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Editorial: Territorial spatial
evolution process and its
ecological resilience
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Editorial on the Research Topic
Territorial spatial evolution process and its ecological resilience

The large-scale territorial transformation of our planet is possibly the anthropogenic
footprint that most clearly defines the behavioral patterns of human beings today (Bronts
et al., 2023). This footprint, which was difficult to analyze a few decades ago due to the
absence of real social awareness and evaluation tools, can now be measured precisely. The
effects associated with climate change often occur dramatically in scenarios that we can
clearly visualize with catastrophic events such as floods, droughts, tornadoes, etc. (Lang
et al., 2016; Virah-Sawmy et al., 2016; Romera et al., 2017; Mansoor et al., 2022). However,
the impact associated with what some authors call diffuse territorial anthropization is much
more complex to diagnose because it has more sophisticated cause-effect patterns of
functioning.

Thanks to the important methodological advances that exist at a technological level, we
are now aware of the true magnitude of the problem we face. This silent enemy that we have
called diffuse territorial anthropization can thus be unmasked through a large-scale spatial
analysis (Magalhães et al., 2015; Mohamed et al., 2017). The evolution of land space
demonstrates the shift of land use types from natural and semi-natural land (e.g., forest land
and cropland) to built-up land, altering ecosystem cycling patterns and leading to
degradation of ecosystem services in terms of regulation, provisioning and support (Du
et al., 2023).

At the same time, production and living space crowding out ecological space brings high
potential threats, such as soil erosion (Cao et al., 2024), water imbalances in wetlands and
spaces of high ecological value (Garcia-Ayllon and Radke, 2021), alteration of coastal areas
(Bianco et al., 2020), forest productivity decline (Yang et al., 2023b)and habitat
fragmentation (Li et al., 2022). Accordingly, in response to the problems of imbalanced
territorial space development, inefficient resource utilization and ecological environment
degradation, how to improve the diversity, stability and sustainability of ecosystems is an
urgent issue to promote modernization and green development in the new era of territorial
space evolution.

In this field of research, high-resolution remote sensing images have become a very
common visual instrument to monitor the characteristics of national land space and
ecological environment. However, this is not the only tool in which improvements have
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been developed in the field of spatial analysis associated with this
subject. There have been numerous technological or methodological
advances in recent years in fields such as statistics (García-Santos
et al., 2020), economic quantification of impacts (Bianco and García-
Ayllón, 2021) or sociological analysis (Ibarra et al., 2023), among
others, for the analysis of these phenomena linked to territorial
spatial evolution processes and its ecological resilience.

For this reason, this Research Topic wanted to make a review of
the state of the art of research that addresses spatial studies by using
field survey, remote sensingmonitoring, model simulation and other
similar technologies. These contributions systematically investigate
the evolutionary process of territorial space and ecological resilience
to clarify the dynamic trend of ecological resilience under the action
of nature and human. The Research Topic also focuses on the
establishment of a territorial space simulation model for enhancing
ecological resilience the stability and sustainability of the ecosystem
and promote the modernization of the harmonious coexistence of
human beings and nature.

On this issue, China is probably one of the areas in the world
with the greatest intensity and variety of repercussions related to
anthropogenic phenomena associated with land transformation. For
that reason, this Research Topic has addressed it in a comprehensive
way with several studies that focus the hottest topics from the
subject. Among them, for example, the effects derived from the
significant urbanization growth of large cities stand out. Peng et al.
analyze, from a spatiotemporal perspective, the impact of land
urbanization on the gross primary productivity of vegetation in
the middle reaches of the Yangtze River urban agglomeration,
pointing out new evidence from the township scale (Peng
et al., 2023).

Wang et al. investigate the mechanism of urbanization on the
net primary productivity of vegetation in the Yangtze River
Economic Belt, making a comprehensive analysis from global to
local effects Wang et al. Shu et al. and Li et al. make similar
approaches to analysis from the perspective of the spatiotemporal
trends and factors influencing online attention for China’s tea
industry Shu et al. and the construction of carbon budget balance
index and its application in the urban agglomeration around Poyang
Lake area Li et al. By last, Meng et al. show an interesting case study
on the growing problem of surface urban heat island effect and its
spatiotemporal dynamics in cities with case study of the Zhengzhou
metropolitan area (Meng et al.).

Other interesting phenomena are addressed from the ecological
perspective with the parameterization of the environmental
resilience of the territory through the behavior of its high-value
natural areas. In this field, Zeng et al. show an interesting example
with monitoring and control of water-ecological space in the
Dongting Lake region (Zeng et al.). Yang et al. show a different
approach for monitoring in their study for digital research on the
resilience control of water ecological space under the concept of
urban-water coupling (Yang et al.) and Huang et al. design and
optimize an ecological security pattern based on landscape
ecological risk assessment in the affected area of the Lower
Yellow River Huang et al.

Finally, a third pillar of this Research Topic, no less
interesting than the previous ones, is the establishment of
territorial planning criteria through zoning and the use of
ecosystem services. In this field, several authors have carried

out enlightening studies: Yin et al. evaluate the factors influencing
ecological environment and zoning control for the study case of
the Dongting Lake area (Yin et al., 2024) and Ma et al. analyze the
spatiotemporal variation and driving factors of habitat quality in
the northern foothills of the Qinling Mountains in Xi’an (Ma
et al.). On the other hand, other authors address this issue with a
different approach: Li et al. adopt a “structure–function”
perspective in the analysis of the evolution and zoning of
spatial ecosystem functional stability in the southern hilly
province of Hunan (Li et al.), Meng et al. research on
multilevel evaluations and zones of territorial spatial functions
in Yibin Meng et al., Tan et al. study the trade-off/synergy
spatiotemporal benefits of ecosystem services and its
influencing factors in hilly areas of the southern area of the
country (Tan et al., 2024) and Huang et al. analyze the
spatiotemporal evolution and influencing factors of ecosystem
service in the Changsha-Zhuzhou-Xiangtan urban agglomeration
(X. Huang et al., 2024).

In conclusion, it is a quite heterogenous field of research in
which there have been great technical advances and important
methodological improvements in recent years, but which
continues to progress. Even so, further research is needed in this
area, as the relationship between the effects of territorial
anthropization and their effects is becoming more and more
complex, and therefore difficult to analyze. There is and will be
no planet B for us or for our generations to come. Therefore, a good
spatial analysis of the evolution of the territory will undoubtedly be a
determining factor in the future, if we want to make the planet we
inhabit ecologically resilient to the footprint we are going to
leave on it.
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Construction of carbon budget 
balance index and its application 
in the lake area
Shuoshuo Li 1, Yaobin Liu 1*, Guoen Wei 2, Fábio Sevegnani 3 and 
Weifeng Deng 1

1 School of Economics and Management, Nanchang University, Nanchang, China, 2 School of Resources 
and Environment, Nanchang University, Nanchang, China, 3 Graduation Program in Production 
Engineering, Paulista University, São Paulo, Brazil

The imbalance of the carbon cycle in terrestrial ecosystems exacerbates global 
warming. Identifying the spatial–temporal characteristics and drivers of the 
carbon budget is important for the effective management of complex ecosystems 
and the achievement of the United Nations Sustainable Development Goals. 
Based on the complex ecosystem theory, this article constructs two carbon 
indicators, carbon carrying capacity–carbon footprint matching degree (Carbon-
MD), and carbon carrying capacity–carbon footprint coupling coordination 
degree (Carbon-CCD). Taking a typical lake region—urban agglomeration around 
Poyang Lake as an example, the spatial–temporal characteristics and driving 
factors of the carbon budget from 2000 to 2020 are revealed by GIS technology 
and geographically–temporally weighted regression model. The results show 
that there is a significant spatial and temporal variability of carbon budget in 
Poyang Lake city agglomerations from 2000 to 2020, the Carbon-MD shows a 
gradually decreasing trend, and the Carbon-CCD shows a gradually increasing 
characteristic from moderate disorder to basic coordination development. From 
the spatial pattern, the Carbon-MD of the study area showed an increasing 
character from the core area to the peripheral area of the lake, and the low-
value area of Carbon-MD shows the trend of spreading from point to surface 
and the Carbon-CCD changes from scattered to group type. In addition, land 
use type always has a significant effect on the carbon budget, while there is a 
spatial and temporal heterogeneity in the effects of natural and socioeconomic 
factors on the carbon budget. The research results show that it is reasonable and 
scientific to construct carbon budget indicators from the perspective of matching 
supply and demand and coupling and coordination, which provides a quantitative 
carbon budget analysis tool for local policymakers.

