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Health assessment of natural larch
forest in arxan guided by forestry
remote sensing integrated with
canopy feature analysis

Ana Ri and Huijun An*

College of Forestry, Inner Mongolia Agricultural University, Hohhot, China

This work aims to propose a more accurate assessment method for forest health
in natural larch pine forests of the Arxan by integrating remote sensing technology
with tree crown feature analysis. Currently, forest health assessment of natural
Larch pine forests relies mainly on ground surveys, and there is a gap in the
application of remote sensing technology in this field. This work introduces deep
learning technology and proposes a spectral-Gabor space discrimination and
classification model to analyze multi-spectral remote sensing image features.
Additionally, quantitative indicators, such as tree crown features, are incorporated
into the forest health assessment system. The health status of natural Larch pine
forests is evaluated using forest resource survey data. The results show that the
health levels of natural Larch pine forests in different areas vary and are closely
related to factors such as canopy density, community structure, age group, and
slope. Both quantitative and qualitative indicators are used in the analysis. The
introduction of this innovative method enhances the accuracy and efficiency of
forest health assessment, providing significant support for forest protection and
management. In addition, the classification accuracy of the health assessment
model suggested that the maximum statistical values of average classification
accuracy, average classification effectiveness, overall classification accuracy, and
Kappa were 74.19%, 61.91%, 63.18%, and 57.63%, respectively. This demonstrates
that the model can accurately identify the health status of natural larch forests.
This work can effectively assess the health status of the natural larch forest in the
Arxan and provide relevant suggestions based on the assessment results to offer a
reference for the sustainable development of the forest system.

KEYWORDS

forestry remote sensing, health assessment, natural larch forests, spectrum-gabor,
sustainable development

Introduction

As one of the important components of the Earth’s ecosystem, forests contain substantial
species essential for soil and water conservation, climate improvement, and air purification
(Torres et al,, 2021; Ecke et al, 2022). Statistics show that the Three-North Shelter Forest
Program extends from northeast China to northern China and northwest China, with a total area
of nearly 1.5 million square kilometers. Its afforestation area in desertified areas has exceeded
300,000 square kilometers, and the total proportion of green area has reached more than 80% of
the desertification land area in China (Cherubini et al., 2021). The resources and services
provided by this protective forest are highly correlated with the health of the forest ecosystem. For
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example, species rich and healthy forests produce sufficient timber and
ecological services while maintaining the food chain and biodiversity in
the forest well; forests with simple structures and in a critical state of
health are only able to sustain basic tree survival (Iglhaut et al., 2019;
Guimardes et al., 2020; Carnegie et al., 2022). The natural Larch pine
forests in the Greater Khingan Mountains are currently facing a state of
system destabilization, decreased vitality, and forest area reduction due
to various factors, including climate change, human activities, and
pests. These changes have resulted in more frequent occurrences of
severe weather phenomena, such as dust storms, which have had
adverse effects on both the ecological environment and socio-
economic development in the area. Therefore, the understanding of
tree characteristics and health assessment in forest ecosystems has
become the focus of research scholars in related fields.

Of course, due to the complexity of the forest ecosystem, the
understanding of the health status of forest trees in the forest isn’t the
same, and there is no unified forest health assessment standard. Saha
etal. (2021a) employed advanced geospatial techniques to evaluate the
forest health status of the Buxa Natural Reserve in the Himalayan
Mountains, revealing varying degrees of forest pests and human
interference in the region. In a similar vein, Malik et al. (2020)
utilized geospatial analysis to investigate seasonal changes in the
vegetation status of the subtropical deciduous forest, indicating
significant fluctuations throughout the seasons. Moreover, Saha
et al. (2021b) assessed and analyzed forest cover dynamics using a
forest canopy density model, which demonstrated a close correlation
between forest cover spatial distribution and changes in topography
and land use types. Forestry remote sensing technology has been
extensively studied by scholars as a means of evaluating forest
species, structure, growth, and health status using airborne or
satellite remote sensing data. Pal et al. (2018) combined the forest
canopy density model with satellite data to achieve remote sensing
monitoring and mapping of forest cover in the Sali Basin of West
Bengal. Ahmadi et al. (2023) used high-resolution remote sensing
technology to predict the distribution of major tree species in forests
with insufficient climate data. Their findings suggested that integrating
high-resolution remote sensing data could improve the accuracy of
species distribution models. Despite these advancements, a unified
standard for forest health assessment has yet to be established.
Additionally, remote sensing data quality is affected by factors such
as clouds, fog, and occlusion, resulting in limited accuracy in tree crown
feature extraction. Therefore, the effective extraction of spectral features
in remote sensing images is extremely important. The deep learning
algorithm can mine the relationship between data through independent
learning of remote sensing images, which can greatly improve the
accuracy and stability of image classification and recognition while
improving efficiency, like reference (Tian et al., 2021).

In conclusion, it is of great significance to explore the health
status and assessment methods of natural larch forests under the
guidance of forestry remote sensing integrated with the analysis of
canopy characteristics for the sustainable development of
subsequent forest systems and the formation of biodiversity. The
innovations of this work are as follows. First, the health status of
natural larch forests is analyzed by collecting 2A sentinel standard
reflectance images with a spatial resolution of 10 m and forest class IT
survey data using Gurban Forest Farm of the Arxan Forestry Bureau
as the study area. Secondly, the health of natural larch forests is
assessed by quantitative and qualitative indicators. Third, a feature
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extraction and classification model based on spectral-Gabor spatial
discriminant analysis is proposed to analyze the features of the
acquired multi-spectral remote sensing images. Finally, the
performance of the health assessment method and model
reported here is verified through experimental analysis to provide
a reference for the follow-up health status analysis and ecologically
sustainable development of the forest system.

Recent related work

Advances in forest health evaluation and
analysis

Many scholars have researched the state of forest health. Cortés
et al. (2020) discussed predictive genomic approaches. They found
that these approaches promise to increase the accuracy of adaptive
selection and reduce generation intervals. Besides, exploring
genome-wide prediction methods can help detect novel allelic
variants in tree germplasm and reveal the genomic potential for
adaptation to different environments. Jakovljevi¢ et al. (2021) con-
ducted passive ozone measurements and monitoring of forest health
indicators in holly oak (Quercus ilex L.), brash oak (Quercus stellata),
Larch pine (Pinus koraiensis Sieb. et Zucc.), and black pine (Pinus
thunbergii Parlatore) forests. Results showed that the ozone levels of
all species were close to reaching a reasonable upper limit (100 ppb)
for passive monitoring of air quality in forest sites, with the highest
values for the uptake-based indicator on black pepper. At the same
time, the relationship between environmental variables and forest
health response indicators could be found to be significantly related
to the soil moisture content at different depths of canopy defoliation;
besides, tree growth is related to different forest health response
indicators. Kayet et al. (2022) assessed and predicted the forest
health risk in forest areas affected by mining based on the Analytic
Hierarchy Process model of multi-criteria analysis. In total, they
considered parameters including climate, natural or landform,
forestry, topography, environmental, and anthropogenic factors.
Very high-risk grades were found in mines surrounding forest
subdivisions, based on FHR assessment and prediction results,
with FHR negatively correlated with distance from mine and leaf
flour dust concentration. Their research provided fundamental
guidance for effective planning and management of forestry
research in mining-affected areas. Tan et al. (2021) assessed the
impact of nature-based solutions in urban design on forest
ecosystem service performance based on a spatially explicit
modeling approach by using a recent nature-centered town in
Singapore as a case study. The authors found that designing
towns with ecosystem services in mind and incorporating nature-
based solutions into the urban design can help improve performance
in delivering ecosystem services, with significant benefits for tree
health assessments in forests.

Current situation of Al applied to remote
sensing image recognition

Since each sample in hyperspectral remote sensing images
consists of high-dimensional features and contains rich remote

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1171660

Ri and An 10.3389/fenvs.2023.1171660
120°0'E 120°10'E
1 1
=l
w
Z
S
w
- 2
>
- ;?]- _g’
z £ s
w -
-
z
TS
| =
Z
S N
-+
. .
T &8 T T
110°E 120°0'E 120°10'E
0 150300 600 900 1,200
—— Boundary of country [ ] Boundary of province Il Arxan s Km
FIGURE 1

Geographical map of the study area.

sensing features, feature selection, and mining become even more
difficult. Algorithms such as deep learning in artificial intelligence
technology can independently learn and mine features in images,
effectively improving the ability to identify features in remote
sensing images. Scholars in many related fields have conducted
research. Ge et al. (2020) compared the classification performance
of k-nearest neighbor, random forest (RF), support vector machine
(SVM), and artificial neural network (ANN) in land use and cover
change (LUCC) in Chinese oases. They found that ANN, SVM, and
RF achieved statistically similar accuracy. The RF algorithm
performed well in several aspects, such as stability, ease of use,
and processing time during parameter adjustment. It was capable
of analyzing spectral indices (e.g., NDVI, MSAVI2, and MNDWI)
and providing a reference for the extraction of LUCC information
in arid regions with oasis-desert mosaic landscapes. Alam et al.
(2021) applied the convolutional neural network to the semantic
segmentation of remote sensing images. The authors also
improved the encoder-decoder CNN structure SegNet with
index pool-ing and U-net, making it suitable for remote sensing
Multi-object Semantic Segmentation of Images. The results
showed that the comprehensive algorithm could segment multi-
object remote sensing images. Cai et al. (2021) proposed a multi-
attention residual integrated network algorithm. The analysis of
multiple multi-class public data sets revealed that the algorithm
adds feature fusion while reducing redundant features, which
makes the recognition capability of hyperspectral images
effectively improved. Han et al. (2022) presented a building
extraction method for remote sensing images combining
traditional digital image processing methods and convolutional
neural networks. Experiments showed that the method improves
detection accuracy and reduces computation time compared with
the Region-CNN algorithm.

To sum up, the research and analysis of the above-mentioned
scholars indicate that forests, as one of the important components of
the Earth’s ecosystem, are closely related to the sustainable
development of the economy and the improvement of social
benefits to evaluate the health of forests.

Frontiers in Environmental Science

Research area and methodology
Study area

Arxan Forestry Bureau is located in the northeast of the Inner
Mongolia Autonomous Region and the middle and low
mountainous area in the south of the main line of the Greater
Khingan Mountains. It belongs to the transitional zone type of forest
and forest grassland and has a typical volcanic landform type
2021).
displays the geographical location of the study area.

(Quesada-Roman and Mata-Cambronero, Figure 1

As shown in Figure 1, the research area is located in the Gurban
Forest Farm of Arxan Forestry Bureau. The dominant tree species
are white birch and larch, and the natural larch forest is taken as the
research object. The elevation of Gurban Forestry Station of the
Arxan Forestry Bureau gradually decreases from east to west, with
an average elevation of 1023m; the annual average temperature
is —3.2°C; the annual extreme maximum temperature is 34.1°C; the
annual ex-treme minimum temperature is —45.7°C; the frost-free
period is 77 days; the rainfall is 451.2 mm. Overall, it is characterized
by cold and humid, long winter, and large temperature differences
between day and night. At the same time, due to the influence of
climate factors, the snow cover is thinner in sunny slopes and river
valleys where there are no trees and vegetation, and the snow cover is
unevenly distributed due to the effect of wind blowing (Dainelli
et al., 2021). Ruidas et al. (2022b) and Ruidas et al. (2021) have
conducted a vulnerability assessment of water resources based on
hydro-geochemical characteristics. The study revealed that water
resources in lakes were impacted by both human activities and
natural processes, emphasizing the importance of -effective
management and planning of water resources.

The soil in the study area was gray forest soil and brown
coniferous forest soil in order with the elevation increasing.
Moreover, the regional distribution law is mainly reflected in
the formation of different recessed soils due to the redistribution
of water and heat caused by changes in topography and landform.
For example, meadow soil is distributed on both sides of rivers
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FIGURE 2

Sentries in the study area: 2A preprocessing result map (four sample plots, namely, (A1-A4)).

and valleys and in the low and flat areas of marshes; swamp soil is
distributed lower than meadow soil, and the soil is humid, with
seasonal or perennial water accumulation on the surface; stony
soil is only distributed on the gravel ejected by modern volcanoes,
and there are large pores. The Gurban Forest Farm of the Arxan
Forestry Bureau is located on the gentle slope of the middle
section of Greater Khingan Mountains, a forest-grass transition
area from forest land to meadow, and the soil type is brown
coniferous soil (Chen et al., 2022). Ruidas et al. (2022a) proposed
a metaheuristic optimization process integrating rainfall and
geological data to develop 15 flood-susceptibility factors. The
study found that this approach could accurately assess flood
susceptibility.

The vegetation types of the Arxan Forestry Bureau
include forest, shrub, meadow, swamp, and aquatic plants. Its
forest vegetation is clearly distributed vertically and
roughly divided into four vegetation zones: the forest zone
domi-nated by the zonal plant Xing’an larch (Larix gmelinii
(Rupr.) Kuzen) (above 1200m in elevation), the mixed
conifer-broad forest formed by Xing’an larch and white birch
(Betula platyphylla Suk.) (1000-1200 m in elevation), the forest-
steppe zone (below 1000 m), and the stone pond forest
(1100-1250 m) (Wang et al., 2021; Yang, 2022). The larch

Frontiers in Environmental Science

forest in Gurban Forest Farm of Arxan Forestry Bureau has
neat margins and is a middle-aged forest with a forest age of
29 years. The average tree height is 16 m; the average diameter is
15cm; the canopy density is 0.85; the soil type is brown
coniferous soil. The understory shrub is rose thorn with a
coverage of 5%, and the herb is sedge with a coverage of 60%.
There are logging residues piled up under the forest. The birch
forest is a natural forest with an age of about 21 years. The average
tree height is 7 m, the average diameter is 8 cm, and the canopy
density is 0.7.

Data acquisition and processing

This work downloads the Sentinel-2A remote sensing image
data of the research area of the study area from https://scihub.
copernicus.eu/. The Sentinel-2A data has a spatial resolution
of 10 m. Among all the optical images, the Sentinel-2A data is
the only one that contains three bands in the red edge range. This
feature is useful for monitoring the vegetation health of
the natural larch forest in the study area. The information is
very effective. The image was produced at 12 September
2019 and radiation calibration and atmospheric correction are
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TABLE 1 List of data sources.
Type of data Resolution

Sentinel-2A remote sensing image map data 10 m

10.3389/fenvs.2023.1171660

Acquisition method

Public data (from https://scihub.copernicus.cu/)

Forest resources type ii survey data -

Canopy density

Canopy characteristics |<—
| Herbaceous coverage |<—

| Thickness of soil layer |<—

Humus thickness

| Coverage of undergrowth shrubs |<—

-

» Qualitative
indicators

Diameter at breast height

| Renewal

Health evaluatn index
of natural larch forest
Slope

i

Age group

Community structure

Aspect of slope

Soil texture

FIGURE 3
Health evaluation index system of natural larch forest.

further performed on the Sentinel-2A image. Figure 2 reveals the
preprocessed Sentinel-2A image in the study area.

As shown in Figure 2, the acquired Sentinel-2A image is
preprocessed to obtain a Sentinel-2A image pixel with a size of
2000 * 2000. It is evenly divided into four sample plots for
research, namely, Al, A2, A3, and A4. The natural larch forest
remote sensing images in the study area were extracted from the
sentinel spectral image. The classification accuracy was evaluated
for the health status of the larch forest in the study area by using
the following spectral-Gabor spatial discriminant method (Diez
et al., 2021).

Further, the forest resource type II survey data were collected in
the study area. The type II data includes community conditions such
as tree species structure canopy density, understory shrub coverage,
herbaceous coverage, and tree crown characteristics, as well as
environmental conditions such as slope, aspect, soil type, and soil
thickness. Arc GIS 10.1 software was utilized to confirm the sample
data, reasonably move slightly to reduce the edge effect, and divide
the obtained samples into training samples and verification samples.
There are 337 training samples and 186 validation samples. Table 1
lists the specific statistics.
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Classification of quantitative indicators for forest health
assessment.

Analysis of health assessment methods of
natural larix pine

According to the characteristics of the basic data used here, this
work uses different indicators to comprehensively evaluate the health
level of each evaluation object (small class) in the study area. The state
of each indicator is divided into several grades. Then, a score is assigned
to each grade. Finally, the health evaluation index system of the natural
larch forest is constructed, as shown in Figure 3.

The health evaluation system illustrated in Figure 3 presents a
comprehensive approach for assessing the health status of natural larch
forests in the Gurban Forest Farm, utilizing both quantitative and
qualitative indicators. In addition to the quantitative indicators such as
depression, shrub cover, herbaceous cover, soil thickness, and humus
thickness, this study incorporates canopy characteristics including tree
height, diameter at breast height, crown width, and regeneration as
qualitative indicators. The quantitative indices are categorized into five
classes based on index values measured in the forest resources second-
class survey data. The qualitative indices, such as community structure,
age group, slope, slope direction, and soil texture, are classified into 3 to
8 classes according to the forest resources second-class survey protocols
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TABLE 2 Forest health evaluation qualitative indicator ranking.

Indicator
factors

Affiliation level

4

10.3389/fenvs.2023.1171660

Community Complete Relatively complete =~ Simple structure
structure structure structure (60 points)
(100 points) (80 points)
Age group Young forest Middle-aged forest = Near mature Mature forest Overripe forest
(60 points) (80 points) forest (100 points) (60 points)
(90 points)
Slope Flat slope Gentle slope Slopes Steep slopes Rapid slope Dangerous
(100 points) (90 points) (75 points) (60 points) (50 points) slope

(35 points)

Slope direction | Southwest slope

(100 points)

Loam
(100 points)

Soil texture

Southeast slope
(90 points)

Sandy loam
(90 points)

Western slope
(80 points)

Light loamy soil
(80 points)

Eastern slope
(70 points)

Heavy loam
(70 points)

Northwest
slope
(60 points)

Sandy soil
(60 points)

Northeast slope
(50 points)

Silt (50 points)

South slope
(40 points)

Clay
(40 points)

North slope
(30 points)

gravel soil
(30 points)

in China. The inclusion of both quantitative and qualitative indicators
provides a more comprehensive evaluation of forest health status.

Among the quantitative indicators, the indicator of
depression reflects the proportion of the total projected area of
the tree canopy on the ground in direct sunlight to the total area
of the forest stand and the density of the stand. Both un-derstory
shrub cover and herbaceous cover indicators influence forest
ecosystem health from the perspective of forest community
hierarchy and species diversity. Soil and humus provide
support for various life activities of trees, shrubs, and grasses
in the forest through nutrient supply. Therefore, soil layer
thickness and humus thickness ultimately affect the health of
the forest ecosystem. In addition, the tree height, DBH, crown
width, and regeneration of pine trees in natural deciduous forests
reflect the health status of forest resources from the perspective of
system vitality (Faltan et al., 2021; Pan et al., 2022). Figure 4
illustrates the classification of each indicator.

As shown in Figure 4, among the quantitative indicators, the
scores of each level are calculated as follows. Level 1 means
100 points; level 2 means 80 points; level 3 means 65 points;
level 4 means 50 points; level 5 means 35 points.

The qualitative indicators used in this work include community
structure, age group, slope, slope direction, and soil texture, as
shown in Table 2. Community structure reflects the species
diversity and stability of the forest community, age group is used
to assess the age structure in the forest, while slope and slope
direction are important factors affecting the moisture in the
terrain. Soil texture is another important physical property that
influences soil aeration, water retention, and fertility status.

The weight value of the health evaluation index of the larch
forest was determined by AHP to evaluate the health degree of the
natural larch forest in the forest. Finally, the health level is divided
into four levels according to the health value of each index and the
specific conditions of the research area: healthy (>4 points), sub-
health (3-4 points), general health (2-3 points), and unhealthy
(<2 points).

Frontiers in Environmental Science

Spectral feature extraction and health
classification model design and analysis

This work preprocesses the acquired spectral data information
to obtain the Sentinel-2A multi-spectral map and extracts its
features to reduce the information redundancy caused by the
high-dimensionality and band nature of the data set.

First, the principal component analysis (PCA) method is used to
obtain the principal components of remote sensing images.
Secondly, Gabor filters of different scales and directions are
performed on the extracted principal component images to
obtain Gabor spatial features of many different scales and
directions. Third, the original spectral features and the obtained
Gabor space features are fused in a certain way to form a fusion
feature. Besides, the fusion feature is further modeled. The scatter
matrix between classes and the scatter matrix within a class in the
fusion feature space is constructed to describe the compactness of
different types of objects and the same type of objects. The optimal
transformation matrix is obtained by transforming the feature space.
Finally, the transformation matrix is used to transform the original
high-dimensional data into the fusion space to enhance the
nonlinear feature learning ability and generalization performance
of subsequent classifiers, thereby improving the overall classification
accuracy.

When using the spectral-Gabor space discriminant method to
extract information from the Sentinel-2A multi-spectral image, the
training sample set is defined as, which can be written as Eq. 1.

(1)

X= {xi: X; € Rd}i(:*n)

In Eq. 1, d stands for the number of band features of the original
image data, that is, the number of original spectral features; m*n
signifies the size of each spectral remote sensing image. Assume that
the data set has ¢ categories, and each category contains »; pixels.
m*n is expressed as Eq. 2.

(m*n) = z;ni (2)
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The data set needs to be preprocessed before feature extraction
due to the high dimensionality of the acquired spectral remote
sensing image data set and the correlation and redundancy between
bands. Firstly, PCA (Cruz-Ramos et al., 2021) is used to extract
pi(1<i<d) principal components. Secondly, Gabor filters of
different scales and directions are performed on the extracted p;
principal components to obtain 40%p; individual spatial features.
Usually, a two-dimensional Gabor filter is a Gaussian kernel
function adjusted by a complex sinusoidal plane wave, which is
defined as Eq. 3.

Vi = 2o exp| ———

fz (_XIZ + )/2)/'2
yn

) exp(j2rnfx'+¢) (3)

In Eq. 3, frefers to the central angular frequency of the complex
sinusoidal plane wave; ¢ represents the phase; o denotes the
standard deviation; y refers to the space ratio used to specify the
ellipticity supported by the Gabor function. x" and y' indicate
different scales and different directions, which can be written as
Eq. 4 and Eq. 5.

x'=xcos0+ ysinf (4)

y' = —xsinf+ ycosf (5)

In Eq. 4 and Eq. 5, 0 refers to the normal parallel stripe direction
of the Gabor function. The Gabor filters with different scales 4 and
different directions v are defined to ensure that the frequency and
direction of Gabor filtering can be changed within a certain range to
cover the entire two-dimensional image area:

fu=3x V2 (6)

szng (7)

The two-dimensional convolution result G; of the Gabor
features of each scale and direction of the principal component
of the spectral remote sensing image is obtained through the
convolution of the spectral remote sensing image A; and the
Gabor filter cluster, as shown in Eq. 8.

Gi = Aillffwgy (8)

Denote Z; (1 <i<d) as the spatial filtering features of the image
at different scales y and different directions », as shown in Eq. 9.

Zi= 21,20, 2, ©)

Moreover, the spectral feature matrix Y; is fused with the
obtained Gabo, space feature matrix Z;, generating the Spectral-
Gabor spatial fusion feature matrix Fj, as presented in Eq. 10.

Fi =Y, Z] (10)

It is necessary to minimize the distance within a class while
maximizing the distance between classes to improve the
classification performance of spectral features in spectral remote
sensing images. Therefore, the fusion feature optimization model
shown in Eq. 11 is established.

wTSsew
W = argmax b

W [WTSSSW (an
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In Eq. 11, SgG refers to the inter-class scatter matrix of the
spectral-Gabor space, and S3¢ represents the intra-class scatter
matrix of the spectral-Gabor space. Assume that (d+40*p;)
training samples of dimensions can be obtained from the
spectral-Gabor space fusion feature matrix F;. S;° and S3¢ are
expressed as Eqs 12, 13.

SiG:ini(fi—fO)(fi—fO)T (12)
S =YY (xl - £)(x! - f) (13)

i=1j=1

In Eqgs 12, 13, ¢ refers to the number of classes; n; represents the
number of training samples in the ith class; f; stands for the mean
vector of the ith class; f signififes the mean vector of all training
samples; x{ denotes the jth fused feature vector of the ith class.

The projection feature matrix x a test sample f can be obtained
through optimal transformation W5, as shown in Eq. 14.

x=WIf (14)

Egs 9, 10 indicate the Gabor space feature matrix Z; and the
Spectral-Gabor space fusion feature matrix F; of the test set I in the
spectral remote sensing image data set, respectively. In actual
analysis, the fusion feature optimization model in Eq. 11 can be
transformed into the eigenvalue problem in Eq. 15.

SW = ASSW (15)

In solving Eq. 15, the first step is to maximize the inter-class
scatter matrix in the spectral-Gabor space by Singular Value
Decomposition (SVD). The step is to
generalized eigenvalue problem. The key problem of using SVD

second solve the
to maximize the inter-class scatter matrix in the spectral-Gabor
space is to deal with the optimization problem shown in Eq. 16. First,
it is essential to deal with the following optimization problem A.
A = argmaxtr (ATS;°A)

AT A=I

(16)

Based on the above discussion, the spectral remote sensing
image dataset L acquired in this work is processed by PCA
method. Then the spatial features are extracted by Gabor filter
clusters, which can be written as Eq. 17.

(m*n)

(17)

i=1

F = {fii fie€ R(d+40*Pi)}

Then, the feature space transformation is used to obtain effective
feature vectors to reduce the computational complexity while
improving the classification accuracy. Eq. 18 describes the
optimal transformation matrix Wh

W, = Ublz;l%Uij ¢ R(d+20p)xr (18)

In Eq. 18, Uy € RE@H0PX" refers to a column-orthogonal
matrix; ), € R™ represents a diagonal matrix with non-
increasing and positive diagonal elements; U, € R™" signifies an
orthogonal matrix; ), € R™" denotes a diagonal matrix.

The Sentinel-2A multi-spectral remote sensing image
obtained is used as a data set to evaluate the performance of
the spectral feature extraction and health classification model
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Score results of qualitative indicators of forest health assessment
(C1: community structure; C2: age group; C3: slope; C4: aspect; C5:
soil texture).

based on spectral-Gabor spatial discrimination reported here. It
provides rich detailed features for the subsequent nonlinear
feature learning of the classifier from different scales and
different directions, including a total of 14 features. They are
consistent with the quantitative and qualitative indicators
mentioned above. At the same time, the model reported here
is compared with the benchmark model PCA, linear
discriminant analysis (LDA) (Dos Reis et al., 2020), Kernel
PCA (KPCA) (He et al.,, 2021), Kernel Discriminant Analysis
(KDA) (Shen et al., 2019), and the model proposed by Kayet et al.
(2022) in terms of four evaluation metrics for performance
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verification. The four assessment criteria are the average
accuracy (AA), the average
effectiveness (AV), the overall classification accuracy (OA),

classification classification

and Kappa.

Results
Result analysis of factor indicators

Figures 5, 6 provide the analysis results of the quantitative and
qualitative indicators to evaluate the health status of natural larch
forests in different sites in the study area.

As shown in Figure 5, among the quantitative indicators, the
scores of canopy density, understory shrub coverage, herbaceous
coverage, soil layer thickness, and humus thickness in the A3 sample
plot are all higher than 9.5 points, which are in a certain range.
Specifically, the canopy density is 0.5-0.7; the understory shrub
coverage is 0.4-0.6; the herb coverage is 0.4-0.6; the soil layer
thickness is higher than 60 cm; the humus thickness is higher
than 30 cm. In addition, the scores of plots Al and A2 are all
between 60 and 90, meaning that each quantitative index is at the
second or third level. The score of plot A4 is about 50, indicating that
each quantitative indicator performs at level four. In addition, the
tree height, DBH, crown width, and regeneration grading effects
reflecting the vitality of the forest system in each site are discussed. It
is found that the overall performance is still the same as in A3 plots.
The tree height, DBH, crown width, and regeneration in plots
Al and A2 are grade 2 or grade 3, while the scores of tree
height, DBH, crown width, and re-generation in plot A4 are the
lowest, which are grade 4. The health of natural larch forests in each
sample plot is best in A3, followed by Al and A2, and the worst
in A4.

According to Figure 6, the scores of all qualitative indicators
in the A3 sample plots are at level 1. In other words, the
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Health classification results of natural larch forests in various
fields.

community structure is basically intact, the number of age
groups is mostly mature forests, the slope is basically flat, the
slope orientation is basically southwest, and the soil texture is
loamy. However, plots Al and A2 are classified as grade two or
grade three; plot A4 has the worst performance in classification
and is basically simple in terms of com-munity structure, age
group, slope, aspect, and soil texture. In terms of structure, young
forests or over-mature forests account for more, and the slope is
steeper, and the slope also shows a northward direction, and the
soil texture is mostly gravel soil type. From the analysis of the
qualitative index factors, it can be found that the health of
natural larch forests in each sample site is best in A3,
followed by Al and A2, and the worst in A4.

Figure 7 classifies the health classes of natural larch forests
from healthy, sub-healthy, generally healthy, and un-healthy
according to the specific conditions of various places in the
study area.

According to the weights of each index in Figure 7, the health
classification of natural larch forests in the four sample plots A1, A2,
A3, and A4 are not the same. In plot A1, the health evaluation score
of the natural larch forest is 3.1798 points, which can be divided into
the sub-health level. In plot A2, the health evaluation score of the
natural larch forest is 2.9687 points, which can be divided into the
general health grade. In plot A3, the health evaluation score of the
natural larch forest is 4.3354 points, which can be divided into the
health grade. In plot A4, the health evaluation score of the natural
larch forest is 1.8764 points, which can be classified as unhealthy.

Classification accuracy analysis

Furthermore, the spectral feature extraction based on the
Spectrum-Gabor space discrimination and health classification
model is employed to analyze the recognition accuracy of each
index. The model is compared with benchmark models PCA, LDA,
KPCA, KDA, and the model proposed by Kayet et al. (2022) in terms
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of four evaluation indicators: AA, AV, OA, and Kappa coefficient, as
shown in Figure 8.

As shown in Figure 8, the statistical values of AA, AV, OA, and
Kappa are analyzed with the Sentinel-2A multi-spectral remote
sensing image as the data source. It can be found that with the
increase in the number of features, the statistical values of AA, AV,
OA, and Kappa all first increase rapidly and then reach a relatively
stable state. The AA, AV, OA, and Kappa statistical values of the
model reported here are the highest. This may be due to the fact that
the method used here can demonstrate its superb feature extraction
ability and the nonlinear feature learning ability and generalization
performance of the subsequent classifier. The model proposed by
Kayet et al. (2022) has the second-highest classification accuracy,
and the KDA algorithm has the worst classification results.
Moreover, the classification accuracy of the model reported here
is optimal when the feature data is 7 or 8; the maximum statistical
values of AA, AV, OA, and Kappa are 74.19%, 61.91%, 63.18%, and
57.63%, respectively. Therefore, the model can accurately identify
the health status of natural larch forests.

Discussion and suggestion
Discussion

This work reveals that an accurate assessment of the health
status of natural larch forests in the Arxan Forestry Bureau can be
achieved through the analysis of remote sensing data and feature
extraction methods. The results highlight significant differences in
the health status of different plots. Plot A1 showed the lowest health
status and was classified as sub-healthy, while plot A4 exhibited the
worst health status and was classified as unhealthy. The most
significant indicators for assessing the health status of natural
forests were found to be quantitative indicators such as canopy
density, understory shrub cover, humus thickness, tree height, and
canopy regeneration. Among these, age group, soil texture, and
community structure were identified as having the most significant
impact on the health status of natural forests.

Further analysis of the spectral-Gabor spatial discriminant
method proposed in this work for spectral feature extraction
reveals higher precision and accuracy than those achieved by
scholars in related fields (Reddy, 2021; Thakur et al, 2021).
Compared with Fernandez-Carrillo et al. (2020), this study uses
more refined remote sensing data and feature extraction methods,
providing better reflection of the health status of natural Larch pine
forests.

This work has some limitations that need to be acknowledged.
Firstly, the sample size is relatively small, including only four plots,
which may not comprehensively reflect the health status of natural
larch forests in the Greater Khingan Mountains. Secondly, the
impact of human activities and climate change has not been
considered, indicating the need to include more factors in
assessing the health status of natural larch forests. Therefore,
future research should focus on increasing the sample size,
integrating more data sources and feature extraction methods,
and comprehensively considering the effects of various factors on
natural larch forest health to improve the accuracy and reliability of
health assessment.
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Suggestion

Based on the aforementioned discussion, this work proposes
three recommendations:

Firstly, it is highly recommended to manage and protect the sub-
healthy and unhealthy natural larch forests. The density of forest
stands in natural larch forests can be optimized by adopting
ecological thinning, replanting, understory mowing and
irrigation, and pruning and shaping (Weller et al., 2021). In this
way, the natural larch and understory irrigation can grow normally
in the natural larch forest, increasing the health grade in the
study area.

Secondarily, the community hierarchy in natural larch forests
should be adjusted to enhance intra-forest permeability and
ventilation by strengthening the management of canopy and
depression and by thinning, single plant selection, or pruning
(Schuldt et al, 2020; Lin et al, 2022). Ultimately, the natural
larch forest will have a multi-level community structure. It is
feasible to achieve biodiversity by adjusting the age structure, soil
texture, and other measures. Therefore, the richer the biodiversity,
the more stable the community structure, and the more pronounced

the forest benefits.
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Lastly, it is recommended to integrate multiple data sources for
the health assessment of natural forests. Along with remote sensing
data, other data sources such as topography and hydrological data
should be incorporated to enhance the accuracy and reliability of the
health assessment. Additionally, regular monitoring of the
distribution and health status of natural Larch pine forests
should be performed using remote sensing technology. The
timely data acquisition capability of remote sensing should be
combined with field survey data to promptly assess the health
status of natural Larch pine forests.

Conclusion

In this work, a novel approach is proposed for assessing the
health status of natural larch forests in the Arxan by incorporating
and utilizing a spectral-Gabor space
discrimination analysis and classification model to extract
The
demonstrate the effectiveness of this approach in accurately

tree crown features

multispectral remote sensing image features. results

assessing the health status of natural larch forests. Furthermore,
this work highlights the close relationship between forest health
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status and environmental factors, human disturbances, and other
factors, providing scientific evidence for developing targeted
protection and management measures for sustainable
development of natural larch forests. This work also presents a
promising method for monitoring forest health on a global scale,
which can rapidly and accurately evaluate forest health status and
provide critical support for forest protection and management. The
findings of this work have significant implications for the sustainable
utilization of forest resources and ecological environment
protection, indicating its substantial scientific research value and
social significance. Still, there are some deficiencies here. For
example, natural larch is the dominant species in natural larch
forests in the study area, and a few other replanting species still
present, such as artificial larch forests. Therefore, future research will
further distinguish the tree species in the study area to enhance the

precision and confidence of the results.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.
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Vegetation indexes have been widely used to qualitatively and quantitatively
evaluate vegetation cover and its growth vigor. To further extend the study
of vegetation indexes, this paper proposes to study the spatial and temporal
distribution characteristics and specific driving mechanisms of vegetation indexes
based on the example of Yunnan Province, China, and also adds the study of spatial
and temporal prediction methods of vegetation indexes. This paper used data on
this region’s normalized vegetation index (NDVI), three meteorological factors,
and eight social factors from 1998 to 2019. The dynamic change in and driving
mechanism of the NDVI were studied using mean value analysis, univariate linear
trend regression analysis, and partial correlation analysis. In addition, the Fourier
function model and the CA—-Markov model were also used to predict the NDVI of
Yunnan Province from 2020 to 2030 in time and space. The results show that: (1)
The NDVI value in Yunnan Province is high, showing a significant growth trend.
The increased vegetation coverage area has increased in the past 22years without
substantial vegetation degradation. (2) The positive promotion of meteorological
factors is greater than the negative inhibition. The partial correlation of relative
humidity among meteorological factors is the highest, which is the main driving
factor. (3) The NDVI value is significantly positively correlated with population and
economy and negatively correlated with pasture land and agricultural area. (4)
The NDVI values are predicted well in time (R=0.64) and space (Kappa=0.8086
and 0.806), satisfying the accuracy requirements. This paper aims to enrich the
theoretical and technical system of ecological environment research by studying
the dynamic change, driving mechanism, and spatiotemporal prediction of the
normalized vegetation index. Its results can provide the necessary theoretical
basis for the simulation and prediction of vegetation indexes.

normalized vegetation index, spatiotemporal distribution, driving mechanism,
CA-Markov model, Fourier function model, prediction
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1. Introduction

Vegetation is an essential component of terrestrial ecosystems and
is the link between elements of natural geography such as the
atmosphere, water, organisms, rocks, and soil (Hédl et al., 2017; Xiao
etal.,2018; Lietal, 2021), and it is the most fundamental component
of the ecosystem on which all organisms need to depend directly or
indirectly. Any change in terrestrial ecosystems will inevitably affect
vegetation type, quantity, or quality (Torres-Garcia et al., 2022).
Especially as a result of global warming, which has led to a series of
changes in vegetation phenology events (Huang et al., 2019; Liu et al.,
2020), the frequency of extreme climate events has increased
significantly worldwide, causing severe negative impacts on
agricultural production, water resources, and the socioeconomic
development of ecosystems (Zhao et al., 2018). Therefore, long-term
dynamic monitoring and the study of vegetation changes and their
driving factors are of great value to understanding global changes’
impact and achieving effective ecosystem management (Tong et al.,
2019). Ecological problems such as global natural disasters, accelerated
desert degradation, and soil erosion are frequent, especially in
northern latitudes (Myneni et al., 1997; Tucker et al., 2001). In the past
30years, ecosystems in more than half of the global regions and
countries have experienced different degrees of degradation due to
economic development and population growth. Issues such as land
degradation, soil erosion, and desertification have occurred in China,
especially in the northern regions (Wang et al., 2002). This has led
researchers to conduct studies focusing on the northern part. In
contrast, Yunnan Province, China, is a rare region with ultra-high
vegetation cover and diverse vegetation, which needs to be studied due
to the area’s unique geomorphological and vegetation characteristics.
Therefore, a timely, scientific, and accurate assessment of the dynamics
of vegetation indices in Yunnan, understanding the driving
mechanisms of vegetation indexes changes, and modeling and
predicting the development of vegetation indexes are essential
references for the ecological effects in other similar regions.

The NDVTI is closely related to vegetation cover, leaf area index,
biomass, and land use, which can reflect the greenness of vegetation
from macroscopic aspects and is related to photosynthesis in the
vegetation canopy (Zhu, 2016). Studies addressing the dynamics of the
NDVI and its response characteristics to climate change and human
activities have been better developed in recent years. For example,
nationwide, Jin et al. (2020) used time series data of the NDVI and
meteorological factors such as precipitation and temperature to
establish a residual analysis model to achieve quantitative separation
of climate change effects on the NDVI and arrived at the conclusion
that there are significant spatial differences in the impact of climate
change and human activities on the NDVT changes, but the positive
contribution is generally dominant. Liu et al. (2014) analyzed the
differences in the correlation between the NDVI and climate change
for different vegetation types in China, and the differences in the
relationship between NDVI change trends and temperature and
precipitation in different eco-geographical zones were also studied.
Piao et al. (2015) analyzed the driving factors of vegetation change in
China based on the leaf area index and believed that the increase in
atmospheric CO2 concentration and nitrogen deposition might be the
main reasons for promoting vegetation recovery in China. Li et al.
(2020) analyzed the dominant factors of vegetation productivity
changes in China from 1992 to 2013, and the results showed that
radiation made the largest contribution to vegetation productivity
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changes, followed by temperature and precipitation. Chen et al. (2020)
explored the response of vegetation to precipitation anomalies under
different climatic and eco-geographical conditions in China. With the
refinement of the research scale, Wang et al. (2013) found that climate
warming had caused the edge of the cold-temperate forest in the
southern part of the Greater Hinggan Mountains to retreat 140
kilometers northward in the past century. The combined effects of
moisture conditions and temperature promoted the growth of
vegetation in the arid-humid transition zone in northern China (Sun
R.etal, 2021). Decreased temperature led to reduced evaporation of
soil moisture, alleviating the slight drought trend in southwestern
China and resulting in a general increase in the vegetation index in
the region (Sun et al., 2021a). The continuous warming of the climate
has affected the senescence period and growing season length of
grasslands in the temperate zone of China to varying degrees (He
et al.,, 2022). Precipitation plays a decisive role in the changes in the
NDVTI in the Yarlung Zangbo River Basin on the Tibetan Plateau (Sun
etal, 2019), while temperature is the dominant factor in the changes
in the NDVI during the growing season in the permanently frozen
area of Northeast China. Li et al. (2018) took the Inner Mongolia
Plateau of China as their research object and concluded that the NDVI
was positively correlated with extreme precipitation and extreme low
temperature, negatively correlated with extreme high temperature,
and that the sensitivity of different vegetation types to extreme climate
was not the same. Many studies have analyzed the relationship
between the NDVI and regional and meteorological factors (Tucker
and Choudhury, 1987). Still, only a few studies have examined the
driving mechanisms between the NDVI and relative humidity and
other social factors, especially in Yunnan Province, China.

Therefore, this paper selects annual normalized difference
vegetation index (NDVI) spatial distribution data (1998-2019) in
China to study the dynamics of the vegetation index in Yunnan
Province and analyzes the spatial and temporal changes in
meteorological factors using air temperature, relative humidity data,
and precipitation data and explores the partial correlation and
significance with the NDVI. In addition, the influence of eight social
factors on the NDVI is also investigated. These studies reveal the
dynamics of the 22-year NDVI in Yunnan Province and its specific
driving mechanisms in relation to meteorological and social aspects.
Finally, the spatial distribution of the NDVIin Yunnan Province from
2020 to 2030 is predicted through simulations using mathematical and
statistical models (Fourier function model) and physical statistical
models (CA-Markov model). This paper is intended to provide
theoretical support and a reference basis for ecological protection
construction in the region.

2. Materials and methods

2.1. Study area

Yunnan Province lies between 21° 8’ and 29° 15" north latitude
and 97° 31" and 106° 11" east longitude, with a total area of 394,100
square kilometers, accounting for 4.1% of the total land area of the
country and ranking eighth in size in China. In addition, the region is
known as the Kingdom of Plants. It is the province with the most
significant number of plant species, mainly including tropical,
subtropical, temperate, and cold-temperate plants, among which
ancient, derived, and exotic plants are abundant. Yunnan accounts for
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more than 60% of China’s 30,000 species of higher plants. More than
150 tree species are classified as national priorities for protection and
development at the first, second, and third levels. The vegetation
resources of Yunnan Province are remarkable, and the study of local
vegetation indexes has essential reference values for ecological
planning and conservation (Figure 1).

2.2. Data

2.2.1. Normalized difference vegetation index
data

China’s annual normalized vegetation index data comes from the
registration and publication system of resources and environmental
science data.!

2.2.2. Other data

The air temperature data were obtained from the National Centre
for Atmospheric Sciences in the UK.? The relative humidity data were
obtained from the National Earth System Science Data Center’ in
China. The TRMM precipitation data were obtained from NASA
Release 7 data, and the monthly precipitation data from 1998 to 2019
were selected to calculate the annual average rainfall. In addition, the
social factors associated with the NDVI changes were obtained by
statistically and categorically classifying the statistical yearbook data.*

2.3. Methods

2.3.1. Average analyses of the normalized
difference NDVI

In this paper, the annual NDVT and the three meteorological data
were processed into an overall average of 22 years using the maximum
value synthesis method. And the NDVT and the three meteorological
factors are analyzed temporally and spatially. In addition, the annual
data are analyzed temporally using the average of the NDVI and three
meteorological data from raster images. The Maximum Value
Composite (MVC) method is employed, with the specific calculation
process as follows:

Mnpvi, = max (NDVI)(i=12...,12j=12...,12) (1)

In the formula, Mypyy represents the maximized NDVI value for
the i year; i is an integer from 1 to 22, representing the years from 1998
to 2019; NDVT;; represents the monthly NDVTI values for the i year,
and j is an integer from 1 to 12, representing January to December.

2.3.2. Spatial trend analysis methods

A one-dimensional linear regression analysis model was used to
quantitatively analyze the change in vegetation cover trends in Yunnan
Province from 1998 to 2019, calculated as follows:

http://www.resdc.cn

https://crudata.uea.ac.uk/

http://www.geodata.cn

AW N

https://www.stats.gov.cn
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Where S represents the slope of the trend line, Nj represents the
NDVI value in the first year of the image, and t=22 (1998-2019)
represents the observation time series of the data; S > 0 represents an
increase in the NDVI value and an increasing trend of vegetation
cover; S < 0 illustrates a decrease in the NDVI value and a decreasing
trend of vegetation cover. We use the Mann-Kendall significance test
to evaluate the significance of the NDVI spatial trends. The M-K test
is a non-parametric method suitable for detecting trends in time series
data. By calculating the test statistic and the corresponding value of p,
we can determine whether the NDVT spatial trend is significant.

