
TP

TP + FP

Recall =
TP

TP + FN

where TP, which stands for “true positive,” is the object that is correctly

classified as vegetation among all the extracted objects; TN, which

stands for “true negative,” is the object that is correctly classified as non-

vegetation among all the extracted objects; FP, which stands for “false

positive,” is the object that is misclassified as vegetation among all

extracted objects; and FN,which stands for “false negative,” is the object

that is misclassified as non-vegetation among all the extracted objects.
2.6 Data analysis

The UAV images were converted into orthoimages using DJI

Terra v.3.3 software developed by DJI (Shenzhen, China).

Supervised classification, calculation of vegetation indices,

threshold segmentation, and extraction of vegetation coverage

were performed using ENVI 5.3 software.
TABLE 2 Nine commonly used visible light vegetation indices considered in this study and the calculation formulas based on the visible spectrum.

Visible vegetation index Full name Calculation formula Reference

RGRI Red–green ratio index R/G (Verrelst et al., 2008)

BGRI Blue–green ratio index B/G (Romina et al., 2010)

EXG Excess green index 2g−r−b (Kim et al., 2018)

EXGR Excess green minus red index EXG−1.4r−g (Sun et al., 2014)

NGRDI Normalized green–red difference index (G−R)/(G+R) (Gitelson et al., 2002)

NGBDI Normalized green–blue difference index (G−B)/(G+B) (Hunt et al., 2005)

RGBVI Red–green–blue vegetation index (G2−B×R)/(G2+B×R) (Juliane et al., 2015)

VDVI Visible-band difference vegetation index (2G−R−B)/(2G+R+B) (Wang et al., 2015)

VEG Vegetative index g/r0.67b0.33 (Geng et al., 2022)
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3 Results

3.1 Calculation results of vegetation index

3.1.1 Visual interpretation and
supervision classification

The performance of the visible vegetation indices in extracting

vegetation was evaluated by comparison with the results of the

maximum likelihood classification method (Figure 2). Fifty regions

of interest (ROIs) with non-vegetation and fifty ROIs with

vegetation were uniformly selected to verify the classification

accuracy. The overall accuracies of the typical and validation

quadrats were 99.99% and 99.39%, respectively.

3.1.2 Vegetation index calculation results
The vegetation indices derived from the gray image of a typical

quadrat are shown in Figure 3. Most visible light vegetation indices

can be used to effectively distinguish vegetation from non-

vegetation information; however, the extraction effects are

different. Some vegetation indices, such as EXG, EXGR, RGBVI,

VEG, and VDVI, can clearly discriminate between vegetation and

non-vegetation areas; however, BGRI, RGRI, NGBDI, and NGRDI

cannot clearly distinguish between the two and resulted in some

misclassifications, indicating poor extraction performance.

Furthermore, to analyze the pixel value ranges of vegetation and
Frontiers in Ecology and Evolution 0548
non-vegetation in the gray image of each band and vegetation

index, 75 representative ROIs were randomly selected to count the

pixel eigenvalues of each visible band and vegetation index

(Table 3). The results indicated that the reflectance in the green

band of the vegetation was significantly higher than that of the non-

vegetation. In the BGRI, RGRI, and NGRDI gray images, the pixel

values of vegetation and non-vegetation overlapped over a large

range; therefore, vegetation and non-vegetation areas overlapped.

In addition, the calculation formulas for RGRI, NGBDI, and

NGRDI only used blue + green or red + green bands, indicating

that the red, green, and blue bands should be combined when

calculating the visible light vegetation index.
3.1.3 Threshold segmentation and vegetation
index selection

The bimodal histogram threshold and Otsu’s threshold

methods were employed to determine the threshold of each

visible light vegetation index grey image. The vegetation and non-

vegetation areas were discriminated based on the thresholds, and

the extraction accuracy was verified by comparison with the

supervised classification results. The threshold segmentation

results are shown in Figures 4, 5. By jointly viewing the

orthoimages and supervised classification results (Figure 2A1,

A2), we found that the extraction results of the bimodal

histogram threshold method had fewer misclassifications, and the
B2

A1 B1

A2

FIGURE 2

Original images of (A1) typical and (B1) validation quadrats and classification results of the (A2) typical and (B2) verification quadrats.
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segmentation effect was obviously better than that of Otsu’s

threshold method. In the segmentation results of the bimodal

histogram threshold method, RGRI, EXGR, NGRDI, and VEG

misclassified vegetation as non-vegetation, whereas BGRI

and EXG misclassified non-vegetation as non-vegetation,

indicating relatively poor extraction accuracy. The quantitative

accuracy must be evaluated to accurately evaluate the effects of

the segmentation results. The Accuracy, Precision and Recall of

the threshold segmentation results were calculated based on the

maximum likelihood classification results (Table 4). Overall, the

classification accuracy of the bimodal histogram method was higher

than that of Otsu’s threshold method. Among the visible light

vegetation indices, EXG, based on the bimodal histogram method,

had the highest classification accuracy, with the Accuracy was

98.264%, Precision was 99. 811% and 97.572% in vegetation and

non-vegetation, and Recall was 99.913% and 94.847% in vegetation

and non-vegetation.
3.2 Suitability performance test

The reliability and applicability of EXG, VDVI, and RGBVI for

extracting vegetation coverage were verified based on the supervised

classification results of the verification quadrat. The vegetation

extracted based on EXG, VDVI, RGBVI, and the bimodal
Frontiers in Ecology and Evolution 0649
histogram threshold method (the thresholds were 0.047603,

0.041258, and 0.075669, respectively) are shown in Figure 6. The

results of vegetation coverage extraction were compared with those

of the maximum likelihood classification (Table 5). EXG combined

with the bimodal histogrammethod still had the highest accuracy in

extracting vegetation coverage, followed by VDVI and RGBVI,

suggesting that EXG had the highest precision in extracting

vegetation information and could be used to estimate vegetation

coverage in mining areas.
3.3 Vegetation coverage assessment

According to the above results, EXG combined with the

bimodal histogram threshold method was used to estimate

vegetation coverage in 2019, 2020, and 2021 (the thresholds were

0.07848, 0.122353, and 0.125108, respectively). The extraction

results were statistically classified as follows: vegetation coverage

of 0–0.05 was considered a zero-coverage area, 0.05–0.2 was a low

vegetation coverage area, 0.2–0.4 was a low–moderate vegetation

coverage area, 0.4–0.6 was a moderate vegetation coverage area,

0.6–0.8 was a moderate–high vegetation coverage area, and 0.8–1

was a high vegetation coverage area (Zhao et al., 2022). Figure 7

shows that EXG can clearly discriminate between vegetation and

non-vegetation areas. From 2019 to 2021, the non-vegetation area
FIGURE 3

Calculation results of nine vegetation indices for the typical quadrat.
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FIGURE 4

Segmentation results of the bimodal histogram threshold method.
TABLE 3 Differences in pixel values of visible bands and vegetation indices of the typical quadrat.

Indicators

Vegetation Non-vegetation
ANOVA
P valueMin Max Mean Standard

deviation Min Max Mean Standard
deviation

Red band 30.00 194.00 96.57 23.89 68.00 254.00 177.23 43.07 0.054

Green band 66.00 211.00 132.26 20.03 78.00 249.00 176.73 38.20 0.033

Blue band 27.00 163.00 84.02 17.51 86.00 249.00 174.07 29.24 0.048

BGRI 0.32 0.85 0.63 0.08 0.85 1.20 1.00 0.07 0.007

RGRI 0.43 0.96 0.73 0.10 0.86 1.13 1.00 0.04 0.031

EXG 0.07 0.70 0.28 0.10 −0.03 0.05 0.00 0.01 0.001

EXGR −0.76 −0.22 −0.57 0.09 −0.86 −0.73 −0.80 0.02 0.012

NGRDI 0.02 0.40 0.16 0.07 −0.06 0.08 0.00 0.02 0.151

NGBDI 0.08 0.51 0.23 0.06 −0.09 0.08 0.00 0.04 0.023

RGBVI 0.11 0.75 0.37 0.11 −0.05 0.07 0.00 0.02 0.017

VDVI 0.05 0.45 0.19 0.06 −0.03 0.03 0.00 0.01 0.001

VEG 1.10 2.51 1.47 0.20 0.95 1.06 1.01 0.01 0.002
F
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FIGURE 5

Segmentation results of Otsu’s threshold method.
TABLE 4 Accuracy evaluation of the typical quadrat.

Segmentation Accuracy (%)
Precision (%) Recall (%)

Vegetation Non-vegetation Vegetation Non-vegetation

BGRI
Otsu’s 92.741 99.330 89.790 99.667 81.332

Bimodal histogram 96.275 96.233 96.294 98.278 0.920

EXG
Otsu’s 81.656 100.000 73.441 99.999 62.772

Bimodal histogram 98.264 99.811 97.572 99.913 94.847

EXGR
Otsu’s 75.787 99.998 64.956 99.998 56.086

Bimodal histogram 82.903 99.999 75.315 99.998 66.471

MGRVI
Otsu’s 75.024 99.996 64.967 99.997 56.106

Bimodal histogram 82.524 99.811 74.389 99.886 63.573

NGBDI
Otsu’s 91.216 99.627 87.449 99.809 78.045

Bimodal histogram 96.421 95.192 96.979 97.828 93.384

NGRDI
Otsu’s 75.184 99.997 64.006 99.998 55.439

Bimodal histogram 80.634 99.924 71.996 99.953 61.507

(Continued)
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TABLE 4 Continued

Segmentation Accuracy (%)
Precision (%) Recall (%)

Vegetation Non-vegetation Vegetation Non-vegetation

RGBVI
Otsu’s 84.722 99.999 77.880 99.999 66.936

Bimodal histogram 97.824 99.795 96.941 99.905 93.595

RGRI
Otsu’s 76.536 99.993 66.031 99.995 56.864

Bimodal histogram 81.725 99.866 73.602 99.918 62.882

VDVI
Otsu’s 83.005 99.999 75.395 99.999 64.539

Bimodal histogram 97.993 99.895 97.141 99.952 93.994

VEG
Otsu’s 77.195 99.997 66.982 99.996 57.560

Bimodal histogram 91.142 99.999 87.175 99.999 77.737
FIGURE 6

Verification results of the verification quadrat.
TABLE 5 Accuracy evaluation of the verification quadrat.

Segmentation Accuracy (%)
Precision (%) Recall (%)

Vegetation Non-vegetation Vegetation Vegetation

EXG 95.073 99.967 91.114 99.989 77.046

RGBVI 91.421 99.999 88.861 99.999 72.816

VDVI 93.107 99.928 91.072 99.976 76.957
B C DA

FIGURE 7

Estimated results of vegetation coverage based on EXG combined with the bimodal histogram threshold method in (A) 2019, (B) 2020, and (C) 2021.
(D) Inter-annual variation of vegetation coverage from 2019 to 2021.

https://doi.org/10.3389/fevo.2023.1171358
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chen et al. 10.3389/fevo.2023.1171358
decreased, and the proportion of moderate–high and high

vegetation coverage areas increased significantly. The average

FVC values in 2019, 2020, and 2021 were 31.47%, 34.08%, and

42.77%, respectively, indicating that the FVC in the mining area

increased. The results suggest that the effect of vegetation

restoration was remarkable, and the quality of the ecological

environment improved. However, most areas in the post-mining

area had low, low–moderate, and moderate vegetation coverage,

and vegetation restoration requires further strengthening.
4 Discussion

4.1 Extraction accuracy of
vegetation coverage

The accuracy of vegetation coverage extraction was related to

both the vegetation index and threshold segmentation method. In

this study, EXG exhibited the highest extraction accuracy, followed

by VDVI and RGBVI, which is consistent with the results of Wang

et al. (2015) and Chen and Deng (2019). The calculation formulas

for EXG, VDVI, and RGNVI show the reflectance characteristics of

vegetation in the visible bands, which effectively increase the

sensitivity of vegetation to green bands and make full use of the

information in the red, green, and blue bands. Currently, the

bimodal histogram threshold and Otsu’s threshold methods are

widely used for threshold segmentation. In this study, the results of

the threshold methods for vegetation coverage extraction suggested

that the accuracy of the bimodal histogram method was

significantly better than that of Otsu’s threshold method

(Figure 5), reaffirming the results of Zhao et al. (2019). Using the

bimodal histogram method, the accuracies of RGRI, EXGR, and
Frontiers in Ecology and Evolution 1053
NGRDI were relatively low, which may be related to the histogram

characteristics. As shown in the histogram of each vegetation index

(Figure 8), EXG, VDVI, and RGBVI showed similar changes and

obvious bimodal characteristics, whereas the histograms of RGRI,

EXGR, and NGRDI had no obvious bimodal characteristics.

Therefore, the accuracy of vegetation coverage extraction

varied greatly.
4.2 Characteristics of UAV visible
vegetation indices

Satellite remote sensing images have advantages, such as large

image areas and multiple bands (Xu et al., 2020; Guo and Guo,

2021). However, owing to the relatively coarse spatial resolution, the

interpretation accuracy is relatively limited, and the temporal

resolution often cannot meet the real-time requirements of

vegetation monitoring on a small spatial scale, such as in mining

areas. With the popularization of UAV technology, UAV images

have compensated for the deficiencies in satellite remote sensing

images in terms of spatial and temporal resolution. UAVs provide a

new data source for the acquisition of vegetation coverage

information in mining areas and offer new approaches for

monitoring vegetation growth and recovery in mining areas (Sun

et al., 2021). The results of this study indicate that vegetation

coverage data can be accurately extracted from UAV images. As

an unsupervised classification method, the visible light vegetation

index can be used to extract vegetation coverage quickly and

accurately without manual visual discrimination of vegetation

areas or non-vegetation areas. Two major advantages are

commonly associated with using visible spectrum images for

extracting vegetation coverage. One is that RGB images are low
FIGURE 8

Statistical histogram of the nine vegetation indices considered in this study.
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cost, convenient to process, and less affected by weather and light.

The other is that RGB images have a relatively high spatial and

temporal resolution, which is more suitable for local studies. For

example, Marcial-Pablo et al. (2019) indicated that the accuracy of

visible vegetation indices is higher than that of visible NIR

vegetation indices for early crop cover. Furukawa et al. (2021)

reported that RGB images provide reliable information for

vegetation monitoring. For the mining areas, the land-use type

was relatively single, and vegetation coverage could be quickly

obtained via UAV images. Moreover, the UAV-visible images

were acquired in summer, when vegetation growth was the best.

For most vegetation, summer is the most vigorous period for plant

growth, during which the vegetation exhibits the strongest reflected

spectral features. Thus, vegetation coverage can be accurately

estimated using the vegetation index.
4.3 Variation characteristics of
vegetation coverage

According to previous investigation and research results, the

soil arsenic contamination in the gold mining area is serious (the

average soil arsenic content was 93.96 mg/kg) (Chen et al., 2022).

Vegetation types are scarce (mostly herbaceous plants), and

vegetation coverage is low. The results of the vegetation coverage

change from 2019 to 2021 indicated that most natural vegetation

restoration sites had low to low–moderate vegetation coverage. This

was mainly because soil As contamination limited the normal

growth and development of plants in the early stages of

vegetation restoration (Yang et al., 2020), and community

succession was relatively slow. Increased vegetation coverage

improves the quality of regional ecological environments. With

the progress of ecological restoration, the soil arsenic content has

decreased, and plants have developed their own unique

physiological and ecological characteristics after a period of

adaptation. The number of pixels with zero vegetation and low

and low-moderate vegetation coverage decreased, those with

moderate–high and high vegetation coverage increased, and the

overall vegetation coverage increased.
5 Conclusions

In this study, a disused gold mining area in the Qinling

Mountains was selected as the research area, and UAVs were

deployed to obtain image data with high spatial resolution in the

visible light. The performance of different visible light vegetation

indices combined with two threshold segmentation methods for

extracting vegetation coverage was evaluated. The main conclusions

are as follows. (1) Except for RGRI, NGRDI, and NGBDI, the other

visible light vegetation indices effectively discriminated between

vegetation and non-vegetation in the study area. (2) EXG, VDVI,

and RGBVI combined with the bimodal histogram threshold method

had higher extraction accuracy in distinguishing between vegetation

and non-vegetation areas. (3) EXG and the bimodal histogram
Frontiers in Ecology and Evolution 1154
threshold method had the highest accuracy for vegetation

identification, which was the closest to the results of the monitored

and actual situations. (4) The spatiotemporal analysis of vegetation

coverage in 2019, 2020, and 2021 showed that most mining areas had

low, low–moderate, and moderate vegetation coverage, whereas the

overall vegetation coverage was low. The average FVC for the three

years were 31.47%, 34.08%, and 42.77%, respectively, indicating an

increasing trend. Future studies should continue monitoring

vegetation coverage changes to provide technical support for land

reclamation and ecological restoration in mining areas.
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Since the end of the 20th century, the use of geographic information systems and
digital elevationmodels has reduced the time required for and improved the quality of
morphometric analysis of the relief within river basins. However, researchers are
constantly faced with the problem of choosing the most accurate and suitable digital
terrain model for their task. Many global, regional, and local digital elevation models
are available. In this study, we comparatively analyzed the accuracy of the ASTER
GDEM, ALOS World 3D, Copernicus DEM, and SRTM DEM spatial datasets for the
purposeof catchment basinmodeling for the river basins of thenorthwestern slopeof
the Crimean Mountains (Zapadnyy Bulganak, Alma, Kacha, Belbek, and Chernaya
Rivers) as an example. For each river basin, we calculated the systematic, root mean
square,mean absolute, standard rootmean square (Bessel’s correction), and centered
mean absolute errors by comparing ASTERGDEM, ALOSWorld 3D, Copernicus DEM,
and SRTM DEM data with a 1:100,000 topographic map within the considered river
basins. We found the smallest error values for the Copernicus DEM and ALOS World
3D datasets; furthermore, we used the Copernicus DEM dataset to model the river
basins and sub-basins of the northwestern slope of the Crimean Mountains. As a
result, we identified these river basins and sub-basins for the Zapadnyy Bulganak,
Alma, Kacha, Belbek, and Chernaya Rivers, which are represented by stream basins,
valleys, gullies, and ravine systems.

KEYWORDS

GIS, digital elevationmodel, ASTERGDEM, ALOSWorld 3D, Copernicus DEM, SRTM, river,
river basin

1 Introduction

Digital elevation model (DEM) is a generic term for digital topographic and/or
bathymetric data in all their forms (Manune, 2007). A large number of studies have
been devoted to assessing the accuracy of DEM, considering both the practical and
theoretical aspects of this issue (del Rosario Gonzalez-Moradas and Viveen, 2020; Mesa-
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Mingorance and Ariza-López, 2020; Uuemaa et al., 2020; Yamazaki
et al., 2017). The number of these scientific studies has been
constantly increasing due to the improvement in existing
geodatasets and the market entry of new sets of geodata, which is
of considerable interest to researchers. In recent years, DEMs
created using unmanned aerial vehicles (UAVs) (Uysal et al.,
2015; Hashemi-Beni et al., 2018; Escobar Villanueva et al., 2019;
Annis et al., 2020) have been extensively used. UAVs have high
accuracy but, in almost all cases, are inaccessible to a wide range of
researchers. DEMs are actively used in the study of glaciers (Fischer
et al., 2015; Bodin et al., 2018), forests (Balzter et al., 2015; Liu et al.,
2018), and celestial bodies (Florinsky and Filippov, 2017; Fawdon
et al., 2018), among others. One of the largest niche areas is occupied
by studies of the morphometry of river basins (Pyankov and
Shikhov, 2017; Fang et al., 2019; Sarkar et al., 2020; Yermolaev
et al., 2021; Zhao et al., 2021), in which DEMs are actively used to
identify and characterize river basins.

ASTER and SRTM DEMs have been thoroughly compared. For
example, Rajasekhar et al. (2018) studied lineament extraction from
ASTER DEM, SRTM, and Cartosat for the Jilledubanderu River
basin, Anantapur district, India. Thomas and Prasannakumar, 2015
studied basin morphometry derived from topographic maps,
ASTER, and SRTM DEMs, considering an example from Kerala,
India. Nikolakopoulos et al. (2006) compared ASTER and SRTM
DEMs in Greece using two regions of Crete Island. Zhao et al. (2021)
compared the performance among typical open global DEM
datasets for the Fenhe River Basin in China.

Due to the emergence of a large number of new open datasets,
researchers have been increasingly using Copernicus DEM and
comparing different datasets (Karlson et al., 2021; Garrote, 2022;
Yuan et al., 2022). Mutar et al. (2021) considered the river basins
flowing into the Mosul reservoir (Iraq), finding that the Copernicus
DEMmodel was more accurate than SRTMDEM and ASTER GDEM.
However, other authors (Kramm and Hoffmeister, 2021) reported that
Copernicus DEM data can produce ambiguous results. Many studies
(Karionov, 2010; Yeritsian, 2013; Trofimov and Filippova, 2014) have
described the accuracy of the SRTMdataset. Nevertheless, other authors
(Karionov, 2010; Yeritsian, 2013) have emphasized that the accuracy of
the cartographic material obtained using the SRTM datasets is
equivalent or close to that of topographic map. In recent years,
ALOS World 3D DEM (Tadono et al., 2016) was also introduced
and its accuracy, as well as advantages and disadvantages compared
with other DEMs (Courty et al., 2019; Viel et al., 2020), have been
analyzed. For the Crimean Peninsula, SRTM are mainly used by
researchers, but comparisons with other DEMs are not given and
measurement errors are not evaluated.

Several global datasets contain information on river basins on a
global scale (Tang and Lettenmaier, 2012; Lehner and Grill G., 2013;
Dallaire et al., 2019). For example, the HydroBASINS Version
1.0 dataset contains information on river basins and sub-basins
worldwide. This dataset is not suitable for the Crimean Peninsula
due to a large number of errors, in particular, incorrect allocation of the
catchment basins’ boundaries (for example, merged boundaries of the
South Coast of the Crimean Peninsula river basins, unreasonable basin
division of the largest rivers of the Crimean Peninsula into logically
unreasonable parts, etc.). Most regional models in Europe do not
include the Crimean Peninsula in the research area, which
complicates further analysis and comparison of catchment basins

(Vanham and Bidoglio, 2014). Additionally, the identification of
small river basins or sub-basins for most large rivers of the Crimean
Peninsula is limited only to the main tributaries, whereas the catchment
basins of tributaries and their tributaries are practically not considered,
with the exception of the most studied and largest river of the Crimean
Peninsula, the Salgir River, as well as a small number of Crimean rivers.

Three groups can be distinguished among the studies on the
catchment basins of the Crimean Peninsula. The first small group
consists of studies (Dunaieva and Kovalenko, 2013; Narozhnyaya,
2021) that considered the river basins of the Crimean Peninsula as a
whole. Almost always (with the exception of one study
(Pozachenyuk, 2009), which is of historical value), river basins
have been automatically identified using geographic information
systems and DEMs. The second group consists of studies devoted to
river basin groups in certain regions of the Crimean Peninsula: the
river basins of the northwestern slope of the Crimean Mountains
(Vermaat et al., 2012; Tabunshchik, 2018), the Kerch Peninsula
(Krivoguz, 2016), the Sivash region (Timchenko et al., 2020), and the
northern macroslope of the Crimean Mountains (Timchenko,
2000). The third and most numerous groups of studies has
focused on the catchment basins of different separate rivers of
the Crimean Peninsula (Vlasova, 2011; Pozachenyuk et al., 2014;
Ergina and Timchenko, 2016; Kayukova, 2016; Amelichev et al.,
2017). Moreover, in the third group, the most studied river basins
are the basins of the largest rivers and their main tributaries.

The purpose of the study is to select the most accurate DEMs
and, on its basis, to identify the basins and sub-basins of the rivers
within northwestern slope of Crimean Mountains. Specifically, the
main contents of this study are as follows. In the Section 2 “Materials
and Methods,” four DEMs are compared with a topographic map
and a general scheme of research using geoinformation research
methods are presented. In the Section 3 “Results,” the calculation of
measurement errors typical for various DEMs are shown. Also, the
result of modeling the allocation of basins and sub-basins of the
rivers of the northwestern slope of the Crimean Mountains are
presented. In the Section 4, discussion of the obtained results and
their comparison with other regions of the world are shown. Also, in
the Section 4, the difficulties that the authors encountered while
working on the article and ways to solve them are described. In the
Section 5, conclusions and implications are given.

2 Materials and methods

2.1 Study area

The basins of the Zapadnyy Bulganak, Alma, Kacha, Belbek,
Chernaya Rivers are located in the southwestern part of the Crimean
Peninsula (Figure 1). The area of the studied territory comprises
approximately 2,299 sq km. The rivers originate in the Crimean
Mountains and flow into the Black Sea (Tabunshchik et al., 2022).

2.2 Materials and methods

We chose the DEMs for identifying river basins by selecting
those most suitable for the study geodatasets, with the highest spatial
resolution, and distributed under an open license. We thus selected
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ASTER GDEM (Version 3, 2019), ALOS World 3D (Version 3.2,
2021), Copernicus DEM (Version 3, 2021), and SRTM DEM
(Version 3, 2013) for this study among all DEMs available to us.
The spatial resolution of these DEMs is 30 m/pixel.

As a DEM differs from the real terrain elevation, as for each
pixel, an average value is given, we verified the selected DEMs by
comparing the height marks and elevation values obtained from the
topographic map. From a topographic map with a scale of 1:
100,000 [which was previously linked to the WGS 84 UTM zone
36 N (EPSG: 32,636) projection], we obtained sample values of
several peaks (mountains, points) and isohypses, which we then
compared with the elevation values of the same points on each of the
considered DEMs through a simple spatial relationship. For these
purposes, a point shapefile was created containing the elevation

values of points from a topographic map. Then, using the tools
“Spatial Join” and “ Extract Values to Points,” the elevation values
from each DTM for each point were obtained. In total, we selected
100 points for each catchment basin, and then we compared the
obtained data. Accuracy was calculated according to a previously
reported method (Onkov, 2011). An additive error model was
adopted during statistical data processing. According to this
additive error model, we calculated the difference in heights of
the DEM H DEM and the topographic relief H TPRP as

ΔH � HDEM −HTOPO (1)
Land was considered as the sum of systematic ΔH and random Δh
errors:

ΔH � ΔH + Δh. (2)

FIGURE 1
Geographical location of the study area (Tabunshchik et al., 2022).

FIGURE 2
Model for identifying river basins on the northwestern slope of Crimean Mountains and their sub-basins within basins of Zapadnyy Bulganak, Alma,
Kacha, Belbek, and Chernaya Rivers [compiled by us using (Samsonov, 2022)].
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TABLE 1 Comparison of accuracy of absolute heights in study area according to a topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

ASTER ALOS Copernicus SRTM

Systematic error, m −7.7 −3.8 −3.4 −9.5

Root mean square error, m 14.0 12.8 8.7 14.9

Mean absolute error, m 10.3 7.4 6.0 10.9

Standard root mean square error, m 21.9 19.0 14.3 11.3

Centered mean absolute error, m 3.9 3.9 3.4 2.7

TABLE 2 Comparison of accuracy of absolute heights in Zapadnyy Bulganak River basin according to topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

ASTER ALOS Copernicus SRTM

Systematic error, m −3.8 −2.7 −1.5 −1.9

Root mean square error, m 6.7 4.4 3.6 3.7

Mean absolute error, m 4.7 2.8 2.2 2.4

Standard root mean square error, m 14.7 12.8 9.6 4.8

Centered mean absolute error, m 3.0 3.2 2.7 1.8

TABLE 3 Comparison of accuracy of absolute heights in Alma River basin according to topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

ASTER ALOS Copernicus SRTM

Systematic error, m −10.5 −7.0 −5.2 −11.4

Root mean square error, m 13.3 12.1 10.0 17.3

Mean absolute error, m 11.0 8.0 6.7 12.1

Standard root mean square error, m 23.3 20.8 16.5 13.6

Centered mean absolute error, m 4.2 4.3 3.8 2.9

TABLE 4 Comparison of accuracy of absolute heights in Kacha River basin according to topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

ASTER ALOS Copernicus SRTM

Systematic error, m −12.6 −9.1 −7.1 −16.1

Root mean square error, m 19.6 13.9 12.0 19.6

Mean absolute error, m 14.8 10.9 9.5 16.7

Standard root mean square error, m 28.2 22.9 18.7 14.2

Centered mean absolute error, m 4.5 4.5 4.0 3.3
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After eliminating the systematic error from the measurement
results using

Δhi � ΔHi − �ΔH i (3)
the parameters of the random component Δh were estimated.

The following types of errors were calculated in the study
(where n is the number of measurements):

1. Average elevation difference (systematic error), m;

�ΔH � 1
n
∑n
i�1
ΔHi (4)

2. Root mean square error, m;

RMSEΔH �
��������
1
n
∑n
i�1
ΔHi

2

√
(5)

3. Mean absolute error, n;

MAEΔH � 1
n
∑n
i�1

ΔHi| | (6)

4. Standard root mean square error (Bessel’s correction), m;

σΔh �
����������
1

n − 1
∑n
i�1
Δhi

2

√
(7)

5. Centered mean absolute error, m.

Δh �
�����������
1

n − 1
∑n
i�1

Δhi| |
√

(8)

The methodology for delineating river basins is based on the
utilization of the ArcGIS software suite in conjunction with the
DEM. It encompasses a systematic algorithm comprising a series of
steps executed using the “Hydrology” toolbox within the “Spatial
Analyst” tool.

1. The DEM is imported into the ArcGIS software suite.
2. The “Fill” tool from the “Hydrology” toolbox in the “Spatial

Analyst” toolset is employed to rectify erroneous depressions
within the DEM.

3. The “Flow Direction” tool from the “Hydrology” toolbox in the
“Spatial Analyst” toolset is applied to ascertain the flow
direction for each pixel of the DEM, which has been
preprocessed (in step 2) using the “Fill” tool.

4. The “Flow Accumulation” tool from the “Hydrology” toolbox
in the “Spatial Analyst” toolset is utilized to compute the
cumulative flow, representing the aggregated weight of all
pixels that drain into each downslope pixel in the resulting
raster. The flow direction raster created in step 3 serves as the
input.

5. The “Raster Calculator” tool from the “Map Algebra” toolbox in
the “Spatial Analyst” toolset is used to select pixels with a flow
accumulation value exceeding 25. As a result, a new raster is
generated with flow accumulation values above 25.

6. The “Stream Link” tool from the “Hydrology” toolbox in the
“Spatial Analyst” toolset is employed to create a raster linear
network wherein each section of the network is assigned unique
values, representing individual stream links. The input rasters
consist of the flow direction raster generated in step 3 and theTA
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flow accumulation raster with values exceeding 25, produced in
step 5.

7. The “Stream Order” tool from the “Hydrology” toolbox in the
“Spatial Analyst” toolset is utilized to assign a stream order to
each link within the stream network raster created in step 6.

8. The “Basin” tool from the “Hydrology” toolbox in the “Spatial
Analyst” toolset is employed to generate a raster depicting river
basins based on the constructed flow direction raster (step 3).

9. The “Raster to Polygon” tool from the “Conversion” toolbox
within the “From Raster” toolset is applied to transform the
stream network raster obtained in step 7 into a polygon shapefile.

We supplemented and implemented the method for identifying
river basins and their sub-basins using ArcGIS 10.8 software and the
builtin model editor “Model Builder,” which allowed us to automate
and speed up the delineation process (Figure 2). Our identification

of river basins is based on a previously described method
(Elkhrachy, 2018; Bajirao et al., 2019; Garrote, 2022; Samsonov,
2022). The theoretical and methodological foundations of
delineating river basins and sub-basins were extensively discussed
by Bai et al. (2015a) (Bai et al., 2015b). We automated it using the
built-in ArcGIS Model Builder (Figure 2).

We note the sensitivity of this method to the incoming sets of
spatial data: the type of DEM and its accuracy, as well as the accuracy
of tying the points of the river mouths.

3 Results

We calculated the values of five different types of errors for the
territory of the river basins of the northwestern slope of the Crimean
Mountains. These values are presented in Table 1. Table 1 shows
that the errors for ASTER GDEM and SRTM DEM were the largest;
those of ALOS World 3D and Copernicus DEM were the smallest.
Additionally, the values of errors within the basins of the Zapadnyy
Bulganak, Alma, Kacha, Belbek, and Chernaya Rivers were analyzed
(Table 2, Table 3, Table 4, Table 5, Table 6).

The Copernicus DEM is most suitable for the analysis of the
morphometric characteristics of the river basins of the northwestern
slope of the Crimean Mountains. This DEM has a spatial resolution
of 30 m/pixel.

Based on the Copernicus DEM, the boundaries of the streams
sub-basins within the basins of the Zapadnyy Bulganak, Alma,
Kacha, Belbek, and Chernaya Rivers were identified as a result of
modeling and partial manual correction of the obtained model
results (we selectively checked for the presence of errors in the
boundaries of the selected sub-basins). The obtained results are
shown in Figure 3.

Figure 3 shows that we identified 3,293 sub-basins in the study
area, which form the valley, gully, and ravine systems of the study
area. The basin of the Western Bulganak River has 207 sub-basins,
the Alma River has 860 sub-basins, the Kacha River has 855 sub-
basins, the Belbek River has 747 sub-basins, and the Chernaya River
has 624 sub-basins.

4 Discussion

After analyzing the data presented in Table 1, Table 2, Table 3,
Table 4, Table 5, Table 6, we found that the error values of the

TABLE 6 Comparison of accuracy of absolute heights in Chernaya River basin according to topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

ASTER ALOS Copernicus SRTM

Systematic error, m −6.1 −1.6 −0.7 −9.2

Root mean square error, m 12.4 7.2 6.8 12.2

Mean absolute error, m 10.5 5.7 5.2 10.5

Standard root mean square error, m 20.6 14.7 11.8 8.2

Centered mean absolute error, m 3.9 3.7 3.3 2.6

FIGURE 3
Stream sub-basins on the northwestern slope of the Crimean
Mountains within the basins of the Zapadnyy Bulganak, Alma, Kacha,
Belbek, and Chernaya Rivers.
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Copernicus DEM, which has a spatial resolution of 30 m/pixel, were
the lowest. Using the same technique with different data as the input
to the model may have led to the obtained results slightly differing.
This may concern both the boundaries of the study region and the
software products on which the data were processed. For example, if
we compare our earlier calculations of the area of catchment basins
using SRTM DEM (Tabunshchik, 2021a) with those obtained using
Copernicus DEM and data from the literature, insignificant
differences are observed. Here, on the entire-basin scale, these
changes are insignificant, and the differences are mainly related
to the number of points along which the outer boundaries of the
river basins are drawn.

We compared our data with those calculated by researchers for
other regions. Karwel and Ewiak (2008) reported that the accuracy
of SRTM within the flat part of the territory of Poland is 2.9 m, and
5.4 m for mountainous and foothill areas. Calculations (Orlyankin
and Aleshina, 2019) showed that within the river basins of the
northwestern slope of the Crimean Mountains, the systematic error
of elevation calculated from the SRTM dataset, with a spatial
resolution of 90 × 90 m, is +1 m.

Mutar et al. (2021) indicated that the RMSE of Copernicus
DEM is 1.3 m in Iraq, which is 2.6 times more accurate than the
SRTM DEM dataset and 5.2 times more accurate than the ASTER
GDEM dataset. The accuracy of the Copernicus DEM dataset in
China is 6.73 m (Li et al., 2022). Santillan and Makinano-
Santillan (2016) found that when comparing datasets within
the Philippines, the AW3D30 dataset most accurately
represents true heights compared with the SRTM and ASTER
GDEM datasets, because the AW3D30 dataset has the lowest
mean error, RMSE, and standard deviation. Elkhrachy (2018), for
the territory of Saudi Arabia, reported that when comparing
DEM and a topographic map at a scale of 1: 10,000, which was
chosen as a reference, the vertical accuracy of the SRTM and
ASTER datasets is ±6.87 and ±7.97 m, respectively. Dong et al.
(2015) conducted an accuracy assessment of ZY-3, SRTM, DLR-
SRTM, and GDEM in Northeast China. GPS data was used as the
accuracy evaluation criterion for ZY-3, and the RMSE for SRTM
was found to be ±2.82 m. Zhang et al. (2019) compared ASTER,
SRTM, ALOS, and TanDEM-X for flood risk mapping on the
island of Hispaniola, using GPS and LiDAR measurements. They
found that ASTER had the highest errors, while ALOS and
TanDEM-X had the lowest errors. Karabörk et al. (2021)
compared AlosPalsar, Sentinel-1A, AW3D30, SRTM, and
ASTER GDEM with ground control points (GCP) obtained

from digital aerial photographs, photogrammetric maps, or
orthophotos. They found that the mean error values for ALOS
were 1.1 m on flat terrain and 8.2 m in mountainous areas, while
SRTM had mean errors of 1.8 m on flat terrain and 7.9 m in
mountainous areas. ASTER had mean errors of 1.0 m on flat
terrain and 8.4 m in mountainous areas. Purinton and
Bookhagen (2021) compared the accuracy of SRTM, ASTER,
ALOS, TanDEM-X, and Copernicus DEM in the Arid Central
Andes. They found that the Copernicus DEM provided the most
accurate representation of the landscape and should be the
preferred DEM model for topographic analysis in areas where
local high-quality DEM coverage is not available.

To demonstrate the changes in the areas and morphometric
characteristics of river basins, Table 7 presents the results of a
comparison of the basins area of the Zapadnyy Bulganak, Alma,
Kacha, Belbek, and Chernaya rivers, calculated using the SRTM
DEM and Copernicus DEM datasets, as well as a comparison with
the data on river basin area given in the literature.

Using GIS, both the river basins (Ermolaev et al., 2014; Ali et al.,
2023; Sharma et al., 2023) and sub-basins (Vanham and Bidoglio,
2014; Dallaire et al., 2019) of large rivers can be identified. However,
the low accuracy of the DEM and new techniques can often lead to
distortion of the output results. As an example, consider a previously
described technique (Tabunshchik, 2021b; Samsonov, 2022), which
is based on the PCRaster Python Library and automated by Van der
Kwast as a PCRaster Tools plugin for QGIS. The application of this
technique to the river basins of the northwestern slope of the
Crimean Mountains showed a rather mixed picture that defies
logical classification (Figure 4).

Figure 4 shows that the sub-basins of the rivers were not
identified. The resulting processing result contained many errors,
and the boundaries of sub-basins were identified without
considering watersheds, which indicates the impossibility of
applying this method in the study area.

The method proposed by Samsonov (2022) produced the best
result of modeling the sub-basins of the five largest rivers of the
northwestern slope of the CrimeanMountains (Zapadnyy Bulganak,
Alma, Kacha, Belbek, and Chernaya Rivers). We propose using a
buffer value that exceeds twice the DEM resolution’s value to
separate the points of the mouth of smaller streams flowing into
the main stream. In our measurements, we found that this value
should be equal to the pixel resolution, given the large error in
constructing and visualizing data with a buffer size of two pixels
(Figure 5).

TABLE 7 Comparison of basin areas of the Zapadnyy Bulganak, Alma, Kacha, Belbek, and Chernaya Rivers.

Basin Area, km2 Difference from literature data, %

SRTM DEM Copernicus DEM According to (Lisovsky et al., 2011) SRTM DEM Copernicus DEM

Zapadnyy Bulganak 177.1 174.6 180 2 3

Alma 641.8 631.8 635 −1 0

Kacha 570.9 573.3 573 0 0

Belbek 492.1 491.1 505 3 3

Chernaya 430.5 428.0 427 −1 0
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In some areas, we identified single image pixels that did not
belong to catchment basins, so we then manually identified them.
Additionally, the resolution of various open DEM datasets
impacts the accuracy of sub-basin identification. When
comparing DEM data with a resolution of 90 m/pixel with
those with a resolution of 30 m/pixel, the most accurate
results were achieved by the latter.

Many studies have focused on the identification of river basins
using SRTM DEM for the Crimean Peninsula (Vlasova, 2012;
Pozachenyuk et al., 2014; Pozachenyuk et al., 2015; Tabunshchik,
2021a; Narozhnyaya, 2021; Drygval, 2022). Other DEMs have

practically not been used, which is probably due to the
popularity and widespread use of SRTM DEM.

Narozhnyaya (2021) provided a detailed description of the
morphometric analysis of the river basins of the Crimean
Peninsula; however, the description is based on the use of SRTM
DEM. A detailed description of the individual basins of the large
rivers of the Crimean Peninsula was not provided, including the five
basins that we considered. Narozhnyaya (2021) did not distinguish
the sub-basins of the rivers: only separate maps were presented that
allowed judging the distribution of certain morphometric indicators
of river basins.

FIGURE 4
Example of the unsuccessful selection of sub-basins using PCRaster Tools plugin for QGIS on catchment basin fragment of Chernaya River.

FIGURE 5
Fragment of a map of sub-basins compiled using a 60 m buffer (A), containing construction errors and 30 m (B) with minimal construction errors.
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We identified the sub-basins within the basins of the Zapadnyy
Bulganak, Alma, Kacha, Belbek, and Chernaya Rivers for the first
time, and we substantially refined the available information on the
quantitative characteristics of the basins of these rivers. This, in turn,
creates many opportunities for researchers of the nature of the
Crimean Peninsula to solve many problems with more accurate
initial data. Additionally, the use of DEMs is advisable when
conducting complex engineering, geological, hydrological, and
hydrogeological studies. Several directions for further research of
the river basins and sub-basins of the northwestern slope of the
Crimean Mountains emerge from our study, in particular, their
anthropogenic transformation, searching for relationships between
climate change and changes in vegetation and land cover types;
assessing their geoecological state; preparing landscape planning
maps; and developing and implementing recommendations for
sustainable development.

In further research, it is necessary to continue comparing
different DEM datasets and identifying the most accurate and
suitable ones for specific tasks. While the study focused on
analyzing specific DEM datasets for the studied region, there is
potential in future research to examine the accuracy of various DEM
datasets in different regions and compare them to each other.
Additionally, advancements in remote sensing technologies and
data processing methods present opportunities to improve the
accuracy of DEM datasets. Further research can explore the
integration of data from multiple sources, such as LiDAR,
satellite imagery, and ground-based measurements, to enhance
the accuracy and reliability of DEMs. The use of Unmanned
Aerial Vehicles (UAVs) at the local level of investigation also
holds great interest.

5 Conclusion

Despite more than two centuries of hydrological studies of the
rivers and river basins of the Crimean Peninsula, many unsolved
problems remain. In general, the Crimean Peninsula remains
insufficiently hydrologically studied. This primarily applies to
important tasks such as the hydrological characteristics of rivers
and the morphometric characteristics of river basins, determining
the types of water management use of rivers and developing schemes
for optimizing river and river basin use, studying and predicting
possible ecogeodynamic processes under the influence of
anthropogenic factors within river basins, studying the degree of
anthropogenic transformation of the river basin, etc. Only at the end
of the 20th to the beginning of the 21st century did detailed work
begin on the identification and description of the basins and sub-
basins of the rivers of the Crimean Peninsula, which continues to
this day. However, these studies are still extremely scarce, and the
data are scattered. This study of the river basins and sub-basins
identifying the northwestern slope of the Crimean Mountains
provides a distinctive contribution to the unresolved history of
hydrological research within the Crimean Peninsula.

The use of DEMs enables the study of the main morphometric
characteristics of the river basins of the northwestern slope of the
Crimean Mountains. However, when choosing the initial data, the
least error-prone datasets should be used. The performed

calculations showed that the smallest errors in the selection of
DEM were obtained for Copernicus DEM, which has a resolution
of 30 m/pixel. Copernicus DEM provides a sufficiently high level of
accuracy and detail, which was shown in the calculationmodel of the
Zapadnyy Bulganak, Alma, Kacha, Belbek, and Chernaya River
basins, as well as their sub-basins.
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Development of ground-level
NO2 models in Vietnam using
machine learning and satellite
observations with ancillary data

Truong Xuan Ngo*, Hieu Dang Trung Phan and
Thanh Thi Nhat Nguyen

Faculty of Information Technology, University of Engineering and Technology, Vietnam National
University, Hanoi, Vietnam

In this study, the aim was to create daily ground-level NO2 maps for Vietnam
spanning from 2019 to 2021. To achieve this, various machine learning models
(including theMixed EffectModel, Neural Network, and LightGBM)were utilized to
process satellite NO2 tropospheric columns from Ozone Monitoring Instrument
(OMI) and TROPOMI, as well as meteorological and land use maps and ground
measurement NO2 data. The LightGBMmodel was found to be themost effective,
producing results with a Pearson r of 0.77, RMSE of 7.93 μg/m³, and Mean Relative
Error (MRE) of 42.6% compared to ground truth measurements. The annual
average NO2 maps from 2019–2021 obtained by the LightGBM model for
Vietnam were compared to a global product and ground stations, and it was
found to have superior quality with Pearson r of 0.95, RMSE of 2.27 μg/m³, MRE of
9.79%, based on 81 samples.

KEYWORDS

Sentinel 5p, OMI, ground-level NO2 model, machine learning, Vietnam

1 Introduction

Air pollution poses a significant threat to the environment and human health in
many countries. In Vietnam, Nitrogen dioxide (NO2) is recognized as a particularly
important air pollutant. To monitor and manage the levels of NO2 and other harmful
pollutants such as PM2.5, PM10, SO2, and O3, the Ministry of Natural Resources and
Environment (MONRE) has implemented automatic and continuous monitoring
systems. However, the current monitoring of NO2 in Vietnam is limited due to the
lack of representative monitoring stations across the country. In recent times, modeling
techniques utilizing data from monitoring stations, satellite imagery (remote sensing),
and auxiliary sources have gained widespread acceptance in generating spatial NO2

information. This approach provides additional data to supplement the readings from
monitoring stations, thus providing insights into the distribution of NO2 concentrations
on a larger scale, especially in regions without monitoring stations. The NO2 satellites
used for this purpose include the Ozone Monitoring Instrument (OMI), Global Ozone
Monitoring Experiment–2 (GOME-2), SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY), and TROPOspheric Monitoring
Instrument (TROPOMI).

Many studies have been conducted globally to map NO2 using satellite imagery. For
instance, Larkin et al. (2017) used a land use regression (LUR) model to estimate global NO2
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levels in 2011 with a resolution of 100 × 100 m. They incorporated
model and satellite data/model data from SCIAMACHY, GOME-2,
and GEOS Chem, as well as land cover features such as vegetation
index, tree cover, traffic, etc., and monitoring station data from
58 countries. The model’s performance varied depending on the
region, with the coefficient of determination (R2) ranging from
0.42 in Africa to 0.67 in South America. In North America,
Europe, and Asia, the R2 value was approximately 0.52, which is
consistent with the global average (0.54) (Larkin et al., 2017). To
further enhance the accuracy of NO2mapping, a study conducted by
Anenberg et al. (2022) estimated the global average annual NO2

levels from 1990 to 2020 at a resolution of 1 × 1 km. This study used
Land Use Regression (LUR) incorporating OMI NO2 andMERRA2-
reanalysis data. Results indicate that the new NO2 concentration
data is more precise than that of Larkin’s study in rural areas, with a
Pearson r of 0.58 and a Root mean square error (RMSE) of 2.26
(ppb) (Anenberg et al., 2022). The results of this study have
important implications for public health, as they were able to
estimate the NO2-attributable pediatrics asthma incidence using
the improved NO2 concentration data. Paraschiv examined the
relationship between OMI data and monitoring stations across
Europe during the period of 2005–2014. Their findings indicate a
Pearson r value ranging from 0.53 to 0.86 (Paraschiv et al., 2017).
Hyung Joo Lee and colleagues (2014) developed a mixed-effect
model (MEM) to estimate daily NO2 concentrations in New
England, United States from 2005–2010. Their model was based
on various data sources, including station data, tropospheric column
NO2 (OMI), historical land use data such as population density,
traffic, topography, as well as meteorological data such as
temperature and wind speed. They evaluated the model using a
10-fold cross-validation (CV) method and found an R2 value of 0.79,
indicating good model performance (Lee and Koutrakis, 2014). In
the mentioned studies, OMI NO2 satellite data is commonly used to
estimate NO2 maps.