KEYWORDS

carbon budget, matching degree, coupling coordination degree, spatial–temporal 
characteristics, driving factors

1. Introduction

Climate warming is a major environmental threat to global sustainable development 
(Zhenmin and Espinosa, 2019; Wei et al., 2021; Mikulčić et al., 2022), and it has become the 
consensus of the international community to address global climate change and human 
activities by promoting a global balance of carbon in terrestrial ecosystems (Fernández-
Martínez et al., 2020; Li et al., 2021). Since the release of the IPCC Special Report on Global 
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Warming of 1.5°C, many countries and regions have specified their 
timelines and measures to achieve carbon reduction (Climate 
Change 2021: The Physical Science Basis). Since the twentieth 
century, accelerated global urbanization has not only increased 
carbon emissions (Liddle, 2014; Yao et al., 2018; Wang W. Z. et al., 
2021; Zhou et al., 2022a; Wei et al., 2023) but also weakened carbon 
sequestration through changes in land use types (Nathaniel and 
Adeleye, 2021; Zhou L. et al., 2021), ultimately affecting the state of 
the carbon budget. Carbon cycle imbalance triggers the greenhouse 
effect, and rebalancing is an effective means to combat global climate 
change (Li et  al., 2019; Mekonnen et  al., 2021). Therefore, it is 
necessary to study the carbon budget of cities from the perspective 
of the carbon cycle to seek achievements at the UN sustainable 
development goals (SDGs) and explore the construction of 
low-carbon cities.

Carbon emissions from human activities and land use change 
significantly affect the carbon balance of terrestrial ecosystems (Gatti 
et  al., 2014; Wang H. et al., 2021; Wei et  al., 2022). Currently, 
geographers and biologists have conducted many studies on carbon 
balance accounting, regional carbon cycle, carbon balance, and carbon 
offset (De Wit et al., 2015; Guo et al., 2017). The research focuses on 
the estimation of carbon balance, wetland carbon balance, forest 
carbon balance, carbon balance of urban functional zones, and factors 
influencing carbon balance (Nepal et al., 2013; Pingoud et al., 2016; 
Pukkala, 2017; Dolman and Janssen, 2018; Kondo et al., 2018; Maillard 
et al., 2018; Chuai et  al., 2019; Nag et al., 2019; Yang et al., 2021; 
Mathias and Trugman, 2022). The research fields mainly focus on 
biology, ecology, and geography (Berhongaray et al., 2017; Tcherkez 
et al., 2017; Feng et al., 2019), and focus on the carbon budget of 
various industries (Dolman and Janssen, 2018), with the scale 
involving countries, provinces, and cities (Williams et al., 2017; Chen 
et al., 2019; Zhang et al., 2023).

Under the challenge of increasingly dramatic global warming, 
revealing the spatial–temporal characteristics and drivers of the 
carbon budget is crucial for regional carbon management (Li et al., 
2021; Wang C. et al., 2021). At present, scholars mostly construct the 
carbon budget index from the perspective of carbon emission and 
carbon absorption by subtracting or dividing and then exploring the 
carbon balance zoning of cities or provinces (Lin et al., 2016; Gao 
et al., 2022). Some scholars propose that the carbon balance pressure 
index, by calculating the ratio of energy carbon emissions to vegetation 
carbon sequestration, can reflect carbon neutrality more objectively 
and comprehensively and guide the green development of cities (Chen 
et al., 2021). The improvement of carbon balance has an important 
influence on the development of rapidly urbanized areas (Chen et al., 
2019). It is an important support to promote the high-quality 
development of the regional economy and the construction of 
ecological civilization (Chuai et al., 2019). Although the traditional 
carbon budget index can reflect the regional carbon deficit or carbon 
surplus, it is difficult to truly reflect the pressure caused by carbon 
emissions on the ecosystem. This problem can be better solved if the 
carbon footprint and carbon carrying capacity are studied together. 
This study aimed to comprehensively analyze the spatial–temporal 
characteristics of the regional carbon budget through two perspectives 
of supply and demand matching and coupling and coordination, and 
further analyze its driving factors and incorporate them into the city 
carbon management system. This study also contributes to the goals 
of SDGs12 and SDGs13.

Poyang Lake is the largest freshwater lake in China (Yuan et al., 
2019), and the wetland of Poyang Lake is one of the six largest 
wetlands in the world (Feng et  al., 2012). The spatial–temporal 
distribution of water-ecological resources in the lake area affects the 
carbon cycle and ecological environment of the terrestrial ecosystem, 
and then the development of urban agglomeration in the lake area. As 
a typical urban agglomeration of the lake region, the urban 
agglomeration around Poyang Lake has a relatively complete 
ecosystem and is in the key period of rapid urbanization. The “water-
dependent” urban agglomeration around Poyang Lake is a powerful 
carbon source and carbon sink (Dai et al., 2021), and is becoming a 
key area for regional carbon budget research. At the same time, the 
city agglomeration around Poyang Lake is also a typical fast-
urbanizing area and an important ecological function protection zone 
(Ye et al., 2013). The rapid expansion of urban agglomerations causes 
changes in land use landscape patterns. It, in turn, acts on the material 
cycle and energy flow of urban agglomerations, thereby affecting the 
process and equilibrium state of the carbon cycle (Ye et al., 2013; Li 
et al., 2019). To combat global warming, the Chinese government has 
proposed the goal of “carbon peaking and carbon neutrality.” 
Therefore, taking the specificity and typicality of the urban 
agglomeration around Poyang Lake into consideration is important 
to construct a carbon budget index and analyze its spatial–temporal 
variation characteristics to achieve carbon balance in the lake area.

This study first proposes a comprehensive framework for carbon 
cycling in urban social–economic–natural complex ecosystems based 
on the complex ecosystem theory. Second, from the perspective of 
matching supply and demand, coupling and coordination, two carbon 
budget balance indicators, carbon carrying capacity–carbon footprint 
matching degree (Carbon-MD), and carbon carrying capacity–carbon 
footprint coupling coordination degree (Carbon-CCD), are 
constructed. Finally, this article takes the urban agglomeration around 
Poyang Lake as an example to conduct an application study. The third 
part gives a detailed introduction to the basic situation, data sources, 
and carbon index calculation model. The fourth part analyzes the 
spatial–temporal characteristics of carbon indicators of the study area 
Lake from 2000 to 2020 and further analyzes the driving factors of 
carbon indicators from land use, natural factors, economic and social 
factors by using land use transfer matrix, and geographically–
temporally weighted regression model. The fifth section focuses on the 
rationality of the carbon indicator construction process and the 
scientific validity of the results. The sixth section concludes this study. 
This study provides a quantitative carbon balance analysis tool for 
local policymakers and a theoretical and decision basis for 
policymakers to achieve sustainable carbon management.

2. Carbon cycle framework for urban 
complex ecosystems

Based on the complex ecosystem theory, the urban social–
economic–natural complex ecosystem can be divided into energy 
subsystem, industry subsystem, and ecological subsystem from the 
perspective of the carbon cycle (Wang et al., 2011a,b; Yao et al., 2015). 
The carbon source of the urban complex ecosystem comes from the 
energy subsystem, industrial subsystem, and ecological subsystem, 
while its carbon sink is mainly the carbon uptake by vegetation, soil, 
and water in the ecological subsystem (Houghton et al., 2012; Lai 
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et al., 2016; Zhou Y. et al., 2021). Carbon flows between the three 
subsystems in the form of organic carbon or inorganic carbon, and 
under the action of various physical, chemical, and biological 
processes in the three subsystems, carbon transformation, and carbon 
storage occur, and finally enter the natural environment in various 
forms or formats (Schimel et  al., 2015; Battin et  al., 2023). Fossil 
energy sources enter the social–economic–natural complex ecosystem 
through the energy subsystem, and after electricity and heat 
production, part of them enter the industrial subsystem as carbon-
containing products and energy products together with industrial raw 
materials, part of them enter the ecological subsystem in the form of 
solid waste, and finally part of them enter the atmosphere in gaseous 
form to participate in the carbon cycle of the terrestrial ecosystem 
(Bassham, 1971; Dusenge et  al., 2019). From a long-life cycle 
perspective, the carbon input, carbon consumption, carbon storage, 
carbon accumulation, and carbon output of the social–economic–
natural complex ecosystem constitute a complete carbon cycle system 
in the energy subsystem, industrial subsystem, and ecological 
subsystem. The flow of carbon between the energy subsystem, 
industrial subsystem, and ecological subsystem constitutes the inner 
cycle of the carbon cycle of the urban’s complex ecosystem. The 
carbon-containing products and energy products at the carbon export 
side of the urban complex ecosystem enter the circulation of the 
consumer market, the carbon-containing waste enters the ecosystem 
to participate in the natural ecological process again, and the carbon-
containing gases enter the atmosphere to participate in the carbon 
cycle of the terrestrial ecosystem, which constitutes the outer cycle of 
the carbon cycle of the urban complex ecosystem (Figure 1). Clarifying 

and characterizing the process of carbon city social–economic–natural 
complex ecosystems is the basis for carbon budget accounting and 
spatial–temporal characterization.