2.3.3. Partial correlation analysis

Partial correlation analysis is a standard method for examining
the relationship between changes in the NDVI (Normalized Difference
Vegetation Index) and the climatic factors. In this study, we employed
a second-order partial correlation analysis model to identify the
primary driving factors of the NDVI. Among the four variables, the
partial correlation coefficient between any two variables is calculated
by excluding the influence of the other two variables, which is referred
to as the second-order partial correlation coeflicient. The significance
of partial correlation coeflicients is assessed using an F-test based on
the partial correlation analysis. The calculation formula is as follows:

Gijh — lim-hfjm-h

Tj-hm = \/(1 _ ri?n-h )(1 - r]%n-h )

(©)

A positive correlation is indicated by >0, while a negative correlation
is represented by r<0. In this context, i, j, h, and m denote the
combinations of the NDVT, the temperature, the precipitation, and the
relative humidity, respectively. For instance, when investigating the
partial correlation relationship between the NDVI and the temperature,
the influence of the precipitation and the relative humidity is eliminated.
This study also analyzes the spatiotemporal variations of the NDVI with
the temperature, the precipitation, and the relative humidity, and explores
the relationships between the NDVI and these factors. In addition,
we integrate and select eight social factors to analyze the impact of
anthropogenic factors on the NDVI based on local statistical bureau
information. IBM SPSS statistical software is used for the analysis of the
NDVI By utilizing 22years of average the NDVI data, this study
examines the correlation between the NDVI and the eight social factors.

2.3.4. Prediction model

2.3.4.1. Fourier function model

This paper predicts the future NDVI over the study area based on
the historical data from 2000 to 2019. Three functions (i.e., the
polynomial function, trigonometric function, and Fourier function)
are selected for fitting the NDVI variation during 2000-2019. Then,
the mathematical and statistical parameters (i.e., R?, SSE, and RMSE)
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FIGURE 1
Location of the study area and its basic geomorphology.

were calculated to compare the capacities of these fitting functions.
Finally, the best-fit process was selected to predict the future NDVI
over the study area for 2020-2030.

2.3.4.2. CA-Markov model

The Markov chain is a “non-sequential” state of affairs process,
where the state of the change process Sn at time n+ 1 is only related to
the state at time n and is not related to the state before Sn (Mokarram
and Pham, 2022; Sun et al,, 2022; Zhou et al,, 2022). Thus, P; represents
the probability of shifting from a vegetation index type E; to another
type of E; and is calculated as:

P =P(Sps1=j/Sy =i) (4)

In this paper, the number of NDVI change-type areas in 2012 and
the NDVI change-type area in 2015 are constructed as a Markov
transfer matrix:

A Ry

Pij(N) (5)

Py PNN

The NDVI type transfer state, where X(0) is the initial state vector, is
calculated in this paper to obtain the probability of change of each the
NDVI type in 2012 to each the NDVI type change in 2015 and the area
size of each the NDVI type in 2017 and 2018 is inferred with this
probability. The Markov model focuses on simulating quantitative
changes. The CA model and Markov model were coupled to compensate
for the deficiency of the Markov model in spatial analysis. Adaptive
inertia mechanism-based meta-cellular automata simulations were
applied to predict the distribution of each the NDVT type for 2020-2030.
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2.4. Data preprocessing steps

To ensure the accuracy and consistency of the data, we adopted
the following preprocessing steps:

1. The NDVI data preprocessing: Firstly, we used ArcGIS software
and the maximum value composite method to eliminate the
influence of clouds, atmosphere, and solar zenith angle,
generating monthly the NDVI data. Next, we obtained the
annual NDVTI data by calculating the average values of the
monthly data.
Data consistency processing: We projected all data to the same
coordinate system and used ArcGIS to resample to achieve the
same spatial resolution (1km x 1km). Furthermore, for the
lower spatial resolution of the TRMM precipitation data,
we applied the Kriging spatial interpolation method to achieve
the same resolution.

3. Data synthesis: We integrated temperature, precipitation, and

relative humidity data into yearly data for 1998-2019,

ensuring they have the same temporal resolution. Then,

we calculated the annual averages of the NDVI and
meteorological data using the multivariate analysis - band
collection statistics method.

Data clipping: By applying mask extraction and raster clipping,

we retained the data required for the study area.

5. Data classification: Based on the spatial distribution of the
meteorological data and the NDVTI data, we divided them
into five classes. At the same time, we classified the
significance of the NDVI trends into five categories:
significant ~ degradation, = moderately  significant

degradation, no significant change, moderately significant

improvement, and significant improvement.

The NDVI spatial prediction preparation: Before conducting

spatial predictions, we reclassified the NDV], dividing it into

five categories: Lower (<0.5), Low (0.5-0.6), Normal (0.6-0.7),

High (0.7-0.8), and Higher (>0.8).

frontiersin.org


https://doi.org/10.3389/fevo.2023.1177849
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Han et al.

7. Correlated data selection: We selected eight statistical yearbook
data closely related to the NDVI, including population density,
GDP, industrial output, agricultural output, construction
production output, forest area, grassland area, and cultivated
land area, covering annual data from 1998 to 2019.

3. Results

3.1. Characteristics of NDVI time
dimensional changes

In this study, we extracted the annual average NDVI values from
raster images generated by the maximum value composite method
and analyzed their temporal changes (Figure 2). We found that the
NDVT values in Yunnan Province showed an overall upward trend,
with an average NDVI of 0.768 and an annual increase of 0.00614.
We also discovered that, over the 22-year period, the temporal changes
in the NDVTI values only experienced a continuous decline from 2009
to 2011, reaching the lowest point in 2011 and then steadily
rebounding until 2014. These results indicate that the temporal
changes in Yunnan Province’s NDVI values not only reflect a
significant increase in vegetation but also exhibit only one substantial
fluctuation, further justifying our selection of this study area.
Moreover, based on the unique change trends in the study area,
research on the temporal changes in NDVI values in the study area is
more targeted and facilitates the identification of the main driving
factors behind vegetation changes.

In this section, we have discussed in detail the temporal change
characteristics of the NDVT, analyzing its change trends and patterns
on different time scales. To gain a deeper understanding of the
dynamic change characteristics of the NDVT, in the following sections,
we will focus on studying the spatial distribution and changes in
the NDVL

—@—=NDVI~= = =Linear fitting Confence bands

0.85 T T T T

y=0.0061x - 11.558

0.80 F  R?=0.9211

NDVI

0.70 -

2000 2005 2010 2015
Year

2020

FIGURE 2
Temporal variation of NDVI in Yunnan from 1998 to 2019.
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3.2. Characteristics of NDVI spatial
distribution variation

In this paper, we analyzed the spatial variation in the NDVT in
Yunnan Province over a 22-year period using the maximum value
synthesis method (Figure 3A). We found that high vegetation cover
areas and higher vegetation cover areas in Yunnan Province
accounted for 51.45 and 34.17%, respectively, and low vegetation
cover areas accounted for 0.95%. The NDVI values in Yunnan
Province show an overall increase from northeast to southwest, with
scarce vegetation areas mainly in the northwest and some central
urban peripheral areas; high vegetation areas are distributed
primarily in the southwest, some significant sites, and the northeast
Zhaotong (ZT) area. We analyzed the spatial trends of the NDVI in
Yunnan Province over a 22-year period using a one-dimensional
linear regression equation model at the metascale (Figure 3B).
We found that the direction of increasing NDVT values accounted
for 95.02% and decreasing NDVI values accounted for 4.98%, with
a vast difference between the two. The NDVI values were only
reduced in urban and mountainous areas, such as Kunming (KM)
and Yuxi (YX) in the central part of the study area, and urban areas
in Lijiang (L]) and Dali (DL) in the north-central part of the study
area as well as in the spreading areas of the Hengduan Mountains in
the northwest. We further tested the significance of the regression
trend by using the F-trend test method (Figure 3C). We found that
the significant increase and decrease in the NDVI accounted for 89.3
and 0.3%, respectively. The size of regions with an increasing trend
in the NDVI was much larger than that of sites with a decreasing
trend. Among them, the NDVI was significantly reduced in urban
areas such as Yuxi (YX) and Qujing (QJ), and there was no significant
change in many places in the northwest mountain range area and
other mountain range areas. The distribution trend is more dispersed
and patchier.

Therefore, the spatial variation and spatial movement of the NDVI
and the spatial trend significance test results indicate that the areas
with high NDVT values and the regions with increasing trends are
much greater than the areas with low NDVT values and areas with
decreasing trends in Yunnan Province.

In this section, we explored the spatial change characteristics of
the NDVTI and analyzed its distribution patterns in detail. To gain a
deeper understanding of the various factors influencing the
spatiotemporal changes in the NDVI, in the following sections,
we focused on investigating the impact of climatic and socio-economic
factors on the NDVI and attempted to identify the relationships and
mechanisms involved.

3.3. Correlation analysis of the NDVI and
climate factors

3.3.1. Impact of air temperature, precipitation, and
relative humidity on the NDVI time dimension

This paper analyzes the temporal variation between meteorological
factors and NDVI values through the annual mean values of air
temperature, precipitation, and relative humidity extracted from raster
images generated by the maximum value synthesis method (Figure 4).
In terms of temporal variation, we found that the multi-year averages
of NDVI values, air temperature, precipitation, and relative humidity
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in Yunnan Province showed multi-peaked variations, with the annual
average maximum value of NDVI occurring in 2019 at 0.833. The
average yearly maximum values of air temperature, precipitation, and
relative humidity occurred in 2019, 2001, and 2018, with maximum
values of 15.7°C, 1377 mm, and 74.5%, respectively.

We further found that by comparing the temporal variation in
NDVI values over the years the temporal variation in the NDVI
values from 1998 to 2002 was not insignificant, while air
temperature reached a minimum value of 14.5°C in 2000 and
precipitation and relative humidity were much higher than other
years during this period; the annual average NDVI values from
2014 to 2019 were much higher than other years, and vegetation
grew better. However, the air temperature during this period
differed significantly from the NDVI temporal variation, while
precipitation and relative humidity were in solid agreement with
the NDVI temporal variation. Therefore, air temperature showed
a negative correlation with NDVI material changes, and
precipitation and relative humidity correlated positively.

10.3389/fevo.2023.1177849

3.3.2. Effects of air temperature, precipitation,
and relative humidity on the spatial dimension of
the NDVI

This paper uses the maximum value synthesis method to process
the three examined meteorological data into an overall average of
22years to generate spatial variations in raster images (Figure 5). In
terms of spatial variation, combined with (Figure 3), we found that the
spatial distribution in the NDVI with air temperature, precipitation,
and relative humidity all showed a decreasing trend from south to
north. The relative humidity matched the spatial distribution of the
NDVI the best.

We further found that the air temperature and relative humidity
were numerically higher in the northeastern part of the study area,
Zhaotong, at 15.5°C and 78.5%, respectively, while the precipitation
was lower at 1050 mm, the NDVI was generally greater than 0.7, and
the vegetation increased; in the central part of Kunming, the air
temperature were higher at 16.9°C. The amount of precipitation and
the relative humidity were lower at 67%, and 700 mm, respectively,
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FIGURE 5
Spatial characteristics of air temperature, precipitation and relative humidity in Yunnan, 1998-2019. (A) Spatial distribution of temperature. (B) Spatial
distribution of precipitation. (C) Spatial distribution of relative humidity.

and the vegetation did not increase as much as in the northern
Zhaotong area. In the southern and southwestern parts of the study
area, the air temperature, precipitation, and relative humidity were
generally high in numerical values, 18.4°C, 2138 mm, and 79%,
respectively, with the NDVI being 0.85, and the area observed the
highest increase in vegetation. In the Northwest Transverse Range
region, the air temperature, precipitation, and relative humidity were
generally shallow, and vegetation showed an insignificant increase.

Therefore, there is some regional variability in the spatial
variability and a spatial correlation between air temperature,
precipitation, relative humidity, and the NDVIL.

3.3.3. Partial correlation analysis between the
NDVI and climatic factors

The related research results indicate that climate change is an
important cause of increases in the NDVI, while air temperature,
precipitation, and relative humidity are important indicators of
climate change (Mao et al., 2022; Xu et al,, 2022). Based on the findings
of this paper on the temporal and spatial variation of the NDVI with
air temperature, precipitation, and relative humidity, we further
validated our results through a partial correlation model based on the
image metric scale (Figures 6A-F).

We found an overall positive spatial correlation between the
NDVI and air temperature, with this accounting for 61.6%. The
positively correlated areas were mainly Puer (PE), Xishuangbanna
(XSBN), Wenshan (WS), and Honghe (HH) in the south-central part
of the study area. Negative correlations were dominant in areas such
as Nujiang (NJ) in the northwestern part and Qujing (QJ) in the
northeastern region. The positive and negative correlations were only
0.4% and were speckled in the study area. A total of 30.4% of the
spatially negative correlations were found between NDVI and
precipitation. The positive correlations were mainly in Zhaotong (ZT)
and Wenshan in the northeastern part of the study area. The negative
correlation was primarily in the central and western regions.
Significant positive and negative correlation areas accounted for 1.70
and 11.20%, respectively. A significant positive correlation was found
in southern Qujing (QJ) and Wenshan (WS) in the northeastern part
of the study area. A significant negative correlation was found between
Diqing and Nujiang (NJ) in the northwestern part of the study area.
A total of 69.6% of the NDVI was spatially positively correlated with
the relative humidity. The positive correlation areas were mainly
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Chuxiong (CX) and Yuxi (YX) in the central part of the study area and
Pu’er (PE), Lincang (LC), and Baoshan (BS) in the west. The negative
correlation was dominant in the Zhaotong (ZT) area in northeast
China and Qujing (QJ) and Wenshan (WS) areas in south-central
China. Significant positive and negative correlation areas accounted
for 19.10 and 7.20%, respectively, with substantial positive correlation
areas distributed in the central and western Dali (DL), Chuxiong
(CX), and Lincang (LC) regions. The significant negative correlations
were distributed in the local areas of Zhaotong (ZT), Qujing (QJ), and
Wenshan (WS) in the north. They were especially significant in
Zhaotong (ZT) and Qujing (QJ).

Figure 5 shows the spatial distribution of temperature,
precipitation, and relative humidity within the entire study area, which
helps to explain the differences in the spatial correlations between the
NDVI and the climatic factors observed in Figures 6A-F. Notably, in
Figure 5, we found that the spatial distribution of relative humidity
was most closely aligned with the spatial distribution of the NDVT,
which is consistent with the highest positive spatial correlation
between the NDVI and the relative humidity shown in Figures 6A-F It
is the spatial distribution differences in the climatic factors within the
study area, as shown in Figure 5, that cause significant disparities in
the spatial correlations between the NDVI and climatic factors in
various parts. These differences contribute to our in-depth
understanding of the impact of climate change on vegetation growth
in different regions, thereby providing a basis for developing
appropriate vegetation conservation and management strategies.

Therefore, there is some regional variability in the spatial
correlation between the NDVI and meteorological factors, which is
consistent with previous findings (Cheng et al., 2022). There is an
overall positive spatial correlation between the NDVI and air
temperature and relative humidity, with the highest positive spatial
correlation with relative humidity. The negative spatial correlation
being with precipitation further suggests that a combination of
meteorological factors influences the NDVI.

3.4. Characteristics of NDVI time
dimensional changes

A social-ecological system (SES) is a complex adaptive system
closely linked between humans and nature, with unpredictable,
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self-organizing, and non-linear characteristics, and vegetation is an
essential part of the ecosystem with it being more inextricably linked
with society (Tong et al., 2016). In this paper, we analyzed the correlation
between the NDVI of vegetation and eight social factors in Yunnan
Province from 1998 to 2019 by using a bias correlation model (Table 1).
As seen in Table 1, the NDVI had the strongest positive correlation with
population density (R*=0.951) and the weakest positive correlation with
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arable land. The NDVI was negatively correlated with agricultural and
pasture area changes with R* of —0.460 and —0.724, respectively. There
were also strong positive correlations between the NDVI and changes
in gross product, industry, gross construction product, and forest area.

Following our previous research, we have gained a thorough
understanding of the spatiotemporal distribution characteristics of the
NDVI and analyzed the influence of climatic and socio-economic
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factors on the NDVI. In the following sections, we employed advanced
modeling methods to precisely simulate and predict the NDVI in both
temporal and spatial dimensions.

3.5. Normalized vegetation index spatial
and temporal simulation projections for
2020-2030

3.5.1. Impact of air temperature, precipitation, and
relative humidity on the NDVI time dimension

A linear function and two periodic functions were constructed to
fit the annual NDVI temporal variation for 1998-2019 (Table 2). The
results show that the polynomial function includes the linear function
better. In addition, the periodic functions (Fourier and trigonometric
functions) performed much better than the linear function (primary
function). The accuracy analysis (Table 2) showed that the Fourier
function was the best-fitted function among the three functions
constructed in this study. It effectively depicted the annual NDVI
time-series variation in the study area.

TABLE 1 Correlation between NDVI and social factors in Yunnan, 1998-2019.

10.3389/fevo.2023.1177849

The results of the prediction of the NDVI in Yunnan Province
from 2020 to 2030 using the constructed Fourier function show
(Figure 7) that the NDVI values in Yunnan Province show
fluctuating changes. However, the NDVI values show a slight
upward trend in general (0.0015/per year), reaching a maximum
weight of 0.703 in September 2027 and a minimum of 0.498 in
March 2030.

3.5.2. Modeled prediction of NDVI spatial
distribution in 2020-2030

In this paper, based on the regional NDVI data of 2012 and 2015,
the probability transfer matrix of each type of NDVI from 2012 to
2015 was obtained. The simulated data for 2017 and 2018 were
obtained using the CA-Markov model. The decomposition results of
the NDVI for 2017 and 2018 were compared with the simulation
results (Figure 8). The simulation results were also verified with Kappa
coeflicients. The predicted Kappa coefficient values of the NDVTI for
2015 and 2018 were 0.8086 and 0.806, respectively (generally, when
the Kappa coefficient is greater than or equal to 0.75, the simulation
prediction is considered to be more accurate) (Fu et al., 2018), so the

NDVI Population Gross Industry  Agriculture Gross Forests Pasture Cropland
density production building
product

NAVI 1
Population 0.951%* 1
density
Gross 0.922%%* 0.916%* 1
production
Industry 09227 0.947%% 0.971%% 1
Agriculture | —0.460% —0.552%% -0.363 —0.464* 1
Gross 0.9017* 0.886%* 0.991%% 0.946%* -0.295 1
building
product
Forests 0.932%% 0.880%* 0.924%% 0.890%% —0.410 0.922%% 1
Pasture —0.724%% —0.6717%% —0.8387% —0.705%* 0.089 —0.886% —0.803% 1
Cropland 0.277 0.355 0.199 0.220 —0.097 0.184 0.177 -0.105 1

*The correlation is significant at the 0.05 level (one-tailed). **At the 0.01 level (two-tailed), the correlation is significant.

TABLE 2 The accuracy analysis of the results by different fitting functions.

Fitting Function expression Number = R?> SSE RMSE
function of terms
Polynomial y =—4.4984E11 + 1.35304E9%x—1695626.94655*x + 1133.25223%x> — 0.42601%x" + 8.5408E—5*x° 6 0.18%* | 1.40 0.006
function —7.13413E—9*x°
Trigonometric |y =0.59975—18.38915*sin(pi*(x +0.49874)/0.08951) - 0.61%* | 0.66 0.002
function
Fourier ¥=0.5996 — 0.006659%Cos(x*3.151)-0.005518*sin(x*3.151)—0.08763*cos(2*x*3.151) 7 0.64%% | 0.62 0.050
function —0.01923%sin(2*x%3.151) +0.002304*cos(3*x%3.151)—0.003563*sin(3%x*3.151)

+0.001095%cos(4*x*3.151) +0.01228*sin(4*x*3.151)

+0.001425%cos(5%x*3.151) +0.003636*sin(5*x*3.151)—0.007611%cos(6*x*3.151)

+0.004719%sin(6%x*3.151)—0.001563%cos(7%x*3.151) +0.005697*sin(7*x*3.151)

*The correlation is significant at the 0.05 level (one-tailed). **At the 0.01 level (two-tailed), the correlation is significant.
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simulation prediction of each type of NDVI change passed the
accuracy test.

In this paper, the CA-Markov model further predicted the spatial
variation in the NDVI values from 2020 to 2030 (Figure 9). Combined
with Figure 10, we found that the NDVI Lower type will basically
remain unchanged over the next 11 years from 2020 to 2030 and is still
distributed in urban areas and the northwestern highlands. The NDVI
Low type decreased by 0.4%. The NDVI Normal and High types
decreased by 0.9 and 2.8%, respectively, while the NDVI Higher type
increased by 4%. This indicates that the NDVI Normal and High types
were transformed into Higher types, where by the decreasing and
increasing areas were mainly distributed in the northwestern and
eastern regions, respectively, with a scattered distribution. Therefore,
the vegetation in Yunnan Province still has a clear increasing trend
from 2020 to 2030.

Up to now, we have comprehensively understood the spatiotemporal
distribution characteristics of the NDVT in the study area, the degree of
influence of climatic factors on the NDVI, and successfully predicted
the spatiotemporal change trends of the NDVTI in the study area for
2020-2030. In the subsequent sections, we will continue to delve deeper
into the relevant issues highlighted by these findings to ensure that our
research conclusions are more rigorous and logical.

4. Discussion

4.1. Spatial and temporal distribution of the
normalized difference vegetation index

Studying changes in vegetation dynamics in Yunnan Province is
essential to improve vegetation ecological vulnerability assessment,
especially as a result of climate change (Fernandez et al., 2012; Min
etal, 2015; Wang et al., 2016). In this study, we found a high increase
in vegetation cover in Yunnan Province over the past 22years
(Figures 2, 3), with an annual growth rate of 0.00614, like previous
results based on VIs (Li et al., 2021; Sun et al., 2021b). We also found
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that the temporal variation in NDVI values showed a significant
decreasing trend in the mean NDVI values around 2011, with a faster
rate of vegetation recovery in the subsequent years. On the one hand,
this is attributed to the fact that meteorological factors (Figure 4) were
at low values in around 2011, which made it unsuitable for vegetation
growth. On the other hand, during this period, when the 11th and
12th Five-Year Plans converged, the development of industry and
agriculture was promoted nationwide, and many natural areas in
Yunnan Province were reclaimed. A total of 24.4% of agriculture and
56.7% of industrial enterprises above the scale were increased
cumulatively in 4 years. The scale of arable land and buildings was
fully expanded, and the vegetation growth environment was damaged,
resulting in a sharp decrease in natural vegetation.

The spatial variation in NDVI values shows a trend of
decreasing from south to north (Sun et al., 1998; Xie et al., 2021).
The low NDVI values are mainly in the northwestern plateau, Gobi
region, and urban areas. The plateau Gobi region indicates that the
natural environment primarily influences vegetation, while the
urban areas suggest that human activities affect vegetation changes.
The higher NDVI values in the southern and southwestern regions
are due to the favorable climate and more distribution of rivers in
these regions, on the one hand, and a greater emphasis on vegetation
ecosystem construction in these regions. Regarding spatial trend
changes in NDVI values, vegetation in northwestern Yunnan
Province is severely reduced, while vegetation in the southern and
southwestern areas is better developed. This shows that the trend of
plateau globalization in the northwest is due to the harsh natural
environment. However, a series of policy measures implemented by
the state to improve the ecological environment, such as ecological
restoration and the planting of plantation forests, enhanced the
environmental climate in the northwest (Du et al., 2019; Hu et al,,
2022); more time is still needed for the poorer economy and small
population in the northwest. In contrast, the environment is very
suitable in the southern and southwestern regions, the population
density is low, and the vegetation improvement shows more of a
natural progression.
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4.2. Effects of temperature, precipitation,
relative humidity, and social factors on the
normalized difference vegetation index

Meteorological factors influence vegetation growth, providing
vegetation’s necessary water and heat conditions (Aili et al., 1907). Air
temperature, precipitation, and relative humidity are the main controls
among meteorological factors that affect vegetation index changes
(Jiang et al., 2019). We found that the vegetation index showed a
significant decreasing trend in regions with lower air temperature,
precipitation, and relative humidity, most likely due to the
inconvenience caused by low temperature, low precipitation, and low
humidity regions to the natural growth of vegetation and the artificial
cultivation of vegetation and other behaviors. Therefore, beneficial
human activities in warmer climatic regions are conducive to
increasing vegetation growth and the vegetation index.

Our analysis of the biased relationship between vegetation and
meteorological factors revealed an overall positive spatial correlation
between the NDVI and air temperature and relative humidity, with
the highest positive spatial correlation being with relative humidity. In
addition, there is a negative spatial correlation between the NDVI and
precipitation, further indicating that the NDVT is affected by multiple
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meteorological factors. It was found that air temperature and relative
humidity had different effects on the growth and development of
vegetation at various stages due to climate warming. In general, they
promoted vegetation growth (Liu et al., 2018). We further found that
the areas with a negative correlation between the NDVI and
precipitation were mainly in the south-central region, attributed to the
fact that this region is mostly in the tropics, where precipitation itself
is high. If precipitation increases further, it will weaken vegetation
photosynthesis and, thus, reduce vegetation.

In addition, the vegetation/land change caused by human
activities is the main factor that affects the NDVI (Zhang et al., 2016;
Bai and Li, 2022) and an essential driver of vegetation cover change
(Zhangetal., 2011, 2019). We found the strongest positive correlation
between the NDVI values and population density. Negative
correlations were found with changes in agricultural and grazing land
areas. The influence of population density on vegetation dominated
densely populated areas, cities, and peri-urban areas. The balanced
population growth in Yunnan Province has exceeded 20% in the last
22years. The continuous rise of economic growth and urban
population has led to the expansion of metropolitan construction land
area, resulting in a decreasing trend in vegetation cover in some areas.
Still, overall, it remained significantly and positively correlated with
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the NDVI, stemming from the concentrated distribution of population
growth in the study area.

We found that NDVI values were negatively correlated with
changes in agricultural and grazing land areas. The increase in
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agriculture is attributed to the fact that, on the one hand, it represents
an increase in agricultural land. On the other hand, excessive
agricultural exploitation destroys the natural environment, causing
problems such as land desertification, soil erosion, and soil pollution,
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which in turn leads to a significant decrease in vegetation cover. The
livestock industry in the study area is more developed and has been
further developed in recent years, leading to a further increase in
grazing land. The increase in grazing land represents an increase in
grazing, which mainly transforms the vegetation structure
morphology and reduces the vegetation cover through behaviors such
as animal foraging and trampling.

The NDVT is also significantly and positively correlated with GDP,
industry, and construction GDP, indicating that improved socio-
economics can increase natural vegetation cover. Since the 21st
century, the state has attached great importance to preventing and
controlling stone desertification and ecological restoration in Yunnan.
It has implemented a series of environmental engineering measures
that have played a vital role in the restoration of vegetation, not only
improving the vegetation cover in the study area but also playing an
essential role in improving the survival environment of vegetation
communities, effectively reducing the degree of regional stone
desertification, and improving the regional vegetation cover (Cheng
etal., 2022).

Combining the results shown in Figure 6, we found that climatic
and social factors synergistically affected vegetation index changes.
The vegetation growth in the study area was positively and negatively
inhibited by social factors, and the overall positive promotion of
regional vegetation growth dominated. The development of ecological
projects has led to an increase in vegetation cover. Still, the inhibitory
effect of unreasonable human development in the development of the
economy on vegetation growth should be addressed.

4.3. Normalized vegetation index spatial
and temporal simulation prediction

In this paper, three functions were used to fit the time series of the
historical NDVI in Yunnan Province, and it was found that the
periodic function of the Fourier function performed the best. Roy
et al. predicted future changes in the NDVI by using machine learning
methods, but large data sets are needed for prediction (Ahmad et al,
2023). In contrast, this paper predicts the NDVI in Yunnan Province
based on historical NDVI data in a simple and effective mathematical,
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statistical way (i.e., Fourier function). As confirmed by previous
studies (Tchepel and Borrego, 2010; Giiler and Ozcan, 2019), these
studies also used the Fourier function for analysis and prediction.
Notably, the curve fit predicted using monthly data was better than
that indicated by their use of interannual data by comparing it with
Zhou et al. (2022). Thus, the Fourier function model was more suitable
for relevant monthly data. In addition, the current use of CA-Markov
models lies mainly in the simulation and prediction of land use
patterns (Xu et al., 2022; Luan et al., 2023), and fewer research cases
have been used for the simulation and prediction of the NDVI, which,
as a type of cover, is a dynamic change in land cover. Simulating and
predicting a single vegetation change is more straightforward than the
interconversion between different land use types. Simulating and
predicting a single vegetation change is shorter than the
interconversion between different land use types.

Of course, there are uncertainties in the prediction set out in this
paper. In time series prediction, the Fourier function is a mathematical,
statistical method that uses historical data to fit and predict the NDVT,
limited by the information provided by historical data; in addition, it
can superimpose periodic information from historical data into the
future predicted values. In spatial distribution prediction, since this
study is the first attempt to directly simulate and predict the NDVI
distribution now using the CA-Markov model, it focuses on affecting
the spatial and temporal patterns under natural evolutionary
conditions. At the same time, NDVI change is a complex process
influenced by various uncertainties such as nature, human activities,
and land use development policies. Therefore, how to adjust the model
parameters based on a comprehensive analysis and integrated
consideration of the effects of multiple factors also needs to be further
explored in depth. In response to these situations, it is strongly
recommended to use new and better methods in future investigations.

5. Summary and conclusion

To further expand upon research on the vegetation index, this
paper plans to take Yunnan Province as an example; in addition to
studying the spatiotemporal distribution characteristics and specific
driving mechanism of its vegetation index, a new spatiotemporal
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prediction method of the vegetation index is also added. In this paper,
the normalized vegetation index (NDVI) data from 1998 to 2019, three
meteorological factors, and eight social factors were used to analyze the
topographic characteristics of the region. The dynamic change and
driving mechanism of the NDVI were are studied using mean value
analysis, univariate linear trend regression analysis, and partial
correlation analysis. In addition, the Fourier function and CA-Markov
models were used to predict the time and space of the NDVI in Yunnan
Province from 2020 to 2030. The main conclusions are as follows:

1. From 1998 to 2019, the NDVI value of Yunnan Province
showed a significant growth trend, and the annual growth rate
was 0.00614. In terms of time, the NDVI value fluctuated but
showed an upward trend. In space, the NDVI gradually
increased from north to south.

2. The NDVI has a positive spatial correlation with air
temperature and relative humidity and a spatial correlation
with precipitation. The positive promotion of meteorological
factors is more significant than negative inhibition. The partial
correlation of relative humidity among the meteorological
factors is the highest, which is the main driving factor.

3. The NDVI values had the strongest positive correlation with
people, the weakest positive correlation with cropland, and a
negative correlation with pasture and agricultural area.

4. In the time series prediction, The NDVT values in Yunnan
Province fluctuated, but there was a slight upward trend in the
NDVI values (0.0015/per year). In the spatial distribution
projection, the vegetation in Yunnan Province still has a
significant increasing trend from 2020 to 2030.

This study provides necessary theoretical support for NDVI
simulation and forecasting. The predicted NDVTI values offer valuable
information for decision-makers and strategists in ecological
environments.
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Spatiotemporal monitoring of reactive nitrogen atmospheric deposition is
essential for understanding its impact on sensitive ecosystems and quantifying
cumulative effects. However, the sparsity of direct surface flux measurements
combined with barriers in dissemination are major limiting factors in providing this
information to decision makers and non-experts in a timely manner. This work
addresses both aspects of this information gap by, 1) utilizing satellite-derived
reactive nitrogen dry deposition data products that can be used by decision-
makers to supplement the sparse direct surface flux measurements and 2) fill in
measurement gaps. Therefore, we have developed a Reactive Nitrogen Flux
Mapper (RNFM) component of the interactive Cloud-based Data Mapper
(CDM) for providing easy access of satellite-derived reactive nitrogen (defined
here as nitrogen dioxide (NO,) and ammonia (NH=)) dry deposition flux spatial
maps/data to decision-makers/stakeholders over North America. The RNFM
component of CDM has a Graphical User Interface (GUI) that allows users to
specify the geographical regions and time periods for computing the average
fluxes on the fly using an integrated cloud-based computing platform. The CDM
architecture is flexible and can be upgraded in the future to take advantage of
upstream satellite data directly on cloud platforms to provide results in near real-
time.

KEYWORDS

reactive nitrogen, deposition, satellite, RNFM, cloud-computing, CDM

Introduction

Atmospheric deposition is the process whereby gases and particles are removed from the
atmosphere and transferred to the earth’s surface. The main modes of transfer are wet
(through precipitation) and dry (through a diffusive transfer process at the surface)
deposition (Vet et al, 2014). The deposition of reactive nitrogen (defined here as
nitrogen dioxide (NO,) and ammonia (NH3)) represents an essential source of nutrients
to plants and a limiting element for growth in many ecosystems. However, when reactive
nitrogen is in excess it has harmful effects on terrestrial and aquatic ecosystems, including
soil acidification (Galloway et al., 2003), eutrophication (Bergstrom and Jansson, 2006) and
loss of biodiversity (Fenn et al., 2010; Simkin et al., 2016). Human activities (i.e., burning of
fossil fuels and production of nitrogen-based fertilizers) have doubled the reactive nitrogen
inputs to the environment with a proportional increase of atmospheric deposition on the
earth’s surface since the start of the 20th century (Fowler et al., 2013).
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Northeast Latitudes/Longitudes bounds that were right-clicked from the layer tree.

In light of its importance, comprehensive monitoring of reactive
nitrogen dry deposition flux is required to assess its ecological
impacts. Yet, obtaining direct monitoring of dry deposition fluxes
is limited as it is more challenging than wet deposition monitoring
(Wolff et al., 2010), thus, at present, none of the measurement
networks provide direct measurements of the former. The
measurement networks for reactive nitrogen dry deposition are
sparse in nature and lack the required spatial coverage. The
existing measurement networks provide dry deposition flux
estimates using the inferential method (which combines the
concentration measurements with modelled dry deposition
velocities; Wesely, 1989; Zhang et al,, 2003), and can not be
spatially interpolated like those of wet deposition due to the
heterogeneity of dry deposition fields (Schwede and Lear, 2014).

On the contrary, satellite measurements of NO, and NH; with a
daily global coverage offer a valuable data source to fill the
measurement gaps and provide an opportunity to analyze the
reactive nitrogen dry deposition fluxes spatially using the
inferential method (Nowlan et al, 2014; Kharol et al., 2018).
However, the processing of large datasets from satellites or
models requires high-performance supercomputers that are not

Frontiers in Environmental Science

readily available to most users. Thus, providing easy access to
this large data product to end-users (i.e., decision-makers and
stakeholders) remains challenging. Presently, there is not any
existing platform where decision-makers and stakeholders can
easily access the spatiotemporal satellite-derived reactive nitrogen
dry deposition flux information. The model or model-measurement
fusion annual maps are available through regional/federal agencies
(eg, US EPA;
however, they do not provide the flexibility to users for custom
selection (i.e, geographical region and time period) and

https://www3.epa.gov/castnet/drydep.html),

require >2years to be produced. In recent years, commercial
cloud-computing platforms are becoming popular in the scientific
community and have become a valuable alternative for large data
processing and complex earth science model runs with its massive
computing power and data storage capability. For example, recently,
Amazon Web Services (AWS) cloud-computing platforms have
successfully been used to run the Goddard Earth Observing
System (GEOS)-Chem global 3-D chemical transport model
(Zhuang et al., 2020) at 50-km horizontal resolution.

In an attempt to fill this gap we have utilized a cloud-computing
platform for space-based earth observations. Here, we describe the
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The layer tree of RNFM with different functions that can be performed on individual layers by right-clicking or selecting one.

newly developed Reactive Nitrogen Flux Mapper (RNFM)
component of the interactive Cloud-based Data Mapper (CDM)
with user-friendly features (such as custom selection of geographical
region and date range through the Graphical User Interface (GUI))
that provides easy access of satellite-derived reactive nitrogen dry
deposition fluxes to end-users.

Reactive nitrogen flux Mapper

The overall schematic of the processing flow describing the
RNEFM is provided in Figure 1. The upstream preprocessed daily
reactive nitrogen dry deposition fluxes are currently computed
offline (as described in Appendix A, B) and uploaded to a cloud
computing platform together with NH; and NO, dry deposition
velocities and concentrations information. Statistical information
and pre-rendered files (i.e daily, monthly, yearly) are then processed,
and hosted on the cloud virtual machine (VM) using a Web Map
Service (WMS) server. Gridded averages of concentrations, dry
deposition velocities and fluxes (i.e., monthly, annual) are

Frontiers in Environmental Science

calculated using the equations described in Appendix C on the
cloud virtual machine (VM). Using the RNFM GUI, users can search
for pre-rendered data and retrieve datasets hosted on the VM to be
displayed using the WMS on the interactive map as described in
Figure 1. The WMS server on the cloud in tandem with our GUI will
dynamically load and display the pre-rendered datasets on an
interactive map. This allows users to zoom/scroll along the
interactive map while the dataset is dynamically loaded from the
WMS. In addition to that, the RNFM GUI provides custom selection
(i.e., date range and geographical region) flexibility to users where
they can select any date range during 2018-to-2020 and geographical
coordinates over North America to calculate the averages on the fly.
This process is shown in Figure 4. Even though the RNFM GUI
provides the flexibility to define a user-specified date range, we
recommend using at least a month-long date range selection as this
will significantly increase the flux signal compared to the noise in the
measurements.

There are two processing streams used for generating datasets
for the user through the WMS server on the cloud. The first is the
aforementioned pre-rendering of data into standard time-series

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1172977

Kharol et al. 10.3389/fenvs.2023.1172977

ODaly O Monthy.

= F n Search Parameters
Soarch Aara 7 | 3 i Range
) . Oveaity © Quston Range

Fom o
1115208 @ 123112000 ®

Dataset
ONoz OveNoz O FxNO2
ONH3 OVINIE O Fxtil

ORN @ FRN
Optional Paraimigen
Colobar
Lo N
B 3ee ™ hame am K Framers
et v ) 3
ie: 02 Max; 000
Buurds.
8 Cip Dourds.
Southwest: 500 1200
Northeast: | 0.0 %0
LItens
Selactad: FXRN_018/1/1-202012/31
Layer Name

8 Gerersos harre from Search Paramesers

Laver 1

FIGURE 5
Example of clipped 3 year mean reactive nitrogen (Nr) dry deposition flux data for the period of 1/1/2018-12/31/2020 from Southwest to Northeast

bounding box.

Search Parameters

Range
O Daily O Monthly O Yearly ® Custom Range
From To

1/1/2018 @ 12/31/2020 ®
Dataset

ONO2 OvdNno2 O FxNO2
ONH3 OVdNH3 O FxNH3
ORN  @FxRN

Optional Parameters

Colorbar

Min: 0.0 Max; 100.0

Bounds

O Clip Bounds

Southwest: 500 -1200

Northeast: 300 -70.0

Layer Name
Generate Name from Search Parameters

Layer 1

FIGURE 6
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(i.e., daily and monthly files) where the intensive workload is already ~ that have not already been rendered (pre-processed). An example of
done allowing for very quick viewing and loading of the datasets,and  the custom dynamic process flow would be good if the client makes a
the second being more custom dynamic searches for subsets of data  request to the cloud using the RNFM custom selection that has not
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FIGURE 7

Three-year average dry deposition flux map of NHz, NO,, and Nr (NHz+NO,) for 1/1/2018 to 12/31/2020 over North America.

already been pre-processed (i.e., the weighted average of data from
15 March 2018 to 31 July 2018). In this case, the algorithms on the
cloud are used to process and render the requested data in real time
that will then be displayed on the user’s local machine when
completed. Since the rendering needs to be done, the trade-off
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for this is that it takes some time to complete before being
displayed on the client’s local machine. This means that for both
workflows all intensive work is already pre-done on the cloud or will
be done on the cloud. This provides a user-friendly way for users to
quickly view and analyze various complex datasets with minimal
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system requirements and performance. The RNFM application can
be accessed through https://atmoanalytics.com/rnfm.html.

Figure 2 shows the study area domain map of RNFM where
the points represent the latitude/longitude coordinates for which
samples were attempted on each day. This region is defined by the
GEM regional model output, but can be expanded depending on the
availability of model outputs as the satellite observations themselves
are global. Fill values (i.e, Nan) are assigned if good quality satellite
observations for a specific region are not available (e.g., due to cloud
cover). While the majority of data processing is currently performed
offline on supercomputers, there are some extra steps needed to
format this preprocessed data in such a way that it can be served via
the WMS server hosted on the cloud to the end-users.

Since satellite observations are typically not on a regular grid, a
Triangular Interpolation Network technique is used to format the
satellite data into a gridded raster format that also allows datasets to
be served to the end-users via the WMS from the cloud. Then these
gridded raster files are clipped by the border file (as shown above in
Figure 2), which is generated using a convex hull algorithm on all
sampled point data. Once these steps are complete, the raster files are
uploaded to the WMS server on the cloud and accessed from the
RNFM. These algorithms are already performed for standard time-
series, or are done on-the-fly from custom user searches on the cloud
as stated earlier.

Frontiers in Environmental Science

In order to visualize the datasets (which are residing on the
cloud platform) on a user’s local machine, the user will first need to
specify the required inputs using the “Range” and “Dataset” tabs in
the search parameters as shown in Figure 3. Here the daily,
monthly, and vyearly search parameters will display pre-
rendered datasets from the specified day/month/year, whereas
the custom search parameter will display datasets that will be
dynamically processed on the cloud for the specified date range.
After this, the user can specify the dataset (one selection at a time)
to view the surface concentration, dry deposition velocity, and dry
deposition flux for nitrogen dioxide and ammonia. Once these
parameters are specified, the user can search for the specified
dataset, with the option of providing a user-specified name for the
layer that will be displayed on the map. If the layer name is not
defined by the user, then a name will be generated automatically for
the layer based on their search parameters. Optional parameters
include displaying the layer with a custom color palette and
searching for data within a specified geographical region. These
optional parameters can also be changed later on for that layer as
the user sees fit.

After searching for a specified dataset through search parameters
(an example shown in Figure 3), the layer will be added to the layer
tree with user-specified or automatically generated layer name as
shown in Figure 4. The layer tree is a powerful tool that allows users
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Average dry deposition flux map of NHz, NO,, and Nr (NH3+NO,) for 3-year period (1/1/2018 to 12/31/2020) over Alberta, Canada.

to work with multiple datasets on a single map. The layer tree also
allows the users to select their choice of basemap, topographical
layer, state/province boundaries to be displayed together with the
selected datasets map. In addition to that, the interactive layer tree
allows users to add/remove layers to the map by checking/
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unchecking their corresponding check box. Checked layers are
then displayed in order from the bottom to top where the
bottom layers of the layer tree overlay the layers above it on the
map. The base maps at the top of the layer tree are rendered first on
the map and are overlaid by the following checked layers. Users can
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also drag and drop layers on the layer tree to new positions, which
will affect the order they are displayed on the map.

Since layers have their own unique features, various functions
can be performed on individual layers. The user has multiple options
to customize the layer as they see fit including changing the layer’s
style, opacity and clippings by selecting (or “right-clicking”) a layer
in the layer tree. The general statistics for that given layer (i.e., min,
max, average, percentage of points affected by cloud coverage) will
be displayed by selecting a layer (as shown in a blue highlight when
selected), and provide the flexibility to user’s to modify the selected
layer through multiple tools. These tools are selectable on the top left
corner of the interactive map and allow the user to clip the layer by
drawing rectangles or their own custom polygons as shown in
Figure 5, and also provide an option to change the opacity of the
layer using the opacity function.

Figure 6 shows the 3-year mean (2018-2020) reactive nitrogen
dry deposition flux map generated by RNFM in real time using the
custom range selection and preprocessed data files uploaded on the
cloud. Similar to reactive nitrogen dry deposition flux map, users
can generate the average map of any datasets (e.g., reactive
nitrogen concentration, NH; and NO, concentration etc.)
defined in search parameters under the datasets option for their
choice of custom date range and geographical region. The selection
of a custom date range is one of the key features of RNFM which
provides more flexibility to users to select any time-period to
generate the average maps instead of pre-defined averages within
the RNFM domain region.