Recently, some studies have been conducted using
TROPOMI satellite data (the most recently launched satellite
with high resolution data) with Machine Learning models and
auxiliary data to estimate ground-level pollutant concentrations
(e.g., NO2, O3). A study by Kang et al. (2021) estimated ground-
level NO2 and O3 with a resolution of 6 × 6 km at East Asia using
NO2 data from the TROPOMI satellite, other satellite products
(Landcover, Aerosol Optical Depth - AOD, Digital Elevation
Model - DEM), meteorological data from models, and auxiliary
data (road density, population density). Several different
machine learning models were experimented, including
Multiple Linear Regression (MLR), Support Vector Regression
(SVR), Random Forest (RF), Extreme Gradient Boosting
(XGBoost), and Light Gradient Boosting Machine
(LightGBM). XGBoost showed better results when estimating
NO2 with a 10-fold cross-validation R2 of 0.7 and RMSE of
4.75 ppb. Long et al. (2022) map daily ground-level NO2

concentrations in China at a resolution of 0.05° using machine
learning models based on decision trees (Decision Tree, Gradient
Boost Decision Tree, Random Forest, Extra-Trees). They found
that the Extra-Trees model incorporating spatial and temporal
information performed exceptionally well in estimating ground-
level NO2 concentrations, achieving a cross-validation R2 of
0.81 and an RMSE of 3.45 μg/m3 in test datasets (Long et al.,

2022). Wang et al. (2022) used Random Forest to estimate the
daily maximum 8-hour average ground-level ozone
concentration at a 10 km spatial resolution in California. They
utilized TROPOMI’s total ozone column combined with ozone
profile information retrieved by the Ozone Monitoring
Instrument (OMI) and auxiliary data (meteorological, land
use). Their model achieved an overall 10-fold CV R2 of
0.84 and an RMSE of 0.0059 ppm. In another study,
Grzybowski et al. (2023) employed various data sources,
including Sentinel-5P, meteorological data, and other ancillary
data, to estimate ground NO2 levels in Poland. Among the
methods used, the random forest (RF) model emerged as the
most accurate, with mean absolute error (MAE) values of 3.4 μg/m3

and 3.2 μg/m3 for the hourly and weekly estimates, respectively.
The corresponding mean absolute percentage error (MAPE)
values were 37% and 31%, indicating relatively moderate
deviations from the true values (Grzybowski et al., 2023). The
tree-based model demonstrates strong estimation capabilities in
air pollution estimation problems using remote sensing and
auxiliary data.

Currently, there are no studies on nationwide NO2 estimation in
Vietnam utilizing satellite images and multi-source data. However, a
study conducted in 2015 developed daily PM2.5 maps for Vietnam
from 2010–2014 using a multivariable regression model (Nguyen
et al., 2015). Recently, a study provided a long-term daily PM2.5 map
for Vietnam from 2012–2020 using mixed effect models based on
ground PM2.5 measurements, integrated satellite Aerosol Optical
Depth (AOD), meteorological and land use maps (Ngo et al., 2023).
The daily mean PM2.5 maps have high validation results with ground
PM2.5 measurements, achieving a Pearson r of 0.87, R2 of 0.75,
RMSE of 11.76 μg/m³, and MRE of 36.57% on a total of 13,886 data
samples.

This study aimed to develop daily ground-level NO2 maps
with a resolution of 1 × 1 km over Vietnam using satellite images
and multi-source data from 2019–2021. The NO2 tropospheric
columns were derived from OMI and TROPOMI satellite
devices, and different models such as Mixed Effect Model,
Neural Network, and LightGBM were tested. Although the
models are not new, this is the first study to experimentally
construct a high-resolution NO2 map for the entire territory of
Vietnam based on satellite data. Various machine learning
models were experimented to find the optimal model that fits
the data in Vietnam. The NO2 maps hold promise in providing
useful information on NO2 distribution across Vietnam,
supporting decision-making and policies to reduce NO2

pollution and improving public health.

2 Materials

2.1 Measurement data

The hourly ground measurements of NO2 were collected from
monitoring stations in Vietnam. Vietnam is situated in the East of
the Indochina peninsula, at the heart of Southeast Asia, with its land
area covering 331,236 km2, stretching from (8°27′N, 102°8ʼE) to
(23°23ʼN, 109°27ʼE). The country is divided into six distinct
economic zones, namely, the Northern Midlands and Mountains,
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Red River Delta (RRD), North Central Coast and South Central
Coast, Central Highlands, South East, and Mekong River Delta
(MRD) as illustrated in Supplementary Figure S1.

The Northern Center for Environmental Monitoring (NCEM),
which operates under the Vietnam Administration of Environment
(VEA) under MONRE, is responsible for air pollution monitoring in
Vietnam. As of 2021, over 90 stations have been installed across the
country, with most of them located in the Red River Delta (RRD)
region. These stations measure various pollutants such as NO2,
PM10, PM2.5, SO2, CO, O3, as well as meteorological variables like
temperature, humidity, and wind speed. Hourly NO2 concentration
(μg/m³) data from 74 stations were collected between 2019–2021 in
this study, with poor quality data stations removed. The distribution
of ground stations is illustrated in Supplementary Figure S1.

2.2 Satellite data

In order to monitor air pollution at stations on a national scale,
satellite images are also used which has a larger coverage than the
traditional monitoring method. The development of satellite
technology can solve the problem of monitoring air pollution on
a large scale. For this study, we utilized two satellite based NO2

tropospheric column products, namely, OMI (Ozone Monitoring
Instrument) (Levelt et al., 2006) and TROPOMI (TROPOspheric
Monitoring Instrument) (Veefkind et al., 2012), to estimate NO2

concentrations at ground level over Vietnam.
TROPOMI, launched in October 2017, is a satellite instrument

on board the Copernicus Sentinel-5 Precursor satellite (S5P). It
measures air quality, ozone, ultraviolet radiation, and aids in climate
forecasts with high spatial resolution. TROPOMI provides daily and
global coverage of multiple trace gases (such as NO2, CO, SO2, CH4,
CH2O, O3) and aerosol properties. Prior to Sentinel-5P, NASA’s
OMI on the Aura satellite had been observing the ozone layer and
atmospheric pollutant gases, including NO2, since October 2004.
However, the daily OMI NO2 product has a lower spatial resolution
(13 × 24 km) compared to the more detailed NO2 product from
TROPOMI (3.5 × 5.5 km).

Both of OMI and TROPOMI data were obtained from the
Multi-Decadal Nitrogen Dioxide and Derived Products from
Satellites (MINDS) program (Lamsal et al., 2022a; Lamsal et al.,
2022b). The goal of this project is to adapt OMI operating
algorithms to other satellite devices, and to create and store
consistent multi-satellite Level 2 and Level 3 NO2 products. They
adapt their well-validated OMI NO2, cloud, and geometry-
dependent surface reflectivity retrieval algorithms to satellite
instruments that include SCIAMACHY, GOME-2, TROPOMI.
The adaptation of OMI algorithms for these satellite data aims to
provide consistent and long-term records suitable for analyzing
global trends in NO2. OMI MINDS NO2 and TROPOMI MINDS
NO2 were both downloaded from NASA’s open source (https://disc.
gsfc.nasa.gov/). The data are listed in Supplementary Table S1.

2.3 Meteorological data

Meteorological parameters are the factors that have an
important influence on the concentration of NO2 pollutant over

time. For example, high temperature can accelerate photochemical
reactions thereby reducing NO2 concentration; high relative
humidity increases the conversion rate from NOx to secondary
aerosols thereby also reducing NO2 concentrations. In this study, we
utilized meteorological maps generated by the Weather Research
and Forecasting (WRF) model, which employed input data from the
fifth generation of ECMWF reanalysis (ERA-5) obtained from
(https://cds.climate.copernicus.eu) during 2019–2021. The spatial
resolution of the input data was 0.25 ° × 0.25 ° with hourly temporal
resolution. The meteorological data of the ERA-5 was used as the
initial and boundary conditions for the simulation in the WRF
model. The WRF configuration was set up with two nested domains
over Vietnam, with spatial resolution of 15 and 5 km respectively.
The output data of the model was meteorological maps (including
Temperature, Humidity, WindSpeed, Planetary Boundary Layer
Height - PBLH) with a frequency of 4 images/day at 0, 6, 12,
18 h (GMT+0) and a spatial resolution of 5 × 5 km. The data are
listed in Supplementary Table S1.

2.4 Land use data

Land use factors are closely associated with the sources of
emissions. For instance, regions characterized by high traffic
density tend to exhibit elevated smog emissions from vehicles,
leading to higher concentrations of NO2. Conversely, areas
covered with vegetation generally experience lower pollution
levels compared to urbanized areas. In this study, we utilized
the following data: normalized difference vegetation index
(NDVI) map, road map. The data are listed in Supplementary
Table S1.

The NDVI product used in this study is generated from Terra
MODIS satellite images through the MOD13Q1 product, Collection
6, level 3, which has a spatial resolution of 250 m and a temporal
resolution of 16 days (Didan, 2015). NDVI maps provide spatially
and temporally consistent observations of vegetation status in the
study area. In this study, we collected MOD13Q1 product during
2021 from NASA open source (https://search.earthdata.nasa.gov/
search).

The road map used in this study was obtained from the latest
OpenStreetMap (OSM) data in 2022, available in vector format and
comprising road shapes. OSM is a community-driven mapping service
that is freely accessible and open to the public. OSMwidely employed in
various applications within the geosciences, earth observation, and
environmental sciences. OSM offers global map objects, including
data types such as nodes (representing points on Earth), ways
(polyline representations of road objects, buildings, etc.), relations
(establishing relationships between objects), and tags (containing
object-related information) (Vargas-Munoz et al., 2021).

3 Methods

This study developed daily NO2 maps using a method shown in
Figure 1. The input data included NO2 data from monitoring
stations, NO2 tropospheric column density from satellites,
meteorological maps from the WRF model, NDVI maps, and
road maps. These data were preprocessed and integrated to
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create a training dataset, which was used to develop statistical
models for generating the daily NO2 map. The daily NO2 maps
were then aggregated into monthly and annual averages, and
validated using station observations and compared with the
global NO2 product.

3.1 Preprocessing data

The preprocessing of the monitoring station data, satellite
images and ancillary data was similar to what we did for PM2.5

pollutant published recently (Ngo et al., 2023). NO2 concentration
data from monitoring stations were standardized in uniform
structure. After that, the data was cleaned and removed outliers.
The process of removing outliers was carried out in the following
steps: 1) Eliminating outliers by threshold. NO2 observations with
values exceeding 300 μg/m3 or less than 1 μg/m3 were discarded). 2)
Using statistical methods to find outliers (too high/too low)
compared to measured data in the neighboring period
(±15 days). 3) Using the statistical method to find outliers (too
high/too low) compared to the measured data in the neighboring
period (±15 h), find out the outliers compared to the measured data
measured at neighboring stations. 4) Finding outliers where the
value does not change over a long period of time (Wu et al., 2018).
These outliers were manually rechecked for accuracy. Subsequently,

the hourly data were aggregated into daily, monthly, and annual
averages for the purpose of data integration and modeling.

Multi-source satellite data, which are NO2 tropospheric column
density data from OMI, TROPOMI products and NDVI from the
MOD13Q1 product, have different format, temporal and spatial
resolutions. Preprocessing is required to convert satellite data into
the same format and to project them in the same spatial grid. The
preprocessing steps for the NO2 and NDVI satellite images involve
value extraction and transformation (converting value), geo-
referencing, and resampling. Value extraction and transformation
is the process of extracting related data layers and re-computing the
values based on metadata information such as offset and scale factor
of data. Geo-referencing means correlating the internal coordinate
system of a map or an aerial image to a geographic coordinate
system. In order to integrate multi-source data, a grid with uniform
coverage and spatial resolution was defined. The grid covers the
entire territory of Vietnam based on the WGS84 reference system
and has cell size of 1 × 1 km. The satellite data were resampled and
projected on this grid using the nearest resampling method for
images with spatial resolution greater than 1 km (i.e., OMI,
TROPOMI, meteorological maps) and the average resampling
method for satellite images with resolution less than 1 km
(i.e., MODIS NDVI, population density map). The GDAL tool
was used to perform the above processes (GDAL, 2022). All the
maps were then aggregated into daily maps for further calculation.

FIGURE 1
The methodological approach for estimating ground-level NO2.
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Quality flag bands were used to filter out low-quality pixels
from the satellite products (OMI NO2 and TROPOMI NO2) to
ensure the accuracy of the data. The bands used for filtering
include “VcdQualityFlag” (even integer), “CloudFraction”
(<0.3), and “qa_value” (>0.75), as recommended in previous
studies (Lamsal et al., 2022a; Lamsal et al., 2022b). After quality
control, the OMI and TROPOMI data were averaged on a daily
basis to create a daily satellite combined dataset with a common
grid (1 × 1 km grid).

The WRF model provides meteorological data in NetCDF
format. The Unified Post Processing (UPP) Toolkit (NCEP UPP,
2022) was used to process the WRF model output data. UPP,
which was developed at the National Center for Environmental
Prediction (NCEP), has the capability of calculating various fields
and interpolate them at different pressure levels from output data
of the WRF model. We used the UPP tool to calculate
temperature maps, humidity maps at 2 m height, planetary
boundary layer height maps, wind speed at 10 m. Then, those
data were resampled on the standard grid in order to be
consistent with other satellite image products in the study
area. These meteorological maps were then aggregated into
daily mean maps for modeling.

NDVI, a MOD13Q1 product from Terra MODIS, was
preprocessed similarly to those described for NO2 maps, which
were value extraction and transformation, geo-referencing, and
resampling. The road map data was in vector format (shapefile),
containing road lines and line characteristics. In order to use this
feature as input of the model, the line density calculation was applied
to convert the data into raster format (grids). It calculates a
magnitude-per-unit area from polyline features, which fall within
a radius around each cell (pixel). The radius is set approximately
1 km. The output image was then applied the nearest neighbor
resampling method using the gdalwarp tool to get the same grid as
the other maps.

3.2 Integrating data

Once the maps and station data were preprocessed, they were
combined to create the training dataset. The aim was to establish the
connection between the values on the maps and the observed NO2 at
the ground level. To ensure compliance with spatial and time
constraints, the following measures were taken:

• Spatial constraint: The map data was extracted at the exact
location of the ground station.

• Time constraint: The map data and ground-based NO2

observations were synchronized by calculating the daily
average values.

3.3 Modeling and validation

This study tested three different models: mixed effect model,
neural network, and LightGBM. The MEM model has been widely
used in the past to estimate pollution using satellite imagery and
multi-source data. Recently, tree-based models have shown good
results in estimating NO2 maps. Therefore, in this study, we selected

two machine learning models (MEM and LightGBM) to compare
their performance. Additionally, we also wanted to experiment with
a deep learning model. However, CNN-based models were not
suitable for the current dataset, as complex deep learning models
may not be suitable for sparse and limited data. Hence, we chose to
experiment with a neural network model with multiple hidden
layers and compared it with traditional machine learning models.

These models were fed with input parameters including NO2

tropospheric column density (combined OMI and TROPOMI),
meteorological data (humidity, PBLH), land cover (NDVI), and
road density. Temperature and Wind Speed was not included in the
input parameters due to its potential to create significant errors in
estimating NO2 concentrations in areas where ground monitoring
stations are not installed in Vietnam. In other words, due to the
uneven distribution of stations, the learned characteristics from the
training dataset may not accurately reflect the patterns in areas
without stations. For example, in mountainous regions with rocky
terrain and dense forests (where there are no monitoring stations),
the estimated pollution levels may appear higher than in flatland
areas (with multiple monitoring stations, representing high emission
areas).

The mixed effects model (MEM) is a type of land-use regression
(LUR) model that consists of both fixed and random effect
components. The formula for this model can be expressed as:

NO2 i,j � ∑N
k�1

αk Xk,i,j + α + β( ) (1)

WhereNO2 i,j represents the estimated NO2 concentration at spatial
location j on day i. Xk,i,j refers to the kth parameter at location j on
day i, where N is the total number of parameters used in the model.
The αk, α coefficients denote the fixed effect component, which
includes the slope and intercept of input parameters. The β

coefficient represents the random effect of the intercept that
varies from day to day.

LightGBM is a popular gradient boosting tree algorithm (Ke
et al., 2017) used in machine learning. It utilizes a group of weak
learners to improve the performance of the model. The regressor is
optimized by adjusting hyper-parameters, such as the number of
trees, the maximum tree depth, and learning rate, through the use of
a grid search technique. The goal of this process is to improve the
model’s accuracy and reduce errors.

Neural network is a powerful method for modeling the
complex and nonlinear relationships between inputs and
outputs, which makes it suitable for studying atmospheric
chemistry processes. It usually includes input, output, and
hidden layers in its architecture (Nielsen, 2018). In this study,
the neural network architecture was customized to fit the dataset
size in terms of features and samples. During training and testing,
the optimizer/learning rate, metric, and epochs were adjusted to
optimize the performance of the model.

To assess the quality of the models, statistical indicators were
used to compare the estimated NO2 levels from the model with the
actual NO2 observations recorded at ground stations. The 10-fold
CVmethod was employed to evaluate the performance of the model.
After being trained and validated, the model was utilized to produce
daily NO2 concentration maps with a spatial resolution of 1 × 1 km.
To evaluate its accuracy, the daily maps were compared with
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ground station measurements using both temporal (daily mean)
and spatial (pixel value extracted at station locations) constraints.
In addition, to provide a more comprehensive analysis, daily
ground measurements and NO2 maps were aggregated into
monthly and annual averages. The annual mean of our NO2

maps was compared with the global NO2 product (Anenberg
et al., 2022) for the same study area, which provides annual
average NO2 datasets from 1990–2020 using a LUR method. The
comparison involved evaluating the annual averages of our maps
and the global product against ground station measurements of
NO2 taken in Vietnam from 2019–2021.

To compare and evaluate the models and maps, various
statistical indicators were utilized, including the Pearson
correlation coefficient (r), Root Mean Square Error (RMSE), and
Mean Relative Error (MRE).

Pearson r � ∑n
t�1 yt − �y( ) xt − �x( )�����������∑n

t�1 yt − �y( )2√ �����������∑n
t�1 xt − �x( )2

√ (2)

RMSE �
��������������
1
N

∑N

t�1 yt − xt( )2
√

(3)

MRE � 1
N

∑N

t�1
yt − xt

∣∣∣∣ ∣∣∣∣
yt

.100% (4)

Here, xt, yt represent the estimated values from the model (or extracted
from the map) and the measured values at the ground station,
respectively. �x and �y are the respective average values of the two
data series.

4 Results and discussion

4.1 Model validation

Supplementary Table S2 presents the selected parameters for each
model. For the MEMmodel, the model structure has been presented in
Section 3.3 and no parameters need to be adjusted. With the NN
network, due to the small input dataset size (9,027 samples and
5 features), we designed a small size neural network consisting of
1 input layer, 3 hidden layers including 16 nodes, 32 nodes, 16 nodes,
respectively. Adam optimizer was selected with the learning rate of
0.001. The metric used was mean squared error (MSE) and the epochs
was set to 200. With the LightGBM model, through the grid search
technique, we selected a set of parameters for the model which
presented in the Supplementary Table S2.

Table 1 shows the evaluation results after setting up and training
the models. Among the experimental models, the LightGBM model
achieved the best performance, with a Pearson correlation coefficient of
0.87, RMSE of 6.28 μg/m³, and MRE of 34.65%. In contrast, the MEM
and Neural Network models had poorer quality. The LightGBMmodel
also demonstrated superior performance in the 10-fold CV, with a
Pearson correlation coefficient of 0.77, RMSE of 7.9 μg/m³, andMRE of
42.6%. Based on these results, we selected the LightGBM model to
estimate the daily NO2maps for Vietnam from 2019–2021, which were
then aggregated into monthly and annual average maps.

4.2 Map validation

A comparison was made between the daily NO2 maps and
ground station measurements during the period of 2019–2021. The
scatter plot depicted in Supplementary Figure S2 supports the
findings presented in Table 1 regarding the model evaluation.
The daily maps had a high correlation with the ground station
observations, with Pearson r at 0.87, RMSE at 6.28 μg/m³, MRE at
34.65% based on 9,027 samples. However, the evaluation results
varied by stations as presented in Supplementary Table S3. Pearson r
varied from 0.27 to 0.88 with lower values at stations in Vung Tau,
Long An (SE and MRD region) and higher values in Bac Ninh,
Quang Ninh, Ha Noi (RRD region). The RMSE varied from 2.1 to
10.1 μg/m³. The stations with low RMSE values were located across
regions, while stations with high RMSE were mostly located in Ha
Noi, Bac Ninh, Quang Ninh (RRD). Furthermore, some stations
located in the same province had highly different evaluation results,
such as Bac Ninh, Hai Duong, Quang Ninh (RRD) and Gia Lai
(Central Highland), indicating the need for further investigation.

Annual average NO2 maps were created by aggregating daily
NO2 data from 2019 to 2021, as illustrated in Figure 2. The maps
reveal that NO2 was predominantly concentrated in the Red River
Delta region in the North, along the North Central Coast, and in the
Ho Chi Minh city area in the South. These regions are critical
economic centers of Vietnam with high population density, heavy
traffic, numerous industrial parks, and factories that generate
significant NO2 emissions. Across the country, the annual
average NO2 concentration varied from 4.4 to 36 μg/m³ in 2019,
4.2 to 32.8 μg/m³ in 2019 and 5.3 to 40.1 μg/m³ in 2021. Notably, the
national average concentration remained relatively stable between
2019 and 2021, indicating a persistent NO2 pollution problem in
Vietnam. Despite the implementation of social distancing measures

TABLE 1 Models’ evaluation results.

Model N Pearson r RMSE (μg/m³) MRE (%)

All data Mixed Effect Model 9,027 0.66 9.39 54.01

Neural Network 9,027 0.57 10.25 61.63

LightGBM 9,027 0.87 6.28 34.65

10 Fold CV Mixed Effect Model 903 0.56 10.46 59.29

Neural Network 903 0.55 10.43 62.64

LightGBM 903 0.77 7.93 42.6
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in response to the COVID-19 pandemic in 2019 and 2020 in
Vietnam, there was not a significant variation in the annual
mean NO2 levels measured at stations. This lack of variation
resulted in no significant changes in the annual NO2 maps over
the years (see Table 2; Supplementary Figure S3).

In Supplementary Figure S3, a detailed comparison is presented
between the annual average NO2 concentration maps for the years
2019, 2020, and 2021, and the ground stations located in Vietnam. It
is noteworthy that the number of stations used for annual map
assessment is less than that used for daily map assessment. This is
because, when aggregating daily data into an annual average, any
station that did not have more than 50% of the data for the year was
discarded and not used for evaluation. Furthermore, in 2019, only
three stations were evaluated, whereas this number increased to
30 in 2020 and to 48 in 2021. The difference between the annual
maps and the ground stations varied from −2.5 μg/m³ (Quang Ninh
- RRD) to 0.6 μg/m³ (HaNoi - RRD) in 2019; −3.96 μg/m³ (Bac Ninh
- RRD) to 4.6 μg/m³ (Ha Noi - RRD) in 2020; −4.12 μg/m³ (Ha
Noi–RRD) to 8.13 μg/m³ (Bac Ninh–RRD) in 2021.

To ensure a thorough assessment, we compared the quality of
our annual maps from 2019 to 2021, not only against ground
stations, but also against the annual global product (2019–2020)
developed by Anenberg et al. (2022). Table 2 displays the findings.
Our annual maps showed markedly superior quality in comparison
to both the global annual maps and the ground stations. Specifically,
we achieved a Pearson correlation coefficient of 0.95, an RMSE of
2.1 μg/m³, and an MRE of 8.6%, while the global annual maps
achieved only a Pearson r of 0.27, an RMSE of 13.3 μg/m³, and an

MRE of 57.4%. Additionally, our map from 2019 to 2021 had a
Pearson r of 0.95, an RMSE of 2.27 μg/m³, an MRE of 9.79%, and
81 samples, indicating the high quality of the annual NO2 maps in
this study and the potential of this approach to develop NO2 maps
from multi-satellite images over Vietnam.

5 Conclusion

In this study, dailyNO2maps at 1 × 1 kmoverVietnamwere created
using OMI and TROPOMI satellite images as well as auxiliary data from
2019–2021. Threemodels were experimented, includingMEM,NN, and
LightGBM, with LightGBM proving to have the best quality (Pearson r
of 0.87, RMSE of 6.28 μg/m³, MRE of 34.65%). The LightGBM model
was used to generate the daily NO2 maps, which were validated against
ground stations and found to be accurate. However, the quality of the
maps varied by station, with Pearson r ranging from 0.27 to 9.88 and
RMSE ranging from 2.1 to 10.1 μg/m³ between 2019–2021. The daily
mapswere then combined to producemonthly and yearly averagemaps.
Our annual average map was compared to a global product and ground
stations, and it was found to have superior quality with Pearson r of 0.95,
RMSE of 2.27 μg/m³, MRE of 9.79%, and 81 samples. This is the first
study on constructing NO2 concentrationmaps in Vietnam usingmulti-
source satellite data. The study encountered challenges such as uneven
distribution of monitoring stations in the research area and limitations
posed by cloud coverage on NO2 satellite data (OMI, TROPOMI).
Further exploration of these issues is needed in future research to
enhance the quality of the maps.

FIGURE 2
Annual mean ground-level NO2 maps from 2019 to 2021.

TABLE 2 Comparison of validation results for ours and the global annual mean maps to ground station values.

Time Study N Pearson r RMSE (μg/m³) MRE (%)

2019–2020 (Anenberg et al., 2022) 33 0.27 13.3 57.4

2019–2020 This study 33 0.95 2.1 8.6

2019–2021 This study 81 0.95 2.27 9.79
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Introduction: Soil organic carbon (SOC) sequestration is one of the main
ecosystem services provided by well-managed grasslands. In the
Mediterranean region, sown biodiverse pastures (SBP) rich in legumes are a
nature-based, innovative, and economically competitive livestock production
system. As a co-benefit of increased yield, they also contribute to carbon
sequestration through SOC accumulation. However, SOC monitoring in SBP
require time-consuming and costly field work.

Methods: In this study, we propose an expedited and cost-effective indirect
method to estimate SOC content. In this study, we developed models for
estimating SOC concentration by combining remote sensing (RS) and machine
learning (ML) approaches. We used field-measured data collected from nine
different farms during four production years (between 2017 and 2021). We
utilized RS data from both Sentinel-1 and Sentinel-2, including reflectance
bands and vegetation indices. We also used other covariates such as climatic,
soil, and terrain variables, for a total of 49 inputs. To reduce multicollinearity
problems between the different variables, we performed feature selection using
the sequential feature selection approach. We then estimated SOC content using
both the complete dataset and the selected features. Multiple ML methods were
tested and compared, including multiple linear regression (MLR), random forests
(RF), extreme gradient boosting (XGB), and artificial neural networks (ANN). We
used a random cross-validation approach (with 10 folds). To find the
hyperparameters that led to the best performance, we used a Bayesian
optimization approach.

Results: Results showed that the XGB method led to higher estimation accuracy
than the other methods, and the estimation performance was not significantly
influenced by the feature selection approach. For XGB, the average root mean
square error (RMSE), measured on the test set among all folds, was 2.78 g kg−1 (r2

equal to 0.68) without feature selection, and 2.77 g kg−1 (r2 equal to 0.68) with
feature selection (average SOC content is 13 g kg−1). The models were applied to
obtain SOC content maps for all farms.
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Discussion: This work demonstrated that combining RS and ML can help obtain
quick estimations of SOC content to assist with SBP management.

KEYWORDS

remote sensing, satellite, cross-validation, features selection, sown biodiverse pasture

1 Introduction

Soil systems are intricate networks of both organic and inorganic
matter with varying chemical and physical attributes that can differ
from site to site, or even within the same site. These systems also
serve as the primary carbon reservoirs on land, with a capacity to
store roughly 80% of all organic carbon, totalling an estimated
2,400 Pg of carbon (PgC)—more than three times the amount found
in the atmosphere (Jobbágy and Jackson, 2000; Chappell et al.,
2016). The level of soil organic carbon (SOC) present is heavily
influenced by soil management practices, soil properties, and
climatic conditions, with significant spatial differences that pose a
challenge when estimating terrestrial carbon stocks and fluxes
(Giardina et al., 2014; Doetterl et al., 2015; Koven et al., 2017).
In terms of preserving SOC and other essential ecosystem services,
grasslands rank among the most significant terrestrial ecosystems
(Egoh et al., 2016; Bardgett et al., 2021). However, SOC estimation in
grassland ecosystems is challenging due to factors such as the high
spatial and temporal variability of SOC, heterogeneous distribution
within soil profiles and the fact that methods for SOC estimation are
often destructive and time-consuming (Angelopoulou et al., 2019;
Xiao et al., 2019). Remote sensing (RS) and machine learning (ML)
models have the potential to improve the accuracy and certainty of
SOC estimation in grassland ecosystems.

RS data is often used in providing explanatory variables for
estimating SOC using ML methods (Angelopoulou et al., 2019),
especially as spectral sensors have improved significantly in recent
decades, with enhanced spatial and temporal resolutions.
Consequently, RS data from satellites (such as Landsat 7/8 and
Sentinel-2) and unmanned aerial vehicles (UAVs) have led to a rise
in applications for monitoring SOC in croplands and grasslands
(Zheng et al., 2004; Mariano et al., 2018; Sun et al., 2021). Vegetation
indices, have been widely used to estimate SOC (Xu et al., 2008;
Ullah et al., 2012; Davids et al., 2018), but there are limitations and
uncertainties associated with their use (Zhao et al., 2014; Ali et al.,
2016). More recently, individual spectral bands, sometimes in
combination with VIs, have been used to indirectly estimate SOC
(Wang et al., 2021; Zepp et al., 2021; Pan et al., 2022). RS data is often
combined with other covariates such as terrain and climatic
variables to improve the estimation (Mallik et al., 2020; Gardin
et al., 2021; Wang et al., 2022).

In recent years, there has been an increased interest in using ML
methods for estimating SOC or soil organic matter (SOM) (Pezzuolo
et al., 2017; Angelopoulou et al., 2019; Odebiri et al., 2021; Biney, 2022;
Chan et al., 2023). ML methods are automated techniques that look
for hypotheses to explain data and can be applied to any learning task.
Commonly used models to estimate SOC/SOM include random
forests (RF) and artificial neural networks (ANNs) (Lamichhane
et al., 2019). These models have demonstrated their capacity to
enhance SOC estimation by reducing the error between the
ground-measured SOC/SOM values and the estimates generated by

the models (e.g., Ladoni et al., 2010; Pouladi et al., 2019; Zepp et al.,
2021; Wang et al., 2022). Further, some ML methods such as RF have
also demonstrated higher performance in estimating SOC than
geospatial models (Veronesi and Schillaci, 2019). Estimations of
SOC/SOM content at high spatial resolutions (<50 m) have
significantly improved in the past decades (Angelopoulou et al.,
2019). While ML methods are predominantly associated with the
use of satellite data, there has been a limited number of studies
exploring other remote sensing sources with higher spatial resolution,
such as UAVs (Angelopoulou et al., 2019). Satellite data sources
remain the most commonly used as they offer advantages such as
short revisit times and medium spatial resolution (Xiao et al., 2019).
However, most applications developed to estimate SOC/SOM content
are still specific to the particular land cover systems in which they were
trained and validated. For highly specific land use systems that can be
a problem, as existing models were never trained with system-
specific data.

Sown biodiverse permanent pastures rich in legumes (SBP) are
one example of such unique grassland/pasture systems. SBP have
been implemented since the 1960 s in Portugal to boost pasture
yields and increase animal stocking rates (Teixeira et al., 2015;
Morais et al., 2022). This system involves sowing a combination
of up to 20 legume and grass species or cultivars that provide high-
quality animal feed. In addition to the direct benefits of this system,
such as increased forage production, a major co-benefit is soil
carbon sequestration, as noted by Moreno et al. (2021) and
Teixeira et al. (2011). To assist with compliance to the Kyoto
Protocol goals under the Agriculture, Forestry and Other Land
Uses activities, the Portuguese Carbon Fund provided support for
the installation and maintenance of SBP between 2009 and 2014.
Payments were made to over 1,000 farmers based on predetermined
sequestration factors that were established from data gathered
during previous studies, rather than on carbon content increases
that were measured on the farm (Teixeira et al., 2011; APA, 2018).
Thus, there is a lack of indirect methods that can be broadly applied
and are specifically tailored to SBP systems, hindering effective
carbon management of this unique pasture system.

In the present research, we employed a combination of RS data
and various ML techniques to estimate SOC content at a depth of
20 cm in SBP. We collected data from Sentinel-1 and Sentinel-2
satellites during two periods, August and the closest date to soil
sampling. Five VIs were extracted from the RS data, along with
various climatic, soil, terrain, and other auxiliary variables. Two
variable selection methods were used, one utilizing all variables
and the other using the sequential feature selection (SFS) approach
to measure multicollinearity among input variables and select the
most relevant ones for the SOC estimation. We evaluated the
performance of the models using a random cross-validation
approach with 10 folds. The resulting models were then used to
estimate SOC and generate SOC content maps for the sampled
farms’ entire sites.
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2 Material and methods

2.1 Study area and soil sampling design

Data from nine different farms were used in this work: eight
farms in Portugal (Farms 1, 2, 3, 5, 6, 7, 8, and 9) and one in Spain
(Farm 4). They are located across latitudes and longitudes ranging
respectively between 37°50′ and 40°30′N and 6°80′ and 8°30′W
(Figure 1). The size of surveyed farms ranges between 26 ha
(Farm 8) and 42 ha (Farm 6). All farms are in the hot-summer
Mediterranean climate region, according to the Köppen climate
classification system (Rubel and Kottek, 2010; IPMA, 2018).

According to the European Soil Database (ESDAC, 2003), the
nine sampled farms are characterized by five different soil types:
Dystric Cambisol (Farms 1 and 4), Orthic Podzol (Farms 2, 3, and
5), Eutric Cambisol (Farms 6 and 8), Rhodo-Chromic Luvisol (Farm
7) and Ferric Luvisol (Farm 9). Regarding dominant parent material,
there are six different types: granite (Farms 1 and 6), diorite (Farms
3 and 5), acid regional metamorphic rocks (Farms 7 and 9), river
terrace sand or gravel (Farm 2), (meta-) shale/argillite (Farm 4) and
sandstone (Farm 8).

In total, four production years were covered in this study
(between 2017-18 and 2020-21). The number of production years
covered and the number of samples per production year vary
between farms. For example, Farm 1 was sampled in all four
production years, but Farm 9 was only sampled in one
production year (2018-19). Additionally, considering only Farm
1, in the first year, 40 plots/locations were sampled, but in the
following years, more samples were collected, with 2018-19 having
the highest number of samples (75 samples). The total number of
collected samples and collection years are summarized in Table 1. In

each farm, the selection of sampling locations was carefully made to
minimize any potential influence of trees and rocks on the measured
SOC content. Due to the significantly different tree densities across
the sampling locations, achieving an equal number of sampling
locations per farm was not feasible.

Soil sampling took place in the period between September and
May. They were collected using two different methods: 1) manual
collection and 2) mechanical collection. This was expressed in the
analysis as an auxiliary binary variable. In both collection methods,
samples were collected in the 0–20 cm topsoil layer, which is the
reference depth in the LUCAS Soil project conducted by the
European Soil Data Centre (ESDAC)—Joint Research Centre
(JRC) (Orgiazzi et al., 2018). Manual collection used an auger
(2 cm diameter), while mechanical collection used a Wintex
2000 soil sampler installed on a utility terrain vehicle. Each soil
sample was composed of four sub-samples that were pooled and
mixed to achieve uniformity. All soil samples were air-dried and
passed through a 2 mm stainless steel sieve. SOC content was
calculated using the soil fractions after an elemental analysis
performed after a combustion at 1050°C. In all soil samples,
inorganic carbon removal was performed prior to the total SOC
quantification. All values of SOC presented here are expressed in
grams of SOC per kg of dry soil.

2.2 Data collection and preprocessing

In this study, we used RS data, climate, terrain, and soil data to
model SOC content. All data was obtained from Google Earth
Engine (GEE), which reduced data processing time and storage
space. GEE is a cloud-based platform that allows users to access and
process massive amounts of geospatial data. The platform includes a
catalogue of over 600 petabytes of satellite imagery, aerial imagery,
and other geospatial datasets. GEE enables users to analyse data to
track changes over time, map trends, and quantify differences on the
Earth’s surface. For example, the complete Sentinel-2 database is
available. Table 3 summarizes all the data used, including their
sources, variable names, and spatial resolution. In total, 49 input
variables were considered.

For all data used, we applied “min-max” normalization
(i.e., values were normalized between 0 and 1). Each input was
subjected to individual and independent data normalization,
without any dependence on the other inputs. This was done to
increase the learning rate and ensure faster convergence as models
with large weights tend to be unstable and suffer from poor
performance during learning and sensitivity to input values, the
latter resulting in higher generalization error (Bishop, 1995;
Goodfellow et al., 2016).

In order to understand the relationship between the data used
and the measured SOC content, we calculated a Spearman’s rank
correlation (Spearman, 1904). This is a non-parametric measure of
monotonic statistical dependence between two variables, and it does
not make any assumptions about the distribution of the variables.

2.2.1 Remotely sensed data collection
The RS data were obtained from the Sentinel-1 and Sentinel-2

missions. We used the Sentinel-1 C-band Level-1 Ground Range
Detected images provided by GEE, which were acquired on a

FIGURE 1
Location of the nine sampled farms used in this work. Farm 4 is
the only one in Spain, all other farms being in Portugal.
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TABLE 1 Description of the collected soil samples per farm and production year.

Farm Year Number of collection periods Number of samples Sample collection method

Farm 1 (28 ha) 2017-18 3 40 Manual—40

2018-19 5 75 Manual—28

Mechanical - 47

2019-20 3 58 Manual—24

Mechanical—34

2020-21 3 64 Manual—22

Mechanical—42

Farm 2 (27 ha) 2019-20 1 35 Mechanical—35

Farm 3 (29 ha) 2017-18 2 32 Manual—32

2018-19 4 71 Manual—24

Mechanical—47

2019-20 3 57 Manual—24

Mechanical—33

2020-21 2 43 Manual—12

Mechanical—31

Farm 4 (34 ha) 2018-19 2 24 Manual—24

Farm 5 (34 ha) 2018-19 4 74 Manual—24

Mechanical—50

2019-20 3 58 Manual—24

Mechanical—34

2020-21 3 52 Manual—24

Mechanical—28

Farm 6 (42 ha) 2017-18 3 39 Manual—39

2018-19 3 72 Manual—15

Mechanical—57

2019-20 3 57 Manual—24

Mechanical—33

2020-21 3 51 Manual—24

Mechanical—27

Farm 7 (35 ha) 2018-19 1 12 Manual—12

2019-20 1 33 Mechanical—33

2020-21 1 30 Mechanical—30

Farm 8 (26 ha) 2018-19 3 28 Manual—28

2019-20 3 51 Manual—22

Mechanical—29

2020-21 3 53 Manual—24

Mechanical—29

Farm 9 (30 ha) 2018-19 1 12 Manual—12

(Continued on following page)
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descending orbit in Interferometric Wide swath mode (IW). The
imagery in GEE consists of Level-1 Ground Range Detected (GRD).
We utilized the VV and VH polarization bands, and the intensity
cross-ratio (CR) VV/VH was also calculated. Sentinel-2 is a two-
satellite constellation mission (Sentinel-2A and Sentinel-2B), which
carries a wide-swath multispectral imager with 13 spectral bands.
The image resolutions are 10 m (Blue, Green, Red, and Near
Infrared bands), 20 m (three Vegetation Red Edge bands, Narrow
NIR band, and two shortwave-infrared bands), and 60 m (Coastal
aerosol, Water vapour, and SWIR-Cirrus bands). We used Level-2A
data products, i.e., bottom of atmosphere (BOA) reflectance images
obtained from Level-1C products. Bands 1 (coastal aerosol), 9 (water
vapour), and 10 (SWIR-Cirrus) were excluded as they are specific to
atmospheric characterization and not land surface monitoring.
Besides the individual bands, we used spectral data to calculate
five vegetation indices (Table 2): the normalized difference
vegetation index (NDVI) (Tucker, 1979), normalized difference
water index (NDWI) (Gao, 1996), simple ratio (SR), soil-adjusted
vegetation index (SAVI) (Huete, 1988) and optimized soil-adjusted
vegetation index (OSAVI) (Rondeaux et al., 1996).

Regarding the Sentinel-1 and Sentinel-2 data, for each band or
vegetation index, we considered data from two periods. First, we
considered a composite image of the available images for the period
between August 1st and August 31st. This composite image aims to
capture the spectral reflectance of the bare soil. Second, we also
considered data from Sentinel-1 and Sentinel-2 from the closest date
to the soil collection date. This aims to capture the inter-yearly
variation of SOC between the period when the soil was bare and the
collection date, when the soil was covered by vegetation.

For the period when the soil is almost bare in the SBP system,
i.e., during August, we considered a composite image of the available
Sentinel-1 and Sentinel-2 images for the period between 1st August
and 31st August. The composite image in August captures the
spectral reflectance of the bare soil, and the image closest to the
soil collection period captures the influence of vegetation on SOC.
We also removed pixels masked as clouds and cloud shadow using

the “pixel_qa” band from Sentinel-2 data obtained from GEE.
Additionally, we also used the available image closest to each soil
collection period. All the individual bands and the vegetation indices
were calculated and downloaded using GEE.

2.2.2 Climate, soil and terrain data collection
The mineralization and accumulation of SOC are highly

dependent on climate, specifically soil temperature and moisture
(Rey et al., 2005; Thornton et al., 2009). Therefore, we used data
from the Global Land Data Assimilation System (GLDAS—Rodell
et al., 2004) for these variables. The data available in GLDAS is on a
daily basis and we used both soil temperature and moisture on the
collection date. We also included soil data to characterize SOC, such
as clay, sand, silt content and soil pH (H2O). Soil data was obtained
from SoilGrids (Hengl et al., 2017). SOC is also influenced by terrain
characteristics (Rogge et al., 2018) and thus we used data from
NASA EOSDIS Land Processes DAAC (NASA, 2020) and Theobald
et al. (2015) for the Digital Elevation Model (DEM), the Continuous
Heat-Insolation Load Index (CHILI), the Multi-Scale Topographic
Position Index (mTPI) and Topographic Diversity (topoDivers).
CHILI captures the effects of insolation and topographic shading on
evapotranspiration (calculated by the insolation at early afternoon,
sun altitude equivalent to the equinox). mTPI distinguishes ridge
from valley forms (calculated by the elevation at each location
subtracted by the mean elevation within a neighborhood).
Finally, topoDivers represents the variety of temperature and
moisture conditions available to species as local habitats
(calculated by mTPI and soil moisture). All data was calculated
and downloaded using GEE.

2.2.3 Auxiliary data
We also considered six additional auxiliary variables: the

number of days since the beginning of the production year
(counting from 31st August), the number of days between the
closest Sentinel-2 image and the soil sampling date, the number
of days between the closest Sentinel-1 image and the soil sampling,
the collection method (manual or mechanical) the year, and the
month.

2.3 Modelling and mapping soil organic
carbon

2.3.1 Feature selection
In this study, we used a long list of independent variables

(49 inputs) to estimate SOC content. However, in practice not all
of those variables might be relevant for estimating SOC. To
address this, we used a two-step approach: 1) first, all input
variables were included in the estimation of SOC, then 2) we
applied SFS and retrained the algorithm with a subset of

TABLE 1 (Continued) Description of the collected soil samples per farm and production year.

Farm Year Number of collection periods Number of samples Sample collection method

Total 63 1,121 Manual—502

Mechanical—619

In Bold are the sum of the lines per column.

TABLE 2 Calculation formula for the vegetation indices used in this paper.
NDVI, normalized difference vegetation index; NDWI, normalized difference
water index; SR, simple ratio; SAVI, soil-adjusted vegetation index; OSAVI,
optimized soil-adjusted vegetation index.

Vegetation indices Formula

NDVI NIR−Red
NIR+Red

NDWI Green−NIR
Green+NIR

SR NIR
Red

SAVI 1.5 NIR−Red
NIR+Red+0.5

OSAVI 1.16 NIR−Red
NIR+Red+0.16
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variables. The SFS approach involves adding features in an
automated and iterative manner to form a feature subset. At
each iteration, the best feature to add or remove is chosen based
on the cross-validation score of the model validation procedure.
Then, after applying SFS, we obtained a subset of the input data
that has the most relevant variables for estimating SOC. This
method allowed us to identify and select only the pertinent
variables that are crucial for accurately estimating SOC
content within the dataset.

2.3.2 Regression methods
The SOC content was modelled using four regression methods:

multiple linear regression (MLR—Barbur et al., 1994), random
forest (RF—Breiman, 2001), extreme gradient boosting
(XGBoost- XGB—Chen and Guestrin, 2016) and artificial neural
network (ANN—Rumelhart et al., 1986). To optimize the regression
models, we used Bayesian optimization with 100 initializations to
find the best hyperparameters for each method. The methods and
their respective hyperparameter option spaces are described in detail
in the next section. All methods were implemented on Python 3.8.4,
using multiple toolboxes. For MLR regression and RF, we used the
scikit-learn 0.24 toolbox (https://github.com/scikit-learn/scikit-
learn). For XGB, we used the xgboost 1.4.2 toolbox (https://
github.com/dmlc/xgboost). For ANN, keras 2.9 was used to
construct the ANN architecture and TensorFlow 2.7 as the
backend for keras (https://github.com/keras-team/keras; https://
github.com/tensorflow/tensorflow). To prepare the data, we used
Numpy 1.18.5 (https://github.com/numpy/numpy) and Pandas 1.0.
4 (https://github.com/pandas-dev/pandas). The Bayesian
optimization was performed using the scikit-optimizer 0.8.1
(https://github.com/scikit-optimize/scikit-optimize).

MLR was the simplest method used in this study. It fits a linear
equation to the observed data using the relationship between all
independent variables and a dependent variable, using a least
squares fit. Decision trees/forests, such as RF, is a learning
method that creates multiple decision trees and fits the trees to
training data. In a RF, the value of the response variable can change
across the trees in the forest. However, within each individual tree,
the predicted variable does not change in each leaf. This is because
each tree is built using the same set of predictor variables and the
same splitting criteria, resulting in consistent splits at each node of
the tree. One advantage of RF over other bagging models is its ability
to produce nearly uncorrelated predictions due to the random
features, producing predictions with low variance. For
optimization, we tested various options involving the number of
estimators, the minimum number of samples per leaf, the maximum
depth, the error function, the maximum number of features/inputs
in each split, and the use of a bootstrap approach.

XGB is a newer method, proposed in 2016, that is based on
gradient boosting tree methods. It trains by making predictions
sequentially and combining weak predictive tree models,
learning from the obtained errors. XGB has significant
improvements to traditional gradient boost methods, namely,
in terms of performance, parallelization, distributed computing,
and computational time. For optimization, various options such
as the number of estimators, the learning rate, the maximum
depth of the trees, and L1 and L2 regularization were
considered.

An artificial neural network (ANN) is a multi-layer network
structure that consists of an input layer with a set of input/
explanatory variables, an output layer containing the dependent/
objective variable, and one or more hidden layers with nodes or
artificial neurons. Each hidden layer receives a signal, processes it
through a transfer function, and passes the processed signal to
neurons connected to it in the following layer. In order to optimize
the hyperparameters of the ANN, we considered one or two hidden
layers, the number of neurons in each hidden layer (between 50 and
10,000 with intervals of 50), the learning rate (between 0.01 and
1 with intervals of 0.015), and the activation function (which can be
“elu,” “relu” or “sigmoid”).

2.3.3 Validation approach and accuracy
assessment

We used a random cross-validation (CV) method, considering
10 folds, in order to have an appropriate measure of the estimation
error. The dataset was split into 10 approximately equal portions. In
each fold, a different portion of the data set was used to train the
models (i.e., 9/10 of total samples) and the remaining 1 part (hold-
out samples) was used as the test set. The performance of eachmodel
was measured in the hold-out samples in each fold. This procedure
was applied similarly to all regression models used.

The performance of the obtained models was assessed in the test
sets of the k-fold approach using four metrics: the root mean
squared error (RMSE), the relative RMSE (rRMSE), the ratio of
performance to deviation (RPD) and the coefficient of
determination (r2). The mathematical formula of the metrics are

RMSE �
�������������
1
n
∑N

n�1 c − ŷi( )2
√

rRMSE � RMSE

�y

RDP � σ

RMSE

r2 � 1 − ∑N
n�1 yi − ŷi( )2

∑N
n�1 yi − �y( )2

where n is the number of observations, yi is the observed value, and
ŷi is the predicted value, �y is the mean of the observed values and σ is
the standard deviation of the observed values.

3 Results

3.1 Analysis of measured soil organic carbon

For the farms with data available for more than 1 year, there was
a tendency for the observed SOC content to increase with time
(Figure 2). This pattern is clearly visible in Farm 1, which had an
average SOC of 12.73 g kg−1 in 2017-18 and 16.87 g kg−1 in 2020-21.
From the second to the third year, there was a 25% increase in SOC
(from 1.92 g kg−1–2.40 g kg−1) and, between the third and fourth
year, there was a 10% increase in SOC (from 2.40 g kg−1–2.63 g kg−1).
Farm 7 had the highest mean SOC (15.72 g kg−1) and Farm 9 had the
lowest mean SOC (5.89 g kg−1).