3. Materials and methods

3.1. Study area

Poyang Lake is the largest throughput lake in the Yangtze River 
basin, which plays a great role in regulating the water level of the 
Yangtze River, connoting water, improving the local climate, and 
maintaining the ecological balance of surrounding areas (Yuan et al., 
2019; Dai et al., 2021). Urban agglomeration around Poyang Lake is a 
typical basin lake-type urban agglomeration, including five cities and 
some counties (districts), with a land area of approximately 5.319 
million km2. Its climate is dominated by a subtropical monsoon 
climate, and the terrain is dominated by lakes and wetlands, and hilly 
plains. As shown in Figure 2, the spatial–temporal distribution of 
water resources in the study area is uneven, the towns and rural 
settlements are mostly distributed near the water area, and human 
activities have “hydrophilic” characteristics. Its carbon emissions are 
mainly concentrated in near-water areas where human activities are 
more frequent, while ecological resources with strong carbon sink 
capacity, such as forest resources and grassland resources, are mostly 
concentrated in far-water areas.

Since the twentieth century, the Poyang Lake area has experienced 
three stages of “deep development (2001–2006)-ecological economic 

FIGURE 1

Carbon cycle framework for urban social–economic–natural complex ecosystems.
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zone construction (2007–2014)-ecological urban agglomeration 
construction (2015-present).” The carbon footprint of the study area 
has changed greatly since 2000–2020. The study results of this article 
are important for the carbon balance and ecological protection in the 
lake area (Figure 2).

3.2. Methods

3.2.1. Carbon emission and carbon sink
The carbon emissions of urban social–economic–natural complex 

ecosystems originate from the energy subsystem, industrial subsystem, 
and ecology subsystem (Houghton et al., 2012; Lai et al., 2016; Li et al., 
2021). The accounting equation is as follows:

	 C C C Cce energy industry ecology= + + 	 (1)

where Cce is the overall carbon emission of the city, Cenergy is the 
energy subsystem, Cindustry is the industry subsystem, and Cecology is the 
ecology subsystem.

The carbon sinks of urban social–economic–natural complex 
ecosystems mainly originate from ecological subsystems, specifically 
water carbon sinks, soil carbon sinks, and vegetation carbon sinks 
(Guo et al., 2017; Chuai et al., 2019; Li et al., 2021; Gao et al., 2022). 
On the one hand, scholars have estimated terrestrial vegetation carbon 
sinks relatively accurately, but the research on soil carbon sinks is 
relatively weak, and there are large differences in the valuation of soil 
carbon sinks due to the limitations of knowledge, data, and technology. 
On the other hand, in different land types, carbon absorbed by 
agricultural ecosystems is decomposed into the atmosphere during 
the harvest season, and whether there is a net sink, and the size of the 
sink is somewhat controversial. Therefore, only the carbon sink 

functions of forests, water bodies, and grasslands are considered. 
Considering the forest resource types in the study area and the existing 
research results (Zhang et al., 2022), the carbon absorption factor of 
forest land was calculated as 0.644 t C/(hm2·a). Considering regional 
similarities and in light of existing research results (Wang C. et al., 
2021), combining grassland types and climatic zones in the study area, 
the carbon absorption factor for grasslands was calculated at 0.021 t 
C/(hm2·a). Poyang Lake is the largest freshwater lake in China, and its 
wetland ecosystem is one of the most important carbon reservoirs on 
earth. Considering the difference in carbon sequestration rates 
between the geographical location of the Lake region and wetland 
ecosystems in the north and south, the carbon sequestration factor in 
the water was 0.253 t C/(hm2·a) (Wang C. et al., 2021). The formula is 
as follows:

	
C Acs

k

n
K K= ×

=
∑

1

δ ,

	
(2)

where Ccs is the total carbon sequestration of water bodies, forests, 
and grasslands; Ak is the area of the kth land type; δk is the carbon 
emission factor of the kth land type.

3.2.2. Carbon footprint and carbon carrying 
capacity

Studies on regional carbon footprints mainly focus on carbon 
emissions generated by human activities, which cannot portray the 
balanced relationship between carbon emissions and carbon sinks, 
while combining carbon footprint and carbon carrying capacity can 
better solve this problem. Carbon footprint can be regarded as the 
ecological footprint of carbon emissions, which is the area of 
ecologically productive land that needs to be  occupied to absorb 

FIGURE 2

Location and land use type of the urban agglomeration around Poyang Lake in China.
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carbon emissions. Carbon carrying capacity can be regarded as the 
carbon supply capacity of the ecosystem, which is the upper limit of 
carbon sink capital that can be provided by the ecologically productive 
land in the region. Net ecosystem production (NEP) reflects the net 
carbon absorption capacity of terrestrial ecosystems and represents 
the carbon sequestration capacity of 1 hm2 (squared hectometers) of 
vegetation or water body in a year, and the conversion between carbon 
emissions and carbon footprint can be  realized by using 
NEP. Considering the uniqueness of the lake region, the carbon sink 
capacity of the water body is included in the carbon footprint and 
carbon carrying capacity. The calculation formula is as follows:

	
CF C

p
NEP

p
NEP

p
NEPce

f

f

g

g

w

w
= × + +










	

(3)

	
CCC C

p
NEP

p
NEP

p
NEPcs

f

f

g

g

w

w
= × + +










	

(4)

where CF and CCC are the carbon footprint and carbon carrying 
capacity, respectively; pf, pg, and pw ratios are the carbon sequestration 
ratios of forests, grasslands, and water bodies.

3.2.3. Carbon budget balance evaluation index
Based on the Chen et al. (2021), Chuai et al. (2019), and Guo et al. 

(2017) study, the carbon budget balance evaluation indexes include 
Carbon-MD and Carbon-CCD. There is a certain threshold value for 
carbon carrying capacity to bear the carbon footprint, which depends 
on the local and natural state of the ecosystem and takes subject to the 
scale and way of carbon footprint. When the regional carbon footprint 
is within a certain range, the carbon carrying capacity can carry the 
carbon footprint to the maximum extent through self-regulation and 
elasticity; but when the carbon footprint exceeds a certain limit, that 
is, the carbon carrying capacity cannot carry the carbon footprint 
needs, then carbon spillover will occur.

3.2.3.1 Carbon-MD
Carbon-MD is an important indicator of whether the carbon 

carrying capacity in the region can carry the demand of carbon 
footprint, which plays an important role in restraining the intensity of 
carbon footprint and excessive growth of demand. The Carbon-MD 
further reflects the surplus status of regional carbon revenue and 
expenditure and can characterize whether the carbon sink of the 
ecological production system can offset the carbon source. Its formula 
is as follows:

	

Carbon MD CCC
CF

unable t carry the load
balance

able to
− =

<
=
>

,

1

1

1

o   

     carry the load ,









	

(5)

where Carbon-MD <1 means that the carbon carrying capacity 
cannot carry carbon footprint [including mildly unbearable grade 
(0.85, 1.00), barely impossible to carry grade (0.50, 0.85), seriously 
unbearable grade (0.00, 0.50)], carbon carrying capacity and carbon 
footprint are in the unbearable state; Carbon-MD =1 means that 
carbon carrying capacity and carbon footprint are in equilibrium; 
when Carbon-MD >1, it means that the carbon carrying capacity can 

carry carbon footprint [including general carrying capacity (1.00, 
1.10), good carrying capacity (1.10, 2.00), and high-quality carrying 
capacity (2.00, +∞)], and the carbon carrying capacity and carbon 
footprint are in a bearable state.