Application

To illustrate RNFM’s ability to readily provide the reactive
nitrogen flux information for interpretation we have applied it to
example case studies. An overall example is provided in Figure 7
showing 3-year average maps of NHj;, NO, and reactive nitrogen
(Nr (NH3+NO,)) dry deposition fluxes across North America that
were generated using the RNFM’s custom range on-the-fly options.
The individual spatial distribution maps of NH; and NO, dry
deposition fluxes in Figure 7 shows that the elevated NH; dry
deposition generally coincides with the agricultural regions,
whereas the NO, dry deposition hotspots are mainly located over
the cities and industrial regions across North America (Kharol et al.,
2018). The combined spatial map of reactive nitrogen dry deposition
flux provides cumulative information of the reactive nitrogen
deposition from both atmospheric species.

Another example application is the use of RNFM to investigate
the changes in the reactive nitrogen dry deposition fluxes by season.
Figure 8 shows the seasonal maps of reactive nitrogen dry deposition
fluxes for winter (December-January-February), spring (March-
April-May), summer (June-July-August) and fall (September-
October-November) over North America for the period of
December 2019 to November 2020. The NH; and NO, emissions
and lifetime (McLinden et al., 2014; Shephard et al., 2020) as well as
their dry deposition velocities (Zhang et al., 2003) vary by season
and affect the ambient concentrations and its deposition. It is
evident from Figure 8 that the reactive nitrogen deposition from
NH; is greater during the growing season (i.e., spring and summer)
over the agricultural regions (Shephard et al, 2020), whereas
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deposition from NO, is greater during fall and winter seasons in
urban/industrial regions (Nowlan et al., 2014; Kharol et al.,, 2018).

As previously noted, the RNFM also provides an opportunity for
users to zoom into a region of interest and visualize/analyze the
reactive nitrogen dry deposition in greater detail for that area.

To demonstrate this, here we have clipped the 3-year average of
NHj;, NO, and Nr dry deposition fluxes over the province of Alberta,
Canada as shown in Figure 9. The province of Alberta, Canada is a
good example as it has separated source regions of NH; and NO,. As
seen in Figure 9 the NO, dry deposition hotspots are mostly located
near/over the Athabasca oil sands region (Latitude: 57.02 N,
Longitude: 111.65 W), urban and industrial regions. Also shown
in the figure are the large NH; hotspots in and around Lethbridge
(Latitude: 49.69 N, Longitude: 112.84 W), which has many
concentrated animal feeding operations (CAFOs)) and the main
agricultural regions of the province. These example applications
demonstrate how easily RNFM can make new research results
available to make informed decisions on mitigation strategies for
environmental protection in a timely manner.

Summary

The RNFM component of interactive CDM allows users to
obtain easy access to the new satellite-derived dry deposition of
reactive nitrogen from NO, and NH; using a user-friendly GUL The
RNFM component provides researchers, stakeholders, and other
interested parties with access to new scientific research information
on the cumulative effects of reactive nitrogen in land and water
ecosystems that can lead to soil acidification, biodiversity loss, and
eutrophication (e.g., algal blooms). The CDM is a powerful cloud-
based platform application that generates and displays large
satellite-derived datasets alleviating numerous hurdles that would
otherwise make it much more difficult, time consuming, and
resource demanding (storage and computational burden) for
users to work with in a meaningful way. The RNFM component
of CDM helps overcome the scarcity of ground-based reactive
nitrogen dry deposition flux measurements by providing
additional new satellite-based information that decision-makers
can use to make more informed and timely decisions on
mitigation strategies for environmental protection. This CDM
architecture can also be enhanced in the future to take advantage
of upstream near real time observations directly available on cloud
computing platforms.
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Appendix A:
Datasets

Ammonia (NHz)

We use the NASA/NOAA SNPP Cross-Track Infrared Sounder
Satellite (CrIS, v1.6.3) retrieved level-3 gridded surface NH;
concentrations obtained from the CrIS Fast Physical Retrieval
algorithm (CFPR), which is described in detail by Shephard and
Cady-Pereira (2015), and with updates in Shephard et al. (2020) and
White et al. (2023) for the period of 2018-2020 over North America.
CrIS is an infrared nadir pointing instrument in a sun-synchronous
orbit (824 km) with a mean local daytime overpass time of 13:30,
and a mean local nighttime overpass time of 1:30 in the descending
node. Here, we only used daytime (i.e, 13:30 LST) satellite
observations and filtered the data for clouds.

Nitrogen dioxide (NO,)

Unlike NH3, the main retrieved parameter of NO, from the
Sentinel-5P  (S5P) TROPOspheric  Monitoring  Instrument
(TROPOMI) version 2 (S5P-PAL) data is a total column values
that then must be converted to a surface concentration values in a
two-step process that utilizes output from the Environment and
Climate Change Canada (ECCC) Global Environmental Multi-scale
- Modelling Air quality and Chemistry (GEM-MACH) regional air
quality model. First, the tropospheric vertical column densities
(VCDs) are improved for North American monitoring using the
approach described in Griffin et al. (2019), and then the VCDs are
converted to surface concentrations following the approach
described in McLinden et al. (2014) by scaling the satellite
derived VCDs by the ratio of the model surface concentration to
model VCD:

C
C= Vt_satellite X <7> (1)
t / model

Where C is the surface concentration (ppb), and V; is the
tropospheric VCD. For the profile and
concentrations, the GEM-MACH operational model is utilized
(Moran etal.,, 2010; Pendlebury etal., 2018) with a 10 x 10 km? grid
cell size for the North American domain. The operational forecast

model surface

makes use of 2013 emissions information (Zhang et al., 2018). For
the conversion we select the daily model output with the closest
coincidence to the observation. Since the operational
GEM-MACH model is missing sources in the free troposphere,
such as lightning and aircraft, a monthly mean GEOS-Chem free
tropospheric VCDs (Bey et al, 2001) are added to the
GEM-MACH VCDs. These correspond to adjustments of ~0.3-
lel5 molec/cm®.

TROPOMI is a nadir-viewing spectrometer on board the S5P
satellite, launched on 13 October 2017. TROPOMI is in a sun-
synchronous orbit with an overpass time of 13:30 LST and provides
near-daily global coverage of NO, with a ground spatial resolution of
3.5 x 5.5 km®. More details about TROPOMI are described in Griffin
et al. (2019). Here, we only use the TROPOMI observations with
“quality assurance value” (qa_value) > 0.75 (the recommended pixel
filter, https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-

Nitrogen-Dioxide-Level-2-Product-Readme-File), which remove the
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less accurate observations (i.e., cloud-covered observations, snow/ice
covered observations, errors, and problematic retrievals).

Appendix B:
DRY deposition flux calculation

The daily reactive nitrogen dry deposition fluxes are computed using
an inferential method, which combines modeled dry deposition
velocities according to the resistance analogy (Wesely, 1989; Zhang
et al., 2003) and satellite-derived near-surface observations of NH; and
NO, over North America between 2018-2020. The deposition velocity is
a function of the surface type and properties, and meteorological
parameters. Here, we calculated the dry deposition velocities of NO,
and NH; according to Zhang et al. (2003) approach and used the
meteorological inputs produced by the Environment and Climate
Change Canada’s Global Environmental Multiscale Model (GEM)
together with MODIS land-use/land-cover and leaf area index (LAI)
inputs. More details on this approach is described in Kharol et al. (2018).

The dry deposition fluxes are calculated on a 15 km x 15 km GEM
grid. The satellite-derived surface concentration of NH; and NO, are
first calculated on 0.1 x 0.1 (~10 x 10 km) grid and regridded to the
GEM grid (i.e., 15 km x 15 km). The Gaussian distance weighting from
the centre of the grid is used to place the averaged surface NHj
concentrations on a 0.1 x 0.1 grid. The total sum of the weights
also provides information on how well the area in the grid is sampled by
the satellite observations. For example, low total weight in a grid
indicates that a grid is not sampled well for a given day (e.g., due to
cloud cover), where a high weight total indicates the grid was well
sampled by the satellite observations (e.g., under clear-sky atmospheric
conditions). Missing days are taken care of in the flux calculations by
assigning a weight value of 0 for days with no observations. These
weights are applied to the weighted average calculations in the scene as
described in Appendix C. To easily manage missing observations in the
gridding and averaging of TROPOMI measurements we also assign
weights to the NO, surface concentrations of either 0 or 1, where 0
represents no NO, observations available, and 1 represents available
NO, observations. Similar to the CrIS NH3, these weights are applied to
the weighted average calculation described in Appendix C.

Appendix C:

The averages of concentrations, dry deposition velocities and dry
deposition fluxes are calculated on the cloud VM as follows:

" Fa x Weight
FluxAvemge (Fsatwavg) — Zd:l _ d X . eigntg
Y Weight,

2 (C g x V) x Weight,
B Yo Weight,
n Csut W . ht
Concentration Average (Csatwmg) - Qi : d X. eighty 3)
Ya-Weight
_1Va X Weignt,
_ ;1V Weigh

Deposition Velocity Average (VWW) = W (4)
d=1

)

Where,
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Fsat ;= Satellite-derived daily dry deposition flux of reactive
nitrogen from NH; or NO,

Cs 4 = Satellite-derived daily surface concentration of NH; or NO,
V4 = Daily dry deposition velocity of NH; or NO,

Weight; = Weight assigned to the satellite-derived surface
concentration of NH; or NO,

d = number of days (ie., 1,2,3....n)

The reactive nitrogen concentrations and dry deposition fluxes
of NH3+NO2 is calculated as follows:

(5)

sat _ sat sat
(C W“V9)NH3+N02 - (C w“"g)NHS + (C “’“"9)1\102
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sat _ sat sat
(F w“Vg)NH3+N02 - (F “’“"9)1\11-13 * (F "’“Vg)NOZ ©)
Where.
(C" yavg)Nms = Satellite-derived average concentration
g 8
of NH3
(C havg)noa = Satellite-derived average concentration
g/NO. &
Of NOZ

(F‘“twa.,g) ~m3 = Satellite-derived average dry deposition flux of
reactive nitrogen from NH;
(F* wavg)no2 = Satellite-derived average dry deposition flux of
reactive nitrogen from NO,
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Vegetation coverage reflects the degree of environmental degradation. Timely
and effective monitoring of vegetation conditions is the basis for promoting
vegetation protection and improving the ecological environment of mining
areas. Exploring vegetation coverage extraction methods and selecting the
optimal vegetation index in mining areas can provide scientific reference for
estimating vegetation coverage based on vegetation index in mining areas.
Uncrewed aerial vehicles (UAVs) are widely used because of their fast real-time
performance, high spatial resolution, and easy accessibility. In this study, the
performances of nine visible vegetation indices and two threshold segmentation
methods for extracting vegetation coverage in a post-gold mining area in the
Qinling Mountains were comprehensively compared using visible spectrum UAV
images. Of the nine indices, the excess green index (EXG) and visible-band
difference vegetation index (VDVI) were the most effective in discriminating
between vegetation and non-vegetation by visual interpretation. In addition, the
accuracy of the bimodal histogram threshold method in extracting vegetation
coverage was higher than that of Otsu’'s threshold method. The bimodal
histogram threshold method combined with EXG yielded optimal extraction
results. Based on optimal methods, the total percentages of fractional vegetation
coverage in 2019, 2020, and 2021 were 31.47%, 34.08%, and 42.77%,
respectively, indicating that the vegetation in the mining area improved. These
results provide valuable guidance for extracting vegetation information and
evaluating vegetation restoration in mining areas.

KEYWORDS

remote sensing, uncrewed aerial vehicle, vegetation coverage, eco-monitoring, post-
mining area

44 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fevo.2023.1171358/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1171358/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1171358/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1171358/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.1171358&domain=pdf&date_stamp=2023-07-12
mailto:hanshuanglei@chd.edu.cn
https://doi.org/10.3389/fevo.2023.1171358
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/science#editorial-board
https://www.frontiersin.org/journals/science#editorial-board
https://doi.org/10.3389/fevo.2023.1171358
https://www.frontiersin.org/journals/science

Chen et al.

1 Introduction

Vegetation restoration and reconstruction are key components of
ecological restoration in mining areas and are effective ways to
improve the quality of the local ecological environment (Li et al,
2019). Therefore, obtaining vegetation information quickly and
accurately in mining areas to evaluate the status of local ecological
restoration is an urgent issue. As an important indicator of vegetation
status, fractional vegetation coverage (FVC) is defined as the
percentage ratio of the vertical projection area of vegetation
(including leaves, stems, and branches) on the ground in a
statistical area (Jia et al,, 2015). FVC is not only the main indicator
of regional environmental status and quality assessment but also an
important part of terrestrial ecosystem research. Thus, accurate and
rapid extraction of vegetation coverage requires timely monitoring of
vegetation change, which is crucial for protecting biodiversity and
promoting economic development.

Currently, remote sensing observations and land surface
measurements are primarily used to monitor FVC (Lu et al,
2020). As a low-cost and highly efficient monitoring technology,
remote sensing can provide objective and accurate environmental
monitoring for large-scale mining areas. With the rapid
development of satellite remote sensing technologies, many
vegetation products, such as those derived from NOAA/AVHRR
(Boyd et al,, 2002), TM/Landsat (Voorde et al., 2008; Leng et al.,
2019), and Terra & Aqua/MODIS (Song et al., 2017), have
facilitated large-scale monitoring of vegetation coverage.
However, for small-scale areas, such as mining areas with
complex topography and heterogeneous habitats, monitoring
FVC using satellite remote sensing technologies is challenging
because of their relatively coarse spatial resolution and long
revisit period. Furthermore, although in situ measurements have
high accuracy, they are usually time consuming and labor intensive,
rendering them unsuitable for real-time and long-term monitoring.
Notably, uncrewed aerial vehicles (UAVs) have the advantages of
strong real-time performance, high spatial resolution, and easy
access; thus, they have attracted wide attention as a novel and
improved method to extract vegetation coverage with high
efficiency and precision on small spatial scales in agriculture,
forestry, surveying, mapping, and other related fields (Watanabe
et al., 2017; Schofield et al., 2019; Ana et al., 2021; Guo et al., 2021;
Park et al., 2022; Mishra et al., 2023).

Compared with multispectral, hyperspectral, and other sensors,
visible light sensors are better options for extracting vegetation
coverage via UAV technology owing to their outstanding
advantages, such as low cost and are less affected by weather and
light (Coy et al., 2016; Jay et al, 2019; Ren et al, 2021). The
vegetation index can effectively reflect vegetation vitality and
information and is a commonly used method for extracting
vegetation coverage (Woebbecke et al.,, 1995; Hague et al., 2006;
Rasmussen et al., 2016; Kim et al., 2018; Geng et al., 2022). Various
vegetation indices have been developed based on the spectral
characteristics of green vegetation in the visible light band, such
as the green leaf index (Shane et al, 2021), green-red vegetation
index (Zhang et al, 2019), and difference-enhanced vegetation
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index (Zhou et al,, 2021). An increasing number of studies have
shown that vegetation coverage can be extracted using a vegetation
index derived from UAV-visible images. Therefore, the limited
wavelength information of UAV visible-light images must be used
to construct a universally applicable and highly accurate vegetation
index and effectively extract green vegetation information. Another
key aspect of vegetation coverage extraction by vegetation indices is
the determination of a suitable threshold, which can be based on
threshold segmentation methods (Akash et al., 2019). However, few
studies have used this method to determine the thresholds in
mining areas, and the effectiveness of vegetation indices in
mountainous mining areas has not yet been evaluated.

The Qinling Mountains are an important ecological security
barrier in China and provide many ecosystem services, such as
climate regulation, water yield, carbon sequestration, and
biodiversity preservation (Fu et al, 2022). Rich gold mineral
resources in the Qinling Mountains provide a good foundation for
mining activities; however, long-term mining has resulted in serious
vegetation destruction (Li et al., 2022), which has plagued sustainable
local development (Huo et al., 2022). Therefore, a rapid and accurate
method for acquisition of mine vegetation cover is required. Currently,
research on vegetation coverage extraction based on visible vegetation
index focuses mostly on cities, forests, grasslands, and farmlands with
well-growing plants (Geng et al., 2022). However, an optimal
vegetation index for extracting vegetation coverage suitable for
Qinling gold mining areas with sparse vegetation and complex
terrain has not yet been determined. Furthermore, previous studies
focused on extraction methods for the current vegetation situation and
lacked long-term monitoring. Therefore, an abandoned gold mining
area in the Qinling Mountains was selected as the research area, and
high spatial resolution visible spectrum images obtained by a UAV
were used as the data source. The objectives of this study were to
(1) compare the performances of nine visible light vegetation indices
(RGRI, BGRI, EXG, EXGR, NGRDI, NGBDI, RGBVI, VDVI, and
VEG) and two threshold segmentation methods (bimodal histogram
method and Otsu’s threshold method) in the extraction of vegetation
coverage information; (2) select the optimal combination of the
vegetation index and threshold segmentation method with high
extraction accuracy and wide applicability; and (3) analyze the
interannual variation of FVC in the study area using results obtained
by the optimal combination. This study provides scientific guidance for
rapidly and accurately extracting vegetation coverage and offers
technical support for evaluating vegetation restoration in mining areas.

2 Materials and methods

2.1 Study area

The study area is located in the southeastern part of Shangluo
City, Shaanxi Province, China (Figure 1). It is between 108°34'20"'-
111°1'25"" E and 33°2'30"'-34°24'40"" N. The study area is located
in the Qinling Mountains and has a warm, temperate climate. The
mean annual temperature is 12.2°C, the mean annual precipitation
is 804.8 mm, and the mean annual sunshine duration is 1947.4 h.
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FIGURE 1

(A) Geographical location and (B) UAV image with a spatial resolution of 0.0436 m of the study area.

The soil type is yellow cinnamon. It is high in the northwest and low
in the southeast. A gold production company in the research area
began operations in 1999 and ceased production after a dam failure
in 2006. Even after several years, bare slag still poses a serious threat
to human health, and this research area has been listed as a key area
for heavy metal prevention and control (Chen et al., 2022).

2.2 UAV image acquisition and processing

Field and UAYV aerial surveys were conducted in August 2019,
2020, and 2021 to monitor the vegetation coverage at the research
site in the post-mining area. The UAV flight test was conducted
using a DJI Phantom 4 Pro on clear and cloudless days, and RGB-
visible images were acquired. The flight parameters are listed in
Table 1. The automatic cruise mode was used for route planning
during the flight. The flight area and route were designed prior to
conducting the experiment. The flight was 0.68 km?>. Orthoimages
of the study area are shown in Figure 1B.

TABLE 1 Flight setting of the UAV and image parameters.

2.3 Calculation of visible light
vegetation index

The basic principle behind the construction of a vegetation
index is that vegetation absorbs and reflects light of different
wavelengths. The corresponding vegetation index can be obtained
by combining different bands of remote sensing images to enhance
vegetation (Guilherme et al.,, 2018). The visible vegetation index is
mainly constructed based on the red, green, and blue bands of the
image because healthy green vegetation has a strong reflection in the
green band and weak reflections in the red and blue bands. The nine
commonly used visible light vegetation indices are listed in Table 2.

2.4 Vegetation information extraction
based on threshold

The vegetation index threshold method is effective for
discriminating between vegetation and non-vegetation

Flight setting Parameter Acquired image content Parameter
Flight speed 14.1 m/s Number of original images 300+
Photo interval 2s Picture resolution 72 dpi

Number of routes 13 Graphic form JPEG
Number of waypoints 26 Shutter speed 1/1600
Course overlap rate 80% ISO 800
Side overlap rate 60%
Flight altitude 140 m
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TABLE 2 Nine commonly used visible light vegetation indices considered in this study and the calculation formulas based on the visible spectrum.

Visible vegetation index Full name Calculation formula Reference
RGRI Red-green ratio index R/IG (Verrelst et al., 2008)
BGRI Blue-green ratio index B/G (Romina et al., 2010)
EXG Excess green index 2g-r-b (Kim et al., 2018)
EXGR Excess green minus red index EXG-1.4r-g (Sun et al., 2014)
NGRDI Normalized green-red difference index (G-R)/(G+R) (Gitelson et al., 2002)
NGBDI Normalized green-blue difference index (G-B)/(G+B) (Hunt et al., 2005)
RGBVI Red-green-blue vegetation index (G*~BxR)/(G*+BxR) (Juliane et al., 2015)
VDVI Visible-band difference vegetation index (2G-R-B)/(2G+R+B) (Wang et al., 2015)
VEG Vegetative index g/r"7p0 (Geng et al., 2022)

information in an image. Three steps are required to extract the
vegetation coverage using the visible light vegetation index. The first
step is to calculate the vegetation index, the second is to set an
appropriate threshold, and the final is to separate the vegetation and
non-vegetation parts. The accuracy of vegetation coverage
extraction largely depends on threshold selection (Wang et al,
2015). Two commonly used methods, the bimodal histogram
threshold method and Otsu’s threshold method, were applied to
determine the threshold for each vegetation index.

2.4.1 Bimodal histogram method

A bimodal histogram is an image with two obvious peaks in a
gray histogram (Zhou et al, 2021). These two wave peaks
correspond to the internal and external target points. The wave
trough between the two wave peaks corresponded to the target
point near the edge of the object. Typically, the value at the wave
trough is selected as the threshold. The calculation process of the
bimodal histogram used in this study is as follows. (1) Calculate the
average gray value (avg) and standard deviation of the pixels.
(2) Considering the average pixel value as the dividing point, find
the positions of the maximum values of the left (small peak) and
right (large peak) parts. (3) If the two peak positions are close
(within the standard deviation range), then one of the two peaks of
the histogram is very low; hence, another low peak position must be
found; otherwise, proceed to step (7). (4) Determine the position of
the pixel gray median point (midpoint). (5) If midpoints>avg, then
the small peak is on the left side of the large peak (lower gray level);
otherwise, the small peak is on the right side of the large peak
(higher gray level), and the position of the dividing point should be
adjusted accordingly. (6) Re-find the positions of the large and small
peaks. (7) The wave trough of the two peak positions is considered
the required threshold (Liang, 2002).

2.4.2 Otsu’s threshold method

Otsu’s threshold method, also known as the maximum
between-cluster variance method, is a global threshold selection
method (Otsu, 2007). This method divides an image into
background and target images based on a threshold. When the
optimal threshold is considered, the variance between the
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background and target and the difference between the two parts
of the image are the largest; that is, the optimal threshold is
determined based on the maximum between-cluster variance. The
calculation process of Otsu’s method is as follows. (1) Identify the
highest gray level in the image. (2) Take each gray level as a
threshold. (3) Calculate the number of pixels and the average
value of the two categories segmented by the threshold.
(4) Calculate the variance between the two clusters. (5) Determine
the threshold of the maximum variance (Xu et al., 2022).

2.5 Extraction accuracy evaluation
Accuracy, Precision, and Recall were calculated as follows to
evaluate the classification accuracy (Shukla and Jain, 2020):

ccuracy - TPHTIN P4 IN
Y S P TN+ FP+FN P+ N

. TP
Presicion = ——
TP + FP
TP
Recall = ———
TP + FN

where TP, which stands for “true positive,” is the object that is correctly
classified as vegetation among all the extracted objects; TN, which
stands for “true negative,” is the object that is correctly classified as non-
vegetation among all the extracted objects; FP, which stands for “false
positive,” is the object that is misclassified as vegetation among all
extracted objects; and FN, which stands for “false negative,” is the object
that is misclassified as non-vegetation among all the extracted objects.

2.6 Data analysis

The UAV images were converted into orthoimages using DJI
Terra v.3.3 software developed by DJI (Shenzhen, China).
Supervised classification, calculation of vegetation indices,
threshold segmentation, and extraction of vegetation coverage
were performed using ENVI 5.3 software.
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3 Results
3.1 Calculation results of vegetation index

3.1.1 Visual interpretation and
supervision classification

The performance of the visible vegetation indices in extracting
vegetation was evaluated by comparison with the results of the
maximum likelihood classification method (Figure 2). Fifty regions
of interest (ROIs) with non-vegetation and fifty ROIs with
vegetation were uniformly selected to verify the classification
accuracy. The overall accuracies of the typical and validation
quadrats were 99.99% and 99.39%, respectively.

3.1.2 Vegetation index calculation results

The vegetation indices derived from the gray image of a typical
quadrat are shown in Figure 3. Most visible light vegetation indices
can be used to effectively distinguish vegetation from non-
vegetation information; however, the extraction effects are
different. Some vegetation indices, such as EXG, EXGR, RGBV],
VEG, and VDV], can clearly discriminate between vegetation and
non-vegetation areas; however, BGRI, RGRI, NGBDI, and NGRDI
cannot clearly distinguish between the two and resulted in some
misclassifications, indicating poor extraction performance.
Furthermore, to analyze the pixel value ranges of vegetation and

FIGURE 2

10.3389/fevo.2023.1171358

non-vegetation in the gray image of each band and vegetation
index, 75 representative ROIs were randomly selected to count the
pixel eigenvalues of each visible band and vegetation index
(Table 3). The results indicated that the reflectance in the green
band of the vegetation was significantly higher than that of the non-
vegetation. In the BGRI, RGRI, and NGRDI gray images, the pixel
values of vegetation and non-vegetation overlapped over a large
range; therefore, vegetation and non-vegetation areas overlapped.
In addition, the calculation formulas for RGRI, NGBDI, and
NGRDI only used blue + green or red + green bands, indicating
that the red, green, and blue bands should be combined when
calculating the visible light vegetation index.

3.1.3 Threshold segmentation and vegetation
index selection

The bimodal histogram threshold and Otsu’s threshold
methods were employed to determine the threshold of each
visible light vegetation index grey image. The vegetation and non-
vegetation areas were discriminated based on the thresholds, and
the extraction accuracy was verified by comparison with the
supervised classification results. The threshold segmentation

-~

results are shown in Figures 4, 5. By jointly viewing the
orthoimages and supervised classification results (Figure 2A1,
A2), we found that the extraction results of the bimodal

histogram threshold method had fewer misclassifications, and the

3 :

|:| non-vegetation - vegetation

Original images of (A1) typical and (B1) validation quadrats and classification results of the (A2) typical and (B2) verification quadrats.
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FIGURE 3
Calculation results of nine vegetation indices for the typical quadrat

segmentation effect was obviously better than that of Otsu’s
threshold method. In the segmentation results of the bimodal
histogram threshold method, RGRI, EXGR, NGRDI, and VEG
misclassified vegetation as non-vegetation, whereas BGRI
and EXG misclassified non-vegetation as non-vegetation,
indicating relatively poor extraction accuracy. The quantitative
accuracy must be evaluated to accurately evaluate the effects of
the segmentation results. The Accuracy, Precision and Recall of
the threshold segmentation results were calculated based on the
maximum likelihood classification results (Table 4). Overall, the
classification accuracy of the bimodal histogram method was higher
than that of Otsu’s threshold method. Among the visible light
vegetation indices, EXG, based on the bimodal histogram method,
had the highest classification accuracy, with the Accuracy was
98.264%, Precision was 99. 811% and 97.572% in vegetation and
non-vegetation, and Recall was 99.913% and 94.847% in vegetation
and non-vegetation.

3.2 Suitability performance test

The reliability and applicability of EXG, VDVI, and RGBVT for
extracting vegetation coverage were verified based on the supervised
classification results of the verification quadrat. The vegetation
extracted based on EXG, VDVI, RGBVI, and the bimodal

Frontiers in Ecology and Evolution

histogram threshold method (the thresholds were 0.047603,
0.041258, and 0.075669, respectively) are shown in Figure 6. The
results of vegetation coverage extraction were compared with those
of the maximum likelihood classification (Table 5). EXG combined
with the bimodal histogram method still had the highest accuracy in
extracting vegetation coverage, followed by VDVI and RGBVI,
suggesting that EXG had the highest precision in extracting
vegetation information and could be used to estimate vegetation
coverage in mining areas.

3.3 Vegetation coverage assessment

According to the above results, EXG combined with the
bimodal histogram threshold method was used to estimate
vegetation coverage in 2019, 2020, and 2021 (the thresholds were
0.07848, 0.122353, and 0.125108, respectively). The extraction
results were statistically classified as follows: vegetation coverage
of 0-0.05 was considered a zero-coverage area, 0.05-0.2 was a low
vegetation coverage area, 0.2-0.4 was a low-moderate vegetation
coverage area, 0.4-0.6 was a moderate vegetation coverage area,
0.6-0.8 was a moderate-high vegetation coverage area, and 0.8-1
was a high vegetation coverage area (Zhao et al., 2022). Figure 7
shows that EXG can clearly discriminate between vegetation and
non-vegetation areas. From 2019 to 2021, the non-vegetation area
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TABLE 3 Differences in pixel values of visible bands and vegetation indices of the typical quadrat.

Vegetation Non-vegetation
Indicators Standard . Standard
Max S Max o

deviation deviation
Red band 30.00 194.00 96.57 23.89 68.00 254.00 177.23 43.07 0.054
Green band 66.00 211.00 132.26 20.03 78.00 249.00 176.73 38.20 0.033
Blue band 27.00 163.00 84.02 17.51 86.00 249.00 174.07 29.24 0.048
BGRI 032 0.85 0.63 0.08 0.85 1.20 1.00 0.07 0.007
RGRI 043 0.96 073 0.10 0.86 113 1.00 0.04 0.031
EXG 0.07 0.70 0.28 0.10 -0.03 0.05 0.00 0.01 0.001
EXGR -0.76 -0.22 -0.57 0.09 -0.86 -0.73 -0.80 0.02 0.012
NGRDI 0.02 0.40 0.16 0.07 -0.06 0.08 0.00 0.02 0.151
NGBDI 0.08 0.51 0.23 0.06 -0.09 0.08 0.00 0.04 0.023
RGBVI 0.11 0.75 0.37 0.11 -0.05 0.07 0.00 0.02 0.017
VDVI 0.05 045 0.19 0.06 -0.03 0.03 0.00 0.01 0.001
VEG 1.10 2.51 1.47 0.20 0.95 1.06 1.01 0.01 0.002

o

|:| non-vegetation - vegetation

FIGURE 4
Segmentation results of the bimodal histogram threshold method
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FIGURE 5

Segmentation results of Otsu’s threshold method

TABLE 4 Accuracy evaluation of the typical quadrat.

Segmentation

BGRI

EXG

EXGR

MGRVI

NGBDI

NGRDI

Otsu’s
Bimodal histogram
Otsu’s
Bimodal histogram
Otsu’s
Bimodal histogram
Otsu’s
Bimodal histogram
Otsu’s
Bimodal histogram
Otsu’s

Bimodal histogram

Frontiers in Ecology and Evolution

Accuracy (%)

92.741

96.275

81.656

98.264

75.787

82.903

75.024

82.524

91.216

96.421

75.184

80.634

99.330

96.233

100.000

99.811

99.998

99.999

99.996

99.811

99.627

95.192

99.997

99.924

51

|:| non-vegetation

89.790

96.294

73.441

97.572

64.956

75.315

64.967

74.389

87.449

96.979

64.006

71.996

3

99.667
98.278
99.999
99.913
99.998
99.998
99.997
99.886
99.809
97.828
99.998

99.953

- vegetation

Precision (%) Recall (%)

81.332
0.920
62.772
94.847
56.086
66.471
56.106
63.573
78.045
93.384
55.439
61.507

(Continued)
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TABLE 4 Continued

Precision (%) Recall (%)
Segmentation Accuracy (%)
Vegetation Non-vegetation Vegetation Non-vegetation

Otsu’s 84.722 99.999 77.880 99.999 66.936

RGBVI
Bimodal histogram 97.824 99.795 96.941 99.905 93.595
Otsu’s 76.536 99.993 66.031 99.995 56.864

RGRI
Bimodal histogram 81.725 99.866 73.602 99.918 62.882
Otsu’s 83.005 99.999 75.395 99.999 64.539

VDVI
Bimodal histogram 97.993 99.895 97.141 99.952 93.994
Otsu’s 77.195 99.997 66.982 99.996 57.560

VEG
Bimodal histogram 91.142 99.999 87.175 99.999 77.737

FIGURE 6

Verification results of the verification quadrat.

TABLE 5 Accuracy evaluation of the verification quadrat.

Precision (%) Recall (%)
Segmentation Accuracy (%)
Vegetation Non-vegetation Vegetation Vegetation
EXG 95.073 99.967 91.114 99.989 77.046
RGBVI 91.421 99.999 88.861 99.999 72.816
VDVI 93.107 99.928 91.072 99.976 76.957
A B (] D

2019 2020 2021
Year

0.05 0.2 0.4 0.6 0.8 |

Zero FVC Low FVC  Low-moderate FVC Moderate FVC Moderate-high FVC ~ High FVC

FIGURE 7
Estimated results of vegetation coverage based on EXG combined with the bimodal histogram threshold method in (A) 2019, (B) 2020, and (C) 2021.
(D) Inter-annual variation of vegetation coverage from 2019 to 2021.
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decreased, and the proportion of moderate-high and high
vegetation coverage areas increased significantly. The average
FVC values in 2019, 2020, and 2021 were 31.47%, 34.08%, and
42.77%, respectively, indicating that the FVC in the mining area
increased. The results suggest that the effect of vegetation
restoration was remarkable, and the quality of the ecological
environment improved. However, most areas in the post-mining
area had low, low-moderate, and moderate vegetation coverage,
and vegetation restoration requires further strengthening.

4 Discussion

4.1 Extraction accuracy of
vegetation coverage

The accuracy of vegetation coverage extraction was related to
both the vegetation index and threshold segmentation method. In
this study, EXG exhibited the highest extraction accuracy, followed
by VDVI and RGBVT, which is consistent with the results of Wang
et al. (2015) and Chen and Deng (2019). The calculation formulas
for EXG, VDVI, and RGNVI show the reflectance characteristics of
vegetation in the visible bands, which effectively increase the
sensitivity of vegetation to green bands and make full use of the
information in the red, green, and blue bands. Currently, the
bimodal histogram threshold and Otsu’s threshold methods are
widely used for threshold segmentation. In this study, the results of
the threshold methods for vegetation coverage extraction suggested
that the accuracy of the bimodal histogram method was
significantly better than that of Otsu’s threshold method
(Figure 5), reaffirming the results of Zhao et al. (2019). Using the
bimodal histogram method, the accuracies of RGRI, EXGR, and

10.3389/fevo.2023.1171358

NGRDI were relatively low, which may be related to the histogram
characteristics. As shown in the histogram of each vegetation index
(Figure 8), EXG, VDVI, and RGBVI showed similar changes and
obvious bimodal characteristics, whereas the histograms of RGRI,
EXGR, and NGRDI had no obvious bimodal characteristics.
Therefore, the accuracy of vegetation coverage extraction
varied greatly.

4.2 Characteristics of UAV visible
vegetation indices

Satellite remote sensing images have advantages, such as large
image areas and multiple bands (Xu et al., 2020; Guo and Guo,
2021). However, owing to the relatively coarse spatial resolution, the
interpretation accuracy is relatively limited, and the temporal
resolution often cannot meet the real-time requirements of
vegetation monitoring on a small spatial scale, such as in mining
areas. With the popularization of UAV technology, UAV images
have compensated for the deficiencies in satellite remote sensing
images in terms of spatial and temporal resolution. UAVs provide a
new data source for the acquisition of vegetation coverage
information in mining areas and offer new approaches for
monitoring vegetation growth and recovery in mining areas (Sun
et al, 2021). The results of this study indicate that vegetation
coverage data can be accurately extracted from UAV images. As
an unsupervised classification method, the visible light vegetation
index can be used to extract vegetation coverage quickly and
accurately without manual visual discrimination of vegetation
areas or non-vegetation areas. Two major advantages are
commonly associated with using visible spectrum images for
extracting vegetation coverage. One is that RGB images are low
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cost, convenient to process, and less affected by weather and light.
The other is that RGB images have a relatively high spatial and
temporal resolution, which is more suitable for local studies. For
example, Marcial-Pablo et al. (2019) indicated that the accuracy of
visible vegetation indices is higher than that of visible NIR
vegetation indices for early crop cover. Furukawa et al. (2021)
reported that RGB images provide reliable information for
vegetation monitoring. For the mining areas, the land-use type
was relatively single, and vegetation coverage could be quickly
obtained via UAV images. Moreover, the UAV-visible images
were acquired in summer, when vegetation growth was the best.
For most vegetation, summer is the most vigorous period for plant
growth, during which the vegetation exhibits the strongest reflected
spectral features. Thus, vegetation coverage can be accurately
estimated using the vegetation index.

4.3 Variation characteristics of
vegetation coverage

According to previous investigation and research results, the
soil arsenic contamination in the gold mining area is serious (the
average soil arsenic content was 93.96 mg/kg) (Chen et al., 2022).
Vegetation types are scarce (mostly herbaceous plants), and
vegetation coverage is low. The results of the vegetation coverage
change from 2019 to 2021 indicated that most natural vegetation
restoration sites had low to low-moderate vegetation coverage. This
was mainly because soil As contamination limited the normal
growth and development of plants in the early stages of
vegetation restoration (Yang et al., 2020), and community
succession was relatively slow. Increased vegetation coverage
improves the quality of regional ecological environments. With
the progress of ecological restoration, the soil arsenic content has
decreased, and plants have developed their own unique
physiological and ecological characteristics after a period of
adaptation. The number of pixels with zero vegetation and low
and low-moderate vegetation coverage decreased, those with
moderate-high and high vegetation coverage increased, and the
overall vegetation coverage increased.

5 Conclusions

In this study, a disused gold mining area in the Qinling
Mountains was selected as the research area, and UAVs were
deployed to obtain image data with high spatial resolution in the
visible light. The performance of different visible light vegetation
indices combined with two threshold segmentation methods for
extracting vegetation coverage was evaluated. The main conclusions
are as follows. (1) Except for RGRI, NGRDI, and NGBD], the other
visible light vegetation indices effectively discriminated between
vegetation and non-vegetation in the study area. (2) EXG, VDVI,
and RGBVI combined with the bimodal histogram threshold method
had higher extraction accuracy in distinguishing between vegetation
and non-vegetation areas. (3) EXG and the bimodal histogram
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threshold method had the highest accuracy for vegetation
identification, which was the closest to the results of the monitored
and actual situations. (4) The spatiotemporal analysis of vegetation
coverage in 2019, 2020, and 2021 showed that most mining areas had
low, low-moderate, and moderate vegetation coverage, whereas the
overall vegetation coverage was low. The average FVC for the three
years were 31.47%, 34.08%, and 42.77%, respectively, indicating an
increasing trend. Future studies should continue monitoring
vegetation coverage changes to provide technical support for land
reclamation and ecological restoration in mining areas.
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Since the end of the 20th century, the use of geographic information systems and
digital elevation models has reduced the time required for and improved the quality of
morphometric analysis of the relief within river basins. However, researchers are
constantly faced with the problem of choosing the most accurate and suitable digital
terrain model for their task. Many global, regional, and local digital elevation models
are available. In this study, we comparatively analyzed the accuracy of the ASTER
GDEM, ALOS World 3D, Copernicus DEM, and SRTM DEM spatial datasets for the
purpose of catchment basin modeling for the river basins of the northwestern slope of
the Crimean Mountains (Zapadnyy Bulganak, Alma, Kacha, Belbek, and Chernaya
Rivers) as an example. For each river basin, we calculated the systematic, root mean
square, mean absolute, standard root mean square (Bessel's correction), and centered
mean absolute errors by comparing ASTER GDEM, ALOS World 3D, Copernicus DEM,
and SRTM DEM data with a 1:100,000 topographic map within the considered river
basins. We found the smallest error values for the Copernicus DEM and ALOS World
3D datasets; furthermore, we used the Copernicus DEM dataset to model the river
basins and sub-basins of the northwestern slope of the Crimean Mountains. As a
result, we identified these river basins and sub-basins for the Zapadnyy Bulganak,
Alma, Kacha, Belbek, and Chernaya Rivers, which are represented by stream basins,
valleys, gullies, and ravine systems.

KEYWORDS

GIS, digital elevation model, ASTER GDEM, ALOS World 3D, Copernicus DEM, SRTM, river,
river basin

1 Introduction

Digital elevation model (DEM) is a generic term for digital topographic and/or
bathymetric data in all their forms (Manune, 2007). A large number of studies have
been devoted to assessing the accuracy of DEM, considering both the practical and
theoretical aspects of this issue (del Rosario Gonzalez-Moradas and Viveen, 2020; Mesa-
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Mingorance and Ariza-Lopez, 2020; Uuemaa et al., 2020; Yamazaki
et al,, 2017). The number of these scientific studies has been
constantly increasing due to the improvement in existing
geodatasets and the market entry of new sets of geodata, which is
of considerable interest to researchers. In recent years, DEMs
created using unmanned aerial vehicles (UAVs) (Uysal et al,
2015; Hashemi-Beni et al., 2018; Escobar Villanueva et al., 2019;
Annis et al., 2020) have been extensively used. UAVs have high
accuracy but, in almost all cases, are inaccessible to a wide range of
researchers. DEMs are actively used in the study of glaciers (Fischer
et al., 2015; Bodin et al., 2018), forests (Balzter et al., 2015; Liu et al.,
2018), and celestial bodies (Florinsky and Filippov, 2017; Fawdon
etal,, 2018), among others. One of the largest niche areas is occupied
by studies of the morphometry of river basins (Pyankov and
Shikhov, 2017; Fang et al., 2019; Sarkar et al., 2020; Yermolaev
et al,, 2021; Zhao et al,, 2021), in which DEMs are actively used to
identify and characterize river basins.

ASTER and SRTM DEMs have been thoroughly compared. For
example, Rajasekhar et al. (2018) studied lineament extraction from
ASTER DEM, SRTM, and Cartosat for the Jilledubanderu River
basin, Anantapur district, India. Thomas and Prasannakumar, 2015
studied basin morphometry derived from topographic maps,
ASTER, and SRTM DEMs, considering an example from Kerala,
India. Nikolakopoulos et al. (2006) compared ASTER and SRTM
DEMs in Greece using two regions of Crete Island. Zhao et al. (2021)
compared the performance among typical open global DEM
datasets for the Fenhe River Basin in China.

Due to the emergence of a large number of new open datasets,
researchers have been increasingly using Copernicus DEM and
comparing different datasets (Karlson et al, 2021; Garrote, 2022;
Yuan et al, 2022). Mutar et al. (2021) considered the river basins
flowing into the Mosul reservoir (Iraq), finding that the Copernicus
DEM model was more accurate than SRTM DEM and ASTER GDEM.
However, other authors (Kramm and Hoffmeister, 2021) reported that
Copernicus DEM data can produce ambiguous results. Many studies
(Karionov, 2010; Yeritsian, 2013; Trofimov and Filippova, 2014) have
described the accuracy of the SRTM dataset. Nevertheless, other authors
(Karionov, 2010; Yeritsian, 2013) have emphasized that the accuracy of
the cartographic material obtained using the SRTM datasets is
equivalent or close to that of topographic map. In recent years,
ALOS World 3D DEM (Tadono et al, 2016) was also introduced
and its accuracy, as well as advantages and disadvantages compared
with other DEMs (Courty et al., 2019; Viel et al., 2020), have been
analyzed. For the Crimean Peninsula, SRTM are mainly used by
researchers, but comparisons with other DEMs are not given and
measurement errors are not evaluated.

Several global datasets contain information on river basins on a
global scale (Tang and Lettenmaier, 2012; Lehner and Grill G., 2013;
Dallaire et al, 2019). For example, the HydroBASINS Version
1.0 dataset contains information on river basins and sub-basins
worldwide. This dataset is not suitable for the Crimean Peninsula
due to a large number of errors, in particular, incorrect allocation of the
catchment basins’ boundaries (for example, merged boundaries of the
South Coast of the Crimean Peninsula river basins, unreasonable basin
division of the largest rivers of the Crimean Peninsula into logically
unreasonable parts, etc.). Most regional models in Europe do not
which
complicates further analysis and comparison of catchment basins

include the Crimean Peninsula in the research area,
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(Vanham and Bidoglio, 2014). Additionally, the identification of
small river basins or sub-basins for most large rivers of the Crimean
Peninsula is limited only to the main tributaries, whereas the catchment
basins of tributaries and their tributaries are practically not considered,
with the exception of the most studied and largest river of the Crimean
Peninsula, the Salgir River, as well as a small number of Crimean rivers.