Additionally, the mean SOC content was 13.12 g kg−1. The
lowest observed SOC content was 4.70 g kg−1 (Farm 9 in 2018-
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19), and the maximum observed SOC content was 32.54 g kg−1

(Farm 1 in 2020-21). A positive correlation was observed between
the number of samples per farm and the variation of SOC. Farm
1 was the farm with the highest variation of SOC. It had an
interquartile distance (considering all years) of 8.30 g kg−1. Farm
1 was also the farm with the highest number of soil samples (237).
On the other hand, Farm 9, which had the lowest number of samples
(12 samples), had the lowest interquartile distance, only 1.14 g kg−1.
From the nine sampled farms, only one (Farm 4) is in Spain, but it
has similar SOC content distribution as the other Portuguese farms.
The average SOC content in Farm 4 is 13.10 g kg−1 (min: 6.03 g kg−1;
max: 19.40 g kg−1) and the average SOC in the Portuguese farms is
13.6 g kg−1 (min: 4.70 g kg−1; max: 32.54 g−kg−1).

Although two sampling methods (manual andmechanical) were
used for sample collection, the observed SOC content between the
two methods was very similar. Specifically, the samples collected
within the same farm using both methods show a high level of
similarity (less than 7% differences with no observable bias), with
any observed differences likely attributable to the typical spatial
variation within the farm.

The Spearman rank correlation between observed SOC content and
the input variables ranged between −0.61 and 0.32 (Figure 3). The
lowest correlation corresponded to the correlation between SOC
content the auxiliary dummy variable for manual or mechanical soil
sampling (−0.61) and the highest correlation of SOC content was with
the year (0.32). Analyzing the average correlation in absolute value, per
type of input (according to the “Type” column in Table 3), auxiliary
variables had the highest correlation (mean: 0.34), followed by climatic
variables (mean: 0.22), and by terrain variables (mean: 0.14); the
remaining average correlations were lower than 0.10. Despite the
low correlations, about 80% (40 out of 49 input variables) were

significantly correlated with SOC content, 37 variables at a
significance level of 5% and 3 variables at 10% significance level.

In the composite image of August, all bands were strongly and
significantly correlated with each other (average correlation of 0.65);
however, the correlation between bands in the Sentinel-2 image
closest to the collection date was significantly lower (average
correlation of 0.35). Vegetation indices, as expected, were
strongly and significantly correlated with the Sentinel-2 imagery
that was used to calculate them, i.e., vegetation indices in August are
strongly correlated with the composite Sentinel-2 imagery. There
were also strong correlations between location variables (latitude
and longitude) and soil variables (sand, silt, and pH) and the DEM.

3.2 Estimation of soil organic carbon

The feature selection procedure using SFS selected only 24 out of
the 49 input variables considered in this work, representing
approximately 48% of the total number of inputs. The selected
inputs covered all the “Process Categories” defined in Table 2. The
remote sensing imagery variables selected were Bands 2 and 12 from
Sentinel-2 in August, Bands 3, 4, 7, 8, and 8 A from Sentinel-2 at the
closest date, and VV from Sentinel-1 at the closest date. The
vegetation indices selected were NDVI and NDWI in August, as
well as NDVI, SR, SAVI, and OSAVI at the closest date. The selected
climatic variable was soil temperature. The soil variables selected
were silt content and pH. The terrain variables considered were the
DEM and the mTPI. Additionally, the auxiliary variables selected
were the number of days since August, the number of days from the
closest Sentinel-2 imagery, and the month of the year. Lastly, both
location variables, latitude and longitude, were also selected.

Among the regression methods used, XGB had the lowest
estimation error for both feature selection approaches, as can be
seen in Table 4 for the metrics of RMSE, rRMSE, RPD, and r2. A
general trend is that more complex models (RF, XGB, and ANN)
outperform simpler models (MLR) in predicting SOC content in SBP
systems. When comparing the regression methods, the mean RMSE of
XGB was, on average, 52% lower than the mean RMSE of the other
methods in the training sets and 11% lower than the other methods in
the test sets. Similar trends can be observed in the other estimation error
metrics. For example, the difference betweenMLR (themethodwith the
highest RMSE) andXGBwas 72% in the training sets (MLR: 3.10 g kg−1;
XGB: 0.87 g kg−1—considering the approach without feature selection),
and the difference was 18% in the test sets (MLR: 3.27 g kg−1; XGB:
2.69 g kg−1). Further, decision tree methods (RF and XGB) have a lower
estimation error than the othermethodsMLR, ANN). The RF andXGB
regression methods had similar estimation errors in the test sets, but
XGB performed better than RF in the training sets. MLR was also the
regression method with the lowest variation of the RMSE between
training and test sets, only 6% (considering the approach without
feature selection). The estimation error between the training set and test
set in the other methods always had an increase higher than 50%, e.g.,
for the ANN, the difference was about 56%. The XGB was the method
with the highest error increase, considering the RMSE, it more than
doubled in the test set in relation to the training set, but even so, it was
lower than in other methods.

Using the feature selection approach, where only 24 out of the
total 49 inputs were used, did not significantly influence the

FIGURE 2
Boxplot of the soil organic carbon (SOC) content for the nine
sampled farms in the four sampled production years.
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estimation error in the test sets for all regression methods. For
example, considering XGB, the RMSE with feature selection was
almost the same with all variables or with the selected variables
(without selection: 2.78 g kg−1; with selection: 2.77 g kg−1).
Nevertheless, in the training error, feature selection reduced the
RMSE in RF and XGB (about 13%) and increased the RMSE of MLR
and ANN (about 6%). This result highlights the efficacy of the
feature selection approach in identifying the most relevant input
variables for estimating SOC content. By accomplishing these dual
objectives, the feature selection process enhances the convergence of
the training procedure and ultimately improves the fitting
performance of the RF and XGB models.

Considering XGB, there was no significant change in the estimation
error between the two feature selection approaches. Figure 4 presents
the estimated SOC versus the observed SOCwhen each sample is left on
the test set using the approach with feature selection (using a hexagonal
binning plot). As can be seen in Table 4, the estimation errors in the test
sets were good, particularly in the region with the highest point density,
i.e., between 10 and 15 g kg−1. In this region, the RMSE in the test sets
decreased by about 20% (2.19 g kg−1). However, there was a non-
significant overestimation of the observed SOC between 7 and 12 g kg−1.

Additionally, there was a noticeable underestimation of the measured
SOC in the highest values (higher than 20 g kg−1), which corresponds to
the range of values with fewer observations.

In the XGB model with SFS, the VV feature (from Sentinel-1)
had the highest importance (about 35%) in the obtained results. It
was followed by the month of the year, latitude, and longitude. The
Sentinel-2 bands in August (Bands 2 and 12) had the lowest
contribution to the estimated SOC (less than 2%). Vegetation
indices also had a greater relevance for SOC estimation than
the individual satellite bands (each Vegetation Index at the
closest date has a feature relevance of about 5%, and individual
bands are lower than 3%). The terrain variables with the highest
contribution are DEM and mTPI with an importance of 3% and
4%, respectively. All the soil input data has an accumulated
importance lower than 7%.

3.3 Application at field-level

The obtained models can be used to estimate SOC for entire
parcels in the farms. As an example of the application, Figure 5

FIGURE 3
Spearman’s rank correlation between the soil organic carbon and the considered input variables. The input variables are: 22 individual bands from
Sentinel-2 (11 in August and 11 in closest date), 2 individual bands from Sentinel-1 (1 in August and 1 in closest date), 10 vegetative indices (5 in August and
5 in closest date), SOC proxies, soil variables, terrain variables, auxiliar variables and location variables. Variable names are explained in Table 3.
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depicts the spatial representation of SOC in the 9 sampled farms.
This figure was obtained for the day of 29 May 2021, using the
dynamic input data for that day, namely, the climatic data, Sentinel-
2 imagery, and vegetation indices. Sentinel-1 imagery was not
available for the same date, so we used Sentinel-1 imagery for the
closest date, i.e., 27 May 2021. All the other input data is static, so it

was not influenced by the date. The model used was the XGB model
with the feature selection approach.

The trends observed in SOC between farms in Figure 2 are also
verified when the XGB model was applied to the entire farm. For
example, Farms 1, 5, and 7 had the highest mean SOC in the year
2020–2021 in both observed and predicted values. Farm 8 was the

TABLE 3 Description of the variables used to model soil organic carbon, including type of data, sources, variable and spatial resolution.

Type Process category Source Variable Spatial resolution (m)

Dynamic Remote sensing imagery Sentinel-1 Single polarisation VV 10

Sentinel-2) Band 2 (Blue) 10

Band 3 (Green) 10

Band 4 (Red) 10

Band 5 (Vegetation red edge) 20

Band 6 (Vegetation red edge) 20

Band 7 (Vegetation red edge) 20

Band 8 (NIR) 10

Band 8A (Vegetation red edge) 20

Band 11 (SWIR) 20

Band 12 (SWIR) 20

Vegetation indices Normalized difference vegetation index (NDVI) 10

Normalized difference water index (NDWI) 10

Simple ratio (SR) 10

Soil-adjusted vegetation index (SAVI) 10

Optimized soil-adjusted vegetation index (OSAVI) 10

Climatic GLDAS Soil moisture 27 km

Soil temperature 27 km

Static Auxiliary variables - Number of days since the beginning of the production year —

Number of days since last Sentinel-2 image —

Number of days since last Sentinel-1 image —

Year —

Month of the year —

Collection method —

Soil GridSoils Clay content 250

Sand content 250

Silt content 250

Soil pH H2O 250

Terrain NASA EOSDIS Land Processes DAAC Digital elevation model (DEM) 30

Theobald et al. (2015) Continuous Heat-Insolation Load Index (CHILI) 90

Multi-Scale Topographic Position Index (mTPI) 270

Topographic diversity (topoDivers) 270

Location — Latitude —

Longitude —
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farm with the highest spatial variation (standard deviation (SD) of
1.34 g kg−1) and Farm 2 had the lowest spatial variation (SD: 0.74 g
kg−1). The minimum predicted SOC was also in Farm 2 (7.56 g kg−1)
and the highest predicted SOC was in Farm 8 (18.80 g kg−1). Farm
2 had the lowest predicted SOC, 7.56 g kg−1, but this farm was not
sampled in the production year 2020-2021. However, there are other
aspects that vary from the observed data. For example, in the
observed date, in the production year of 2020-2021, Farm 1 has
the highest SOC (32.54 g kg−1) and the highest predicted SOC was at
Farm 8, 18.80 g kg−1 in the predicted results. Nevertheless, the
highest observed SOC at Farm 1 was in January (on January 16),

which is significantly far from the date of May 29. Between January
and May, soil temperature increases and soil moisture decreases,
which supports SOC mineralization.

4 Discussion

This study demonstrated that more complex models (such as
RF, XGB, and ANN) perform better in predicting SOC content in
SBP systems in Portugal and Spain compared to simpler models like
MLR (Liu et al., 2011; Ali et al., 2016). Complex models are capable
of capturing complex, high-dimensional relationships between
dependent and explanatory variables, which simple models
cannot achieve. Two feature selection approaches were used to
evaluate the performance impact. Our findings indicate that
using all 49 input variables or a subset of just 24 (48%) yields
comparable estimation performance in both training and testing
phases. Moreover, the remaining variables encompassed almost all
data categories that affect SOC content, including remote sensing,
climatic, soil, and terrain characteristics.

Over the last decade, there has been a substantial increase in the
number of combined applications that utilize satellite RS and ML to
estimate SOC or SOMcontent. To investigate the extent of this increase,
we conducted a very simple search in the Google Scholar database on
10 January 2023, specifically focusing on papers that estimated SOC
content in pastures or grasslands using satellite RS. We utilized the
search string: “(soil organic matter” OR “soil organic carbon”) AND
“remote sensing” AND “satellite” AND “regression” AND “machine
learning”AND (“grassland”OR “pasture”), which resulted in 2,110 hits.
Of these, 30% (688 hits) were from 2022 to 50% (1,080 hits) were from
2021. However, upon sorting the results by relevance according to

TABLE 4 Estimation accuracy of the soil organic carbon in the training and test set of the cross-validation approach, for all using each of the machine learning (ML)
methods and for the two features selection approach. Metrics presented: considering mean root mean squared error (RMSE), relative RMSE (rRMSE), ratio of
performance to deviation (RPD) and r squared (r2). MLR, Multiple linear regression; RF, Random forests; XGB, XGBoost; ANN, Artificial neural network. The model
with the highest performance is in bold.

Without features selection

ML method Mean observed Training Test

RMSE rRMSE RPD r2 RMSE rRMSE RPD r2

MLR 13.12 3.10 0.24 1.59 0.60 3.27 0.25 1.51 0.55

RF 1.23 0.09 4.00 0.94 2.85 0.22 1.73 0.66

XGB 0.87 0.07 5.66 0.97 2.78 0.21 1.81 0.68

ANN 1.90 0.14 2.59 0.89 2.97 0.23 1.66 0.64

With features selection

ML method Mean observed Training Test

RMSE rRMSE RPD r2 RMSE rRMSE RPD r2

MLR 13.12 3.34 0.25 1.47 0.54 3.40 0.26 1.45 0.52

RF 1.05 0.08 4.69 0.95 2.83 0.22 1.74 0.64

XGB 0.76 0.05 5.60 0.98 2.77 0.21 1.80 0.68

ANN 1.98 0.15 2.49 0.85 3.06 0.23 1.61 0.59

FIGURE 4
Estimated versus observed soil organic carbon (SOC) using the
best model (XGBoost) in the features selection approach (i.e., only
using 24 features).
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Google Scholar, none of the first 50 hits were focused on grassland or
pasture systems as the present paper does. This analysis is by nomeans a
thorough review of the literature and surely depicts incomplete results,
but shows that grassland systems remain under analysed and, in
particular, this is the first study of this nature focusing on SBP.

This paper achieved better estimation performance for SOC
content in grasslands and pastures compared to many other
papers in the literature. For instance, Zhou et al. (2021)
obtained an r2 of 0.47 in their best model using a cross-
validation approach for Switzerland’s multiple land use/cover
systems, whereas the highest r2 obtained in this study was 0.70.
Hamzehpour et al. (2019) predicted SOC stock in a sub-region of
Iran and achieved an r2 of 0.44, while Wu et al. (2019) predicted

SOC content in a sub-region of China using various machine
learning regression models, and their best model, XGB, had an r2

of 0.74, which was similar to the r2 obtained in this paper.
Similarly, Keskin et al. (2019) estimated total soil carbon in a
sub-region of the United States of America using multiple
regression models, and the best model was a RF with an r2 of
0.72 in the validation set. Notably, decision trees consistently
outperformed other simpler or more complex methods (such as
ANNs) in all the studies that used different regression methods.
In this study, extreme gradient boosting (XGB) demonstrated
superior performance compared to the other models. Specifically,
the XGB model, along with other decision tree-based models,
outperformed artificial neural networks (ANN). There are several
plausible reasons for this observation. Firstly, XGB models tend
to be less reliant on extensive fine-tuning of hyperparameters,
potentially contributing to their improved performance, as
suggested by the results (Memon et al., 2019; Shwartz-Ziv and
Armon, 2022).

In this study, we observed that the estimation accuracy for the
highest SOC values was significantly lower than that for low-
medium values. This trend has been observed in other studies
that estimated SOC, as well as in the estimation of other
variables in croplands and grasslands, among others (Castaldi
et al., 2018). The normal frequency distribution of the data on
SOC is the cause of this limitation since the dataset is dominated by
mid-range values. To overcome this limitation, quantile regression
methods based on the approach used in this study can be employed,
such as quantile RF. Quantile regression models the relationship
between independent variables and specific percentiles of the
dependent variable, which is an improvement over regression
methods that represent the mean increase in the response
function produced by one unit increase in the associated
independent variables. In fact, recent studies have applied these
regression methods to SOC estimation (Lombardo et al., 2018;
Kasraei et al., 2021; Zhao et al., 2021). In the future, the
application of these methods should be tested to confirm if the
estimation performance increases significantly.

In addition, the number of observations per farm can also influence
results. It has been observed that the model tends to achieve a better fit
when applied to farms with a larger number of samples compared to
those with a smaller number of samples. For instance, Farm1 consists of
a total of 237 samples, while Farm 2 comprises only 35 samples.
Consequently, the model is more likely to exhibit improved
performance in capturing the specific characteristics associated with
Farm 1 rather than Farm 2. The imbalance in the number of
observations across farms may also impact the generalization error
when applying the model to other locations. However, considering that
the characteristics of the different farms are not significantly different,
we do not anticipate that the obtained model would yield highly
inaccurate estimations of SOC content for the sample used here.
The effectiveness of the model when applied to other SBP farms
should be assessed in future research work.

Here, we developed a rapid and cost-effective indirect method
for the purpose of expedite mapping of SOC in SBP farms. This
represents a significant improvement compared to the approach
proposed by Morais et al. (2021), which relied on data from in situ
field spectrometry and only replaced the laboratory analysis. In
terms of results, the obtained r2 value (0.68) is lower than the value

FIGURE 5
Spatial representation of the predicted SOC in the 9 sampled
farms using the best model (XGBoost) in the features selection
approach (i.e., only using 12 inputs). These results were obtained using
the Sentinel-2 image of May 29 and Sentinel-1 image of 27 May
2021. (A) Farm 1; (B) Farm 2; (C) Farm 3; (D) Farm 4; (E) Farm 5; (F) Farm
6; (G) Farm 7; (H) Farm 8; (I) Farm 9.
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previously reported by Morais et al. (0.80). However, it is important
to note that our method is solely based on remote sensing data and
therefore applicable to multiple farms and regions without the need
for repeated field work and laboratory analysis.

In this study, we used RS data from Sentinel-1 and Sentinel-2,
which offer significantly higher spatial resolution compared to other
spatially explicit variables. The inclusion of Sentinel-1 and Sentinel-2
data allowed us to capture fine-scale spatial variations within individual
parcels or farms. Conversely, other static data sources with lower spatial
resolution lacking the capability to capture intricate spatial variations
within parcels primarily facilitated the assessment of regional variation.
Additionally, remote sensing data provided a distinct advantage by
enabling us to capture of temporal variations across different years, as
they were the only data sources exhibiting temporal variability over
time. Despite achieving good performance in our study, there is
potential for improvement by enhancing the quality of climatic and
soil data. It is important to note that the SFSmethod, while not affecting
SOC estimation performance, may be influenced by the spatial
resolution of the input data. SFS excluded soil temperature and soil
moisture as explanatory variables, probably due to the course scale of
the data sources available. However, those variables are vital in
regulating microbial activity, nutrient availability, and overall soil
health. The same was true of some climate variables, which had a
spatial resolution of 27 km, which may be insufficient for depicting
intra-farm variations.

RS data derived from Sentinel-1 and Sentinel-2 present a
significantly elevated spatial resolution in comparison to other
spatially explicit variables. The utilization of Sentinel-1 and Sentinel-2
data enables the capture of intricate spatial variations within individual
parcels or farms. Conversely, static data sources with diminished spatial
resolution predominantly facilitate the assessment of regional variations,
as they lack the ability to capture the detailed spatial nuances within
parcels. Moreover, remote sensing data proffers the distinct advantage of
capturing temporal variations across different years, rendering it the sole
data source characterized by temporal variability over time. In fact, this
procedure of using multiple data sources with multiple spatial and
temporal resolutions is frequently used to characterize different land
cover systems (Zhang et al., 2016; Venter and Sydenham, 2021), namely,
to estimate SOC content, e.g., Venter et al. (2021). Nevertheless,
enhancing the spatial resolution of the data with low spatial
resolution could potentially improve the estimation performance of
SOC content. For example, in this study, the soil data used had a spatial
resolution of 250m. It is not expected that soil characteristics such as
sand, clay, and silt fractions would vary significantly within the same
farm.Consequently, the variables that contributed themost to explaining
SOC content were the ones that had the higher resolutions, such as those
measured or calculated from Sentinel-1 and Sentinel-2 data. Increasing
the spatial resolution of coarse soil-specific data could enhance the fine
variation of SOC content and help address some of the variance
unexplained by our model.

The obtained models in this study have a spatial resolution of 10 m,
which is the lowest resolution among all the spatialized data used,
including Sentinel-1 data and the red, green, and blue bands of Sentinel-
2. However, even this resolution may not be sufficient to capture all the
spatial variability of pasture systems such as SBP. To enhance the spatial
resolution of RS data from satellites, UAVs can be utilized. UAVs can
have a spatial resolution of a few centimeters, providing a significant
improvement in spatial resolution. For instance, a 5 cm resolutionUAV

would yield 100,000 pixels in a 10 × 10 m pixel of Sentinel-2. UAVs are
currently preferred for agricultural land characterization due to their
affordability and ease of operation. Nonetheless, UAV data has a
significantly lower spatial coverage, lower spectral resolution, and
potentially lower temporal coverage than satellite data (Colomina
and Molina, 2014; Vilar et al., 2020). Moreover, the quality of UAV
data can be negatively impacted by factors such as sun elevation angle,
diffuse sunlight, and shadow effects of objects such as trees (De Luca
et al., 2019). Rather than completely replacing satellite data with UAV
data, it is more beneficial to use them in combination to minimize
estimation errors. For instance,Maimaitijiang et al. (2020) improved the
estimation of biomass characteristics by integrating RGB UAV data
with Sentinel-2 data.

In this paper, we used individual bands from the Sentinel-1 satellite.
Nevertheless, recent research has proposed a technique to merge two
Sentinel-1 image products of complementary polarimetric information
(HH/HV and VH/VV) to derive pseudo-polarimetric features (Braun
and Offermann, 2022). Despite some inaccuracies, the polarimetric
features turned out to improve potential land cover mapping
compared with backscatter intensities and dual-polarization features
of the input products alone. However, such a technique has not yet been
tested in regression problems to estimate SOC content. Alternatively,
synthetic-aperture radar data fromother satellites could provide different
bands and wavelengths (Moreira et al., 2013). Data with different
wavelengths and frequencies also have different penetration power,
spatial resolution, sensitivity to surface roughness, and sensitivity to
atmospheric effects (Moreira et al., 2013; Paek et al., 2020; Le et al., 2021).
The C-band used in Sentinel-1 refers to the microwave frequency range
between 4 to 8 GHz (Gigahertz) in the electromagnetic spectrum (ESA,
2022). It is one of themost commonly used bands in SAR remote sensing
due to its favourable characteristics, namely: moderate penetration
capabilities, meaning it can penetrate through vegetation and light to
moderate rainfall; good spatial resolution allowing the detection of small
to medium-sized features on the Earth’s surface; sensitivity to surface
roughness variations, which makes it useful for monitoring changes in
ocean waves, soil moisture, and snow cover; and is less affected by
atmospheric conditions like clouds and precipitation compared to
higher-frequency bands (e.g., X-band or Ku-band) (Monti-Guarnieri
et al., 2017; ESA, 2022). Another frequency band that is commonly used
is the P band, for example, used in ALOS (Advanced Land Observing
Satellite) PALSAR (Phased Array type L-band Synthetic Aperture
Radar), which is in the microwave frequency range between 0.3 to
1 GHz (Gigahertz) in the electromagnetic spectrum. The P-band has
higher penetration than the C-band. Due to its lower frequency, P-band
SAR typically has a coarser spatial resolution compared to higher-
frequency bands like the C-band. P-band SAR is also less sensitive to
surface roughness compared to C-band SAR, but it is relatively less
affected by atmospheric conditions (Li et al., 2019; Minh et al., 2021).
Other bands with higher frequency (e.g., X-band) have higher spatial
resolution but lower penetration capacity (Zhou et al., 2020). Thus, in the
future, approaches that combine alternative/complementary SAR data
should be tested to improve the characterization of land cover systems,
such as grasslands.

Here we used several vegetation indices (NDVI, NDWI, SR,
SAVI, and OSAVI) as well as the raw data for the bands used to
calculate them. The fact that the bands are used nonlinearly takes
away some of the explanatory power of the indices. However,
because the indices were more important than the individual

Frontiers in Environmental Science frontiersin.org12

Morais et al. 10.3389/fenvs.2023.1240106

87

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1240106


bands in our results, exploring additional indices may offer valuable
insights into SOC content estimation. For example, the Normalized
Difference Red/Green Redness Index and the Dark Green Color
Index that utilize both red and green bands have been previously
used to estimate SOC content in agricultural soils (Heil et al., 2022).
These and other alternative indices could potentially complement
the existing ones and enhance the accuracy of SOC estimation.

In this study, we did not perform an assessment of bare soil pixels,
which is a common practice in other research studies (Bhunia et al., 2017;
Castaldi, 2021). Typically, bare soil pixels are determined using vegetation
indices calculated from individual bands of Sentinel-2, such as NDVI and
normalized burn ratio 2 (NBR2) (Castaldi, 2021). This process involves
defining a threshold for the vegetation indices, and pixels with lower
values than the threshold are classified as bare. However, the number of
bare soil pixels can vary significantly depending on the chosen thresholds.
For instance, Castaldi (2021) observed that reducing the NBR2 threshold
from 0.2 to 0.05 in Northeastern Germany croplands led to a decrease in
the percentage of Sentinel-2 pixels classified as bare soil from over 25% to
about 10%. Additionally, this method requires the removal of data points
that donotmeet the defined thresholds. For these reasons, we chose not to
use this approach. Instead, we utilized data not only near the sampling
date but also data from August when the soil is mostly bare in well-
managed SBP systems. Incorporating observations fromAugust allows us
to capture the soil’s characteristics when it is bare, while observations near
the sampling date enable us to indirectly evaluate the effect of vegetation
on SOC.

The models that we developed lack a formal representation of
the processes that occur in soil and influence SOC content, such as
an equation for SOC mineralization that process-based models
possess (Morais et al., 2019). Unlike data-driven models, process-
based soil models consider biogeochemical processes formulated
based on mathematical-ecological theory (Coleman et al., 1997; Liu
et al., 2011). These models’ equations are often derived from
statistical relationships, which can be improved by incorporating
data-driven modeling approaches. Combining the benefits of both
data-driven models (such as those used in this study) and process-
based modeling is critical for developing more robust models in the
future. One approach is to replace process-based models’ rate
modifiers with ML models. Tsai et al. (2021) have done this
successfully to predict soil moisture and streamflow.

The models derived in this study have the potential to
retrospectively estimate SOC content since 2015 when Sentinel-2
data was initiated. Consequently, a considerable amount of data can
be generated that can be employed in other models. Process-based
models, such as those that evaluate soil sinks and emissions of
carbon and nitrogen and their impacts on environmental concerns,
can benefit significantly from longer data series (Prado et al., 2006;
Morais et al., 2018; Teixeira et al., 2019).

5 Conclusion

This work combined multiple data types from different sources
with ML methods in order to estimate SOC content of SBP in
Portugal and Spain. The most relevant variables that are known to
influence SOC content and change, such as climatic, soil, and terrain
characteristics, were combined with RS imagery. The most relevant
variables from the full set of independent (or input) data were

selected using an SFS approach. This approach reduced the number
of variables to 24 (instead of 49) but maintained the overall accuracy
of the best model: without feature selection, the root mean squared
error (RMSE) was 2.78 g kg-1 (on the test set) and with feature
selection, the RMSE was 2.77 g kg-1. XGB was the model with the
highest estimation performance, using a cross-validation approach.

SOC content plays a significant role in plant growth and
characteristics. Nevertheless, the type of models developed in this
work are still infrequently used as a farm management tool, despite
the fact that they are powerful tools that could increase incomes and/or
reduce costs. Based on the best models, SOC content can be
approximately estimated throughout the year, even when the soil is
covered by plants, and with that, advisors can inform farmers to perform
practices to improve soil quality for plant and animal production.
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Lithological mapping in highly vegetated areas using remote sensing techniques

poses a significant challenge. Inspired by the concept of “geobotany”, we

attempted to distinguish lithologies indirectly using machine learning

algorithms (MLAs) based on Sentinel-2 and SRTM DEM in Zhangzhou City,

Fujian Province. The study area has high vegetation cover, with lithologies that

are largely obscured. After preprocessing such as cloud masking, resampling,

and median image synthesis, 17 spectral bands and features from Sentinel-2 and

9 terrain features from DEM were extracted. Five widely used MLAs, MD, CART,

SVM, RF, and GBDT, were trained and validated for lithological mapping. The

results indicate that advancedMLAs, such as GBDT and RF, are highly effective for

nonlinear modeling and learning with relative increases reaching 8.18%∼11.82%
for GBDT and 6.36%∼10% for RF. Compared with optical imagery or terrain data

alone, combining Sentinel-2 and DEM significantly improves the accuracy of

lithological mapping, as it provides more comprehensive and precise spectral

characteristics and spatial information. GBDT_Sen+DEM utilizing integrated data

achieved the highest classification accuracy, with an overall accuracy of 63.18%.

This study provides a case study for lithological mapping of areas with high

vegetation cover at the local level. This also reinforces the idea that merging

remote sensing and terrain data significantly enhances the precision and

reliability of the lithological mapping methods.
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1 Introduction

Lithological mapping of highly vegetated areas is an essential

part of geological surveys and mineral resource exploration

(Lu et al., 2021). On the one hand, challenges related to low

comprehensive utilization of mineral resources, uneven regional

development, ecological degradation, and environmental pollution

in mineral resource exploitation underscore the importance of

addressing these issues to achieve sustainable development in the

mining industry (Wang and Li, 2020; Xie, 2020). On the other hand,

the spatial distribution of rocks contributes to the extraction of

mineral alteration information, selection of target areas within

mining regions, and acquisition of multiscale structural control

information (Shuai, 2022). Therefore, it provides theoretical

support for delineating prospective mineralization zones and

holds significant importance for geological prospecting and

evaluation (Wang and Liu, 2020). However, traditional geological

mapping encounters significant challenges in areas with high

vegetation cover, including fieldwork difficulties, high costs,

lengthy time requirements, and limited accessibility to certain areas.

Remote sensing technology enables efficient and large-scale

identification of rock types due to its fast speed, low cost, and

efficiency in terms of time and labor (Carli and Sgavetti, 2011; Pour

and Hashim, 2014). However, rocks are largely obscured by soil in

densely vegetated areas, with studies indicating that vegetation cover

of only 10% or more can effectively conceal surface information

(Siegal and Goetz, 1977; Ager and Milton, 2012). Extracting weak

rock-type information using remote sensing is a major challenge in

geological applications (Chen et al., 2012). “Geobotany” offers an

important approach to address this challenge, enabling indirect

rock-type identification by considering the relationship between

vegetation and underlying substrates (Grebby et al., 2011). Rock

types influence the composition of aboveground plant communities

in two ways: nutrient provision to plants (Landeweert et al., 2001;

Hahm et al., 2014), and the weathering depth, degree, and increased

porosity of rocks, which impact water storage potential (Schwinning,

2010; Klos et al., 2018). Hahm’s research showed that plant

communities in different regions are correlated with hydrology

and rock types, even under similar climatic conditions (Hahm

et al., 2019). Do Amaral mapped three geological phases using

indicator species (do Amaral et al., 2018). Qiao’s research showed

a significant impact of rock types on the spatiotemporal pattern

changes in vegetation (Qiao et al., 2020).

High-resolution optical and radar remote sensing data, along

with terrain information, are valuable for extracting rock-type

information from densely vegetated areas. In the past decade,

medium-resolution remote sensing imagery such as Landsat series

and ASTER, has been extensively employed for rock type mapping

in vegetated areas (Knepper, 1989; Langford, 2015; Han et al., 2021;

Zeng et al., 2023). It establishes a strong foundation for rock-type

identification by offering cost-effective, wide coverage, high spatial

resolution (Chen et al., 2022; Zou et al., 2022), valuable indications

of vegetation and rock-soil information, rich surface information

and a small mixed pixel effect (Meroni et al., 2021). Sentinel-2

imagery is a new and freely accessible dataset that offers a

high spatial resolution. It has been widely used in fields like
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geology, agriculture, and urban studies. Equipped with a

multispectral sensor, it can capture visible and near-infrared

spectral data making it an invaluable resource for lithological

identification research. Radar is highly sensitive to surface

physical characteristics, particularly the C-band response related

to vegetation biomass, structure, and soil conditions. Digital Terrain

Models (DTMs) can qualitatively and quantitatively reveal terrain

variations reflecting subtle changes in rock types. The erosion and

weathering resistance of rocks fundamentally shapes the terrain,

and rocks with higher resistance to erosion form steeper terrain

sections under similar conditions (Snyder et al., 2000; Montgomery,

2001). In stable landscapes, terrain slope indices can represent the

erodibility of different rock types (Mills, 2003; Gallen, 2018). Radar

and terrain data partially overcome the limitations of optical remote

sensing in identifying and classifying rock types in vegetation- and

shallow-covered areas (Gloaguen et al., 2019). In addition,

compared to traditional remote sensing data, hyperspectral data

can provide richer spectral information, thus reflecting the spectral

response characteristics of different lithologies more accurately.

This can provide effective technical support for geological

exploration and mineral resource development (Chen L.

et al., 2023).

An appropriate algorithm is one of the key factors contributing

to achieving satisfactory classification results. Machine learning

algorithms such as maximum likelihood (ML) (Grebby et al.,

2011), partial least squares discriminant analysis (PLSDA) (Lu

et al., 2021), support vector machine (SVM) (Othman and

Gloaguen, 2014; Bachri et al., 2019), and random forest (RF)

(Han et al., 2021) have been extensively used for rock

classification in vegetation-covered areas because of the rapid

advancement of machine learning. In Grebby’s study, airborne

multispectral imagery and laser scanning data were used to map

rock types in the Troodos ophiolite. The self-organizing map

algorithm achieved the highest accuracy (72.7%) among the

algorithms utilized (Grebby et al., 2011). Othman and Gloaguen

improved the lithologic map of the Mawat ophiolite complex in

northeastern Iraq using an SVM classifier based on ASTER

multispectral data, landform features, and texture data with

overall accuracy (OA) of 79.28% (Othman and Gloaguen, 2014).

Lu used multiple algorithms, including PLSDA, SVM, k-nearest

neighbors and Bayesian, combined with Sentinel-1 and SRTM data,

to map rock distribution of Huludao City in Liaoning Province,

China. The highest accuracy of 0.444 was achieved using the PLSDA

(Lu et al., 2021). Otele updated lithological mapping in the southern

region of Cameroon using Landsat 7 imagery and a multilayer

perceptron neural network and achieved an accuracy of 53.01%

(Otele et al., 2021). Zeng compared the accuracy of KNN, MLC, and

SVM algorithms in classifying basalt using Landsat 5 and ASTER

imagery. The SVM model with Landsat 5 achieved the highest

accuracy of 70.92% (Zeng et al., 2023). These methods establish a

solid basis for the rapid classification of rocks using “geobotany”

principles in remote sensing. Furthermore, HAN utilized the RF

method to map Quaternary rock (including Pleistocene

gravel, Holocene sand, Holocene clay, and Holocene gravel)

in vegetation-covered areas of Vietnam based on multiple

remote sensing data sources, achieving OA of 80.99% (Han et al.,
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2021). This highlights the potential of the RF algorithm in

geological mapping.

This study aims to achieve lithological mapping in areas with

dense vegetation using Sentinel-2 and SRTM DEM data combined

with MLAs. The study focuses on Zhangzhou City in Fujian

Province as an example. We tested the performance of five

popular MLAs to determine which one works best for this task.

We carefully compared and analyzed the accuracy of the

classification results achieved by each algorithm, gaining valuable

insights into their effectiveness. Furthermore, we systematically

evaluated the accuracy of classification results obtained from

Sentinel-2 alone, DEM alone, and the combination of Sentinel-2

and DEM to better understand their impact on lithological

mapping. This research contributes to the advancing field of

geospatial science and remote sensing.
2 Study area and data

2.1 Study area

The study area is located around Daxi Town, Pinghe County,

Zhangzhou City, Fujian Province. The specific administrative

division map, true-color composite image, and DEM are shown

in Figure 1. It is situated in a complex region with intersecting

Nanshan Mountain Range and the Second Complex Uplift Belt of

the Xinhua-Xia series. It has undergone multiple crustal movements

and has exhibited complex tectonic faults. The primary geological

formations consist of Lower Cretaceous, Jurassic strata, and
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Yanshanian intrusion rocks. The main rock types in this area

include Rhyolite tuff (RhyT), Yingan tuff (YinT), Rhyolite (Rhy),

sandstone (San), and granite (Gra). Sedimentary deposits consist

mainly of conglomerate, gravel, and sandy soil layers (CGS).

The area is characterized by dense vegetation growth, with a

forest coverage rate of 73.2% as of 2021. It exhibits a variety of plant

community types and a complex hierarchical structure, resembling

the vibrant landscapes of the South Asian tropical rainforests. The

main vegetation types include coniferous forests, broad-leaved

forests, mixed forests of conifers and broad-leaved trees, bamboo

forests, shrubs, and grass slopes. The bedrock is mostly covered by a

few outcrops (Shi and Wang, 2014). Additionally, in highly

vegetated areas, the surface layer is heavily weathered, and the

soil layer is thick, posing challenges for rock-type identification

using remote sensing techniques.
2.2 Data and preprocessing

The Sentinel satellite carries the Multispectral Instrument

(MSI), capturing imagery data in visible, near-infrared, and

shortwave infrared bands. It provides a spatial resolution ranging

from 10 m to 60 m (band details in Table 1). With a 5-day revisit

period at the equator, it covers a swath width of 290 km (Chen et al.,

2021). The S2 MSI Level-2A products offer preprocessed bottom-

of-atmosphere reflectance images, including geometric correction,

orthorectification, image registration, radiometric calibration, and

atmospheric correction. A total of 78 images for the year 2021 with

cloud coverage of less than 10% in the study area were obtained, and
FIGURE 1

The study area for (A) a specific location in the administrative map of China, (B) Sentinel-2 tru color composite image and (C) Digital Elevation Model (DEM).
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cloud masking using the QA60 band was performed to eliminate

cloud effects. Bands B5, B6, B7, B8A, B11, and B12 were resampled

to 10-meter spatial resolution using bilinear interpolation, and then

the median composite was applied to the images.

The Shuttle Radar Topography Mission Digital Elevation Model

(SRTM DEM) is a digital representation of terrain elevation

obtained using radar equipment carried by space shuttles,

covering over 80% of the Earth’s land surface. SRTM DEM data

is acquired by emitting radar beams from a space shuttle towards

the Earth’s surface and measuring the returning signals. This

technique bypasses cloud cover and vegetation obstruction to

acquire surface elevation data. The SRTM DEM 30 m dataset was

resampled to 10 m using bilinear interpolation to match the spatial

resolution of the optical imagery.
2.3 Ground reference data

The reference data includes the regional geological map from the

First Survey Team of Fujian Provincial Geological Survey Bureau in

1982 and lithology distribution maps obtained through a combination

of vegetation suppression methods and manual visual interpretation by

professional experts. We adopted the approach used in the lithological

distributionmap to classify land surface cover types and collected pixel-

level sample data for 7 land cover classes based on the regional

geological map: CGS (118), San (106), Rhy (112), RhyT (121), YinT

(121), Gra (110), and water (39).
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3 Methods

3.1 Method system construction

The main idea for pixel-wise rock classification is based on

“geobotany”. It uses differences in surface reflectance between

vegetation communities to indirectly identify underlying rock

types by considering terrain and landform characteristics. To

achieve this, we construct five classical machine learning

algorithms: minimum distance algorithm (MD), classification and

regression trees (CART), support vector machine (SVM), random

forest (RF), and gradient boosting decision tree (GBDT) (refer

to Figure 2).

The following research plan aims to reduce computational

burden and accelerate the production of optimal lithological

spatial distribution maps. The available geological data is divided

into training and validation sets at a 7:3 ratio to assess the model’s

generalization ability, which evaluates its performance on new data.

Then, five classification algorithms are trained and optimized using

the preprocessed Sentinel-2 remote sensing image and a sample

dataset. The optimized models are validated and evaluated for

accuracy using validation samples. Subsequently, the optimal

model is used to classify rock types and generate a lithological

map based on Sentinel-2 data. In the subsequent studies based on

SRTM DEM (alone) and combination of Sentinel-2 with SRTM

DEM, at least two classifiers that performed well in the previous

step are used for validation and accuracy evaluation. Similarly, the

optimal model is used to generate lithological maps based on SRTM

DEM (alone) and combined with Sentinel-2 and SRTM data.
3.2 Feature extraction

B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12, were selected

from Sentinel-2. It should be noted that B1 represents the aerosol

band and B9 represents the water vapor band, therefore, they were

not used in this study. Additionally, five spectral features were

computed, which are crucial for rock or water body identification:

enhanced vegetation index (EVI), green chlorophyll vegetation

index (GCVI), normalized difference building index (NDBI),

normalized difference water index (NDWI), and Land Surface

Water Index (LSWI). This study employed EVI to indicate

vegetation growth status, as it is well known that normalized

difference vegetation index (NDVI) can saturate areas with high

vegetation cover (Huete et al., 1997). GCVI is sensitive to

chlorophyll and can be used to identify agricultural areas (Huete

et al., 2002). NDBI is useful for identifying built-up areas

(Benbahria et al., 2018). NDWI and LSWI are vegetation indices

that are highly sensitive to surface water (Jeong et al., 2012).

For SRTM DEM, six terrain features, including elevation (E),

slope, aspect, vertical curvature, horizontal curvature, and Gaussian

curvature, were obtained using terrain analysis algorithms proposed

by Florinsky (2016) and Safanelli (Safanelli et al., 2020).

Additionally, surface roughness (SR), high integral (HI), and

surface index (SI) were calculated within a 3 × 3 window,
TABLE 1 Sentinel-2 band and spectral characteristics.

Band or
index

Central wavelength/
formula

Resolution
(meter)

B1 443.9nm (S2A)/442.3nm (S2B) 60m

B2 496.6nm (S2A)/492.1nm (S2B) 10m

B3 560nm (S2A)/559nm (S2B) 10m

B4 664.5nm (S2A)/665nm (S2B) 10m

B5 703.9nm (S2A)/703.8nm (S2B) 20m

B6 740.2nm (S2A)/739.1nm (S2B) 20m

B7 782.5nm (S2A)/779.7nm (S2B) 20m

B8 835.1nm (S2A)/833nm (S2B) 10m

B8A 864.8nm (S2A)/864nm (S2B) 20m

B9 945nm (S2A)/943.2nm (S2B) 60m

B11 1613.7nm (S2A)/1610.4nm (S2B) 20m

B12 2202.4nm (S2A)/2185.7nm (S2B) 20m

EVI
2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5
× B2 + 1)

NDBI (B12 − B4)/(B12 + B4)

NDWI (B3 − B4)/(B3 + B4)

LSWI (B4 − B11)/(B4 + B11)

GCVI (B8/B3) − 1
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providing indications of terrain features associated with rock type

information.

SR = 1=cos(slopÞ

HI = (Emean − Emin)=(Emax − Emin)

SI =
HI − HImin

HImax

� �
� H − Hmin

Hmax

� �
− (

SR − (1 + SRmin)
SRmax

)

Where E is extracted directly from the DEM. E_mean, E_max,

and E_min represent the mean, maximum, and minimum values

within the moving window, respectively. SR is the ratio of grid

surface area to projected area, which is used to quantify tectonic

landform changes. A higher SR value indicates a more severe degree

of regional deformation (Han et al., 2021). SI is a new efficient index

that simultaneously depicts the preserved and eroded portions of

the landscape (Andreani et al., 2014).
3.3 Classification algorithms for
lithological mapping

The Minimum Distance (MD) algorithm is widely used for

classification and pattern recognition (Wacker and Landgrebe,

1972). It assigns input data to the closest category based on

computed distances between categories, using methods such as

Euclidean, Manhattan, and Minkowski distances. In the context of

lithological mapping, this algorithm can be used to infer the

lithology of specific locations based on their proximity to known

geological features or data points (Pal et al., 2020). MD is simple,

easy to implement, and well-suited for problems with distinct

category boundaries.
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Classification and regression trees (CART) is a tree-based

algorithm for classification and regression (Friedl and Brodley,

1997; Pal and Mather, 2003). It recursively splits and evaluates

input data to build a tree-like model, where nodes represent

features, branches represent feature values, and leaf nodes

represent final results. Applying CART to lithological mapping

involves systematic interpretation of geological features for accurate

lithological classification. Visualizing the decision tree offers

insights into hierarchical feature divisions that lead to lithological

categorization, enhancing our understanding of how different

features influence prediction accuracy (Serbouti et al., 2022).

CART has a simple structure, making it easy to understand,

interpret, and generate decision-making rules. It’s worth noting

that the effectiveness of the CART decision tree method relies on the

quality and relevance of selected features, as well as the

representation of distinct lithological classes in the dataset

(Lewis, 2000).

Support vector machine (SVM) is a non-parametric classifier

widely used for binary and multi-class classification tasks (Pal and

Mather, 2005; Mountrakis et al., 2011). It aims to minimize

structural risk by identifying an optimal hyperplane in the feature

space that maximizes the margin between samples of different

classes. SVM can be used for lithologic classification by selecting

training and testing pixels, training the SVM classifier using a kernel

function, and mapping the input data (such as spectra, textures,

topography, gamma-ray and land temperature) (Othman and

Gloaguen, 2014; Harris and Grunsky, 2015; Yang et al., 2018;

Chen C. et al., 2023) into a higher-dimensional space to find a

hyperplane that separates the different classes. SVM has the

advantage of handling high-dimensional data, nonlinear

classification problems, and small sample sizes (Shebl and

Csamer, 2021; Shebl et al., 2021). However, it also has limitations
FIGURE 2

The flowchart. “DEM” for digital elevation model, “EVI” for enhanced vegetation index, “GCVi” for green chlorophyll vegetation index, “NDBI” for
normalized difference building index, “NDWI” for normalized difference water index, and “LSWI” for land surface water index.
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in terms of selecting appropriate kernel functions, computational

intensity, and sensitivity to noise and outliers (Othman and

Gloaguen, 2017).

Random forest (RF) works by creating multiple decision trees

on randomly selected subsets of the data and then combining the

results to make a final prediction (Pal, 2005; Belgiu and Drăgut,̧

2016). It has significant advantages with the ability to combine

multiple remote sensing and data sources in lithology mapping as it

improves its generalization ability by randomly selecting input or

input combinations at each node (Breiman, 2001). It is especially

effective for processing high-dimensional and noisy input data and

can overcome the interference of vegetation coverage, thereby

improving the accuracy of lithological mapping (Harris and

Grunsky, 2015; Bachri et al., 2019). However, caution should be

exercised when fine-tuning parameters for optimal outcomes and

effectively managing computational expenses, particularly when

dealing with substantial datasets. The risk of overfitting due to an

abundance of trees or noisy data should be considered, along with

its limited efficacy with imbalanced datasets (Guo et al., 2022).

The Gradient Boosting Decision Tree (GBDT) is an iterative

ensemble learning algorithm that constructs a strong prediction

model (Yang et al., 2018; Xu et al., 2020). It builds multiple decision

trees iteratively, using the residual between the current predicted

value and the true label to train each tree. Each iteration adjusts the

predicted value to approximate the true label. The final prediction is

obtained by combining the predictions of all the trees. Although the

algorithm is rarely used in lithology mapping in high vegetation

cover areas, studies have shown that it is effective in handling large

datasets and high-dimensional feature spaces, and it is robust to

noise, outliers, and missing data (Lemercier et al., 2012; Zhou et al.,

2020; Cai et al., 2022).
3.4 Accuracy assessment

Accuracy assessment objectively evaluates the performance of

remote sensing algorithms and models, providing a reliable

foundation for remote sensing applications and decision-making

(Hay, 1988). It validates the accuracy of tasks like image

classification and object detection, helping to determine the

reliability and feasibility of the results. The Confusion Matrix is a

tabular representation used to evaluate the performance of a

classification model (Comber et al., 2012; Salmon et al., 2015).

Therefore, we calculate four evaluation metrics using the Confusion

Matrix to assess the classification results and optimize the model:

overal l accuracy (OA), recall (R), precision (P), and

Kappa coefficient.
4 Results

4.1 Model tuning

Model tuning optimizes the performance and generalizability of

the machine learning model by adjusting its parameters or
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hyperparameters, improving its effectiveness in addressing real-

world problems. By systematically adjusting parameters, the model

can better adapt to data patterns and characteristics. Proper

parameter settings also reduce computational resources required

for training and prediction. Through tuning, structure of the model

and parameter selection are optimized, resulting in reduced

computational costs and time consumption.