3.2.3.2 Carbon-CCD
Carbon-CCD characterizes the level of synergistic development 

between carbon carrying capacity and carbon footprint, reflecting 
whether the carbon emissions from human activities develop in line 
with the carbon sinks that ecosystems can provide, which can reveal 
the potential of regional carbon budget balance. The formula is 
as follows:

	

2 ×
=

+
CF CCCC

CF CCC 	
(6)

	 T CF CCC= +α β 	 (7)

	 Carbon CCD x y C T− ( ) = ×, 	 (8)

where C is the coordination index of carbon carrying capacity and 
carbon footprint; T is the composite development index of carbon 
carrying capacity and carbon footprint, which reflects the 
comprehensive level of carbon carrying capacity and carbon footprint, 
according to the importance degree of carbon sink and carbon emission 
system, α and β are assigned, α + β = 1; Carbon-CCD indicates that 
under the condition that the composite development benefit (CF + CCC) 
of carbon carrying capacity and carbon footprint is certain, to maximize 
the composite benefits (CF×CCC), the two carry out the quantitative 
degree of combined coordination. According to the previous research 
results and the actual situation, the coupling coordination type of 
carbon carrying capacity and carbon footprint is subdivided according 
to the size of the coupling coordination degree Carbon-CCD (Table 1).

3.2.4. Geographically and temporally weighted 
regression model (GTWR)

GTWR considers the expansion of geographically weighted 
regressive models by considering the non-stationarity of time, 
incorporating both temporal and spatial effects (Xu et al., 2023). This 
enables the model to deal with spatiotemporal heterogeneity at the 
same time, so it has a clear advantage in exploring spatiotemporal 
variability of carbon budget influencing factors. The construction 
formula is as follows:

TABLE 1  Classification of carbon carrying capacity–carbon footprint 
coupling coordination degree (Carbon-CCD) types.

Carbon-
CCD

Coordination 
level

Carbon-
CCD

Coordination 
level

0<D ≤ 0.2 Severely 

uncoordinated

0.5<D ≤ 0.6 Moderately 

coordinated

0.2<D ≤ 0.3 Moderately 

uncoordinated

0.6<D ≤ 0.8 Good coordinated

0.3<D ≤ 0.4 Mildly uncoordinated 0.8<D ≤ 1 Quality coordinated

0.4<D ≤ 0.5 Mildly coordinated
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Y t t Xi i i i

k
k i i i ik i= ( ) + ( )× +∑β µ ϑ β µ ϑ ε0 , , , ,

	
(9)

where β0(ui,vi,ti) is the regression constant, εi is the residual of the 
model, Xik represents the value of the influencing factor, βk(ui,vi,ti) 
represents the regression parameter of the variable, that is, the weight 
factor of the variable in the space–time position (ui,vi,ti).

To measure the beta βk(ui,vi,ti) of each variable k in all space–time 
location. βk(ui,vi,ti) can be transformed as follows:

	
β µ ϑ µ ϑ µ ϑ
∧ −
( ) = ( )



 ( )i i i

T
i i i

T
i i it X W t X W W t Y, , , , , ,

1

	
(10)

where W(ui,vi,ti) is a space–time weighting matrix that takes into 
consideration space–time effects.

3.3. Data source

Based on 42 counties of the urban agglomeration around Poyang 
Lake, the data selected in this study include energy consumption data, 
land use data, and socioeconomic data. Energy consumption and 
socioeconomic data are obtained from Carbon Emission Accounts 
and Datasets for emerging economies (CEADs),1 China Statistical 
Yearbook (County-level), Jiangxi Statistical Yearbook, and 
corresponding yearbooks of cities and counties. Land use data were 
derived from 30 m × 30 m grid data from the Resource and 
Environmental Science Data Center of the Chinese Academy of 
Sciences2 for the years 2000, 2005, 2010, 2015, and 2020.

4. Results

4.1. Spatial–temporal characteristics of 
carbon footprint and carbon carrying 
capacity

It selected 50, 100, and 150% of the average carbon footprint and 
carbon carrying capacity of the urban agglomeration around Poyang 
Lake from 2000 to 2020 and divided the carbon footprint and carbon 
carrying capacity into four levels: low, lower, higher, and high. Then, 
the spatial distribution of carbon footprint and carbon carrying 
capacity in 2000, 2010, and 2020 was visualized through ArcGIS 
software (Figure 3).

During the study period, the carbon footprint of the study area 
shows a dynamic increasing trend from rapid increase to steady 
increase. Since 2000, the carbon footprint of the study area has 
increased rapidly from 6,255,395.63 hm2 to 14,485,241.37 hm2 in 2010, 
with an increase in 231.56%. After 2010, its growth rate slowed down 
but still increased to 27,874,164.9 hm2 in 2020, with a growth rate of 
192.43%. The comparison shows that the construction of the 
eco-urban agglomeration around Poyang Lake (2015–2030) is 
beneficial to slow down the growth rate of carbon footprint.

1  https://www.ceads.net.cn/

2  https://www.resdc.cn/

The spatial pattern of the carbon footprint at the county level in 
the study area shows a “core-periphery” structure with the Nanchang 
municipal district as the core of high value and gradually decreasing 
outward. The high-value carbon footprint area in 2000 only included 
Nanchang City District and Nanchang County, while the rest of the 
areas had a lower carbon footprint due to the fledgling urbanization, 
slow economic development, and dispersed population. Compared 
with 2000, the number of high-value areas and lower-value areas of 
carbon footprint increased significantly in 2010. In addition to the 
core area of Nanchang City, the high-value area gradually spreads 
outward, and Jiujiang City becomes the high-value area of carbon 
footprint with the advantage of transportation location. By 2020, the 
number of high-value carbon footprint areas will increase to 14 and 
the number of low-value areas will shrink to 3. The carbon footprint 
of prefecture-level municipalities such as Fuzhou City, Jingdezhen 
City, and Yingtan City will increase significantly due to population 
concentration and economic development.

During the study period, the carbon carrying capacity of the study 
area shows a trend of “rising, then falling and finally declining.” Since 
2000, the carbon-bearing capacity of the study area slowly increased 
from 15,922,773.77 hm2 to 15,994,651.77 hm2 in 2010, with an increase 
of only 0.45%. Since 2000, the carbon-bearing capacity of the study 
area slowly increased from 15,922,773.77 hm2 to 15,994,651.77 hm2 in 
2010, with an increase of only 0.45%. Subsequently, it decreases to 
15,591,361.26 hm2 in 2020, which is 2.52% less than in 2010. After 
2010, the urbanization rate of the study area accelerated, and the urban 
expansion led to the shrinkage of carbon sinks in land areas such as 
woodland, waterbody, and grassland. The topography of the county 
with high carbon carrying capacity is mainly mountainous and hilly, 
with rich forest resources, which provides a large amount of carbon 
sink. The counties with a low value of carbon carrying capacity are 
mainly located in the core area around Poyang Lake, the topography of 
these areas is mainly plain, and the carbon sink capacity is weak.

4.2. Spatial–temporal characteristics 
analysis of Carbon-MD

The Carbon-MD can quantitatively reflect the carbon budget of 
the study area. We used ArcGIS10.8 software to divide the county into 
seven categories of areas: severe unbearable area, barely unbearable 
area, mild unbearable area, carbon balance area, average bearable area, 
good bearable area, and high-quality bearable area in 2000, 2005, 
2010, 2015, and 2020 (Figure 4).

From 2000 to 2020, the distribution of Carbon-MD in the study 
area ranges from 0.008 to 47.6597. From the time change, the 
Carbon-MD of the whole area decreases from 2.5454  in 2000 to 
0.5593 in 2020, which decreases by 78.03% in 20 years, from high 
quality to barely unbearable. This indicates that the carbon budget of 
urban agglomeration around Poyang Lake gradually turns into a 
deficit over time, and its carbon carrying capacity does not meet the 
demand for an internal carbon footprint.

From the spatial pattern, the Carbon-MD in the study area shows 
the spatial distribution characteristics of increasing from the core area 
around the lake, where the built-up area is more concentrated, to the 
peripheral area around the lake with higher elevation. The low value 
of Carbon-MD is mainly concentrated in the Poyang Lake Plain, 
especially around municipal districts such as Nanchang and Jiujiang. 
The high carrying capacity areas are mainly distributed in Wuyi 
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Mountain in the east of Jiangxi and Luoxiao Mountain area between 
Jiangxi and Hunan provinces. The spatial distribution characteristics 
of the Carbon-MD are similar to those of the carbon footprint and 
opposite to those of the carbon carrying capacity.