Three groups can be distinguished among the studies on the
catchment basins of the Crimean Peninsula. The first small group
consists of studies (Dunaieva and Kovalenko, 2013; Narozhnyaya,
2021) that considered the river basins of the Crimean Peninsula as a
whole. Almost always (with the exception of one study
(Pozachenyuk, 2009), which is of historical value), river basins
have been automatically identified using geographic information
systems and DEMs. The second group consists of studies devoted to
river basin groups in certain regions of the Crimean Peninsula: the
river basins of the northwestern slope of the Crimean Mountains
(Vermaat et al,, 2012; Tabunshchik, 2018), the Kerch Peninsula
(Krivoguz, 2016), the Sivash region (Timchenko et al., 2020), and the
northern macroslope of the Crimean Mountains (Timchenko,
2000). The third and most numerous groups of studies has
focused on the catchment basins of different separate rivers of
the Crimean Peninsula (Vlasova, 2011; Pozachenyuk et al., 2014;
Ergina and Timchenko, 2016; Kayukova, 2016; Amelichev et al.,
2017). Moreover, in the third group, the most studied river basins
are the basins of the largest rivers and their main tributaries.

The purpose of the study is to select the most accurate DEMs
and, on its basis, to identify the basins and sub-basins of the rivers
within northwestern slope of Crimean Mountains. Specifically, the
main contents of this study are as follows. In the Section 2 “Materials
and Methods,” four DEMs are compared with a topographic map
and a general scheme of research using geoinformation research
methods are presented. In the Section 3 “Results,” the calculation of
measurement errors typical for various DEMs are shown. Also, the
result of modeling the allocation of basins and sub-basins of the
rivers of the northwestern slope of the Crimean Mountains are
presented. In the Section 4, discussion of the obtained results and
their comparison with other regions of the world are shown. Also, in
the Section 4, the difficulties that the authors encountered while
working on the article and ways to solve them are described. In the
Section 5, conclusions and implications are given.

2 Materials and methods
2.1 Study area

The basins of the Zapadnyy Bulganak, Alma, Kacha, Belbek,
Chernaya Rivers are located in the southwestern part of the Crimean
Peninsula (Figure 1). The area of the studied territory comprises
approximately 2,299 sq km. The rivers originate in the Crimean
Mountains and flow into the Black Sea (Tabunshchik et al., 2022).
2.2 Materials and methods

We chose the DEMs for identifying river basins by selecting

those most suitable for the study geodatasets, with the highest spatial
resolution, and distributed under an open license. We thus selected
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FIGURE 1
Geographical location of the study area (Tabunshchik et al., 2022).
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FIGURE 2

Model for identifying river basins on the northwestern slope of Crimean Mountains and their sub-basins within basins of Zapadnyy Bulganak, Alma,
Kacha, Belbek, and Chernaya Rivers [compiled by us using (Samsonov, 2022)].

ASTER GDEM (Version 3, 2019), ALOS World 3D (Version 3.2,
2021), Copernicus DEM (Version 3, 2021), and SRTM DEM
(Version 3, 2013) for this study among all DEMs available to us.
The spatial resolution of these DEMs is 30 m/pixel.

As a DEM differs from the real terrain elevation, as for each
pixel, an average value is given, we verified the selected DEMs by
comparing the height marks and elevation values obtained from the
topographic map. From a topographic map with a scale of 1:
100,000 [which was previously linked to the WGS 84 UTM zone
36 N (EPSG: 32,636) projection], we obtained sample values of
several peaks (mountains, points) and isohypses, which we then
compared with the elevation values of the same points on each of the
considered DEMs through a simple spatial relationship. For these
purposes, a point shapefile was created containing the elevation
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values of points from a topographic map. Then, using the tools
“Spatial Join” and “ Extract Values to Points,” the elevation values
from each DTM for each point were obtained. In total, we selected
100 points for each catchment basin, and then we compared the
obtained data. Accuracy was calculated according to a previously
reported method (Onkov, 2011). An additive error model was
adopted during statistical data processing. According to this
additive error model, we calculated the difference in heights of
the DEM H pgy and the topographic relief H topo as

AH = Hpgy — Hroro (1

Land was considered as the sum of systematic Ay and random Ah
errors:

AH = Ay + Ah. )
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TABLE 1 Comparison of accuracy of absolute heights in study area according to a topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

Copernicus
Systematic error, m 7.7 -3.8 -34 -9.5
Root mean square error, m 14.0 12.8 8.7 14.9
Mean absolute error, m 10.3 7.4 6.0 10.9
Standard root mean square error, m 21.9 19.0 14.3 113
Centered mean absolute error, m 39 39 34 2.7

TABLE 2 Comparison of accuracy of absolute heights in Zapadnyy Bulganak River basin according to topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

Copernicus
Systematic error, m -3.8 -2.7 -1.5 -1.9
Root mean square error, m 6.7 4.4 3.6 3.7
Mean absolute error, m 4.7 2.8 2.2 2.4
Standard root mean square error, m 14.7 12.8 9.6 4.8
Centered mean absolute error, m 3.0 32 2.7 1.8

TABLE 3 Comparison of accuracy of absolute heights in Alma River basin according to topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

Copernicus
Systematic error, m -10.5 -7.0 =52 -11.4
Root mean square error, m 13.3 12.1 10.0 17.3
Mean absolute error, m 11.0 8.0 6.7 12.1
Standard root mean square error, m 233 20.8 16.5 13.6
Centered mean absolute error, m 4.2 43 3.8 29

TABLE 4 Comparison of accuracy of absolute heights in Kacha River basin according to topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

Copernicus
Systematic error, m -12.6 -9.1 -7.1 -16.1
Root mean square error, m 19.6 13.9 12.0 19.6
Mean absolute error, m 14.8 10.9 9.5 16.7
Standard root mean square error, m 282 229 18.7 14.2
Centered mean absolute error, m 4.5 4.5 4.0 33
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TABLE 5 Comparison of accuracy of absolute heights in Belbek River basin according to topographic map at scale of 1:100,000 for various DEM sets.
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After eliminating the systematic error from the measurement
results using

Ahi :AHI'—ZH,‘ (3)
the parameters of the random component Ah were estimated.
The following types of errors were calculated in the study

(where n is the number of measurements):
1. Average elevation difference (systematic error), m;

AH; (4)

S|~
I ngh

I
-

EHZ

2. Root mean square error, m;

1 n
RMSEp = 1 ;ZAH,-Z (5)
i=1

3. Mean absolute error, M;

1 n
MAEy; = ) |AH]| (6)
n i=1

4. Standard root mean square error (Bessel’s correction), m;

1 & 5
Opn = m;Ahi (7)

5. Centered mean absolute error, m.

1 n
O = 4 m;MhJ (8)

The methodology for delineating river basins is based on the
utilization of the ArcGIS software suite in conjunction with the
DEM. It encompasses a systematic algorithm comprising a series of
steps executed using the “Hydrology” toolbox within the “Spatial
Analyst” tool.

1. The DEM is imported into the ArcGIS software suite.

2. The “Fill” tool from the “Hydrology” toolbox in the “Spatial
Analyst” toolset is employed to rectify erroneous depressions
within the DEM.

3. The “Flow Direction” tool from the “Hydrology” toolbox in the
“Spatial Analyst” toolset is applied to ascertain the flow
direction for each pixel of the DEM, which has been
preprocessed (in step 2) using the “Fill” tool.

4. The “Flow Accumulation” tool from the “Hydrology” toolbox
in the “Spatial Analyst” toolset is utilized to compute the
cumulative flow, representing the aggregated weight of all
pixels that drain into each downslope pixel in the resulting
raster. The flow direction raster created in step 3 serves as the
input.

5. The “Raster Calculator” tool from the “Map Algebra” toolbox in
the “Spatial Analyst” toolset is used to select pixels with a flow
accumulation value exceeding 25. As a result, a new raster is
generated with flow accumulation values above 25.

6. The “Stream Link” tool from the “Hydrology” toolbox in the
“Spatial Analyst” toolset is employed to create a raster linear
network wherein each section of the network is assigned unique
values, representing individual stream links. The input rasters
consist of the flow direction raster generated in step 3 and the
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TABLE 6 Comparison of accuracy of absolute heights in Chernaya River basin according to topographic map at scale of 1:100,000 for various DEM sets.

Error type DEM

Copernicus
Systematic error, m 6.1 -1.6 -0.7 -9.2
Root mean square error, m 12.4 7.2 6.8 12.2
Mean absolute error, m 10.5 5.7 52 10.5
Standard root mean square error, m 20.6 14.7 11.8 8.2
Centered mean absolute error, m 39 37 33 2.6
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FIGURE 3

Stream sub-basins on the northwestern slope of the Crimean
Mountains within the basins of the Zapadnyy Bulganak, Alma, Kacha,

Belbek, and Chernaya Rivers.

flow accumulation raster with values exceeding 25, produced in
step 5.

7. The “Stream Order” tool from the “Hydrology” toolbox in the
“Spatial Analyst” toolset is utilized to assign a stream order to
each link within the stream network raster created in step 6.

8. The “Basin” tool from the “Hydrology” toolbox in the “Spatial
Analyst” toolset is employed to generate a raster depicting river
basins based on the constructed flow direction raster (step 3).

9. The “Raster to Polygon” tool from the “Conversion” toolbox
within the “From Raster” toolset is applied to transform the
stream network raster obtained in step 7 into a polygon shapefile.

We supplemented and implemented the method for identifying
river basins and their sub-basins using ArcGIS 10.8 software and the
builtin model editor “Model Builder,” which allowed us to automate
and speed up the delineation process (Figure 2). Our identification
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of river basins is based on a previously described method
(Elkhrachy, 2018; Bajirao et al., 2019; Garrote, 2022; Samsonov,
2022). The theoretical and methodological foundations of
delineating river basins and sub-basins were extensively discussed
by Bai et al. (2015a) (Bai et al., 2015b). We automated it using the
built-in ArcGIS Model Builder (Figure 2).

We note the sensitivity of this method to the incoming sets of
spatial data: the type of DEM and its accuracy, as well as the accuracy
of tying the points of the river mouths.

3 Results

We calculated the values of five different types of errors for the
territory of the river basins of the northwestern slope of the Crimean
Mountains. These values are presented in Table 1. Table 1 shows
that the errors for ASTER GDEM and SRTM DEM were the largest;
those of ALOS World 3D and Copernicus DEM were the smallest.
Additionally, the values of errors within the basins of the Zapadnyy
Bulganak, Alma, Kacha, Belbek, and Chernaya Rivers were analyzed
(Table 2, Table 3, Table 4, Table 5, Table 6).

The Copernicus DEM is most suitable for the analysis of the
morphometric characteristics of the river basins of the northwestern
slope of the Crimean Mountains. This DEM has a spatial resolution
of 30 m/pixel.

Based on the Copernicus DEM, the boundaries of the streams
sub-basins within the basins of the Zapadnyy Bulganak, Alma,
Kacha, Belbek, and Chernaya Rivers were identified as a result of
modeling and partial manual correction of the obtained model
results (we selectively checked for the presence of errors in the
boundaries of the selected sub-basins). The obtained results are
shown in Figure 3.

Figure 3 shows that we identified 3,293 sub-basins in the study
area, which form the valley, gully, and ravine systems of the study
area. The basin of the Western Bulganak River has 207 sub-basins,
the Alma River has 860 sub-basins, the Kacha River has 855 sub-
basins, the Belbek River has 747 sub-basins, and the Chernaya River
has 624 sub-basins.

4 Discussion

After analyzing the data presented in Table 1, Table 2, Table 3,
Table 4, Table 5, Table 6, we found that the error values of the
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TABLE 7 Comparison of basin areas of the Zapadnyy Bulganak, Alma, Kacha, Belbek, and Chernaya Rivers.

Area, km? Difference from literature data, %
SRTM DEM Copernicus DEM According to ( SRTM DEM Copernicus DEM
Zapadnyy Bulganak 177.1 174.6 180 2 3
Alma 641.8 631.8 635 -1 0
Kacha 570.9 573.3 573 0 0
Belbek 492.1 491.1 505 3 3
Chernaya 430.5 428.0 427 -1 0

Copernicus DEM, which has a spatial resolution of 30 m/pixel, were
the lowest. Using the same technique with different data as the input
to the model may have led to the obtained results slightly differing.
This may concern both the boundaries of the study region and the
software products on which the data were processed. For example, if
we compare our earlier calculations of the area of catchment basins
using SRTM DEM (Tabunshchik, 2021a) with those obtained using
Copernicus DEM and data from the literature, insignificant
differences are observed. Here, on the entire-basin scale, these
changes are insignificant, and the differences are mainly related
to the number of points along which the outer boundaries of the
river basins are drawn.

We compared our data with those calculated by researchers for
other regions. Karwel and Ewiak (2008) reported that the accuracy
of SRTM within the flat part of the territory of Poland is 2.9 m, and
5.4 m for mountainous and foothill areas. Calculations (Orlyankin
and Aleshina, 2019) showed that within the river basins of the
northwestern slope of the Crimean Mountains, the systematic error
of elevation calculated from the SRTM dataset, with a spatial
resolution of 90 x 90 m, is +1 m.

Mutar et al. (2021) indicated that the RMSE of Copernicus
DEM is 1.3 m in Iraq, which is 2.6 times more accurate than the
SRTM DEM dataset and 5.2 times more accurate than the ASTER
GDEM dataset. The accuracy of the Copernicus DEM dataset in
China is 6.73m (Li et al., 2022). Santillan and Makinano-
Santillan (2016) found that when comparing datasets within
the Philippines, the AW3D30 dataset most accurately
represents true heights compared with the SRTM and ASTER
GDEM datasets, because the AW3D30 dataset has the lowest
mean error, RMSE, and standard deviation. Elkhrachy (2018), for
the territory of Saudi Arabia, reported that when comparing
DEM and a topographic map at a scale of 1: 10,000, which was
chosen as a reference, the vertical accuracy of the SRTM and
ASTER datasets is £6.87 and +7.97 m, respectively. Dong et al.
(2015) conducted an accuracy assessment of ZY-3, SRTM, DLR-
SRTM, and GDEM in Northeast China. GPS data was used as the
accuracy evaluation criterion for ZY-3, and the RMSE for SRTM
was found to be +2.82 m. Zhang et al. (2019) compared ASTER,
SRTM, ALOS, and TanDEM-X for flood risk mapping on the
island of Hispaniola, using GPS and LiDAR measurements. They
found that ASTER had the highest errors, while ALOS and
TanDEM-X had the lowest errors. Karabork et al. (2021)
compared AlosPalsar, Sentinel-1A, AW3D30, SRTM, and
ASTER GDEM with ground control points (GCP) obtained
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from digital aerial photographs, photogrammetric maps, or
orthophotos. They found that the mean error values for ALOS
were 1.1 m on flat terrain and 8.2 m in mountainous areas, while
SRTM had mean errors of 1.8 m on flat terrain and 7.9 m in
mountainous areas. ASTER had mean errors of 1.0 m on flat
terrain and 8.4 m in mountainous areas. Purinton and
Bookhagen (2021) compared the accuracy of SRTM, ASTER,
ALOS, TanDEM-X, and Copernicus DEM in the Arid Central
Andes. They found that the Copernicus DEM provided the most
accurate representation of the landscape and should be the
preferred DEM model for topographic analysis in areas where
local high-quality DEM coverage is not available.

To demonstrate the changes in the areas and morphometric
characteristics of river basins, Table 7 presents the results of a
comparison of the basins area of the Zapadnyy Bulganak, Alma,
Kacha, Belbek, and Chernaya rivers, calculated using the SRTM
DEM and Copernicus DEM datasets, as well as a comparison with
the data on river basin area given in the literature.

Using GIS, both the river basins (Ermolaev et al., 2014; Ali et al.,
2023; Sharma et al., 2023) and sub-basins (Vanham and Bidoglio,
2014; Dallaire et al., 2019) of large rivers can be identified. However,
the low accuracy of the DEM and new techniques can often lead to
distortion of the output results. As an example, consider a previously
described technique (Tabunshchik, 2021b; Samsonov, 2022), which
is based on the PCRaster Python Library and automated by Van der
Kwast as a PCRaster Tools plugin for QGIS. The application of this
technique to the river basins of the northwestern slope of the
Crimean Mountains showed a rather mixed picture that defies
logical classification (Figure 4).

Figure 4 shows that the sub-basins of the rivers were not
identified. The resulting processing result contained many errors,
and the identified without
considering watersheds, which indicates the impossibility of

boundaries of sub-basins were
applying this method in the study area.

The method proposed by Samsonov (2022) produced the best
result of modeling the sub-basins of the five largest rivers of the
northwestern slope of the Crimean Mountains (Zapadnyy Bulganak,
Alma, Kacha, Belbek, and Chernaya Rivers). We propose using a
buffer value that exceeds twice the DEM resolution’s value to
separate the points of the mouth of smaller streams flowing into
the main stream. In our measurements, we found that this value
should be equal to the pixel resolution, given the large error in
constructing and visualizing data with a buffer size of two pixels
(Figure 5).
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In some areas, we identified single image pixels that did not
belong to catchment basins, so we then manually identified them.
Additionally, the resolution of various open DEM datasets
impacts the accuracy of sub-basin identification. When
comparing DEM data with a resolution of 90 m/pixel with
those with a resolution of 30 m/pixel, the most accurate
results were achieved by the latter.

Many studies have focused on the identification of river basins
using SRTM DEM for the Crimean Peninsula (Vlasova, 2012;
Pozachenyuk et al., 2014; Pozachenyuk et al., 2015; Tabunshchik,
2021a; Narozhnyaya, 2021; Drygval, 2022). Other DEMs have
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practically not been used, which is probably due to the
popularity and widespread use of SRTM DEM.

Narozhnyaya (2021) provided a detailed description of the
morphometric analysis of the river basins of the Crimean
Peninsula; however, the description is based on the use of SRTM
DEM. A detailed description of the individual basins of the large
rivers of the Crimean Peninsula was not provided, including the five
basins that we considered. Narozhnyaya (2021) did not distinguish
the sub-basins of the rivers: only separate maps were presented that
allowed judging the distribution of certain morphometric indicators
of river basins.
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We identified the sub-basins within the basins of the Zapadnyy
Bulganak, Alma, Kacha, Belbek, and Chernaya Rivers for the first
time, and we substantially refined the available information on the
quantitative characteristics of the basins of these rivers. This, in turn,
creates many opportunities for researchers of the nature of the
Crimean Peninsula to solve many problems with more accurate
initial data. Additionally, the use of DEMs is advisable when
conducting complex engineering, geological, hydrological, and
hydrogeological studies. Several directions for further research of
the river basins and sub-basins of the northwestern slope of the
Crimean Mountains emerge from our study, in particular, their
anthropogenic transformation, searching for relationships between
climate change and changes in vegetation and land cover types;
assessing their geoecological state; preparing landscape planning
maps; and developing and implementing recommendations for
sustainable development.

In further research, it is necessary to continue comparing
different DEM datasets and identifying the most accurate and
suitable ones for specific tasks. While the study focused on
analyzing specific DEM datasets for the studied region, there is
potential in future research to examine the accuracy of various DEM
datasets in different regions and compare them to each other.
Additionally, advancements in remote sensing technologies and
data processing methods present opportunities to improve the
accuracy of DEM datasets. Further research can explore the
integration of data from multiple sources, such as LiDAR,
satellite imagery, and ground-based measurements, to enhance
the accuracy and reliability of DEMs. The use of Unmanned
Aerial Vehicles (UAVs) at the local level of investigation also
holds great interest.

5 Conclusion

Despite more than two centuries of hydrological studies of the
rivers and river basins of the Crimean Peninsula, many unsolved
problems remain. In general, the Crimean Peninsula remains
insufficiently hydrologically studied. This primarily applies to
important tasks such as the hydrological characteristics of rivers
and the morphometric characteristics of river basins, determining
the types of water management use of rivers and developing schemes
for optimizing river and river basin use, studying and predicting
possible ecogeodynamic processes under the influence of
anthropogenic factors within river basins, studying the degree of
anthropogenic transformation of the river basin, etc. Only at the end
of the 20th to the beginning of the 21st century did detailed work
begin on the identification and description of the basins and sub-
basins of the rivers of the Crimean Peninsula, which continues to
this day. However, these studies are still extremely scarce, and the
data are scattered. This study of the river basins and sub-basins
identifying the northwestern slope of the Crimean Mountains
provides a distinctive contribution to the unresolved history of
hydrological research within the Crimean Peninsula.

The use of DEMs enables the study of the main morphometric
characteristics of the river basins of the northwestern slope of the
Crimean Mountains. However, when choosing the initial data, the

least error-prone datasets should be used. The performed
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calculations showed that the smallest errors in the selection of
DEM were obtained for Copernicus DEM, which has a resolution
of 30 m/pixel. Copernicus DEM provides a sufficiently high level of
accuracy and detail, which was shown in the calculation model of the
Zapadnyy Bulganak, Alma, Kacha, Belbek, and Chernaya River
basins, as well as their sub-basins.
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Development of ground-level
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observations with ancillary data
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Thanh Thi Nhat Nguyen
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University, Hanoi, Vietnam

In this study, the aim was to create daily ground-level NO, maps for Vietnam
spanning from 2019 to 2021. To achieve this, various machine learning models
(including the Mixed Effect Model, Neural Network, and LightGBM) were utilized to
process satellite NO, tropospheric columns from Ozone Monitoring Instrument
(OMI) and TROPOMI, as well as meteorological and land use maps and ground
measurement NO, data. The LightGBM model was found to be the most effective,
producing results with a Pearson r of 0.77, RMSE of 7.93 ug/m?, and Mean Relative
Error (MRE) of 42.6% compared to ground truth measurements. The annual
average NO, maps from 2019-2021 obtained by the LightGBM model for
Vietnam were compared to a global product and ground stations, and it was
found to have superior quality with Pearson r of 0.95, RMSE of 2.27 ug/m?, MRE of
9.79%, based on 81 samples.

KEYWORDS

Sentinel 5p, OMI, ground-level NO, model, machine learning, Vietnam

1 Introduction

Air pollution poses a significant threat to the environment and human health in
many countries. In Vietnam, Nitrogen dioxide (NO,) is recognized as a particularly
important air pollutant. To monitor and manage the levels of NO, and other harmful
pollutants such as PM, s, PM;, SO,, and Os, the Ministry of Natural Resources and
Environment (MONRE) has implemented automatic and continuous monitoring
systems. However, the current monitoring of NO, in Vietnam is limited due to the
lack of representative monitoring stations across the country. In recent times, modeling
techniques utilizing data from monitoring stations, satellite imagery (remote sensing),
and auxiliary sources have gained widespread acceptance in generating spatial NO,
information. This approach provides additional data to supplement the readings from
monitoring stations, thus providing insights into the distribution of NO, concentrations
on a larger scale, especially in regions without monitoring stations. The NO, satellites
used for this purpose include the Ozone Monitoring Instrument (OMI), Global Ozone
Monitoring Experiment-2 (GOME-2), SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY), and TROPOspheric Monitoring
Instrument (TROPOMI).

Many studies have been conducted globally to map NO, using satellite imagery. For
instance, Larkin et al. (2017) used a land use regression (LUR) model to estimate global NO,
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levels in 2011 with a resolution of 100 x 100 m. They incorporated
model and satellite data/model data from SCIAMACHY, GOME-2,
and GEOS Chem, as well as land cover features such as vegetation
index, tree cover, traffic, efc., and monitoring station data from
58 countries. The model’s performance varied depending on the
region, with the coefficient of determination (R®) ranging from
0.42 in Africa to 0.67 in South America. In North America,
Europe, and Asia, the R*> value was approximately 0.52, which is
consistent with the global average (0.54) (Larkin et al., 2017). To
further enhance the accuracy of NO, mapping, a study conducted by
Anenberg et al. (2022) estimated the global average annual NO,
levels from 1990 to 2020 at a resolution of 1 x 1 km. This study used
Land Use Regression (LUR) incorporating OMI NO, and MERRA2-
reanalysis data. Results indicate that the new NO, concentration
data is more precise than that of Larkin’s study in rural areas, with a
Pearson r of 0.58 and a Root mean square error (RMSE) of 2.26
(ppb) (Anenberg et al, 2022). The results of this study have
important implications for public health, as they were able to
estimate the NO,-attributable pediatrics asthma incidence using
the improved NO, concentration data. Paraschiv examined the
relationship between OMI data and monitoring stations across
Europe during the period of 2005-2014. Their findings indicate a
Pearson r value ranging from 0.53 to 0.86 (Paraschiv et al., 2017).
Hyung Joo Lee and colleagues (2014) developed a mixed-effect
model (MEM) to estimate daily NO, concentrations in New
England, United States from 2005-2010. Their model was based
on various data sources, including station data, tropospheric column
NO, (OMI), historical land use data such as population density,
traffic, topography, as well as meteorological data such as
temperature and wind speed. They evaluated the model using a
10-fold cross-validation (CV) method and found an R? value of 0.79,
indicating good model performance (Lee and Koutrakis, 2014). In
the mentioned studies, OMI NO, satellite data is commonly used to
estimate NO, maps.

Recently, some studies have been conducted using
TROPOMI satellite data (the most recently launched satellite
with high resolution data) with Machine Learning models and
auxiliary data to estimate ground-level pollutant concentrations
(e.g., NO,, O3). A study by Kang et al. (2021) estimated ground-
level NO, and O3 with a resolution of 6 x 6 km at East Asia using
NO, data from the TROPOMI satellite, other satellite products
(Landcover, Aerosol Optical Depth - AOD, Digital Elevation
Model - DEM), meteorological data from models, and auxiliary
data (road density, population density). Several different
machine learning models were experimented, including
Multiple Linear Regression (MLR), Support Vector Regression
(SVR), Random Forest (RF), Extreme Gradient Boosting
(XGBoost), and Light Gradient Boosting Machine
(LightGBM). XGBoost showed better results when estimating
NO, with a 10-fold cross-validation R* of 0.7 and RMSE of
4.75 ppb. Long et al. (2022) map daily ground-level NO,
concentrations in China at a resolution of 0.05° using machine
learning models based on decision trees (Decision Tree, Gradient
Boost Decision Tree, Random Forest, Extra-Trees). They found
that the Extra-Trees model incorporating spatial and temporal
information performed exceptionally well in estimating ground-
level NO, concentrations, achieving a cross-validation R* of
0.81 and an RMSE of 3.45 ug/m’ in test datasets (Long et al.,
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2022). Wang et al. (2022) used Random Forest to estimate the
8-hour
concentration at a 10 km spatial resolution in California. They

daily maximum average ground-level ozone
utilized TROPOMT’s total ozone column combined with ozone

profile information retrieved by the Ozone Monitoring
Instrument (OMI) and auxiliary data (meteorological, land
use). Their model achieved an overall 10-fold CV R* of
0.84 and an RMSE of 0.0059 ppm.

Grzybowski et al.

In another study,
(2023) employed various data sources,
including Sentinel-5P, meteorological data, and other ancillary
data, to estimate ground NO, levels in Poland. Among the
methods used, the random forest (RF) model emerged as the
most accurate, with mean absolute error (MAE) values of 3.4 pug/m’
and 3.2 pug/m’ for the hourly and weekly estimates, respectively.
The corresponding mean absolute percentage error (MAPE)
values were 37% and 31%, indicating relatively moderate
deviations from the true values (Grzybowski et al., 2023). The
tree-based model demonstrates strong estimation capabilities in
air pollution estimation problems using remote sensing and
auxiliary data.

Currently, there are no studies on nationwide NO, estimation in
Vietnam utilizing satellite images and multi-source data. However, a
study conducted in 2015 developed daily PM, 5 maps for Vietnam
from 2010-2014 using a multivariable regression model (Nguyen
etal, 2015). Recently, a study provided a long-term daily PM, s map
for Vietnam from 2012-2020 using mixed effect models based on
ground PM, s measurements, integrated satellite Aerosol Optical
Depth (AOD), meteorological and land use maps (Ngo et al., 2023).
The daily mean PM, 5 maps have high validation results with ground
PM, s measurements, achieving a Pearson r of 0.87, R*> of 0.75,
RMSE of 11.76 pg/m?, and MRE of 36.57% on a total of 13,886 data
samples.

This study aimed to develop daily ground-level NO, maps
with a resolution of 1 x 1 km over Vietnam using satellite images
and multi-source data from 2019-2021. The NO, tropospheric
columns were derived from OMI and TROPOMI satellite
devices, and different models such as Mixed Effect Model,
Neural Network, and LightGBM were tested. Although the
models are not new, this is the first study to experimentally
construct a high-resolution NO, map for the entire territory of
Vietnam based on satellite data. Various machine learning
models were experimented to find the optimal model that fits
the data in Vietnam. The NO, maps hold promise in providing
useful information on NO, distribution across Vietnam,
supporting decision-making and policies to reduce NO,
pollution and improving public health.

2 Materials
2.1 Measurement data

The hourly ground measurements of NO, were collected from
monitoring stations in Vietnam. Vietnam is situated in the East of
the Indochina peninsula, at the heart of Southeast Asia, with its land
area covering 331,236 km?, stretching from (8°27'N, 102°8'E) to
(23723'N, 109°27’E). The country is divided into six distinct
economic zones, namely, the Northern Midlands and Mountains,
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Red River Delta (RRD), North Central Coast and South Central
Coast, Central Highlands, South East, and Mekong River Delta
(MRD) as illustrated in Supplementary Figure SI.

The Northern Center for Environmental Monitoring (NCEM),
which operates under the Vietnam Administration of Environment
(VEA) under MONRE, is responsible for air pollution monitoring in
Vietnam. As of 2021, over 90 stations have been installed across the
country, with most of them located in the Red River Delta (RRD)
region. These stations measure various pollutants such as NO,,
PM;o, PM; 5, SO,, CO, O3, as well as meteorological variables like
temperature, humidity, and wind speed. Hourly NO, concentration
(ug/m®) data from 74 stations were collected between 2019-2021 in
this study, with poor quality data stations removed. The distribution
of ground stations is illustrated in Supplementary Figure S1.

2.2 Satellite data

In order to monitor air pollution at stations on a national scale,
satellite images are also used which has a larger coverage than the
traditional monitoring method. The development of satellite
technology can solve the problem of monitoring air pollution on
a large scale. For this study, we utilized two satellite based NO,
tropospheric column products, namely, OMI (Ozone Monitoring
Instrument) (Levelt et al., 2006) and TROPOMI (TROPOspheric
Monitoring Instrument) (Veefkind et al, 2012), to estimate NO,
concentrations at ground level over Vietnam.

TROPOM]I, launched in October 2017, is a satellite instrument
on board the Copernicus Sentinel-5 Precursor satellite (S5P). It
measures air quality, ozone, ultraviolet radiation, and aids in climate
forecasts with high spatial resolution. TROPOMI provides daily and
global coverage of multiple trace gases (such as NO,, CO, SO,, CH,,
CH,0, 03) and aerosol properties. Prior to Sentinel-5P, NASA’s
OMI on the Aura satellite had been observing the ozone layer and
atmospheric pollutant gases, including NO,, since October 2004.
However, the daily OMI NO, product has a lower spatial resolution
(13 x 24 km) compared to the more detailed NO, product from
TROPOMI (3.5 x 5.5 km).

Both of OMI and TROPOMI data were obtained from the
Multi-Decadal Nitrogen Dioxide and Derived Products from
Satellites (MINDS) program (Lamsal et al., 2022a; Lamsal et al,
2022b). The goal of this project is to adapt OMI operating
algorithms to other satellite devices, and to create and store
consistent multi-satellite Level 2 and Level 3 NO, products. They
adapt their well-validated OMI NO,, cloud, and geometry-
dependent surface reflectivity retrieval algorithms to satellite
instruments that include SCTAMACHY, GOME-2, TROPOMI.
The adaptation of OMI algorithms for these satellite data aims to
provide consistent and long-term records suitable for analyzing
global trends in NO,. OMI MINDS NO, and TROPOMI MINDS
NO, were both downloaded from NASA’s open source (https://disc.
gsfc.nasa.gov/). The data are listed in Supplementary Table SI.

2.3 Meteorological data

Meteorological parameters are the factors that have an
important influence on the concentration of NO, pollutant over
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time. For example, high temperature can accelerate photochemical
reactions thereby reducing NO, concentration; high relative
humidity increases the conversion rate from NOx to secondary
aerosols thereby also reducing NO, concentrations. In this study, we
utilized meteorological maps generated by the Weather Research
and Forecasting (WRF) model, which employed input data from the
fifth generation of ECMWF reanalysis (ERA-5) obtained from
(https://cds.climate.copernicus.eu) during 2019-2021. The spatial
resolution of the input data was 0.25 ° x 0.25 ° with hourly temporal
resolution. The meteorological data of the ERA-5 was used as the
initial and boundary conditions for the simulation in the WRF
model. The WRF configuration was set up with two nested domains
over Vietnam, with spatial resolution of 15 and 5 km respectively.
The output data of the model was meteorological maps (including
Temperature, Humidity, WindSpeed, Planetary Boundary Layer
Height - PBLH) with a frequency of 4 images/day at 0, 6, 12,
18 h (GMT+0) and a spatial resolution of 5 x 5km. The data are
listed in Supplementary Table SI.

2.4 Land use data

Land use factors are closely associated with the sources of
emissions. For instance, regions characterized by high traffic
density tend to exhibit elevated smog emissions from vehicles,
leading to higher concentrations of NO,. Conversely, areas
covered with vegetation generally experience lower pollution
levels compared to urbanized areas. In this study, we utilized
the following data: normalized difference vegetation index
(NDVI) map, road map. The data are listed in Supplementary
Table SI1.

The NDVI product used in this study is generated from Terra
MODIS satellite images through the MOD13Q1 product, Collection
6, level 3, which has a spatial resolution of 250 m and a temporal
resolution of 16 days (Didan, 2015). NDVI maps provide spatially
and temporally consistent observations of vegetation status in the
study area. In this study, we collected MOD13Q1 product during
2021 from NASA open source (https://search.earthdata.nasa.gov/
search).

The road map used in this study was obtained from the latest
OpenStreetMap (OSM) data in 2022, available in vector format and
comprising road shapes. OSM is a community-driven mapping service
that is freely accessible and open to the public. OSM widely employed in
various applications within the geosciences, earth observation, and
environmental sciences. OSM offers global map objects, including
data types such as nodes (representing points on Earth), ways
(polyline representations of road objects, buildings, efc.), relations
(establishing relationships between objects), and tags (containing
object-related information) (Vargas-Munoz et al., 2021).

3 Methods

This study developed daily NO, maps using a method shown in
Figure 1. The input data included NO, data from monitoring
stations, NO, tropospheric column density from satellites,
meteorological maps from the WRF model, NDVI maps, and
road maps. These data were preprocessed and integrated to
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The methodological approach for estimating ground-level NO,.

create a training dataset, which was used to develop statistical
models for generating the daily NO, map. The daily NO, maps
were then aggregated into monthly and annual averages, and
validated using station observations and compared with the
global NO, product.

3.1 Preprocessing data

The preprocessing of the monitoring station data, satellite
images and ancillary data was similar to what we did for PM, 5
pollutant published recently (Ngo et al., 2023). NO, concentration
data from monitoring stations were standardized in uniform
structure. After that, the data was cleaned and removed outliers.
The process of removing outliers was carried out in the following
steps: 1) Eliminating outliers by threshold. NO, observations with
values exceeding 300 pig/m3 or less than 1 ug/m3 were discarded). 2)
Using statistical methods to find outliers (too high/too low)
compared to measured data in the neighboring period
(+15 days). 3) Using the statistical method to find outliers (too
high/too low) compared to the measured data in the neighboring
period (£15 h), find out the outliers compared to the measured data
measured at neighboring stations. 4) Finding outliers where the
value does not change over a long period of time (Wu et al., 2018).
These outliers were manually rechecked for accuracy. Subsequently,
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the hourly data were aggregated into daily, monthly, and annual
averages for the purpose of data integration and modeling.
Multi-source satellite data, which are NO, tropospheric column
density data from OMI, TROPOMI products and NDVI from the
MOD13Q1 product, have different format, temporal and spatial
resolutions. Preprocessing is required to convert satellite data into
the same format and to project them in the same spatial grid. The
preprocessing steps for the NO, and NDVI satellite images involve
value extraction and transformation (converting value), geo-
referencing, and resampling. Value extraction and transformation
is the process of extracting related data layers and re-computing the
values based on metadata information such as offset and scale factor
of data. Geo-referencing means correlating the internal coordinate
system of a map or an aerial image to a geographic coordinate
system. In order to integrate multi-source data, a grid with uniform
coverage and spatial resolution was defined. The grid covers the
entire territory of Vietnam based on the WGS84 reference system
and has cell size of 1 x 1 km. The satellite data were resampled and
projected on this grid using the nearest resampling method for
images with spatial resolution greater than 1km (i.e, OMI,
TROPOMI, meteorological maps) and the average resampling
method for satellite images with resolution less than 1km
(i.e, MODIS NDVI, population density map). The GDAL tool
was used to perform the above processes (GDAL, 2022). All the
maps were then aggregated into daily maps for further calculation.
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Quality flag bands were used to filter out low-quality pixels
from the satellite products (OMI NO, and TROPOMI NO,) to
ensure the accuracy of the data. The bands used for filtering
“VedQualityFlag” integer), “CloudFraction”
(<0.3), and “qa_value” (>0.75), as recommended in previous
studies (Lamsal et al., 2022a; Lamsal et al., 2022b). After quality
control, the OMI and TROPOMI data were averaged on a daily
basis to create a daily satellite combined dataset with a common
grid (1 x 1 km grid).

The WRF model provides meteorological data in NetCDF
format. The Unified Post Processing (UPP) Toolkit (NCEP UPP,
2022) was used to process the WRF model output data. UPP,
which was developed at the National Center for Environmental

include (even

Prediction (NCEP), has the capability of calculating various fields
and interpolate them at different pressure levels from output data
of the WRF model. We used the UPP tool to calculate
temperature maps, humidity maps at 2m height, planetary
boundary layer height maps, wind speed at 10 m. Then, those
data were resampled on the standard grid in order to be
consistent with other satellite image products in the study
area. These meteorological maps were then aggregated into
daily mean maps for modeling.

NDVI, a MODI13Ql product from Terra MODIS, was
preprocessed similarly to those described for NO, maps, which
were value extraction and transformation, geo-referencing, and
resampling. The road map data was in vector format (shapefile),
containing road lines and line characteristics. In order to use this
feature as input of the model, the line density calculation was applied
to convert the data into raster format (grids). It calculates a
magnitude-per-unit area from polyline features, which fall within
a radius around each cell (pixel). The radius is set approximately
1 km. The output image was then applied the nearest neighbor
resampling method using the gdalwarp tool to get the same grid as
the other maps.

3.2 Integrating data

Once the maps and station data were preprocessed, they were
combined to create the training dataset. The aim was to establish the
connection between the values on the maps and the observed NO, at
the ground level. To ensure compliance with spatial and time
constraints, the following measures were taken:

« Spatial constraint: The map data was extracted at the exact
location of the ground station.

o Time constraint: The map data and ground-based NO,
observations were synchronized by calculating the daily
average values.

3.3 Modeling and validation

This study tested three different models: mixed effect model,
neural network, and LightGBM. The MEM model has been widely
used in the past to estimate pollution using satellite imagery and
multi-source data. Recently, tree-based models have shown good
results in estimating NO, maps. Therefore, in this study, we selected
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two machine learning models (MEM and LightGBM) to compare
their performance. Additionally, we also wanted to experiment with
a deep learning model. However, CNN-based models were not
suitable for the current dataset, as complex deep learning models
may not be suitable for sparse and limited data. Hence, we chose to
experiment with a neural network model with multiple hidden
layers and compared it with traditional machine learning models.

These models were fed with input parameters including NO,
tropospheric column density (combined OMI and TROPOMI),
meteorological data (humidity, PBLH), land cover (NDVI), and
road density. Temperature and Wind Speed was not included in the
input parameters due to its potential to create significant errors in
estimating NO, concentrations in areas where ground monitoring
stations are not installed in Vietnam. In other words, due to the
uneven distribution of stations, the learned characteristics from the
training dataset may not accurately reflect the patterns in areas
without stations. For example, in mountainous regions with rocky
terrain and dense forests (where there are no monitoring stations),
the estimated pollution levels may appear higher than in flatland
areas (with multiple monitoring stations, representing high emission
areas).

The mixed effects model (MEM) is a type of land-use regression
(LUR) model that consists of both fixed and random effect
components. The formula for this model can be expressed as:

N
NOZ,"}' = Zak Xk,i,j + ((X‘I’ﬁ) (1)
k=1

Where NO,; ; represents the estimated NO, concentration at spatial
location j on day i. X} ; refers to the kth parameter at location j on
day i, where N is the total number of parameters used in the model.
The oy, a coefficients denote the fixed effect component, which
includes the slope and intercept of input parameters. The S
coefficient represents the random effect of the intercept that
varies from day to day.

LightGBM is a popular gradient boosting tree algorithm (Ke
et al, 2017) used in machine learning. It utilizes a group of weak
learners to improve the performance of the model. The regressor is
optimized by adjusting hyper-parameters, such as the number of
trees, the maximum tree depth, and learning rate, through the use of
a grid search technique. The goal of this process is to improve the
model’s accuracy and reduce errors.

Neural network is a powerful method for modeling the
complex and nonlinear relationships between inputs and
outputs, which makes it suitable for studying atmospheric
chemistry processes. It usually includes input, output, and
hidden layers in its architecture (Nielsen, 2018). In this study,
the neural network architecture was customized to fit the dataset
size in terms of features and samples. During training and testing,
the optimizer/learning rate, metric, and epochs were adjusted to
optimize the performance of the model.

To assess the quality of the models, statistical indicators were
used to compare the estimated NO, levels from the model with the
actual NO, observations recorded at ground stations. The 10-fold
CV method was employed to evaluate the performance of the model.
After being trained and validated, the model was utilized to produce
daily NO, concentration maps with a spatial resolution of 1 x 1 km.
To evaluate its accuracy, the daily maps were compared with
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TABLE 1 Models’ evaluation results.

10.3389/fenvs.2023.1187592

Model N Pearson r RMSE (ug/m>) MRE (%)
All data Mixed Effect Model 9,027 0.66 9.39 54.01
Neural Network 9,027 0.57 10.25 61.63
LightGBM 9,027 0.87 6.28 34.65
10 Fold CV Mixed Effect Model 903 0.56 10.46 59.29
Neural Network 903 0.55 10.43 62.64
LightGBM 903 0.77 7.93 42.6

ground station measurements using both temporal (daily mean)
and spatial (pixel value extracted at station locations) constraints.
In addition, to provide a more comprehensive analysis, daily
ground measurements and NO, maps were aggregated into
monthly and annual averages. The annual mean of our NO,
maps was compared with the global NO, product (Anenberg
et al., 2022) for the same study area, which provides annual
average NO, datasets from 1990-2020 using a LUR method. The
comparison involved evaluating the annual averages of our maps
and the global product against ground station measurements of
NO, taken in Vietnam from 2019-2021.

To compare and evaluate the models and maps, various
statistical indicators were utilized, including the Pearson
correlation coefficient (r), Root Mean Square Error (RMSE), and
Mean Relative Error (MRE).

S (e = 9) (o - %)
VI (= 7V (e - 27

_ 1 N _ 2
RMSE = \/ﬁ Yo (e—x) (3)

1 N |)/t - x,l
MRE = Nztzl T.100% (4)

)

Pearsonr =

Here, x¢, y; represent the estimated values from the model (or extracted
from the map) and the measured values at the ground station,
respectively. X and y are the respective average values of the two
data series.

4 Results and discussion

4.1 Model validation

Supplementary Table S2 presents the selected parameters for each
model. For the MEM model, the model structure has been presented in
Section 3.3 and no parameters need to be adjusted. With the NN
network, due to the small input dataset size (9,027 samples and
5 features), we designed a small size neural network consisting of
1 input layer, 3 hidden layers including 16 nodes, 32 nodes, 16 nodes,
respectively. Adam optimizer was selected with the learning rate of
0.001. The metric used was mean squared error (MSE) and the epochs
was set to 200. With the LightGBM model, through the grid search
technique, we selected a set of parameters for the model which
presented in the Supplementary Table S2.
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Table 1 shows the evaluation results after setting up and training
the models. Among the experimental models, the Light GBM model
achieved the best performance, with a Pearson correlation coefficient of
0.87, RMSE of 6.28 pg/m®, and MRE of 34.65%. In contrast, the MEM
and Neural Network models had poorer quality. The LightGBM model
also demonstrated superior performance in the 10-fold CV, with a
Pearson correlation coefficient of 0.77, RMSE of 7.9 pg/m?, and MRE of
42.6%. Based on these results, we selected the LightGBM model to
estimate the daily NO, maps for Vietnam from 2019-2021, which were
then aggregated into monthly and annual average maps.