The sample dataset was randomly divided into training and

validation sets at a 7:3 ratio for model training and tuning based on

Sentinel-2 imagery. To determine the best settings for our models,

we test them by using different parameters in the validation set. We

begin by defining a range of parameter values and then try different

values within that range. Finally, we select the parameter values that

make our models perform the best on the validation set. We can

show this process on a chart, where the horizontal line represents

different parameter choices, and the vertical line shows the

performance of the model (typically, model performance metrics

such as OA). The tuning results for each model are shown in

Figure 3. The MD algorithm achieved optimal performance using

the Mahalanobis distance metric. The CART was tuned with a

maximum of 50 nodes and a minimum of 5 nodes. The gamma

coefficient of SVM model was set to 20, and the Cost parameter was

set to 10. The RF utilized 210 trees and a minimum of 3 leaf nodes.

The GBDT employed 80 trees and a maximum of 70 leaf nodes.

In machine learning and data modeling, the optimal parameters

of a model typically change with different datasets and feature

combinations. Once we have identified at least two promising

classifiers based on Sentinel-2, we apply the same tuning

methodology to both the DEM data and the combination of

Sentinel-2 and DEM data to ensure optimal model performance.
4.2 Lithology classification using
Sentinel-2 image

The model accuracy and validation accuracy of five typical

machine learning algorithms were summarized (as shown in

Figure 4). The SVM algorithm had higher model accuracy but

lower validation accuracy, possibly indicating overfitting due to

linear inseparability of rock categories and limited sample size. MD

and CART performed poorly, with model accuracy below 70% and

validation accuracies below 0.4, suggesting limitations in handling

complex structural information. RF and GBDT showed better

performance as ensemble algorithms with strong learning

capabilities with OA 46.82% and 45%, and Kappa 0.371 and

0.349 respectively.

Figure 5 illustrates rock-type accuracy achieved by the five

machine learning algorithms. The “water” class consistently

exhibits high accuracy (close to 100%) across all models,

indicating the effectiveness of the algorithms. In terms of class

accuracy, the RF model demonstrates notable improvements in

precision for “RhyT”, “San”, and “YinT” classes, as well as increased

recall for “RhyT” and “YinT” classes. For instance, precision of San

improved by 13.1% to 20%, and recall of “RhyT” increased by 10%

to 36.6%. The GBDT achieved overall high accuracy through
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FIGURE 4

(A) Overall accuracy (OA) and (B) Kappa of five classifiers in lithological mapping. The black dots represent model accuracy, whereas the red dots
represent model validation accuracy.
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FIGURE 3

Adjust the parameters for (A) the distance measure method of MD, (B) the maximum and (C) minimum nodes of Cart, (D) gamma and (E) cost of
SVM, (F) the number of trees and (G) minimum nodes of RF, (H) the number of trees and (I) maximum nodes of GBDT using validation samples. Each
subscription below the figure is labeled as "Algorithms Parameter" to indicate the specific parameters used for each classifier.
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significant improvements in precision and recall for “CGS” and

“San”. Specifically, precision and recall of “CGS” increased by 1.3%

to 11.8% and 2.7% to 29%, respectively.
4.3 Lithology classification using
SRTM DEM

Using RF and GBDT algorithms for lithology classification

achieves higher accuracy based on the accuracy assessment results

(see Figures 6, 7). The overall classification accuracy is

approximately 49% with a kappa coefficient of approximately 0.4.

When comparing individual rock types, both algorithms show

higher accuracy for “CGS” and “Rhy”. “CGS” plays a significant

role in terrain morphology and exhibits a certain relationship with

terrain features. “Rhy” is commonly found in uplift zones associated

with tectonic landforms.

The lithology classification map generated using SRTM DEM

(Digital Elevation Model) data shows higher accuracy than

Sentinel-2 imagery. The overall improvement in lithology

classification accuracy is mainly attributed to better classification

of “Rhy” and “San”, despite a slight decrease in the accuracy of

classifying “RhyT” and “Gra”. This can be explained by the strong
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correlation between spatial distribution and landform morphology.

“San” is commonly found in low-lying areas, while “Rhy” is

associated with volcanic activity and its distribution relates to

volcanic topography. However, it should be noted that the

accuracy of “water” based on SRTM DEM is significantly lower

than that of Sentinel-2 imagery due to the limited information

about water bodies in DEM, which primarily focuses on surface

terrain elevation. As a result, there may be errors or omissions in the

parts of the lithology classification that involve water bodies, as it

does not capture the characteristics of water flow from higher to

lower elevations. Overall, the utilization of DEM improves the

accuracy of lithological classification by capturing the relationship

between lithological variations and landform morphology.
4.4 Lithology classification using combined
Sentinel-2 and SRTEM DEM

The RF and GBDT are also utilized in a lithology mapping study

that combines Sentinel-2 imagery and SRTM DEM data. The

extraction of lithological information can be greatly improved by

integrating optical remote sensing data with terrain morphology

features, resulting in more comprehensive and accurate spatial

information. Both algorithms (RF and GBDT) show a significant

improvement in accuracy compared to Sentinel-2 (alone) or SRTM

DEM (alone), achieving OA of approximately 60% (see Figure 6).

The GBDT demonstrates a more precise lithology classification,

achieving OA of 63.18% and a Kappa of 0.565. Compared with RF,

GBDT improved OA and Kappa by 4.54% and 0.053, respectively.

The joint utilization of Sentinel-2 imagery and SRTM DEM,

along with advanced machine learning algorithms like GBDT,

significantly improves the classification accuracy of various

lithological categories, as depicted in Figure 7. The performance

in classifying “CGS”, “San” and “Rhy” is notably enhanced.

Moreover, the classification of “water” achieves optimal results.

Based on the above study, lithological mapping was performed

using RF for Sentinel-2 (alone), GBDT for DEM (alone) and the

combination of Sentinel-2 and DEM (Figure 8). In the lithological

map based on Sentinel-2, the limited distinguishability of rock types

other than “CGS” and the presence of significant “speckle”

phenomenon may be attributed to the optical sensor limitations

of Sentinel-2, which are affected by cloud cover, atmospheric

interference, and vegetation obstruction. In contrast, DEM data
FIGURE 6

Overall accuracy (OA) and Kappa of the RF and GBDT in lithological
classification based on Sentinel-2 (alone), DEM (alone), and
combined Sentinel-2 and DEM data. "Sen" is the abbreviation for
Sentinel-2.
FIGURE 5

(A) Precision (P) and (B) recall (R) of rock types using five classifiers (MD, CART, SVM, RF and GBDT) based on Sentinel-2.
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offers continuous surface elevation and terrain information,

resulting in a clearer representation of lithological distribution.

The combination of Sentinel-2 imagery and DEM allows for

leveraging their respective strengths, leading to more

comprehensive and accurate rock-type classification results.
5 Discussion

Using SRTM DEM data for lithological classification provides

more accurate results than Sentinel-2 imagery, particularly for

“Rhy” and “San”. However, “water” requires additional data

sources or methods to enhance accuracy. Sentinel-2 imagery

offers rich spectral information for analyzing rock characteristics

such as color and reflectance. On the other hand, SRTM DEM

provides elevation data for terrain morphology revealing surface

undulations and morphological features complementing

lithological classification. The accuracy and reliability of

lithological classification are substantially improved through the

integration of these data sources, meticulous consideration of
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spectral and terrain features, and the utilization of state-of-the-art

machine learning algorithms.

Choosing the correct classification algorithm is crucial for

achieving satisfactory results in land cover classification using

remote sensing data. In this study, we evaluated the performance

of five classical machine learning algorithms for rock identification

in densely vegetated areas. Our findings indicate that complex

algorithms like RF and GBDT outperformed the others,

consistent with previous research (He et al., 2015; Othman and

Gloaguen, 2017). RF exhibited robustness, stability, and the ability

to handle feature selection and outliers. GBDT demonstrated strong

fitting and generalization capabilities, making it suitable for

capturing complex nonlinear relationships.

Overlaying the classification result map with geological contour

maps allows for visual analysis of the spatial distribution of rock

types (Figure 8). In this study, we observed consistency between the

classification results and existing geological maps for “GCS”, and

“Rhy”, indicating a good match. Fine sand and siltstone were

primarily found in valley areas, corresponding to the gentle

topographic features of valleys. These areas are often impacted by
B

C D

A

FIGURE 8

Lithological mapping of the study area from (A) Sentinel-2 (alone), (B) DEM (alone), (C) combined Sentinel-2 and DEM, and (D) overlay of the rock
classification map and existing geological contour map.
FIGURE 7

(A) Precision (P) and (B) recall (R) of rock types using RF and GBDT based on Sentinel-2 (alone). DEM (alone), and combined Sentinel-2 and DEM.
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human activities for agricultural, residential, and industrial

purposes, leading to modified surface cover types. The mixing of

the other three rock types is prominent. However, further

observation shows that the classification performance of granite

and andesitic tuff in the northern region is consistently high. In the

southern region, although there is a mixing phenomenon in the

rhyolite area, rhyolite remains dominant. These findings are

valuable for studying the geological features, distribution of rock

types, and geological evolution in the study area.

In areas with dense vegetation, the presence of subsurface rock

types can potentially affect the distribution and characteristics of

vegetation (Ott, 2020). However, the growth and distribution of

vegetation are influenced by various factors such as soil type,

moisture levels, light intensity, and climate conditions (Yang

et al., 2021). The complex interactions among these factors make

the relationship between vegetation and subsurface rock types

complex. In our study, we used maps created from field surveys

as a reference for our sample data. Although we tried to avoid

including samples from border regions to reduce potential

errors due to geographic bias, there may still be some mistakes

in our pixel-based sample data, including issues with the

representativeness of the sample and measurement accuracy.

Additionally, we didn’t thoroughly analyze how rock types

correlate with vegetation and terrain features. This oversight

could reduce the certainty of our research results, especially if the

connections between these factors are weak or unclear. To address

this, in our future research, we will focus on a detailed correlation

analysis to better understand these relationships. This will improve

the accuracy of rock classification and provide more reliable tools

and data support for geological research, resource exploration, and

related fields. As well as,future research should consider

incorporating more extensive on-site validation efforts to confirm

the accuracy of our classification results.

Moreover, the high variability within rock classes and

similarities between different rock types (Otele et al., 2021)

contribute to the complexity of vegetation and terrain features,

making it challenging to directly infer subsurface rock information

solely based on vegetation indices. Recent advancements in deep

learning algorithms have significantly enhanced their application in

remote sensing for land cover classification (Sun et al., 2022).

Particularly, in areas with dense vegetation cover, deep learning

algorithms have demonstrated higher accuracy in identifying rock

types (Otele et al., 2023; Pan et al., 2023). These algorithms leverage

the ability to learn from extensive image data, enabling them to

explore and capture intricate relationships and feature

representations among different land cover classes (Dimitrovski

et al., 2023). They effectively address the challenges posed by
Frontiers in Ecology and Evolution 10101
vegetation interference and complex land cover backgrounds,

resulting in improved classification accuracy and stability.

Additionally, deep learning algorithms exhibit a certain level of

generalization capability, performing well across different regions

and datasets (Yasir et al., 2023). These findings provide valuable

insights and pave the way for future research in this field.
6 Conclusions

Through the integration of optical remote sensing imagery and

terrain data, coupled with the utilization of advanced algorithms,

the potential to discern various rock types becomes attainable. This

integration significantly enhances the precision and dependability

of lithological mapping within regions characterized by dense

vegetation cover. When juxtaposed with the individual use of

optical imagery or terrain data, the amalgamation of these two

datasets for rock classification purposes exhibits a synergistic effect,

enriching the informational representation of rock types.

Furthermore, the employment of sophisticated Machine

Learning Algorithms (MLAs) adeptly harnesses and delves into

the wealth of feature information stemming from these diverse data

sources. These algorithms, characterized by their resilient nonlinear

modeling and learning capabilities, enable the capture of intricate

relationships within land cover. This is achieved through the

extensive use of sample data, ultimately resulting in improved

accuracy and stability in lithology classification.

It’s worth noting that the GBDT and RF algorithms employed in

this study exhibit robustness and resilience, rendering them applicable

across various research regions and for the categorization of rock types

involving different combinations of data types. This holds significant

implications for geological surveys and mineral exploration.

Looking ahead to future research endeavors, our focus will

remain on deepening our understanding of the interplay between

rock types and vegetation as well as terrain features. This ongoing

exploration aims to further enhance the accuracy of rock

classification. Additionally, the application of deep learning

algorithms presents an intriguing avenue, particularly in

addressing the challenges posed by rock classification in areas

with dense vegetation cover.
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Analyzing the response
distribution of DO concentration
and its environmental factors
under the influence of typhoon
rain events with remote sensing

Weiping Shen, Yuhao Jin*, Gengying Li and Peitong Cong*

College of Water Conservancy and Civil Engineering, South China Agricultural University,
Guangzhou, China
Typhoon rain events are important factors that trigger changes in dissolved

oxygen concentrations in watersheds. The direction of the typhoon driving force

is clear, but the mode of action and mechanism are complex. Moreover,

quantifying the relationship between these actions and dissolved oxygen is

challenging. This study collected measured data from water quality monitoring

and remote sensing during the 2022 typhoon rain events. By analyzing the

changes in typhoon driving factors and dissolved oxygen (DO) concentrations in

water under various typhoon storms, extended MOORA plus the full

multiplicative form (MULTIMOORA), Multiscale Geographic Weighted

Regression (MGWR), and spatial autocorrelation analysis were used to evaluate

the response of DO concentration. Furthermore, the effects of the atmospheric

environment under the influence of human activities on the response distribution

of the urban water environment were analyzed. The results of the study showed

that under the effect of a typhoon with higher rainfall intensity, the response of

DO concentration in the water body of the river in the center of the city was

better. However, the response of DO concentration in the water body at the

mouth of the sea had a tendency to become worse. Under the influence of

typhoon rain events with smaller intensity, the scouring effect of rainwater

dominated, and the DO concentration response in the water body had a

tendency to become worse. The analysis of spatial heterogeneity under the

influence of human activities showed that the ranking values of DO

concentration response in rivers in the city area of Zhongshan, under the

influence of typhoon rain events, were positively correlated with the

distribution of ozone (O3) concentration and sulfur dioxide (SO2)

concentration in the eastern, central, and western parts of Zhongshan.

Conversely, it was negatively correlated with the distribution of O3

concentration and SO2 concentration in the northern and southern parts of

Zhongshan. Based on the research results, we constructed a technique to

evaluate the response of dissolved oxygen concentration during the typhoon

transit period, which can provide an indicator reference for urban managers in

water environment management.

KEYWORDS

typhoon events, dissolved oxygen, urban, environment, river
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1 Introduction

Water environmental pollution has become one of the three

major water problems in cities because urbanization has changed

the conditions for the formation of surface and subsurface runoff,

affecting the water cycle as well as the spatial and temporal

distribution of water (Qi-ting et al., 2005). Deterioration of water

quality, reduction of water quantity, and degradation of water

ecology are important impediments to the sustainable

development of urbanization (Yu et al., 2018). Studies have

shown that nonpoint source pollutants from typhoon rain events

are one of the major pollutants in urban surface water and have

serious impacts on surface water quality (Fu et al., 2021). Under the

subtropical oceanic monsoon climate, an average of seven typhoons

land and affect the Greater Bay Area every year, with high intensity

and frequency. These typhoons not only cause serious casualties

and economic losses but also have a significant impact on the urban

water environment conditions (Liu et al., 2009; Chen et al., 2020;

Cui et al., 2022). Water scarcity and deterioration of water quality

pose threats to human health and survival, making them major

challenges for existing freshwater resources (Mishra et al., 2021). In

order to achieve the United Nations 2030 Sustainable Development

Goals (SDGs) and to deepen the understanding and management of

water security, it is exploratory and valuable to assess the risk of the

water environment. Multi-criteria decision analysis (MCDA) is one

of the most widely used methods in the environmental decision-

making process (Mardani et al., 2017).

Globally, environmental risk assessment is an effective measure

to prevent and control environmental events. Typhoon rain events

have received attention from researchers as an important causative

factor in triggering environmental events (Han et al., 2019). Liang

Huanhuan et al. (2016) conducted a hierarchical study on the risk of

groundwater contamination at 37 hazardous waste landfills using

the MCDA model based on the idea of contamination source-

pathway-receptor risk throughout the whole process control.

Cabrera and Lee (2019) used multi-criteria decision analysis to

assess typhoon-induced flood-prone risk areas in Davao Oriental,

Philippines, by integrating various indicators such as rainfall and

elevation. The role of hierarchical analysis (AHP) as well as ratio

weighting (RW) in determining indicator weights was also

compared, and the AHP model was found to perform better in

calculating the importance of indicators. Gao et al. (2020) combined

the spatial analysis method of AHP and geographic information

system (GIS) to conduct a comprehensive weighted risk assessment

based on the spatial and temporal cumulative patterns of typhoon-

induced flooding disasters in Guangdong Province as the research

object. Guangdong Province was classified into six levels of risk

zones based on the integrated typhoon disaster risk, and the indirect

economic impacts were further analyzed on this basis. Wang et al.

(2022) synthesized the risk, exposure, and vulnerability of three

typhoon hazard chains, constructed a comprehensive typhoon

hazard risk indicator for the Greater Bay Area, divided the risk

level of typhoon hazard chains in important towns and cities as well

as the comprehensive risk level, and verified the validity of the
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assessment methodology of the comprehensive risk indicator for

typhoon hazards. In multi-attribute decision analysis,

MULTIMOORA method has simple calculation, short time and

strong robustness, and is widely used in process selection (Lixia

et al., 2020; Qiong et al., 2021; Lei et al., 2022), location selection

(Yuan-hua et al., 2023), risk assessment (Shenghua et al., 2019;

Zhang et al., 2022) and other fields(Hafezalkotob et al., 2019).

DO concentration in water bodies plays a crucial role in the

survival of aquatic organisms as well as the balanced development

of ecosystems, and is one of the important indicators for evaluating

the quality of the water environment (Songbai et al., 2017; Espinosa-

Diaz et al., 2021). Under the influence of typhoon rain events,

nitrogen dioxide (NO2), organic particulate matter, and other

pollutants generated by human activities will be diluted by

rainwater into the water environment, which affects the dissolved

oxygen concentration of the water body under the effect of

eutrophication and mineralization of organic particulate matter

(Xiu-qin et al., 2019; Yufeng et al., 2023). Some scholars have

conducted research on the potential influence mechanism between

temperature, wind speed, rainfall, and DO concentration, and

concluded that there is a positive correlation between DO

concentration and temperature, wind speed, and rainfall (Xiaoran

et al., 2013; Chen et al., 2016). Huang Weihui et al. (2021) and

Huang Yuling et al. (2022) studied the natural factors such as

geographical conditions on the concentration of saturated dissolved

oxygen, and concluded that the concentration of dissolved oxygen

was greatly affected by altitude and barometric pressure. In 2019,

Jiayang Zhang (Zhang and Chen, 2019) assessed the risk of flooding

disaster caused by typhoon rainstorms, and their evaluation indexes

included wind speed, rainfall, and elevation. Ji-Myong Kim et al.

(2020) selected maximum wind speed and distance as evaluation

indicators in the vulnerability analysis of typhoons in Korea.

Therefore, in this study, DEM, total rainfall, maximum rainfall in

a single day, distance from typhoon landfall, and atmospheric PM2.5

concentration and NO2 concentration were comprehensively

selected as evaluation indicators.

The process of urbanization is the transformation of rural

territories into urban territories, involving the reshaping of

natural landscapes, and it represents the most significant

manifestation of human activities affecting hydrological systems

(Liu et al., 2004). Nutrient export due to human activities has

become a major cause of eutrophication and other ecological

hazards in water bodies (Howarth, 2008; Howarth et al., 2011).

Nutrient export due to human activities has become a major cause

of eutrophication and other ecological hazards in water bodies. To

comprehensively consider the source of non-point source pollution

from human activities, Miao Jin-Dian et al. (2021) used NANI and

NAPA models to analyze the spatial and temporal variation

characteristics and driving factors of nitrogen and phosphorus in

the Hangzhou section of the Qiandao Lake Basin. Fan Hongxiang

et al. (2021) investigated the extent of the contribution of human

activities to the change of water age in the lake area of Poyang Lake

by coupling a deep learning network and a traditional two-

dimensional hydrodynamic model. Yisong Zhao et al. (2022) took
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Dianchi Lake as the research object and discussed the response of

surface temperature and lake surface temperature under the

influence of human activities. Therefore, it is informative for this

study to discuss the effects of anthropogenic O3 concentration and

SO2 concentration on the distribution of DO concentration

response in urban waters under typhoon rain events.

Scholars at home and abroad have mostly conducted research on

typhoon disaster risk assessment with the purpose of considering the

economy and safety (Chaojia et al., 2022). However, relatively few

typhoon disaster risk assessments have been carried out from the

perspective of river water quality indicators, and there have been

limited studies on the DO response of urban waters under the

influence of human activities. In this paper, based on the measured

data of urban water bodies during the 2022 typhoon rain events and

remote sensing image data, the extended MULTIMOORA method is

used to establish the correlation between typhoon drivers and the

response of DO concentration in urban water bodies. Furthermore, this

study aims to assess and quantify the distribution of the DO

concentration response in urban water bodies. The MGWR model

and spatial autocorrelation analysis were used to analyze the effects of

O3 concentration and SO2 concentration generated under the influence

of human activities on the distribution of urban water environment

response. The results of the study will contribute to amore intuitive and

in-depth understanding of the effects of typhoon rain events, as well as

human activities, on the distribution of DO concentration response in

urban waters. Local government decision-makers can formulate more

effective water environmental protection policies and disaster

prevention and mitigation measures based on the results of this study.
2 Materials and methods

2.1 Study area

The Guangdong-Hong Kong-Macao Greater Bay Area is

located in the lower reaches of the Pearl River Basin, surrounded

by mountains to the east, west, and north, and directly facing the

South China Sea. It has a well-developed regional economy as well

as a very high population density (Zhilin et al., 2022). Zhongshan is
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located in the heart of the Guangdong-Hong Kong-Macao Greater

Bay Area, between latitude 22° 11’– 22° 47’ north and longitude

113° 09’– 113° 46’ east, with a total area of 1,783.67 km2. The city’s

topography is dominated by plains, which are high in the middle

and flat around the perimeter, with the plains sloping from

northwest to southeast. Zhongshan City is located in the

subtropical monsoon climate, abundant rainfall, the annual

average rainfall is 1886 mm, the annual average inbound and

transit water volume is 2662.94 billion m3 and 2678.92 billion m3

respectively. The disaster weather suffered by Zhongshan City

mainly includes typhoons, heavy rainfall and strong convection,

with high rainfall and intensity. Overall, the capacity of Zhongshan

City to cope with emergencies such as pollution accidents and water

quality-type water shortage conditions is relatively insufficient

(Xuehua et al., 2022). The study area is shown in Figure 1.
2.2 Research date

In this study, four typhoon rain events (Chaba, Mulan, Ma-on,

Nalgae) affecting Zhongshan City in 2022 were used as the study

area. The extended MULTIMOORA theory was used to investigate

the response of DO concentration in the water system of

Zhongshan City during the transit of different typhoons. The

selected indicators of the extended MULTIMOORA theory are:

total rainfall, maximum rainfall in a single day, daily mean PM2.5

concentration, daily mean NO2 concentration, elevation, and

distance from the station at the time of typhoon landfall.

Rainfall data from GPM (https://disc.gsfc.nasa.gov/; accessed on

7 June 2023) series of products. Global Precipitation Measurement

(GPM) is an international satellite mission, carried out in

cooperation with NASA and JAXA, which utilizes multi-sensor,

multi-satellite and multi-algorithm in combination with satellite

network and rain gauge inversion to obtain more accurate

precipitation data. The GPM satellite carries ka-band

precipitation radar and high-frequency microwave instrument,

which can improve the observation of light rain and snowfall, and

can provide higher spatial resolution and global coverage of

precipitation observation data than TRMM satellite data.
BA

FIGURE 1

Research diagram. (A) Diagram of a typhoon. (B) Map of DEM.
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Meteorological data (NO2, SO2, O3) from the TROPOMI

(https://s5phub.copernicus.eu/dhus/#/home; accessed on 25 June

2023) series of products. Sentinel-5P is a global atmospheric

pollution monitoring satellite launched by the European Space

Agency (ESA) on 13 October 2017. The TROPOMI sensor on

board the satellite can effectively observe trace gas components in

the atmosphere around the globe, including NO2, O3, SO2, HCHO,

CH4 and CO, which are important indicators closely related to

human activities, and enhance the observation of aerosols

and clouds.

PM2.5 data were obtained from Ventusky (https://

www.ventusky.com/; accessed on 5 April 2023), with numerical

results from FINNISH METEOROLOGICAL INSTITUTE,

calculated from the SILAM model and MODIS Aqua and Terra

remote sensing imagery data. DEM data were obtained from

Geospatial Data Cloud (https://www.gscloud.cn/home; accessed

on 26 January 2023).

The typhoon data used in this study were obtained from the

Typhoon Network (http://typhoon.weather.com.cn/index.shtml;

accessed on 8 March 2023). Four typhoon events (Chaba, Mulan,

Ma-on, and Nalgae) affecting the study area in 2022 were used as

study cases. Typhoon Chaba was generated in the South China Sea

on 30 June 2022 and made landfall in Dianbai, Guangdong Province

on 2 July with a landfall wind speed of 35 m/s. Chaba had an

asymmetrical structure, a large circulation range of the cloud

system, slow movement, a long influence time, and a wide range.

Typhoon Mulan was generated in the South China Sea on 8 August

2022 and landed in Xuwen, Guangdong Province on 10 August with

a landing wind speed of 23 m/s. Mulan had characteristics of, for

example, a large size, a peculiar path, a short life cycle, a wide impact

range, and strong local rain. Typhoon Ma-on was generated in the

ocean east of the Philippines on 21 August 2022 and made landfall

in Isabela Province, Philippines on 23 August and in Dianbai,

Guangdong Province on 25 August. Ma-on was fast moving and

had an asymmetric structure. Typhoon Nalgae was generated in the

northwest Pacific Ocean on 27 October 2022 and made landfall in

Catanduanes, Philippines on 29 October and Zhuhai, Guangdong

Province on 3 November. Nalgae was characterised by low intensity

and a loose structure with a large cloud scale.
2.3 Research method

2.3.1 MULTIMOORA method
Brauers and Zavadskas (2006) proposed a Multi-Objective-

Optimization on basis of Ratio Analysis (MOORA) with discrete

schemes. By constructing a decision matrix for multiple

alternatives, decision makers are helped to choose the best option

according to specific preference principles. The main steps are as

follows:

Nxij =
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

j=1x
2
ij

q (1)
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Where: xij is the response of alternative j to target i, j = 1,2,…,m;

m is the number of alternatives, i = 1,2,…,n; n is the number of

targets. Nxij is a dimensionless number representing the normalized

response of alternative j to objective i, with the response interval at

[0; 1].

According to the ratio system method, different types of targets

need to be dealt with separately due to the difference between

benefit and cost in the selection of targets.

A =o
ɡ

i=1
Nxij − o

n

i=ɡ+1
Nxij (2)

Where: i = 1,2,…,ɡ is the number of revenue targets, i =

ɡ+1,ɡ+2,…,n is the number of cost class objectives. Evaluation

value A under alternative j is obtained, and Rank1 is obtained by

ranking according to the evaluation result of value A.

According to the reference point method, a maximum reference

point is selected for the benefit target, whose coordinates are the

largest among all responses. Select a minimal reference point for the

cost class target whose coordinates are the smallest of all responses.

Bij =

��� max

(i)
Nxij − Nxij

���       i < ɡ

��� min

(i)
Nxij − Nxij

���       i > ɡ

8>>>><
>>>>:

(3)

B =    
max

(j)
  Bij (4)

Where: Bij is the maximum reference distance of target i under

alternive j, and B is the evaluation value under alternative j. Rank2 is

obtained by ranking the results of value B.

Brauers and Zavadskas (2010) conducted a study on the

robustness of multi-attribute decision making methods and

pointed out that, in terms of robustness, the multi-attribute

decision making method combining more decision-making

methods has better effect. Therefore, the full multiplicative model

is introduced into MOORA, and the full multiplicative form

(MULTIMOORA) method is proposed. That is, the full

multiplicative form of multiple objectives is added on the basis of

the original, and the formula is as follows:

C =

Qɡ
i=1 NxijQn

i=ɡ+1 Nxij
(5)

Where:
Qɡ

i=1 Nxij is the utility of alternative j for the income

objective, and
Qn

i=ɡ+1 Nxij is the utility of alternative j for the cost

objective. C is the value of alternative j. Rank3 is obtained by

ranking the results of value C.

minF(A,B,C) = f1(A,B,C), f2(A,B,C)… fj(A,B,C)
� �

  (6)

Finally, by summing the above three kinds of sorting, the result

of comprehensive sorting is obtained according to the

dominant theory.
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2.3.2 Extended MULTIMOORA method
Although the MULTIMOORA method has good robustness,

simple and effective calculation, and has a wide range of application

scenarios. However, its shortcomings are that it does not consider

the evaluation information support among experts and the non-

negligible redundancy relationship between evaluation indicators,

the lack of indicator weights (Jun and Shi-Hua, 2022). In this study,

the subjective weight wi is calculated by using OWA operator, the

objective weight wo is calculated by using random forest, and finally

the comprehensive weight ws is obtained based on the principle of

minimum discriminative information.

The Ordered Weighted Averaging (OWA) operator is one of

the most commonly used aggregation operators, which can facilitate

a more versatile data fusion process. Since the introduction of the

OWA operator, many researchers have delved into various methods

of obtaining weights (Xu, 2005). In this study, a method of

calculating combinations is employed to assign weights to the

OWA operator. The formula is as follows (Yu and Ze-Shui, 2008;

Guo et al., 2020). See Appendix A for the detailed calculation

process.

wi =
op

j=1
Cj
p−1

2p−1 *aj

op
i=1op

j=1
Cj
p−1

2p−1 *aj

(i = 1, 2,…, p,j = 0, 1,…, p − 1) (7)

Random Forest is a highly flexible machine learning method

that utilizes multiple decision trees to handle nonlinear data,

address regression and classification problems, and perform

feature selection based on its feature importance metrics. Random

Forest employs the Bootstrap resampling method to extract a

training set comprising 2/3 of the original samples and an Out-

Of-Bag (OOB) data set consisting of 1/3 of the samples for feature

importance computation (Shufang and Ruyang, 2021; Chen et al.,

2023). The principle involves randomly perturbing a particular

input parameter and calculating the resulting estimation error. The

importance of this parameter is determined based on the magnitude

of the error, where a higher importance value indicates greater

significance of the parameter. The formula (LuanXiao et al., 2021;

Xiao-wen et al., 2021) of objective weights is shown below. See

Appendix B for the detailed calculation process.

wo =
IMPi(Xi

OOB)

on
i=1IMPi(Xi

OOB)
(8)

Where: IMPi(Xi
OOB) signifies the importance results of the

feature variables.

For a discrete random variable X = (x1,x2,…,xn), the probability

distribution of x is only related to the condition d and the condition
t. Under the condition d, the xk probability distribution function is

d(xk); similarly, under the condition t, the xk probability

distribution function is t(xk). Thus, the discriminatory

information (Lee et al., 2019) is expressed as:

I½t(x), d (x)� = o
n

k=1

t(x)log
t(x)
d (x)

(9)

Since both subjective and objective weight data are discrete

random variables, in order to enhance the credibility and accuracy
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of the composite weight for evaluation metrics with smaller errors,

this study employs the Minimum Discriminant Information

Principle to determine a composite weight that closely

approximates both. The solution is obtained by introducing

Lagrange multipliers into the equation.

Lag(x,y ) = q(x) − yd (x) (10)

Where: q(x) represents the original function, and d(x) is

the constraint condition function, and y denotes the

Lagrange multiplier.

The formula is as follows. See Appendix C for the detailed

calculation process.

ws =
ffiffiffiffiffiffiffiffiffiffi
wiwo

p

op
i=1

ffiffiffiffiffiffiffiffiffiffi
wiwo

p (11)

Where: ws is the combined weight of the evaluation indicators,

wi is the subjective weight of the evaluation indicators and wo is the

objective weight of the evaluation indicators.

The formula for the extended MULTIMOORA method is

shown below.

A =o
ɡ

i=1
wsNxij − o

n

i=ɡ+1
wsNxij (12)

B =  
max

(j)

ws

��� max

(i)
Nxij − Nxij

���                       i < ɡ

ws

��� min

(i)
Nxij − Nxij

���                     i > ɡ

8>>>><
>>>>:

(13)

C =
 
Yi

ɡ=1 x
    ws
ɡj      Yn

k=i+1 x
    ws
kj  

(14)

The theory of dominance is a method that can integrate

multiple rankings into one ranking result based on various

criteria such as dominance, equality, and transition (Brauers and

Zavadskas, 2012). The extended MULTIMOORA method allows

the ranking of three alternatives to be obtained, and then multiple

rankings are integrated into one ranking based on the theory of

dominance. Finally, the response analysis is performed based on the

final ranking results.

2.3.3 Spatial autocorrelation analysis
After obtaining the extended MULTIMOORA sorting

distribution data, the global Moran index (Ge et al., 2022) was

used as the global spatial autocorrelation index to analyze the

correlation and difference of DO concentration responses in river

water bodies in Zhongshan City. The expression is as follows:

I = o
n
i=1on

j=1wij(xi − �x)(xj − �x)

S2(oiojwij)
(15)

The local Moran index was further used to analyze the local

spatial autocorrelation of the aggregation of DO concentration

response in the river water bodies in Zhongshan City, to identify

the high value aggregation area and the low value aggregation area
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of the DO concentration response, in order to reflect the spatial

dependence and heterogeneity of the DO concentration response.

The expression of the local Moran index is:

Ii =
(xi − �x)on

j=1wij(xi − �x)

S2
(16)

Where: n is the number of spatial grid cells, xi and xj are

observations representing cell i and cell j respectively, (xi − �x) is the

deviation of the observation from the mean value on the ith grid cell,

and wij is a spatial weight matrix based on spatial k-

neighbourhood relationships.
2.3.4 Multiscale geographic weighted regression
In traditional regression analysis, the relationship between the

independent variable and the dependent variable is considered to be

stable throughout the whole area, so the estimated regression

coefficients obtained are averaged over the whole study area,

which cannot respond to the real spatial characteristics of the

regression parameters. Drawing on the idea of local smoothing

and embedding the spatial location of the data in the regression

equations, Fotheringham et al. (1998) proposed a geographically

weighted regression model (Geographically weighted regression,

GWR), whose expression is as follows:

yi = b0(ui; vi) +o
p

k=1

bk(ui; vi)xik + ei     i = 1, 2,…, n (17)

Where: yi is the dependent variable; b0(ui;vi) is the intercept; xik
is the value of the kth independent variable at the ith sampling

point; (ui;vi) is the coordinates of the sampling point, bk(ui;vi) is the
kth regression parameter on the sampling point (ui;vi); ϵi is the

random error.

MGWR, developed from GWR, takes into account different

levels of spatial heterogeneity and allows each independent variable

to have an optimized bandwidth based on itself (Jin et al., 2021). Its

expression is as follows:

yi =o
n

j=1
ajXij + o

m

j=n+1
bj(ui; vi)Xij + ei                       i, j = 1, 2,…, n (18)

Where: Xij is the value of the independent variable; j is the

number of independent variables; bj is the regression coefficient of

the global variable; bj is the regression coefficient of the

local variable.
Frontiers in Ecology and Evolution 06109
3 Result

3.1 Analysis of DO response at different
stations under the influence of the
same typhoon

In order to study the DO response at different water quality

automatic monitoring stations under the influence of the same

typhoon. In this study, the distance from the station at the time of

typhoonMa-on’s landfall, station elevation, total rainfall, maximum

rainfall in a single day, average daily PM2.5 concentration, and

average daily NO2 concentration were selected as the evaluation

indexes, and the extended MULTIMOORA method was applied to

carry out the study. The evaluation indicators for the different

typhoons are shown in Table 1.

Five experienced experts with a long history of research in the

water environment were invited to rate each indicator. The scale

ranges from 1 to 10, with higher ratings indicating that the indicator

has a greater impact on DO concentrations in the water system. The

expert scores are shown in Table 2. The indicators were ranked in

descending order according to the experts’ scores, and the subjective

weights wi = (0.12,0.14,0.23,0.22,0.12,0.17) for each indicator were

subsequently calculated by combining equations (7).

Using the distance from the station at the time of typhoon Ma-

on landfall, station elevation, total rainfall, single-day maximum

rainfall, daily average PM2.5 concentration and daily average NO2

concentration as inputs and the change in DO concentration as

outputs, the above data were input as training samples into a

random forest model to build a regression prediction model, as

shown in Figure 2. In this case, the training samples are set up with a

training set and a test set, which account for 80% and 20% of the

number of training samples respectively. The objective weights wo =

(0.16,0.14,0.16,0.2,0.15,0.19) of each indicator were obtained by

normalising the importance of each feature based on the solved one.

Finally, after coupling the subjective weight wi and the objective

weight wo through equation (9) to equation (11), the combined weight

ws = (0.14,0.14,0.19,0.21,0.14,0.18) of each indicator is obtained.

In order to eliminate the difference in scale between each

indicator, the evaluation indicator data of different sites were first

standardised, and the processing results are shown in Table 3.

After standardisation of the indicator data, the indicators in

Table 4 were calculated using the ratio system, the reference point

approach and the full multiplication form of the extended
TABLE 1 Evaluation indicators for different stations under Typhoon Ma-on.

Typhoon
Distance from
Landing Point
(km)

DEM
(m)

Total Rainfall
(mm)

Maximum
Daily
Rainfall
(mm)

PM2.5 Concentration
(ug/m3)

NO2 Concentration
(ug/m3)

Site 1 258.977 7 15.3 10.6 34 28.75

Site 2 245.974 24 18 12.3 31.792 32.458

Site 3 277.901 11 14.6 7.4 40.792 35.625

Site 4 286.133 0 40.3 27.8 46.417 41.375
frontiersin.org

https://doi.org/10.3389/fevo.2023.1283281
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Shen et al. 10.3389/fevo.2023.1283281
MULTIMOORA method via equations (12) to (14) respectively.

The rating values for each indicator were determined as shown in

Table 4. Where A is the rating value of the ratio system, B is the

rating value of the reference point approach and C is the rating

value of the full multiplication form.

As can be seen from Table 4, the response of DO concentrations

in the water at different sites under the influence of TyphoonMa-on

is ranked from largest to smallest: Site 2 > Site 1 > Site 4 > Site 3. In

terms of DO concentrations, the variation in DO concentrations

measured before and after the typhoon at the four automatic water

quality monitoring stations in the study area during Typhoon Ma-

on was 0.4 (Site 2) > 0.15 (Site 1) > −0.1 (Site 4) > −2.4 (Site 3). A

positive value means that the DO concentration in the water

column has increased after the typhoon, indicating a positive

trend; a negative value means that the DO concentration in the

water column has decreased after the typhoon, indicating a

negative trend; this is in line with the expert scoring and the

MULTIMOORA theory of ranking. The urban pattern of

Zhongshan City shows that Site 2 and Site 1 are in the more

urbanised population centres, while Site 4 and Site 3 are in the less

urbanised river inlets. DO concentrations are relatively low in water

bodies at large population centres, and tend to increase as a result of

rainfall dilution; DO concentrations are relatively high in water

bodies at the mouths of less urbanised rivers, and tend to decrease as

a result of rainfall scouring. Combined with the data for the

selected indicators, the results of this method of ranking are

considered reasonable.
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3.2 Analysis of DO response in water in
Zhongshan City under the influence of
typhoon rain events

An in-depth understanding of the response status of DO

concentration in urban water bodies under the influence of

different typhoon rain events is helpful in revealing the trend of

changes in the urban water environment under the influence of

typhoon rain events, and in formulating strategies for controlling the

water environment during the transit of typhoons. In some studies,

an information system based on multi-criteria decision analysis is the

preferred method because it involves multiple weighted combinations

and also produces visualization results (Kut and Pietrucha-Urbanik,

2022), which is important for decision-making on the environmental

risks of typhoon disasters. In this study, the extended

MULTIMOORA theory is combined with geographic information

system (GIS) to extract the above six evaluation index values using

remote sensing image data, and the extracted index values are

substituted into the formula for calculating the DO concentration

response ranking under the influence of field typhoon and rainfall,

and finally the DO concentration response under the influence of

typhoon rain events is visualized. In this study, four typhoons (Chaba,

Mulan, Ma-on, and Nalgae) affecting Zhongshan City in 2022 were

visualized and analyzed separately, in which the metrics were

extracted as shown in Figures 3–6, and the response of DO

concentration in Zhongshan City under the influence of typhoon

rain events in each scene is shown in Figure 7.
BA

FIGURE 2

Schematic diagram of random forest regression analysis. (A) Diagram of the training process. (B) Schematic representation of the importance of features.
TABLE 2 Expert evaluation form.

Scorer
Distance from
Landing Point

(km)

DEM
(m)

Total
Rainfall
(mm)

Maximum Daily
Rainfall (mm)

PM2.5 Concentration
(ug/m3)

NO2 Concentration
(ug/m3)

Expert 1 6 7 3 10 4 9

Expert 2 5 3 9 7 5 8

Expert 3 2 4 9 8 6 6

Expert 4 3 6 8 8 3 3

Expert 5 5 5 8 7 4 4
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Chaba was generated in the South China Sea on 30 June 2022,

and landed in the coastal area of Guangdong Dianbai at 15:00 on 2

July, with landing winds reaching 35 m/s. As can be seen from

Figure 3, from 2 to 4 July, the cumulative rainfall in Zhongshan City

ranged from 88.1737 mm to 142.435 mm under the influence of

Chaba, with the maximum single-day rainfall ranging from

39.5626 mm to 81.5451 mm. The daily average PM2.5

concentration ranged from 15.7081 mg/m3 to 18.8748 mg/m3 and

NO2 concentration ranged from 0.0000963933 mol/m2 to

0.000202383 mol/m2.

Mulan intensified from a tropical storm in the South China Sea

on 9 August 2022, and made landfall in Xuwen, Guangdong at 10:00

a.m. on 10 August, with landfall winds reaching 23 m/s. As can be

seen from Figure 4, the cumulative rainfall in Zhongshan City from

9 to 11 August under the influence of Mulan ranged from

36.4076 mm to 111.974 mm, with the maximum single-day

rainfall ranging from 19.5202 mm to 63.1185 mm, the daily

average PM2.5 concentration ranged from 7.16744 mg/m3

to 16.6249 mg/m3 and NO2 concentration ranged from

0.0000351573 mol/m2 to 0.00011281 mol/m2.

Ma-on was generated on 22 August 2022 over the ocean east of

the Philippines and landed on the coast of Guangdong Dianbai at

10:00 a.m. on 25 August, with landing winds reaching 33 m/s. As

can be seen from Figure 5, the cumulative rainfall in Zhongshan

City from 24 to 26 August under the influence of Ma-on ranged

from 6.46943 mm to 20.8218 mm, with the maximum single-day

rainfall ranging from 5.73675 mm to 19.8135 mm, with daily

average PM2.5 concentrations ranging from 27.5838 mg/m3 to

46.3735 mg/m3 and NO2 concentrations ranging from

0.0000432654 mol/m2 to 0.0000855731 mol/m2.

Nalgae was generated in the northwest Pacific Ocean on 27

October 2022 and landed in Xiangzhou District, Zhuhai,

Guangdong on 3 November, with landing winds reaching 16 m/s.

As can be seen from Figure 6, the cumulative rainfall in Zhongshan

City from 31 October to 3 November was between 5.31433 mm to
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13.3876 mm under the influence of Nalgae, with the maximum

single-day rainfall ranging from 2.7148 mm to 6.63383 mm, with

daily average PM2.5 concentrations ranging from 33.0633 mg/m3

to 42.5623 mg/m3 and NO2 concentrations ranging from

0.000225898 mol/m2 to 0.000561096 mol/m2.

The lower the ranking value calculated based on the extended

MULTIMOORA theory, the more likely the DO concentration in

the water body at that location will respond in a good direction

under the influence of the typhoon rain events; the higher the

ranking value calculated based on the extended MULTIMOORA

theory, the more likely the DO concentration in the water body at

that location will respond in a bad direction under the influence of

the typhoon rain events. As can be seen from Figure 7, the DO

concentration response of the rivers in the Zhongshan city area

under the influence of Chaba, Mulan and Nalgae is such that there

is a tendency for the south-western water bodies to develop to the

good side, while the north-eastern water bodies have a tendency to

become worse. Under the influence of Ma-on, the DO

concentration response in the Zhongshan municipal rivers is a

trend towards worse water bodies in the south-west as well as in

the north.

An accurate understanding of the regional distribution of DO

concentration response in urban waters under the influence of

different typhoon rain events is helpful in revealing the regional

distribution of urban water environment risks under the influence

of typhoon rain events, and in formulating targeted disaster

prevention and mitigation efforts. In this study, the ranked values

calculated by the extended MULTIMOORA theory are clustered

and analyzed, as shown in Figure 8.

As can be seen from Figure 8, under the influence of Chaba,

Mulan and Nalgae, the southern and northwestern parts of

Zhongshan City show low-low aggregation phenomena,

indicating that the response of DO concentration in this region

has a tendency to develop for the better, and it is a low-risk area; the

northern and northeastern parts of Zhongshan City show high-high
TABLE 4 Ratings of different stations under Typhoon Ma-on.

Typhoon A Rank1 B Rank2 C Rank3 SUM Comprehensive sort

Site 1 0.095 3 0.109 2 0.62 2 7 2

Site 2 0.194 2 0.099 1 0.769 1 4 1

Site 3 0.067 4 0.13 4 0.575 3 11 4

Site 4 0.217 1 0.123 3 0 4 8 3
TABLE 3 Indicators for the different sites after standardization.

Typhoon
Distance from
Landing Point

(km)

DEM
(m)

Total
Rainfall
(mm)

Maximum Daily Rain-
fall (mm)

PM2.5

Concentration
(mg/m3)

NO2

Concentration
(mg/m3)

Site 1 0.484 0.256 0.313 0.321 0.439 0.412

Site 2 0.459 0.879 0.368 0.372 0.411 0.466

Site 3 0.519 0.403 0.298 0.224 0.527 0.511

Site 4 0.534 0 0.823 0.842 0.6 0.593
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D E
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FIGURE 3

Distribution of indicators in Zhongshan under the impact of Typhoon Chaba. (A) Distribution of NO2 concentration. (B) Distribution of PM2.5 concentration.
(C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
B C

D E

A

FIGURE 4

Distribution of indicators in Zhongshan under the impact of Typhoon Mulan. (A) Distribution of NO2 concentration. (B) Distribution of PM2.5

concentration. (C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
Frontiers in Ecology and Evolution frontiersin.org09112

https://doi.org/10.3389/fevo.2023.1283281
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Shen et al. 10.3389/fevo.2023.1283281
B C

D E

A

FIGURE 6

Distribution of indicators in Zhongshan under the impact of Typhoon Nalgae. (A) Distribution of NO2 concentration. (B) Distribution of PM2.5 concentration.
(C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
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FIGURE 5

Distribution of indicators in Zhongshan under the impact of Typhoon Ma-on. (A) Distribution of NO2 concentration. (B) Distribution of PM2.5 concentration.
(C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
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aggregation phenomena, indicating that the response of DO

concentration in this region has a tendency to deteriorate, and it

is a high-risk area. Under the influence of Ma-on, the localized areas

in the northeast and southwest of Zhongshan City showed the

phenomenon of high-high aggregation, indicating that the response

of DO concentration in this region has a tendency to become worse

and is a high-risk area; the phenomenon of low-low aggregation in

the northwest of Zhongshan City indicates that the response of DO

concentration in this region has a tendency to develop in a better

direction and is a low-risk area.
3.3 Spatial heterogeneity in the response of
water body DO concentration under the
influence of typhoon rain events

Human activities are the main drivers of atmospheric pollution

(Shuping et al., 2016). SO2 and O3 are important gases affecting

atmospheric quality, of which O3 is a very important greenhouse gas

with an uneven global distribution, which is significantly affected by
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human activities (Bing and Hua, 2014). SO2 mainly originates from

human activities such as industrial activities, fossil fuel combustion

and biomass combustion (Jie et al., 2011), therefore SO2 can be used

to characterize the intensity of human activities. Spatial

heterogeneity in population distribution has been suggested

(Zhipeng et al., 2022), and thus the same spatial heterogeneity

exists in SO2 concentration distribution and O3 concentration

distribution driven by anthropogenic intensity. In this study, the

MGWR model was used to explore the correlation between the O3

concentration distribution and SO2 concentration distribution

driven by the intensity of human activities and the DO

concentration response ranking values of urban streams, and the

calculated results are shown in Figure 9. (a), (c), (e), (g), and (b), (d),

(f), (h) are the spatial distributions of the coefficients of influence of

the O3 concentration distributions and the SO2 concentration

distributions on the sorted values of the DO concentration

response for Chaba, Mulan, Ma-on, and Nalgae, respectively.