From the perspective of spatial evolution, the low-value area of 
Carbon-MD shows a “point to area” diffusion trend. From 2000 to 
2020, the low-value area spreads from Nanchang City and the 
surrounding counties to the core area around the lake and then to the 
edge of the lake. In 2000, the Carbon-MD low-value area included 
only five counties in Nanchang City, Nanchang County, Xinjian 
County, Jiujiang City, and Chaisang District. By 2010, the low-value 
area increased to 12 counties, at which time the region-wide carbon 
revenue and expenditure match was 1.1042, still in a good match 
stage, indicating that the carbon carrying capacity could still meet the 
internal carbon footprint at this time. The Carbon-MD low-value area 
in the study area increases to 20 counties in 2020, concentrated in the 
core area of the lagoon and the counties in the peripheral area of the 
lagoon. In addition, due to the vast water area of Poyang County, 
which is located in the core area of the lagoon, most of its period is in 
a good bearable and high-quality bearable stage.

In general, the county carbon budget partition has obvious 
characteristics of the Great Lakes basin, and Poyang County, which is 
located in the center of the lake, has more water area with a long-term 
carbon surplus. The core area around the lake is dominated by plains, 
and the rapid expansion of urbanization in the core area of the 

“water-dependent” urban agglomeration has led to a carbon deficit. 
The edge area around Poyang Lake is mainly hilly and mountainous, 
with rich forest resources and strong carbon sink capacity, while the 
level of urbanization and industrialization is low due to the topography 
and terrain, with less carbon emission.

4.3. Spatial–temporal characteristics 
analysis of Carbon-CCD

There is a coupled interaction between carbon carrying capacity 
and carbon footprint that promotes and coerces each other. 
We measured the coupling degree values of county units in the study 
area in 2000, 2005, 2010, 2015, and 2020, respectively. Then, we spatially 
visualized the expression by ArcGIS10.8 software to obtain the spatial 
distribution map of the carbon bearing capacity–carbon footprint 
coupling degree in the study area (Figure 5).

From 2000 to 2020, the distribution of carbon carrying 
capacity–carbon footprint coupling degree of each county in the 
study area ranged from 0.2853 to 1. During the two decades, the 
overall carbon carrying capacity–carbon footprint coupling degree 
of the whole study area showed a trend of “rising and then falling.” 
The overall coupling degree of the whole region increased from 
0.8999 in 2000 to 0.9987 in 2010 and then decreased to 0.9592 in 
2020. It indicates that the whole region of the study area is in a 

FIGURE 3

Spatial distribution of carbon footprint and carbon carrying capacity.
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long-term coordinated coupling period, and the carbon carrying 
capacity and carbon footprint gradually develop in an 
orderly direction.

From the spatial pattern, the high values of carbon bearing 
capacity–carbon footprint coupling are concentrated in most of the 
counties in the peripheral area of the lake ring and the peripheral area 

FIGURE 4

Spatial distribution of Carbon-MD.

FIGURE 5

Spatial distribution of carbon carrying capacity–carbon footprint coupling degree.
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of the lake ring. In 2000 and 2005, the low-value areas were clustered 
in the southern counties of the study area. After 2010, the low-value 
areas were concentrated in the municipal districts of Nanchang and 
Jiujiang and the surrounding areas of both.

From the spatial evolution, the high-value area of carbon carrying 
capacity–carbon footprint coupling shows an increasing trend year by 
year, from 21 county units in 2000 to 26 county units in 2020. The 
coupling degree evolution of some counties shows obvious fluctuation. 
For example, the Nanchang city municipal area has experienced the 
process of “friction–antagonism–low coupling–antagonism,” and Le’an 
County, Zixi County has experienced the process from “antagonism” 
to “antagonism.” Le’an County and Zixi County experienced a leap 
from “antagonism” to “friction” and even “coordinated coupling.”

The Carbon-CCD can qualitatively reflect the carbon budget 
balance of the study area. The distribution range of Carbon-CCD in 
the study area from 2000 to 2020 is 0.1730 ~ 0.8661. Based on the 
calculation results, we used ArcGIS10.8 software to classify the county 
Carbon-CCD in 2000, 2005, 2010, 2015, and 2020 into eight types: 
severely uncoordinated, mildly uncoordinated, mildly coordinated, 
moderately uncoordinated, moderately coordinated, well-coordinated, 
and quality coordinated (Figure 6).

From the spatial pattern, there is a spatial heterogeneity in the 
distribution of Carbon-CCD of the county unit in the study area, and 
it shifts from scattered type to group type. The spatial distribution of 
Carbon-CCD of county units in the study area has a certain 
correlation, and the high-value area of Carbon-CCD roughly 
coincides with the high-value area of the coupling degree. The number 
of low-value areas of Carbon-CCD is much more than the number of 
low-value areas of coupling degree, but both show the spatial evolution 

characteristics of gradually spreading outward with Nanchang and 
Jiujiang municipal districts as the core.

In the time dimension, the Carbon-CCD in the study area showed 
a gradual increase from moderate disorder to basic coordination, and 
the average level of coupling coordination increased from 0.3927 to 
0.4687. In 2000, the Carbon-CCD ranged from [0.1730, 0.6359], with 
the lowest value in Hukou County and the highest value in Guixi City. 
The types of coupling coordination are mainly severely uncoordinated, 
mildly uncoordinated, mildly coordinated, moderately uncoordinated, 
moderately coordinated, and good coordination, accounting for 
2.38%, 23.81, 30.95, 19.05, 19.05, and 4.76%, respectively. Its overall 
level is low, and most of them are in mild dissonance. In 2010, the 
Carbon-CCD was between [0.1440, 0.7524], the lowest value was in 
Yingtan City, and the highest value was still in Guixi City. The coupling 
coordination types are the same as those in 2000, but the coordination 
types of mild and above account for 53.49%, and the overall level has 
improved, but the increase is not obvious. In 2020, the Carbon-CCD 
in the study area is between [0.1786, 0.8661], and the lowest and 
highest value areas are the same as in 2010. The coupling coordination 
type in Guixi City is improved to the coupling of high-quality 
coordination, and the coordination type of mild and above accounts 
for 60.47%. Compared with 2000 and 2010, the proportion of 
moderate coordination and good coordination increased significantly.

4.4. Natural and anthropogenic factors

Human activities and climate change act together on land cover, 
which, in turn, leads to significant changes in land use types and 

FIGURE 6

Spatial distribution of Carbon-CCD.
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affects the carbon emissions and carbon sink of the urban 
agglomeration ecosystem around Poyang Lake. The mechanisms of 
land use change on carbon budget include the following two main 
aspects. There are differences in carbon emissions and carbon sinks 
between land use types, and land use changes may directly alter the 
amount of carbon emitted or sequestered. Land use change affects the 
processes of the carbon cycle in complex social–economic–natural 
ecosystems, such as energy exchange, carbon metabolism, and 
geochemical cycling of carbon.

This study made the land use transfer matrix of urban 
agglomeration around Poyang Lake from 2000 to 2020 through 
ArcGIS (Table 2). The land type in the study area from 2000 to 2020 
has undergone significant changes, which overall show an increase in 
construction land and water body, and a decrease in farmland, 
grassland, woodland, and unused land. During the 20 years, the urban 
agglomeration around Poyang Lake, land use types, except for the 
same type of conversion, have shifted more unused land to 
construction land, more grassland to woodland, more construction 
land to unused land, unused land to a waterbody, and woodland to 
construction land. By phase, the increase in construction land from 
2010 to 2020 is significantly higher than the increase from 2000 to 
2010. From 2000 to 2010, the total area of other land types converted 
to construction land in the study was 35.06 km2. From 2010 to 2020, 

it is 919.99 km2. During this period, the low Carbon-MD of the study 
area spread rapidly, suggesting that the expansion of construction land 
is the main cause of its carbon deficit. The land use type shifts between 
different types from 2000 to 2010 mainly include farmland to a 
waterbody, grassland to woodland, construction land to farmland, 
unused land to a waterbody, waterbody to unused land, and woodland 
to grassland. In addition, the shift of land use types between different 
types from 2010 to 2020 mainly includes unused land to construction 
land, grassland to construction land, construction land to unused 
land, unused land to a waterbody, waterbody to construction land, and 
woodland to construction land. During this period, the shift between 
different land use types was dominated by the shift to built-up land.