4.2 Map validation

A comparison was made between the daily NO, maps and
ground station measurements during the period of 2019-2021. The
scatter plot depicted in Supplementary Figure S2 supports the
findings presented in Table 1 regarding the model evaluation.
The daily maps had a high correlation with the ground station
observations, with Pearson r at 0.87, RMSE at 6.28 pg/m®, MRE at
34.65% based on 9,027 samples. However, the evaluation results
varied by stations as presented in Supplementary Table S3. Pearson r
varied from 0.27 to 0.88 with lower values at stations in Vung Tau,
Long An (SE and MRD region) and higher values in Bac Ninh,
Quang Ninh, Ha Noi (RRD region). The RMSE varied from 2.1 to
10.1 pg/m®. The stations with low RMSE values were located across
regions, while stations with high RMSE were mostly located in Ha
Noi, Bac Ninh, Quang Ninh (RRD). Furthermore, some stations
located in the same province had highly different evaluation results,
such as Bac Ninh, Hai Duong, Quang Ninh (RRD) and Gia Lai
(Central Highland), indicating the need for further investigation.

Annual average NO, maps were created by aggregating daily
NO, data from 2019 to 2021, as illustrated in Figure 2. The maps
reveal that NO, was predominantly concentrated in the Red River
Delta region in the North, along the North Central Coast, and in the
Ho Chi Minh city area in the South. These regions are critical
economic centers of Vietnam with high population density, heavy
traffic, numerous industrial parks, and factories that generate
significant NO, emissions. Across the country, the annual
average NO, concentration varied from 4.4 to 36 pg/m® in 2019,
4.2 t032.8 ug/m* in 2019 and 5.3 to 40.1 pg/m? in 2021. Notably, the
national average concentration remained relatively stable between
2019 and 2021, indicating a persistent NO, pollution problem in
Vietnam. Despite the implementation of social distancing measures
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FIGURE 2

Annual mean ground-level NO, maps from 2019 to 2021.

TABLE 2 Comparison of validation results for ours and the global annual mean maps to ground station values.

Pearson r RMSE (ug/m>) MRE (%)
2019-2020 (Anenberg et al,, 2022) 33 0.27 133 57.4
2019-2020 ‘ This study 33 0.95 2.1 8.6
2019-2021 ‘ This study 81 0.95 2.27 9.79

in response to the COVID-19 pandemic in 2019 and 2020 in
Vietnam, there was not a significant variation in the annual
mean NO, levels measured at stations. This lack of variation
resulted in no significant changes in the annual NO, maps over
the years (see Table 2; Supplementary Figure S3).

In Supplementary Figure S3, a detailed comparison is presented
between the annual average NO, concentration maps for the years
2019, 2020, and 2021, and the ground stations located in Vietnam. It
is noteworthy that the number of stations used for annual map
assessment is less than that used for daily map assessment. This is
because, when aggregating daily data into an annual average, any
station that did not have more than 50% of the data for the year was
discarded and not used for evaluation. Furthermore, in 2019, only
three stations were evaluated, whereas this number increased to
30 in 2020 and to 48 in 2021. The difference between the annual
maps and the ground stations varied from —2.5 ug/m® (Quang Ninh
-RRD) t0 0.6 pg/m* (Ha Noi - RRD) in 2019; —3.96 pg/m® (Bac Ninh
- RRD) to 4.6 ug/m* (Ha Noi - RRD) in 2020; —4.12 ug/m* (Ha
Noi-RRD) to 8.13 pg/m* (Bac Ninh-RRD) in 2021.

To ensure a thorough assessment, we compared the quality of
our annual maps from 2019 to 2021, not only against ground
stations, but also against the annual global product (2019-2020)
developed by Anenberg et al. (2022). Table 2 displays the findings.
Our annual maps showed markedly superior quality in comparison
to both the global annual maps and the ground stations. Specifically,
we achieved a Pearson correlation coefficient of 0.95, an RMSE of
2.1 ug/m’, and an MRE of 8.6%, while the global annual maps
achieved only a Pearson r of 0.27, an RMSE of 13.3 pg/m?®, and an
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MRE of 57.4%. Additionally, our map from 2019 to 2021 had a
Pearson r of 0.95, an RMSE of 2.27 pug/m?®, an MRE of 9.79%, and
81 samples, indicating the high quality of the annual NO, maps in
this study and the potential of this approach to develop NO, maps
from multi-satellite images over Vietnam.

5 Conclusion

In this study, daily NO, maps at 1 x 1 km over Vietnam were created
using OMI and TROPOMI satellite images as well as auxiliary data from
2019-2021. Three models were experimented, including MEM, NN, and
LightGBM, with LightGBM proving to have the best quality (Pearson r
of 0.87, RMSE of 6.28 pg/m’, MRE of 34.65%). The LightGBM model
was used to generate the daily NO, maps, which were validated against
ground stations and found to be accurate. However, the quality of the
maps varied by station, with Pearson r ranging from 0.27 to 9.88 and
RMSE ranging from 2.1 to 10.1 pg/m® between 2019-2021. The daily
maps were then combined to produce monthly and yearly average maps.
Our annual average map was compared to a global product and ground
stations, and it was found to have superior quality with Pearson r of 0.95,
RMSE of 2.27 pg/m?, MRE of 9.79%, and 81 samples. This is the first
study on constructing NO, concentration maps in Vietnam using multi-
source satellite data. The study encountered challenges such as uneven
distribution of monitoring stations in the research area and limitations
posed by cloud coverage on NO, satellite data (OMI, TROPOMI).
Further exploration of these issues is needed in future research to
enhance the quality of the maps.
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Introduction: Soil organic carbon (SOC) sequestration is one of the main
ecosystem services provided by well-managed grasslands. In the
Mediterranean region, sown biodiverse pastures (SBP) rich in legumes are a
nature-based, innovative, and economically competitive livestock production
system. As a co-benefit of increased yield, they also contribute to carbon
sequestration through SOC accumulation. However, SOC monitoring in SBP
require time-consuming and costly field work.

Methods: In this study, we propose an expedited and cost-effective indirect
method to estimate SOC content. In this study, we developed models for
estimating SOC concentration by combining remote sensing (RS) and machine
learning (ML) approaches. We used field-measured data collected from nine
different farms during four production years (between 2017 and 2021). We
utilized RS data from both Sentinel-1 and Sentinel-2, including reflectance
bands and vegetation indices. We also used other covariates such as climatic,
soil, and terrain variables, for a total of 49 inputs. To reduce multicollinearity
problems between the different variables, we performed feature selection using
the sequential feature selection approach. We then estimated SOC content using
both the complete dataset and the selected features. Multiple ML methods were
tested and compared, including multiple linear regression (MLR), random forests
(RF), extreme gradient boosting (XGB), and artificial neural networks (ANN). We
used a random cross-validation approach (with 10 folds). To find the
hyperparameters that led to the best performance, we used a Bayesian
optimization approach.

Results: Results showed that the XGB method led to higher estimation accuracy
than the other methods, and the estimation performance was not significantly
influenced by the feature selection approach. For XGB, the average root mean
square error (RMSE), measured on the test set among all folds, was 2.78 g kg™ (r?
equal to 0.68) without feature selection, and 2.77 g kg™ (r? equal to 0.68) with
feature selection (average SOC content is 13 g kg™). The models were applied to
obtain SOC content maps for all farms.
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Discussion: This work demonstrated that combining RS and ML can help obtain
quick estimations of SOC content to assist with SBP management.

KEYWORDS

remote sensing, satellite, cross-validation, features selection, sown biodiverse pasture

1 Introduction

Soil systems are intricate networks of both organic and inorganic
matter with varying chemical and physical attributes that can differ
from site to site, or even within the same site. These systems also
serve as the primary carbon reservoirs on land, with a capacity to
store roughly 80% of all organic carbon, totalling an estimated
2,400 Pg of carbon (PgC)—more than three times the amount found
in the atmosphere (Jobbdgy and Jackson, 2000; Chappell et al,
2016). The level of soil organic carbon (SOC) present is heavily
influenced by soil management practices, soil properties, and
climatic conditions, with significant spatial differences that pose a
challenge when estimating terrestrial carbon stocks and fluxes
(Giardina et al., 2014; Doetterl et al., 2015; Koven et al., 2017).
In terms of preserving SOC and other essential ecosystem services,
grasslands rank among the most significant terrestrial ecosystems
(Egoh etal,, 2016; Bardgett et al., 2021). However, SOC estimation in
grassland ecosystems is challenging due to factors such as the high
spatial and temporal variability of SOC, heterogeneous distribution
within soil profiles and the fact that methods for SOC estimation are
often destructive and time-consuming (Angelopoulou et al., 2019;
Xiao et al,, 2019). Remote sensing (RS) and machine learning (ML)
models have the potential to improve the accuracy and certainty of
SOC estimation in grassland ecosystems.

RS data is often used in providing explanatory variables for
estimating SOC using ML methods (Angelopoulou et al.,, 2019),
especially as spectral sensors have improved significantly in recent
decades, with spatial
Consequently, RS data from satellites (such as Landsat 7/8 and

enhanced and temporal resolutions.
Sentinel-2) and unmanned aerial vehicles (UAVs) have led to a rise
in applications for monitoring SOC in croplands and grasslands
(Zheng et al., 2004; Mariano et al., 2018; Sun et al., 2021). Vegetation
indices, have been widely used to estimate SOC (Xu et al.,, 2008;
Ullah et al., 2012; Davids et al., 2018), but there are limitations and
uncertainties associated with their use (Zhao et al., 2014; Ali et al,,
2016). More recently, individual spectral bands, sometimes in
combination with VIs, have been used to indirectly estimate SOC
(Wangetal.,, 2021; Zepp etal,, 2021; Pan et al., 2022). RS data is often
combined with other covariates such as terrain and climatic
variables to improve the estimation (Mallik et al., 2020; Gardin
et al,, 2021; Wang et al., 2022).

In recent years, there has been an increased interest in using ML
methods for estimating SOC or soil organic matter (SOM) (Pezzuolo
etal,, 2017; Angelopoulou et al., 2019; Odebiri et al., 2021; Biney, 2022;
Chan et al,, 2023). ML methods are automated techniques that look
for hypotheses to explain data and can be applied to any learning task.
Commonly used models to estimate SOC/SOM include random
forests (RF) and artificial neural networks (ANNs) (Lamichhane
et al, 2019). These models have demonstrated their capacity to
enhance SOC estimation by reducing the error between the
ground-measured SOC/SOM values and the estimates generated by
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the models (e.g,, Ladoni et al., 2010; Pouladi et al., 2019; Zepp et al,
2021; Wang et al, 2022). Further, some ML methods such as RF have
also demonstrated higher performance in estimating SOC than
geospatial models (Veronesi and Schillaci, 2019). Estimations of
SOC/SOM content at high spatial resolutions (<50m) have
significantly improved in the past decades (Angelopoulou et al,
2019). While ML methods are predominantly associated with the
use of satellite data, there has been a limited number of studies
exploring other remote sensing sources with higher spatial resolution,
such as UAVs (Angelopoulou et al,, 2019). Satellite data sources
remain the most commonly used as they offer advantages such as
short revisit times and medium spatial resolution (Xiao et al., 2019).
However, most applications developed to estimate SOC/SOM content
are still specific to the particular land cover systems in which they were
trained and validated. For highly specific land use systems that can be
a problem, as existing models were never trained with system-
specific data.

Sown biodiverse permanent pastures rich in legumes (SBP) are
one example of such unique grassland/pasture systems. SBP have
been implemented since the 1960 s in Portugal to boost pasture
yields and increase animal stocking rates (Teixeira et al., 2015;
Morais et al., 2022). This system involves sowing a combination
of up to 20 legume and grass species or cultivars that provide high-
quality animal feed. In addition to the direct benefits of this system,
such as increased forage production, a major co-benefit is soil
carbon sequestration, as noted by Moreno et al. (2021) and
Teixeira et al. (2011). To assist with compliance to the Kyoto
Protocol goals under the Agriculture, Forestry and Other Land
Uses activities, the Portuguese Carbon Fund provided support for
the installation and maintenance of SBP between 2009 and 2014.
Payments were made to over 1,000 farmers based on predetermined
sequestration factors that were established from data gathered
during previous studies, rather than on carbon content increases
that were measured on the farm (Teixeira et al., 2011; APA, 2018).
Thus, there is a lack of indirect methods that can be broadly applied
and are specifically tailored to SBP systems, hindering effective
carbon management of this unique pasture system.

In the present research, we employed a combination of RS data
and various ML techniques to estimate SOC content at a depth of
20 cm in SBP. We collected data from Sentinel-1 and Sentinel-2
satellites during two periods, August and the closest date to soil
sampling. Five VIs were extracted from the RS data, along with
various climatic, soil, terrain, and other auxiliary variables. Two
variable selection methods were used, one utilizing all variables
and the other using the sequential feature selection (SFS) approach
to measure multicollinearity among input variables and select the
most relevant ones for the SOC estimation. We evaluated the
performance of the models using a random cross-validation
approach with 10 folds. The resulting models were then used to
estimate SOC and generate SOC content maps for the sampled
farms’ entire sites.
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FIGURE 1

Location of the nine sampled farms used in this work. Farm 4 is
the only one in Spain, all other farms being in Portugal.

2 Material and methods
2.1 Study area and soil sampling design

Data from nine different farms were used in this work: eight
farms in Portugal (Farms 1, 2, 3, 5, 6, 7, 8, and 9) and one in Spain
(Farm 4). They are located across latitudes and longitudes ranging
respectively between 37°50" and 40°30'N and 6°80" and 8°30'W
(Figure 1). The size of surveyed farms ranges between 26 ha
(Farm 8) and 42 ha (Farm 6). All farms are in the hot-summer
Mediterranean climate region, according to the Képpen climate
classification system (Rubel and Kottek, 2010; IPMA, 2018).

According to the European Soil Database (ESDAC, 2003), the
nine sampled farms are characterized by five different soil types:
Dystric Cambisol (Farms 1 and 4), Orthic Podzol (Farms 2, 3, and
5), Eutric Cambisol (Farms 6 and 8), Rhodo-Chromic Luvisol (Farm
7) and Ferric Luvisol (Farm 9). Regarding dominant parent material,
there are six different types: granite (Farms 1 and 6), diorite (Farms
3 and 5), acid regional metamorphic rocks (Farms 7 and 9), river
terrace sand or gravel (Farm 2), (meta-) shale/argillite (Farm 4) and
sandstone (Farm 8).

In total, four production years were covered in this study
(between 2017-18 and 2020-21). The number of production years
covered and the number of samples per production year vary
between farms. For example, Farm 1 was sampled in all four
production years, but Farm 9 was only sampled in one
production year (2018-19). Additionally, considering only Farm
1, in the first year, 40 plots/locations were sampled, but in the
following years, more samples were collected, with 2018-19 having
the highest number of samples (75 samples). The total number of
collected samples and collection years are summarized in Table 1. In
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each farm, the selection of sampling locations was carefully made to
minimize any potential influence of trees and rocks on the measured
SOC content. Due to the significantly different tree densities across
the sampling locations, achieving an equal number of sampling
locations per farm was not feasible.

Soil sampling took place in the period between September and
May. They were collected using two different methods: 1) manual
collection and 2) mechanical collection. This was expressed in the
analysis as an auxiliary binary variable. In both collection methods,
samples were collected in the 0-20 cm topsoil layer, which is the
reference depth in the LUCAS Soil project conducted by the
European Soil Data Centre (ESDAC)—Joint Research Centre
(JRC) (Orgiazzi et al., 2018). Manual collection used an auger
(2cm  diameter), while mechanical collection used a Wintex
2000 soil sampler installed on a utility terrain vehicle. Each soil
sample was composed of four sub-samples that were pooled and
mixed to achieve uniformity. All soil samples were air-dried and
passed through a 2 mm stainless steel sieve. SOC content was
calculated using the soil fractions after an elemental analysis
performed after a combustion at 1050°C. In all soil samples,
inorganic carbon removal was performed prior to the total SOC
quantification. All values of SOC presented here are expressed in
grams of SOC per kg of dry soil.

2.2 Data collection and preprocessing

In this study, we used RS data, climate, terrain, and soil data to
model SOC content. All data was obtained from Google Earth
Engine (GEE), which reduced data processing time and storage
space. GEE is a cloud-based platform that allows users to access and
process massive amounts of geospatial data. The platform includes a
catalogue of over 600 petabytes of satellite imagery, aerial imagery,
and other geospatial datasets. GEE enables users to analyse data to
track changes over time, map trends, and quantify differences on the
Earth’s surface. For example, the complete Sentinel-2 database is
available. Table 3 summarizes all the data used, including their
sources, variable names, and spatial resolution. In total, 49 input
variables were considered.

For all data used, we applied “min-max” normalization
(i.e., values were normalized between 0 and 1). Each input was
subjected to individual and independent data normalization,
without any dependence on the other inputs. This was done to
increase the learning rate and ensure faster convergence as models
with large weights tend to be unstable and suffer from poor
performance during learning and sensitivity to input values, the
latter resulting in higher generalization error (Bishop, 1995;
Goodfellow et al., 2016).

In order to understand the relationship between the data used
and the measured SOC content, we calculated a Spearman’s rank
correlation (Spearman, 1904). This is a non-parametric measure of
monotonic statistical dependence between two variables, and it does
not make any assumptions about the distribution of the variables.

2.2.1 Remotely sensed data collection

The RS data were obtained from the Sentinel-1 and Sentinel-2
missions. We used the Sentinel-1 C-band Level-1 Ground Range
Detected images provided by GEE, which were acquired on a
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TABLE 1 Description of the collected soil samples per farm and production year.

10.3389/fenvs.2023.1240106

Farm Year Number of collection periods Number of samples Sample collection method
Farm 1 (28 ha) 2017-18 3 40 Manual—40
2018-19 5 75 Manual—28
Mechanical - 47
2019-20 3 58 Manual—24
Mechanical—34
2020-21 3 64 Manual—22
Mechanical—42
Farm 2 (27 ha) 2019-20 1 35 Mechanical—35
Farm 3 (29 ha) 2017-18 2 32 Manual—32
2018-19 4 71 Manual—24
Mechanical—47
2019-20 3 57 Manual—24
Mechanical—33
2020-21 2 43 Manual—12
Mechanical—31
Farm 4 (34 ha) 2018-19 2 24 Manual—24
Farm 5 (34 ha) 2018-19 4 74 Manual—24
Mechanical—50
2019-20 3 58 Manual—24
Mechanical—34
2020-21 3 52 Manual—24
Mechanical—28
Farm 6 (42 ha) 2017-18 3 39 Manual—39
2018-19 3 72 Manual—15
Mechanical—57
2019-20 3 57 Manual—24
Mechanical—33
2020-21 3 51 Manual—24
Mechanical—27
Farm 7 (35 ha) 2018-19 1 12 Manual—12
2019-20 1 33 Mechanical—33
2020-21 1 30 Mechanical—30
Farm 8 (26 ha) 2018-19 3 28 Manual—28
2019-20 3 51 Manual—22
Mechanical—29
2020-21 3 53 Manual—24
Mechanical—29
Farm 9 (30 ha) 2018-19 1 12 Manual—12
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TABLE 1 (Continued) Description of the collected soil samples per farm and production year.

Number of collection periods

Number of samples

Total 63

In Bold are the sum of the lines per column.

TABLE 2 Calculation formula for the vegetation indices used in this paper.
NDVI, normalized difference vegetation index; NDWI, normalized difference
water index; SR, simple ratio; SAVI, soil-adjusted vegetation index; OSAVI,
optimized soil-adjusted vegetation index.

Vegetation indices Formula

NDVI Nl
NDWI S
SR NIR
SAVI 1.5 %ﬁs
OSAVI 1.16 - NIR—Red

NIR+Red+0.16

descending orbit in Interferometric Wide swath mode (IW). The
imagery in GEE consists of Level-1 Ground Range Detected (GRD).
We utilized the VV and VH polarization bands, and the intensity
cross-ratio (CR) VV/VH was also calculated. Sentinel-2 is a two-
satellite constellation mission (Sentinel-2A and Sentinel-2B), which
carries a wide-swath multispectral imager with 13 spectral bands.
The image resolutions are 10 m (Blue, Green, Red, and Near
Infrared bands), 20 m (three Vegetation Red Edge bands, Narrow
NIR band, and two shortwave-infrared bands), and 60 m (Coastal
aerosol, Water vapour, and SWIR-Cirrus bands). We used Level-2A
data products, i.e., bottom of atmosphere (BOA) reflectance images
obtained from Level-1C products. Bands 1 (coastal aerosol), 9 (water
vapour), and 10 (SWIR-Cirrus) were excluded as they are specific to
atmospheric characterization and not land surface monitoring.
Besides the individual bands, we used spectral data to calculate
five vegetation indices (Table 2): the normalized difference
vegetation index (NDVI) (Tucker, 1979), normalized difference
water index (NDWI) (Gao, 1996), simple ratio (SR), soil-adjusted
vegetation index (SAVI) (Huete, 1988) and optimized soil-adjusted
vegetation index (OSAVI) (Rondeaux et al., 1996).

Regarding the Sentinel-1 and Sentinel-2 data, for each band or
vegetation index, we considered data from two periods. First, we
considered a composite image of the available images for the period
between August 1st and August 31st. This composite image aims to
capture the spectral reflectance of the bare soil. Second, we also
considered data from Sentinel-1 and Sentinel-2 from the closest date
to the soil collection date. This aims to capture the inter-yearly
variation of SOC between the period when the soil was bare and the
collection date, when the soil was covered by vegetation.

For the period when the soil is almost bare in the SBP system,
i.e., during August, we considered a composite image of the available
Sentinel-1 and Sentinel-2 images for the period between 1st August
and 31st August. The composite image in August captures the
spectral reflectance of the bare soil, and the image closest to the
soil collection period captures the influence of vegetation on SOC.
We also removed pixels masked as clouds and cloud shadow using
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Sample collection method

1,121 Manual—502

Mechanical—619

the “pixel_ga” band from Sentinel-2 data obtained from GEE.
Additionally, we also used the available image closest to each soil
collection period. All the individual bands and the vegetation indices
were calculated and downloaded using GEE.

2.2.2 Climate, soil and terrain data collection

The mineralization and accumulation of SOC are highly
dependent on climate, specifically soil temperature and moisture
(Rey et al., 2005; Thornton et al., 2009). Therefore, we used data
from the Global Land Data Assimilation System (GLDAS—Rodell
et al., 2004) for these variables. The data available in GLDAS is on a
daily basis and we used both soil temperature and moisture on the
collection date. We also included soil data to characterize SOC, such
as clay, sand, silt content and soil pH (H,0O). Soil data was obtained
from SoilGrids (Hengl et al., 2017). SOC is also influenced by terrain
characteristics (Rogge et al, 2018) and thus we used data from
NASA EOSDIS Land Processes DAAC (NASA, 2020) and Theobald
etal. (2015) for the Digital Elevation Model (DEM), the Continuous
Heat-Insolation Load Index (CHILI), the Multi-Scale Topographic
Position Index (mTPI) and Topographic Diversity (topoDivers).
CHILI captures the effects of insolation and topographic shading on
evapotranspiration (calculated by the insolation at early afternoon,
sun altitude equivalent to the equinox). mTPI distinguishes ridge
from valley forms (calculated by the elevation at each location
subtracted by the mean elevation within a neighborhood).
Finally, topoDivers represents the variety of temperature and
moisture conditions available to species as local habitats
(calculated by mTPI and soil moisture). All data was calculated
and downloaded using GEE.

2.2.3 Auxiliary data

We also considered six additional auxiliary variables: the
number of days since the beginning of the production year
(counting from 31st August), the number of days between the
closest Sentinel-2 image and the soil sampling date, the number
of days between the closest Sentinel-1 image and the soil sampling,
the collection method (manual or mechanical) the year, and the
month.

2.3 Modelling and mapping soil organic
carbon

2.3.1 Feature selection

In this study, we used a long list of independent variables
(49 inputs) to estimate SOC content. However, in practice not all
of those variables might be relevant for estimating SOC. To
address this, we used a two-step approach: 1) first, all input
variables were included in the estimation of SOC, then 2) we
applied SFS and retrained the algorithm with a subset of
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variables. The SFS approach involves adding features in an
automated and iterative manner to form a feature subset. At
each iteration, the best feature to add or remove is chosen based
on the cross-validation score of the model validation procedure.
Then, after applying SFS, we obtained a subset of the input data
that has the most relevant variables for estimating SOC. This
method allowed us to identify and select only the pertinent
variables that are crucial for accurately estimating SOC
content within the dataset.

2.3.2 Regression methods

The SOC content was modelled using four regression methods:
multiple linear regression (MLR—Barbur et al., 1994), random
forest (RF—Breiman, 2001), extreme gradient boosting
(XGBoost- XGB—Chen and Guestrin, 2016) and artificial neural
network (ANN—Rumelhart et al., 1986). To optimize the regression
models, we used Bayesian optimization with 100 initializations to
find the best hyperparameters for each method. The methods and
their respective hyperparameter option spaces are described in detail
in the next section. All methods were implemented on Python 3.8.4,
using multiple toolboxes. For MLR regression and RF, we used the
scikit-learn 0.24 toolbox (https://github.com/scikit-learn/scikit-
learn). For XGB, we used the xgboost 1.4.2 toolbox (https://
github.com/dmlc/xgboost). For ANN, keras 2.9 was used to
construct the ANN architecture and TensorFlow 2.7 as the
backend for keras (https://github.com/keras-team/keras; https://
github.com/tensorflow/tensorflow). To prepare the data, we used
Numpy 1.18.5 (https://github.com/numpy/numpy) and Pandas 1.0.
The
optimization was performed using the scikit-optimizer 0.8.1

4 (https://github.com/pandas-dev/pandas). Bayesian
(https://github.com/scikit-optimize/scikit-optimize).

MLR was the simplest method used in this study. It fits a linear
equation to the observed data using the relationship between all
independent variables and a dependent variable, using a least
squares fit. Decision trees/forests, such as RF, is a learning
method that creates multiple decision trees and fits the trees to
training data. In a RF, the value of the response variable can change
across the trees in the forest. However, within each individual tree,
the predicted variable does not change in each leaf. This is because
each tree is built using the same set of predictor variables and the
same splitting criteria, resulting in consistent splits at each node of
the tree. One advantage of RF over other bagging models is its ability
to produce nearly uncorrelated predictions due to the random
features, producing predictions with low variance. For
optimization, we tested various options involving the number of
estimators, the minimum number of samples per leaf, the maximum
depth, the error function, the maximum number of features/inputs
in each split, and the use of a bootstrap approach.

XGB is a newer method, proposed in 2016, that is based on
gradient boosting tree methods. It trains by making predictions
sequentially and combining weak predictive tree models,
learning from the obtained errors. XGB has significant
improvements to traditional gradient boost methods, namely,
in terms of performance, parallelization, distributed computing,
and computational time. For optimization, various options such
as the number of estimators, the learning rate, the maximum
depth of the trees, and L1 and L2 regularization were
considered.
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An artificial neural network (ANN) is a multi-layer network
structure that consists of an input layer with a set of input/
explanatory variables, an output layer containing the dependent/
objective variable, and one or more hidden layers with nodes or
artificial neurons. Each hidden layer receives a signal, processes it
through a transfer function, and passes the processed signal to
neurons connected to it in the following layer. In order to optimize
the hyperparameters of the ANN, we considered one or two hidden
layers, the number of neurons in each hidden layer (between 50 and
10,000 with intervals of 50), the learning rate (between 0.01 and
1 with intervals of 0.015), and the activation function (which can be

« » «

elu,” “relu” or “sigmoid”).
2.3.3 Validation approach and accuracy
assessment

We used a random cross-validation (CV) method, considering
10 folds, in order to have an appropriate measure of the estimation
error. The dataset was split into 10 approximately equal portions. In
each fold, a different portion of the data set was used to train the
models (i.e., 9/10 of total samples) and the remaining 1 part (hold-
out samples) was used as the test set. The performance of each model
was measured in the hold-out samples in each fold. This procedure
was applied similarly to all regression models used.

The performance of the obtained models was assessed in the test
sets of the k-fold approach using four metrics: the root mean
squared error (RMSE), the relative RMSE (rRMSE), the ratio of
to deviation (RPD) and the
determination (r?). The mathematical formula of the metrics are

1 N N2
RMSE = \/; Y (c=7)

performance coefficient of

RMSE
rRMSE = —
y
rRDP = -2
" RMSE
N Yo (i =7’
—\2
Yo (i - 7)

where 7 is the number of observations, y; is the observed value, and
i is the predicted value, y is the mean of the observed values and o is
the standard deviation of the observed values.

3 Results
3.1 Analysis of measured soil organic carbon

For the farms with data available for more than 1 year, there was
a tendency for the observed SOC content to increase with time
(Figure 2). This pattern is clearly visible in Farm 1, which had an
average SOC of 12.73 g kg™ in 2017-18 and 16.87 g kg™' in 2020-21.
From the second to the third year, there was a 25% increase in SOC
(from 1.92 g kg'-2.40 g kg™') and, between the third and fourth
year, there was a 10% increase in SOC (from 2.40 gkg'-2.63 gkg™).
Farm 7 had the highest mean SOC (15.72 gkg™') and Farm 9 had the
lowest mean SOC (5.89 g kg™).

Additionally, the mean SOC content was 13.12g kg™'. The
lowest observed SOC content was 4.70 g kg™ (Farm 9 in 2018-
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FIGURE 2

Boxplot of the soil organic carbon (SOC) content for the nine
sampled farms in the four sampled production years.

19), and the maximum observed SOC content was 32.54 g kg™
(Farm 1 in 2020-21). A positive correlation was observed between
the number of samples per farm and the variation of SOC. Farm
1 was the farm with the highest variation of SOC. It had an
interquartile distance (considering all years) of 8.30 g kg™'. Farm
1 was also the farm with the highest number of soil samples (237).
On the other hand, Farm 9, which had the lowest number of samples
(12 samples), had the lowest interquartile distance, only 1.14 g kg™".
From the nine sampled farms, only one (Farm 4) is in Spain, but it
has similar SOC content distribution as the other Portuguese farms.
The average SOC content in Farm 4 is 13.10 gkg™ (min: 6.03 gkg ™
max: 19.40 g kg™') and the average SOC in the Portuguese farms is
13.6 g kg™' (min: 4.70 g kg™'; max: 32.54 g'kg™").

Although two sampling methods (manual and mechanical) were
used for sample collection, the observed SOC content between the
two methods was very similar. Specifically, the samples collected
within the same farm using both methods show a high level of
similarity (less than 7% differences with no observable bias), with
any observed differences likely attributable to the typical spatial
variation within the farm.

The Spearman rank correlation between observed SOC content and
the input variables ranged between —0.61 and 0.32 (Figure 3). The
lowest correlation corresponded to the correlation between SOC
content the auxiliary dummy variable for manual or mechanical soil
sampling (—0.61) and the highest correlation of SOC content was with
the year (0.32). Analyzing the average correlation in absolute value, per
type of input (according to the “Type” column in Table 3), auxiliary
variables had the highest correlation (mean: 0.34), followed by climatic
variables (mean: 0.22), and by terrain variables (mean: 0.14); the
remaining average correlations were lower than 0.10. Despite the
low correlations, about 80% (40 out of 49 input variables) were
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significantly correlated with SOC content, 37 variables at a
significance level of 5% and 3 variables at 10% significance level.

In the composite image of August, all bands were strongly and
significantly correlated with each other (average correlation of 0.65);
however, the correlation between bands in the Sentinel-2 image
closest to the collection date was significantly lower (average
correlation of 0.35). Vegetation indices, as expected, were
strongly and significantly correlated with the Sentinel-2 imagery
that was used to calculate them, i.e., vegetation indices in August are
strongly correlated with the composite Sentinel-2 imagery. There
were also strong correlations between location variables (latitude
and longitude) and soil variables (sand, silt, and pH) and the DEM.

3.2 Estimation of soil organic carbon

The feature selection procedure using SFS selected only 24 out of
the 49 input variables considered in this work, representing
approximately 48% of the total number of inputs. The selected
inputs covered all the “Process Categories” defined in Table 2. The
remote sensing imagery variables selected were Bands 2 and 12 from
Sentinel-2 in August, Bands 3, 4, 7, 8, and 8 A from Sentinel-2 at the
closest date, and VV from Sentinel-1 at the closest date. The
vegetation indices selected were NDVI and NDWI in August, as
well as NDVI, SR, SAVI, and OSAVI at the closest date. The selected
climatic variable was soil temperature. The soil variables selected
were silt content and pH. The terrain variables considered were the
DEM and the mTPI. Additionally, the auxiliary variables selected
were the number of days since August, the number of days from the
closest Sentinel-2 imagery, and the month of the year. Lastly, both
location variables, latitude and longitude, were also selected.

Among the regression methods used, XGB had the lowest
estimation error for both feature selection approaches, as can be
seen in Table 4 for the metrics of RMSE, rRMSE, RPD, and r*. A
general trend is that more complex models (RF, XGB, and ANN)
outperform simpler models (MLR) in predicting SOC content in SBP
systems. When comparing the regression methods, the mean RMSE of
XGB was, on average, 52% lower than the mean RMSE of the other
methods in the training sets and 11% lower than the other methods in
the test sets. Similar trends can be observed in the other estimation error
metrics. For example, the difference between MLR (the method with the
highest RMSE) and XGB was 72% in the training sets (MLR: 3.10 gkg™;
XGB: 0.87 g kg™'—considering the approach without feature selection),
and the difference was 18% in the test sets (MLR: 3.27 g kg™'; XGB:
2.69 gkg ™). Further, decision tree methods (RF and XGB) have a lower
estimation error than the other methods MLR, ANN). The RF and XGB
regression methods had similar estimation errors in the test sets, but
XGB performed better than RF in the training sets. MLR was also the
regression method with the lowest variation of the RMSE between
training and test sets, only 6% (considering the approach without
feature selection). The estimation error between the training set and test
set in the other methods always had an increase higher than 50%, e.g.,
for the ANN, the difference was about 56%. The XGB was the method
with the highest error increase, considering the RMSE, it more than
doubled in the test set in relation to the training set, but even so, it was
lower than in other methods.

Using the feature selection approach, where only 24 out of the
total 49 inputs were used, did not significantly influence the
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5 in closest date), SOC proxies, soil variables, terrain variables, auxiliar variables and location variables. Variable names are explained in Table 3.

estimation error in the test sets for all regression methods. For
example, considering XGB, the RMSE with feature selection was
almost the same with all variables or with the selected variables
(without selection: 2.78 g kg™'; with selection: 2.77g kg™).
Nevertheless, in the training error, feature selection reduced the
RMSE in RF and XGB (about 13%) and increased the RMSE of MLR
and ANN (about 6%). This result highlights the efficacy of the
feature selection approach in identifying the most relevant input
variables for estimating SOC content. By accomplishing these dual
objectives, the feature selection process enhances the convergence of
the training procedure and ultimately improves the fitting
performance of the RF and XGB models.

Considering XGB, there was no significant change in the estimation
error between the two feature selection approaches. Figure 4 presents
the estimated SOC versus the observed SOC when each sample is left on
the test set using the approach with feature selection (using a hexagonal
binning plot). As can be seen in Table 4, the estimation errors in the test
sets were good, particularly in the region with the highest point density,
ie., between 10 and 15 g kg ™. In this region, the RMSE in the test sets
decreased by about 20% (2.19 g kg™'). However, there was a non-
significant overestimation of the observed SOC between 7 and 12 gkg™".
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Additionally, there was a noticeable underestimation of the measured
SOC in the highest values (higher than 20 g kg™"), which corresponds to
the range of values with fewer observations.

In the XGB model with SFS, the VV feature (from Sentinel-1)
had the highest importance (about 35%) in the obtained results. It
was followed by the month of the year, latitude, and longitude. The
Sentinel-2 bands in August (Bands 2 and 12) had the lowest
contribution to the estimated SOC (less than 2%). Vegetation
indices also had a greater relevance for SOC estimation than
the individual satellite bands (each Vegetation Index at the
closest date has a feature relevance of about 5%, and individual
bands are lower than 3%). The terrain variables with the highest
contribution are DEM and mTPI with an importance of 3% and
4%, respectively. All the soil input data has an accumulated
importance lower than 7%.

3.3 Application at field-level
The obtained models can be used to estimate SOC for entire

parcels in the farms. As an example of the application, Figure 5
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TABLE 3 Description of the variables used to model soil organic carbon, including type of data, sources, variable and spatial resolution.

Type Process category  Source Variable Spatial resolution (m)
Dynamic = Remote sensing imagery = Sentinel-1 Single polarisation VV 10
Sentinel-2) Band 2 (Blue) 10
Band 3 (Green) 10
Band 4 (Red) 10
Band 5 (Vegetation red edge) 20
Band 6 (Vegetation red edge) 20
Band 7 (Vegetation red edge) 20
Band 8 (NIR) 10
Band 8A (Vegetation red edge) 20
Band 11 (SWIR) 20
Band 12 (SWIR) 20
Vegetation indices Normalized difference vegetation index (NDVI) 10
Normalized difference water index (NDWTI) 10
Simple ratio (SR) 10
Soil-adjusted vegetation index (SAVI) 10
Optimized soil-adjusted vegetation index (OSAVI) 10
Climatic GLDAS Soil moisture 27 km
Soil temperature 27 km
Static Auxiliary variables - Number of days since the beginning of the production year = —
Number of days since last Sentinel-2 image —
Number of days since last Sentinel-1 image —
Year —
Month of the year —
Collection method —
Soil GridSoils Clay content 250
Sand content 250
Silt content 250
Soil pH H,0O 250
Terrain NASA EOSDIS Land Processes DAAC | Digital elevation model (DEM) 30
Theobald et al. (2015) Continuous Heat-Insolation Load Index (CHILI) 90
Multi-Scale Topographic Position Index (mTPI) 270
Topographic diversity (topoDivers) 270
Location — Latitude —
Longitude —

depicts the spatial representation of SOC in the 9 sampled farms.
This figure was obtained for the day of 29 May 2021, using the
dynamic input data for that day, namely, the climatic data, Sentinel-
2 imagery, and vegetation indices. Sentinel-1 imagery was not
available for the same date, so we used Sentinel-1 imagery for the
closest date, i.e., 27 May 2021. All the other input data is static, so it
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was not influenced by the date. The model used was the XGB model
with the feature selection approach.

The trends observed in SOC between farms in Figure 2 are also
verified when the XGB model was applied to the entire farm. For
example, Farms 1, 5, and 7 had the highest mean SOC in the year
2020-2021 in both observed and predicted values. Farm 8 was the
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TABLE 4 Estimation accuracy of the soil organic carbon in the training and test set of the cross-validation approach, for all using each of the machine learning (ML)
methods and for the two features selection approach. Metrics presented: considering mean root mean squared error (RMSE), relative RMSE (rRMSE), ratio of
performance to deviation (RPD) and r squared (r?). MLR, Multiple linear regression; RF, Random forests; XGB, XGBoost; ANN, Artificial neural network. The model

with the highest performance is in bold.

Without features selection

ML method Mean observed Training

RMSE rRMSE RPD
MLR 13.12 3.10 0.24 1.59 0.60 327 0.25 151 0.55
RE 1.23 0.09 4.00 0.94 2.85 0.22 1.73 0.66
XGB 0.87 0.07 5.66 0.97 2.78 0.21 1.81 0.68
ANN 1.90 0.14 2.59 0.89 2.97 023 1.66 0.64

With features selection

ML method Mean observed Training
RMSE rRMSE RPD
MLR 13.12 334 025 147 0.54 3.40 026 145 0.52
RF 1.05 0.08 469 095 2.83 022 1.74 0.64
XGB 0.76 0.05 5.60 0.98 2.77 0.21 1.80 0.68
ANN 1.98 0.15 2.49 0.85 3.06 023 161 0.59
which is significantly far from the date of May 29. Between January
=~ 40 - and May, soil temperature increases and soil moisture decreases,
) N =1121 which supports SOC mineralization.
9 351 RMSE =277 gCkg™ P
E 30l r2=068 L
2 /,” . .
525 E 4 Discussion
g
£ 20 = .
o |2 This study demonstrated that more complex models (such as
215 RF, XGB, and ANN) perform better in predicting SOC content in
]
Y90 SBP systems in Portugal and Spain compared to simpler models like
°
£ . MLR (Liu et al., 2011; Ali et al., 2016). Complex models are capable
3 of capturing complex, high-dimensional relationships between
o . . .
0 g o s - = =5 B 45 dependent and explanatory variables, which simple models
Observed Soil organic carbon (g€ kg™?) cannot achieve. Two feature selection approaches were used to
FIGURE 4 evaluate the performance impact. Our findings indicate that

Estimated versus observed soil organic carbon (SOC) using the
best model (XGBoost) in the features selection approach (i.e., only
using 24 features).

farm with the highest spatial variation (standard deviation (SD) of
1.34 g kg™') and Farm 2 had the lowest spatial variation (SD: 0.74 g
kg™). The minimum predicted SOC was also in Farm 2 (7.56 gkg™)
and the highest predicted SOC was in Farm 8 (18.80 g kg™'). Farm
2 had the lowest predicted SOC, 7.56 g kg™', but this farm was not
sampled in the production year 2020-2021. However, there are other
aspects that vary from the observed data. For example, in the
observed date, in the production year of 2020-2021, Farm 1 has
the highest SOC (32.54 gkg ') and the highest predicted SOC was at
Farm 8, 18.80¢g kg™ in the predicted results. Nevertheless, the
highest observed SOC at Farm 1 was in January (on January 16),
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using all 49 input variables or a subset of just 24 (48%) yields
comparable estimation performance in both training and testing
phases. Moreover, the remaining variables encompassed almost all
data categories that affect SOC content, including remote sensing,
climatic, soil, and terrain characteristics.

Over the last decade, there has been a substantial increase in the
number of combined applications that utilize satellite RS and ML to
estimate SOC or SOM content. To investigate the extent of this increase,
we conducted a very simple search in the Google Scholar database on
10 January 2023, specifically focusing on papers that estimated SOC
content in pastures or grasslands using satellite RS. We utilized the
search string: “(soil organic matter” OR “soil organic carbon”) AND
“remote sensing” AND “satellite” AND “regression” AND “machine
learning” AND (“grassland” OR “pasture”), which resulted in 2,110 hits.
Of these, 30% (688 hits) were from 2022 to 50% (1,080 hits) were from
2021. However, upon sorting the results by relevance according to
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FIGURE 5

Spatial representation of the predicted SOC in the 9 sampled

farms using the best model (XGBoost) in the features selection
approach (i.e., only using 12 inputs). These results were obtained using
the Sentinel-2 image of May 29 and Sentinel-1 image of 27 May
2021. (A) Farm 1; (B) Farm 2; (C) Farm 3; (D) Farm 4; (E) Farm 5; (F) Farm
6; (G) Farm 7; (H) Farm 8; (I) Farm 9.

Google Scholar, none of the first 50 hits were focused on grassland or
pasture systems as the present paper does. This analysis is by no means a
thorough review of the literature and surely depicts incomplete results,
but shows that grassland systems remain under analysed and, in
particular, this is the first study of this nature focusing on SBP.

This paper achieved better estimation performance for SOC
content in grasslands and pastures compared to many other
papers in the literature. For instance, Zhou et al. (2021)
obtained an r* of 0.47 in their best model using a cross-
validation approach for Switzerland’s multiple land use/cover
systems, whereas the highest r2 obtained in this study was 0.70.
Hamzehpour et al. (2019) predicted SOC stock in a sub-region of
Iran and achieved an r* of 0.44, while Wu et al. (2019) predicted
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SOC content in a sub-region of China using various machine
learning regression models, and their best model, XGB, had an r?
of 0.74, which was similar to the r* obtained in this paper.
Similarly, Keskin et al. (2019) estimated total soil carbon in a
sub-region of the United States of America using multiple
regression models, and the best model was a RF with an r? of
0.72 in the validation set. Notably, decision trees consistently
outperformed other simpler or more complex methods (such as
ANNS) in all the studies that used different regression methods.
In this study, extreme gradient boosting (XGB) demonstrated
superior performance compared to the other models. Specifically,
the XGB model, along with other decision tree-based models,
outperformed artificial neural networks (ANN). There are several
plausible reasons for this observation. Firstly, XGB models tend
to be less reliant on extensive fine-tuning of hyperparameters,
potentially contributing to their improved performance, as
suggested by the results (Memon et al., 2019; Shwartz-Ziv and
Armon, 2022).