As shown in Figure 9, there is a certain correlation between the

DO concentration response ordering values and the O3 concentration

distribution and SO2 concentration distribution. In terms of O3
B

C D

A

FIGURE 7

Response of DO concentration in Zhongshan City water bodies under the influence of Typhoon Rain Events. (A) Influenced by Chaba. (B) Influenced
by Mulan. (C) Influenced by Ma-on. (D) Influenced by Nalgae.
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concentration distribution, under the influence of the four typhoon

events, the maximum positive correlation between DO concentration

response ranking values and O3 concentration distribution occurred

in the eastern part of Zhongshan City, the minimum positive

correlation occurred in the western part of Zhongshan City, and

the maximum negative correlation occurred in the northern part of

Zhongshan City. In terms of SO2 concentration distribution, under

the influence of the four typhoon rains, the maximum positive

correlations between the ranked DO concentration response values

and the SO2 concentration distribution occurred in the eastern and

western parts of Zhongshan City, the minimum negative correlations

occurred in the southern part of Zhongshan City, and the maximum

negative correlations occurred in the northern part of

Zhongshan City.
4 Discussion

In recent years, a series of research results have been achieved in

both environmental risk assessment and typhoon disaster risk
Frontiers in Ecology and Evolution 12115
assessment. And in the existing studies, economy and safety are

mostly taken as the assessment objectives. In this study, an attempt

is made to introduce the expanded MULTIMOORA theory in

multi-criteria decision analysis to carry out the environmental

risk assessment of typhoon disaster with the response of DO

concentration in the water body as the assessment objective.

Meanwhile, combining the measured water quality data and

corresponding public information, the results of this study are

considered reasonable, and the findings can provide some

reference for the local government in formulating disaster

prevention and mitigation plans and water environment control

strategies during typhoons.

As can be seen in Figures 7, 8, the effect of field typhoon rains

on the response of DO concentrations in urban rivers is two-sided,

which is consistent with previous reports (Zhou et al., 2012; Ye

et al., 2014). In general, rainfall with higher DO concentration into

the river can effectively increase the DO concentration of the river

(Muñoz et al., 2015), and at the same time, rainfall can also cause a

large amount of oxygen-depleting compounds and organic matter

to enter into the river, which can cause a rapid decrease in the DO
B

C D

A

FIGURE 8

Cluster Analysis of DO Concentration Response in Zhongshan City Water Bodies under the Impact of Typhoon Rain Events. (A) Influenced by Chaba.
(B) Influenced by Mulan. (C) Influenced by Ma-on. (D) Influenced by Nalgae.
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content of the river. Combined with the results of the study, this

paper concludes that: in the rainfall intensity of the larger typhoon

rain events, rich in dissolved oxygen rainfall will play a dilution

effect, increase the dissolved oxygen content in the water body of

the urban water network; and in the production of convergence

and the role of surface scouring to reduce in the water body at the

mouth of the sea in the content of dissolved oxygen. This is

consistent with existing research. Pearce and Schumann (2003)

documented a 13-month period of dissolved oxygen

concentration measurements in the Gamtoos Estuary, South

Africa, noting that hypoxic conditions occurred throughout the

estuary following a large-scale extreme rainfall event. In 2011,

Mitra.A. (Mitra et al., 2011a; Mitra et al., 2011b) et al. conducted

an in-situ study of hydrological parameters in the Bay of Bengal

and neighboring estuaries under the influence of AILA and found

that dissolved oxygen showed a decreasing trend at all the

sampling points during the transit of AILA, and gradually

recovered to the pre-AILA level in the water column 10 days

after the end of the AILA event. Geng Ye et al. (2021) analyzed

urban surface water quality under the influence of Lekima based

on automatic monitoring data, and concluded that during the

typhoon’s transit, the DO concentration in the Jinan section of the

Xiaoqing River showed an overall upward trend accompanied by

small fluctuations under the combined effect of upstream inflow

and surface tributary inflow during the same period. Under the

action of the typhoon rain events with lower rainfall intensity, the
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scouring action of rainwater dominates, washing pollutants from

urban impervious surfaces as well as organic matter from

mountainous soils into the river water body, leading to a trend

of worse overall DO concentration response in the water body.

This is consistent with existing studies. Yihui et al. (2022) analyzed

in detail the characteristics of the impacts of typhoon rain events

on the water environment of lakes and showed that the effect of

typhoon rain events would cause a decrease in the concentration

of DO in the water body. In terms of rainfall intensity, the results

of this paper are consistent with existing studies that different

rainfall characteristics produce different runoff loads and runoff

concentrations, which in turn lead to different runoff water quality

(An et al., 2014).

As can be seen from Figure 9, the ranked values of DO

concentration response in the rivers of Zhongshan city area

under the influence of typhoon rain events show some

correlation with the distribution of O3 concentration and the

distribution of SO2 concentration. Specifically, the response

rankings of DO concentration were positively correlated with

the distribution of O3 and SO2 concentrations in the eastern,

central and western parts of Zhongshan City, i.e., the larger the

concentrations of O3 and SO2, the larger the response rankings of

DO concentration, and the water quality in the river had a

tendency to deteriorate under the impacts of the typhoon rain

events; The response ranking of DO concentration is negatively

correlated with the distribution of O3 and SO2 concentrations in
B C D
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FIGURE 9

(A) Spatial distributions of the coefficients of influence of the O3 concentration distributions on the sorted values of the DO concentration response
influenced of Chaba. (B) Spatial distributions of the coefficients of influence of the SO2 concentration distributions on the sorted values of the DO
concentration response influenced of Chaba. (C) Spatial distributions of the coefficients of influence of the O3 concentration distributions on the
sorted values of the DO concentration response influenced of Mulan. (D) Spatial distributions of the coefficients of influence of the SO2

concentration distributions on the sorted values of the DO concentration response influenced of Mulan. (E) Spatial distributions of the coefficients of
influence of the O3 concentration distributions on the sorted values of the DO concentration response influenced of Ma-on. (F) Spatial distributions
of the coefficients of influence of the SO2 concentration distributions on the sorted values of the DO concentration response influenced of Ma-on.
(G) Spatial distributions of the coefficients of influence of the O3 concentration distributions on the sorted values of the DO concentration response
influenced of Nalgae. (H) Spatial distributions of the coefficients of influence of the SO2 concentration distributions on the sorted values of the DO
concentration response influenced of Nalgae.
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the north and south of Zhongshan City, i.e., the larger the

concentrations of O3 and SO2 are, the smaller the response

ranking of DO concentration is, and there is a tendency for the

water quality in the river to be better under the influence of the

typhoon rain events. This result is consistent with conventional

knowledge: the central, western and eastern parts of Zhongshan

City are densely populated urban centers, where intensive human

activities provide a large amount of O3 precursors and SO2; while

the southern and northern parts of Zhongshan City are not only

set up as agroforestry ecological zones, but also as an agricultural

development area in the southern part of the city, where the

content of O3 precursors and SO2 is lower. Under the condition of

similar rainfall, the DO concentration response ranking values

showed positive correlation with O3 concentration distribution

and SO2 concentration distribution in the east, center and west of

Zhongshan City, and negative correlation in the north and south

of Zhongshan City, which is in line with the reality.

In conclusion, the results of this study are accurate and credible,

and can provide a visual reference and theoretical basis for urban

managers to develop adaptive water governance and carry out

targeted disaster prevention and mitigation work (Liya et al., 2022).
5 Conclusion

Characterizing the response of dissolved oxygen concentration in

urban water bodies under the influence of a single typhoon is essential

for city managers to make decisions on response programs and input

budgets. In this study, the extended MULTIMOORA method was

used to establish the correlation between typhoon drivers and the

response of DO concentration in urban water bodies, and to quantify

and evaluate the characteristics of the response distribution of DO

concentration in urban water bodies. The results showed that the

response of DO concentration in the water body of the river in the

center of the city under the action of the more intense typhoon rain

events was developed to be better; the response of DO concentration

in the water body at the mouth of the sea tended to be worse. Under

the effect of less intense typhoon rain events, the scouring effect of

rainwater dominates and there is a tendency for the response of DO

concentration in the water body to become worse. Meanwhile, this

study used the MGWR model and spatial autocorrelation analysis to

explore the impact of human activities on the distribution of urban

water environment response. The results show that the response

ranking values of DO concentration in rivers in Zhongshan city

under the influence of the typhoon rain events are positively

correlated with the distribution of O3 concentration and SO2

concentration in the east, center and west of Zhongshan city, and

negatively correlated with the distribution of O3 concentration and

SO2 concentration in the north and south of Zhongshan city. The

results of this study can provide visual reference and theoretical

support for local governments and city managers in developing

adaptive water management and targeted disaster prevention and

mitigation programs.
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xcala, México. Water Technol. Sci. (in Spanish) 6, 16.

Pearce, M. W., and Schumann, E. H. (2003). Dissolved oxygen characteristics of the
gamtoos estuary, South Africa. Afr. J. Mar. Sci. 25, 99–109. doi: 10.2989/
18142320309504003

Qiong, Y., Haijun, Z., Guohui, Z., Hang, L., Yueyan, L., and Zhengming, X. (2021).
Research on green degree evaluation of cutting process based on MULTIMOORA (in
Chinese).Modern Manufacturing Eng. 7, 10–16. doi: 10.16731/j.cnki.1671-3133.2021.11.002

Qi-ting, Z., Jun-Xia, M., and Chuan-Chang, G. (2005). Study on carrying capacity of
urban water environment (in Chinese). Adv. Water Sci. 16, 6. doi: 10.14042/
j.cnki.32.1309.2005.01.019

Shenghua, X., Zhengsong, C., Yonggang, C., and Qiang, H. (2019). Recognition
method of airline fleet reliability based on index fuzzy segmentation and
MULTIMOORA (in Chinese). Comput. Integrated Manufacturing Syst. 25, 8.
doi: 10.13196 / j.cims.2019.02.016

Shufang, S., and Ruyang, H. (2021). Importance measure index system based on
random forest (in Chinese). JOURNAL OF Natl. UNIVERSITY OF DEFENSE Technol.
43, 8. doi: 10.11887/j.cn.202102004

Shuping, Z., Lijian, H., Weiqi, Z., andWeifeng, L. (2016). Impact of urban population
on concentrations of nitrogen dioxide ( NO2 ) and fine particles ( PM2.5 ) in China (in
Chinese). Acta ECOLOGICA Sin. 36, 9. doi: 10.5846/stxb201502050292
frontiersin.org

https://doi.org/10.16511/j.cnki.qhdxxb.2014.07.004
https://doi.org/10.3969/j.issn.1671-1815.2014.08.019
https://doi.org/10.1007/s10458-005-3783-9
https://doi.org/10.3846/tede.2010.01
https://doi.org/10.15388/Informatica.2012.346
https://doi.org/10.15388/Informatica.2012.346
https://doi.org/10.3390/w11112203
https://doi.org/10.11975/j.issn.1002-6819.2022.23.025
https://doi.org/10.1007/s11356-020-09292-0
https://doi.org/10.1007/s11356-020-09292-0
https://doi.org/10.3964/j.issn.1000-0593(2023)04-1043-08
https://doi.org/10.13227/j.hjkx.2016.08.014
https://doi.org/10.3390/f13050732
https://doi.org/10.1016/j.scitotenv.2021.147203
https://doi.org/10.1068/a301905
https://doi.org/10.1016/j.jclepro.2021.126098
https://doi.org/10.3390/su12218980
https://doi.org/10.3964/j.issn.1000-0593(2022)08-2572-07
https://doi.org/10.1515/secm-2020-0048
https://doi.org/10.1515/secm-2020-0048
https://doi.org/10.1016/j.inffus.2018.12.002
https://doi.org/10.1007/s10661-019-7351-1
https://doi.org/10.18307/2021.0419
https://doi.org/10.18307/2021.0419
https://doi.org/10.1016/j.hal.2008.08.015
https://doi.org/10.1890/100008
https://doi.org/10.1890/100008
https://doi.org/10.13198/j.issn.1001-6929.2016.01.17
https://doi.org/10.3390/RS13245079
https://doi.org/10.19674/j.cnki.issn1000-6923.2021.0287
https://doi.org/10.13195/j.kzyjc.2021.0437
https://doi.org/10.1155/2020/8885916
https://doi.org/10.3390/en15218108
https://doi.org/10.1111/jedm.12216
https://doi.org/10.12073/j.hjxb.20211018001
https://doi.org/10.13227/j.hjkx.2004.06.007
https://doi.org/10.1007/s11069-008-9262-2
https://doi.org/10.16232/j.cnki.1001-4179.2020.11.028
https://doi.org/10.6038 / cjg2021O0123
https://doi.org/10.1016/j.rser.2016.12.053
https://doi.org/10.3390/w13040490
https://doi.org/10.2989/18142320309504003
https://doi.org/10.2989/18142320309504003
https://doi.org/10.16731/j.cnki.1671-3133.2021.11.002
https://doi.org/10.14042/j.cnki.32.1309.2005.01.019
https://doi.org/10.14042/j.cnki.32.1309.2005.01.019
https://doi.org/10.13196 / j.cims.2019.02.016
https://doi.org/10.11887/j.cn.202102004
https://doi.org/10.5846/stxb201502050292
https://doi.org/10.3389/fevo.2023.1283281
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Shen et al. 10.3389/fevo.2023.1283281
Songbai, G., Aiguo, G., Guantao, N., Xuxu, Z., Yanpo, Z., and Yuting, H. (2017).
Progress in research of hypoxia in estuaries and coastal areas in China (in Chinese).
Water Resour. Prot. 33, 8. doi: 10.3880/j.issn.1004-6933.2017.04.010

Wang, Y., Yin, Y., and Song, L. (2022). Risk assessment of typhoon disaster chains in
the Guangdong–Hong Kong–Macau greater bay area, China. Front. Earth Sci. 10. doi:
10.3389/feart.2022.839733

Weihui, H., Chunzi, M.,Wenpan, L., Zhuoshi, H., Hanxiao, Z., and Shouliang, H. (2021).
Spatial-temporal variations of dissolved oxygen and their response to global warming in
China (in Chinese). Acta Scientiae Circumstantiae 41, 11. doi: 10.13671/j.hjkxxb.2020.0330

Xiaoran, O., Qiaohua, Z., and Yingzhu, W. (2013). A preliminary exploration of
dissolved oxygen based on FVCOM in Meiliang Bay,Lake Taihu and its influence
mechanism (in Chinese). J. Lake Sci. 25, 11.

Xiao-wen, L., Lu-Quan,W., Ya-Guang, Z., Yun-Zhao, C., Ming-Yi,W., Jun-Ping, Z., et al.
(2021). Random forest retinal segmentation in OCT images based on principal component
analysis (in Chinese). Prog. Biochem. Biophys. 48, 8. doi: 10.16476/j.pibb.2020.0270

Xiu-qin, O., Bo, W., Jian-Lin, S., Xiao, Z., Jie-Fei, W., Yong, L., et al. (2019).
Atmospheric nitrogen dioxide,Nitric acid,Nitrate nitrogen concentrations,and wet and
dry deposition Rates in a double Rice Region in subtropical China (in Chinese).
Environ. Sci. 40, 8. doi: 10.13227/j.hjkx.201810252

Xu, Z. (2005). An overview of methods for determining OWA weights. Int. J. Intell.
Syst. 20, 843–865. doi: 10.1002/int.20097

Xuehua, G., Zhihe, C., and Zhiheng, Y. (2022). Dynamic simulation and sensitivity
analysis of water resources system in Zhongshan City (in Chinese).Water Resour. Prot.
38, 9. doi: 10.3880/j.issn.1004-6933.2022.02.015

Ye, H., Chen, C., Tang, S., Tian, L., Sun, Z., Yang, C., et al. (2014). Remote sensing
assessment of sediment variation in the Pearl River Estuary induced by Typhoon
Vicente. Aquat. Ecosyst. Health Manage. 17, 271–279. doi: 10.1080/14634988.
2014.944475

Ye, G., Tian-Jun, D., Jian-Hui, X., Guo-Dong, Q., and Xue-Jun, Y. (2021). Analysis of
the impact of typhoon “Lekima” Rainfall on urban surface water quality based on
automatic monitoring (in Chinese). Environ. Sci. Technol. 34, 6. doi: 10.19824/
j.cnki.cn32-1786/x.2021.0013

Yihui, Z., Yuemin, H., Zhaoliang, P., Weiping, H., and Jinge, Z. (2022). Fast-changing
wind waves and their environmental effects in Lake Chaohu (in Chinese). J. Lake Sci.
34, 9. doi: 10.18307/2022.0322
Frontiers in Ecology and Evolution 16119
Yu, H., Song, Y., Chang, X., Gao, H., and Peng, J. (2018). A scheme for a sustainable
urban water environmental system during the urbanization process in China.
Engineering 4, 190–193. doi: 10.1016/j.eng.2018.03.009

Yu, W., and Ze-Shui, X. (2008). A new method of giving OWA weights (in Chinese).
Mathematics Pract. Theory 38, 11.

Yuan-hua, H., Yi-Lan, H., and Sheng-Hua, X. (2023). An evaluation model of
airport fire station site selection based on entropy weight intuitionistic fuzzy
extended MULTIMOORA (in Chinese). Control Decision 38, 9. doi: 10.13195/
j.kzyjc.2021.0247

Yufeng, Z., Liu, S., Liqing, L., Hong, Z., andWenzhong, T. (2023). Treatment of black
and odorous water I : Effects of water oxygen state on speciation and bioavailability of
heavy metals in sediments (in Chinese). Acta Scientiae Circumstantiae 43, 10.
doi: 10.13671/j.hjkxxb.2022.0199

Yuling, H., Jinxin, F., Zeping, W., Mengnan, G., and Shunxin, F. (2022).
Assessing requirements for dissolved oxygen in Yunnan plateau lakes (in
Chinese). J. China Institute Water Resour. Hydropower Res. 20, 7. doi: 10.13244/
j.cnki.jiwhr.20210300

Zhang, J., and Chen, Y. (2019). Risk assessment of flood disaster induced by typhoon
rainstorms in Guangdong province, China. Sustainability 11. doi: 10.3390/su11102738

Zhang, W., Zhou, X., Wei, W., and Cheng, X. (2022). Risk assessment of water inrush
in tunnels: A case study of a tunnel in Guangdong province, China. Sustainability 14.
doi: 10.3390/su141811443

Zhao, Y., Yang, K., Luo, Y., and Yu, Z. (2022). Spatial–temporal characteristics of
surface thermal environment and its effect on Lake surface water temperature in
Dianchi Lake basin. Front. Ecol. Evol. 10. doi: 10.3389/fevo.2022.984692

Zhilin, Z., Jing, Q., Tao, C., Bensheng, H., and Ziying, F. (2022). Urban flood issues
and analysis in the Guangdong-Hong Kong-Macao Greater Bay Area (in Chinese).
J. Hydraulic Eng. 53, 10. doi: 10.13243/j.cnki.slxb.20220207

Zhipeng, G., Yuao, M., Huayi, W., and Rui, L. (2022). Urban population
spatialization by considering the heterogeneity on local resident attraction force
of POIs (in Chinese). J. Geo-information Sci. 24, 15. doi: 10.12082/dqxxkx.
2022.220384

Zhou, W., Yin, K., Harrison, P. J., and Lee, J. H. W. (2012). The influence of late
summer typhoons and high river discharge on water quality in Hong Kong waters.
Estuarine Coast. Shelf Sci. 111, 35–47. doi: 10.1016/j.ecss.2012.06.004
frontiersin.org

https://doi.org/10.3880/j.issn.1004-6933.2017.04.010
https://doi.org/10.3389/feart.2022.839733
https://doi.org/10.13671/j.hjkxxb.2020.0330
https://doi.org/10.16476/j.pibb.2020.0270
https://doi.org/10.13227/j.hjkx.201810252
https://doi.org/10.1002/int.20097
https://doi.org/10.3880/j.issn.1004-6933.2022.02.015
https://doi.org/10.1080/14634988.2014.944475
https://doi.org/10.1080/14634988.2014.944475
https://doi.org/10.19824/j.cnki.cn32-1786/x.2021.0013
https://doi.org/10.19824/j.cnki.cn32-1786/x.2021.0013
https://doi.org/10.18307/2022.0322
https://doi.org/10.1016/j.eng.2018.03.009
https://doi.org/10.13195/j.kzyjc.2021.0247
https://doi.org/10.13195/j.kzyjc.2021.0247
https://doi.org/10.13671/j.hjkxxb.2022.0199
https://doi.org/10.13244/j.cnki.jiwhr.20210300
https://doi.org/10.13244/j.cnki.jiwhr.20210300
https://doi.org/10.3390/su11102738
https://doi.org/10.3390/su141811443
https://doi.org/10.3389/fevo.2022.984692
https://doi.org/10.13243/j.cnki.slxb.20220207
https://doi.org/10.12082/dqxxkx.2022.220384
https://doi.org/10.12082/dqxxkx.2022.220384
https://doi.org/10.1016/j.ecss.2012.06.004
https://doi.org/10.3389/fevo.2023.1283281
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Shen et al. 10.3389/fevo.2023.1283281
Appendix A. OWA operator:

First, P experts are invited to rate the target Q. The rating results

are then arranged in descending order , result ing in

(a0, a1,…, aj,…, ap−1), where a0 > a1 > … > aj > … > ap−1. The

weight yj+1 for aj is determined by combinatorial calculations.

yj+1 =
Cj
p−1

2p−1
  (j = 0, 1,…, p − 1) (1)

According to the weights yj+1, the target data is sequentially

weighted to obtain the absolute weights of the target, denoted as wi.

wi =o
p

j=1
yj+1aj(i = 1, 2,…, p) (2)

Hence, the subjective weights wi calculated by the OWA

operator can be obtained.

wi =
wi

op
i=1wi

(i = 1, 2,…, p) (3)
Appendix B. The process of solving
objective weights:

The formulae (LuanXiao et al., 2021; Xiao-wen et al., 2021) are

shown below.

ɡ(D ∣O) = H(D) − H(D ∣O) (1)

mseiOOBm = mse(Yi
P − Y)2 −mse(YP − Y)2 (2)

IMPi(Xi
OOB) =

1
To

T

t=1
mseiOOBm (3)

Where: g(D|O) is the information gain value,H(D) is the overall

entropy value before branching, H(D|O) is the entropy value after

pre-branching in condition O. Y represents the true values, YP

represents the predicted values, Yi
P denotes the predicted values

after modifying the feature variables, mseiOOBm represents the mean

squared error of the feature variables for decision tree tm, T is the

number of decision trees, and IMPi(Xi
OOB) signifies the importance

results of the feature variables.

Calculate the objective weights wo as follows:

wo =
IMPi(Xi

OOB)

on
i=1IMPi(Xi

OOB)
(4)
Appendix C. The process of solving
comprehensive weights:

For a discrete random variable X = (x1, x2,…, xn), the

probability distribution of x is only related to the condition d and

the condition t. Under the condition d, the xk probability
Frontiers in Ecology and Evolution 17120
distribution function is d(xk); similarly, under the condition t, the
xk probability distribution function is t(xk). Thus, the

discriminatory information (Lee et al., 2019) is expressed as:

I½t(x), d (x)� = o
n

k=1

t(x)log
t(x)
d (x)

(1)

Since both subjective and objective weight data are discrete

random variables, in order to enhance the credibility and accuracy

of the composite weight for evaluation metrics with smaller errors,

this study employs the Minimum Discriminant Information

Principle to determine a composite weight that closely

approximates both. The solution is obtained by introducing

Lagrange multipliers into the equation.

Lag(x,y ) = q(x) − yd (x) (2)

Where: q(x) represents the original function, and d(x) is the

cons t r a in t cond i t i on func t i on , and y deno t e s the

Lagrange multiplier.

Establishing the objective function as follows:

min (I½ws,wi� + I½ws,wo�) = o
n

k=1

(wsln
ws

wi
+ wsln

ws

wo
)

o
n

k=1

ws − 1 = 0

8>>><
>>>:

(3)

Substituting the Lagrange multiplier yields:

Lag(ws,y ) = o
n

k=1

(wsln
ws

wi
+ wsln

ws

wo
) − y (o

n

k=1

ws − 1) (4)

Taking the partial derivative of Equation 4 results in:

ws =
ffiffiffiffiffiffiffiffiffiffi
wiwo

p

op
i=1

ffiffiffiffiffiffiffiffiffiffi
wiwo

p (5)

Where: ws is the combined weight of the evaluation indicators,

wi is the subjective weight of the evaluation indicators and wo is the

objective weight of the evaluation indicators.
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Modeling habitat quality for
rangeland ecosystem restoration
in the Alledeghi Wildlife reserve,
Ethiopia

Simeneh Admasu1,2*
1Environmental Planning Program (EiABC), Addis Ababa University, Addis Ababa, Ethiopia, 2GFAConsulting
Group, GIZ Biodiversity, and Forests Program, Addis Ababa, Ethiopia

Assessment of habitat quality is important for the planning and management of
conservation measures at a landscape level. The Alledeghi Wildlife Reserve (AWR)
is an iconic wildlife conservation area because it not only contains charismatic
wildlife species but also serves as a reliable livestock rangeland. The study aimed to
assess habitat quality based on landscape-specific habitat threat information in the
AWR using InVEST software. it is the first attempt tomodel the habitat quality of the
landscape using expert-driven information. Six important threats were
considered, namely, invasive species, bush encroachment, livestock incursion,
fire, habitat destruction, and distance to roads. The quantified habitat quality was
classified into low, moderate, and high. The results revealed that the quality of the
habitat declined in the study area between 1998 and 2016. The high-quality habitat
had a larger extent covering about 837 km2 (57.4%) in 1998 but it was reduced by
128 km2 (64%) during the study period. Conversely, moderate quality and low-
quality habitats have increased from 78 km2 (5.35%) in 1998 to 206 km2 (14.12%) in
2016; and from 544 km2 (37.3%) in 1998 to 619 km2 (42.13%) in 2016 respectively.
The decline in habitat quality was mainly associated with increased livestock
incursion and expansion of invasive species which resulted in rapid land use
changes. Thus, it is critical to undertake serious conservation measures to
enhance biodiversity and ecosystem services in the AWR and to substantively
contribute to the improved livelihood of the pastoral community.

KEYWORDS

AWR, biodiversity, ecosystem quality, InVEST, rangeland

1 Introduction

Biodiversity enhances ecosystem functionality which leads to improved ecosystem
services through balancing and stabilizing ecological communities across scales
(Cardinale et al., 2012; Oliver et al., 2015). The biodiversity of an area can be
determined through habitat conditions whereas the importance of habitat depends on its
quality (Basane and James, 2016). A particular habitat with special ecological importance is
essential to the functioning of the wider ecosystem processes; such areas require
extraordinary protection to safeguard the special value and vital ecosystem processes.
Biological resources and the levels of biological reproduction and organism persistence
have a greater effect on the ability of an ecosystem to provide living conditions for individual
organisms and populations (Caro et al., 2020).
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High-quality habitat is assumed as an indication of rich
biodiversity (Norliyana and Mamat, 2020) and delivery of a suite
of ecosystem services (Johnson, 2007; Stolton et al., 2010; Thomas
et al., 2021). The state of biodiversity can be used as a basis proxy
tool to measure the quality of a given habitat (Havlicek andMitchell,
2014). Therefore, as a proxy for the condition of the state of
biodiversity, quality habitat can indicate the capability of a given
ecosystem to provide essential ecosystem services (Polasky et al.,
2011) and as a determinant for measuring ecosystem health
(Villamagna et al., 2013). The occurrence of diverse wildlife
species is highly associated with the quality of habitat (Edmonds
et al., 2021).

Habitat quality is an important indicator of regional ecological
security (Zhu et al., 2015; Chen et al., 2016), which can reflect the
level of regional biodiversity and ecosystem services (Tang et al.,
2020; Zhu et al., 2020). Rigorous information on habitat quality is
invaluable to making informed decisions on conservation planning
and prioritization of conservation intervention strategies (Rouget
et al., 2003; Baral et al., 2014; Simeneh et al., 2023) including
expansion of important biodiversity areas, introduction and
removal of species, and identification of principal habitat
components (Basane and James, 2016) and determining of the
key ecological attributes.

The landscape changes lead to corresponding modifications in
the composition of the ecosystem and biodiversity (Liu et al., 2022).
Further habitat quality changes affect the biodiversity and landscape
pattern (Chu et al., 2018). Therefore, the occurrence of severe and
complex ecological problems at landscape and species levels have a
direct influence on the landscape pattern and habitat quality.
Understanding the association between conservation challenges
caused by land use change could provide a solution to ecological
problems (Bai et al., 2019). Habitat loss consistently negatively
affects species richness and population abundance (Laurance
et al., 2002); and genetic diversity (Aguilar et al., 2008). The loss
of critical habitats affects not only biodiversity but also directly
impacts humans by decreasing the production of ecosystem services
such as pollination (Potts et al., 2010), soil productivity and water
provision (Bruijnzeel, 2004), and carbon storage and sequestration
(Fargione et al., 2008).

The state of biodiversity, the range of habitats, and vegetation types
across landscapes can be determined using the InVEST habitat quality
and rarity models (Sharp et al., 2020; Liu et al., 2022). Thus, the changes
in habitat quality are critical to the changes in ecosystem processes
(Choudhary et al., 2021; Yang, 2021). Habitat quality monitoring
provides robust information on ecological conditions and can be
utilized as a basis for making habitat conservation interventions (Lin
et al., 2016). Changes in habitat quality have tremendous implications
for the conservation of wildlife species in savannah ecosystems (Kija
et al., 2020) where the ecosystems are the principal habitats for diverse
charismatic wildlife species and home to many iconic protected
landscapes (Sinclair et al., 2007; Bohm and Hofer, 2018).

The Alledeghi Wildlife Reserve (AWR) is among the highly valued
protected landscapes in Ethiopia which are highly pronounced with the
assemblage of large mammals, but it is under severe conservation
challenges, and the biodiversity endowment of the area particularly
largemammals alarmingly declining (Fanuel, 2013; Simeneh et al., 2016).
The important threats to biodiversity are steadily increasing such as the
fast spread of invasive species, overgrazing, and bush encroachment

(Almaz, 2009; Selamnesh, 2015) because of rapid Land Use Land Cover
(LU/LC) changes, the ecosystem services values of the area have greatly
declined (Simeneh, 2023). Moreover, urban development along the road
is becoming an emerging conservation threat that will constrain the
sustainability of the ecosystem (Almaz, 2009; Fanuel, 2013). Further,
intensive charcoal production is well-pronounced in the entire area.
Thus, this results inmassive habitat destruction in the adjacent protected
areas including the Awash National Park. Roadkill incidence has
repeatedly occurred while wild animals are crossing the asphalted
road in search of water (Simeneh et al., 2016). Fire incidence mainly
in the highland forest is becoming a very common challenge for
protected area management as local charcoal makers deliberately set
fire to produce more charcoal.

The study hypothesizes that habitat quality declined over time in
response to threat factors occurring in the study area. There is a lack
of empirical studies conducted in the study area that assessed the
status of the habitats to protect the values that the protected area
possessed. Therefore, the novelty of this study is that it is the first
attempt to model the quality of habitats of the protected landscape
using expert-driven landscape threat information and analysis to
indicate the state of the protected areas towards meeting its
conservation goal. Therefore, this study aimed to assess the
spatiotemporal changes in the quality of the habitat in the
terrestrial ecosystems of AWR using InVEST software to provide
a scientific basis for ecosystem planning interventions and
prioritization of conservation management undertakings.

2 Methods and materials

2.1 Description of the study area

The AWR was established in the 1960 s (Hilliman, 1993). It is
located in the Great Rift Valley in the northeastern region of the
country between longitude 39°30′to 40°30′E and latitude 8°30′to
9°30′N, at 280 km east of Addis Ababa (Figure 1). The altitude
ranges between 776 m and 2,445 m above sea level. The area is
characterized by a semi-arid ecosystem with annual rainfall ranging
between 400 and 700 mm. About 268 plant species and two types of
ecosystems Dry evergreen montane forest and Acacia comiphora
ecosystems (Addisu et al., 2017), 31 species of mammals, and over
140 avian species have been recorded (Hilliman, 1993; Fanuel, 2013)
in the AWR. The most common wild animals inhabiting the reserve
include the Grevy zebra (Equus grevyi), Beisa oryx (Oryx beisa
beisa), Soemmering’s gazelle (Gazella soemmering), Gerenuk
(Litocranius walleri) and lesser kudu (Tragelaphus imberbis)
(Hilliman, 1993).

The major vegetation types in and around the reserve include
grasslands, bushland, woodland, riverine forests, and highland
forests (Almaz, 2009). The grassland plain stretching from the
center of the reserve to the northwest was mainly occupied by
grasses and occasionally with other herbs; the dominant species
include Durfu (Chrysopogon plumulosus), Isisu (Chrysopogon
schoenan) and Malif (Andropogon canaliculatus) (Almaz, 2009;
Selamnesh, 2015). However, the rapid encroachment of shrub
species and the rapid spread of invasive Prosopis juliflora and
shrubs such as Combretum aculatum, Merua oblongflora, and
Terminalia species have affected the grass species and the extent
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of the grassland habitat (Selamnesh, 2015; Simeneh, 2023). The
bushland is an extensively increasing habitat type that possesses an
assemblage of trees and shrubs (Simeneh, 2023). The habitat is
mainly occurring in the southern, eastern, and northern edges of the
landscape dominated by Acacia senegal (Almaz, 2010; Selamnesh,
2015). The common woody plant species in the AWR include Acacia
tortilis, Acacia mellifera, Balanitis aegyptiaca, Cadaba, and Grewia
species. The eastern mountainous section of the landscape is
characterized by dense highland forest, common plant species
include Cordia africana, Croton macrostachyus, Erythrina
abyssinica, Juniperus procera, Olea europaea, Podocarpus
falcatus, Pouteria altissima and Rhus vulgaris (Almaz, 2010). The
riverine forests are a unique ecosystem and are important for the
wild animals of the landscape. It is limited to seasonal streams and
river courses where the water table is high.

2.2 Materials

2.2.1 Application of tools to assess habitat quality
Habitat quality can be assessed based on measured species

diversity or through the analysis of the evolution of the habitat
by parameter substitution (Andrus et al., 2021). In general,
comparing observations to a standardized list of criteria can be
used to assess the quality of a given habitat (Machado, 2004), and

more recently the standardized modeling tool, particularly the
Integrated Valuation of Ecosystem Services and Tradeoffs
(InVEST) has been largely applied to measure the quality of
habitat at various scales (Sharp et al., 2020). In this study, we
assessed the state of habitats using InVEST software 3.11 version.
The quantified habitat quality was classified by natural breaks into
three classes (low, moderate, and high) (Kija et al., 2020).

2.2.2 The InVEST habitat quality model
The InVEST model provides good research methods and

perspectives (Romero-Calcerrada and Luque, 2006; Terrado et al.,
2016; Abreham et al., 2020). The model incorporates land use and
biodiversity threats information to produce habitat quality maps. It
uses the spatial extent of habitat quality as a proxy of biodiversity
within the landscape, based on the proximity of the habitat to
human-dominated land use and the intensity of disturbance
caused by the land use (Sharp et al., 2020). The model considers
that LU/LC with higher habitat quality is relatively intact and
capable of supporting increased biodiversity and a lower habitat
quality score indicates reduced biodiversity support and denotes a
degraded landscape (Baral et al., 2014). The model is dependent on
the relative impact of threats to the habitat, the distance between the
threat sources and the habitat, and the sensitivities of the specific
habitats to any possible threats, leading to habitat degradation
(Sharp et al., 2020) (Table 1).

FIGURE 1
Map of the Alledighe landscape.
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There are three key inputs to be considered for habitat quality
mapping in InVEST model. First, the suitability of each LU/LC type
(Hj) for providing habitat for biodiversity; second, anthropogenic
threats that originate at pixel x (rx) affecting habitat quality; and
third, the sensitivity of each LU/LC type to each threat (Table 1). For
this study, six biodiversity threats were identified in the study area by
following the approach of Terrado et al. (2016) andWu et al. (2014).
These were invasive species, bush encroachments, livestock
incursion, fire, habitat destruction, and distance to roads
(Table 2). The significance (weight) of each threat was prioritized
based on the ecological and threat monitoring activities with two
senior ecologists and five park rangers of the AWR between
3rd—4th December 2021 and the AHP method was applied to
prioritize conservation threats following the approach by Terrado
et al. (2016) and Wu et al. (2014) (Table 2; Figure 2).

The total threat level in a grid cell x with LU/LCj is calculated as
the relative habitat suitability score (Hj), from 0 to 1, where

1 indicates the highest suitability to species has been assigned to
LU/LC types (Sharp et al., 2020). The last input of the model is the
sensitivity of habitat type to different threats; helps to account for the
differentiated impacts of threats to different habitats. The impacts of
the threats on the habitat are determined by 1) the effect of the threat
over space (irxy); 2) the relative weight of each threat’s importance
compared to the others (wr), and 3) the relative sensitivity of each
habitat to each threat (Sjr). The stress level Dxj of grid x with land-use
type j is calculated as follows (Sharp et al., 2020).

irxy � 1 − dxy

drmax
( ) . . . . . . . . . . . . . . . . . . . . . if linear . . . . . . . . . . (1)

irxy � exp − 2.99
drmx

( )dxy( ) . . . . . . . . . . . . if exponential . . . . . . . (2)

Where, dxy is the linear distance between grid cells x and y, and
drmax is the maximum effective distance of threats r’s across space.

TABLE 1 Description of data input for the habitat quality model in InVEST.

Input Description

Land use land cover GIS raster dataset, with a numeric LULC code for each cell. The LULC raster obtained from Simeneh (2022) in the area of
interest was used. The LULC codes must match the codes for the sensitivity of land cover types to each threat

Threat data A CSV table of all threats needed to be considered in the model. The table contains information on each threat’s relative
importance or weight and its impact across space. Each row is a degradation source. Each column contains a different
attribute of each degradation source and must be named as THREAT, MAX-DIST, WEIGHT, and DECAY.

Threat raster GIS raster files with the distribution and intensity of each threat showing each of them affecting the habitat. However, the
techniques applied for each threat raster can vary according to the data types. The threat maps should cover the area of
interest and buffer the width of the greatest maximum threat distance. Each cell in the raster contains a value that indicates
the density or presence of a threat within it. All threats should be measured on the same scale and units

Habitat types and sensitivity of each habitat to
threats

A CSV table of LULC types contains information on whether a habitat is identified (absence/presence of habitat) or not
and their specific sensitivity to each threat. Sensitivity values range from 0 to 1, where 0 represents no sensitivity to a threat
and 1 represents the greatest sensitivity (Polasky et al., 2011). Sensitivity scores can be determined using expert knowledge
and the AHP method (Hamere et al., 2021)

Half saturation constant (k) The scaling parameter (or constant) of 0.5 is the default for the InVEST model. The InVEST model uses a half-saturation
curve to convert habitat degradation scores to habitat quality scores (Sharp et al., 2020). It is determined as an inverse
relationship between the degradation and habitat quality scores. It helps with the visual representation of heterogeneity in
quality across the landscape

TABLE 2 Ecological habitat quality input data used for InVEST habitat quality model in the AWR (1998, 2016).

Threats Maximum distance (km) Weight Decay LULC types

BL HF GL RF WL

Habitat suitability score

1 1 1 1 1

Habitat sensitivity to threats

Invasive species 1 0.25 Exponential 1 0.1 1 1 1

Habitat destruction 2 0.25 Exponential 0.75 0.75 0.5 0.5 0.75

Livestock incursion 2 0.15 Exponential 1 0.5 1 1 1

Bush encroachment 3 0.05 Exponential 1 0.5 1 0.75 0.75

Fire 1 0.05 Linear 0.2 0.5 0.2 0.2 0.2

Distance to road 1 0.1 Linear 0.5 0.75 1 0.5 0.2
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Dxj � ∑R
r�1

∑Yr
y�1

wr

∑R
r�1wr

( )rxirxyθxSjr . . . . . . . . . . . . . (3)

where R is the number of threat factors, yr is the set of grid cells on r’s
map, wr is the relative effect of each threat, θx is the level of
accessibility to a grid cell x, and Sjr is the relative sensitivity of
each habitat type to each threat.

The results of the model range from 0 to 1, with 1 representing the
highest level of habitat quality (Sharp et al., 2020). The impacts of the
threat on habitat decrease as the distance from the degradation sources
increases, threats with higher destructive values (on the scale of 0-1)
have higher impacts and the more sensitive a habitat type is to a threat
(higher Sjr), the more degraded the habitat type could be by the threat.

Habitat quality is the environmental level that the ecological
environment provides for the survival of individual organisms and
populations. It is a continuous variable with a numerical range from low
to high. The higher the quality of the habitat, the more stable the
ecological structure and function of the patch. The way and intensity of
human land use determines the quality of the habitat, and the more
intense the land use, themore pronounced the decline in habitat quality
(Almpanidou et al., 2014). Habitat quality was calculated based on the
degree of habitat degradation, and the habitat quality score decreased
with increasing habitat degradation score. The calculation formula for
habitat quality is as follows:

Qxj � Hj 1 − D2
xj

D2
xj + kz

( )[ ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(4)

Where, Qxj is the habitat quality of grid cell x in land cover type
j; Hj is the habitat suitability of land cover type j; D2 xj is the level of
habitat threat for grid cell x in land cover type j; k is the

half-saturation factor, which is generally taken as half of the
maximum value of D2 xj; and x is a constant.

The information obtained from expert judgment and AHP was
verified by undertaking field assessments.

2.3 Data preparation and input for the
InVEST habitat quality model

The data inputs (spatial and non-spatial) are required to run the
InVEST habitat quality model (Figure 2). Thus, LU/LC maps, threat
sources, and impacts, habitat types, habitat sensitivity to each threat,
and half-saturation constant were the required inputs (Sharp et al.,
2020). The information on LU/LC was obtained from the previous
studymade by Simeneh (2023) in the study area. All the required inputs
such as LU/LCmaps of the respective years (1998–2016), threat sources
and impacts, habitat types, and habitat sensitivity to each threat were
loaded to run the habitat qualitymodel. Finally, habitat quality maps for
each respective year were produced; the final habitat quality maps were
classified into three classes (low, moderate, and high).

3 Results and discussions

The result revealed an overall habitat quality reduction during
the study period (Table 3; Figure 3). The model showed that the
ecosystem was dominated by a high-quality habitat of 837 km2

(57.4%) followed by a moderate-quality habitat of 544 km2

(37.3%), and a low-quality habitat of 78 km2 (5.35%) in 1998. In
the subsequent 18 years (1998–2016), the low-quality andmoderate-
quality habitats increased by 128 km2 (62%), and 75 km2 (12%)
respectively, while the high-quality habitats decreased by 203 km2

FIGURE 2
Flowchart showing methodological steps followed in the study.
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(32%). The extent of high-quality habitat largely declined during the
study period from 837 km2 (57.4%) to 534 km2 (43.45%).
Conversely, moderate-quality, and low-quality habitats have
increased from 78 km2 (5.35%) in 1998 to 206 km2 (14.12%) in
2016; and from 544 km2 (37.3%) in 1998 to 619 km2 (42.13%) in
2016 respectively.

This study was the first to assess habitat quality using InVEST
model and expert-driven approach in Ethiopia’s highly valued
protected landscape. Thus, the study provides robust information
that can be used for threat reduction planning and management
intention in the study landscape. The habitat quality changes in the
study area were highly associated with increased livestock incursion
and expansion of invasive species resulting in severe changes in the
healthy functioning of the ecosystems. The quality of habitat
influences wildlife species diversity, density, distribution, and
movement patterns in landscapes (Zhang et al., 2019; Dai et al.,
2018). The decline in habitat quality is mainly attributed to increased
conservation threats including the incursion of livestock and human
interactions into wildlife habitats (Carter et al., 2014). Free grazing
activities have an adverse negative impact on habitat quality (Su
et al., 2020). Likewise, the quality of the habitat has been significantly
declining particularly the grassland habitat was deteriorated by
massive livestock incursion in the study landscape, which is a
common prolonged problem in protected areas of Ethiopia

(Mekbeb et al., 2022). Similar results were reported by Kija et al.
(2020) that habitat quality has largely deteriorated by anthropogenic
activities and land use policy changes in the Greater Serengeti
Ecosystem of Tanzania.

Overall, high–quality 1998 became a moderate-quality and low-
quality habitat during 1998–2016. The loss of habitat quality is well
pronounced in the grassland habitat of the protected area which is
the preferred feeding and breeding habitat for charismatic ungulate
species and other wild animals of the AWR. The swift spread of
invasive species coupled with livestock grazing and habitat
destruction significantly affects the grassland habitat of the
protected area. The savannah grassland habitat is the most
preferred and suitable habitat for the charismatic plain animal of
the reserve but under severe pressure, particularly invasive Prosophis
juliflora in the grassland habitat is the principal conservation
challenge for the protected area management. The communities
are reliant upon livestock rearing and natural resources due to a lack
of alternatives leading to overgrazing; unmanaged grazing practices
are resulting in significant degradation of principal ecological
habitats such as the grassland habitat in many protected area
systems in Ethiopia. Due to the high livestock density in the
area, the grassland habitat of the landscape has encountered
severe grazing practices year after year. This has led to the
deterioration of grassland habitat quality and a reduction in the
capacity to provide forage for grassland-reliant wild animal species.

Land use and land cover changes can be taken as the prime
factors for changes in habitat quality in the study area during the
study period. The low-quality habitat has slightly shifted from the
center of the highland forest to the center of the landscape which is
occupied by the grassland habitat of the AWR (Figure 3); this is
mainly due to the spread of invasive species, livestock incursion, and
the closeness to the tarmac road. The highland forest has been
unwisely utilized for various purposes mainly for charcoal
production, however, improved management intervention in the
highland forest contributed to the management of illegal activities
thus the habitat has rapidly been restored (Simeneh, 2023).
Conversely, the grassland habitat was largely converted into low
habitat quality as unrestricted grazing led to reducing the quality of
grassland habitat. The woodland, riverine forest, and partially
bushland habitats have been unchanged in terms of quality and
maintained high habitat quality during the study period. According
to Fanuel (2013), the study landscape has lost about 52% of its
quality to conserve the larger charismatic herbivores of the
landscape. Similarly, this finding showed that only 634 km2

TABLE 3 Habitat quality changes in the AWR using the InVEST habitat quality model (1998, 2016).

Habitat quality Study period Change
(km2)

% change Trend

1998 2016

Area (km2) % Area (km2) %

Low 78 5.35 206.00 14.12 128.00 62.14 Increasing

Moderate 544 37.29 619.00 42.43 75.00 12.12 Increasing

High 837 57.37 634.00 43.45 −203.00 −32.02 Decreasing

Total 1,459 100.00 1,459.00 100.00

FIGURE 3
Spatial distribution of habitat quality in the AWR (1998, 2016).
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(43.45%) of the landscape sustains its high quality to possess
charismatic species of the landscape. This indicates that the
protected landscape is losing its quality habitats to possess the
endangered iconic species. Maintaining high-quality habitats
could enhance the stability of ecosystem structure and function
and the quick recovery potential of habitats after disturbance
(Schwarz et al., 2017; Wu et al., 2017).

Unlike most areas of Ethiopia in which invasive species were
spread due to the road access; in the Afar area, where the landscape is
located; Prosopis juliflora was introduced mainly for water and soil
conservation and to support livestock forage in the dry season in the
late 1970 s and early 1980 s (Ayanu et al., 2014; Kebede and
Coppock, 2015; Hailu et al., 2019). Further, additional
plantations were made between the 1980 s and 1990 s as shade
and wind protection trees in villages, and the raw material was used
for firewood fencing, and building materials (Ayanu et al., 2014).
Livestock has been identified as the principal vector for the rapid
spread of invasive species and the invasion become a serious
problem that started rapidly invading the rangeland (Hailu et al.,
2019). The invasion could significantly affect the ecosystem services
and livelihood of pastoralist communities by reducing biodiversity,
grazing land, and water supply (Shackleton et al., 2014).

4 Limitations of the study

The assessment of habitat quality using the InVEST model has
been successfully employed for the maintenance of biodiversity and
is invaluable for the management of the landscape and land-use
planning (Sharp et al., 2020) but inadequate information about the
spatial and temporal distribution of species across the protected
landscape (Stephen et al., 2011) is the major limitations of the
InVEST habitat quality model. It is, therefore, important to conduct
a field-based habitat suitability assessment to obtain ecologically
valid and robust information on the distribution of quality habitat
and species abundance across the landscape (Nagendra et al., 2013).