In addition to land use types, natural factors, and socioeconomic 
factors are also important factors affecting the carbon budget. 
Combined with the characteristics of this type of lake city group 
around Poyang Lake, the lake-ring zoning (LRZ) and normalized 
difference vegetation index (NDVI) are selected as natural factors. The 
proportion of built-up area (PBU), regional population density (RPD), 
and industrial structure (IS) are socioeconomic factors. To avoid 
interactions between variables, all variables were tested for covariance, 
and the variance inflation factor values of all variables were found to 
be less than 10, indicating that there was no significant covariance 
between variables.

TABLE 2  Land transfer matrix of urban agglomeration around Poyang Lake from 2000 to 2020.

2000–2010 Farmland Grassland
Construction 

land
Unused 

land
Waterbody Woodland Total

Farmland 23386.33 38.94 21.21 7.46 262.91 100.30 23817.15

Grassland 8.34 2351.86 0.01 2.24 1.87 17.58 2381.89

Construction land 413.33 18.17 1509.55 1.39 32.80 129.02 2104.25

Unused land 7.48 0.23 0.67 548.96 79.07 0.14 636.55

Waterbody 149.59 16.41 12.79 357.04 5176.17 11.97 5723.97

Woodland 34.32 238.91 0.38 0.03 16.32 34834.95 35124.91

Total 23999.39 2664.51 1544.61 917.12 5569.14 35093.95 69788.73

2010–2020 Farmland Grassland
Construction 

land
Unused 

land
Waterbody Woodland Total

Farmland 23194.44 0.65 551.78 7.83 61.86 0.59 23817.15

Grassland 0.66 2329.87 45.75 0.09 5.47 0.06 2381.89

Construction land 44.30 0.93 2048.59 0.00 5.27 5.15 2104.25

Unused land 0.07 0.00 1.31 500.11 134.81 0.26 636.55

Waterbody 21.45 2.54 34.95 19.23 5643.28 2.51 5723.97

Woodland 17.29 78.82 286.19 2.03 21.44 34719.14 35124.91

Total 23278.20 2412.82 2968.58 529.29 5872.13 34727.72 69788.73

2000–2020 Farmland Grassland
Construction 

land
Unused 

land
Waterbody Woodland Total

Farmland 22825.85 9.00 918.33 10.98 201.31 33.92 23999.39

Grassland 38.93 2304.05 66.53 0.22 20.15 234.63 2664.51

Construction land 29.76 0.13 1493.78 0.67 16.11 4.17 1544.61

Unused land 6.54 0.96 2.71 453.61 453.02 0.29 917.12

Waterbody 269.49 4.41 65.81 62.13 5155.36 11.93 5569.14

Woodland 107.63 94.25 421.44 1.68 26.17 34442.78 35093.95

Total 23278.20 2412.82 2968.58 529.29 5872.13 34727.72 69788.73

Red–orange–yellow–light green–dark green, representing the order of area size from one land use type to another (except for the same type of conversion), with red representing the largest 
area and dark green representing the smallest area.
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The GTWR model is an extension of the GWR model considering 
the non-smoothness of time, which incorporates both temporal and 
spatial effects into the model, enabling the GTWR model to deal with 
spatiotemporal heteroskedasticity simultaneously. To test the 
reliability of the model, we compared the fitting results of the GTWR 
model with the GWR model, as shown in Table 3. The R2 adjusted 
value of the GTWR model is significantly higher than that of the 
GWR model, which indicates that the GTWR model has a better fit 
than the GWR model.

To compare the spatial–temporal variability of the effects of 
natural and socioeconomic factors on the Carbon-MD and 
Carbon-CCD, five periods of data from 2000, 2005, 2010, 2015, and 
2020 were selected in this study to calculate the regression coefficients 
of each influencing factor after standardization. By comparing the 
magnitude of the absolute values of the regression coefficients of each 
factor, the dominant factors of each county unit were selected to 
spatially visualize and express the dominant factors of Carbon-MD 
and Carbon-CCD in 2000, 2010, and 2020.

As shown in Figure 7, the influence of socioeconomic factors on 
the Carbon-MD and Carbon-CCD of the study area is stronger in the 
study period. The area share of built-up area and population density 
as the highest value is most widely distributed in the county units. In 
terms of Carbon-MD, the counties with the highest built-up areas are 
mainly located in the south of the study area and show a trend of 
“increasing then decreasing” over time, gradually spreading to the 
northeast. The counties with the highest population density values are 
mainly located in the northern part of the study area except for 
Nanchang City and show a trend of “increasing then decreasing” over 
time and finally distributed in the western and northern parts of the 
study area. The county units with the highest values of natural factors 
are mainly distributed in and around the municipal district of 
Nanchang City, and they show an increasing trend over time. In 
general, the area dominated by socioeconomic factors gradually 
decreases, and the area dominated by natural factors 
increases correspondingly.

From the Carbon-CCD, the number of county units with the 
built-up area, population density, and NDVI as the dominant factors 
is relatively balanced. The county units with the percentage of the 
built-up area as the dominant factor are mainly distributed in the 
southwestern part of the study area, and gradually expand like the 
northeastern part, eventually dominated by the peripheral area around 
the lake. The county units with population density as the dominant 
factor are mainly located in the northwestern part of the study area 
and show a decreasing trend. The county units with NDVI as the 
dominant factor were mainly distributed in the eastern part of the 

study area and showed a gradually increasing trend. In general, the 
area of the strong role of socioeconomic factors on the Carbon-CCD 
is gradually decreasing, and the area of NDVI as the dominant factor 
is increasing.

5. Discussion

5.1. Rationality of the process and the 
scientific nature of the results

This study applies the carbon-bearing Carbon-MD and 
Carbon-CCD for the first time to analyze the spatial–temporal 
characteristics of the carbon budget in the study area, and it is necessary 
to explore the rationality of its process and the science of the results. 
Based on the complex ecosystem theory, this article portrays the 
complete process of the carbon cycle in the urban complex ecosystem 
from three perspectives: energy subsystem, industry subsystem, and 
ecological subsystem, which provides theoretical and framework 
support for carbon budget accounting in the study area. Existing 
studies only consider the carbon sink function of forest land and 
grassland when calculating carbon footprint and carbon carrying 
capacity (Lenzen et  al., 2018). However, inland waterbody and 
phytoplankton, aquatic plants, heterotrophs, and microorganisms in 
inland waterbody have great carbon sequestration potential and can 
share the carbon-neutral pressure of terrestrial ecosystems. 
Considering the uniqueness of the lake area, this article incorporates 
the carbon sink of waterbody into the accounting system of carbon 
footprint and carbon carrying capacity of urban agglomeration around 
Poyang Lake. Based on the theory of human–land synergy, ecosystem 
service theory, and landscape ecology theory, the carbon carrying 
capacity–carbon footprint matching degree and coupling coordination 
degree indicators are constructed with solid theoretical support. The 
Carbon-MD and Carbon-CCD are the results of the interaction 
response between human activities and ecosystems. The harmonization 
process of the contradictory human–earth relationship is the core 
theme of geography research (Ouyang et al., 2022). Carbon balance is 
one of the best means to seek harmonious coexistence between humans 
and the environment in the context of global climate change (Zhou 
Y. et al., 2021). Carbon carrying capacity belongs to the regulating 
services of ecosystem services, and carbon footprint characterizes the 
degree of pressure of carbon emissions from human activities on 
natural systems. The carbon balance status of a region is an expression 
of its landscape pattern. Various methods such as the greenhouse gas 
inventory method, carbon sequestration inventory method, and 

TABLE 3  Statistical results of GTWR and GWR parameters.

GTWR
GWR

2000 2010 2020

Carbon-
MD

Carbon-
CCC

Carbon-
MD

Carbon-
CCC

Carbon-
MD

Carbon-
CCC

Carbon-
MD

Carbon-
CCC

Sigma 1.8408 0.0839 4.6309 0.1095 1.8888 0.1154 17.5376 0.1255

AICc 1074.5100 −346.1520 296.1430 −44.6154 203.3380 −40.2461 0.6462 −33.1832

R2 0.9205 0.6336 0.8210 0.2057 0.6927 0.2941 116.5740 0.3444

R2Adjusted 0.9181 0.6228 0.7903 0.0695 0.6400 0.1731 0.7401 0.2320
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carbon balance indicator method are used to integrate multisource data 
such as energy consumption data, land use data, ecological and 
environmental type data, and socioeconomic data, and the data have 
objectivity in the process of indicator construction. These provide a 
guarantee for the scientific base of the results of this article.