In this study, we observed that the estimation accuracy for the
highest SOC values was significantly lower than that for low-
medium values. This trend has been observed in other studies
that estimated SOC, as well as in the estimation of other
variables in croplands and grasslands, among others (Castaldi
et al, 2018). The normal frequency distribution of the data on
SOC is the cause of this limitation since the dataset is dominated by
mid-range values. To overcome this limitation, quantile regression
methods based on the approach used in this study can be employed,
such as quantile RF. Quantile regression models the relationship
between independent variables and specific percentiles of the
dependent variable, which is an improvement over regression
methods that represent the mean increase in the response
function produced by one unit increase in the associated
independent variables. In fact, recent studies have applied these
regression methods to SOC estimation (Lombardo et al, 2018;
Kasraei et al, 2021; Zhao et al, 2021). In the future, the
application of these methods should be tested to confirm if the
estimation performance increases significantly.

In addition, the number of observations per farm can also influence
results. It has been observed that the model tends to achieve a better fit
when applied to farms with a larger number of samples compared to
those with a smaller number of samples. For instance, Farm 1 consists of
a total of 237 samples, while Farm 2 comprises only 35 samples.
Consequently, the model is more likely to exhibit improved
performance in capturing the specific characteristics associated with
Farm 1 rather than Farm 2. The imbalance in the number of
observations across farms may also impact the generalization error
when applying the model to other locations. However, considering that
the characteristics of the different farms are not significantly different,
we do not anticipate that the obtained model would yield highly
inaccurate estimations of SOC content for the sample used here.
The effectiveness of the model when applied to other SBP farms
should be assessed in future research work.

Here, we developed a rapid and cost-effective indirect method
for the purpose of expedite mapping of SOC in SBP farms. This
represents a significant improvement compared to the approach
proposed by Morais et al. (2021), which relied on data from in situ
field spectrometry and only replaced the laboratory analysis. In
terms of results, the obtained r* value (0.68) is lower than the value
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previously reported by Morais et al. (0.80). However, it is important
to note that our method is solely based on remote sensing data and
therefore applicable to multiple farms and regions without the need
for repeated field work and laboratory analysis.

In this study, we used RS data from Sentinel-1 and Sentinel-2,
which offer significantly higher spatial resolution compared to other
spatially explicit variables. The inclusion of Sentinel-1 and Sentinel-2
data allowed us to capture fine-scale spatial variations within individual
parcels or farms. Conversely, other static data sources with lower spatial
resolution lacking the capability to capture intricate spatial variations
within parcels primarily facilitated the assessment of regional variation.
Additionally, remote sensing data provided a distinct advantage by
enabling us to capture of temporal variations across different years, as
they were the only data sources exhibiting temporal variability over
time. Despite achieving good performance in our study, there is
potential for improvement by enhancing the quality of climatic and
soil data. It is important to note that the SFS method, while not affecting
SOC estimation performance, may be influenced by the spatial
resolution of the input data. SFS excluded soil temperature and soil
moisture as explanatory variables, probably due to the course scale of
the data sources available. However, those variables are vital in
regulating microbial activity, nutrient availability, and overall soil
health. The same was true of some climate variables, which had a
spatial resolution of 27 km, which may be insufficient for depicting
intra-farm variations.

RS data derived from Sentinel-1 and Sentinel-2 present a
significantly elevated spatial resolution in comparison to other
spatially explicit variables. The utilization of Sentinel-1 and Sentinel-2
data enables the capture of intricate spatial variations within individual
parcels or farms. Conversely, static data sources with diminished spatial
resolution predominantly facilitate the assessment of regional variations,
as they lack the ability to capture the detailed spatial nuances within
parcels. Moreover, remote sensing data proffers the distinct advantage of
capturing temporal variations across different years, rendering it the sole
data source characterized by temporal variability over time. In fact, this
procedure of using multiple data sources with multiple spatial and
temporal resolutions is frequently used to characterize different land
cover systems (Zhang et al., 2016; Venter and Sydenham, 2021), namely,
to estimate SOC content, e.g, Venter et al. (2021). Nevertheless,
enhancing the spatial resolution of the data with low spatial
resolution could potentially improve the estimation performance of
SOC content. For example, in this study, the soil data used had a spatial
resolution of 250 m. It is not expected that soil characteristics such as
sand, clay, and silt fractions would vary significantly within the same
farm. Consequently, the variables that contributed the most to explaining
SOC content were the ones that had the higher resolutions, such as those
measured or calculated from Sentinel-1 and Sentinel-2 data. Increasing
the spatial resolution of coarse soil-specific data could enhance the fine
variation of SOC content and help address some of the variance
unexplained by our model.

The obtained models in this study have a spatial resolution of 10 m,
which is the lowest resolution among all the spatialized data used,
including Sentinel-1 data and the red, green, and blue bands of Sentinel-
2. However, even this resolution may not be sufficient to capture all the
spatial variability of pasture systems such as SBP. To enhance the spatial
resolution of RS data from satellites, UAVs can be utilized. UAVs can
have a spatial resolution of a few centimeters, providing a significant
improvement in spatial resolution. For instance, a 5 cm resolution UAV
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would yield 100,000 pixels in a 10 x 10 m pixel of Sentinel-2. UAVs are
currently preferred for agricultural land characterization due to their
affordability and ease of operation. Nonetheless, UAV data has a
significantly lower spatial coverage, lower spectral resolution, and
potentially lower temporal coverage than satellite data (Colomina
and Molina, 2014; Vilar et al., 2020). Moreover, the quality of UAV
data can be negatively impacted by factors such as sun elevation angle,
diffuse sunlight, and shadow effects of objects such as trees (De Luca
et al,, 2019). Rather than completely replacing satellite data with UAV
data, it is more beneficial to use them in combination to minimize
estimation errors. For instance, Maimaitijiang et al. (2020) improved the
estimation of biomass characteristics by integrating RGB UAV data
with Sentinel-2 data.

In this paper, we used individual bands from the Sentinel-1 satellite.
Nevertheless, recent research has proposed a technique to merge two
Sentinel-1 image products of complementary polarimetric information
(HH/HV and VH/VV) to derive pseudo-polarimetric features (Braun
and Offermann, 2022). Despite some inaccuracies, the polarimetric
features turned out to improve potential land cover mapping
compared with backscatter intensities and dual-polarization features
of the input products alone. However, such a technique has not yet been
tested in regression problems to estimate SOC content. Alternatively,
synthetic-aperture radar data from other satellites could provide different
bands and wavelengths (Moreira et al, 2013). Data with different
wavelengths and frequencies also have different penetration power,
spatial resolution, sensitivity to surface roughness, and sensitivity to
atmospheric effects (Moreira et al,, 2013; Paek et al,, 2020; Le et al,, 2021).
The C-band used in Sentinel-1 refers to the microwave frequency range
between 4 to 8 GHz (Gigahertz) in the electromagnetic spectrum (ESA,
2022). It is one of the most commonly used bands in SAR remote sensing
due to its favourable characteristics, namely: moderate penetration
capabilities, meaning it can penetrate through vegetation and light to
moderate rainfall; good spatial resolution allowing the detection of small
to medium-sized features on the Earth’s surface; sensitivity to surface
roughness variations, which makes it useful for monitoring changes in
ocean waves, soil moisture, and snow cover; and is less affected by
atmospheric conditions like clouds and precipitation compared to
higher-frequency bands (e.g., X-band or Ku-band) (Monti-Guarnieri
etal, 2017; ESA, 2022). Another frequency band that is commonly used
is the P band, for example, used in ALOS (Advanced Land Observing
Satellite) PALSAR (Phased Array type L-band Synthetic Aperture
Radar), which is in the microwave frequency range between 0.3 to
1 GHz (Gigahertz) in the electromagnetic spectrum. The P-band has
higher penetration than the C-band. Due to its lower frequency, P-band
SAR typically has a coarser spatial resolution compared to higher-
frequency bands like the C-band. P-band SAR is also less sensitive to
surface roughness compared to C-band SAR, but it is relatively less
affected by atmospheric conditions (Li et al., 2019; Minh et al, 2021).
Other bands with higher frequency (e.g, X-band) have higher spatial
resolution but lower penetration capacity (Zhou et al., 2020). Thus, in the
future, approaches that combine alternative/complementary SAR data
should be tested to improve the characterization of land cover systems,
such as grasslands.

Here we used several vegetation indices (NDVI, NDWI, SR,
SAVI, and OSAVI) as well as the raw data for the bands used to
calculate them. The fact that the bands are used nonlinearly takes
away some of the explanatory power of the indices. However,
because the indices were more important than the individual
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bands in our results, exploring additional indices may offer valuable
insights into SOC content estimation. For example, the Normalized
Difference Red/Green Redness Index and the Dark Green Color
Index that utilize both red and green bands have been previously
used to estimate SOC content in agricultural soils (Heil et al., 2022).
These and other alternative indices could potentially complement
the existing ones and enhance the accuracy of SOC estimation.

In this study, we did not perform an assessment of bare soil pixels,
which is a common practice in other research studies (Bhunia et al.,, 2017;
Castaldi, 2021). Typically, bare soil pixels are determined using vegetation
indices calculated from individual bands of Sentinel-2, such as NDVI and
normalized burn ratio 2 (NBR2) (Castaldi, 2021). This process involves
defining a threshold for the vegetation indices, and pixels with lower
values than the threshold are classified as bare. However, the number of
bare soil pixels can vary significantly depending on the chosen thresholds.
For instance, Castaldi (2021) observed that reducing the NBR2 threshold
from 0.2 to 0.05 in Northeastern Germany croplands led to a decrease in
the percentage of Sentinel-2 pixels classified as bare soil from over 25% to
about 10%. Additionally, this method requires the removal of data points
that do not meet the defined thresholds. For these reasons, we chose not to
use this approach. Instead, we utilized data not only near the sampling
date but also data from August when the soil is mostly bare in well-
managed SBP systems. Incorporating observations from August allows us
to capture the soil’s characteristics when it is bare, while observations near
the sampling date enable us to indirectly evaluate the effect of vegetation
on SOC.

The models that we developed lack a formal representation of
the processes that occur in soil and influence SOC content, such as
an equation for SOC mineralization that process-based models
possess (Morais et al., 2019). Unlike data-driven models, process-
based soil models consider biogeochemical processes formulated
based on mathematical-ecological theory (Coleman et al., 1997; Liu
et al, 2011). These models’ equations are often derived from
statistical relationships, which can be improved by incorporating
data-driven modeling approaches. Combining the benefits of both
data-driven models (such as those used in this study) and process-
based modeling is critical for developing more robust models in the
future. One approach is to replace process-based models’ rate
modifiers with ML models. Tsai et al. (2021) have done this
successfully to predict soil moisture and streamflow.

The models derived in this study have the potential to
retrospectively estimate SOC content since 2015 when Sentinel-2
data was initiated. Consequently, a considerable amount of data can
be generated that can be employed in other models. Process-based
models, such as those that evaluate soil sinks and emissions of
carbon and nitrogen and their impacts on environmental concerns,
can benefit significantly from longer data series (Prado et al., 2006;
Morais et al., 2018; Teixeira et al., 2019).

5 Conclusion

This work combined multiple data types from different sources
with ML methods in order to estimate SOC content of SBP in
Portugal and Spain. The most relevant variables that are known to
influence SOC content and change, such as climatic, soil, and terrain
characteristics, were combined with RS imagery. The most relevant
variables from the full set of independent (or input) data were
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selected using an SFS approach. This approach reduced the number
of variables to 24 (instead of 49) but maintained the overall accuracy
of the best model: without feature selection, the root mean squared
error (RMSE) was 2.78 g kg-1 (on the test set) and with feature
selection, the RMSE was 2.77 g kg-1. XGB was the model with the
highest estimation performance, using a cross-validation approach.
SOC content plays a significant role in plant growth and
characteristics. Nevertheless, the type of models developed in this
work are still infrequently used as a farm management tool, despite
the fact that they are powerful tools that could increase incomes and/or
reduce costs. Based on the best models, SOC content can be
approximately estimated throughout the year, even when the soil is
covered by plants, and with that, advisors can inform farmers to perform
practices to improve soil quality for plant and animal production.
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Lithological mapping in highly vegetated areas using remote sensing techniques
poses a significant challenge. Inspired by the concept of "geobotany’, we
attempted to distinguish lithologies indirectly using machine learning
algorithms (MLAs) based on Sentinel-2 and SRTM DEM in Zhangzhou City,
Fujian Province. The study area has high vegetation cover, with lithologies that
are largely obscured. After preprocessing such as cloud masking, resampling,
and median image synthesis, 17 spectral bands and features from Sentinel-2 and
9 terrain features from DEM were extracted. Five widely used MLAs, MD, CART,
SVM, RF, and GBDT, were trained and validated for lithological mapping. The
results indicate that advanced MLAs, such as GBDT and RF, are highly effective for
nonlinear modeling and learning with relative increases reaching 8.18%~11.82%
for GBDT and 6.36%~10% for RF. Compared with optical imagery or terrain data
alone, combining Sentinel-2 and DEM significantly improves the accuracy of
lithological mapping, as it provides more comprehensive and precise spectral
characteristics and spatial information. GBDT_Sen+DEM utilizing integrated data
achieved the highest classification accuracy, with an overall accuracy of 63.18%.
This study provides a case study for lithological mapping of areas with high
vegetation cover at the local level. This also reinforces the idea that merging
remote sensing and terrain data significantly enhances the precision and
reliability of the lithological mapping methods.
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1 Introduction

Lithological mapping of highly vegetated areas is an essential
part of geological surveys and mineral resource exploration
(Lu et al, 2021). On the one hand, challenges related to low
comprehensive utilization of mineral resources, uneven regional
development, ecological degradation, and environmental pollution
in mineral resource exploitation underscore the importance of
addressing these issues to achieve sustainable development in the
mining industry (Wang and Li, 2020; Xie, 2020). On the other hand,
the spatial distribution of rocks contributes to the extraction of
mineral alteration information, selection of target areas within
mining regions, and acquisition of multiscale structural control
information (Shuai, 2022). Therefore, it provides theoretical
support for delineating prospective mineralization zones and
holds significant importance for geological prospecting and
evaluation (Wang and Liu, 2020). However, traditional geological
mapping encounters significant challenges in areas with high
vegetation cover, including fieldwork difficulties, high costs,
lengthy time requirements, and limited accessibility to certain areas.

Remote sensing technology enables efficient and large-scale
identification of rock types due to its fast speed, low cost, and
efficiency in terms of time and labor (Carli and Sgavetti, 2011; Pour
and Hashim, 2014). However, rocks are largely obscured by soil in
densely vegetated areas, with studies indicating that vegetation cover
of only 10% or more can effectively conceal surface information
(Siegal and Goetz, 1977; Ager and Milton, 2012). Extracting weak
rock-type information using remote sensing is a major challenge in
geological applications (Chen et al., 2012). “Geobotany” offers an
important approach to address this challenge, enabling indirect
rock-type identification by considering the relationship between
vegetation and underlying substrates (Grebby et al, 2011). Rock
types influence the composition of aboveground plant communities
in two ways: nutrient provision to plants (Landeweert et al., 2001;
Hahm et al,, 2014), and the weathering depth, degree, and increased
porosity of rocks, which impact water storage potential (Schwinning,
2010; Klos et al, 2018). Hahm’s research showed that plant
communities in different regions are correlated with hydrology
and rock types, even under similar climatic conditions (Hahm
et al, 2019). Do Amaral mapped three geological phases using
indicator species (do Amaral et al.,, 2018). Qiao’s research showed
a significant impact of rock types on the spatiotemporal pattern
changes in vegetation (Qiao et al., 2020).

High-resolution optical and radar remote sensing data, along
with terrain information, are valuable for extracting rock-type
information from densely vegetated areas. In the past decade,
medium-resolution remote sensing imagery such as Landsat series
and ASTER, has been extensively employed for rock type mapping
in vegetated areas (Knepper, 1989; Langford, 2015; Han et al., 2021;
Zeng et al., 2023). It establishes a strong foundation for rock-type
identification by offering cost-effective, wide coverage, high spatial
resolution (Chen et al.,, 2022; Zou et al., 2022), valuable indications
of vegetation and rock-soil information, rich surface information
and a small mixed pixel effect (Meroni et al, 2021). Sentinel-2
imagery is a new and freely accessible dataset that offers a
high spatial resolution. It has been widely used in fields like
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geology, agriculture, and urban studies. Equipped with a
multispectral sensor, it can capture visible and near-infrared
spectral data making it an invaluable resource for lithological
identification research. Radar is highly sensitive to surface
physical characteristics, particularly the C-band response related
to vegetation biomass, structure, and soil conditions. Digital Terrain
Models (DTMs) can qualitatively and quantitatively reveal terrain
variations reflecting subtle changes in rock types. The erosion and
weathering resistance of rocks fundamentally shapes the terrain,
and rocks with higher resistance to erosion form steeper terrain
sections under similar conditions (Snyder et al., 2000; Montgomery,
2001). In stable landscapes, terrain slope indices can represent the
erodibility of different rock types (Mills, 2003; Gallen, 2018). Radar
and terrain data partially overcome the limitations of optical remote
sensing in identifying and classifying rock types in vegetation- and
shallow-covered areas (Gloaguen et al., 2019). In addition,
compared to traditional remote sensing data, hyperspectral data
can provide richer spectral information, thus reflecting the spectral
response characteristics of different lithologies more accurately.
This can provide effective technical support for geological
exploration and mineral resource development (Chen L.
et al., 2023).

An appropriate algorithm is one of the key factors contributing
to achieving satisfactory classification results. Machine learning
algorithms such as maximum likelihood (ML) (Grebby et al,
2011), partial least squares discriminant analysis (PLSDA) (Lu
et al., 2021), support vector machine (SVM) (Othman and
Gloaguen, 2014; Bachri et al., 2019), and random forest (RF)
(Han et al., 2021) have been extensively used for rock
classification in vegetation-covered areas because of the rapid
advancement of machine learning. In Grebby’s study, airborne
multispectral imagery and laser scanning data were used to map
rock types in the Troodos ophiolite. The self-organizing map
algorithm achieved the highest accuracy (72.7%) among the
algorithms utilized (Grebby et al, 2011). Othman and Gloaguen
improved the lithologic map of the Mawat ophiolite complex in
northeastern Iraq using an SVM classifier based on ASTER
multispectral data, landform features, and texture data with
overall accuracy (OA) of 79.28% (Othman and Gloaguen, 2014).
Lu used multiple algorithms, including PLSDA, SVM, k-nearest
neighbors and Bayesian, combined with Sentinel-1 and SRTM data,
to map rock distribution of Huludao City in Liaoning Province,
China. The highest accuracy of 0.444 was achieved using the PLSDA
(Luetal., 2021). Otele updated lithological mapping in the southern
region of Cameroon using Landsat 7 imagery and a multilayer
perceptron neural network and achieved an accuracy of 53.01%
(Otele et al., 2021). Zeng compared the accuracy of KNN, MLC, and
SVM algorithms in classifying basalt using Landsat 5 and ASTER
imagery. The SVM model with Landsat 5 achieved the highest
accuracy of 70.92% (Zeng et al., 2023). These methods establish a
solid basis for the rapid classification of rocks using “geobotany”
principles in remote sensing. Furthermore, HAN utilized the RF
method to map Quaternary rock (including Pleistocene
gravel, Holocene sand, Holocene clay, and Holocene gravel)
in vegetation-covered areas of Vietnam based on multiple
remote sensing data sources, achieving OA of 80.99% (Han et al.,
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2021). This highlights the potential of the RF algorithm in
geological mapping.

This study aims to achieve lithological mapping in areas with
dense vegetation using Sentinel-2 and SRTM DEM data combined
with MLAs. The study focuses on Zhangzhou City in Fujian
Province as an example. We tested the performance of five
popular MLAs to determine which one works best for this task.
We carefully compared and analyzed the accuracy of the
classification results achieved by each algorithm, gaining valuable
insights into their effectiveness. Furthermore, we systematically
evaluated the accuracy of classification results obtained from
Sentinel-2 alone, DEM alone, and the combination of Sentinel-2
and DEM to better understand their impact on lithological
mapping. This research contributes to the advancing field of
geospatial science and remote sensing.

2 Study area and data
2.1 Study area

The study area is located around Daxi Town, Pinghe County,
Zhangzhou City, Fujian Province. The specific administrative
division map, true-color composite image, and DEM are shown
in Figure 1. It is situated in a complex region with intersecting
Nanshan Mountain Range and the Second Complex Uplift Belt of
the Xinhua-Xia series. It has undergone multiple crustal movements
and has exhibited complex tectonic faults. The primary geological
formations consist of Lower Cretaceous, Jurassic strata, and

Legend
I Fujian Province
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FIGURE 1
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Yanshanian intrusion rocks. The main rock types in this area
include Rhyolite tuff (RhyT), Yingan tuff (YinT), Rhyolite (Rhy),
sandstone (San), and granite (Gra). Sedimentary deposits consist
mainly of conglomerate, gravel, and sandy soil layers (CGS).

The area is characterized by dense vegetation growth, with a
forest coverage rate of 73.2% as of 2021. It exhibits a variety of plant
community types and a complex hierarchical structure, resembling
the vibrant landscapes of the South Asian tropical rainforests. The
main vegetation types include coniferous forests, broad-leaved
forests, mixed forests of conifers and broad-leaved trees, bamboo
forests, shrubs, and grass slopes. The bedrock is mostly covered by a
few outcrops (Shi and Wang, 2014). Additionally, in highly
vegetated areas, the surface layer is heavily weathered, and the
soil layer is thick, posing challenges for rock-type identification
using remote sensing techniques.

2.2 Data and preprocessing

The Sentinel satellite carries the Multispectral Instrument
(MSI), capturing imagery data in visible, near-infrared, and
shortwave infrared bands. It provides a spatial resolution ranging
from 10 m to 60 m (band details in Table 1). With a 5-day revisit
period at the equator, it covers a swath width of 290 km (Chen et al.,
2021). The S2 MSI Level-2A products offer preprocessed bottom-
of-atmosphere reflectance images, including geometric correction,
orthorectification, image registration, radiometric calibration, and
atmospheric correction. A total of 78 images for the year 2021 with
cloud coverage of less than 10% in the study area were obtained, and

} Legend
L 2 I Study area
’ [ Prefecture-level city boundaries

0 125 250 Km

117°11'E

high:1267

low:29

The study area for (A) a specific location in the administrative map of China, (B) Sentinel-2 tru color composite image and (C) Digital Elevation Model (DEM).
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TABLE 1 Sentinel-2 band and spectral characteristics.

Band or Central wavelength/ Resolution
index formula (meter)
Bl 443.9nm (S2A)/442.3nm (S2B) 60m

B2 496.6nm (S2A)/492.1nm (S2B) 10m

B3 560nm (S2A)/559nm (S2B) 10m

B4 664.5nm (S2A)/665nm (S2B) 10m

B5 703.9nm (S2A)/703.8nm (S2B) 20m

B6 740.2nm (S2A)/739.1nm (S2B) 20m

B7 782.5nm (S2A)/779.7nm (S2B) 20m

B8 835.1nm (S2A)/833nm (S2B) 10m

BSA 864.8nm (S2A)/864nm (S2B) 20m

BY 945nm (S2A)/943.2nm (S2B) 60m

B11 1613.7nm (S2A)/1610.4nm (S2B) 20m

B12 2202.4nm (S2A)/2185.7nm (S2B) 20m

EVI 2.5x (B8 — B4)/(B8 + 6 x B4 - 7.5

x B2 + 1)
NDBI (B12 — B4)/(B12 + B4)
NDWI (B3 - B4)/(B3 + B4)
LSWI (B4 - B11)/(B4 + B11)
GCVI (B8/B3) — 1

cloud masking using the QA60 band was performed to eliminate
cloud effects. Bands B5, B6, B7, B8A, B11, and B12 were resampled
to 10-meter spatial resolution using bilinear interpolation, and then
the median composite was applied to the images.

The Shuttle Radar Topography Mission Digital Elevation Model
(SRTM DEM) is a digital representation of terrain elevation
obtained using radar equipment carried by space shuttles,
covering over 80% of the Earth’s land surface. SRTM DEM data
is acquired by emitting radar beams from a space shuttle towards
the Earth’s surface and measuring the returning signals. This
technique bypasses cloud cover and vegetation obstruction to
acquire surface elevation data. The SRTM DEM 30 m dataset was
resampled to 10 m using bilinear interpolation to match the spatial
resolution of the optical imagery.

2.3 Ground reference data

The reference data includes the regional geological map from the
First Survey Team of Fujian Provincial Geological Survey Bureau in
1982 and lithology distribution maps obtained through a combination
of vegetation suppression methods and manual visual interpretation by
professional experts. We adopted the approach used in the lithological
distribution map to classify land surface cover types and collected pixel-
level sample data for 7 land cover classes based on the regional
geological map: CGS (118), San (106), Rhy (112), RhyT (121), YinT
(121), Gra (110), and water (39).
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3 Methods
3.1 Method system construction

The main idea for pixel-wise rock classification is based on
“geobotany”. It uses differences in surface reflectance between
vegetation communities to indirectly identify underlying rock
types by considering terrain and landform characteristics. To
achieve this, we construct five classical machine learning
algorithms: minimum distance algorithm (MD), classification and
regression trees (CART), support vector machine (SVM), random
forest (RF), and gradient boosting decision tree (GBDT) (refer
to Figure 2).

The following research plan aims to reduce computational
burden and accelerate the production of optimal lithological
spatial distribution maps. The available geological data is divided
into training and validation sets at a 7:3 ratio to assess the model’s
generalization ability, which evaluates its performance on new data.
Then, five classification algorithms are trained and optimized using
the preprocessed Sentinel-2 remote sensing image and a sample
dataset. The optimized models are validated and evaluated for
accuracy using validation samples. Subsequently, the optimal
model is used to classify rock types and generate a lithological
map based on Sentinel-2 data. In the subsequent studies based on
SRTM DEM (alone) and combination of Sentinel-2 with SRTM
DEM, at least two classifiers that performed well in the previous
step are used for validation and accuracy evaluation. Similarly, the
optimal model is used to generate lithological maps based on SRTM
DEM (alone) and combined with Sentinel-2 and SRTM data.

3.2 Feature extraction

B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12, were selected
from Sentinel-2. It should be noted that Bl represents the aerosol
band and B9 represents the water vapor band, therefore, they were
not used in this study. Additionally, five spectral features were
computed, which are crucial for rock or water body identification:
enhanced vegetation index (EVI), green chlorophyll vegetation
index (GCVI), normalized difference building index (NDBI),
normalized difference water index (NDWI), and Land Surface
Water Index (LSWI). This study employed EVI to indicate
vegetation growth status, as it is well known that normalized
difference vegetation index (NDVI) can saturate areas with high
vegetation cover (Huete et al, 1997). GCVI is sensitive to
chlorophyll and can be used to identify agricultural areas (Huete
et al., 2002). NDBI is useful for identifying built-up areas
(Benbahria et al., 2018). NDWI and LSWI are vegetation indices
that are highly sensitive to surface water (Jeong et al., 2012).

For SRTM DEM, six terrain features, including elevation (E),
slope, aspect, vertical curvature, horizontal curvature, and Gaussian
curvature, were obtained using terrain analysis algorithms proposed
by Florinsky (2016) and Safanelli (Safanelli et al., 2020).
Additionally, surface roughness (SR), high integral (HI), and
surface index (SI) were calculated within a 3 x 3 window,

frontiersin.org


https://doi.org/10.3389/fevo.2023.1250971
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Chen et al. 10.3389/fevo.2023.1250971
— Radiometric calibration
Bands Overall accuracy
> Atmospheric correction
- .. EVI ‘ ML Recall rate
(> Topographic correction - N
Sentinel-2 L2A 2021 T GCVI Precision ratio
> Image clipping + =
Time Series I NDBI ‘ CART
> Cloud mask - ST
NDWI
Bl Resampling — l
] LSWI > ‘ SVM
>  Median synthesis - . )
e - @ optimal algorithm
Elevation l
Slope/Aspect RE
Curvature
DEM 30m Resampling > —
Surface roughness GBDT
High integrated
Surface Index
'/Availahle geological train validate
s
i Samples
FIGURE 2

The flowchart. “DEM" for digital elevation model, “EVI" for enhanced vegetation index, “GCVi" for green chlorophyll vegetation index, “NDBI" for
normalized difference building index, “"NDWI" for normalized difference water index, and "LSWI" for land surface water index.

providing indications of terrain features associated with rock type
information.

SR = 1/cos(slop)

HI = (Emean - Emin)/(Emax - Emin)

o (HI - HIm,-,,) 5 (H - Hm,-,,> L SR—(1+SR,,;,) |
HImux Hmax SRmaX

Where E is extracted directly from the DEM. E_mean, E_max,
and E_min represent the mean, maximum, and minimum values
within the moving window, respectively. SR is the ratio of grid
surface area to projected area, which is used to quantify tectonic
landform changes. A higher SR value indicates a more severe degree
of regional deformation (Han et al., 2021). SI is a new efficient index
that simultaneously depicts the preserved and eroded portions of
the landscape (Andreani et al., 2014).

3.3 Classification algorithms for
lithological mapping

The Minimum Distance (MD) algorithm is widely used for
classification and pattern recognition (Wacker and Landgrebe,
1972). Tt assigns input data to the closest category based on
computed distances between categories, using methods such as
Euclidean, Manhattan, and Minkowski distances. In the context of
lithological mapping, this algorithm can be used to infer the
lithology of specific locations based on their proximity to known
geological features or data points (Pal et al., 2020). MD is simple,
easy to implement, and well-suited for problems with distinct
category boundaries.
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Classification and regression trees (CART) is a tree-based
algorithm for classification and regression (Friedl and Brodley,
1997; Pal and Mather, 2003). It recursively splits and evaluates
input data to build a tree-like model, where nodes represent
features, branches represent feature values, and leaf nodes
represent final results. Applying CART to lithological mapping
involves systematic interpretation of geological features for accurate
lithological classification. Visualizing the decision tree offers
insights into hierarchical feature divisions that lead to lithological
categorization, enhancing our understanding of how different
features influence prediction accuracy (Serbouti et al., 2022).
CART has a simple structure, making it easy to understand,
interpret, and generate decision-making rules. It’s worth noting
that the effectiveness of the CART decision tree method relies on the
quality and relevance of selected features, as well as the
representation of distinct lithological classes in the dataset
(Lewis, 2000).

Support vector machine (SVM) is a non-parametric classifier
widely used for binary and multi-class classification tasks (Pal and
Mather, 2005; Mountrakis et al., 2011). It aims to minimize
structural risk by identifying an optimal hyperplane in the feature
space that maximizes the margin between samples of different
classes. SVM can be used for lithologic classification by selecting
training and testing pixels, training the SVM classifier using a kernel
function, and mapping the input data (such as spectra, textures,
topography, gamma-ray and land temperature) (Othman and
Gloaguen, 2014; Harris and Grunsky, 2015; Yang et al., 2018;
Chen C. et al, 2023) into a higher-dimensional space to find a
hyperplane that separates the different classes. SVM has the
advantage of handling high-dimensional data, nonlinear
classification problems, and small sample sizes (Shebl and
Csamer, 2021; Shebl et al., 2021). However, it also has limitations
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in terms of selecting appropriate kernel functions, computational
intensity, and sensitivity to noise and outliers (Othman and
Gloaguen, 2017).

Random forest (RF) works by creating multiple decision trees
on randomly selected subsets of the data and then combining the
results to make a final prediction (Pal, 2005; Belgiu and Dragut,
2016). It has significant advantages with the ability to combine
multiple remote sensing and data sources in lithology mapping as it
improves its generalization ability by randomly selecting input or
input combinations at each node (Breiman, 2001). It is especially
effective for processing high-dimensional and noisy input data and
can overcome the interference of vegetation coverage, thereby
improving the accuracy of lithological mapping (Harris and
Grunsky, 2015; Bachri et al.,, 2019). However, caution should be
exercised when fine-tuning parameters for optimal outcomes and
effectively managing computational expenses, particularly when
dealing with substantial datasets. The risk of overfitting due to an
abundance of trees or noisy data should be considered, along with
its limited efficacy with imbalanced datasets (Guo et al., 2022).

The Gradient Boosting Decision Tree (GBDT) is an iterative
ensemble learning algorithm that constructs a strong prediction
model (Yang et al., 2018; Xu et al., 2020). It builds multiple decision
trees iteratively, using the residual between the current predicted
value and the true label to train each tree. Each iteration adjusts the
predicted value to approximate the true label. The final prediction is
obtained by combining the predictions of all the trees. Although the
algorithm is rarely used in lithology mapping in high vegetation
cover areas, studies have shown that it is effective in handling large
datasets and high-dimensional feature spaces, and it is robust to
noise, outliers, and missing data (Lemercier et al., 2012; Zhou et al,,
2020; Cai et al., 2022).

3.4 Accuracy assessment

Accuracy assessment objectively evaluates the performance of
remote sensing algorithms and models, providing a reliable
foundation for remote sensing applications and decision-making
(Hay, 1988). It validates the accuracy of tasks like image
classification and object detection, helping to determine the
reliability and feasibility of the results. The Confusion Matrix is a
tabular representation used to evaluate the performance of a
classification model (Comber et al, 2012; Salmon et al., 2015).
Therefore, we calculate four evaluation metrics using the Confusion
Matrix to assess the classification results and optimize the model:
overall accuracy (OA), recall (R), precision (P), and
Kappa coefficient.

4 Results
4.1 Model tuning

Model tuning optimizes the performance and generalizability of
the machine learning model by adjusting its parameters or
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hyperparameters, improving its effectiveness in addressing real-
world problems. By systematically adjusting parameters, the model
can better adapt to data patterns and characteristics. Proper
parameter settings also reduce computational resources required
for training and prediction. Through tuning, structure of the model
and parameter selection are optimized, resulting in reduced
computational costs and time consumption.

The sample dataset was randomly divided into training and
validation sets at a 7:3 ratio for model training and tuning based on
Sentinel-2 imagery. To determine the best settings for our models,
we test them by using different parameters in the validation set. We
begin by defining a range of parameter values and then try different
values within that range. Finally, we select the parameter values that
make our models perform the best on the validation set. We can
show this process on a chart, where the horizontal line represents
different parameter choices, and the vertical line shows the
performance of the model (typically, model performance metrics
such as OA). The tuning results for each model are shown in
Figure 3. The MD algorithm achieved optimal performance using
the Mahalanobis distance metric. The CART was tuned with a
maximum of 50 nodes and a minimum of 5 nodes. The gamma
coefficient of SVM model was set to 20, and the Cost parameter was
set to 10. The RF utilized 210 trees and a minimum of 3 leaf nodes.
The GBDT employed 80 trees and a maximum of 70 leaf nodes.

In machine learning and data modeling, the optimal parameters
of a model typically change with different datasets and feature
combinations. Once we have identified at least two promising
classifiers based on Sentinel-2, we apply the same tuning
methodology to both the DEM data and the combination of
Sentinel-2 and DEM data to ensure optimal model performance.

4.2 Lithology classification using
Sentinel-2 image

The model accuracy and validation accuracy of five typical
machine learning algorithms were summarized (as shown in
Figure 4). The SVM algorithm had higher model accuracy but
lower validation accuracy, possibly indicating overfitting due to
linear inseparability of rock categories and limited sample size. MD
and CART performed poorly, with model accuracy below 70% and
validation accuracies below 0.4, suggesting limitations in handling
complex structural information. RF and GBDT showed better
performance as ensemble algorithms with strong learning
capabilities with OA 46.82% and 45%, and Kappa 0.371 and
0.349 respectively.

Figure 5 illustrates rock-type accuracy achieved by the five
machine learning algorithms. The “water” class consistently
exhibits high accuracy (close to 100%) across all models,
indicating the effectiveness of the algorithms. In terms of class
accuracy, the RF model demonstrates notable improvements in
precision for “RhyT”, “San”, and “YinT” classes, as well as increased
recall for “RhyT” and “YinT” classes. For instance, precision of San
improved by 13.1% to 20%, and recall of “RhyT” increased by 10%
to 36.6%. The GBDT achieved overall high accuracy through
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(A) Precision (P) and (B) recall (R) of rock types using five classifiers (MD, CART, SVM, RF and GBDT) based on Sentinel-2.

significant improvements in precision and recall for “CGS” and
“San”. Specifically, precision and recall of “CGS” increased by 1.3%
to 11.8% and 2.7% to 29%, respectively.

4.3 Lithology classification using
SRTM DEM

Using RF and GBDT algorithms for lithology classification
achieves higher accuracy based on the accuracy assessment results
(see Figures 6, 7). The overall classification accuracy is
approximately 49% with a kappa coefficient of approximately 0.4.
When comparing individual rock types, both algorithms show
higher accuracy for “CGS” and “Rhy”. “CGS” plays a significant
role in terrain morphology and exhibits a certain relationship with
terrain features. “Rhy” is commonly found in uplift zones associated
with tectonic landforms.

The lithology classification map generated using SRTM DEM
(Digital Elevation Model) data shows higher accuracy than
Sentinel-2 imagery. The overall improvement in lithology
classification accuracy is mainly attributed to better classification
of “Rhy” and “San”, despite a slight decrease in the accuracy of
classifying “RhyT” and “Gra”. This can be explained by the strong

OA
0.65 [ Kappa
0.60
0.55

GBDT_Sen+DEM 050 GBDT Sen
0.45
0.40
03
RF_Sen+DEM RF_DEM
GBDT_DEM
FIGURE 6

Overall accuracy (OA) and Kappa of the RF and GBDT in lithological
classification based on Sentinel-2 (alone), DEM (alone), and
combined Sentinel-2 and DEM data. "Sen" is the abbreviation for
Sentinel-2.
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correlation between spatial distribution and landform morphology.
“San” is commonly found in low-lying areas, while “Rhy” is
associated with volcanic activity and its distribution relates to
volcanic topography. However, it should be noted that the
accuracy of “water” based on SRTM DEM is significantly lower
than that of Sentinel-2 imagery due to the limited information
about water bodies in DEM, which primarily focuses on surface
terrain elevation. As a result, there may be errors or omissions in the
parts of the lithology classification that involve water bodies, as it
does not capture the characteristics of water flow from higher to
lower elevations. Overall, the utilization of DEM improves the
accuracy of lithological classification by capturing the relationship
between lithological variations and landform morphology.

4.4 Lithology classification using combined
Sentinel-2 and SRTEM DEM

The RF and GBDT are also utilized in a lithology mapping study
that combines Sentinel-2 imagery and SRTM DEM data. The
extraction of lithological information can be greatly improved by
integrating optical remote sensing data with terrain morphology
features, resulting in more comprehensive and accurate spatial
information. Both algorithms (RF and GBDT) show a significant
improvement in accuracy compared to Sentinel-2 (alone) or SRTM
DEM (alone), achieving OA of approximately 60% (see Figure 6).
The GBDT demonstrates a more precise lithology classification,
achieving OA of 63.18% and a Kappa of 0.565. Compared with RF,
GBDT improved OA and Kappa by 4.54% and 0.053, respectively.

The joint utilization of Sentinel-2 imagery and SRTM DEM,
along with advanced machine learning algorithms like GBDT,
significantly improves the classification accuracy of various
lithological categories, as depicted in Figure 7. The performance
in classifying “CGS”, “San” and “Rhy” is notably enhanced.
Moreover, the classification of “water” achieves optimal results.

Based on the above study, lithological mapping was performed
using RF for Sentinel-2 (alone), GBDT for DEM (alone) and the
combination of Sentinel-2 and DEM (Figure 8). In the lithological
map based on Sentinel-2, the limited distinguishability of rock types
other than “CGS” and the presence of significant “speckle”
phenomenon may be attributed to the optical sensor limitations
of Sentinel-2, which are affected by cloud cover, atmospheric
interference, and vegetation obstruction. In contrast, DEM data
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FIGURE 7
(A) Precision (P) and (B) recall (R) of rock types using RF and GBDT based on

offers continuous surface elevation and terrain information,
resulting in a clearer representation of lithological distribution.
The combination of Sentinel-2 imagery and DEM allows for
leveraging their respective strengths, leading to more
comprehensive and accurate rock-type classification results.

5 Discussion

Using SRTM DEM data for lithological classification provides
more accurate results than Sentinel-2 imagery, particularly for
“Rhy” and “San”. However, “water” requires additional data
sources or methods to enhance accuracy. Sentinel-2 imagery
offers rich spectral information for analyzing rock characteristics
such as color and reflectance. On the other hand, SRTM DEM
provides elevation data for terrain morphology revealing surface
undulations and morphological features complementing
lithological classification. The accuracy and reliability of
lithological classification are substantially improved through the
integration of these data sources, meticulous consideration of

RF_Sen+DEM

GBDT_ Sen+DEM

10.3389/fevo.2023.1250971

RF_Sen
GBDT_Sen
RF_DEM

GBDT DEM

Sentinel-2 (alone). DEM (alone), and combined Sentinel-2 and DEM.

spectral and terrain features, and the utilization of state-of-the-art
machine learning algorithms.

Choosing the correct classification algorithm is crucial for
achieving satisfactory results in land cover classification using
remote sensing data. In this study, we evaluated the performance
of five classical machine learning algorithms for rock identification
in densely vegetated areas. Our findings indicate that complex
algorithms like RF and GBDT outperformed the others,
consistent with previous research (He et al, 2015; Othman and
Gloaguen, 2017). RF exhibited robustness, stability, and the ability
to handle feature selection and outliers. GBDT demonstrated strong
fitting and generalization capabilities, making it suitable for
capturing complex nonlinear relationships.

Overlaying the classification result map with geological contour
maps allows for visual analysis of the spatial distribution of rock
types (Figure 8). In this study, we observed consistency between the
classification results and existing geological maps for “GCS”, and
“Rhy”, indicating a good match. Fine sand and siltstone were
primarily found in valley areas, corresponding to the gentle
topographic features of valleys. These areas are often impacted by
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FIGURE 8

Lithological mapping of the study area from (A) Sentinel-2 (alone), (B) DEM (alone), (C) combined Sentinel-2 and DEM, and (D) overlay of the rock

classification map and existing geological contour map.
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human activities for agricultural, residential, and industrial
purposes, leading to modified surface cover types. The mixing of
the other three rock types is prominent. However, further
observation shows that the classification performance of granite
and andesitic tuff in the northern region is consistently high. In the
southern region, although there is a mixing phenomenon in the
rhyolite area, rhyolite remains dominant. These findings are
valuable for studying the geological features, distribution of rock
types, and geological evolution in the study area.

In areas with dense vegetation, the presence of subsurface rock
types can potentially affect the distribution and characteristics of
vegetation (Ott, 2020). However, the growth and distribution of
vegetation are influenced by various factors such as soil type,
moisture levels, light intensity, and climate conditions (Yang
et al, 2021). The complex interactions among these factors make
the relationship between vegetation and subsurface rock types
complex. In our study, we used maps created from field surveys
as a reference for our sample data. Although we tried to avoid
including samples from border regions to reduce potential
errors due to geographic bias, there may still be some mistakes
in our pixel-based sample data, including issues with the
representativeness of the sample and measurement accuracy.
Additionally, we didn’t thoroughly analyze how rock types
correlate with vegetation and terrain features. This oversight
could reduce the certainty of our research results, especially if the
connections between these factors are weak or unclear. To address
this, in our future research, we will focus on a detailed correlation
analysis to better understand these relationships. This will improve
the accuracy of rock classification and provide more reliable tools
and data support for geological research, resource exploration, and
related fields. As well as,future research should consider
incorporating more extensive on-site validation efforts to confirm
the accuracy of our classification results.

Moreover, the high variability within rock classes and
similarities between different rock types (Otele et al., 2021)
contribute to the complexity of vegetation and terrain features,
making it challenging to directly infer subsurface rock information
solely based on vegetation indices. Recent advancements in deep
learning algorithms have significantly enhanced their application in
remote sensing for land cover classification (Sun et al, 2022).
Particularly, in areas with dense vegetation cover, deep learning
algorithms have demonstrated higher accuracy in identifying rock
types (Otele et al., 2023; Pan et al., 2023). These algorithms leverage
the ability to learn from extensive image data, enabling them to
explore and capture intricate relationships and feature
representations among different land cover classes (Dimitrovski
et al., 2023). They effectively address the challenges posed by
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vegetation interference and complex land cover backgrounds,
resulting in improved classification accuracy and stability.
Additionally, deep learning algorithms exhibit a certain level of
generalization capability, performing well across different regions
and datasets (Yasir et al., 2023). These findings provide valuable
insights and pave the way for future research in this field.