5 Conclusion

This study has assessed the quality of habitat using expert-driven
landscape habitat threat information in InVEST software in the
most iconic but greatly threatened protected landscape of the AWR
in Ethiopia. Assessing a landscape’s habitat quality has greater
implications for the larger rangeland ecosystem management

since it directly impacts landscape structure and spatial pattern.
The most important factors for the decline of habitat quality include
livestock incursion and the expansion of invasive species. Therefore,
it can be concluded that the continued fast spread of invasive species
and bush encroachment in the critical feeding and breeding habitat
can largely influence the biodiversity and ecosystem services of
AWR. Thus, it is critical to undertake serious conservation
measures to maintain the ecosystem’s integrity and halt
biodiversity loss. Further, the boundary of the AWR has not
been clearly defined and has not been legally gazetted yet.
Therefore, the findings of this study can be used to redefine the
landscape boundary to encompass the most critical habitat under
legal protection.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

SA designed and conceptualized the research collected relevant
data, analyzed data, and wrote the draft manuscript.

Acknowledgments

The authors are thankful for the kind cooperation of ecological
monitoring experts of the AWR and EWCA and rangers of AWR.

Conflict of interest

Author SA was employed by GFA Consulting Group.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abreham, B., Noszczyk, T., Soromessa, T., and Elias, E. (2020). The InVEST habitat
quality model associated with land use/cover change in the winike watershed in the
omo-gibe basin, southwest Ethiopia. Remote Sens. 12, 1103.

Addisu, A., Ali, S., and Ahmed, E. (2017). Floristic composition and community
analysis of woody plants in hallideghie wildlife reserve, north-east Ethiopia.
Ethiop. J. Environ. Stud. Manag. 10 (7), 917–930.

Aguilar, R., Quesada, M., Ashworth, L., Herrerias, D. Y., and Lobo, J. (2008). Genetic
consequences of habitat fragmentation in plant populations: susceptible signals in plant
traits and methodological approaches. Mol. Ecology17 17, 5177–5188. doi:10.1111/j.
1365-294x.2008.03971.x

Almaz, T. (2009). Sustaining the Alledeghi grassland of Ethiopia: influences of
pastoralism and vegetation change. (PhD dissertation). Logan: Utah State
University.

Almpanidou, V., Mazaris, A. D., Mertzanis, Y., Avraam, I., Antoniou, I., Pantis, J. D.,
et al. (2014). Providing insights on habitat connectivity for male brown bears: a
combination of habitat suitability and landscape graph-based models. Ecol. Model
286, 37–44. doi:10.1016/j.ecolmodel.2014.04.024

Andrus, R. A., Martinez, A. J., Jones, G. M., and Meddens, A. J. H. (2021). Assessing
the quality of fire refugia for wildlife habitat. Ecol. Manage 482, 118868. doi:10.1016/j.
foreco.2020.118868

Frontiers in Environmental Science frontiersin.org07

Admasu 10.3389/fenvs.2023.1244238

127

https://doi.org/10.1111/j.1365-294x.2008.03971.x
https://doi.org/10.1111/j.1365-294x.2008.03971.x
https://doi.org/10.1016/j.ecolmodel.2014.04.024
https://doi.org/10.1016/j.foreco.2020.118868
https://doi.org/10.1016/j.foreco.2020.118868
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1244238


Ayanu, Y., Jentsch, A., Müller-Mahn, D., Rettberg, S., Romankiewicz, C., and
Koellner, T. (2014). Ecosystem engineer unleashed: Prosopis juliflora threatening
ecosystem services? Reg. Environ. Chang. 15, 155–167. doi:10.1007/s10113-014-
0616-x

Bai, L., Xiu, C., Feng, X., and Liu, D. (2019). Influence of urbanization on regional
habitat quality: a case study of Changchun City. Habitat Int. 93, 102042. doi:10.1016/j.
habitatint.2019.102042

Baral, H., Keenan, R. J., Sharma, S. K., Stork, N. E., and Kasel, S. (2014). Spatial
assessment and mapping of biodiversity and conservation priorities in a heavily
modified and fragmented production landscape in north-central Victoria, Australia.
Ecol. Indic. 36, 552–562. doi:10.1016/j.ecolind.2013.09.022

Basane, C., and James, G. (2016). Habitat assessment for ecosystem services in South
Africa. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 12 (4), 242–254. doi:10.1080/
21513732.2016.1217935

Bohm, T., and Hofer, H. (2018). Population numbers, density and activity patterns of
servals in savannah patches of Odzala-Kokoua National Park, Republic of Congo. Afr.
J. Ecol. 56, 841–849. doi:10.1111/aje.12520

Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil
for the trees? Agric. Ecosyst. Environ. 104, 185–228. doi:10.1016/j.agee.2004.01.015

Cardinale, B. J., Emmett Duffy, J., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P.,
et al. (2012). Michel loreau, James B. Grace, anne larigauderie, diane S. Srivastava and
shahid naeem (2012). Biodiversity loss and its impact on humanity. Nature 486, 11148.

Carter, N. H., Viña, A., Hull, V., McConnell, W. J., Axinn, W., Ghimire, D., et al.
(2014). Coupled human and natural systems approach to wildlife research and
conservation. Ecol. Soc. 19, 43. doi:10.5751/es-06881-190343

Chen, Y., Qiao, F., and Jiang, L. (2016). Effects of land use pattern change on regional
scalehabitat quality based on InVESTmodelda case study in Beijing.Acta Sci. Nat. Univ.
Pekin. 52, 553–562.

Choudhary, A., Deval, K., and Joshi, P. K. (2021). Study of habitat quality assessment
using geospatial techniques in Keoladeo National Park, India. Environ. Sci. Pollut. Res.
28, 14105–14114. doi:10.1007/s11356-020-11666-3

Chu, L., Sun, T., Wang, T., Li, Z., and Cai, C. (2018). Evolution and prediction of
landscape pattern and habitat quality based on CA-markov and InVEST model in hubei
section of three gorges reservoir area (TGRA). Sustainability 11, 3854. doi:10.3390/
su10113854

Claudia, C., João Carlos, M., Cunha, P. P., and Teixeira, Z. (2020). Ecosystem services
as a resilience descriptor in habitat risk assessment using the InVEST model. Ecol. Indic.
115, 106426. doi:10.1016/j.ecolind.2020.106426

Dai, L., Li, S., Lewis, B. J., Wu, J., Yu, D., Zhou, W., et al. (2018). The influence of land
use change on the spatial–temporal variability of habitat quality between 1990 and
2010 in Northeast China. J. For. Res. 30, 2227–2236. doi:10.1007/s11676-018-0771-x

Edmonds, N. J., Al-Zaidan, A. S., Al-Sabah, A. A., Le Quesne, W. J. F., Devlin, M. J.,
Davison, P. I., et al. (2021). Kuwait’s marine biodiversity: qualitative assessment of
indicator habitats and species. Mar. Pollut. Bull. 163, 111915. doi:10.1016/j.marpolbul.
2020.111915

Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P. (2008). Land clearing
and the biofuel carbon debt. Land Clear. Biofuel Carbon Debt 319 (5867), 1235–1238.
doi:10.1126/science.1152747

Hailu, S., Bewket, W., Alamirew, T., Zeleke, G., Demel, T., Ketema, B., et al. (2019).
Implications of land use/land cover dynamics and Prosopis invasion on ecosystem
service values in Afar Region, Ethiopia. Sci. Total Environ. 675, 354–366. doi:10.1016/j.
scitotenv.2019.04.220

Havlicek, E., and Mitchell, E. A. D. (2014). “Soils supporting biodiversity,” in
Interactions in soil: promoting plant growth.

Hilliman, J. C. (1993). Compendium of wildlife conservation information: information
on wildlife conservation areas. NYZS and EWCO. Addis Ababa.

Johnson, M. D. (2007). Measuring habitat quality: a review. Condor 109, 489–504.
doi:10.1093/condor/109.3.489

Kebede, F. (2013). Ecology and Community Based Conservation of the Grevy’s zebra
(Equus grevyi) and the African wild ass (Equus africanus) in the Afar region, Ethiopia
PhD dissertation. Addis Ababa: Addis Ababa University.

Kebede, F., Afework, B., Moehlman, P. D., and Evangelista, P. H. (2012). Endangered
Grevy’s zebra in the Alledeghi Wildlife Reserve, Ethiopia: species distribution modeling
for the determination of optimum habitat. Endang Species Res. 17, 237–244. doi:10.
3354/esr00416

Kebede, T., and Coppock, L. (2015). Livestock-mediated dispersal of Prosopis juliflora
imperils grasslands and the endangered Grevy’s zebra in Northeastern Ethiopia. Rangel.
Ecol. Manag. 68, 402–407. doi:10.1016/j.rama.2015.07.002

Kija, H. K., Ogutu, J. O., Mangewa, L. J., Bukombe, J., Verones, F., Graae, B. J., et al.
(2020). Spatio-temporal changes in wildlife habitat quality in the greater Serengeti
ecosystem. Sustainability 12, 2440. doi:10.3390/su12062440

Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K.,
Stouffer, P. C., et al. (2002). Ecosystem decay of Amazonian Forest fragments: a 22-year
investigation. Conserv. Biology16 16, 605–618. doi:10.1046/j.1523-1739.2002.01025.x

Lin, Q., Mao, J., Wu, J., Li, W., and Yang, J. (2016). Ecological security pattern analysis
based on InVEST and least-cost path model: a case study of Dongguan water village.
Sustainability 8, 172. doi:10.3390/su8020172

Liu, S., Liao, Q., Xiao, M., Zhao, D., and Huang, C. (2022). Spatial and temporal
variations of habitat quality and its response of landscape dynamic in the three gorges
reservoir area, China. Int. J. Environ. Res. Public Health 19, 3594. doi:10.3390/
ijerph19063594

Machado, A. (2004). An index of naturalness. J. Nat. Conservation 12, 95–110. doi:10.
1016/j.jnc.2003.12.002

Mekbeb, T., Asefa, A., and Delelegn, Y. (2022). National biodiversity threat
assessment: ranking major threats impacting Ethiopia’s biodiversity. Addis Ababa,
Ethiopia: IUCN.

Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M.,
et al. (2013). Remote sensing for conservation monitoring: assessing protected areas,
habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 33, 45–59.
doi:10.1016/j.ecolind.2012.09.014

Norliyana, A., and Mamat, M. (2020). Spatial analysis model assessing habitat quality
of selangor. IOP Conf. Ser. Earth Environ. Sci. 549, 012049. doi:10.1088/1755-1315/549/
1/012049

Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D., Eigenbrod, F., et al.
(2015). Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 11,
673–684. doi:10.1016/j.tree.2015.08.009

Polasky, S., Nelson, E., Pennington, D., and Johnson, K. A. (2011). The impact of
land-use changes on ecosystem services, biodiversity and returns to Landowners: a case
study in the state of Minnesota. Environ. Resour. Econ. 48, 219–242.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., and Kunin, W.
E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25,
345–353. doi:10.1016/j.tree.2010.01.007

Romero-Calcerrada, R., and Luque, S. (2006). Habitat quality assessment using
Weights-of-Evidence based GIS modelling: the case of Picoides tridactylus as species
indicator of the biodiversity value of the Finnish forest. Ecol. Model. 196, 62–76. doi:10.
1016/j.ecolmodel.2006.02.017

Rouget, M., Richardson, D. M., Cowling, R. M., Lloyd, J. W., and Lombard, A. T.
(2003). Current patterns of habitat transformation and future threats to biodiversity in
terrestrial ecosystems of the Cape floristic region, South Africa. Biol. Conserv. 112,
63–85. doi:10.1016/s0006-3207(02)00395-6

Schwarz, N., Moretti, M., Bugalho, M. N., Davies, Z. G., Haase, D., Hack, J., et al.
(2017). Understanding biodiversity-ecosystem service relationships in urban areas: a
comprehensive literature review. Ecosyst. Serv. 27, 161–171. doi:10.1016/j.ecoser.2017.
08.014

Selamnesh, T. (2015). Impact of Prosopis juliflora on plant biodiversity at Alledeghi
wildlife reserve and surrounding local community, Ethiopia. MSc thesis. Addis Ababa:
Ababa University.

Shackleton, R. T., Le Maitre, C., Pasiecznik, N. M., and Richardson, D. M. (2014).
Prosopis: a global assessment of the biogeography, benefits, impacts, and management
of one of the world’s worst woody invasive plant taxa. AOB Plants 2014 (6), plu027.
doi:10.1093/aobpla/plu027

Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., et al.
(2020). InVEST user’s guide. The natural capital project. Stanford University, University
of Minnesota, The Nature Conservancy, and World Wildlife Fund.

Simeneh, A. (2023). Assessing the impact of land use land cover changes on ecosystem
services in the Alledighe Wildlife Reserve, Ethiopia: implication for rangeland ecosystem
management. Manuscript under review.

Simeneh, A., Afework, B., and Assefa, A. (2016). Population size and structure of beisa
oryx and its habitat overlap with sympatric species in Alledeghi wildlife reserve, NE,
Ethiopia. Ethiop. J.Biol. Sci. 15 (1), 37–54.

Simeneh, A., Yeshitela, K., and Argaw, M. (2023). Assessing habitat quality using the
InVEST model in the Dire and Legedadi watersheds, central highland of Ethiopia.
Sustain. Environ., 2765–8511.

Sinclair, A. R., Mduma, S. A., Hopcraft, J. G., Fryxell, J. M., Hilborn, R., and Thirgood,
S. (2007). Long-term ecosystem dynamics in the Serengeti: lessons for conservation.
Conserv. Biol. 21, 580–590. doi:10.1111/j.1523-1739.2007.00699.x

Stephen, P., Erik Jeremy, N., Pennington, D. N., and Johnson, K. A. (2011). The
impact of land-use changes on ecosystem services, biodiversity and returns to
landowners: a case study in the state of Minnesota. Environ. Resour. Econ. 48 (2),
219–242.

Stolton, S., Mansourian, S., and Dundley, N. (2010). Valuing protected areas.
Washington (DC): world Bank`s global environment facility coordination team.
World Bank GEF Operations.

Su, X., Liu, Y., Zhou, W., and Liu, G. (2020). “An overview on status and importance
of Tibetan Plateau steppe, China,” in Reference module in earth systems and
environmental sciences (Amsterdam: Elsevier).

Tang, F., Fu, M., Wang, Li, and Zhang, P. (2020). Land-use change in Changli County,
China: predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 117,
106719. doi:10.1016/j.ecolind.2020.106719

Frontiers in Environmental Science frontiersin.org08

Admasu 10.3389/fenvs.2023.1244238

128

https://doi.org/10.1007/s10113-014-0616-x
https://doi.org/10.1007/s10113-014-0616-x
https://doi.org/10.1016/j.habitatint.2019.102042
https://doi.org/10.1016/j.habitatint.2019.102042
https://doi.org/10.1016/j.ecolind.2013.09.022
https://doi.org/10.1080/21513732.2016.1217935
https://doi.org/10.1080/21513732.2016.1217935
https://doi.org/10.1111/aje.12520
https://doi.org/10.1016/j.agee.2004.01.015
https://doi.org/10.5751/es-06881-190343
https://doi.org/10.1007/s11356-020-11666-3
https://doi.org/10.3390/su10113854
https://doi.org/10.3390/su10113854
https://doi.org/10.1016/j.ecolind.2020.106426
https://doi.org/10.1007/s11676-018-0771-x
https://doi.org/10.1016/j.marpolbul.2020.111915
https://doi.org/10.1016/j.marpolbul.2020.111915
https://doi.org/10.1126/science.1152747
https://doi.org/10.1016/j.scitotenv.2019.04.220
https://doi.org/10.1016/j.scitotenv.2019.04.220
https://doi.org/10.1093/condor/109.3.489
https://doi.org/10.3354/esr00416
https://doi.org/10.3354/esr00416
https://doi.org/10.1016/j.rama.2015.07.002
https://doi.org/10.3390/su12062440
https://doi.org/10.1046/j.1523-1739.2002.01025.x
https://doi.org/10.3390/su8020172
https://doi.org/10.3390/ijerph19063594
https://doi.org/10.3390/ijerph19063594
https://doi.org/10.1016/j.jnc.2003.12.002
https://doi.org/10.1016/j.jnc.2003.12.002
https://doi.org/10.1016/j.ecolind.2012.09.014
https://doi.org/10.1088/1755-1315/549/1/012049
https://doi.org/10.1088/1755-1315/549/1/012049
https://doi.org/10.1016/j.tree.2015.08.009
https://doi.org/10.1016/j.tree.2010.01.007
https://doi.org/10.1016/j.ecolmodel.2006.02.017
https://doi.org/10.1016/j.ecolmodel.2006.02.017
https://doi.org/10.1016/s0006-3207(02)00395-6
https://doi.org/10.1016/j.ecoser.2017.08.014
https://doi.org/10.1016/j.ecoser.2017.08.014
https://doi.org/10.1093/aobpla/plu027
https://doi.org/10.1111/j.1523-1739.2007.00699.x
https://doi.org/10.1016/j.ecolind.2020.106719
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1244238


Terrado, M., Sabater, S., Chaplin-Kramer, B., Mandle, L., Ziv, G., and Acuna, V.
(2016). Model development for the assessment of terrestrial and aquatic habitat quality
in conservation planning. Sci. Total Environ. 540, 63–70. doi:10.1016/j.scitotenv.2015.
03.064

Thomas, E., Jansen,M., Chiriboga-Arroyo, F., Wadt, L. H. O., Corvera-Gomringer, R.,
Atkinson, R. J., et al. (2021). Habitat quality differentiation and consequences for
ecosystem service provision of an amazonian hyperdominant tree species. Front. Plant
Sci. 12, 621064. doi:10.3389/fpls.2021.621064

Villamagna, A. M., Angermeier, P. L., and Bennett, E. M. (2013). Capacity, pressure,
demand, and flow: a conceptual framework for analyzing ecosystem service provision
and delivery. Ecol. Complex. 15, 114–121. doi:10.1016/j.ecocom.2013.07.004

Wu, C.-F., Lin, Y. P., Chiang, L. C., and Huang, T. (2014). Assessing highway’s
impacts on landscape patterns and ecosystem services: a case study in Puli Township,
Taiwan. Landsc. Urban Plan. 128, 60–71. doi:10.1016/j.landurbplan.2014.04.020

Wu, J., Yue, X., and Qin, W. (2017). The establishment of ecological security patterns
based on the redistribution of ecosystem service value: a case study in the Liangjiang
New Area, Chongqing. Geogr. Res. 36, 429–440.

Yang, Y. (2021). Evolution of habitat quality and association with land-use changes in
mountainous areas: a case study of the Taihang Mountains in Hebei Province, China.
Ecol. Indic. 129, 107967. doi:10.1016/j.ecolind.2021.107967

Yohannes, H., Soromessa, T., Argaw, M., and Dewan, A. (2021). Spatio-temporal
changes in habitat quality and linkage with landscape characteristics in the Beressa
watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 281, 111885.
doi:10.1016/j.jenvman.2020.111885

Zhang, H. B., Wu, F. E., Zhang, Y. N., Han, S., and Liu, Y. Q. (2019). Spatial and
temporal changes of habitat quality in jiangsu yancheng wetland national nature
reserve-rare birds of China. Appl. Ecol. Environ. Res. 17, 4807–4821. doi:10.15666/
aeer/1702_48074821

Zhu, C., Zhang, X., Zhou, M., He, S., Gan, M., Yang, L., et al. (2020). Impacts of
urbanization and landscape pattern on habitat quality using OLS and GWR models in
Hangzhou, China. Ecol. Indic. 117, 106654. doi:10.1016/j.ecolind.2020.106654

Zhu, L., Huang, C., Liu, Q. S., and Liu, G. H. (2015). Changes of coastal zone landscape
spatial patterns and ecological quality in Liaoning province from 2000 to 2010. Resour.
Sci. 37, 1962–1972.

Frontiers in Environmental Science frontiersin.org09

Admasu 10.3389/fenvs.2023.1244238

129

https://doi.org/10.1016/j.scitotenv.2015.03.064
https://doi.org/10.1016/j.scitotenv.2015.03.064
https://doi.org/10.3389/fpls.2021.621064
https://doi.org/10.1016/j.ecocom.2013.07.004
https://doi.org/10.1016/j.landurbplan.2014.04.020
https://doi.org/10.1016/j.ecolind.2021.107967
https://doi.org/10.1016/j.jenvman.2020.111885
https://doi.org/10.15666/aeer/1702_48074821
https://doi.org/10.15666/aeer/1702_48074821
https://doi.org/10.1016/j.ecolind.2020.106654
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1244238


Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Prof-Maged Marghany,
Syiah Kuala University, Indonesia

REVIEWED BY

Marcello Vitale,
Sapienza University of Rome, Italy
Anneli Poska,
Lund University, Sweden

*CORRESPONDENCE

Jose Bermudez Castro

bermudej@mcmaster.ca

Michelle Kalamandeen

michellekalamandeen@outlook.com

RECEIVED 12 September 2023
ACCEPTED 24 October 2023

PUBLISHED 14 November 2023

CITATION

Kalamandeen M, Gulamhussein I,
Castro JB, Sothe C, Rogers CA, Snider J
and Gonsamo A (2023) Climate change
and human footprint increase insect
defoliation across central boreal
forests of Canada.
Front. Ecol. Evol. 11:1293311.
doi: 10.3389/fevo.2023.1293311

COPYRIGHT

© 2023 Kalamandeen, Gulamhussein, Castro,
Sothe, Rogers, Snider and Gonsamo. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 14 November 2023

DOI 10.3389/fevo.2023.1293311
Climate change and human
footprint increase insect
defoliation across central
boreal forests of Canada

Michelle Kalamandeen1*, Imran Gulamhussein1,
Jose Bermudez Castro1*, Camile Sothe2, Cheryl A. Rogers1,3,
James Snider4 and Alemu Gonsamo1

1School of Earth, Environment and Society, McMaster University, Hamilton, ON, Canada, 2Finite
Carbon Canada, Calgary, AB, Canada, 3Department of Geography & Environmental Studies, Toronto
Metropolitan University, Toronto, ON, Canada, 4World Wildlife Fund Canada, Toronto, ON, Canada
Anthropogenic climate change is contributing to increased insect infestation

globally, leading to pest population growth, expansion of niche and geographic

ranges as well as increased outbreak frequencies, resulting in economic losses

and reduction in food security. In recent years, spongy moth (Lymantria dispar

dispar), jack pine budworm (Choristoneura pinus pinus), large aspen tortrix

(Choristoneura conflictana) and spruce budworm (Choristoneura fumiferana)

caused widespread defoliation across one of Canada’s most forested provinces,

Ontario. Observations of such outbreaks have been limited to field sightings

around Ontario, with few studies focused on mapping of outbreak occurrence

across the province or exploring potential anthropogenic and climatic drivers of

infestation. Using random forest probability estimates and satellite data

resampled to 1 km spatial resolution from the Moderate Resolution Imaging

Spectroradiometer (MODIS), we reveal greater expansion of insect defoliation

across Ontario between 2018 and 2020 than previously recorded. Much of the

geographic expansion of outbreaks was driven by increasing temperature, and

the proximity of roads. With ongoing global warming and growing economic

development, infestations will not only continue to increase across Ontario but

also expand northward due to their responses to accelerated warming at higher

latitudes. This expansion presents an important and alarming new challenge for

forest conservation and management in Ontario, in particular, and Canada

in general.

KEYWORDS

spongy moth, jack pine budworm, spruce budworm, remote sensing, Ontario Canada,
insect defoliation, climate change, machine learning
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1 Introduction

Understanding and predicting the consequences of climatic

changes in forest ecosystems is emerging as one of the major

challenges for global change scientists (Boisvenue and Running,

2006; Bonan, 2008). Globally, societies heavily rely on forests for

essential services such as timber, watershed protection, and

recreational and aesthetic benefits (Maroschek et al., 2009; Thom

and Seidl, 2016). The effects of climate change on forests include

both positive (e.g., increased forest growth from CO2 fertilization,

increased water use efficiency, and longer growing seasons) and

negative responses (e.g., increases in stress and tree mortality, and

changes in dynamics of forest insect) (Ayres and Lombardero, 2000;

Bachelet et al., 2003; Lucht et al., 2006; Scholze et al., 2006; Lloyd

and Bunn, 2007; Seidl et al., 2017; Gonsamo et al., 2017; 2021).

With current best estimates of changes in climate indicating an

increase in global mean annual temperatures of 1.5°C by 2025 and

4°C by the end of the next century (Baker et al., 2018), considerable

uncertainty remains in modeling how these processes will affect

current and future tree growth and mortality events and forest

carbon budgets (Hanson and Weltzin, 2000; Bugmann, 2001;

Hollaus and Vreugdenhil, 2019). Outbreaks of forest insects are

major agents of mortality and ecosystem change in forests

worldwide, with climate being an important driver of changes to

disturbance regimes mediated by forest insects (Pureswaran et al.,

2018). Changes in climate may result in changing geographical

distribution, increased overwintering, changes in population

growth rates, increases in the number of generations, extension of

the development season, changes in crop–pest synchrony, changes

in interspecific interactions and increased risk of invasion by

migrant pests (see Porter and Coon, 1991; Pureswaran et al.,

2018; Lehmann et al., 2020). Although a range of responses can

and should be expected, recent cases of increased tree mortality and

die-offs triggered by insect infestation raise the possibility that

amplified forest mortality may already be occurring in some

locations in response to global climate change (Allen et al., 2010).

As a landscape-scale disturbance event, insect outbreaks also

play an important role in the carbon flux in boreal forests (Kurz and

Apps, 1999; Volney and Fleming, 2000). Defoliation during insect

outbreaks reduces the rate of carbon accumulation by the host trees

via reducing their growth. This often results in tree mortality, which

abruptly increases the mass of dead organic matter where carbon is

transferred to the atmosphere through decomposition (Gray et al.,

2007). Increasing concentrations of carbon dioxide in the

atmosphere are a major cause of global warming, creating a

feedback loop for further proliferation of insect infestations.

Across Ontario, Canada, several defoliators have expanded their

range in recent years causing widespread outbreaks (Liebhold et al.,

1992; Régnière et al., 2009; Tobin et al., 2004; NDMNRF, 2020).

Species which have had recent moderate to severe forest disturbances

have included the spongy moth (Lymantria dispar dispar), jack pine

budworm (Choristoneura pinus pinus), large aspen tortrix

(Choristoneura conflictana) and spruce budworm (Choristoneura

fumiferana) (NDMNRF, 2022). Most of these species are native to

Canada (jack pine budworm, spruce budworm and large aspen

tortrix) while the spongy moth is an example of an invasive
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defoliator that expanded its current range across Eastern United

States and Southeastern Canada (Liebhold et al., 1992; Régnière et al.,

2009; Tobin et al., 2004). L. dispar moth is native to the temperate

forests of Europe and Asia (Régnière et al., 2009).

Outbreaks often follow different trajectories associated with

specific ecological traits and target tree species. For instance, large

aspen tortrix infestations are short-lived (2–3 years) and found

earlier in the season. This species targets trembling aspen (Populus

tremuloides), white birch (Betula papyrifera), willow (Salix spp.)

and alder (Alnus spp.) but can also be found on balsam poplar

(Populus balsamifera) and chokecherry (Prunus virginiana). Jack

pine budworm periodically reaches outbreak levels every 8–10 years

and prefers jack pine (Pinus banksiana) and other conifers such as

eastern white pine (Pinus strobus), red pine (Pinus resinosa) and

Scots pine (Pinus sylvestris). Spruce budworm is the most

destructive pest of balsam fir (Abies balsamea) and white spruce

(Picea glauca) forests in Canada, which is a historically important

timber species. The larvae of spruce budworm are considered

wasteful feeders, as they only eat partial needles and then move

on to other needles. L. dispar moth infestations maintain a cyclical

pattern in which exponential population growth causes major

infestations for 3–4 years, with the insect then lying dormant for

7–8 years (Benoit and Lachance, 1990). The larvae of this moth are

voracious folivores that can feed nearly 300 species of broadleaf and

coniferous trees during their peak feeding season (Elkinton and

Liebhold, 1990), significantly affecting tree growth. This

combination of outbreak dynamics, broad polyphagy and long

larval duration grants these species the ability to rapidly expand

across forested areas such as those found in Ontario, one of

Canada’s most forested provinces.

Areas at risk of infestations in Canada are expected to double or

triple over the next 50 years due to increasingly warmer summers,

allowing the insect to complete its life cycle consistently in

geographic areas that so far have been protected due to

unfavorable climate. Across Canada, certain forest types seem

more susceptible to infestation, such as deciduous, closed (dense)

and open (thin) mixed forests (Cihlar et al., 2002). Forests across

northern and eastern Canada has so far been protected from

infestation by cold temperatures (Régnière et al 2009; 2012). but

with increasing temperatures, the fate of these forests are unknown.

Further, increasing human traffic may lead to deposition of eggs as

some host plants flourish in disturbed areas (Lyons and Liebhold,

1992), triggering different dispersion pathways. However, little

formal studies exist that explore probable drivers connected with

insect infestation in Canada not associated with climatic studies.

Insect infestation has also been associated with other

compounding ecological damages. For instance, the frass excreted

by the L. dispar caterpillars contains a high concentration of

nitrogen (N) because these defoliators are ineffective at

assimilating foliar N (Lovett et al., 2002). As a result, this N-rich

frass leaches into catchment basins, increasing the N concentration

in lakes by an average of 0.03 mg L1 (Woodman et al., 2021), which

in turn stimulates conditions for increased microbial activity.

Growing microbial populations discharges CO2 as an element of

egestion, resulting in a recurring pattern of increasing microbial

activity and CO2 accumulation near the surface of lakes
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(Woodman et al., 2021). The presence of CO2 in large quantities

near lake surfaces suppresses the growth of CO2 assimilating algae

(Raven et al., 2012), further exacerbating CO2 concentrations.

Given the magnitude of damage caused by insects and their

potential to spread over the next few years, early detection and

monitoring of infestations throughout Ontario is crucial. As zones

immediately adjacent to infested areas become more suitable

because of rising temperatures, invasion will be fast if suitable

hosts are present (Régnière et al., 2009). However, detecting and

monitoring infestation levels in a vast landscape as Ontario requires

extensive fieldwork. Thus far, only a limited number of field

observations have been conducted in the province. Such studies

also miss the opportunity to assess potential drivers of infestation

across the landscape. The increased frequency of infestations and

their ecological and economic impacts requires the use of advanced

technologies. Remote sensing is a valuable tool that provides

frequent and spatially continuous data on vegetation conditions

and has been previously explored for detecting forest insect

infestation (Niemann and Visintini, 2005; Hollaus and

Vreugdenhil, 2019; Ye et al., 2021; Romeiro et al., 2022).

Freely accessible moderate-resolution satellite datasets such as the

250 m imagery from spatial resolution Moderate Resolution

Spectroradiometer (MODIS) have great potential to characterize

subtle changes in forest canopies by capturing low-magnitude

spectral changes in seasonal observations. Here, we make use of the

MODIS satellite observations and field data to comprehensively

evaluate insect infestation across Ontario, Canada, over a 3-year

period (2018–2020). We specifically consider the 1) magnitude of

occurrence using a random forest classification, 2) the probability or

likelihood of infestation occurrence, and 3) the human and

environmental drivers of infestation events. These analyses provide

foundational and critical insights into shifts in potential drivers of
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infestation and establish a barometer for evaluating the effectiveness

of government intervention and management strategies.
2 Materials and methods

Our approach involved three steps: (i) identifying infestation

occurrence using ground truth data and MODIS satellite

observations; (ii) estimating likelihood of infestation using

random forest probability; and (iii) determining probable drivers

of infestation. Figure 1 provides an overview of methods used to

process and analyze satellite observations and ground data.
2.1 Study region

The study area is the province of Ontario, Canada’s second-

largest province, covering nearly 1 million km2 (Figure 2) with

forest ecosystems ranging from temperate to subarctic forests. In

summer, temperature ranges between 30−35°C, while winter can go

below −40°C. Approximately 66% of Ontario is classified as forest

lands (70 million ha), including the deciduous forest of southern

Ontario, the Great Lakes – St. Lawrence Forest of central Ontario,

the Boreal Forest and the Hudson Bay Lowlands Forest in the north.

A very small region of southern Ontario also includes

Carolinian forest.
2.2 Infestation mapping

We acquired ground data of insect infestation from the Ontario

GeoHub database (https://geohub.lio.gov.on.ca/documents/lio::
A

B

D

F E

C

FIGURE 1

Schematic workflow of MODIS observation processing and data analysis: (A) processing of MODIS satellite observations; (B) obtaining of infested
and non-infested training samples from ground measurements; (C) training random forest using spatial cross validation; (D) random forest
classification using training sample to (E) estimate likelihood of occurrence (probability estimate); and (F) correlation analysis of the data.
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forest-insect-damage-event/about), filtering the infestation by year

(2018–2020) and damage severity (moderate to severe, 25–100%

damage; severe, 75–100% damage; and mortality ranking). We

assumed that the Ontario GeoHub database is indicative of all

known infested and non-infested sites, even though this may not be

the case in reality. Based on paucity of data points across all study

years, several species were excluded from this analysis. Selected

species for this study included L. dispar, C. pinus, C. conflictana and

C. fumiferana. Due to the scarcity of samples of some species, we

treated all of them as the “defoliators” class, turning the problem

into a binary classification task.

To train our model, we used covariates from the 250 m spatial

resolution Moderate Resolution Spectroradiometer (MODIS)

satellite observations. Surface reflectance of red and near infrared

were extracted from version 6 MOD09Q1 product while the

normalized difference vegetation index (NDVI) was extracted from

version 6 MOD13Q1 product and thermal bands were taken from

version 6.1 MOD11A1 product (Figure 3). We created bi-monthly

image composites (mean and standard deviation) from the

reflectance, NDVI, and thermal MODIS products during the

growing season, from April to August, resampling all products to

1 km spatial resolution to match the corresponding thermal product.

We noted that infestation cycles can commence anywhere between

April to August annually, contingent on species and temperature

fluctuations. MODIS was selected as our primary satellite data

source as it offered cloud free, high temporal resolution images to

compose the bimonthly datasets while accounting for the spectral

variability that may occur in the trees during the infestation cycle,

including the budburst of leaves in many tree species across Ontario,

between April and August. We also examined data from 30 m spatial

resolution Landsat-8 and 10 m spatial resolution Sentinel-2 satellites.

However, these satellites did not offer sufficient cloud free images
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across Ontario, resulting in significant mapping gaps and artifacts

(results not presented here).

To generate the infestation maps, we uploaded the ground data

from the Ontario geohub to the Google Earth Engine (GEE) platform.

Then, we rasterized a mask containing 29,315 and 47,130 pixels from

the infested and non-infested locations, respectively. The samples were

extracted from 2020, the year with the highest infestation rate, and we

trained the models using the data for this reference year.

Independent sample sets for each of the studied years were also

created for validation. Here, the number of samples ranged from

9,900 to 20,000 pixels, depending on infestation levels.
2.3 Random forest probability estimate

A random forest algorithm (RF) (Breiman, 2001) was trained on the

training samples from ground data and MODIS observations from each

year to classify MODIS pixels by likelihood of insect infestation. RF

combines a large number of trees trained upon random subsets of the

available labeled samples and features. Each tree contributes only one

class vote to each instance, and the result is determined by the majority

votes of all the forest trees (Hastie et al., 2009). In our experiments, we set

the number of trees in the “forest” (ntree), and the number of features/

predictors considered for each node in the trees (mtry) to 500 and 5,

respectively, after performing a grid search analysis.

To avoid spatial autocorrelation among samples, we trained the

RF algorithm by applying a 5-fold spatial cross-validation. In

particular, we divided the pixels annotated as infected into five

non-overlapping areas, where for each fold, an RF model was fitted

using samples from four locations, and the pixels associated with

the remaining area were employed to validate the model. To

compute the probabilistic maps, all five trained RF models were
FIGURE 2

Insect infestation in Ontario, Canada from 2018 to 2020 based on field observations from Ontario GeoHub.
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evaluated during the cross-validation phase, generating the same

number of maps for 2018, 2019, and 2020. We reported the median

and standard deviation of probability maps. Probability thresholds

were calculated based on the percentage of pixels (Table 1), and

nonforest locations were masked out using the ALOS PALSAR

forest/nonforest product.
2.4 Calculation of human and
environmental drivers of infestation

Using the classified maps, we tested the correlation between the

occurrence of infestation and six environmental and human factors,
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namely temperature, precipitation, elevation, land cover, distance to

roads and location of protected areas (Figure 4). Temperature and

precipitation data between April and August were obtained from

TerraClimate (https://www.climatologylab.org/terraclimate.html)

at 4 km spatial resolution and were used as proxies to climate,

which plays a significant role on the ability of defoliants to complete

their life cycle (Régnière et al., 2009).

A digital elevation model (DEM) obtained from Advanced Land

Observing Satellite (ALOS, https://developers.google.com/earth-

engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2) was used

to produce an elevation map at 30 m spatial resolution. Land

cover data was obtained from the Ontario GeoHub database

(https://geohub.lio.gov.on.ca/documents/lio::ontario-land-cover-

compilation-v-2-0/about) to mask out the non-forest areas. We also

included protected areas that were obtained from Environment and

Climate Change Canada database (https://www.canada.ca/en/

environment-climate-change/services/national-wildlife-areas/

protected-conserved-areas-database.html) as a sign of human

footprint in remote areas, such as camping, logging, hiking and

other associated activities, that may favor the spread of infestation.

Finally, proximity to roads (data obtained from Ontario GeoHub,

https://geohub.lio.gov.on.ca/datasets/mnrf::ontario-road-network-

orn-road-net-element/about) was used to evaluate the direct

influence of human transportation on infestation occurrence.

Initially, our environmental and human variables were overlaid

on our probability maps, followed by a correlation analysis to

determine the likelihood of contributing factors to infestation levels.
A

B

C

FIGURE 3

MODIS satellite observations showing mean (A) surface reflectance of red and near infrared bands; (B) normalized difference vegetation index
(NDVI); and (C) thermal bands across Ontario, Canada between 2018 and 2020 in Google Earth Engine.
TABLE 1 Likelihood of occurrence threshold (probability estimate).

Probability threshold
(%)

Description

0 No probability; associated with non-forested
areas

(0–10] Negligible probability

(10–30] Less Likely probability

(30–60] Likely probability

(60–90] Moderate probability

(90–100] High probability
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3 Results

3.1 Spatio-temporal occurrence
of infestation

Our results reveal considerable increase in insect infestation

across Ontario between 2018 and 2020 based on an RF probability

using MODIS satellite observations (Figure 5A). Between 2018 and

2020, the total area classified as having a high probability of

infestation across Ontario increased by >1,300%, from 2,900 km2

to over 42,000 km2 (Figure 6). Most of this expansion occurred in

northwestern Ontario, along the border of neighboring province,

Manitoba, while secondary incidences were observed in southern

Ontario. Conversely, the proportion of pixels experiencing

“moderate” (60–90%), “likely” (30–60%) and “less likely” (10–

30%) probability thresholds decreased by 18%, 43% and 25.5%

respectively during the same period (see Figure 6).

In 2018, spatial hotspots of infestation were concentrated along

the northwestern Kenora, Rainy River and Thunder Bay, as well as

in southern counties of Northumberland, Peterborough, Kawartha

Lakes, extending into Sudbury and Timiskaming. In 2019, most of

the infestation was concentrated along the northwestern part of the

province. By 2020, the intensity of occurrence of hotspots increased

along northwestern Ontario, extending southwesterly towards the

“golden horseshoe”.
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3.2 Human and environmental drivers
of infestation

From our analysis, recurring patterns emerged across two

regions, namely southern Ontario near the golden horseshoe, and

northwestern Ontario. Among these regions, large deviations in

average temperature, elevation, accessibility, and vegetation type

exist. However, these areas being indicated as hotspots may suggest

some correlation in drivers of infestation. By determining what

factors drive infestation, we may be able to (a) predict how

populations will expand in the future, and (b) find appropriate

methods to mitigate and/or eliminate future proliferation.

Based on correlation analysis, proximity to roads and

temperature were the most important drivers of infestation

occurrence across Ontario (Figure 7). There was a strong negative

correlation between the Ontario provincial road network and

infestation levels, i.e., the closer the roads, the higher the

likelihood of infestation (p < 0.001). This was particularly

noticeable towards northwestern Ontario. On the other hand, our

analysis showed strong positive correlation with temperature, i.e.,

the higher the temperature increase the higher the probability of

infestation (p < 0.001).

All other variables showed significant correlation (p < 0.01)

albeit with smaller contributions to hotspots (see Figure 7).

Precipitation emerged as having a weak negative correlation with
frontiersin.
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FIGURE 4

Human and environmental variables used to assess the drivers of infestation levels across Ontario: (A) average temperature from April to August,
(B) accumulated precipitation from April to August, (C) elevation, (D) protected areas including all parks and conservation areas, (E) road networks,
(F) land cover including coniferous and deciduous treed areas.
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FIGURE 5

Annual (A) mean, (B) median and (C) standard deviation of our cross-validation maps from 2018 to 2020 using a k-fold of five. For mean and
median, higher values indicate higher confidence of predictions (probability). Higher standard deviation values are associated with increasing
uncertainty of each pixel of the model within our study region. White regions indicate non-forests.
FIGURE 6

Area of annual infestation occurrence (km2) for Ontario from 2018 to 2020 based on random forest classification.
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infestation (correlation range > −0.25), while elevation, protected

areas and land cover emerged as having positive but weak

correlation (correlation range < 0.25) with infestation.
3.3 Accuracy analysis

The average overall accuracy of our probability estimate was

88%, while the recall, precision, and F1 score metrics were 92%,

94%, and 93%, respectively. Recall measures the model’s capability

to identify the True samples, while precision quantifies the number

of correct predictions. F1 score summarizes the model performance

computing the harmonic mean between recall and precision.

Figure 5 highlights the yearly mean, median and standard

deviation of our cross-validation using a k-fold of five.
4 Discussion

Our findings paint a more complex picture of insect infestation

than previously recorded across Ontario, Canada. While the

reported observations in southern and some part of northern

Ontario from government agencies have been captured in our

analysis, we also documented larger, more widespread infestation

across the northwest and northeast expanding into the southern

part of the province.

By 2021, the Ontario government reported major outbreaks of

insect infestation of L. dispar, C. pinus, C. conflictana and C.

fumiferana and resulting moderate to severe defoliation in

northwest, northeast and eastern districts (NDMNRF, 2022). In

2020, jack pine budworm defoliated approximately 10,658 km2 of

forest, mainly in the northwest region (NDMNRF, 2021). This was a

41% increase from 2018 (6,275 km2, NDMNRF, 2019). Infestation

levels of large aspen tortrix decreased to 228 km2 by 2020 from
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392 km2 in 2018 and were primarily detected in Chapleau and

Timmins districts in the northeast (NDMNRF, 2019; NDMNRF,

2021). Defoliation caused by spongy moth was mapped in only

southern Ontario, increasing from 149 km2 in 2018 to 5,864 km2 by

2020 and was detected in southern districts including

Northumberland, Hastings, Peterborough, and Kawartha Lakes

counties (NDMNRF, 2019; NDMNRF, 2021). The area of spruce

budworm defoliation increased from 1,371 km2 in 2018 to 4,424 km2

in 2020, mainly detected in northeast regions (NDMNRF, 2019;

NDMNRF, 2021). An aggregate of 21,174 km2 of forests were

defoliated by our study species by 2020. Although the above

regions were captured within our analysis, our study also revealed

considerable expansion of infestation (a total area of 239,603 km2

based on moderate to high probability estimates) in the north and

south. Defoliation expanded in the districts of Cochrane, Timmins,

Dryden, Sioux Lookout, Kenora, Nipigon, Fort France, Red Lake,

Chapleau, Sudbury, Hearst, Kirkland Lake, North Bay, Sault Ste.

Marie, southern parts of Wawa, North Bay, Parry Sound,

Peterborough, Peterborough, Bancroft, Kemptville, Midhurst,

Pembroke, Hastings, Aylmer, Guelp, Aurora, Northumberland,

Kawartha Lakes. In 2020, defoliation was recorded in Algonquin

Provincial Park, which corresponded to government reports in 2021

(NDMNRF, 2022).

The expansion of insect infestation across Ontario appears to be

significantly correlated with the Ontario provincial road network,

especially logging roads in the north, whereas roads in the south are

used by a greater demographic of commuters (see Figure 7).

Therefore, areas near roads will more likely be prone to

increasing infestations. For instance, these findings confirm

Benoit and Lachance’s (1990) reporting of species such as L.

dispar where although wind is the primary, natural dispersal of

their caterpillars, human transportation is responsible for their

long-range dispersal. Ciesla and Kruse (2009) noted that

outbreaks of large aspen tortrix may be associated with recreation
FIGURE 7

Correlation analysis of human and environmental drivers of infestation between 2018 and 2020. 0 to 1 (blue) indicates positive correlation, while 0
to −1 (orange–red) indicates negative correlation.
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sites and home sites in urban–wildland interface. Furthermore, our

findings suggest that jack pine budworm and spruce budworm are

the major species causing defoliation in the northwest and northeast

of the province, and their expansion may be linked to proximity to

roads. Government reports corroborated our findings (NDMNRF,

2019; NDMNRF, 2021) but we have found no papers which

examine other drivers of infestation of these species outside of

climatic analysis.

Additionally, high infestation showed a positive correlation

with temperature across the province. With rising temperatures,

geographical ranges of insect pests may shift or expand into new

areas of suitable habitat at their northern limits and into higher

elevations, and species may potentially move to secondary hosts

(Williams and Liebhold, 1997; Candau and Fleming, 2011;

Pureswaran et al., 2015; Hartl-Meier et al., 2017). Temperature

anomalies may trigger early budburst of tree hosts, or cause late

emergence of larval defoliators, leading to phenological asynchrony

between species and their hosts (Jepsen et al., 2008; Régnière et al.,

2012; Pureswaran et al., 2015; Jakoby et al., 2019). Species such as C.

pinus and C. fumiferana are cold-blooded, with their body

temperature being determined by the temperature of their

surrounding environment. As temperature increases in the south,

these species are extending their range farther north (Wellington

et al., 1950; Greenbank, 1956; Pilon and Blais, 1961). Likewise, L.

dispar moths cannot start their life cycle below −20°C and their life

cycle is limited below 10°C (Benoit and Lachance, 1990). This may

explain why they were previously unrecorded in northeast and

some parts of southern Ontario. Then, suitable conditions are

provided, as temperature increases, for their eggs and larvae to

grow and develop, and this may explain why we saw increasing

expansion in the province.

Our results also agree with predictions made by Régnière et al

(2009; 2012). which predicted increasing migration northwards in

Ontario for several species based on climate suitability. Régnière et al.

(2009) indicated an increasing migration pattern of L. dispar moth

infestation towards the north and east of Ontario by > 50% by 2030,

and > 90% by 2070. Their predictions for 2020 are in line with our

maps suggesting an infestation hotspot in western Ontario, on the

border with Manitoba, an area only limited reported by ground data

(see NDMNRF, 2019; NDMNRF, 2021; NDMNRF, 2022). However,

our findings indicate a faster timeline for establishment of infestation

across the province than predicted by Régnière et al. (2009).

Additionally, Régnière et al. (2012) predicted that the distribution

of spruce budworm outbreaks is likely to shift northward and towards

higher elevations over the next 50 years in response to climate change

but may vary considerably due to the current distribution of the

insect’s three main host plants (balsam fir, white and red spruce).

While much of this expanding infestation may be linked to

climate, for propagation to occur suitable tree types must be

present. According to Cihlar et al. (2002), deciduous and mixed

forests are more susceptible to, for example, L. dispar moth

infestation, which is abundant in northern parts of Ontario, but

colder temperatures may have previously prevented their spread. We

examined whether forest type was linked with infestation levels, but

our analysis showed no correlation between infestation and forest

types. This may be because caterpillars of the L. disparmoths seldom
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feed on conifer trees but may do so if populations are high and most

of the leaves on deciduous trees (Figure 8), such as oaks, have already

been consumed. Likewise, the distribution of host plants for spruce

budworms can also be expected to change, many shifting towards

higher latitudes, over the longer term (Payette, 2007), and possibly

exacerbating the insect’s increasing northern impact (see Régnière

et al., 2012). With jack pine budworm, outbreaks patterns may be the

result of inter-correlations between these abiotic variables and pollen-

cone production (Nealis and Lomic, 1994).