Since both carbon indicators are new, this study was compared 
with other related studies. Guo et  al. (2017) used the ratio of 
carbon sinks to carbon emissions to construct a carbon neutrality 
factor and found that the unbalanced spatial distribution of 
carbon emissions and carbon sinks is the main reason for the 
spatial variation of the carbon neutrality factor. Chen et al. (2021) 
constructed a carbon balance pressure index using the ratio of 
carbon emissions to vegetation carbon sequestration to measure 
the ecological pressure caused by carbon emissions in 77 
countries from 2000 to 2015 and found that carbon emissions 
have become the direct cause of the rising pressure on the global 
carbon balance. Wang C. et al. (2021) analyzed the spatial pattern 
of carbon sources, carbon sinks, and carbon balance in the 
Beijing–Tianjin–Hebei region from the perspective of land use 
carbon emissions through the difference between carbon sources 
and carbon sinks. Li et al. (2021) studied the terrestrial carbon 
sink/source changes in China caused by land use change, and 
carbon balance partitioning should be  conducted for its six 
regions. Based on previous studies developed by this group, it is 
scientific to use carbon footprint and carbon carrying capacity to 
construct carbon budget balance indicators, considering spatial 
heterogeneity and regional uniqueness, and its comparability on 
spatial–temporal scales can be applied.

The Carbon-MD F reflects the carrying status of ecosystems to 
carbon emissions from human activities, and its index value is 
influenced by the endowment of ecosystems and human activities. 
Therefore, the differences in ecological resources and human activities 
determine the spatial and temporal heterogeneity of the 
Carbon-MD. The Carbon-CCD reflects the coupled coordination 
relationship between carbon carrying capacity and carbon footprint. 
The Carbon-CCD reflects the sustainability of the ecosystem’s carbon 
budget balance. Thus, the ecological resource endowment and the 
degree of carbon emissions from human activities determine the 
sustainability of the carbon balance. Therefore, the two carbon budget 
balance indicators of Carbon-MD and Carbon-CCD developed in this 
study have certain scientific and practicality.

5.2. Factors influencing the spatial–temporal 
characteristics of carbon indicators

The combination of internal and external factors has led to the 
heterogeneity of the spatial–temporal distribution of carbon budget 
balance in the study area. From the internal composition of the index, the 
carbon footprint has become the direct cause of the decrease of the 
Carbon-MD in the study area due to the relatively stable change of the 
carbon carrying capacity. The uneven spatial–temporal distribution of 
water-ecological resources in the lake area has led to the spatial mismatch 
of carbon footprint and carbon carrying capacity in the study area. The 
carbon footprint of the lake-ring edge area and the lake-ring periphery 
area gradually approaches its carbon carrying capacity, which is the main 

FIGURE 7

Spatial distribution of influencing factors of Carbon-MD and Carbon-CCD.
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reason for the increase of the Carbon-CCD value of these two regional 
county units. Human activities caused a large shift in land use types, 
which further affected the carbon budget balance by changing the 
landscape pattern (Zhou et al., 2020; Ouyang et al., 2021). The research 
results show that the increase in construction land leads to the main 
reason for the decrease of Carbon-MD in the study area. Therefore, to 
achieve the carbon balance goal, urban agglomeration around Poyang 
Lake should focus on carbon reduction activities first, and adopt sink 
enhancement means second. In addition to land use types, we quantified 
the effects of five factors on carbon budget balance from two perspectives 
of natural factors and socioeconomic factors, focusing on comparing the 
absolute values of regression coefficients of natural and socioeconomic 
factors. It was found that the built-up area and population density were 
the main factors affecting the carbon budget balance of the study area. 
Compared with natural factors, socioeconomic factors are the main 
influencing factors of carbon budget balance. This also reflects from the 
side that the increasing human activities are the main cause of ecosystem 
disorders (Xing et al., 2021; Li et al., 2022; Zhou et al., 2022b).

5.3. Limitation and future research

This article analyzes the spatial–temporal characteristics of the 
carbon budget balance of the lake urban agglomeration through two 
carbon budget balance indicators, Carbon-MD and Carbon-CCD, and 
has achieved certain results. Since the urban carbon cycle process is 
extremely complex, it is a challenging task to comprehensively 
characterize the carbon sources, sinks, and flows in different cities. A 
framework of the urban carbon cycle was constructed under the 
guidance of the social–economic–natural complex ecosystem theory, 
and further measured the carbon sources and sinks of the urban 
agglomeration around Poyang Lake. However, the carbon source 
accounting process used in this study does not consider carbon 
emissions from human and plant, and animal respiration, and carbon 
emissions from microbial decomposition. Meanwhile, carbon 
sequestration by soils is a complex process, and our carbon sink 
accounting process does not include carbon sinks from soils. In terms 
of influencing factors, we explored the effects of land use type, NDVI, 
the proportion of built-up area, population density, and industrial 
structure on the carbon budget of the study area. Considering the 
special characteristics of the lake area, we analyzed the influence of the 
distance zoning of the city from the lake center on its carbon budget 
balance. However, the carbon budget of different regions is subject to 
different factors and there are interactions among these factors. How 
to reveal the interactions among multiple factors and their 
transmission mechanisms on carbon budget balance is one of the 
directions that need to be urgently researched in future.

6. Conclusion

This study proposes a carbon cycle framework for urban social–
economic–natural complex ecosystems from three subsystem 
perspectives: industrial subsystem, energy subsystem, and ecological 
subsystem. The framework portrays the carbon cycle process of the city 
from both vertical and horizontal perspectives, which can provide a 
scientific reference for low-carbon urban management. Furthermore, this 
study constructs two carbon balance indicators, Carbon-MD and 
Carbon-CCD, based on the relationship between carbon carrying 

capacity and carbon footprint. Unlike previous studies, this study 
considers both the uniqueness of the lake area for carbon sink accounting 
and the relationship between people and land and adopts carbon carrying 
capacity and carbon footprint instead of carbon source and carbon sink. 
The spatial–temporal variability of the carbon budget balance in the 
urban agglomeration around Poyang Lake from 2000 to 2020 is 
significant. The distribution of Carbon-MD in the study area from 2000 
to 2020 ranges from 0.008 to 47.6597 and shows a decreasing trend over 
time. The Carbon-MD in the study area shows the spatial distribution 
characteristics of increasing from the core area of the lake to the peripheral 
area of the lake with higher elevation. From 2000 to 2020, the distribution 
range of Carbon-CCD in the study area is 0.1730 ~ 0.8661, showing a 
gradual increase from moderate disorder to basic coordination. The 
distribution of Carbon-CCD is spatially heterogeneous in the study area, 
and it is shifting from scattered to grouped. Finally, this article analyzes 
the influencing factors of carbon budget balance in the study area in terms 
of land use, natural factors, and socioeconomic factors. The two carbon 
budget balance indicators constructed in this article not only have 
advantages in describing the spatial and temporal characteristics of 
regional carbon balance but also are effective tools for regional 
low-carbon management.

Data availability statement

The original contributions presented in the study are included in 
the article, further inquiries can be directed to the corresponding author.

Author contributions

SL and YL conceived the study. YL obtained funding for the study. 
WD and SL performed the statistical analysis. SL produced the figures 
and tables and wrote the first draft of the manuscript. GW modified 
and checked this manuscript. All authors contributed to the 
manuscript and approved the submitted version.

Funding

This study was sponsored by the National Natural Science 
Foundation of China (NSFC) (Response and simulation of industrial 
spatial pattern in the urban cluster around Poyang Lake based on the 
supply and demand of ecosystem services, No. 42271209) and Project 
of Jiangxi Provincial Humanities and Social Science, grant no. 
JJ21201.