6 Conclusions

Through the integration of optical remote sensing imagery and
terrain data, coupled with the utilization of advanced algorithms,
the potential to discern various rock types becomes attainable. This
integration significantly enhances the precision and dependability
of lithological mapping within regions characterized by dense
vegetation cover. When juxtaposed with the individual use of
optical imagery or terrain data, the amalgamation of these two
datasets for rock classification purposes exhibits a synergistic effect,
enriching the informational representation of rock types.

Furthermore, the employment of sophisticated Machine
Learning Algorithms (MLAs) adeptly harnesses and delves into
the wealth of feature information stemming from these diverse data
sources. These algorithms, characterized by their resilient nonlinear
modeling and learning capabilities, enable the capture of intricate
relationships within land cover. This is achieved through the
extensive use of sample data, ultimately resulting in improved
accuracy and stability in lithology classification.

It’s worth noting that the GBDT and RF algorithms employed in
this study exhibit robustness and resilience, rendering them applicable
across various research regions and for the categorization of rock types
involving different combinations of data types. This holds significant
implications for geological surveys and mineral exploration.

Looking ahead to future research endeavors, our focus will
remain on deepening our understanding of the interplay between
rock types and vegetation as well as terrain features. This ongoing
exploration aims to further enhance the accuracy of rock
classification. Additionally, the application of deep learning
algorithms presents an intriguing avenue, particularly in
addressing the challenges posed by rock classification in areas
with dense vegetation cover.
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03 November 2023 Typhoon rain events are important factors that trigger changes in dissolved
oxygen concentrations in watersheds. The direction of the typhoon driving force

Shen W, Jin Y, Li G and Cong P (2023) is clear, but the mode of action and mechanism are complex. Moreover,
Analyzing the response distribution of DO quantifying the relationship between these actions and dissolved oxygen is

concentration and its environmental . . . S
factors under the influence of typhoon rain challenging. This study collected measured data from water quality monitoring

events with remote sensing. and remote sensing during the 2022 typhoon rain events. By analyzing the
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comply with these terms. mouth of the sea had a tendency to become worse. Under the influence of

typhoon rain events with smaller intensity, the scouring effect of rainwater
dominated, and the DO concentration response in the water body had a
tendency to become worse. The analysis of spatial heterogeneity under the
influence of human activities showed that the ranking values of DO
concentration response in rivers in the city area of Zhongshan, under the
influence of typhoon rain events, were positively correlated with the
distribution of ozone (Oz) concentration and sulfur dioxide (SO5)
concentration in the eastern, central, and western parts of Zhongshan.
Conversely, it was negatively correlated with the distribution of Os
concentration and SO, concentration in the northern and southern parts of
Zhongshan. Based on the research results, we constructed a technique to
evaluate the response of dissolved oxygen concentration during the typhoon
transit period, which can provide an indicator reference for urban managers in
water environment management.
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1 Introduction

Water environmental pollution has become one of the three
major water problems in cities because urbanization has changed
the conditions for the formation of surface and subsurface runoff,
affecting the water cycle as well as the spatial and temporal
distribution of water (Qi-ting et al., 2005). Deterioration of water
quality, reduction of water quantity, and degradation of water
ecology are important impediments to the sustainable
development of urbanization (Yu et al, 2018). Studies have
shown that nonpoint source pollutants from typhoon rain events
are one of the major pollutants in urban surface water and have
serious impacts on surface water quality (Fu et al., 2021). Under the
subtropical oceanic monsoon climate, an average of seven typhoons
land and affect the Greater Bay Area every year, with high intensity
and frequency. These typhoons not only cause serious casualties
and economic losses but also have a significant impact on the urban
water environment conditions (Liu et al., 2009; Chen et al., 2020;
Cui et al., 2022). Water scarcity and deterioration of water quality
pose threats to human health and survival, making them major
challenges for existing freshwater resources (Mishra et al., 2021). In
order to achieve the United Nations 2030 Sustainable Development
Goals (SDGs) and to deepen the understanding and management of
water security, it is exploratory and valuable to assess the risk of the
water environment. Multi-criteria decision analysis (MCDA) is one
of the most widely used methods in the environmental decision-
making process (Mardani et al., 2017).

Globally, environmental risk assessment is an effective measure
to prevent and control environmental events. Typhoon rain events
have received attention from researchers as an important causative
factor in triggering environmental events (Han et al., 2019). Liang
Huanhuan et al. (2016) conducted a hierarchical study on the risk of
groundwater contamination at 37 hazardous waste landfills using
the MCDA model based on the idea of contamination source-
pathway-receptor risk throughout the whole process control.
Cabrera and Lee (2019) used multi-criteria decision analysis to
assess typhoon-induced flood-prone risk areas in Davao Oriental,
Philippines, by integrating various indicators such as rainfall and
elevation. The role of hierarchical analysis (AHP) as well as ratio
weighting (RW) in determining indicator weights was also
compared, and the AHP model was found to perform better in
calculating the importance of indicators. Gao et al. (2020) combined
the spatial analysis method of AHP and geographic information
system (GIS) to conduct a comprehensive weighted risk assessment
based on the spatial and temporal cumulative patterns of typhoon-
induced flooding disasters in Guangdong Province as the research
object. Guangdong Province was classified into six levels of risk
zones based on the integrated typhoon disaster risk, and the indirect
economic impacts were further analyzed on this basis. Wang et al.
(2022) synthesized the risk, exposure, and vulnerability of three
typhoon hazard chains, constructed a comprehensive typhoon
hazard risk indicator for the Greater Bay Area, divided the risk
level of typhoon hazard chains in important towns and cities as well
as the comprehensive risk level, and verified the validity of the
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assessment methodology of the comprehensive risk indicator for
typhoon hazards. In multi-attribute decision analysis,
MULTIMOORA method has simple calculation, short time and
strong robustness, and is widely used in process selection (Lixia
et al,, 2020; Qiong et al,, 20215 Lei et al., 2022), location selection
(Yuan-hua et al, 2023), risk assessment (Shenghua et al., 2019;
Zhang et al., 2022) and other fields(Hafezalkotob et al., 2019).

DO concentration in water bodies plays a crucial role in the
survival of aquatic organisms as well as the balanced development
of ecosystems, and is one of the important indicators for evaluating
the quality of the water environment (Songbai et al., 2017; Espinosa-
Diaz et al, 2021). Under the influence of typhoon rain events,
nitrogen dioxide (NO,), organic particulate matter, and other
pollutants generated by human activities will be diluted by
rainwater into the water environment, which affects the dissolved
oxygen concentration of the water body under the effect of
eutrophication and mineralization of organic particulate matter
(Xiu-qin et al, 2019; Yufeng et al, 2023). Some scholars have
conducted research on the potential influence mechanism between
temperature, wind speed, rainfall, and DO concentration, and
concluded that there is a positive correlation between DO
concentration and temperature, wind speed, and rainfall (Xiaoran
et al, 2013; Chen et al,, 2016). Huang Weihui et al. (2021) and
Huang Yuling et al. (2022) studied the natural factors such as
geographical conditions on the concentration of saturated dissolved
oxygen, and concluded that the concentration of dissolved oxygen
was greatly affected by altitude and barometric pressure. In 2019,
Jiayang Zhang (Zhang and Chen, 2019) assessed the risk of flooding
disaster caused by typhoon rainstorms, and their evaluation indexes
included wind speed, rainfall, and elevation. Ji-Myong Kim et al.
(2020) selected maximum wind speed and distance as evaluation
indicators in the vulnerability analysis of typhoons in Korea.
Therefore, in this study, DEM, total rainfall, maximum rainfall in
a single day, distance from typhoon landfall, and atmospheric PM, 5
concentration and NO, concentration were comprehensively
selected as evaluation indicators.

The process of urbanization is the transformation of rural
territories into urban territories, involving the reshaping of
natural landscapes, and it represents the most significant
manifestation of human activities affecting hydrological systems
(Liu et al., 2004). Nutrient export due to human activities has
become a major cause of eutrophication and other ecological
hazards in water bodies (Howarth, 2008; Howarth et al., 2011).
Nutrient export due to human activities has become a major cause
of eutrophication and other ecological hazards in water bodies. To
comprehensively consider the source of non-point source pollution
from human activities, Miao Jin-Dian et al. (2021) used NANI and
NAPA models to analyze the spatial and temporal variation
characteristics and driving factors of nitrogen and phosphorus in
the Hangzhou section of the Qiandao Lake Basin. Fan Hongxiang
et al. (2021) investigated the extent of the contribution of human
activities to the change of water age in the lake area of Poyang Lake
by coupling a deep learning network and a traditional two-
dimensional hydrodynamic model. Yisong Zhao et al. (2022) took
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Dianchi Lake as the research object and discussed the response of
surface temperature and lake surface temperature under the
influence of human activities. Therefore, it is informative for this
study to discuss the effects of anthropogenic O3 concentration and
SO, concentration on the distribution of DO concentration
response in urban waters under typhoon rain events.

Scholars at home and abroad have mostly conducted research on
typhoon disaster risk assessment with the purpose of considering the
economy and safety (Chaojia et al., 2022). However, relatively few
typhoon disaster risk assessments have been carried out from the
perspective of river water quality indicators, and there have been
limited studies on the DO response of urban waters under the
influence of human activities. In this paper, based on the measured
data of urban water bodies during the 2022 typhoon rain events and
remote sensing image data, the extended MULTIMOORA method is
used to establish the correlation between typhoon drivers and the
response of DO concentration in urban water bodies. Furthermore, this
study aims to assess and quantify the distribution of the DO
concentration response in urban water bodies. The MGWR model
and spatial autocorrelation analysis were used to analyze the effects of
05 concentration and SO, concentration generated under the influence
of human activities on the distribution of urban water environment
response. The results of the study will contribute to a more intuitive and
in-depth understanding of the effects of typhoon rain events, as well as
human activities, on the distribution of DO concentration response in
urban waters. Local government decision-makers can formulate more
effective water environmental protection policies and disaster
prevention and mitigation measures based on the results of this study.

2 Materials and methods

2.1 Study area

The Guangdong-Hong Kong-Macao Greater Bay Area is
located in the lower reaches of the Pearl River Basin, surrounded
by mountains to the east, west, and north, and directly facing the
South China Sea. It has a well-developed regional economy as well
as a very high population density (Zhilin et al., 2022). Zhongshan is

10.3389/fevo.2023.1283281

located in the heart of the Guangdong-Hong Kong-Macao Greater
Bay Area, between latitude 22° 11’- 22° 47’ north and longitude
113° 09°- 113° 46’ east, with a total area of 1,783.67 km”. The city’s
topography is dominated by plains, which are high in the middle
and flat around the perimeter, with the plains sloping from
northwest to southeast. Zhongshan City is located in the
subtropical monsoon climate, abundant rainfall, the annual
average rainfall is 1886 mm, the annual average inbound and
transit water volume is 2662.94 billion m* and 2678.92 billion m’
respectively. The disaster weather suffered by Zhongshan City
mainly includes typhoons, heavy rainfall and strong convection,
with high rainfall and intensity. Overall, the capacity of Zhongshan
City to cope with emergencies such as pollution accidents and water
quality-type water shortage conditions is relatively insufficient
(Xuehua et al,, 2022). The study area is shown in Figure 1.

2.2 Research date

In this study, four typhoon rain events (Chaba, Mulan, Ma-on,
Nalgae) affecting Zhongshan City in 2022 were used as the study
area. The extended MULTIMOORA theory was used to investigate
the response of DO concentration in the water system of
Zhongshan City during the transit of different typhoons. The
selected indicators of the extended MULTIMOORA theory are:
total rainfall, maximum rainfall in a single day, daily mean PM, 5
concentration, daily mean NO, concentration, elevation, and
distance from the station at the time of typhoon landfall.

Rainfall data from GPM (https://disc.gsfc.nasa.gov/; accessed on
7 June 2023) series of products. Global Precipitation Measurement
(GPM) is an international satellite mission, carried out in
cooperation with NASA and JAXA, which utilizes multi-sensor,
multi-satellite and multi-algorithm in combination with satellite
network and rain gauge inversion to obtain more accurate
precipitation data. The GPM satellite carries ka-band
precipitation radar and high-frequency microwave instrument,
which can improve the observation of light rain and snowfall, and
can provide higher spatial resolution and global coverage of
precipitation observation data than TRMM satellite data.

—— Chaba

—— Nalgae

—— Mulan
— Ma-on

Study Area
[ | Greater Bay Area

Guangdong Provinee

FIGURE 1
Research diagram. (A) Diagram of a typhoon. (B) Map of DEM.
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Meteorological data (NO,, SO,, O;) from the TROPOMI
(https://s5phub.copernicus.eu/dhus/#/home; accessed on 25 June
2023) series of products. Sentinel-5P is a global atmospheric
pollution monitoring satellite launched by the European Space
Agency (ESA) on 13 October 2017. The TROPOMI sensor on
board the satellite can effectively observe trace gas components in
the atmosphere around the globe, including NO,, O3, SO,, HCHO,
CH, and CO, which are important indicators closely related to
human activities, and enhance the observation of aerosols
and clouds.

PM, s data were obtained from Ventusky (https://
www.ventusky.com/; accessed on 5 April 2023), with numerical
results from FINNISH METEOROLOGICAL INSTITUTE,
calculated from the SILAM model and MODIS Aqua and Terra
remote sensing imagery data. DEM data were obtained from
Geospatial Data Cloud (https://www.gscloud.cn/home; accessed
on 26 January 2023).

The typhoon data used in this study were obtained from the
Typhoon Network (http://typhoon.weather.com.cn/index.shtml;
accessed on 8 March 2023). Four typhoon events (Chaba, Mulan,
Ma-on, and Nalgae) affecting the study area in 2022 were used as
study cases. Typhoon Chaba was generated in the South China Sea
on 30 June 2022 and made landfall in Dianbai, Guangdong Province
on 2 July with a landfall wind speed of 35 m/s. Chaba had an
asymmetrical structure, a large circulation range of the cloud
system, slow movement, a long influence time, and a wide range.
Typhoon Mulan was generated in the South China Sea on 8 August
2022 and landed in Xuwen, Guangdong Province on 10 August with
a landing wind speed of 23 m/s. Mulan had characteristics of, for
example, a large size, a peculiar path, a short life cycle, a wide impact
range, and strong local rain. Typhoon Ma-on was generated in the
ocean east of the Philippines on 21 August 2022 and made landfall
in Isabela Province, Philippines on 23 August and in Dianbai,
Guangdong Province on 25 August. Ma-on was fast moving and
had an asymmetric structure. Typhoon Nalgae was generated in the
northwest Pacific Ocean on 27 October 2022 and made landfall in
Catanduanes, Philippines on 29 October and Zhuhai, Guangdong
Province on 3 November. Nalgae was characterised by low intensity
and a loose structure with a large cloud scale.

2.3 Research method

2.3.1 MULTIMOORA method

Brauers and Zavadskas (2006) proposed a Multi-Objective-
Optimization on basis of Ratio Analysis (MOORA) with discrete
schemes. By constructing a decision matrix for multiple
alternatives, decision makers are helped to choose the best option
according to specific preference principles. The main steps are as
follows:

Xi:

v
m 2
\/ Ejzlxij

inj = (1)
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Where: x;j is the response of alternative j to target i, j = 1,2,...,m;
m is the number of alternatives, i = 1,2,...,n; n is the number of
targets. Nx;; is a dimensionless number representing the normalized
response of alternative j to objective i, with the response interval at
[0; 1].

According to the ratio system method, different types of targets
need to be dealt with separately due to the difference between
benefit and cost in the selection of targets.

n
A= iNx,-j - > Nx; (2)
i=1 i=g+1

Where: i = 1,2,...,g is the number of revenue targets, i =
g+1,g+2,...,n is the number of cost class objectives. Evaluation
value A under alternative j is obtained, and Rankl is obtained by
ranking according to the evaluation result of value A.

According to the reference point method, a maximum reference
point is selected for the benefit target, whose coordinates are the
largest among all responses. Select a minimal reference point for the
cost class target whose coordinates are the smallest of all responses.

max
| Nk Ng| i<g
)
By = min ©
| N -Ny| g
)
max
B= . Bij (4)
()

Where: Bj; is the maximum reference distance of target i under
alternive j, and B is the evaluation value under alternative j. Rank2 is
obtained by ranking the results of value B.

Brauers and Zavadskas (2010) conducted a study on the
robustness of multi-attribute decision making methods and
pointed out that, in terms of robustness, the multi-attribute
decision making method combining more decision-making
methods has better effect. Therefore, the full multiplicative model
is introduced into MOORA, and the full multiplicative form
(MULTIMOORA) method is proposed. That is, the full
multiplicative form of multiple objectives is added on the basis of
the original, and the formula is as follows:

_ Hig:l inj
H?:gﬂ Nx:j

Where: ], Nx; is the utility of alternative j for the income

C (5)

objective, and [[is.; Nx; is the utility of alternative j for the cost
objective. C is the value of alternative j. Rank3 is obtained by
ranking the results of value C.

minF(A,B,C) = (f,(A,B,C),/2(A,B,C) ... f(A,B,C))  (6)

Finally, by summing the above three kinds of sorting, the result
of comprehensive sorting is obtained according to the
dominant theory.
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2.3.2 Extended MULTIMOORA method

Although the MULTIMOORA method has good robustness,
simple and effective calculation, and has a wide range of application
scenarios. However, its shortcomings are that it does not consider
the evaluation information support among experts and the non-
negligible redundancy relationship between evaluation indicators,
the lack of indicator weights (Jun and Shi-Hua, 2022). In this study,
the subjective weight w; is calculated by using OWA operator, the
objective weight w,, is calculated by using random forest, and finally
the comprehensive weight w; is obtained based on the principle of
minimum discriminative information.

The Ordered Weighted Averaging (OWA) operator is one of
the most commonly used aggregation operators, which can facilitate
a more versatile data fusion process. Since the introduction of the
OW A operator, many researchers have delved into various methods
of obtaining weights (Xu, 2005). In this study, a method of
calculating combinations is employed to assign weights to the
OWA operator. The formula is as follows (Yu and Ze-Shui, 2008;
Guo et al, 2020). See Appendix A for the detailed calculation
process.

o
P p1
j=1 201 *a;

wi= = (i=1,2pj =0 Lup=1) ()
é’:lzlezﬁ_j*”j

Random Forest is a highly flexible machine learning method
that utilizes multiple decision trees to handle nonlinear data,
address regression and classification problems, and perform
feature selection based on its feature importance metrics. Random
Forest employs the Bootstrap resampling method to extract a
training set comprising 2/3 of the original samples and an Out-
Of-Bag (OOB) data set consisting of 1/3 of the samples for feature
importance computation (Shufang and Ruyang, 2021; Chen et al,,
2023). The principle involves randomly perturbing a particular
input parameter and calculating the resulting estimation error. The
importance of this parameter is determined based on the magnitude
of the error, where a higher importance value indicates greater
significance of the parameter. The formula (LuanXiao et al., 2021;
Xiao-wen et al, 2021) of objective weights is shown below. See
Appendix B for the detailed calculation process.

" S ®
i=1 00B

Where: IMP'(X%p) signifies the importance results of the
feature variables.

For a discrete random variable X = (x;,X5,...,x,), the probability
distribution of x is only related to the condition & and the condition
7. Under the condition 9§, the x; probability distribution function is
O(xx); similarly, under the condition 7, the x; probability
distribution function is 7(x;x). Thus, the discriminatory
information (Lee et al., 2019) is expressed as:

< 7(x)
I[7(x), 8(x)] = kglr(x)log 500 )

Since both subjective and objective weight data are discrete
random variables, in order to enhance the credibility and accuracy
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of the composite weight for evaluation metrics with smaller errors,
this study employs the Minimum Discriminant Information
Principle to determine a composite weight that closely
approximates both. The solution is obtained by introducing
Lagrange multipliers into the equation.

Lag(x, ) = 0(x) - w(x) (10)

Where: 6(x) represents the original function, and (x) is
the constraint condition function, and y denotes the
Lagrange multiplier.

The formula is as follows. See Appendix C for the detailed
calculation process.

- VWi
EIi):lvwiwa

Where: w; is the combined weight of the evaluation indicators,

(11)

Ws

w; is the subjective weight of the evaluation indicators and w, is the
objective weight of the evaluation indicators.

The formula for the extended MULTIMOORA method is
shown below.

g n
A =Y wNx;; — > wNx; (12)
i=1 i=g+1
max
W Nix;; — Nuxy; ‘ i<g
max ©)
B= (13)
0] min
ws|  Nxj— Nx; ‘ i>g
(@)
T,
C=—ast? (14)

The theory of dominance is a method that can integrate
multiple rankings into one ranking result based on various
criteria such as dominance, equality, and transition (Brauers and
Zavadskas, 2012). The extended MULTIMOORA method allows
the ranking of three alternatives to be obtained, and then multiple
rankings are integrated into one ranking based on the theory of
dominance. Finally, the response analysis is performed based on the
final ranking results.

2.3.3 Spatial autocorrelation analysis

After obtaining the extended MULTIMOORA sorting
distribution data, the global Moran index (Ge et al., 2022) was
used as the global spatial autocorrelation index to analyze the
correlation and difference of DO concentration responses in river
water bodies in Zhongshan City. The expression is as follows:

D 3w — %)~ X)
Sz(EiEjWij)

The local Moran index was further used to analyze the local

I= (15)

spatial autocorrelation of the aggregation of DO concentration
response in the river water bodies in Zhongshan City, to identify
the high value aggregation area and the low value aggregation area
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of the DO concentration response, in order to reflect the spatial
dependence and heterogeneity of the DO concentration response.
The expression of the local Moran index is:

Ii_ S

(- R)EJ%WU(X;‘ -X) (16)

Where: n is the number of spatial grid cells, x; and x; are
observations representing cell i and cell j respectively, (x; — x) is the
deviation of the observation from the mean value on the i"" grid cell,
and w;; is a spatial weight matrix based on spatial k-
neighbourhood relationships.

2.3.4 Multiscale geographic weighted regression

In traditional regression analysis, the relationship between the
independent variable and the dependent variable is considered to be
stable throughout the whole area, so the estimated regression
coefficients obtained are averaged over the whole study area,
which cannot respond to the real spatial characteristics of the
regression parameters. Drawing on the idea of local smoothing
and embedding the spatial location of the data in the regression
equations, Fotheringham et al. (1998) proposed a geographically
weighted regression model (Geographically weighted regression,
GWR), whose expression is as follows:

P
¥i = Bl vi) + D Bl vixy + & i=1,2,...,n (17)
k=1

Where: y; is the dependent variable; By(u;v;) is the intercept; x;
is the value of the kth independent variable at the ith sampling
point; (u;v;) is the coordinates of the sampling point, Bi(u;v;) is the
kth regression parameter on the sampling point (u;v;); €; is the
random error.

MGWR, developed from GWR, takes into account different
levels of spatial heterogeneity and allows each independent variable
to have an optimized bandwidth based on itself (Jin et al., 2021). Its
expression is as follows:

m
2 [3j(u,»; V,)X,] + &

j=n+1

n
inEOCjX,»j+ i,j: 1,2,...," (18)
j=1
Where: Xj; is the value of the independent variable; j is the
number of independent variables; f3; is the regression coefficient of
the global variable; ﬁj is the regression coefficient of the
local variable.

TABLE 1 Evaluation indicators for different stations under Typhoon Ma-on.

Distance from DEM Total Rainfall

10.3389/fevo.2023.1283281

3 Result

3.1 Analysis of DO response at different
stations under the influence of the
same typhoon

In order to study the DO response at different water quality
automatic monitoring stations under the influence of the same
typhoon. In this study, the distance from the station at the time of
typhoon Ma-on’s landfall, station elevation, total rainfall, maximum
rainfall in a single day, average daily PM,s concentration, and
average daily NO, concentration were selected as the evaluation
indexes, and the extended MULTIMOORA method was applied to
carry out the study. The evaluation indicators for the different
typhoons are shown in Table 1.

Five experienced experts with a long history of research in the
water environment were invited to rate each indicator. The scale
ranges from 1 to 10, with higher ratings indicating that the indicator
has a greater impact on DO concentrations in the water system. The
expert scores are shown in Table 2. The indicators were ranked in
descending order according to the experts’ scores, and the subjective
weights w; = (0.12,0.14,0.23,0.22,0.12,0.17) for each indicator were
subsequently calculated by combining equations (7).

Using the distance from the station at the time of typhoon Ma-
on landfall, station elevation, total rainfall, single-day maximum
rainfall, daily average PM, 5 concentration and daily average NO,
concentration as inputs and the change in DO concentration as
outputs, the above data were input as training samples into a
random forest model to build a regression prediction model, as
shown in Figure 2. In this case, the training samples are set up with a
training set and a test set, which account for 80% and 20% of the
number of training samples respectively. The objective weights w, =
(0.16,0.14,0.16,0.2,0.15,0.19) of each indicator were obtained by
normalising the importance of each feature based on the solved one.

Finally, after coupling the subjective weight w; and the objective
weight w, through equation (9) to equation (11), the combined weight
w, = (0.14,0.14,0.19,0.21,0.14,0.18) of each indicator is obtained.

In order to eliminate the difference in scale between each
indicator, the evaluation indicator data of different sites were first
standardised, and the processing results are shown in Table 3.

After standardisation of the indicator data, the indicators in
Table 4 were calculated using the ratio system, the reference point
approach and the full multiplication form of the extended

Maximum
IDETI\YG

PM, s Concentration = NO, Concentration

Typhoon Landing Point :
yp 9 (m)  (mm) Rainfall (ug/m?) (ug/m?)
(km)
(mm)
Site 1 258.977 7 153 10.6 34 28.75
Site 2 245.974 ‘ 24 18 123 31.792 32.458
Site 3 277.901 ‘ 11 146 7.4 40.792 35.625
Site 4 286.133 ‘ 0 403 27.8 46.417 41375
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TABLE 2 Expert evaluation form.

10.3389/fevo.2023.1283281

D'Sta.”ce frc_Jm DEM Tptal Maximum Daily PM, 5 Concentration = NO, Concentration
Scorer Landing Point il Rainfall el G L] i e
(km) (mm) < &
Expert 1 6 7 3 10 4 9
Expert 2 5 3 9 7 5 8
Expert 3 2 4 9 8 6 6
Expert 4 3 6 8 8 3 3
Expert 5 5 5 8 7 4 4

MULTIMOORA method via equations (12) to (14) respectively.
The rating values for each indicator were determined as shown in
Table 4. Where A is the rating value of the ratio system, B is the
rating value of the reference point approach and C is the rating
value of the full multiplication form.

As can be seen from Table 4, the response of DO concentrations
in the water at different sites under the influence of Typhoon Ma-on
is ranked from largest to smallest: Site 2 > Site 1 > Site 4 > Site 3. In
terms of DO concentrations, the variation in DO concentrations
measured before and after the typhoon at the four automatic water
quality monitoring stations in the study area during Typhoon Ma-
on was 0.4 (Site 2) > 0.15 (Site 1) > —0.1 (Site 4) > —2.4 (Site 3). A
positive value means that the DO concentration in the water
column has increased after the typhoon, indicating a positive
trend; a negative value means that the DO concentration in the
water column has decreased after the typhoon, indicating a
negative trend; this is in line with the expert scoring and the
MULTIMOORA theory of ranking. The urban pattern of
Zhongshan City shows that Site 2 and Site 1 are in the more
urbanised population centres, while Site 4 and Site 3 are in the less
urbanised river inlets. DO concentrations are relatively low in water
bodies at large population centres, and tend to increase as a result of
rainfall dilution; DO concentrations are relatively high in water
bodies at the mouths of less urbanised rivers, and tend to decrease as
a result of rainfall scouring. Combined with the data for the
selected indicators, the results of this method of ranking are
considered reasonable.

3.2 Analysis of DO response in water in
Zhongshan City under the influence of
typhoon rain events

An in-depth understanding of the response status of DO
concentration in urban water bodies under the influence of
different typhoon rain events is helpful in revealing the trend of
changes in the urban water environment under the influence of
typhoon rain events, and in formulating strategies for controlling the
water environment during the transit of typhoons. In some studies,
an information system based on multi-criteria decision analysis is the
preferred method because it involves multiple weighted combinations
and also produces visualization results (Kut and Pietrucha-Urbanik,
2022), which is important for decision-making on the environmental
risks of typhoon disasters. In this study, the extended
MULTIMOORA theory is combined with geographic information
system (GIS) to extract the above six evaluation index values using
remote sensing image data, and the extracted index values are
substituted into the formula for calculating the DO concentration
response ranking under the influence of field typhoon and rainfall,
and finally the DO concentration response under the influence of
typhoon rain events is visualized. In this study, four typhoons (Chaba,
Mulan, Ma-on, and Nalgae) affecting Zhongshan City in 2022 were
visualized and analyzed separately, in which the metrics were
extracted as shown in Figures 3-6, and the response of DO
concentration in Zhongshan City under the influence of typhoon
rain events in each scene is shown in Figure 7.

e E170¢ ST E

009
0035

003

Error

0075

007

0055

005
2 0 80 R 100 120 12
Numbzr of dacision Y235

FIGURE 2

=

Importance

Characteristic

Schematic diagram of random forest regression analysis. (A) Diagram of the training process. (B) Schematic representation of the importance of features.
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TABLE 3 Indicators for the different sites after standardization.

10.3389/fevo.2023.1283281

Distance from Total . . . PM, 5 NO,
: . DEM . Maximum Daily Rain- : :
Typhoon Landing Point RETREL Concentration Concentration
fall (mm) 3
(km) (mm) (ng/m>)
Site 1 0.484 0.256 0313 0.321 0.439 0412
Site 2 0.459 0.879 0.368 0.372 0411 0.466
Site 3 0519 0.403 0.298 0.224 0.527 0511
Site 4 0.534 0 0.823 0.842 0.6 0.593

Chaba was generated in the South China Sea on 30 June 2022,
and landed in the coastal area of Guangdong Dianbai at 15:00 on 2
July, with landing winds reaching 35 m/s. As can be seen from
Figure 3, from 2 to 4 July, the cumulative rainfall in Zhongshan City
ranged from 88.1737 mm to 142.435 mm under the influence of
Chaba, with the maximum single-day rainfall ranging from
39.5626 mm to 81.5451 mm. The daily average PM, s
concentration ranged from 15.7081 pg/m® to 18.8748 pg/m’ and
NO, concentration ranged from 0.0000963933 mol/m” to
0.000202383 mol/m”.

Mulan intensified from a tropical storm in the South China Sea
on 9 August 2022, and made landfall in Xuwen, Guangdong at 10:00
a.m. on 10 August, with landfall winds reaching 23 m/s. As can be
seen from Figure 4, the cumulative rainfall in Zhongshan City from
9 to 11 August under the influence of Mulan ranged from
36.4076 mm to 111.974 mm, with the maximum single-day
rainfall ranging from 19.5202 mm to 63.1185 mm, the daily
average PM, s concentration ranged from 7.16744 ug/m3
to 16.6249 pg/m> and NO, concentration ranged from
0.0000351573 mol/m” to 0.00011281 mol/m”.

Ma-on was generated on 22 August 2022 over the ocean east of
the Philippines and landed on the coast of Guangdong Dianbai at
10:00 a.m. on 25 August, with landing winds reaching 33 m/s. As
can be seen from Figure 5, the cumulative rainfall in Zhongshan
City from 24 to 26 August under the influence of Ma-on ranged
from 6.46943 mm to 20.8218 mm, with the maximum single-day
rainfall ranging from 5.73675 mm to 19.8135 mm, with daily
average PM, s concentrations ranging from 27.5838 pg/m’ to
46.3735 pg/m® and NO, concentrations ranging from
0.0000432654 mol/m” to 0.0000855731 mol/m”.

Nalgae was generated in the northwest Pacific Ocean on 27
October 2022 and landed in Xiangzhou District, Zhuhai,
Guangdong on 3 November, with landing winds reaching 16 m/s.
As can be seen from Figure 6, the cumulative rainfall in Zhongshan
City from 31 October to 3 November was between 5.31433 mm to

TABLE 4 Ratings of different stations under Typhoon Ma-on.

13.3876 mm under the influence of Nalgae, with the maximum
single-day rainfall ranging from 2.7148 mm to 6.63383 mm, with
daily average PM, 5 concentrations ranging from 33.0633 pg/m’
to 42.5623 pg/m’ and NO, concentrations ranging from
0.000225898 mol/m” to 0.000561096 mol/m”.

The lower the ranking value calculated based on the extended
MULTIMOORA theory, the more likely the DO concentration in
the water body at that location will respond in a good direction
under the influence of the typhoon rain events; the higher the
ranking value calculated based on the extended MULTIMOORA
theory, the more likely the DO concentration in the water body at
that location will respond in a bad direction under the influence of
the typhoon rain events. As can be seen from Figure 7, the DO
concentration response of the rivers in the Zhongshan city area
under the influence of Chaba, Mulan and Nalgae is such that there
is a tendency for the south-western water bodies to develop to the
good side, while the north-eastern water bodies have a tendency to
become worse. Under the influence of Ma-on, the DO
concentration response in the Zhongshan municipal rivers is a
trend towards worse water bodies in the south-west as well as in
the north.

An accurate understanding of the regional distribution of DO
concentration response in urban waters under the influence of
different typhoon rain events is helpful in revealing the regional
distribution of urban water environment risks under the influence
of typhoon rain events, and in formulating targeted disaster
prevention and mitigation efforts. In this study, the ranked values
calculated by the extended MULTIMOORA theory are clustered
and analyzed, as shown in Figure 8.

As can be seen from Figure 8, under the influence of Chaba,
Mulan and Nalgae, the southern and northwestern parts of
Zhongshan City show low-low aggregation phenomena,
indicating that the response of DO concentration in this region
has a tendency to develop for the better, and it is a low-risk area; the
northern and northeastern parts of Zhongshan City show high-high

Typhoon Rank1l Rank2 SUM Comprehensive sort
Site 1 0.095 3 0.109 2 0.62 2 7 2
Site 2 0.194 2 0.099 1 ‘ 0.769 1 4 ‘ 1
Site 3 0.067 4 0.13 4 ‘ 0.575 3 11 ‘ 4
Site 4 0217 1 0.123 3 ‘ 0 4 8 ‘ 3
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FIGURE 3
Distribution of indicators in Zhongshan under the impact of Typhoon Chaba. (A) Distribution of NO, concentration. (B) Distribution of PM, s concentration.
(C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
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FIGURE 4
Distribution of indicators in Zhongshan under the impact of Typhoon Mulan. (A) Distribution of NO, concentration. (B) Distribution of PM; 5
concentration. (C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
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Response of DO concentration in Zhongshan City water bodies under the influence of Typhoon Rain Events. (A) Influenced by Chaba. (B) Influenced

by Mulan. (C) Influenced by Ma-on. (D) Influenced by Nalgae.

aggregation phenomena, indicating that the response of DO
concentration in this region has a tendency to deteriorate, and it
is a high-risk area. Under the influence of Ma-on, the localized areas
in the northeast and southwest of Zhongshan City showed the
phenomenon of high-high aggregation, indicating that the response
of DO concentration in this region has a tendency to become worse
and is a high-risk area; the phenomenon of low-low aggregation in
the northwest of Zhongshan City indicates that the response of DO
concentration in this region has a tendency to develop in a better
direction and is a low-risk area.

3.3 Spatial heterogeneity in the response of
water body DO concentration under the
influence of typhoon rain events

Human activities are the main drivers of atmospheric pollution
(Shuping et al., 2016). SO, and O; are important gases affecting
atmospheric quality, of which Oj; is a very important greenhouse gas
with an uneven global distribution, which is significantly affected by
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human activities (Bing and Hua, 2014). SO, mainly originates from
human activities such as industrial activities, fossil fuel combustion
and biomass combustion (Jie et al., 2011), therefore SO, can be used
to characterize the intensity of human activities. Spatial
heterogeneity in population distribution has been suggested
(Zhipeng et al, 2022), and thus the same spatial heterogeneity
exists in SO, concentration distribution and O; concentration
distribution driven by anthropogenic intensity. In this study, the
MGWR model was used to explore the correlation between the Os
concentration distribution and SO, concentration distribution
driven by the intensity of human activities and the DO
concentration response ranking values of urban streams, and the
calculated results are shown in Figure 9. (a), (c), (e), (g), and (b), (d),
(), (h) are the spatial distributions of the coefficients of influence of
the Oz concentration distributions and the SO, concentration
distributions on the sorted values of the DO concentration
response for Chaba, Mulan, Ma-on, and Nalgae, respectively.

As shown in Figure 9, there is a certain correlation between the
DO concentration response ordering values and the O; concentration
distribution and SO, concentration distribution. In terms of Os
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concentration distribution, under the influence of the four typhoon
events, the maximum positive correlation between DO concentration
response ranking values and O; concentration distribution occurred
in the eastern part of Zhongshan City, the minimum positive
correlation occurred in the western part of Zhongshan City, and
the maximum negative correlation occurred in the northern part of
Zhongshan City. In terms of SO, concentration distribution, under
the influence of the four typhoon rains, the maximum positive
correlations between the ranked DO concentration response values
and the SO, concentration distribution occurred in the eastern and
western parts of Zhongshan City, the minimum negative correlations
occurred in the southern part of Zhongshan City, and the maximum
negative correlations occurred in the northern part of
Zhongshan City.

4 Discussion

In recent years, a series of research results have been achieved in
both environmental risk assessment and typhoon disaster risk

Frontiers in Ecology and Evolution

assessment. And in the existing studies, economy and safety are
mostly taken as the assessment objectives. In this study, an attempt
is made to introduce the expanded MULTIMOORA theory in
multi-criteria decision analysis to carry out the environmental
risk assessment of typhoon disaster with the response of DO
concentration in the water body as the assessment objective.
Meanwhile, combining the measured water quality data and
corresponding public information, the results of this study are
considered reasonable, and the findings can provide some
reference for the local government in formulating disaster
prevention and mitigation plans and water environment control
strategies during typhoons.

As can be seen in Figures 7, 8, the effect of field typhoon rains
on the response of DO concentrations in urban rivers is two-sided,
which is consistent with previous reports (Zhou et al., 2012; Ye
etal., 2014). In general, rainfall with higher DO concentration into
the river can effectively increase the DO concentration of the river
(Munoz et al., 2015), and at the same time, rainfall can also cause a
large amount of oxygen-depleting compounds and organic matter
to enter into the river, which can cause a rapid decrease in the DO
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FIGURE 9

(A) Spatial distributions of the coefficients of influence of the Oz concentration distributions on the sorted values of the DO concentration response
influenced of Chaba. (B) Spatial distributions of the coefficients of influence of the SO, concentration distributions on the sorted values of the DO
concentration response influenced of Chaba. (C) Spatial distributions of the coefficients of influence of the Oz concentration distributions on the
sorted values of the DO concentration response influenced of Mulan. (D) Spatial distributions of the coefficients of influence of the SO,
concentration distributions on the sorted values of the DO concentration response influenced of Mulan. (E) Spatial distributions of the coefficients of
influence of the Oz concentration distributions on the sorted values of the DO concentration response influenced of Ma-on. (F) Spatial distributions
of the coefficients of influence of the SO, concentration distributions on the sorted values of the DO concentration response influenced of Ma-on.
(G) Spatial distributions of the coefficients of influence of the Oz concentration distributions on the sorted values of the DO concentration response
influenced of Nalgae. (H) Spatial distributions of the coefficients of influence of the SO, concentration distributions on the sorted values of the DO

concentration response influenced of Nalgae.

content of the river. Combined with the results of the study, this
paper concludes that: in the rainfall intensity of the larger typhoon
rain events, rich in dissolved oxygen rainfall will play a dilution
effect, increase the dissolved oxygen content in the water body of
the urban water network; and in the production of convergence
and the role of surface scouring to reduce in the water body at the
mouth of the sea in the content of dissolved oxygen. This is
consistent with existing research. Pearce and Schumann (2003)
documented a 13-month period of dissolved oxygen
concentration measurements in the Gamtoos Estuary, South
Africa, noting that hypoxic conditions occurred throughout the
estuary following a large-scale extreme rainfall event. In 2011,
Mitra.A. (Mitra et al.,, 2011a; Mitra et al., 2011b) et al. conducted
an in-situ study of hydrological parameters in the Bay of Bengal
and neighboring estuaries under the influence of AILA and found
that dissolved oxygen showed a decreasing trend at all the
sampling points during the transit of AILA, and gradually
recovered to the pre-AILA level in the water column 10 days
after the end of the AILA event. Geng Ye et al. (2021) analyzed
urban surface water quality under the influence of Lekima based
on automatic monitoring data, and concluded that during the
typhoon’s transit, the DO concentration in the Jinan section of the
Xiaoqing River showed an overall upward trend accompanied by
small fluctuations under the combined effect of upstream inflow
and surface tributary inflow during the same period. Under the
action of the typhoon rain events with lower rainfall intensity, the
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scouring action of rainwater dominates, washing pollutants from
urban impervious surfaces as well as organic matter from
mountainous soils into the river water body, leading to a trend
of worse overall DO concentration response in the water body.
This is consistent with existing studies. Yihui et al. (2022) analyzed
in detail the characteristics of the impacts of typhoon rain events
on the water environment of lakes and showed that the effect of
typhoon rain events would cause a decrease in the concentration
of DO in the water body. In terms of rainfall intensity, the results
of this paper are consistent with existing studies that different
rainfall characteristics produce different runoft loads and runoff
concentrations, which in turn lead to different runoff water quality
(An et al., 2014).

As can be seen from Figure 9, the ranked values of DO
concentration response in the rivers of Zhongshan city area
under the influence of typhoon rain events show some
correlation with the distribution of O3 concentration and the
distribution of SO, concentration. Specifically, the response
rankings of DO concentration were positively correlated with
the distribution of O3 and SO, concentrations in the eastern,
central and western parts of Zhongshan City, i.e., the larger the
concentrations of O3 and SO,, the larger the response rankings of
DO concentration, and the water quality in the river had a
tendency to deteriorate under the impacts of the typhoon rain
events; The response ranking of DO concentration is negatively
correlated with the distribution of O3 and SO, concentrations in
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the north and south of Zhongshan City, i.e., the larger the
concentrations of Oz and SO, are, the smaller the response
ranking of DO concentration is, and there is a tendency for the
water quality in the river to be better under the influence of the
typhoon rain events. This result is consistent with conventional
knowledge: the central, western and eastern parts of Zhongshan
City are densely populated urban centers, where intensive human
activities provide a large amount of O3 precursors and SO,; while
the southern and northern parts of Zhongshan City are not only
set up as agroforestry ecological zones, but also as an agricultural
development area in the southern part of the city, where the
content of O3 precursors and SO, is lower. Under the condition of
similar rainfall, the DO concentration response ranking values
showed positive correlation with O; concentration distribution
and SO, concentration distribution in the east, center and west of
Zhongshan City, and negative correlation in the north and south
of Zhongshan City, which is in line with the reality.

In conclusion, the results of this study are accurate and credible,
and can provide a visual reference and theoretical basis for urban
managers to develop adaptive water governance and carry out
targeted disaster prevention and mitigation work (Liya et al., 2022).

5 Conclusion

Characterizing the response of dissolved oxygen concentration in
urban water bodies under the influence of a single typhoon is essential
for city managers to make decisions on response programs and input
budgets. In this study, the extended MULTIMOORA method was
used to establish the correlation between typhoon drivers and the
response of DO concentration in urban water bodies, and to quantify
and evaluate the characteristics of the response distribution of DO
concentration in urban water bodies. The results showed that the
response of DO concentration in the water body of the river in the
center of the city under the action of the more intense typhoon rain
events was developed to be better; the response of DO concentration
in the water body at the mouth of the sea tended to be worse. Under
the effect of less intense typhoon rain events, the scouring effect of
rainwater dominates and there is a tendency for the response of DO
concentration in the water body to become worse. Meanwhile, this
study used the MGWR model and spatial autocorrelation analysis to
explore the impact of human activities on the distribution of urban
water environment response. The results show that the response
ranking values of DO concentration in rivers in Zhongshan city
under the influence of the typhoon rain events are positively
correlated with the distribution of Oz concentration and SO,
concentration in the east, center and west of Zhongshan city, and
negatively correlated with the distribution of O; concentration and
SO, concentration in the north and south of Zhongshan city. The
results of this study can provide visual reference and theoretical
support for local governments and city managers in developing
adaptive water management and targeted disaster prevention and
mitigation programs.
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Appendix A. OWA operator:

First, P experts are invited to rate the target Q. The rating results
are then arranged in descending order, resulting in
(ag,ay,...,aj,...,a,_1), where ag>a; >...>a;>...>a, . The
weight y;,; for a; is determined by combinatorial calculations.

i
_9 Goep-1) (1)
Yot =50t G=0.1r00p

According to the weights y;,,, the target data is sequentially

weighted to obtain the absolute weights of the target, denoted as w;.