Although we did not find notable correlation between

infestation and other factors such as precipitation, elevation, and

land cover, other studies from agricultural experiments have shown

that increasing patterns of rainfall increase development time for

certain species of insects (Chen et al., 2019); while higher elevations

increase patterns of infestation for others (see Azrag et al., 2018).

Our results suggest that the protected area networks and current

federal management strategies have had limited success combating

the pervasive spread of insect incursion across the province within

our study period. Considerable mitigation strategies have been

implemented by authorities and private landowners to restrict the

expansion of infestation. These strategies encompass various forest

stand management techniques, such as avoiding the creation of

uneven-aged or multi-storied jack pine stands, steering clear of edge

stands or forest islands, and implementing accelerated harvesting

and salvage harvesting. Additionally, measures like aerial spraying

of bio-insecticide in specific areas, physically scraping off larvae

from infested tree trunks, establishing pheromone traps on infested

trees (Figure 8), applying bacterial insecticide Btk (Foray 76B) to

jack pine stands, and creating physical traps like burlap and duct

tape banding (Figure 8D) around tree trunks have been employed

(NDMNRF, 2019; NDMNRF, 2021; NDMNRF, 2022). Despite

these efforts, our results suggest that the management strategies

may either need revising or expanding to regions where current

practices are not implemented to account for factors such as

evolving insect behavior in response to changing environmental

conditions and potential resistance to control measures.

Further, as proximity to roads emerged as a major driver of

infestation, monitoring and management of transportation and

human activities may be required across the province. For

instance, Bigsby et al. (2011) showed that regulated activities by

state and federal governments in the United States correlated with

decreased presence of L. dispar moth, which could be implemented

within Ontario. Altogether, our results raise awareness of increasing

expansion of infestation that national-level statistics do not capture

and pose new challenges for conservation of Ontario’s forests.

Additionally, incorporating indigenous knowledge in forest

insect management practices, as proposed by Maloney (see

Maloney, 2019), may prove instrumental in limiting outbreaks

and infestation levels. To enhance the efficacy of these strategies,

it may also be crucial to explore innovative approaches such as

genetic modification of tree species for pest resistance and the

integration of advanced remote sensing technologies for more

precise monitoring and targeted intervention. Furthermore,

fostering collaborations between researchers, policymakers, and

industry stakeholders can lead to a more holistic and adaptive

approach in tackling this persistent threat.
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5 Conclusions

Our study unveils a nuanced understanding of insect infestation

across Ontario, Canada. While government agencies captured

observations in southern and northern parts of Ontario, our

analysis revealed a larger and more widespread infestation level.

By 2021, the Ontario government reported major outbreaks of

infestation in various districts, corroborating our findings of more

extensive infestation. The expansion of infestation correlated

significantly with the provincial road network, particularly

logging roads in the north, indicating areas near roads are more

prone to increasing infestations.

Additionally, our results align with predictions of increasing

migration northwards of several species based on climate suitability.

Rising temperatures play a crucial role in the geographical range

expansion of insect pests, further exacerbated by phenological

shifts. Forest type did not emerge as a significant factor

influencing infestation levels, highlighting the complexity of the

interplay between insects and their host trees. While our study

provides valuable insights, it is evident that current management

strategies have had limited success in curbing the persistent spread

of infestation. Adapting these strategies to evolving insect behavior

and exploring innovation approaches, including advanced remote
Frontiers in Ecology and Evolution 10139
sensing for quick and effective monitoring, may offer more effective

solutions. Collaboration between stakeholders will be instrumental

in developing a holistic and adaptive approach to confront this

ongoing threat.
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Forecasting streamflow is important for managing future water resources and
environmental needs under the impacts of climate change. Moreover, quantifying
the combined effects of future climate variations and human-made
infrastructures, e.g., dams and reservoirs, poses a significant challenge. In this
study, we used the Soil and Water Assessment Tool (SWAT) for a case study in the
Srepok River Basin—a tributary of the Mekong River Basin. Here, we aim to reveal
the impacts of various climate change scenarios and the effects of reservoir
operations in this region. Our findings indicate that 1) the projected annual
streamflow is anticipated to increase by a minimum of 9.2% (2046–2065) and
could peak at an increase of 14.9% (2080–2099) under the highest greenhouse
gas emissions, 2) Srepok 4, Srepok 3, and Buon Kuop demonstrate a higher
capability for mitigating flood peaks and managing seasonal flow in the
downstream floodplain, whereas Buon Tua Srah shows the least performance,
and 3) reservoirs operated with annual regulation have more pronounced impacts
than those regulated on a daily schedule. Our work provides i) a scientific
foundation for regional stakeholders and decision-makers to develop
sustainable strategies that address the combined effects of reservoir operation
and future climate, and ii) it supports national authorities and officials in resolving
conflicts related to transboundary rivers within the Mekong River Basin.

KEYWORDS

climate change, reservoir, SWAT, Srepok River basin, Mekong River basin

1 Introduction

Climate change, increasingly recognized as a major concern, has significant impacts on
the quality and quantity of water resources (Shukla et al., 2020; Tran et al., 2021a; 2021b;
Hussain et al., 2022). Previous studies have identified greenhouse gas emissions, partly
resulted from urbanization (Nguyen et al., 2022), as one of the primary reasons causing
global warming. These emissions are expected to lead to future increases in temperature and
precipitation (IPCC, 2014; IPCC, 2019) resulting in more frequent extreme weather events
(e.g., extreme heat waves, widespread floods, year-long droughts, and severe wildfires). The
Representative Concentration Pathway (RCP) is a trajectory for greenhouse gas
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concentration developed by the IPCC (IPCC, 2019). Numerous
studies have highlighted the effects of climate change on the
natural water cycle (Bolch et al., 2012; Aryal et al., 2019; Bhatta
et al., 2019; Roderick et al., 2019; Tran et al., 2023b). Floods caused
by extreme rainfall are expected to become more frequent across the
globe (Chattopadhyay et al., 2017; Vo et al., 2018; Ivanov et al., 2021;
Tran et al., 2023b), and are likely to persist even more severely in the
near future. Besides, Lehner et al. (2019) observed that the flow
patterns of a third of the world’s 200 largest rivers have changed
since the 1950s, with these alterations being directly attributable to
climate change. Although it is challenging to obtain an accurate
prediction of streamflow under the climate impacts, it remains a
crucial undertaking for effective water resource planning, regional
management, and mitigation of extreme events (Khoi and Suetsugi,
2012; Tran et al., 2022c; Tran et al., 2022e; Umar et al., 2022). In
Vietnam, a number of studies have investigated the impacts of
climate change at various scales (Khoi and Suetsugi, 2012; Ty et al.,
2012; Huyen et al., 2017; Vo et al., 2018; Giang and Vy, 2021).
However, the majority of these studies were carried out in
previous decades with the neglect of important factors (e.g.,
man-made infrastructures), raising concerns about their
reliability which is relevant to the current specifics of climate
change in this region.

The Mekong River, an important transboundary river in East and
Southeast Asia, flows through several countries, including China,
Myanmar, Laos, Thailand, Cambodia, and Vietnam (Arias et al.,
2014a) (Figure 1A). The Srepok River Basin (SRB), which is located
in central Vietnam, is a significant tributary of the Mekong River Basin
(MRB), annually contributing a substantial volume of water to the
Mekong River (Arias et al., 2014b;Nuong et al., 2022; Chang et al., 2023)
(Figure 1B). Alterations in water supply, particularly due to dam
operations, can remarkably affect the region’s water resources
(Giang et al., 2017; Du et al., 2022; Nguyen et al., 2023a; Nguyen
et al., 2023b; Bui et al., 2023; Smigaj et al., 2023). Within SRB, such
changes in the water cycle may affect the hydrology of the middle and
lower sections of the MRB, influencing the lives of nearly
11,000 Cambodians residing along the river and at the basin’s outlet
(International Rivers, 2010). Previous studies have enhanced our
understanding of how climate change may impact the Srepok River
as well as the 3S River (Srepok, Sesan, and Sekong) (Arias et al., 2014a;
Cochrane et al., 2014; Piman et al., 2016; Huyen et al., 2017; Trang and
Lakshmi, 2022; Bui et al., 2023). However, these studies have overlooked
the impact of existing dams and reservoirs due to a lack of operational
data, an oversight that should be considered in climate change studies.
Furthermore, the critical role of the Krongbuk tributary has been largely
ignored, meaning that total runoff at the SRB outlet—and by extension,
regional volume assessments and disaster prevention strategies—may
not be fully understood or accounted for. Furthermore, the reliability of
their baseline models, which utilize historical data, is questionable due
to the limited duration of the calibration and validation
periods—factors that play a crucial role in deriving accurate
parameters for projecting future climate scenarios. Also, the study
by Piman et al. (2016), which constructed a baseline period between
1986 and 2006, or Arias et al. (2014a) from 1982 to 2005, Cochrane et al.
(2014), Oeurng et al. (2016) from 1980 to 2008, and Shrestha et al.
(2016) from the 1980s–2000s, have eliminated considerations of current
damoperations for the SRB. This gap suggests that such studiesmay not
fully capture the projected impacts of future climate change on this

region, potentially providing decision-makers and regional planners
with incomplete data.

The climate inputs for hydrological models, e.g., temperature
and precipitation, can be derived using two primary methods: 1)
revising records obtained from meteorological stations (Khoi and
Suetsugi, 2012; Li and Fang, 2021; Raghavan et al., 2012), and 2)
adjusting outputs from climate models (Vo et al., 2018; Tran et al.,
2022c). General Circulation Models (GCMs), also known as Global
Climate Models, are developed through assumptions and
mathematical representations of the physical climate system’s
processes (Li and Fang, 2021). An ensemble of GCMs, created by
various global organizations and institutions, can provide more
accurate predictions for water resources than a single GCM
(Pierce et al., 2009; Ranger et al., 2011). Accordingly, we utilized
datasets from the climate change scenarios released by the Vietnam
Ministry of Natural Resources and Environment (2020) in this
study. These scenarios cover two timeframes: the near future
(2046–2065) and the far future (2080–2099) and the ensemble
would be formed based on projections from six distinct Regional
Climate Models (RCMs). These include: i) the Climate-WRF (CL-
WRF) model from the United States (Fita et al., 2010); ii) the
Providing REgional Climates for Impacts Studies (PRECIS)
model from the United Kingdom (Moberg and Jones, 2004); iii)
the Conformal Cubic Atmospheric Model (CCAM) from Australia
(Her, 2014); iv) the Regional Climate Model (RegCM) from Italy
(NCAR, 2017); v) the Meteorological Research Institute (MRI) for
Atmospheric Climate Model (AGCM/MRI) from Japan (Mizuta
et al., 2012); and vi) the Rossby Centre Regional Climate (RCA3)
model from Sweden (Samuelsson et al., 2011).

This study aims to reveal the impacts of dam operation and
future climate scenarios on the water resources of SRB by employing
the SWAT hydrological model. In general, our findings would:

(1) Refine and update previous baseline models using recent and
comprehensive datasets for accurate simulations of projected
future runoff, especially at the SRB’s outlet;

(2) Analyze the impacts of climate change and the existing dams’
operation, an aspect often overlooked in previous works; and

(3) Quantify the contributions of the SRB’s main tributaries to the
overall flow under different future climate conditions.

By fulfilling these objectives, our study aims to reduce the
uncertainties currently associated with future hydrological
projections in this region. The implications of our findings are
critical for water resource management, with direct benefits for the
local communities in Vietnam and Cambodia. Additionally, this
work provides a solid scientific foundation for disaster prevention
strategies in the lower MRB, thereby supporting stakeholders and
regional authorities in making informed decisions.

2 Materials and methods

2.1 Study area

The Srepok River, a major tributary of the Mekong, has its
source in the highlands of Dak Lak Province, Vietnam. It flows
through Ratanakiri and Stung Treng regions before joining the
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FIGURE 1
(A) Location of SRB in the MRB (B) SRB and the distribution of reservoirs, and stream network.

FIGURE 2
The SRB with (A) DEM (m) (B) Slope (%) (C) LULC, and (D) Soil map.
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Mekong River (Figures 1A, B) with the total river’s length
approximately 450 km. The river’s initial course covers 169 km
within Vietnamese territory before traveling through 281 km in
Cambodia. The SRB covers an area of approximately 18,200 km2

within Vietnam, primarily occupying the upper segment of the
basin, which constitutes over 65% of the total area. This watershed is
characterized by a diverse topography with the upper region’s
elevation ranges from 200 to over 2,240 m, with average heights
transitioning from 350 m in the northwest to about 1,000 m in the
southeast (Figures 2A, B). Between 1998 and 2018, the average
annual precipitation recorded at main hydrological stations of SRB
(e.g., Giang Son, Duc Xuyen, Cau 14, and Ban Don) were
approximately 1920 mm, 1937 mm, 1704 mm, and 1,601 mm,
respectively. The majority of this precipitation, exceeding 70%,
occurred during the wet season (June to November), with an
estimated 41% of the annual precipitation contributing to the
basin’s runoff. In this study, the Duc Xuyen and Giang Son
regions are specifically highlighted due to their significant
hydrological contributions to the SRB’s outflow (Ty et al., 2011;
2012).

On the other hand, Vietnam exhibits considerable
hydropower potential, notably in the northern and central
highland regions. In this study, we include five primary
hydropower reservoirs and associated power plants subsequent
to the initial phase of Hydropower Projects in the Lower MRB,
including: Buon Tua Srah, Buon Kuop, Srepok 3, Srepok 4, and
Srepok 4A (Figure 1B; Table 1). As mentioned, we incorporates
these infrastructures (see section 2.3.2) to assess their
implications on the SRB’s hydrological dynamics and to
evaluate their operational performance under various climate
change scenarios.

2.2 Data sets

We used the SWAT hydrological model with the necessary
inputs as presented in Table 1.

2.3 Semi-distributed hydrological model
SWAT

SWAT is a semi-distributed hydrological model developed and
maintained by the U.S. Department of Agriculture (USDA) and the
Agricultural Research Service (ARS) (Arnold et al., 2012a). In recent
years, SWAT has gained popularity in both the United States and
Europe, largely owing to its effectiveness in addressing a range of
hydrological issues (Gassman et al., 2007; Tran et al., 2023a).
Numerous studies have utilized the SWAT model to examine the
impacts of various factors on streamflow and sediment loads
(Ahmed et al., 2020). These factors include land use and land
cover (LULC) changes (Anaba et al., 2017; Aryal et al., 2022;
2023; Tran and Lakshmi, 2022), the effects of climate change (Vo
et al., 2018; Aslam et al., 2022; Shafeeque et al., 2023a; 2023b),
improvements in ecosystem services (Ashrafi et al., 2022a; Arshad
et al., 2022; Ashrafi et al., 2022b; Tapas et al., 2022), and the
validation of satellite-based products (Arshad et al., 2021; Tran
et al., 2022a; 2022b; Noor et al., 2023).

2.3.1 Parameter sensitivity analysis, model
calibration, and validation

The calibration and validation of the SWATmodel, as well as the
assessment of parameter uncertainty using the Sequential
Uncertainty Fitting procedure (SUFI-2) as the objective function,
were carried out with the SWAT-CUP program (version 5.2.1)
(https://www.2w2e.com/home/SwatCup), as detailed by
Abbaspour et al. (2015) and Zhang et al. (2014). Model
performance metrics are presented in Table 2. The objective
function (Nash-Sutcliffe efficiency; NSE) was used in SWAT-
CUP to calibrate and validate the SWAT model.

Where Q is the streamflow (m3/s), m, s stand for measured and
simulated, and d stands for deviation of it, i is the ith measured and
simulated, �Q indicates the mean value and number of values is n.

A 7-year warm-up period (1985–1991) was chosen within the
33-year simulation period (1985–2018), followed by 10 years
(1992–2001) for model calibration and 17 years (2002–2018) for

TABLE 1 Description of required inputs for SWAT in this study.

No Name Description References

1 DEM The 90-m DEM from the HydroSHEDS database with an average error of less
than 3%

HydroSHEDS Core layers (V1.0) (https://www.hydrosheds.org/
products/hydrosheds)

2 LULC 30-m LULC map was retrieved from SERVIR-Mekong Portal for the year
2010 (Figure 2C)

SERVIR–Mekong (https://www.landcovermapping.org/en/home/)

3 Soil 30-m resampled soil map with a scale of 1:1,000,000 was used (Figure 2D) National Institute for Soils and Fertilizers. (2002)

4 Weather
data

Daily precipitation data were obtained (1985–2018) at eleven meteorological
stations: Giang Son, Buon Me Thuot, Buon Ho, M’DRak, Dak Lak, Krong
Buk, Duc Xuyen, Dak Nong, Cau 14, Ban Don, and Ea So (Figure 1B)
Daily maximum temperature (Tmax) and minimum temperature (Tmin) data
were obtained from VMHA at two meteorological stations: Buon Me Thuot,
and Dak Lak (Figure 1B)

Vietnam Meteorological and Hydrological Administration (VMHA)
(http://kttvqg.gov.vn/)

5 Observation Observed daily streamflow data were collected (1980–2018) at five stations:
Ban Don, Cau 14, Giang Son, Duc Xuyen, and Krong Buk (Figure 1B) for
SWAT model calibration and validation

VMHA (http://kttvqg.gov.vn/)

6 Reservoirs Five dams and reservoirs have been chosen within this study, including: Buon
Tua Srah with a capacity of 86 Megawatts (MW); Buon Kuop at 280 MW;
Srepok 3 with 220 MW; Srepok 4 at 80 MW; and Srepok 4A at 63 MW.

MRC (2017)
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validation. The calibration and validation of the model were
performed on a daily basis, with the ideal range for the number
of iterations set between 300 and 500 to balance computational
efficiency and time requirements.

2.3.2 Reservoirs scenarios
This work initially focuses on the combined impacts of certain

reservoirs—Buon Tua Srah, Buon Kuop, Srepok 3, and Srepok
4—on the SRB (Figure 1B). These reservoirs, previously
overlooked in related studies, are included here due to their
importance in assessing climate change effects. We will examine
the operational impacts of each reservoir, particularly their influence
on flood peaks and total runoff at the SRB outlet. To be specific, we
compare a baseline scenario (natural flow without reservoirs)
against four scenarios where each reservoir is independently
operated, to isolate their individual impacts for better
management and operational planning. The Srepok 4A reservoir,
however, will not be considered in this study due to its limited
capacity and primary function of serving irrigation needs for a small
area, as reported by MRC (2017).

For the reservoir setup in the SWAT model, we selected the
following parameters: the operational start date of the reservoir
(MORES for month and IYRES for year), the reservoir’s surface area
at emergency spillway capacity (RES_ESA; ha), and the
corresponding volume (RES_EVOL; 104 m3). Additional
parameters include the surface area at principal spillway capacity
(RES_PSA; ha), the required volume to reach this capacity (RES_
PVOL; 104 m3), the initial volume of water in the reservoir (RES_
VOL; 104 m3), the initial sediment concentration (RES_SED; mg/L),
evaporation coefficient (EVRSV), and the average daily discharge
when overflowing (RES_RR; m3/s). We also considered the non-
flood season duration (IFLOD1R and IFLOD2R for start and end
months, respectively), the fraction of water removed from the
reservoir during non-flood season (WURTNF; m3/s), the
minimum outflow relative to principal spillway volume
(OFLOWMN_FPS), and the target storage volume also relative to
the principal spillway (STARG_FPS) (Arnold et al., 2012a).

Two parameters were identified as most sensitive for reservoir
calibration: the hydraulic conductivity at the reservoir bottom (RES_
K; mm/h) and the number of days required to reach the target

storage from the current volume (NDTARGR; days). These were
calibrated using methodologies described by Kim and Parajuli
(2014) and Qiu et al. (2019). In addition, twenty-three
parameters were chosen for model calibration, validation, and
sensitivity analysis, based on p-value and t-Stat statistical
methods as mentioned in Arnold et al. (2012b), Tuo et al.
(2016), and Xu et al. (2016). These parameters’ descriptions and
their calibrated values are listed in Table 4.

In this study, SWAT’s operating policies are based on monthly
storage targets. The storage target operations are piecewise linear
functions for each reservoir in the system. Each reservoir’s policy is
defined by parameters: a target storage value for each month
(STARG) and NDTARGR (days), which are constant across all
months. Daily reservoir releases (Vflowout) are calculated as follows:

Vflowout � V − Vtarg

NDtarg

Where V is the volume of water stored in the reservoir, Vtarg is
the reservoir storage target, andNDtarg is the number of days for the
reservoir to reach the target storage (Arnold et al., 2012b). Once the
outflow is determined with this method, the model then adjusts the
outflow to ensure that minimum and maximum discharge criteria
are met. Existing target storage operations are not fully state-aware:
each reservoir’s release decision is based only on its own storage level
and the month but does not consider any additional system state
information, such as the storage at other reservoirs in the system.

2.4 Climate change projections

Future climate data were extracted from the Vietnam Climate
Change Scenario dataset, which was validated by the Vietnamese
Government under resolution No. 93/NQ-CP, issued on 31 October
2016. This resolution affirmed Vietnam’s commitment to the Paris
Agreement—a global pact within the United Nations Framework
Convention on Climate Change—officially ratified on 20 July 2020.
Summaries of the data from six different Regional Climate Models
(RCMs), updated using the IPCC 2019 report and the 2018 Vietnam
Meteorological datasets (e.g., 5 m resolution lidar DEM), are
presented in Table 3. Our analysis employed the

TABLE 2 Performance metrics for the model calibration and validation. Where Q is the streamflow (m3/s), m, s stand for measured and simulated, and d stands for
deviation of it, i is the ith measured and simulated, �Q indicates the mean value and number of values is n.

Metric equation Optimal value Performance evaluation criteria

KGE � 1 −
����������������������������
(CC − 1)2 + (Qs

d

Qm
d −1)2 + (Qs

Qm
−1)2

√
1 VG: KGE ≥ 1; G: 0.50 ≤ KGE ≤ 1

S: 0 ≤ KGE ≤ 0.50; NS: KGE < 0

NSE � 1 − ∑n

i�1(Qm−Qs)2∑n

i�1(Qm−Qs)2
1 VG: NSE ≥ 0.8; G: 0.8 ≤ NSE ≤ 0.7

S: 0.5 ≤ NSE ≤ 0.7; NSE: NS ≤ 0.5

RMSE �
����������∑n

i�1(Qs−Qm)2
n

√
0 VG: 0.2 ≤ RMSE ≤0.5

0 ≤ RMSE ≤ +∞; Lower is better

PBIAS � 100*(∑n

i�1(Qm−Qs )∑n

i�1Qm
) 0 VG: PBIAS ≤ ± 5; G: ± 5 ≤ PBIAS ≤ ± 10

S: ± 10 ≤ PBIAS ≤ ± 15; NS≥ ± 15

MAE � 1
n ∑n

i�1 |Qm −Qs | 0 0 ≤ MAE ≤ +∞; Lower is better

R2 �
[∑

i

(Qm,i−Qm)(Qs,i−Qs )]2

∑
i

(Qm,i−Qm)2 ∑
i

(Qs,i−Qs )2
1 VG: 1 ≥ R2 ≥ 0.75; G: 0.65 ≤ R2 ≤ 0.75

S: 0.5 0 ≤ R2 ≤ 0.65; R2: NS ≤ 0.5
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RCP4.5 scenario, which projects an average annual rainfall increase
of 10%–20%, and the RCP8.5 scenario, which anticipates an average
annual rainfall increase of up to 40%. These scenarios correspond to
the near future and far future periods, as designated by MONRE
(2016).

3 Results

3.1 Model calibration and validation

Figure 3 and Table 4 present the parameter ranking, method,
description, range, and fitted value for parameter sensitivity analysis
using SWAT model.

The SCS runoff curve number (CN2) was found as the most
sensitive parameter, followed by the base flow alpha factor for
bank storage (ALPHA_BNK), the effective hydraulic

conductivity in the main channel alluvium (CH_K2),
Manning’s “n” value for overland flow (OV_N), the plant
uptake compensation factor (EPCO), the calibration coefficient
used to control the impact of the storage time constant from low
flow (MSK_CO2), and the deep aquifer percolation fraction
(RCHRG_DP) (Figure 3). These results indicate that SRB is
significantly sensitive to surface runoff parameters (defined by
CN2, CH_K2, and OV_N) and EPCO. This sensitivity can be
attributed to the region’s dense vegetation cover. The findings are
consistent with observations from previous studies by
Bajracharya et al. (2018), Bhatta et al. (2019), and Li and Fang
(2021). However, groundwater-related parameters, e.g.,
RCHRG_DP and GW_DELAY, were found to be non-sensitive
in our study. This insensitivity may be due to extensive
groundwater extraction for agricultural activities, which
diminishes the interaction between surface and subsurface
waters.

To achieve optimal calibration, we performed the model
calibration and validation at multiple objective stations,
including Krongbuk, Giang Son, and Duc Xuyen (Figure 1B).
Figure 4 compares observed and simulated daily streamflow at A)
Krongbuk B) Giang Son C) Duc Xuyen D) Cau 14, and E) Ban
Don stations. A detailed summary of the model’s performance
metrics is presented in Figure 5. We performed these different
scenarios using the same model setup and set of calibrating
parameters (Table 4). The Krongbuk station, chosen as the
objective station for model calibration and validation, showed
a good performance, particularly during the validation phase of
the second period following the operation of five reservoirs (after
2009) (Ty et al., 2011) (Figure 4A). Our findings thus address a
gap in previous analyses, highlighting the capability of the
Krongbuk station for model calibration purposes.

Model calibration for the Duc Xuyen region (2009–2018),
revealed low values of NSE and KGE (Figure 4C). This could be
explained due to a range of local factors, including variations in
terrain profile, agricultural practices, and water resource
management policies. Specifically, the intensive use of both
surface water and groundwater for agricultural purposes in the
Duc Xuyen area, as opposed to practices in the Krongbuk region,
may have contributed to these results, and aligned with findings
from Arias et al. (2014b), Huyen et al. (2017), and Ty et al. (2011,
2012).

Figure 5 shows the calibration and validation scenarios
conducted at the Duc Xuyen, Krongbuk, and Giang Son stations.
While the scenario performed at Krongbuk provided the most

TABLE 3 Description of RCMs, as the inputs of the Vietnam Climate Change Scenario dataset.

Model Country Release year Resolution References

clWRF United States 2000s 0.3° x 0.3° Fita. (2010)

PRECIS United Kingdom 2004 0.25° x 0.25° Moberg & Jones. (2004)

CCAM Australia 2014 0.1° x 0.1° Her. (2014)

RegCM Italy 2017 0.2° x 0.2° NCAR. (2017)

AGCM/MRI Japan 2012 0.2° x 0.2° Mizuta et al. (2012)

RCA3 Sweden 2010 0.5° x 0.5° Samuelsson et al. (2011)

FIGURE 3
Sensitivity analysis using t-Stat and p-value for chosen SWAT-
CUP parameters with their ranking. Parameters with a
p-value ≤0.05 and a high t-Stat value—when |t-Stat| ≥ 1.96 were
considered sensitive (Mosavi et al., 2021). This threshold indicates
that, with 95% confidence, the variables have a significant effect.
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accurate fit for the SRB (Table 2), Giang Son station’s performance
was slightly less accurate, whereas the Duc Xuyen station had the
least precise results. In particular, the Duc Xuyen station showed a
range of KGE values from 0.45 to 0.80 across the stations of Ban
Don, Cau 14, Duc Xuyen, Giang Son, and Krongbuk (Figure 5A).
The least favorable outcomes were observed at the Giang Son station
(NSE of 0.21 and RMSE of 96.15 m³/s), and at the Krongbuk station
(NSE of 0.05 and RMSE of 12.84 m³/s). In addition, the calibration
and validation processes at the Krongbuk station indicated
improvements, particularly with respect to flood peak predictions
and total streamflow volume assessment (Figure 5). The model
achieved satisfactory scores here, enhancing its dependability for
assessing the effects of RCPs, especially regarding the cumulative
impacts from the regional reservoirs.

3.2 Quantify the flow contribution of the
sub-basins

The streamflow contributions from the Giang Son and Duc
Xuyen regions to the SRB outlet are quantitatively shown in Figure 6.
To be specific, the Duc Xuyen region adds an extra 21.1% to the
SRB’s total runoff compared to the Giang Son region.

The Giang Son region contributes between 32.9% and 39.8% of
the total runoff volume at the SRB outlet (Figure 6B). During the wet
season, the region is responsible for 30.2% of the total streamflow,
which is less than the 43.1% provided by the Duc Xuyen region,
underscoring the latter’s significant influence during this period
(Figure 6C). The scenario changes in the dry season, where the
contribution dynamics between the two regions reverse. Figure 6D

TABLE 4 Summary of SWAT and reservoir parameters with their sensitivity ranked based on t-Stat values, as described in Mosavi et al. (2021).

Rank Parameter Method Description Range Fitted-value

Flow parameters

1 CN2 Relative SCS runoff curve number f 35–98 65.07

2 ALPHA_BNK Replace Baseflow alpha factor for bank storage 0–1 0.86

3 CH_K2 Replace Effective hydraulic conductivity in main channel alluvium −0.01–500 388.14

4 OV_N Replace Manning’s “n” value for overland flow 0.01–30 0.25

5 EPCO Replace Plant uptake compensation factor 0–1 0.31

6 MSK_CO2 Replace Calibration coefficient used to control impact of the storage time constant from low flow 0–10 6.86

7 RCHRG_DP Replace Deep aquifer percolation fraction 0–1 0.30

8 GWQMN Replace Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 0–5,000 1,403.90

9 ALPHA_BF Replace Baseflow alpha factor (days) 0–1 0.57

10 SOL_K Relative Saturated hydraulic conductivity 0–2000 19.67

11 CH_N2 Replace Manning’s “n” value for the main channel −0.01–0.3 0.05

12 HRU_SLP Relative Average slope steepness 0–1 0.03

13 GW_DELAY Replace Groundwater delay (days) 0–500 51.80

14 CANMX Replace Maximum canopy storage 0–100 22.86

15 SURLAG Replace Surface runoff lag time 0.05–24 14.83

16 ESCO Replace Soil evaporation compensation factor 0–1 0.59

17 SLSUBBSN Relative Average slope length 10–150 69.35

18 GW_REVAP Replace Groundwater “revap” coefficient 0.02–0.2 0.10

19 SOL_AWC Relative Available water capacity of the soil layer 0–1 0.07

20 GWHT Replace Initial groundwater height m) 0–25 0.98

21 LAT_TTIME Replace Lateral flow travel time 0–180 46.76

22 SOL_BD Relative Moist bulk density 0.9–2.5 1.06

23 SOL_Z Relative Depth from soil surface to bottom of layer 0–3,500 372.97

Reservoir parameter

1 NDTARGR Replace Number of days the reservoir would be filled (days) 1–365 1–30

2 RES_K Replace Hydraulic conductivity of the reservoir bottom (m/s) 10–2–11 0.15
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shows that the Giang Son region’s share of the total streamflow
increases to 39.2%, exceeding the 32.2% from the Duc Xuyen region.
This indicates the variable influence of these regions on the SRB’s
hydrology across different seasons.

Figure 6C shows a notable difference in the annual streamflow
patterns corresponding to the period before (pre-2009; baseline
scenario without dam) and after (post-2009) the commencement
of dam operations. This provides insights into the changing
hydrological response that could be explained due to
anthropogenic intervention (Ty et al., 2012). These observations
underscore the transformative impact of reservoirs on streamflow
patterns, with implications for water resource management, flood
control, and ecosystem services in the SRB. Besides, the streamflow
patterns in the pre-2009 period are characterized by relative stability.
However, during the post-2009, when the reservoirs became
operational, the runoff demonstrates marked variability,
indicating the direct influence of reservoir management on the
hydrology of the region. In addition, SRB experienced a
noticeable 25% reduction in total runoff in the Ban Don, Cau 14,
and Duc Xuyen regions (Figure 6) between 2009 and 2018. This
decline is attributed to the active period of dam operation and

highlights the substantial role that these structures play in modifying
natural streamflow regimes.

3.3 Reservoirs’ impacts on streamflow

We conducted a comprehensive assessment to evaluate the
influence of individual reservoirs on the cumulative runoff at the
SRB outlet (Buon Tua Srah, Buon Kuop, Srepok 3, and Srepok 4)
(Figure 1B). For this, we compared the flood peak, annual, and
seasonal runoff at the SRB outlet under these experimental scenarios
against a baseline scenario in which all reservoirs would be inactive
(see section 2.3.2) (Figure 7).

Table 5 presents the impacts of each reservoir on the runoff of
the SRB, showing an increasing influence from the downstream to
the upstream regions. Notably, the capacity for flood reduction
correlates directly with the active storage capacity of the reservoirs.
In particular, Srepok 4 demonstrates the most effective capability for
mitigating flood peaks in the downstream floodplain, followed by
Srepok 3 and Buon Kuop, while Buon Tua Srah exhibits the least
effectiveness (Figure 7B). The least performance of Buon Tua Srah
can be attributed to its location; despite having a good design
capacity, it is situated in the highland and upper region of the
SRB (Figure 1B). Furthermore, our results also show that the
increased volume of water released during the dry season
contributes to a rise in the total runoff of the SRB when
compared to the baseline scenario.

Regarding the average annual runoff at the outlet of the SRB
(2009–2018), the activation of each individual reservoir corresponds
to a respective decrease in annual runoff: 0.26% for Buon Tua Srah,
0.13% for Buon Kuop, 0.24% for Srepok 3, and 0.08% for Srepok 4,
when compared to the scenario where all these reservoirs are
deactivated. Despite the overall reduction in runoff following
reservoir activation, the Buon Tua Srah reservoir exhibits the
most significant decrease in total runoff at the outlet of the SRB.
While Buon Tua Srah is located upstream, allowing it to capture
more discharge from the upper regions of the SRB, Srepok 3 is
situated further downstream but possesses the highest design
capacity, which allows it to store and subsequently release a
substantial volume of water downstream. Further analysis
revealed that the impacts of the reservoirs (Buon Kuop, Srepok
3 and 4) are particularly noticeable during the dry and wet seasons,
as can be attributed to their locations in the mainstream of the
Srepok River (Figure 1B; Figure 7; Table 5). Moreover, we found that
reservoirs operated on an annual regulation (Buon Tua Srah, Buon
Kuop, and Srepok 3) have a more pronounced and enduring impact
on runoff patterns compared to those managed on a daily regulation
(Srepok 4) (Table 5), and this finding therefore could be used to
better regulate the runoff before and after flood and drought events.

3.4 Future predictions of climate and water
changes

3.4.1 Precipitation
Figure 8 shows the rainfall variations throughout the baseline

period (1992–2018) and under two future scenarios, RCP 4.5 and
8.5. The peak rainfall occurs from July to October, with September

FIGURE 4
Comparisons between observed and simulated streamflow (daily
scale) using the objective station–Krongbuk, for calibration period
(1992–2002), first validation (without dam) (2003–2008), and second
validation (with dam) (2009–2018). The results were shown at (A)
Krongbuk (B) Giang Son (C) Duc Xuyen (D) Cau 14, and (E) Ban Don.
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experiencing the highest volume. During the wet season (June to
November) (Nguyen and Nguyen, 2004), 63% of the annual rainfall
is recorded, whereas the dry season sees a significant drop,
contributing only 58% (243.45 mm) of the total accumulative
volume (Figure 8A). Between 2046 and 2065, a slight increase in
rainfall is projected, accounting for 3.39 mm (RCP 4.5) and 3.88 mm
(RCP 8.5), compared to the baseline period (Figure 8A). In general,
an upward trend rise in the annual rainfall (2080–2099) with
approximately of 6.2%–7.1% increase for the 2046–2065 period
and 7.7%–11.5% increase for the 2080–2099 period in rainfall
compared to the historical record. We also found that these
scenarios suggest average monthly rainfall increases of at least
4.21 mm–6.28 mm with the most significance expected during
August and September (Figures 8B, C).

3.4.2 Temperature
Figure 8 and Figure 9 show projected increases in maximum

(Tmax), minimum (Tmin), and average (Tmean) temperatures under
future RCPs. The baseline data reveals the warmest months to be
between March and May, with temperatures decreasing during the
wet season and reaching their lowest in October (Figure 9D;
Figure 9E; Figure 9F). Under the future scenarios RCP 4.5 and
RCP 8.5, modest temperature rises of 1.4 °C and 1.8 °C are expected,
respectively, with RCP 8.5 presenting a more pronounced increase
(Figure 9E, Figure 9F, Figure 9H, and Figure 9I). The trends suggest
that seasonal and annual average temperatures will continue to

increase, with the period from 2080 to 2099 under RCP
8.5 anticipating the highest temperature increase.

3.4.3 Climate change impacts on streamflow
The two RCPs predict an increase in streamflow across monthly,

annual, and seasonal scales. For the period between 2046 and 2065,
an increase in annual streamflow is anticipated, with a range of
9.14% for RCP 4.5%–9.8% for RCP 8.5 (Figure 10). A more
significant jump of 2.1%–3.2% above these levels is projected for
the later period of 2080–2099. The largest streamflow increases are
expected fromMay to September compared to the baseline scenario,
with the smallest rises occurring at the start of the year in January
and February. These range from an increase of 5.1% under RCP 4.5
(2046–2065) to 7.74% under RCP 8.5 (2080–2099) (Figures 10A, B).
The projected average streamflow increase for 2046–2065 is
approximately 29.77 m³/s, corresponding to an increase of about
10.7% for both RCP 4.5 and RCP 8.5 from the baseline scenario
(Figure 10A). Between 2080 and 2099, the rise is found at 12.10%
(35.78 m³/s) for RCP 4.5% and 15.97% (47.21 m³/s) for RCP 8.5
(Figure 10B).

Figures 10C–E show variations in annual and seasonal
streamflow, highlighting the SRB’s sensitivity to seasonal shifts
under different RCPs. The wet season exhibits the most notable
increases in streamflow, with rises of 10.13% (RCP 4.5) and 10.92%
(RCP 8.5) between 2046 and 2065. These increases are projected to
grow to 12.36% and 16.8% for the respective RCPs (2080–2099)

FIGURE 5
Summary of the model’s calibration and validation (1992–2018) performed at different objective stations (Duc Xuyen, Krongbuk, and Giang Son).
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compared to the baseline scenario (Figure 10D). Conversely, the dry
season’s streamflow increase is more modest, at 6.81% and 7.1% for
RCP 4.5 and RCP 8.5, respectively (2046–2065), and 8.3% and 10.5%
(2080–2099), respectively (Figure 10E). These changes are
confirmed by the monthly streamflow trends (Figures 10A, B)
and align with the anticipated alterations in wet season rainfall
resulted from the influences of RCP scenarios. Furthermore, average
annual streamflow is projected to peak (2080–2099) under the RCP
8.5 scenario (14.9%), with the least significant rises noted at 9.2%
under RCP 4.5% and 9.8% under RCP 8.5 during the
2046–2065 period (Figure 10C).

Figures 10F, G present a statistical analysis of hydrological
components impacted by the RCP scenarios. Key hydrological
elements, e.g., potential evapotranspiration (PET), actual
evapotranspiration (ET), and groundwater levels, are all projected
to trend upwards, though the differences between the RCP scenarios
are not pronounced. However, the RCP 8.5 is anticipated to drive
more considerable increases or decreases in streamflow and related
hydrological effects.

4 Discussion

We noticed that the typical historical severe drought in the
Giang Son region (2012–2013), which resulted in a large disparity

between the Duc Xuyen and Giang Son regions, highlights the
need for robust water conservation and allocation practices to
support the agricultural sector, which is vulnerable to water
scarcity during such events. Specifically, while streamflow in
the Duc Xuyen region was more stable across drought periods,
streamflow in the Giang Son region varied dramatically. This
shows the Giang Son region’s vulnerability to drought and
indicates the critical need to focus on water resource
management strategies, especially considering the dependency
of local agriculture on reliable water supplies.

Since their commissioning (post-2009), the downstream
reservoirs—Srepok 4, Srepok 3, and Buon Kuop—have
demonstrated a robust capability to mitigate flood peaks in the
downstream floodplain. This aligns with the operational design
outlined by the MRC (2017), which specifies that mainstream
reservoirs are designed with more flood prevention functions
compared to upstream reservoirs (e.g., Buon Tua Srah) that are
mainly used for irrigation and electricity production. The substantial
impact of the Srepok 3 reservoir, with a 0.24% decrease in total
runoff at the SRB’s outlet, is primarily attributed to its high design
capacity, which allows for the release of more water to the
downstream region (Table 5). Conversely, the impact of the
Buon Tua Srah reservoir (0.26% decrease in total runoff) is
attributed to its location in the upstream region, which helps to
collect more discharge in the upper part of the SRB.

FIGURE 6
Streamflow contributions from different regions to the SRB outlet, categorized as (A) annual (B)monthly (C) before and after reservoirs operated (D)
seasons, and (E) among different periods.
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An upward trend in future climate projections indicates an
approximate increase of 6.2%–7.1% for the 2046–2065 period and
7.7%–11.5% for the 2080–2099 period in rainfall, leading to an
increase in the average annual streamflow by around 9.2%–11.2%
and 9.8%–14.9%, under the RCP 4.5 and 8.5, respectively (Figures
8A–C, Figures 9A–C, and Figures 10A–E). To answer whether
climate change impacts or reservoir operations will significantly
affect the SRB’s outlet, we found that it depends on several factors,
which require further consideration. First, the regulations of the
reservoirs presented in this study are set as constant due to the
limitations of SWAT configurations for reservoir module, which can
only accept a fixed setup for the entire simulation (Arnold J. et al.,
2012). This thus does not reflect the actual operation of these
reservoirs in reality, which vary according to different factors
(e.g., agricultural activities, irrigation, groundwater extraction,
local usage, etc.). Furthermore, when considering the impacts of

climate change and the role of reservoirs, it is clear that while the
current chosen reservoirs have decreased flood intensity, however,
the regular operation of reservoirs does not fully reflect each
reservoir’s maximum flood prevention capacity. Additionally, the
limitations arising from the SWAT configuration for the reservoir
module mean that the findings in this study should be taken as a
reference for future works using more complex numerical models,
e.g., the Variable Infiltration Capacity (VIC) model (Liang et al.,
1994) with more detailed experiments performed.

The two greenhouse gas emission scenarios (RCP 4.5 and 8.5)
predict an average increase in precipitation, with the most
significant rise expected in August and September (Figures 8B,
C). The SRB is projected to experience the largest increase in
annual streamflow volumes during the 2080–2099 period under
the RCP 8.5 scenario. The smallest increase is anticipated under the
RCP 4.5 scenario between 2046 and 2065, with the greatest increase

FIGURE 7
Discharge in (A) annual (B) flood peak (C) monthly, and (D) seasonal (wet, dry). Each scenario is performed with the reservoir’s name, shown in the
legend, corresponding to when it is activated.

TABLE 5 The reservoir’s impact on streamflow at Duc Xuyen, Cau 14, and Ban Don stations, compared to the baseline (all reservoirs inactive) (2009–2018) on
seasonal and annual scales.

Reservoir
Duc xuyen Cau 14 Ban don

Dry
season (%)

Wet
season (%)

Annual
(%)

Dry
season (%)

Wet
season (%)

Annual
(%)

Dry
season (%)

Wet
season (%)

Annual
(%)

Buon Tua Srah −1.37 −0.42 −0.65 −0.57 −0.22 −0.32 −0.48 −0.17 −0.26

Buon Kuop - - - 1.84 −0.97 −0.15 1.70 −0.84 −0.13

Srepok 3 - - - - - - 1.20 −0.80 −0.24

Srepok 4 - - - - - - 1.83 −0.83 −0.08
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projected under RCP 8.5 from 2080 to 2099 (Figure 10C). A higher
greenhouse gas emission trajectory correlates with greater increases
in weather intensity and hydrological responses in terms of volume.
However, we also noted that the CMIP5 models may not fully
capture the actual climate characteristics due to the neglect of
socioeconomic activities and environmental factors that could
influence the reliability of the models’ outcomes (Bourdeau-
Goulet and Hassanzadeh, 2021; Chen et al., 2021). Our
suggestion is to use the latest version of the CMIP model
(CMIP6) which could help to decrease the uncertainty resulted
from these mentioned factors.

Furthermore, various hydrological components, e.g., potential
evapotranspiration (PET), actual evapotranspiration (ET), and
groundwater levels, are anticipated to follow an upward
trajectory. While the differences between the RCP scenarios are
not markedly significant, the more intense RCP 8.5 is expected to
lead to more pronounced fluctuations in streamflow and
hydrological outcomes (Figures 10F, G).

In summary, the insights resulted from this study serve as an
important scientific basis for stakeholders and authorities involved
in water resource management and climate adaptation strategies in
SRB. Strategic planning can involve the construction of additional
water storage facilities or the implementation of water-saving

technologies in agricultural practices. The efficacy of downstream
reservoirs, e.g., Srepok 4, Srepok 3, and Buon Kuop, in mitigating
flood peaks presents a case for continuing and expanding such
infrastructure, particularly in the context of future projected
increases in terms of precipitation and temperature. These
infrastructures are not only critical for flood control and
prevention but also for maintaining steady water supplies during
dry periods. The clear advantage of downstream reservoirs in flood
mitigation due to their design and capacity should guide future
reservoir projects to maximize flood control benefits. The change in
projected future precipitation and temperatures highlights the
urgent need for updating regional flood risk maps, enhancing
early warning systems, and preparing for more extreme weather
events. Conversely, the increase in evapotranspiration and the
fluctuations in groundwater levels will demand more complex
agricultural and urban planning to ensure water sustainability.

Our findings suggest that proactive measures, informed by the
predicted hydrological changes under various climate scenarios, are
crucial for ensuring the resilience of the SRB and the communities
that depend on its resources. Authorities are advised to integrate
these findings into long-term planning and operational decision-
making to mitigate the adverse impacts of climate variability and
secure water for all uses.

FIGURE 8
Baseline scenario for (A) Precipitation (D) Tmax (G) Tmin, and changes in monthly precipitation for (B) RCP4.5 (C) RCP8.5, monthly maximum
temperature for (E) RCP4.5 (F) RCP8.5, and monthly minimum temperature for (H) RCP4.5, and (I) RCP8.5 in the 2046–2065 and 2080–2099 compared
to the baseline (1992–2018). Dash line represents the mean value.
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5 Conclusion

In this study, we examined both the individual and combined
effects of future climate change and reservoir operations on the SRB,
with a focus on flood peaks and variations in seasonal and annual
runoff for the near (2045–2065) and far future (2080–2099) periods.
Additionally, we introduced a novel calibration approach that
includes the Krongbuk region, which had been overlooked in
previous research. Our key findings include:

(1) The wet season accounts for 63% of the annual precipitation,
while the dry season receives 58% less precipitation. Future
projections suggest an average annual increase in precipitation
of about 6.2%–7.1% in the near future and up to 11.5% in the far
future. Meanwhile, a maximum temperature increase of 1.8 °C is
expected under the highest emission scenario compared to the
historical period.

(2) Future average monthly streamflow is projected to increase by at
least 10.7% (2046–2065) and could reach a maximum increase
of 15.97% under the highest greenhouse gas emissions scenario
(2080–2099). Variability in annual and seasonal streamflow has
been indicated, highlighting the SRB’s high sensitivity to
seasonal shifts under varying future climate conditions. The
average annual streamflow is projected to increase by 9.2% in
the near future under the RCP 4.5 scenario, with an additional
increase of 0.6% expected in the far future. Under the RCP
8.5 scenario, the near future could see an increase of 11.2%, with

the far future anticipating a rise of 14.2%. Key hydrological
components, including potential evapotranspiration, actual
evapotranspiration, and groundwater levels, are also expected
to rise.

(3) Climate change is predicted to have a more substantial impact
on downstream streamflow than dam operations, potentially
leading to significant changes in flow regimes, especially in the
downstream region of the SRB. Srepok 4, Srepok 3, and Buon
Kuop have demonstrated superior capabilities for mitigating
flood peaks in the downstream floodplain, whereas Buon Tua
Srah has shown the least effectiveness. Regarding seasonal
discharge, Buon Kuop, Srepok 3, and 4 significantly influence
the flow, while reservoirs operated on an annual regulation
(including Buon Tua Srah, Buon Kuop, and Srepok 3) have a
more pronounced and sustained impact on runoff patterns
compared to those managed on a daily regulation, such as
Srepok 4.

Overall, although reservoirs play a role in mitigating the
impacts of climate change within the study period, the influence
of climate change is expected to significantly intensify extreme
hydrological events, e.g., floods and droughts, especially in critical
transboundary river basins such as the SRB. These findings are
crucial for implementing effective water resource management
strategies in the SRB and similar basins within the MRB, as well
as for increasing local awareness of water resource utilization in
agriculture.

FIGURE 9
Mean changes in the dry season for (A) Precipitation (D) Tmax, and (G) Tmin, the wet season for (B) Precipitation (E) Tmax, and (H) Tmin, and the annual
for (C) Precipitation (F) Tmax, and (I) Tmin in (F) 2046–2065 and (G) 2080–2099 compared to the baseline (1992–2018). Dash line represents the mean
value.
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6 Limitations of the study

We recognize that this study had certain limitations,
primarily due to the unavailability of daily scale dam
operation data as well as the poor performance of the SWAT
reservoir module that can be used only with constant setup for
long-term simulation. This resulted in uncertainties related to
the dam’s operation during the SRB study periods and during
extreme events. Besides, we did not consider the effects of
deforestation caused by constructing these reservoirs that
could affect the flow regimes. In addition, the climate change
scenarios should be updated to CMIP6, which contains
socioeconomic and human impacts. Besides, previous studies
in this region have compared satellite-based precipitation with
in-situ rain-gauge observations (Mohammed et al., 2018a;
2018b; Le et al., 2020); downscaled soil moisture (Dandridge
et al., 2020); estimation of flooding using satellite data sets
(Fayne et al., 2017) and droughts (Lakshmi et al., 2023);
combination with socio-economic data (Tiwari et al., 2023);
and land-use land cover (Spruce et al., 2020; Nguyen et al.,
2022). Thus, it is necessary to implement these data sets to
provide more precise results. Such improvements would
improve the understanding of city and country officials

concerning water resource management and hazard
mitigation in the SRB and MRB.
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The study of the spatiotemporal evolution of landscape ecological hazard

and human and natural influences is essential for conservative management

and regional sustainable development. This study applied a landscape pattern

analysis method and geodetector to multi-source data for 2000, 2010, and

2020 to analyze changes in and drivers of landscape ecological hazard in

Laos. The results indicated that: (1) There were more prominent changes in

landscape types in Laos. Forest area decreased, whereas the areas of other

landscape types increased. There was an overall steady change in

the landscape patterns of Laos. Besides for significant changes in the

artificial surface landscape index, landscape indices remained stable;

(2) The cumulative high and extreme ecological hazard areas increased by

1,947.81 km2, whereas the cumulative areas of low and minimal ecological

hazard decreased by 8,461.8 km2. Areas of low and moderate ecological

hazard accounted for > 85% of the total area. Areas of low ecological hazard

were mainly in the northwest and southeast. The area of high ecological

hazard was concentrated in the central and northeastern regions. The

distributions of different landscape ecological hazards in Laos during the

study period were similar, with general patterns of decreasing hazard from

north to south; (3) A positive Moran’s I of landscape ecological hazard in Laos

was obtained. While the agglomeration effect was pronounced, it decreased

over time, resulting in a weakening in spatial autocorrelation. A significant

positive autocorrelation was observed in the spatial distribution of landscape

ecological hazard in the study area. Agglomerated areas of high and low

ecological hazard were mainly concentrated in the northeast and southeast,

respectively; (4) The spatiotemporal evolution of landscape ecological

hazard in Laos over the last 20 years could be attributed to interactions

between natural and anthropogenic influences. Natural influences were a

significant driver of changes to landscape ecological hazard in Laos, with
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annual precipitation and average temperature being the most significant.

Anthropogenic influences, including socioeconomic factors and regional

accessibility, significantly impacted local ecological deterioration in Laos.
KEYWORDS

landscape ecological hazard, landscape pattern, spatial autocorrelation,
geodetector, risk management, Laos
1 Introduction

Human socioeconomic development is dependent on

ecosystem services. Therefore, maintaining the integrity of natural

ecosystems is essential for human survival (Munns et al., 2016).

However, continuous human expansion has resulted in the

degradation of natural ecosystems globally (Liu et al., 2022).

Ecological hazard is as risks of external factors exerting stress on

an ecosystem. These stresses can degrade the productivity, health,

genetic structure, and aesthetic and economic value of ecosystems

(Chen et al., 2013). Since many factors can interact to cause

ecological hazard, the scope of ecological hazard can be

considerable and complicated to predict (Suter, 2001). Landscape

ecological hazard assessment can be used to characterize the

regional-scale risks of adverse effects on ecosystems by

environmental pollution, anthropogenic endeavors, or natural

disasters. The importance of landscape ecological hazard

assessment has gradually increased since this risk assessment

method overcomes the limitation of traditional regional risk

assessment by using a specific natural risk factor (Paustenbach,

2015). The ecological hazard assessment based on landscape pattern

emphasizes the influence of landscape structure, spatiotemporal

heterogeneity, and scale effect on ecological hazard, thereby

achieving a comprehensive characterization and spatial

visualization of multiple risks (Chen et al., 2013). Therefore, the

study of landscape ecological hazard can act as the foundation for

regional hazard prevention and can assist in the management and

optimization of regional patterns in the landscape.

Studies incorporating landscape ecological hazard assessment

have increased both in China and abroad. There have been many

recent studies on ecological hazard in different regions, mainly

focusing on watersheds (Kapustka et al., 2001), oases (Hope, 2006),

coastal zones (Yanes et al., 2019), wetlands (Malekmohammadi and

Rahimi Blouchi, 2014), and cities (Ran et al., 2022). These studies

have widely applied the landscape pattern index (Su et al., 2012;

Zhang et al., 2022), entropy (Liu et al., 2013; Gao et al., 2022), and

exposure-response (Chapman et al., 1998; Bartell, 2006) methods

for the construction of an ecological hazard evaluation model,

which has been combined with geographical information system

(GIS) spatial modeling. The scales at which these studies have been

conducted have evolved from single to multiple. Some studies have

assessed landscape ecological hazard and appropriate methods by
02160
determining appropriate spatial granularity (Hope, 2006). The

above studies have focused on landscape ecological hazard

assessment by constructing an appropriate model and spatial

analysis. There remains a need for further studies on ecological

risk assessment at a national scale, as well as studies on local and

regional influencing factors. There also remains a need for further

analyses of the cumulative effects of the overall evolution of risk on

local systems (Hope, 2006).

Loas is the only landlocked country in the Mekong River Basin,

and has had to confront significant challenges in recent years,

including the combined effects of natural development-oriented

economic growth, a growing population, and the resulting

environmental pollution, land degradation, and depletion of

natural resources. The study of landscape ecological hazard

pattern is significant for enabling regional environmental

conservation and national ecological security in that country.

Concurrently, this such study can improve landscape ecology

theory and augment landscape planning and management

decision-making. The aim of the present study was to apply

principles of landscape ecology and spatial statistical analysis to

land cover data for 2000, 2010, and 2020, to construct a landscape

ecological hazard index and ecological hazard assessment model for

quantitatively analyzing landscape ecological hazard and the

associated natural and anthropogenic influencing factors in Laos.
2 Research area and method

2.1 Study area

Laos is a landlocked country forming part of the northern

Indochina Peninsula (13°56’–22° 27’ N, 100°02’–107°38’E). Laos

consists of 17 and one provinces and municipality, respectively,

and has a total area of 236,800 km2 (Figure 1). Laos has a complex

and diverse topography, consisting predominantly (80%) of

mountains and plateaus. The remaining area forms the Mekong

River Valley, along which there are basins and small plains. The

terrain of Laos decreases from north to south. The region falls into

tropical and subtropical monsoon climate zones. The region

experiences a distinct rainy season with annual average

precipitation and annual average temperature of 1,250 mm–3,750

mm and 20°C–30°C, respectively. Laos has a developed water system,
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with the Mekong River in the west representing the largest river in

the region.
2.2 Sources of data and preprocessing

The present study used data falling into three broad categories:

(1) natural environment data, (2) socioeconomic data, and

(3) regional accessibility data. The present study utilized land

cover data for the region to extract the landscape pattern index.

The spatial resolution of these data for 2000, 2010, and 2020 was 30

m × 30 m. The present study considered eight land use types:

(1) artificial, (2) bare land, (3) cultivated land, (4) forest,

(5) grassland, (6) shrubland, (7) water, (8) wetlands. Temperature

and precipitation data utilized in the current study were
Frontiers in Ecology and Evolution 03161
downloaded from the Google Earth Engine (GEE) platform, and

these data were processed to obtain annual averages. Data for the

Normalized Difference Vegetation Index (NDVI) were obtained

through the GEE platform and were utilized to estimate fractional

vegetation cover (Pettorelli et al., 2005). Table 1 shows the specific

data sources used in the present study.
2.3 Sampling method

As an essential basis for the study of landscape ecological

hazard, the choice of spatial granularity will directly affect the

spatial representation accuracy of landscape ecological hazard.

Therefore, selecting the spatial granularity and conducting

relevant scientific research is necessary when researching

landscape ecology. The present study gridded the study area in

ArcGIS 10.2.2 software, considering the optimal grid size for

calculating the landscape ecological hazard index, the size of the

study area, and the convenience of hazard index data extraction.

The equal spacing sampling method was used. Typically, the

division of evaluation units exceeds the average landscape patch

area by 2 to 5 (Chen et al., 2013). The present study evaluated grid

sizes of granularities of 10 × 10 km, 15 × 15 km, and 20 × 20 km.

However, the 15 × 15 km grid was optimal and was chosen to divide

Laos into 1,364 evaluation units (Figure 2) (Zhang et al., 2020).
2.4 Method used to analyze the landscape
pattern index

The landscape pattern index provides dense information on

landscape layout, and can utilize a single or a combination of several

indices to analyze the spatial structure and evolution of the

landscape. The present study selected six landscape indices to

comprehensively reflect the patterns of landscape and

characteristics of the study area and to reduce information

redundancy. These were the landscape fragmentation, isolation,

dominance, disturbance, vulnerability, and loss indices (Table 2).

The moving window method using a 15-km window was applied in

Fragstats 4.2 to calculate the landscape pattern index of Laos (Bai

and Weng, 2023; Xu et al., 2023). The window was moved from the

left, upper section of the study area, and progressed at a single-grid

step. The window calculated the landscape pattern index for each

grid and assigned the center grid as the landscape index of the

center point of each sample plot. The current study obtained the

index of landscape disturbance by superimposing the landscape,

landscape isolation, landscape dominance, and landscape

vulnerability indices using an expert scoring method.
2.5 Constructing the index of ecological
hazard to the landscape

An ecological hazard index is an index characterizing

disturbance of the landscape structure and can be used to reflect

the degree of human influence on natural ecosystems. Ecological
TABLE 1 Types of data used in the present study and their sources.

Type
of data

Data Unit Data sources

Natural
data

DEM m
USGS EarthExplorer

(https://earthexplorer.usgs.gov)

Slope ° Using DEM data extraction

Fractional
vegetation
cover

%
The NDVI data downloaded from
the GEE platform was obtained by

correlation calculation

Annual
average

temperature
°C

Level-1 and Atmosphere Archive &
Distribution System

(https://
ladsweb.modaps.eosdis.nasa.gov)

Annual
precipitation

mm
Google Earth Engine

(https://
explorer.earthengine.google.com)

Organic
matter
content

dg/kg
International Soil Reference and

Information Centre
(https://data.isric.org)

Land use –
Globalland30

(http://www.globallandcover.com)

Social and
economic

data

Population
density

Per/km2 WorldPop
(https://hub.worldpop.org)

Kilometer
grid GDP

USD
Billions/
km2

Global Gridded Geographically
Based Economic Data

(https://sedac.ciesin.columbia.edu)

Night light –

Google Earth Engine
(https://

explorer.earthengine.google.com)

Regional
accessibility

data

Road km
DIVA-GIS

(https://www.diva-gis.org/gdata)

Water
bodies

km
Google Earth Engine

(https://
explorer.earthengine.google.com)

Town center km
Resource and Environment Science

and Data Center
(https://www.resdc.cn)

Parks
and reserves

km
Resource and Environment Science

and Data Cen
(https://www.resdc.cn)
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hazard indices quantitatively describe the effects of natural and

anthropogenic influences on ecosystems (Bayliss et al., 2012). The

present study reduced information redundancy among individual

indicators by using the relative areas of landscape components, the

landscape vulnerability index, and the landscape interference index.

Fragstats 4.2 software was used to construct the landscape ecological

hazard evaluation model using the moving window method and

index calculation, which was taken to represent the ecological

hazard of the center point of each plot (Li et al., 2017). The index

was calculated as follows (Equation 1):

ERIi =o
N

i=1

Aki

Ak
Ri; (1)

where ERIi is the index of landscape ecological hazard in the ith

sample unit; Aki is the areal extent of landscape type i in the kth

sample unit; Ak is the areal extent of the k
th sample unit; Ri is the

index of landscape loss.
2.6 Exploratory analysis of spatial data

Analysis of spatial data is used to find the rules under which

spatial data is distributed and its spatial heterogeneity (Anselin,

1996). The present study applied exploratory spatial data analysis to

analyze the ecological hazard of Laos and to identify associated

patterns. The present study used global and local spatial
FIGURE 1

Geographical location and land cover of Laos. PH, Phongsali; LM, Louang Namtha; BK, Bokeo; OU, Oudomsai; LP, Louangphrabang; HO, Houaphan;
XA, Xaignabouri; VI, Viangchan; XI, Xiangkhoang; XS, Xaisomboun; VT, Vientiane; BL, Bolikhamxai; KH, Khammouan; SV, Savannakhet; SL, Saravan;
XE, Xekong; CH, Champasak; AT, Attapu.
FIGURE 2

Division of Laos into 15 × 15 km grids for calculation of the
ecological hazard area.
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autocorrelation to characterize the ecological hazard of Laos. The

geodetector was used to identify factors driving the spatial and

temporal variation in ecological hazard in Laos.

2.6.1 Ecological hazard assessment
The ecological hazard index has random and structural spatial

variation. The present study analyzed the spatial heterogeneity of

the index of landscape ecological hazard. This was achieved by

fitting the ecological hazard index to a semi-variogram in ArcGIS to

obtain the best-fitting model (Hengl, 2009). The present study then

applied Kriging interpolation to interpolate the three datasets

(Oliver and Webster, 1990), following which spatial distributions

of the hazard to the landscape ecology were generated. The present

study applied the transfer matrix model to analyze landscape

ecological hazard over different periods. The grading standards

used in the present study to evaluate results were consistent with

those used in previous studies (Li et al., 2020; Gong et al., 2021;

Zhang et al., 2022). Landscape ecological hazard in 2020 was

separated into five grades using the natural discontinuity point
Frontiers in Ecology and Evolution 05163
method: (1) minimal ecological hazard (ERI< 0.0709); (2) low

ecological hazard (0.0709 ≤ ERI< 0.1157); (3) moderate ecological

hazard (0.1157 ≤ ERI< 0.1773); (4) high ecological hazard (0.1773<

ERI ≤ 0.2782); (5) extreme ecological hazard (ERI ≥ 0.2782). Data

for the remaining two periods were categorized in the same way that

for the 2020s.

2.6.2 Analysis of autocorrelation in the
spatial dimension

Autocorrelation in the spatial dimension can be used to identify

spatial interdependence between two or more variables (Koenig,

1999). The present study applied spatial autocorrelation to analyze

the distributions of variables and correlations between variables

(Anselin, 2003). Identification of spatial correlation between hazard

attributes of adjacent areas was conducted by applying spatial

autocorrelation. GeoDa and ArcGIS software were used to apply

the global spatial autocorrelation index Moran’s I and the local

spatial autocorrelation index LISA to evaluate spatial differences in

ecological hazard. Moran’s I have a value of −1 and 1 and can be
TABLE 2 Methods used to calculate the landscape pattern indices.

Sequence
number

Exponential Symbol Formula
Formula

description
Ecological meaning

(1)
Landscape

fragmentation
Ci Ci=ni/Ai

ni is patch
number of class
i, Ai is the total
area of class i

This index expresses the degree of fragmentation of the entire landscape
or a particular landscape type at a given time and given nature. Under
natural or human interference, the landscape tends to be complex,
homogeneous, and continuous from a single, homogeneous, and
continuous whole. In the process of heterogeneous and discontinuous
patch mosaics, the larger the value, the lower the internal stability of the
landscape unit, and the lower the stability of the corresponding
landscape ecosystem.

(2)
Landscape
isolation

Ni    Ni =
1
2

ffiffiffiffiffi
ni
A

r
� A

Ai

A is the total
area of the

entire landscape

This index expresses the separation degree of individual distribution of
different elements or patches in a particular landscape type. The greater
the separation degree, the more scattered the landscape is in geographical
distribution, the more complex the landscape distribution, and the higher
the degree of fragmentation.

(3)
Landscape
dominance

Di

Di =
(Qi +Mi)

4
+
Li
2

Qi =
ni
Ni

Mi =
di
d

Li =
Ai

A

di is the sample
number of

patch i, d is the
total number
of samples

The value of this index is used to measure the importance of patches in
the landscape, and its size directly reflects the impact of patches on the
formation and change of landscape patterns.

(4)
Landscape
disturbance

Si Si = aCi + bNi + cDi

a, b and c are
weights of

indices Ci, Ni

and
Direspectively.
where a = 0.5, b
= 0.3, c = 0.2,
and a + b +

c =1

This index is used to reflect the extent to which ecosystems represented
by different landscapes are disturbed (mainly by human activities).

(5)
Landscape
vulnerability

Fi

Obtained by
artificial

assignment
and normalization

It indicates the vulnerability of the ecosystem represented by the
landscape type when it is disturbed by the outside world, and this value
is related to its stage in the natural succession process of the landscape.
In general, ecosystems in the primary succession stage, with simple food
chain structures and low biodiversity indices, are relatively fragile.

(6)
Landscape

loss
Ri Ri = Si � Fi

This index reflects the degree of loss of natural attributes of ecosystems
represented by different landscape types when they are disturbed by
nature and humans.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1276239
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ma et al. 10.3389/fevo.2023.1276239
used to reflect similarities in a particular attribute between adjacent

units. Moran’s I > 0,< 0, and = 0 indicate a positive, negative, and no

correlation, respectively, and aggregated, dispersed, and random

research units, respectively (Diniz-Filho et al., 2003). Moran’s I was

calculated as follows (Equation 2):

I =
non

i=1 ∑
n
j=1  wij(xi − x)(xj − x)

on
i=1  ð xi − x)on

i=1  on
j=1  wij

; (2)

where xi and xj represent variable x at adjacent points, x represents

the mean of the variables, wij indicates the adjacent weight, and n

represents total hazard points.

Moran’s I can only indicate the distribution of the index of

ecological hazard. Therefore, the current study integrated the LISA

index to allow further exploration of the aggregation of the local

hazard index and to identify abnormal spatial characteristics. The

LISA index can be divided into four types: (1) High-High; (2) High-

Low; (3) Low-High; (4) Low-Low. The LISA index was used to

represent different spatial clustering distributions and was

calculated as follows (Equation 3):

Ii =
xi − x
S2 o

n0

j≠is

wij(xj − x) (3)

where n’ represents the size of the sample and S2 represents

statistical variance.

2.6.3 Analysis of the geodetector attribution
A geodetector is a statistical method used to identify drivers of

geographic spatial characteristics by identifying heterogeneity in

spatial stratification of events. Heterogeneity in the spatial

stratification represents variance in a region that exceeds the

within-layer sum of the variance. The geodetector used in the

present study incorporated risk factor, ecological, and interaction

detectors (Zhu et al., 2020). The present study selected the factor

detector for use in the geodetector through reference to relevant

previous research results (Huang et al., 2020; Liang et al., 2022; Li

et al., 2022; Xu et al., 2023). The present study identified 14

socioeconomic and regional accessibility factors affecting the

landscape ecological hazard in Laos, including the digital

elevation model (DEM), slope, fractional vegetation cover, annual

average temperature, annual precipitation, organic matter content,

population density, kilometer grid GDP, night light, distance from

the road, distance to water, distance from the town center, and

distance to parks and reserves.
3 Results

3.1 Temporal changes in patterns
of landscape

The present study calculated the landscape pattern index of

each landscape type in the study area in 2000, 2010, and 2020 using

the statistical analysis function in Fragstats 4.2 and Excel 2010

(Table 3). Interactions between natural and anthropogenic

influences result in changes in the area and number of patches of
Frontiers in Ecology and Evolution 06164
each landscape, resulting in changes to the hazard index. As shown

in Table 3, forest, cultivated land, and grassland represented the

main landscape types in Laos. There was a decreasing trend in forest

area over the last two decades, whereas there were increasing trends

in cultivated land and grassland. The area of water bodies first

increased from 2000 to 2010 and then decreased from 2010 to 2020.

While artificial surfaces had the smallest area, there was a significant

increase in artificial surfaces in Laos between 2010 and 2020, with

that in 2020 exceeding that in 2000 and 2010 by factors of 6.18 and

4.65, respectively. The number of grassland patches significantly

exceeded those of other land covers, resulting in this land cover

obtaining the most extensive fragmentation index. The large

fragmentation index of grassland resulted in a small random

scattered distribution. Forest showed the second-largest number

of patches and random distribution, with decreasing patch numbers

over time.

Many factors affect landscape ecological hazard, including the

vulnerability, disturbance, type, and land use structure of

landscapes. Ecological hazard can be characterized by landscape

loss. Artificial surfaces showed the most significant loss index,

followed by grassland, wetland, water bodies, and cultivated land,

while forest had the lowest loss index. Despite the high loss index of

artificial surfaces, this land cover had minimal influence on

landscape ecological hazard due to its limited landscape area. The

most extensive landscape loss index of artificial surfaces could be

attributed to its highest vulnerability among the assessed landcover

types. The landscape loss index also varied among the different

periods. There were continual decreases in landscape loss of

artificial surfaces and water bodies. The change in artificial

landscape surfaces is most significant, changing from 0.2473 in

2000 to 0.1136 in 2020, representing an increase factor of 2.18 over

20 years. While this decreasing trend reduced the influence of

artificial surfaces on landscape ecological hazard, its influence

remained significant. The landscape loss indices of other

landscape types generally remained unchanged.
3.2 Spatiotemporal evolution of landscape
ecological hazard

3.2.1 Distribution of landscape ecological
hazard level

Laos showed low, moderate, and high ecological hazard from

2000 to 2020, with the cumulative areas of these three categories

accounting for 79.19%–91.06% of the total area (Figure 3). The

distributions of landscape ecological hazard in Laos were similar

among the three-time points. Ecological hazard in the study area

decreased from north to south. Areas of high ecological hazard were

mainly distributed around areas of extreme ecological hazard,

whereas areas of low ecological hazard were mainly adjacent to

those of minimal ecological hazard. The complex geographical

environments in the northwest, central east, and south of the

study area showed clear vertical zonal characteristics. Various

landscape patches showed a staggered distribution, such as forest

land, resulting in high separation, serious fragmentation, and low

connectivity. Interactions among different landscapes were
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TABLE 3 Indices of patterns of landscape in Laos from 2000 to 2020.

uption
dex

Predominance
index

Obstruction
index

Fragility
index

Dominance
index

.1170 0.2268 0.0828 0.16 0.0133

.1022 0.2371 0.0801 0.16 0.0128

.1032 0.2424 0.0817 0.16 0.0131

.0497 0.6356 0.1461 0.02 0.0029

.0513 0.6307 0.1458 0.02 0.0029

.0517 0.6249 0.1447 0.02 0.0029

.2737 0.4816 0.7406 0.11 0.0815

.2675 0.4809 0.7389 0.11 0.0813

.2373 0.4807 0.7201 0.11 0.0792

.5860 0.0128 0.7866 0.07 0.0551

.6884 0.0161 1.1312 0.07 0.0792

.9138 0.0172 1.2009 0.07 0.0841

.6849 0.1706 0.5935 0.04 0.0237

.6337 0.1528 0.5670 0.04 0.0227

.3326 0.1626 0.4691 0.04 0.0188

.0415 0.0381 1.2366 0.2 0.2473

.4390 0.0444 1.0565 0.2 0.2113

.7483 0.1216 0.5680 0.2 0.1136
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Landscape
type

Time
Area/
km2 Number

Fragmentation
index

Abr
in

Cultivated land

2000 23016.3200 10940 0.0048 0

2010 25712.9000 10437 0.0041 0

2020 28030.5100 12657 0.0045 0

Forest

2000 217551.7375 176586 0.0081 0

2010 214094.3575 181997 0.0085 0

2020 210427.8975 178951 0.0085 0

Grassland

2000 21438.1700 1123986 0.5243 1

2010 21617.7500 1134656 0.5249 1

2020 21850.9600 1104741 0.5056 1

Wetland

2000 163.3483 269 0.0165 2

2010 208.5183 894 0.0429 3

2020 201.2846 938 0.0466 3

Water bodies

2000 2518.6820 27150 0.1078 1

2010 2295.1350 21250 0.0926 1

2020 2743.4990 20202 0.0736 1

Artificial Surfaces

2000 134.2784 444 0.0331 4

2010 178.2611 568 0.0319 3

2020 829.6782 3180 0.0383 1
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obstructed, producing elevated ecological hazard. In addition, the

region implements relatively redundant agricultural production

methods. Long-term unsustainable agricultural production

activities have resulted in frequent transformations between

landscape components (Castella et al., 2013) and an overall

decline in ecological environmental quality, thereby increasing the

ecological hazard of the area. Areas of higher ecological hazard were

concentrated in the Xiangkhoang Plateau in northeastern Laos, HO,

and XI provinces. The dominant types of landscape were forest,

grassland, and cultivated land. These landcover types showed

scattered and fragmented distributions, forming a clear vertical

band spectrum. There were clear fragmentation characteristics of

landscape patches. This fragmentation has destroyed the integrity

and stability of the ecosystem, leading to high ecological hazard.

Areas of high ecological hazard were concentrated in the transition

from higher to moderate ecological hazard. These areas were widely

distributed in the PH, LM, LP, HO, XI, XA, VI, VT, BL, SV, and CH

provinces. Change in the distribution of high ecological hazard

involved extending areas to surrounding areas, during which areas

of minimal ecological hazard transition to high ecological hazard.

This change was most obvious in the XA province in west Laos and

CH and AT provinces in the south. Most high ecological hazard

areas were in the mountainous and plateau areas characterized by

high terrain. The distribution of areas of moderate ecological hazard

and associated temporal change were similar to those of areas of

high ecological hazard, with areas of moderate ecological hazard

located adjacent to areas of high ecological hazard. Areas of

moderate ecological hazard consisted mainly of cultivated land

and artificial surfaces. The region experienced considerable

disturbance from anthropogenic activities due to the expansion of

cultivated land and urban areas during the middle and late stages.

However, the stability of agricultural land and construction land

remained strong, with these land cover types resistant to changes in

the environment and anthropogenic endeavors. Areas of low

ecological hazard were mainly in BK province, north of the study
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area, and in KH and SV provinces in central Laos. Low ecological

hazard dominated SL, XE, and AT in the south, with forest and

grassland being the main land cover types. The establishment of

national parks and nature reserves resulted in increases in the

region’s stability, thereby increasing the region’s resilience to

environmental changes and anthropogenic endeavors. The natural

landscape of the study area is well-preserved and is not susceptible

to human interference, resulting in low landscape loss.

3.2.2 Transformations in land cover type
associated with landscape ecological hazard level

There were increases in landscape ecological hazard in Laos

from 2000 to 2020. The areas of high/higher, moderate, and low/

minimal ecological hazard increased by 1,947.8.1 km2, increased

by 6,513.9 km2, and decreased by 8,461.8 km2, respectively

(Table 4). The Sankey map of landscape ecological hazard in

Laos over the 2-decade study period (Figures 4, 5) shows that the

area of extreme ecological hazard increased from 2.86% to 3.02%

(407.9 km2). Areas of minimal ecological hazard mainly

transitioned to low and moderate ecological hazard. There was

less transition in areas of high and extreme ecological hazard, with

changes in ecological hazard in these areas having minimal impact

on overall ecological hazard in Laos. Processes contributing to the

transition of areas to moderate ecological hazard were more

complex, indicating the need for increased ecological stability.

There needs to be an increased focus on maintaining ecosystem

stability in the region to avoid the intensification of landscape

fragmentation and a transition to a higher level of ecological

hazard. Future effects of human activities and climate change will

inevitably increase interference in and the destruction of the

natural landscape in the study area, resulting in a significantly

expanded area of medium ecological hazard and a concurrent

decrease in the area of lower ecological hazard. Therefore, it is

expected that the ecological state of the landscape in Laos will

decline in the future. Urban expansion results in fragmentation of
FIGURE 3

Spatial distribution of landscape ecological hazard falling into various categories in Laos in 2000–2020. PH, Phongsali; LM, Louang Namtha;
BK, Bokeo; OU, Oudomsai; LP, Louangphrabang; HO, Houaphan; XA, Xaignabouri; VI, Viangchan; XI, Xiangkhoang; XS, Xaisomboun; VT, Vientiane;
BL, Bolikhamxai; KH, Khammouan; SL, Saravan; SV, Savannakhet; XE, Xekong; CH, Champasak; AT, Attapu.
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landscape patches along the urban fringe, which in turn leads to

changes in landscape structure and function.

3.2.3 Spatial characteristics of landscape
ecological hazard

As shown in Figure 6, the present study conducted global

autocorrelation based on the three periods of landscape ecological

hazard in the study area. The Moran’s I values of the three periods

were 0.651, 0.642, and 0.623, respectively. The significant Z and P

values within the confidence interval suggested significant positive

correlations in the landscape ecological hazard index in the study

area between the three periods. The distribution of Moran’s I index

in each quadrant showed that landscape ecological hazard among

the three periods were spatially clustered and affected each other.

There was a decreasing trend in the global Moran’s I, indicating a
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weakening in spatial autocorrelation and a decrease in

spatial convergence.

Further analysis of local autocorrelation within the ecological

hazard index of Laos from 2000 to 2020 (Figure 7) showed “high-

high” and “low-low” aggregations. The distributions of aggregations

remained relatively concentrated and stable, consistent with the

distribution of Moran’s I and the spatial distribution of ecological

hazard. There were few “low-high” and “high-low” aggregations,

which were scattered around high- and low-value aggregations.

These aggregations gradually homogenized with adjacent units.

“Low-low” aggregations were mainly in the south and southeast

regions with lower human impact. The dominant land cover

categories in these areas were forest, grassland, and cultivated

land. “High-high” aggregations were concentrated in the XI and

HO provinces on the Chuankuang Plateau, with these areas
TABLE 4 Relative area of landscape ecological hazard categories in Laos for 2000–2020 (km²).

Ecological
hazard class

Area

2000 2010 2020

I 18091.76 17947.25 16111.05

II 121664.60 117621.62 115167.05

III 87874.67 91482.90 94438.32

IV 29003.34 29645.50 31353.69

V 7974.86 7838.98 7567.01
I: lower hazard, II: low hazard, III: medium hazard, IV: high hazard, V: higher hazard.
FIGURE 4

Proportion of landscape ecological hazard classes in Laos, 2000–2020 (%).
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characterized by high landscape fragmentation and isolation, high

altitude, considerable topographic relief, high deforestation, and

severe deterioration of the ecological environment. Some “high-

high” aggregations were concentrated in urban agglomerations

characterized by dense population and high socioeconomic

development. These areas included the intersection between PH

province in northern Laos and VI and VT provinces near the

central capital. Small aggregations also occurred in the urban areas

of XA, BL, SV, and CH provinces. The main land cover types in

these areas included water bodies, cultivated land, and artificial

surfaces. Landscape connectivity was reduced in low urban

agglomerations by human disturbance. Anthropogenic endeavors

disrupted the natural evolution process in areas of high ecological

vulnerability along the Mekong River, resulting in fragmented

habitat and high ecological hazard. There were increasing trends
Frontiers in Ecology and Evolution 10168
in the “low-low” and “high-high” aggregations over the 2-decade

study period. This result indicated an increase in polarization in

local ecological hazard in Laos.

3.2.4 Factors influencing landscape
ecological hazard
3.2.4.1 Factors influencing overall landscape
ecological hazard

The study selected 14 natural, social, economic, and regional

factors influencing landscape ecological hazard. Table 5 illustrates

each factor’s relative contribution to landscape ecological hazard. The

results showed that each factor significantly affected landscape

ecological hazard. However, the effects of anthropogenic influences

dominated the spatiotemporal evolution of landscape ecological

hazard at the whole study area scale. The relative contributions of
FIGURE 5

Sankey diagram showing the transfer of landscape ecological hazard in Laos between 2000–2020 (km2). I: lower hazard, II: low hazard, III: medium
hazard, IV: high hazard, V: higher hazard.
FIGURE 6

Scatter plot of standardize ecological hazard index (ERI) vs spatially lagged ERI and the associated Moran’s I in Laos from 2000 to 2020.
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gross domestic product (GDP), distance from the town center, and

distance from a road were close to or exceeded 10% over all three

periods. The effect of the distance from a road on landscape ecological

hazard showed a rising trend over the 2-decade study period. In

contrast, the influences of night light and population density showed

downward trends. The influences of other anthropogenic influences

fluctuated, with the highest variation in GDP attributable to poverty

alleviation policies implemented in Laos in 2010 (Phimphanthavong,

2013). Natural influences had little impact on overall landscape

ecological hazard in Laos from 2000 to 2020 due to forest

dominating the landscape (79.5%), followed by cultivated land

(10.6%) and grassland (8.3%). Among natural influences, annual

precipitation, annual average temperature, soil organic matter

content, vegetation coverage, distance from protected areas, and

distance from water had significant impacts on ecological hazard of

Laos of between 5% and 10%. The relatively high influence of annual

precipitation on the ecological hazard in 2010 could be attributed to

extensive flooding on the Vientiane Plain and in Zhanbasai

(Baiyinbaoligao et al., 2020). There were increasing trends in the

impacts of annual average temperature, vegetation coverage, distance

from protected areas, and distance from water on ecological hazard.

This result could be attributed to alterations in land use due to

anthropogenic endeavors (Sunderlin, 2006; Lestrelin et al., 2012).

Elevation and slope showed minimal impacts on ecological hazard in

Laos, mainly due to the area’s inaccessibility with significant elevation

differences and a high slope preventing agricultural development and

human settlement (Wang et al., 2019). However, the impact of

natural influences on ecological hazard in Laos will continue to

increase with increasing societal demands and the intensification of

anthropogenic endeavors. While natural and anthropogenic

influences affected the spatiotemporal changes in landscape

ecological hazard in the study area, anthropogenic endeavors were

the main drivers of deterioration in landscape ecological hazard.
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3.2.4.2 Influencing factors of local landscape
ecological hazard

The large scale of the study area (Kapustka et al., 2001) prevents

the comprehensive analysis of factors influencing landscape

ecological hazard. Therefore, the present study analyzed local

characteristics of landscape ecological hazard. The minimum

landscape ecological hazard index in 2020 (0.12) was used as a

threshold in the analysis, in which the change in the ecological

hazard index between 2000 and 2020 of > 0.12,< −0.12, and between

−0.12 and 0.12 indicated an increase, decrease, and no change in

landscape ecological hazard, respectively. Ten areas that showed

increased landscape ecological hazard was categorized as critical

areas of ecological hazard (Figure 8). The factors influencing

ecological hazard in these ten areas (a–j) were then identified. The

results showed that interacting natural influences were drivers of

ecological hazard, with human socioeconomic factors also playing

important roles. As shown in Table 6, GDP had the highest impacts

on ecological hazard in b, e, and g. The deterioration in ecological

hazard in b was at the junction of BK and XA provinces in the

economic zone of the Golden Triangle. Commercial mining of gems

and gold constitutes significant local economic activities

(Kyophilavong, 2009). The area of deterioration in e spanned XA

and VI provinces. These areas have rich wood and lignite resources

and host important crop production areas (Pathammavong et al.,

2017). The area of deterioration in g was in central and western SV

province. SV province contains the second largest city in Laos, after

Vientiane, and adjacent to Thailand. This region hosts intense

economic activities, particularly near the Mekong River and the

local bus terminal (Fujita and Phanvilay, 2008). “Distance from the

town center” had the highest effect on ecological hazard in northern

CH province. This area constitutes an important political and

economic center in Laos with a rich historical and natural heritage.

Consequently, this area has a prosperous tourism industry. “Distance
FIGURE 7

Map of local autocorrelation in ecological hazard in Laos from 2000 to 2020. PH, Phongsali; LM, Louang Namtha; BK, Bokeo; OU, Oudomsai;
LP, Louangphrabang; HO, Houaphan; XA, Xaignabouri; VI, Viangchan; XI, Xiangkhoang; XS, Xaisomboun; VT, Vientiane; BL, Bolikhamxai;
KH, Khammouan; SL, Saravan; SV, Savannakhet; XE, Xekong; CH, Champasak; AT, Attapu.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1276239
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ma et al. 10.3389/fevo.2023.1276239
from road” had the most impact on ecological hazard in b, c, and i.

Areas b and c are experiencing rapid economic development, which

has in turn led to investment in road infrastructure. The area of

extreme ecological hazard in i hosts a vital highway that connects

Laos with Thailand, Cambodia, and Vietnam. In particular, the

opening of the Laos-Japan Bridge across the Mekong River that

connects the Polofen Plateau, Thailand, and Si Phan Don has resulted

in increased trade between Laos and Thailand and a flourishing Talat

Sao Heung market near the bridge (Pathammavong et al., 2017).

“Distance from a protected area” had the most enormous impact on

ecological hazard in g. This area hosts significant natural resources

and is adjacent to protected areas, including the Xe Bang Nouan

National Biodiversity Reserve in the south, the Dong Phou Vieng

National Reserve in the southeast, and the Phou Xang He National

Reserve in the north. “Distance from water” had the most

considerable impact on ecological hazard in c in north-central XA

province. This is the only area in Laos to the west of the Mekong

River and is a flat floodplain. This area hosts the largest lake in Laos

(Pokhrel et al., 2018). “Night light” and “population density” showed

minimal impacts on ecological hazard. Among natural influences,

“elevation” had significant impacts on the ecological hazard in c, i,

and j; “slope” in c and h; “annual precipitation” in e and j; “annual

average temperature” in b, c and j; “vegetation coverage” in c and j;

“soil organic matter content” in f and j. The mountainous terrain

restricted the rapid expansion of urbanization in b and c. These areas

had scattered construction land and relatively concentrated

anthropogenic endeavors, resulting in high landscape disturbance.
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Anthropogenic influences had significant impacts on landscape

ecological hazard. The proximity of natural and artificial landscape

patches formed a barrier to urban expansion in g. Increased

ecological hazard in j was driven by both natural and

anthropogenic influences. The natural influences included

“elevation”, “annual precipitation”, “annual average temperature”,

and “vegetation coverage”. Anthropogenic influences included

““distance from the town center” and “distance from the road”. In

summary, at a local scale, landscape ecological hazard was affected by

both human and natural influences, although the former dominated.
4 Discussion

4.1 The impact of alterations in land use/
cover on landscape ecological hazard

Alterations in land use/cover are essential drivers of global

environmental change and impact ecosystem services and

biodiversity, thereby contributing to landscape ecological

hazard (Wang et al., 2021). Previous studies (Lin et al., 2018;

Zhang et al., 2018; Hoque et al., 2020) have shown that

alterations in land use/cover directly drive ecological hazard.

Therefore, assessment of the impacts of potential alterations in

land use/cover on the ecological environment can assist in the

optimization of land use for the management of ecological

hazard. The prediction of alterations in land use/cover under
TABLE 5 Factors influencing landscape ecological hazard (%) in Laos between 2000 and 2020.

Influencing factor Factor 2000 2010 2020

Natural factor

Elevation 3.83 2.21 2.58

Slope 4.10 2.37 3.29

Annual
precipitation

6.65 9.42 5.58

Annual average
temperature

8.85 8.09 9.50

Vegetation
coverage

8.32 8.93 10.40

Soil organic
matter content

5.66 4.46 5.72

Social and
economic factor

Night light 1.42 0.91 0.84

Population
density

4.28 3.48 3.42

Kilometer
grid GDP

12.62 10.15 12.24

Regional accessibility
factor

Distance from
town center

12.71 10.41 11.19

Distance
from road

9.75 9.82 11.58

Distance from
protected area

4.29 5.17 8.74

Distance
from water

10.75 11.45 12.80
frontiersin.org

https://doi.org/10.3389/fevo.2023.1276239
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ma et al. 10.3389/fevo.2023.1276239
various scenarios can help formulate management strategies to

minimize ecological hazard. The most comprehensive evaluation

of landscape indices and ecological hazard is based on land use/

cover (Li et al., 2020). Alterations in land use/cover driven by

intense socioeconomic activities can change landscape patterns

and processes, impacting ecological hazard. A fundamental

dynamic relationship exists between internal drivers and

alterations in land use/cover.
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4.2 Changes in landscape patterns and
scale effects

Changes in landscape patterns are driven by changes to

ecological processes under natural or anthropogenic influences

(Chen et al., 2013). The evolution of landscape patterns typically

shows spatial heterogeneity and scale dependence (Kapustka et al.,

2001). An in-depth study of the correlation between patterns of
FIGURE 8

Changes in landscape ecological hazard in ecological conservation area in Laos and changes in land cover in deteriorating areas between 2000–
2020. PH, Phongsali; LM, Louang Namtha; BK, Bokeo; OU, Oudomsai; LP, Louangphrabang; HO, Houaphan; XA, Xaignabouri; VI, Viangchan;
XI, Xiangkhoang; XS, Xaisomboun; VT, Vientiane; BL, Bolikhamxai; KH, Khammouan; SL, Saravan; SV, Savannakhet; XE, Xekong; CH, Champasak;
AT, Attapu. Ten areas (a–j) that showed increased landscape ecological hazard were categorized as critical areas of ecological hazard.
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landscape and ecological process must consider the scale effect. This

is because there is a need to focus on spatial structure and ecological

process within landscape ecological hazard assessment, and the

accuracy of the assessment depends on the choice of scale (Chen

et al., 2022). Scale effects within patterns of landscape have

remained an essential topic within landscape ecology research.

Past related studies have focused on scale rules governing changes

in landscape patterns and the construction of scale analysis

methods. The study of the impact of scale in landscape ecology

typically requires the consideration of two essential aspects, namely

spatial resolution and extent (Suter, 1990), with the former relating

to the spatial resolution of land use data and the latter to the size of

the research units (Hunsaker et al., 1990). Recent studies on scale

effects on landscape patterns have focused on spatial resolution,

while there have been relatively few studies on the impact of spatial

extent. There have been even fewer studies that have researched

both aspects (Bayliss et al., 2012), and the few existing studies have

primarily been conducted at watershed and urban landscape scales

(Hope, 2006). The selection of an appropriate scale is vital for

studying the scale effect, as the selection of a scale that is too large or

too small can result in essential landscape details being ignored and

too much focus on local processes (Peng et al., 2014). Quantitative

studies of landscape pattern should fully consider factors affecting

the landscape pattern index and the characteristics of landscape

data. This is because the responses of different landscape pattern

indices to scale effect differ as they are impacted by specific factors.

Addressing the above complexity requires a multi-scale

comprehensive evaluation focusing on an in-depth exploration of

the scale effects of different influencing factors.
4.3 Mechanisms driving landscape
ecological hazard in Laos

There has always been a focus on analyzing driving mechanisms

of landscape ecological hazard within landscape ecology research

(Qu et al., 2021). This analysis can help understand the evolution of

landscape patterns for achieving sustainable development (Banks-

Leite et al., 2022). However, the complexity of ecosystems prevents

clear identification of direct drivers of the evolution of landscape

patterns. Past studies have mainly applied correlation analysis to

identify factors influencing landscape ecological hazard (Suter,

1990). Many studies have focused on the drivers of landscape

ecological hazard conducted at different scales (Lin et al., 2021;

Qu et al., 2021; Ai et al., 2022). These studies have shown that 60%

of landscape ecological hazard can be attributed to human

socioeconomic activities, whereas the remaining 40% is related to

climate change. The results of the present study showed that the

evolution of landscape ecological hazard in Laos over the last 20

years has been driven by both natural and anthropogenic influences.

At a whole study area level, natural influences had the highest

impact on the evolution of landscape ecological hazard, whereas

anthropogenic influences had the most substantial local impacts.

While past studies have resulted in a basic understanding of factors

affecting landscape ecological hazard in Laos, the key factors driving

landscape ecological hazard differ among regions. The present study
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identified factors affecting local landscape ecological hazard and the

underlying driving mechanisms.
4.4 Management of landscape ecological
hazard prevention in Laos

The results of the present study showed that changes in the

structure and quality of landscape forest, grassland, and

cultivated land were critical to the ecological stability of Laos.

The areas of different landscape ecological hazard face different

challenges and pressures due to differences in natural and

socioeconomic conditions. Therefore, these areas should adopt

risk prevention and environment governance strategies suited to

local conditions: (1) Areas of high and extreme ecological hazard

should strengthen the conservation and restoration of forest,

grassland, and cultivated land. These efforts should include

biodiversity conservation, the return to forest and grassland of

farmland, and comprehensive management of soil erosion and

desertification; (2) Transformations occurring in areas of

moderate ecological hazard are more complex, and these areas

have weak ecological stability. Within these areas, there is a need

to increase the connections between forest, grassland, and

various landscape types to facilitate afforestation and grass

cover. These efforts can help reduce the rate at which areas of

moderate ecological hazard transfer to areas of high ecological

hazard; (3) There are extensive forest areas in regions of low and

minimal ecological hazard. Regardless, these areas face

challenges of a simple forest structure and degradation of soil,

water, and other ecological functions. There is a need to increase

the resilience of the ecological environment in these regions by

regulating the intensity of development and continuously

improving the ecological environment.
5 Conclusion

The present study focused on Laos and constructed a landscape

ecological hazard evaluation model utilizing a landscape pattern

index. This model was used to analyze the spatiotemporal evolution

of landscape ecological hazard and used geodetector to measure the

degrees to which natural factors, social and economic factors, and

regional accessibility factors explained localized and overall

landscape ecological hazard in the study area. The factors

influencing landscape ecological hazard were explored from

global and local perspectives. The results of the present study are

summarized below.

(1) Natural and anthropogenic stresses were drivers of changes

to the area and number of patches of each landscape type, which in

turn resulted in changes in the corresponding landscape type index.

Landscape patch number reflected the heterogeneity of the

landscape and showed a specific positive correlation with the

fragmentation index. During the study period, the main land

cover types in Laos were forest, cultivated land, and grassland.

Changes in landscape types were higher between 2000 and 2020,

with decreases in the area of forest (7123.84 km2) and increases in
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the areas of other landscape types categorized as artificial surfaces.

Areas of landscape types categorized as cultivated land and artificial

surfaces increased significantly, which resulting in a transition from

small, dispersed patches of landscape types to concentrated,

contiguous, larger patches of landscape. Concurrently, the spatial

aggregation of the landscape gradually increased, whereas wetland

showed the highest abruption and fragmentation indices. Elevation

showed an inverse relationship to spatial aggregation of the

landscape. The other types of landscape patterns in the study area

remained mostly stable.

(2) Areas of high ecological hazard were concentrated in

central and northeastern Laos, whereas areas of low ecological

hazard were concentrated in the northwest and southeast. There

was an overall increase in average landscape ecological hazard in

Laos over the study period, corresponding to a deterioration in

the overall ecological status. The areas of high and extreme

ecological hazard increased, whereas areas of low and minimal

ecological hazard decreased. Transformations occurring in areas

of moderate ecological hazard were relatively complex, thereby

necessitating the need to focus on avoiding further deterioration

due to fragmentation of landscape patches. The development of

forestry and agriculture in the study area, needs to consider

maintaining the original landscape as much as possible. In

addition, there should be a focus on reducing the spatial scales

of forestry and agriculture through intensive farming methods,

which can increase the industrialization of agriculture and

forestry while facilitating improved conservation of the local

landscape environment.

(3) There were significant positive spatial correlations in the

landscape ecological hazard index with relative stability in high-

and low-value aggregation areas. There were significant

differences between the spatial distributions of ecological

pressure and ecological response, and ecological hazard in

some areas was affected by multiple factors. Under the current

landscape structure, there is a need to increaser ecological

management in crit ical areas by optimizing resource

allocation, conserving the natural environment, and ensuring

sustainable development in a stable direction. The drivers of

landscape aggregation in areas lower economic value and lower

agglomeration in Laos remain poorly understood due to limited

knowledge, indicating the need for further studies.

(4) The factors driving changes to land use patterns and

landscape ecological hazard in Laos are interdependent and

interact. At a national scale, natural factors had little impact on

landscape ecological hazard in Laos, whereas human factors played

a dominant role. The evolution of landscape ecological hazard in

Laos is a function of the joint influences of natural and human

factors. The present study restricted factor detection analysis to the

application of a geodetector for identifying the contributions of

influencing factors. However, the interactions between factors were

not considered. Future research should further study the individual

and interactive impacts of factors on landscape ecological hazard.

Concurrently, future studies should focus on mechanisms of

interaction between landscape ecological hazard and ecological

processes and the ecological consequences, thereby increasing the

practical significance of such studies.
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