P
W= 2yndli =120 p) @
j=1

Hence, the subjective weights w; calculated by the OWA
operator can be obtained.
Wi

Wi =S5 —(i=1,2,....,p) (3)
i=1 Wi

Appendix B. The process of solving
objective weights:

The formulae (LuanXiao et al., 2021; Xiao-wen et al., 2021) are
shown below.

g(D|0) =H(D) - H(D|O) (1)

mseiOOBm = mse(Yf) - Y)2 —mse(Yp — Y)2 2)
o 1.7 .

IMP'(Xoo8) = TEmSéOOBm (3)

t=1

Where: g(D|O) is the information gain value, H(D) is the overall
entropy value before branching, H(D|O) is the entropy value after
pre-branching in condition O. Y represents the true values, Yp
represents the predicted values, Y5 denotes the predicted values
after modifying the feature variables, #sebp,, represents the mean
squared error of the feature variables for decision tree t,,, T is the
number of decision trees, and IMP'(X},op) signifies the importance
results of the feature variables.

Calculate the objective weights w, as follows:

IMP'(Xp0p)

Wo = TMPI(XL) )
’ Ei:IIMP (XOOB)

Appendix C. The process of solving
comprehensive weights:

For a discrete random variable X = (x;,x,,...,x,), the
probability distribution of x is only related to the condition 6 and
the condition 7. Under the condition §, the x; probability

Frontiers in Ecology and Evolution

10.3389/fevo.2023.1283281

distribution function is d(x;); similarly, under the condition 7, the
X probability distribution function is 7(x;). Thus, the
discriminatory information (Lee et al., 2019) is expressed as:

T(x)

n
I[7(x), 6(x)] = > 7(x)
k=1

Since both subjective and objective weight data are discrete

random variables, in order to enhance the credibility and accuracy

of the composite weight for evaluation metrics with smaller errors,

this study employs the Minimum Discriminant Information

Principle to determine a composite weight that closely

approximates both. The solution is obtained by introducing
Lagrange multipliers into the equation.

Lag(x, y) = 0(x) - yd(x) )

Where: 6(x) represents the original function, and d(x) is the
constraint condition function, and Yy denotes the
Lagrange multiplier.

Establishing the objective function as follows:

min (I[we, w;] + I[we, w,]) = i(wsln& + wsln&)
k=1 Wi Wo
(3)
Sw,-1=0

k=1
Substituting the Lagrange multiplier yields:
n WS WS n
Lag(wg, ) = > (wiln—+ wiln—) —w(Sw, - 1) (4)
k=1 Wi Wo k=1
Taking the partial derivative of Equation 4 results in:
_ VWiV
- 25):1 \% WiW,

Where: w; is the combined weight of the evaluation indicators,

(5)

Ws

w; is the subjective weight of the evaluation indicators and w, is the
objective weight of the evaluation indicators.
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Assessment of habitat quality is important for the planning and management of
conservation measures at a landscape level. The Alledeghi Wildlife Reserve (AWR)
is an iconic wildlife conservation area because it not only contains charismatic
wildlife species but also serves as a reliable livestock rangeland. The study aimed to
assess habitat quality based on landscape-specific habitat threat information in the
AWR using InVEST software. it is the first attempt to model the habitat quality of the
landscape using expert-driven information. Six important threats were
considered, namely, invasive species, bush encroachment, livestock incursion,
fire, habitat destruction, and distance to roads. The quantified habitat quality was
classified into low, moderate, and high. The results revealed that the quality of the
habitat declined in the study area between 1998 and 2016. The high-quality habitat
had a larger extent covering about 837 km? (57.4%) in 1998 but it was reduced by
128 km? (64%) during the study period. Conversely, moderate quality and low-
quality habitats have increased from 78 km? (5.35%) in 1998 to 206 km? (14.12%) in
2016; and from 544 km? (37.3%) in 1998 to 619 km? (42.13%) in 2016 respectively.
The decline in habitat quality was mainly associated with increased livestock
incursion and expansion of invasive species which resulted in rapid land use
changes. Thus, it is critical to undertake serious conservation measures to
enhance biodiversity and ecosystem services in the AWR and to substantively
contribute to the improved livelihood of the pastoral community.

KEYWORDS

AWR, biodiversity, ecosystem quality, InVEST, rangeland

1 Introduction

Biodiversity enhances ecosystem functionality which leads to improved ecosystem
services through balancing and stabilizing ecological communities across scales
(Cardinale et al., 2012; Oliver et al, 2015). The biodiversity of an area can be
determined through habitat conditions whereas the importance of habitat depends on its
quality (Basane and James, 2016). A particular habitat with special ecological importance is
essential to the functioning of the wider ecosystem processes; such areas require
extraordinary protection to safeguard the special value and vital ecosystem processes.
Biological resources and the levels of biological reproduction and organism persistence
have a greater effect on the ability of an ecosystem to provide living conditions for individual
organisms and populations (Caro et al., 2020).
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High-quality habitat is assumed as an indication of rich
biodiversity (Norliyana and Mamat, 2020) and delivery of a suite
of ecosystem services (Johnson, 2007; Stolton et al., 2010; Thomas
et al, 2021). The state of biodiversity can be used as a basis proxy
tool to measure the quality of a given habitat (Havlicek and Mitchell,
2014). Therefore, as a proxy for the condition of the state of
biodiversity, quality habitat can indicate the capability of a given
ecosystem to provide essential ecosystem services (Polasky et al.,
2011) and as a determinant for measuring ecosystem health
(Villamagna et al, 2013). The occurrence of diverse wildlife
species is highly associated with the quality of habitat (Edmonds
et al.,, 2021).

Habitat quality is an important indicator of regional ecological
security (Zhu et al., 2015; Chen et al., 2016), which can reflect the
level of regional biodiversity and ecosystem services (Tang et al,
2020; Zhu et al,, 2020). Rigorous information on habitat quality is
invaluable to making informed decisions on conservation planning
and prioritization of conservation intervention strategies (Rouget
2003; Baral et al, 2014; Simeneh et al, 2023) including
expansion of important biodiversity areas, introduction and

et al.,

removal of species, and identification of principal habitat
components (Basane and James, 2016) and determining of the
key ecological attributes.

The landscape changes lead to corresponding modifications in
the composition of the ecosystem and biodiversity (Liu et al., 2022).
Further habitat quality changes affect the biodiversity and landscape
pattern (Chu et al., 2018). Therefore, the occurrence of severe and
complex ecological problems at landscape and species levels have a
direct influence on the landscape pattern and habitat quality.
Understanding the association between conservation challenges
caused by land use change could provide a solution to ecological
problems (Bai et al, 2019). Habitat loss consistently negatively
affects species richness and population abundance (Laurance
et al,, 2002); and genetic diversity (Aguilar et al., 2008). The loss
of critical habitats affects not only biodiversity but also directly
impacts humans by decreasing the production of ecosystem services
such as pollination (Potts et al., 2010), soil productivity and water
provision (Bruijnzeel, 2004), and carbon storage and sequestration
(Fargione et al., 2008).

The state of biodiversity, the range of habitats, and vegetation types
across landscapes can be determined using the InVEST habitat quality
and rarity models (Sharp et al., 2020; Liu et al., 2022). Thus, the changes
in habitat quality are critical to the changes in ecosystem processes
(Choudhary et al, 2021; Yang, 2021). Habitat quality monitoring
provides robust information on ecological conditions and can be
utilized as a basis for making habitat conservation interventions (Lin
et al, 2016). Changes in habitat quality have tremendous implications
for the conservation of wildlife species in savannah ecosystems (Kija
et al,, 2020) where the ecosystems are the principal habitats for diverse
charismatic wildlife species and home to many iconic protected
landscapes (Sinclair et al., 2007; Bohm and Hofer, 2018).

The Alledeghi Wildlife Reserve (AWR) is among the highly valued
protected landscapes in Ethiopia which are highly pronounced with the
assemblage of large mammals, but it is under severe conservation
challenges, and the biodiversity endowment of the area particularly
large mammals alarmingly declining (Fanuel, 2013; Simeneh et al., 2016).
The important threats to biodiversity are steadily increasing such as the
fast spread of invasive species, overgrazing, and bush encroachment
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(Almaz, 2009; Selamnesh, 2015) because of rapid Land Use Land Cover
(LU/LC) changes, the ecosystem services values of the area have greatly
declined (Simeneh, 2023). Moreover, urban development along the road
is becoming an emerging conservation threat that will constrain the
sustainability of the ecosystem (Almaz, 2009; Fanuel, 2013). Further,
intensive charcoal production is well-pronounced in the entire area.
Thus, this results in massive habitat destruction in the adjacent protected
areas including the Awash National Park. Roadkill incidence has
repeatedly occurred while wild animals are crossing the asphalted
road in search of water (Simeneh et al., 2016). Fire incidence mainly
in the highland forest is becoming a very common challenge for
protected area management as local charcoal makers deliberately set
fire to produce more charcoal.

The study hypothesizes that habitat quality declined over time in
response to threat factors occurring in the study area. There is a lack
of empirical studies conducted in the study area that assessed the
status of the habitats to protect the values that the protected area
possessed. Therefore, the novelty of this study is that it is the first
attempt to model the quality of habitats of the protected landscape
using expert-driven landscape threat information and analysis to
indicate the state of the protected areas towards meeting its
conservation goal. Therefore, this study aimed to assess the
spatiotemporal changes in the quality of the habitat in the
terrestrial ecosystems of AWR using InVEST software to provide
a scientific basis for ecosystem planning interventions and
prioritization of conservation management undertakings.

2 Methods and materials
2.1 Description of the study area

The AWR was established in the 1960 s (Hilliman, 1993). It is
located in the Great Rift Valley in the northeastern region of the
country between longitude 39°30'to 40°30'E and latitude 8°30'to
9°30'N, at 280 km east of Addis Ababa (Figure 1). The altitude
ranges between 776 m and 2,445 m above sea level. The area is
characterized by a semi-arid ecosystem with annual rainfall ranging
between 400 and 700 mm. About 268 plant species and two types of
ecosystems Dry evergreen montane forest and Acacia comiphora
ecosystems (Addisu et al., 2017), 31 species of mammals, and over
140 avian species have been recorded (Hilliman, 1993; Fanuel, 2013)
in the AWR. The most common wild animals inhabiting the reserve
include the Grevy zebra (Equus grevyi), Beisa oryx (Oryx beisa
beisa), Soemmering’s gazelle (Gazella soemmering), Gerenuk
(Litocranius walleri) and lesser kudu (Tragelaphus imberbis)
(Hilliman, 1993).

The major vegetation types in and around the reserve include
grasslands, bushland, woodland, riverine forests, and highland
forests (Almaz, 2009). The grassland plain stretching from the
center of the reserve to the northwest was mainly occupied by
grasses and occasionally with other herbs; the dominant species
include Durfu (Chrysopogon plumulosus), Isisu (Chrysopogon
schoenan) and Malif (Andropogon canaliculatus) (Almaz, 2009;
Selamnesh, 2015). However, the rapid encroachment of shrub
species and the rapid spread of invasive Prosopis juliflora and
shrubs such as Combretum aculatum, Merua oblongflora, and
Terminalia species have affected the grass species and the extent
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Map of the Alledighe landscape.

of the grassland habitat (Selamnesh, 2015; Simeneh, 2023). The
bushland is an extensively increasing habitat type that possesses an
assemblage of trees and shrubs (Simeneh, 2023). The habitat is
mainly occurring in the southern, eastern, and northern edges of the
landscape dominated by Acacia senegal (Almaz, 2010; Selamnesh,
2015). The common woody plant species in the AWR include Acacia
tortilis, Acacia mellifera, Balanitis aegyptiaca, Cadaba, and Grewia
species. The eastern mountainous section of the landscape is
characterized by dense highland forest, common plant species
Cordia Croton macrostachyus, Erythrina
abyssinica, Juniperus procera, Olea europaea, Podocarpus
falcatus, Pouteria altissima and Rhus vulgaris (Almaz, 2010). The

include africana,

riverine forests are a unique ecosystem and are important for the
wild animals of the landscape. It is limited to seasonal streams and
river courses where the water table is high.

2.2 Materials

2.2.1 Application of tools to assess habitat quality

Habitat quality can be assessed based on measured species
diversity or through the analysis of the evolution of the habitat
by parameter substitution (Andrus et al, 2021). In general,
comparing observations to a standardized list of criteria can be
used to assess the quality of a given habitat (Machado, 2004), and
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more recently the standardized modeling tool, particularly the
Integrated Valuation of Ecosystem Services and Tradeoffs
(InVEST) has been largely applied to measure the quality of
habitat at various scales (Sharp et al., 2020). In this study, we
assessed the state of habitats using InVEST software 3.11 version.
The quantified habitat quality was classified by natural breaks into
three classes (low, moderate, and high) (Kija et al., 2020).

2.2.2 The InVEST habitat quality model

The InVEST model provides good research methods and
perspectives (Romero-Calcerrada and Luque, 2006; Terrado et al.,
2016; Abreham et al., 2020). The model incorporates land use and
biodiversity threats information to produce habitat quality maps. It
uses the spatial extent of habitat quality as a proxy of biodiversity
within the landscape, based on the proximity of the habitat to
human-dominated land use and the intensity of disturbance
caused by the land use (Sharp et al., 2020). The model considers
that LU/LC with higher habitat quality is relatively intact and
capable of supporting increased biodiversity and a lower habitat
quality score indicates reduced biodiversity support and denotes a
degraded landscape (Baral et al., 2014). The model is dependent on
the relative impact of threats to the habitat, the distance between the
threat sources and the habitat, and the sensitivities of the specific
habitats to any possible threats, leading to habitat degradation
(Sharp et al., 2020) (Table 1).
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Input Description

Land use land cover

GIS raster dataset, with a numeric LULC code for each cell. The LULC raster obtained from Simeneh (2022) in the area of

interest was used. The LULC codes must match the codes for the sensitivity of land cover types to each threat

Threat data

A CSV table of all threats needed to be considered in the model. The table contains information on each threat’s relative

importance or weight and its impact across space. Each row is a degradation source. Each column contains a different
attribute of each degradation source and must be named as THREAT, MAX-DIST, WEIGHT, and DECAY.

Threat raster

GIS raster files with the distribution and intensity of each threat showing each of them affecting the habitat. However, the

techniques applied for each threat raster can vary according to the data types. The threat maps should cover the area of
interest and buffer the width of the greatest maximum threat distance. Each cell in the raster contains a value that indicates
the density or presence of a threat within it. All threats should be measured on the same scale and units

Habitat types and sensitivity of each habitat to
threats

A CSV table of LULC types contains information on whether a habitat is identified (absence/presence of habitat) or not
and their specific sensitivity to each threat. Sensitivity values range from 0 to 1, where 0 represents no sensitivity to a threat

and 1 represents the greatest sensitivity (Polasky et al., 2011). Sensitivity scores can be determined using expert knowledge
and the AHP method (Hamere et al., 2021)

Half saturation constant (k)

The scaling parameter (or constant) of 0.5 is the default for the InVEST model. The InVEST model uses a half-saturation

curve to convert habitat degradation scores to habitat quality scores (Sharp et al., 2020). It is determined as an inverse
relationship between the degradation and habitat quality scores. It helps with the visual representation of heterogeneity in

quality across the landscape

TABLE 2 Ecological habitat quality input data used for InVEST habitat quality model in the AWR (1998, 2016).

Threats Maximum distance (km) Weight

Decay LULC types

HF GL RF

Habitat suitability score

Invasive species 1 0.25 Exponential 1 0.1 1 1 1
Habitat destruction 2 0.25 Exponential 0.75 0.75 0.5 0.5 0.75
Livestock incursion 2 0.15 Exponential 1 0.5 1 1 1
Bush encroachment 3 0.05 Exponential 1 0.5 1 0.75 0.75

Fire 1 0.05 Linear 0.2 0.5 0.2 0.2 0.2

Distance to road 1 0.1 Linear 0.5 0.75 1 0.5 0.2

There are three key inputs to be considered for habitat quality
mapping in InVEST model. First, the suitability of each LU/LC type
(Hj) for providing habitat for biodiversity; second, anthropogenic
threats that originate at pixel x (r,) affecting habitat quality; and
third, the sensitivity of each LU/LC type to each threat (Table 1). For
this study, six biodiversity threats were identified in the study area by
following the approach of Terrado et al. (2016) and Wu et al. (2014).
These were invasive species, bush encroachments, livestock
incursion, fire, habitat destruction, and distance to roads
(Table 2). The significance (weight) of each threat was prioritized
based on the ecological and threat monitoring activities with two
senior ecologists and five park rangers of the AWR between
3rd—4th December 2021 and the AHP method was applied to
prioritize conservation threats following the approach by Terrado
et al. (2016) and Wu et al. (2014) (Table 2; Figure 2).

The total threat level in a grid cell x with LU/LGj is calculated as
the relative habitat suitability score (Hj), from 0 to 1, where
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1 indicates the highest suitability to species has been assigned to
LU/LC types (Sharp et al., 2020). The last input of the model is the
sensitivity of habitat type to different threats; helps to account for the
differentiated impacts of threats to different habitats. The impacts of
the threats on the habitat are determined by 1) the effect of the threat
over space (iryy); 2) the relative weight of each threat’s importance
compared to the others (w,), and 3) the relative sensitivity of each
habitat to each threat (S;;). The stress level Dy; of grid x with land-use
type j is calculated as follows (Sharp et al., 2020).

d.
Iy = 1= (d 24 ) ..................... if linear.......... (1)
2.99
Iy = exp(—(d—>dxy) ............ if exponential . . ... .. (2)

Where, d,,, is the linear distance between grid cells x and y, and
dmax is the maximum effective distance of threats r’s across space.
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Flowchart showing methodological steps followed in the study.
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r=1%r

where R is the number of threat factors, y, is the set of grid cells on r’s
map, w, is the relative effect of each threat, 0, is the level of
accessibility to a grid cell x, and S, is the relative sensitivity of
each habitat type to each threat.

The results of the model range from 0 to 1, with 1 representing the
highest level of habitat quality (Sharp et al., 2020). The impacts of the
threat on habitat decrease as the distance from the degradation sources
increases, threats with higher destructive values (on the scale of 0-1)
have higher impacts and the more sensitive a habitat type is to a threat
(higher S;;), the more degraded the habitat type could be by the threat.

Habitat quality is the environmental level that the ecological
environment provides for the survival of individual organisms and
populations. It is a continuous variable with a numerical range from low
to high. The higher the quality of the habitat, the more stable the
ecological structure and function of the patch. The way and intensity of
human land use determines the quality of the habitat, and the more
intense the land use, the more pronounced the decline in habitat quality
(Almpanidou et al., 2014). Habitat quality was calculated based on the
degree of habitat degradation, and the habitat quality score decreased
with increasing habitat degradation score. The calculation formula for
habitat quality is as follows:

Where, Qxj is the habitat quality of grid cell x in land cover type
j; Hj is the habitat suitability of land cover type j; D* xj is the level of
habitat threat for grid cell x in land cover type j; k is the
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half-saturation factor, which is generally taken as half of the
maximum value of D* xj; and x is a constant.

The information obtained from expert judgment and AHP was
verified by undertaking field assessments.

2.3 Data preparation and input for the
INVEST habitat quality model

The data inputs (spatial and non-spatial) are required to run the
InVEST habitat quality model (Figure 2). Thus, LU/LC maps, threat
sources, and impacts, habitat types, habitat sensitivity to each threat,
and half-saturation constant were the required inputs (Sharp et al,
2020). The information on LU/LC was obtained from the previous
study made by Simeneh (2023) in the study area. All the required inputs
such as LU/LC maps of the respective years (1998-2016), threat sources
and impacts, habitat types, and habitat sensitivity to each threat were
loaded to run the habitat quality model. Finally, habitat quality maps for
each respective year were produced; the final habitat quality maps were
classified into three classes (low, moderate, and high).

3 Results and discussions

The result revealed an overall habitat quality reduction during
the study period (Table 3; Figure 3). The model showed that the
ecosystem was dominated by a high-quality habitat of 837 km?
(57.4%) followed by a moderate-quality habitat of 544 km?
(37.3%), and a low-quality habitat of 78 km* (5.35%) in 1998. In
the subsequent 18 years (1998-2016), the low-quality and moderate-
quality habitats increased by 128 km* (62%), and 75 km?> (12%)
respectively, while the high-quality habitats decreased by 203 km?
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TABLE 3 Habitat quality changes in the AWR using the InVEST habitat quality model (1998, 2016).

Habitat quality Study period % change
1998 2016
Area (km?) Area (km?)
Low 78 5.35 206.00 14.12 128.00 62.14 Increasing
Moderate 544 37.29 619.00 42.43 75.00 12.12 Increasing
High 837 57.37 634.00 4345 ~203.00 -32.02 Decreasing
Total 1,459 100.00 1,459.00 100.00

2016

B Low
I:I Moderate
I High

ML [ Tkm
0O 5 10 20 30 40

FIGURE 3
Spatial distribution of habitat quality in the AWR (1998, 2016).

(32%). The extent of high-quality habitat largely declined during the
study period from 837km* (57.4%) to 534km* (43.45%).
Conversely, moderate-quality, and low-quality habitats have
increased from 78 km? (5.35%) in 1998 to 206 km? (14.12%) in
2016; and from 544 km? (37.3%) in 1998 to 619 km* (42.13%) in
2016 respectively.

This study was the first to assess habitat quality using InVEST
model and expert-driven approach in Ethiopia’s highly valued
protected landscape. Thus, the study provides robust information
that can be used for threat reduction planning and management
intention in the study landscape. The habitat quality changes in the
study area were highly associated with increased livestock incursion
and expansion of invasive species resulting in severe changes in the
healthy functioning of the ecosystems. The quality of habitat
influences wildlife species diversity, density, distribution, and
movement patterns in landscapes (Zhang et al., 2019; Dai et al,
2018). The decline in habitat quality is mainly attributed to increased
conservation threats including the incursion of livestock and human
interactions into wildlife habitats (Carter et al., 2014). Free grazing
activities have an adverse negative impact on habitat quality (Su
etal, 2020). Likewise, the quality of the habitat has been significantly
declining particularly the grassland habitat was deteriorated by
massive livestock incursion in the study landscape, which is a
common prolonged problem in protected areas of Ethiopia
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(Mekbeb et al., 2022). Similar results were reported by Kija et al.
(2020) that habitat quality has largely deteriorated by anthropogenic
activities and land use policy changes in the Greater Serengeti
Ecosystem of Tanzania.

Overall, high-quality 1998 became a moderate-quality and low-
quality habitat during 1998-2016. The loss of habitat quality is well
pronounced in the grassland habitat of the protected area which is
the preferred feeding and breeding habitat for charismatic ungulate
species and other wild animals of the AWR. The swift spread of
invasive species coupled with livestock grazing and habitat
destruction significantly affects the grassland habitat of the
protected area. The savannah grassland habitat is the most
preferred and suitable habitat for the charismatic plain animal of
the reserve but under severe pressure, particularly invasive Prosophis
juliflora in the grassland habitat is the principal conservation
challenge for the protected area management. The communities
are reliant upon livestock rearing and natural resources due to a lack
of alternatives leading to overgrazing; unmanaged grazing practices
are resulting in significant degradation of principal ecological
habitats such as the grassland habitat in many protected area
systems in Ethiopia. Due to the high livestock density in the
area, the grassland habitat of the landscape has encountered
severe grazing practices year after year. This has led to the
deterioration of grassland habitat quality and a reduction in the
capacity to provide forage for grassland-reliant wild animal species.

Land use and land cover changes can be taken as the prime
factors for changes in habitat quality in the study area during the
study period. The low-quality habitat has slightly shifted from the
center of the highland forest to the center of the landscape which is
occupied by the grassland habitat of the AWR (Figure 3); this is
mainly due to the spread of invasive species, livestock incursion, and
the closeness to the tarmac road. The highland forest has been
unwisely utilized for various purposes mainly for charcoal
production, however, improved management intervention in the
highland forest contributed to the management of illegal activities
thus the habitat has rapidly been restored (Simeneh, 2023).
Conversely, the grassland habitat was largely converted into low
habitat quality as unrestricted grazing led to reducing the quality of
grassland habitat. The woodland, riverine forest, and partially
bushland habitats have been unchanged in terms of quality and
maintained high habitat quality during the study period. According
to Fanuel (2013), the study landscape has lost about 52% of its
quality to conserve the larger charismatic herbivores of the
landscape. Similarly, this finding showed that only 634 km*
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(43.45%) of the landscape sustains its high quality to possess
charismatic species of the landscape. This indicates that the
protected landscape is losing its quality habitats to possess the
endangered iconic species. Maintaining high-quality habitats
could enhance the stability of ecosystem structure and function
and the quick recovery potential of habitats after disturbance
(Schwarz et al., 2017; Wu et al., 2017).

Unlike most areas of Ethiopia in which invasive species were
spread due to the road access; in the Afar area, where the landscape is
located; Prosopis juliflora was introduced mainly for water and soil
conservation and to support livestock forage in the dry season in the
late 1970s and early 1980s (Ayanu et al, 2014; Kebede and
2015; 2019). Further, additional
plantations were made between the 1980 s and 1990 s as shade
and wind protection trees in villages, and the raw material was used

Coppock, Hailu et al,

for firewood fencing, and building materials (Ayanu et al., 2014).
Livestock has been identified as the principal vector for the rapid
spread of invasive species and the invasion become a serious
problem that started rapidly invading the rangeland (Hailu et al,
2019). The invasion could significantly affect the ecosystem services
and livelihood of pastoralist communities by reducing biodiversity,
grazing land, and water supply (Shackleton et al., 2014).

4 Limitations of the study

The assessment of habitat quality using the InVEST model has
been successfully employed for the maintenance of biodiversity and
is invaluable for the management of the landscape and land-use
planning (Sharp et al., 2020) but inadequate information about the
spatial and temporal distribution of species across the protected
landscape (Stephen et al., 2011) is the major limitations of the
InVEST habitat quality model. It is, therefore, important to conduct
a field-based habitat suitability assessment to obtain ecologically
valid and robust information on the distribution of quality habitat
and species abundance across the landscape (Nagendra et al., 2013).

5 Conclusion

This study has assessed the quality of habitat using expert-driven
landscape habitat threat information in InVEST software in the
most iconic but greatly threatened protected landscape of the AWR
in Ethiopia. Assessing a landscape’s habitat quality has greater
implications for the larger rangeland ecosystem management
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Anthropogenic climate change is contributing to increased insect infestation
globally, leading to pest population growth, expansion of niche and geographic
ranges as well as increased outbreak frequencies, resulting in economic losses
and reduction in food security. In recent years, spongy moth (Lymantria dispar
dispar), jack pine budworm (Choristoneura pinus pinus), large aspen tortrix
(Choristoneura conflictana) and spruce budworm (Choristoneura fumiferana)
caused widespread defoliation across one of Canada’s most forested provinces,
Ontario. Observations of such outbreaks have been limited to field sightings
around Ontario, with few studies focused on mapping of outbreak occurrence
across the province or exploring potential anthropogenic and climatic drivers of
infestation. Using random forest probability estimates and satellite data
resampled to 1 km spatial resolution from the Moderate Resolution Imaging
Spectroradiometer (MODIS), we reveal greater expansion of insect defoliation
across Ontario between 2018 and 2020 than previously recorded. Much of the
geographic expansion of outbreaks was driven by increasing temperature, and
the proximity of roads. With ongoing global warming and growing economic
development, infestations will not only continue to increase across Ontario but
also expand northward due to their responses to accelerated warming at higher
latitudes. This expansion presents an important and alarming new challenge for
forest conservation and management in Ontario, in particular, and Canada
in general.

KEYWORDS

spongy moth, jack pine budworm, spruce budworm, remote sensing, Ontario Canada,
insect defoliation, climate change, machine learning
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1 Introduction

Understanding and predicting the consequences of climatic
changes in forest ecosystems is emerging as one of the major
challenges for global change scientists (Boisvenue and Running,
2006; Bonan, 2008). Globally, societies heavily rely on forests for
essential services such as timber, watershed protection, and
recreational and aesthetic benefits (Maroschek et al., 2009; Thom
and Seidl, 2016). The effects of climate change on forests include
both positive (e.g., increased forest growth from CO, fertilization,
increased water use efficiency, and longer growing seasons) and
negative responses (e.g., increases in stress and tree mortality, and
changes in dynamics of forest insect) (Ayres and Lombardero, 20005
Bachelet et al., 2003; Lucht et al., 2006; Scholze et al., 2006; Lloyd
and Bunn, 2007; Seidl et al., 2017; Gonsamo et al., 2017; 2021).

With current best estimates of changes in climate indicating an
increase in global mean annual temperatures of 1.5°C by 2025 and
4°C by the end of the next century (Baker et al., 2018), considerable
uncertainty remains in modeling how these processes will affect
current and future tree growth and mortality events and forest
carbon budgets (Hanson and Weltzin, 2000; Bugmann, 2001;
Hollaus and Vreugdenhil, 2019). Outbreaks of forest insects are
major agents of mortality and ecosystem change in forests
worldwide, with climate being an important driver of changes to
disturbance regimes mediated by forest insects (Pureswaran et al,
2018). Changes in climate may result in changing geographical
distribution, increased overwintering, changes in population
growth rates, increases in the number of generations, extension of
the development season, changes in crop—pest synchrony, changes
in interspecific interactions and increased risk of invasion by
migrant pests (see Porter and Coon, 1991; Pureswaran et al.,
2018; Lehmann et al, 2020). Although a range of responses can
and should be expected, recent cases of increased tree mortality and
die-offs triggered by insect infestation raise the possibility that
amplified forest mortality may already be occurring in some
locations in response to global climate change (Allen et al.,, 2010).

As a landscape-scale disturbance event, insect outbreaks also
play an important role in the carbon flux in boreal forests (Kurz and
Apps, 1999; Volney and Fleming, 2000). Defoliation during insect
outbreaks reduces the rate of carbon accumulation by the host trees
via reducing their growth. This often results in tree mortality, which
abruptly increases the mass of dead organic matter where carbon is
transferred to the atmosphere through decomposition (Gray et al.,
2007). Increasing concentrations of carbon dioxide in the
atmosphere are a major cause of global warming, creating a
feedback loop for further proliferation of insect infestations.

Across Ontario, Canada, several defoliators have expanded their
range in recent years causing widespread outbreaks (Liebhold et al.,
1992; Regniére et al., 2009; Tobin et al., 2004; NDMNRF, 2020).
Species which have had recent moderate to severe forest disturbances
have included the spongy moth (Lymantria dispar dispar), jack pine
budworm (Choristoneura pinus pinus), large aspen tortrix
(Choristoneura conflictana) and spruce budworm (Choristoneura
fumiferana) (NDMNRE, 2022). Most of these species are native to
Canada (jack pine budworm, spruce budworm and large aspen
tortrix) while the spongy moth is an example of an invasive
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defoliator that expanded its current range across Eastern United
States and Southeastern Canada (Liebhold et al., 1992; Regniere et al.,
2009; Tobin et al, 2004). L. dispar moth is native to the temperate
forests of Europe and Asia (Regniere et al., 2009).

Outbreaks often follow different trajectories associated with
specific ecological traits and target tree species. For instance, large
aspen tortrix infestations are short-lived (2-3 years) and found
earlier in the season. This species targets trembling aspen (Populus
tremuloides), white birch (Betula papyrifera), willow (Salix spp.)
and alder (Alnus spp.) but can also be found on balsam poplar
(Populus balsamifera) and chokecherry (Prunus virginiana). Jack
pine budworm periodically reaches outbreak levels every 8-10 years
and prefers jack pine (Pinus banksiana) and other conifers such as
eastern white pine (Pinus strobus), red pine (Pinus resinosa) and
Scots pine (Pinus sylvestris). Spruce budworm is the most
destructive pest of balsam fir (Abies balsamea) and white spruce
(Picea glauca) forests in Canada, which is a historically important
timber species. The larvae of spruce budworm are considered
wasteful feeders, as they only eat partial needles and then move
on to other needles. L. dispar moth infestations maintain a cyclical
pattern in which exponential population growth causes major
infestations for 3-4 years, with the insect then lying dormant for
7-8 years (Benoit and Lachance, 1990). The larvae of this moth are
voracious folivores that can feed nearly 300 species of broadleaf and
coniferous trees during their peak feeding season (Elkinton and
Liebhold, 1990), significantly affecting tree growth. This
combination of outbreak dynamics, broad polyphagy and long
larval duration grants these species the ability to rapidly expand
across forested areas such as those found in Ontario, one of
Canada’s most forested provinces.

Areas at risk of infestations in Canada are expected to double or
triple over the next 50 years due to increasingly warmer summers,
allowing the insect to complete its life cycle consistently in
geographic areas that so far have been protected due to
unfavorable climate. Across Canada, certain forest types seem
more susceptible to infestation, such as deciduous, closed (dense)
and open (thin) mixed forests (Cihlar et al., 2002). Forests across
northern and eastern Canada has so far been protected from
infestation by cold temperatures (Regniere et al 2009; 2012). but
with increasing temperatures, the fate of these forests are unknown.
Further, increasing human traffic may lead to deposition of eggs as
some host plants flourish in disturbed areas (Lyons and Liebhold,
1992), triggering different dispersion pathways. However, little
formal studies exist that explore probable drivers connected with
insect infestation in Canada not associated with climatic studies.

Insect infestation has also been associated with other
compounding ecological damages. For instance, the frass excreted
by the L. dispar caterpillars contains a high concentration of
nitrogen (N) because these defoliators are ineffective at
assimilating foliar N (Lovett et al, 2002). As a result, this N-rich
frass leaches into catchment basins, increasing the N concentration
in lakes by an average of 0.03 mg L; (Woodman et al,, 2021), which
in turn stimulates conditions for increased microbial activity.
Growing microbial populations discharges CO, as an element of
egestion, resulting in a recurring pattern of increasing microbial
activity and CO, accumulation near the surface of lakes
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(Woodman et al,, 2021). The presence of CO, in large quantities
near lake surfaces suppresses the growth of CO, assimilating algae
(Raven et al., 2012), further exacerbating CO, concentrations.

Given the magnitude of damage caused by insects and their
potential to spread over the next few years, early detection and
monitoring of infestations throughout Ontario is crucial. As zones
immediately adjacent to infested areas become more suitable
because of rising temperatures, invasion will be fast if suitable
hosts are present (Regniere et al., 2009). However, detecting and
monitoring infestation levels in a vast landscape as Ontario requires
extensive fieldwork. Thus far, only a limited number of field
observations have been conducted in the province. Such studies
also miss the opportunity to assess potential drivers of infestation
across the landscape. The increased frequency of infestations and
their ecological and economic impacts requires the use of advanced
technologies. Remote sensing is a valuable tool that provides
frequent and spatially continuous data on vegetation conditions
and has been previously explored for detecting forest insect
infestation (Niemann and Visintini, 2005; Hollaus and
Vreugdenhil, 2019; Ye et al., 2021; Romeiro et al., 2022).

Freely accessible moderate-resolution satellite datasets such as the
250 m imagery from spatial resolution Moderate Resolution
Spectroradiometer (MODIS) have great potential to characterize
subtle changes in forest canopies by capturing low-magnitude
spectral changes in seasonal observations. Here, we make use of the
MODIS satellite observations and field data to comprehensively
evaluate insect infestation across Ontario, Canada, over a 3-year
period (2018-2020). We specifically consider the 1) magnitude of
occurrence using a random forest classification, 2) the probability or
likelihood of infestation occurrence, and 3) the human and
environmental drivers of infestation events. These analyses provide
foundational and critical insights into shifts in potential drivers of
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infestation and establish a barometer for evaluating the effectiveness
of government intervention and management strategies.

2 Materials and methods

Our approach involved three steps: (i) identifying infestation
occurrence using ground truth data and MODIS satellite
observations; (ii) estimating likelihood of infestation using
random forest probability; and (iii) determining probable drivers
of infestation. Figure 1 provides an overview of methods used to
process and analyze satellite observations and ground data.

2.1 Study region

The study area is the province of Ontario, Canada’s second-
largest province, covering nearly 1 million km? (Figure 2) with
forest ecosystems ranging from temperate to subarctic forests. In
summer, temperature ranges between 30-35°C, while winter can go
below —40°C. Approximately 66% of Ontario is classified as forest
lands (70 million ha), including the deciduous forest of southern
Ontario, the Great Lakes — St. Lawrence Forest of central Ontario,
the Boreal Forest and the Hudson Bay Lowlands Forest in the north.
A very small region of southern Ontario also includes
Carolinian forest.

2.2 Infestation mapping
We acquired ground data of insect infestation from the Ontario

GeoHub database (https://geohub.lio.gov.on.ca/documents/lio:

| 5z I
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Schematic workflow of MODIS observation processing and data analysis: (A) processing of MODIS satellite observations; (B) obtaining of infested
and non-infested training samples from ground measurements; (C) training random forest using spatial cross validation; (D) random forest
classification using training sample to (E) estimate likelihood of occurrence (probability estimate); and (F) correlation analysis of the data.
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FIGURE 2

Insect infestation in Ontario, Canada from 2018 to 2020 based on field observations from Ontario GeoHub.

forest-insect-damage-event/about), filtering the infestation by year
(2018-2020) and damage severity (moderate to severe, 25-100%
damage; severe, 75-100% damage; and mortality ranking). We
assumed that the Ontario GeoHub database is indicative of all
known infested and non-infested sites, even though this may not be
the case in reality. Based on paucity of data points across all study
years, several species were excluded from this analysis. Selected
species for this study included L. dispar, C. pinus, C. conflictana and
C. fumiferana. Due to the scarcity of samples of some species, we
treated all of them as the “defoliators” class, turning the problem
into a binary classification task.

To train our model, we used covariates from the 250 m spatial
resolution Moderate Resolution Spectroradiometer (MODIS)
satellite observations. Surface reflectance of red and near infrared
were extracted from version 6 MODO09QI product while the
normalized difference vegetation index (NDVI) was extracted from
version 6 MOD13Q1 product and thermal bands were taken from
version 6.1 MODI11A1 product (Figure 3). We created bi-monthly
image composites (mean and standard deviation) from the
reflectance, NDVI, and thermal MODIS products during the
growing season, from April to August, resampling all products to
1 km spatial resolution to match the corresponding thermal product.
We noted that infestation cycles can commence anywhere between
April to August annually, contingent on species and temperature
fluctuations. MODIS was selected as our primary satellite data
source as it offered cloud free, high temporal resolution images to
compose the bimonthly datasets while accounting for the spectral
variability that may occur in the trees during the infestation cycle,
including the budburst of leaves in many tree species across Ontario,
between April and August. We also examined data from 30 m spatial
resolution Landsat-8 and 10 m spatial resolution Sentinel-2 satellites.
However, these satellites did not offer sufficient cloud free images
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across Ontario, resulting in significant mapping gaps and artifacts
(results not presented here).

To generate the infestation maps, we uploaded the ground data
from the Ontario geohub to the Google Earth Engine (GEE) platform.
Then, we rasterized a mask containing 29,315 and 47,130 pixels from
the infested and non-infested locations, respectively. The samples were
extracted from 2020, the year with the highest infestation rate, and we
trained the models using the data for this reference year.

Independent sample sets for each of the studied years were also
created for validation. Here, the number of samples ranged from
9,900 to 20,000 pixels, depending on infestation levels.

2.3 Random forest probability estimate

A random forest algorithm (RF) (Breiman, 2001) was trained on the
training samples from ground data and MODIS observations from each
year to classify MODIS pixels by likelihood of insect infestation. RF
combines a large number of trees trained upon random subsets of the
available labeled samples and features. Each tree contributes only one
class vote to each instance, and the result is determined by the majority
votes of all the forest trees (Hastie et al.,, 2009). In our experiments, we set
the number of trees in the “forest” (ntree), and the number of features/
predictors considered for each node in the trees (mtry) to 500 and 5,
respectively, after performing a grid search analysis.

To avoid spatial autocorrelation among samples, we trained the
RF algorithm by applying a 5-fold spatial cross-validation. In
particular, we divided the pixels annotated as infected into five
non-overlapping areas, where for each fold, an RF model was fitted
using samples from four locations, and the pixels associated with
the remaining area were employed to validate the model. To
compute the probabilistic maps, all five trained RF models were
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https://geohub.lio.gov.on.ca/documents/lio::forest-insect-damage-event/about
https://doi.org/10.3389/fevo.2023.1293311
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Kalamandeen et al.

2018 2019

10.3389/fevo.2023.1293311

2020

False Colour Surface Reflectance
I Band 1: 620-670 nm
[ Band 2: 841-876 nm
Il Band 1: 620-670 nm

NDVI
P o8

b 0.6

Mean Daytime Land Surface
Temperature

310K

290 K

FIGURE 3

MODIS satellite observations showing mean (A) surface reflectance of red and near infrared bands; (B) normalized difference vegetation index
(NDVI); and (C) thermal bands across Ontario, Canada between 2018 and 2020 in Google Earth Engine.

evaluated during the cross-validation phase, generating the same
number of maps for 2018, 2019, and 2020. We reported the median
and standard deviation of probability maps. Probability thresholds
were calculated based on the percentage of pixels (Table 1), and
nonforest locations were masked out using the ALOS PALSAR
forest/nonforest product.

2.4 Calculation of human and
environmental drivers of infestation

Using the classified maps, we tested the correlation between the

occurrence of infestation and six environmental and human factors,

TABLE 1 Likelihood of occurrence threshold (probability estimate).

Probability threshold Description
(%)
0 No probability; associated with non-forested
areas

(0-10] Negligible probability

(10-30] Less Likely probability

(30-60] Likely probability

(60-90] Moderate probability
(90-100] High probability

Frontiers in Ecology and Evolution

namely temperature, precipitation, elevation, land cover, distance to
roads and location of protected areas (Figure 4). Temperature and
precipitation data between April and August were obtained from
TerraClimate (https://www.climatologylab.org/terraclimate.html)
at 4 km spatial resolution and were used as proxies to climate,
which plays a significant role on the ability of defoliants to complete
their life cycle (Regniere et al,, 2009).

A digital elevation model (DEM) obtained from Advanced Land
Observing Satellite (ALOS, https://developers.google.com/earth-
engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2) was used
to produce an elevation map at 30 m spatial resolution. Land
cover data was obtained from the Ontario GeoHub database
(https://geohub.lio.gov.on.ca/documents/lio::ontario-land-cover-
compilation-v-2-0/about) to mask out the non-forest areas. We also
included protected areas that were obtained from Environment and
Climate Change Canada database (https://www.canada.ca/en/
environment-climate-change/services/national-wildlife-areas/
protected-conserved-areas-database.html) as a sign of human
footprint in remote areas, such as camping, logging, hiking and
other associated activities, that may favor the spread of infestation.
Finally, proximity to roads (data obtained from Ontario GeoHub,
https://geohub.lio.gov.on.ca/datasets/mnrf::ontario-road-network-
orn-road-net-element/about) was used to evaluate the direct
influence of human transportation on infestation occurrence.
Initially, our environmental and human variables were overlaid
on our probability maps, followed by a correlation analysis to
determine the likelihood of contributing factors to infestation levels.
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Human and environmental variables used to assess the drivers of infestation levels across Ontario: (A) average temperature from April to August,
(B) accumulated precipitation from April to August, (C) elevation, (D) protected areas including all parks and conservation areas, (E) road networks,

(F) land cover including coniferous and deciduous treed areas.

3 Results

3.1 Spatio-temporal occurrence
of infestation

Our results reveal considerable increase in insect infestation
across Ontario between 2018 and 2020 based on an RF probability
using MODIS satellite observations (Figure 5A). Between 2018 and
2020, the total area classified as having a high probability of
infestation across Ontario increased by >1,300%, from 2,900 km?
to over 42,000 km® (Figure 6). Most of this expansion occurred in
northwestern Ontario, along the border of neighboring province,
Manitoba, while secondary incidences were observed in southern
Ontario. Conversely, the proportion of pixels experiencing
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