Acknowledgments

The authors thank the editors and reviewers for their comments 
on this manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

20

https://doi.org/10.3389/fevo.2023.1195833
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Li et al.� 10.3389/fevo.2023.1195833

Frontiers in Ecology and Evolution 14 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Bassham, J. A. (1971). The control of photosynthetic carbon metabolism: 

photosynthesis of carbon compounds is regulated to allocate intermediates 
according to metabolic needs. Science 172, 526–534. doi: 10.1126/
science.172.3983.526

Battin, T. J., Lauerwald, R., Bernhardt, E. S., Bertuzzo, E., Gener, L. G., Hall, R. O., 
et al. (2023). River ecosystem metabolism and carbon biogeochemistry in a changing 
world. Nature 613, 449–459. doi: 10.1038/s41586-022-05500-8

Berhongaray, G., Verlinden, M. S., Broeckx, L. S., Janssens, I. A., and Ceulemans, R. 
(2017). Soil carbon and belowground carbon balance of a short-rotation coppice: 
assessments from three different approaches. GCB Bioenergy 9, 299–313. doi: 10.1111/
gcbb.12369

Chen, J., Li, Z., Song, M., and Dong, Y. (2021). Decomposing the global carbon 
balance pressure index: evidence from 77 countries. Environ. Sci. Pollut. Res. 28, 
7016–7031. doi: 10.1007/s11356-020-11042-1

Chen, C., Wu, Q., and Xin, H. (2019). Carbon balance of marine energy based on 
carbon emission and low carbon economy: a case study of Shandong Province. J. Coast. 
Res. 98, 167–170. doi: 10.2112/SI98-041.1

Chuai, X., Yuan, Y., Zhang, X., Guo, X., Zhang, X., Xie, F., et al. (2019). Multiangle land 
use-linked carbon balance examination in Nanjing City, China. Land Use Policy 84, 
305–315. doi: 10.1016/j.landusepol.2019.03.003

Dai, L., Liu, Y., and Luo, X. (2021). Integrating the MCR and DOI models to 
construct an ecological security network for the urban agglomeration around 
Poyang Lake, Chine. Sci. Total Environ. 754:141868. doi: 10.1016/j.
scitotenv.2020.141868

De Wit, H. A., Austnes, K., Hylen, G., and Dalsgaard, L. (2015). A carbon balance of 
Norway: terrestrial and aquatic carbon fluxes. Biogeochemistry 123, 147–173. doi: 
10.1007/s10533-014-0060-5

Dolman, A. J., and Janssen, T. A. J. (2018). The enigma of the Amazonian carbon 
balance. Environ. Res. Lett. 13:061002. doi: 10.1088/1748-9326/aac78e

Dusenge, M. E., Duarte, A. G., and Way, D. A. (2019). Plant carbon metabolism and 
climate change: elevated CO2 and temperature impacts on photosynthesis, 
photorespiration and respiration. New Phytol. 221, 32–49. doi: 10.1111/nph.15283

Feng, L., Hu, C., Chen, X., Cai, X., Tian, L., and Gan, W. (2012). Assessment of 
inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. 
Remote Sens. Environ. 121, 80–92. doi: 10.1016/j.rse.2012.01.014

Feng, L., Raza, M. A., Li, Z., Chen, Y., Khalid, M. H. B., Du, J., et al. (2019). The 
influence of light intensity and leaf movement on photosynthesis characteristics and 
carbon balance of soybean. Front. Plant Sci. 9:1952. doi: 10.3389/fpls.2018.01952

Fernández-Martínez, M., Sardans, J., Musavi, T., Migliavacca, M., Iturrate-Garcia, M., 
Scholes, R. J., et al. (2020). The role of climate, foliar stoichiometry and plant diversity 
on ecosystem carbon balance. Glob. Chang. Biol. 26, 7067–7078. doi: 10.1111/gcb.15385

Gao, R., Chuai, X., Ge, J., Wen, J., Zhao, R., and Zuo, T. (2022). An integrated tele-
coupling analysis for requisition–compensation balance and its influence on carbon 
storage in China. Land Use Policy 116:106057. doi: 10.1016/j.landusepol.2022.106057

Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues, L. G., et al. 
(2014). Drought sensitivity of Amazonian carbon balance revealed by atmospheric 
measurements. Nature 506, 76–80. doi: 10.1038/nature12957

Guo, R., Zhao, Y., Shi, Y., Li, F., Hu, J., and Yang, H. (2017). Low carbon development 
and local sustainability from a carbon balance perspective. Resour. Conserv. Recycl. 122, 
270–279. doi: 10.1016/j.resconrec.2017.02.019

Houghton, R. A., House, J. I., Pongratz, J., Van Der Werf, G. R., Defries, R. S., 
Hansen, M. C., et al. (2012). Carbon emissions from land use and land-cover change. 
Biogeosciences 9, 5125–5142. doi: 10.5194/bg-9-5125-2012

Kondo, M., Ichii, K., Patra, P. K., Canadell, J. G., Poulter, B., Sitch, S., et al. (2018). Land 
use change and El Niño-southern oscillation drive decadal carbon balance shifts in 
Southeast Asia. Nat. Commun. 9:1154. doi: 10.1038/s41467-018-03374-x

Lai, L., Huang, X., Yang, H., Chuai, X., Zhang, M., Zhong, T., et al. (2016). Carbon 
emissions from land-use change and management in China between 1990 and 2010. Sci. 
Adv. 2:e1601063. doi: 10.1126/sciadv.1601063

Lenzen, M., Sun, Y. Y., Faturay, F., Ting, Y. P., Geschke, A., and Malik, A. (2018). The 
carbon footprint of global tourism. Nat. Clim. Chang. 8, 522–528. doi: 10.1038/
s41558-018-0141-x

Li, J., Guo, X., Chuai, X., Xie, F., Yang, F., Gao, R., et al. (2021). Reexamine China’s 
terrestrial ecosystem carbon balance under land use-type and climate change. Land Use 
Policy 102:105275. doi: 10.1016/j.landusepol.2020.105275

Li, X., Li, Y., Chen, A., Gao, M., Slette, I. J., and Piao, S. (2019). The impact of the 
2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest 
China. Agric. For. Meteorol. 269-270, 239–248. doi: 10.1016/j.agrformet.2019.01.036

Li, F., Yin, X., and Shao, M. (2022). Natural and anthropogenic factors on China's 
ecosystem services: comparison and spillover effect perspective. J. Environ. Manag. 
324:116064. doi: 10.1016/j.jenvman.2022.116064

Liddle, B. (2014). Impact of population, age structure, and urbanization on carbon 
emissions/energy consumption: evidence from macro-level, cross-country analyses. 
Popul. Environ. 35, 286–304. doi: 10.1007/s11111-013-0198-4

Lin, T., Ge, R., Zhao, Q., Zhang, G., Li, X., Ye, H., et al. (2016). Dynamic changes of a 
city's carbon balance and its influencing factors: a case study in Xiamen, China. Carbon 
Manag. 7, 149–160. doi: 10.1080/17583004.2016.1180587

Maillard, É., McConkey, B. G., and Angers, D. A. (2018). Each rotation phase can 
affect soil carbon balance differently over decades. Can. J. Soil Sci. 98, 584–588. doi: 
10.1139/cjss-2018-0013

Mathias, J. M., and Trugman, A. T. (2022). Climate change impacts plant carbon 
balance, increasing mean future carbon use efficiency but decreasing total forest extent 
at dry range edges. Ecol. Lett. 25, 498–508. doi: 10.1111/ele.13945

Mekonnen, Z. A., Riley, W. J., Berner, L. T., Bouskill, N. J., Torn, M. S., 
Iwahana, G., et al. (2021). Arctic tundra shrubification: a review of mechanisms 
and impacts on ecosystem carbon balance. Environ. Res. Lett. 16:053001. doi: 
10.1088/1748-9326/abf28b

Mikulčić, H., Baleta, J., Wang, X., Duić, N., and Dewil, R. (2022). Sustainable 
development in period of climate crisis. J. Environ. Manag. 303:114271. doi: 10.1016/j.
jenvman.2021.114271

Nag, S. K., Nandy, S. K., Roy, K., Sarkar, U. K., and Das, B. K. (2019). Carbon balance 
of a sewage-fed aquaculture wetland. Wetl. Ecol. Manag. 27, 311–322. doi: 10.1007/
s11273-019-09661-8

Nathaniel, S. P., and Adeleye, N. (2021). Environmental preservation amidst carbon 
emissions, energy consumption, and urbanization in selected African countries: 
implication for sustainability. J. Clean. Prod. 285:125409. doi: 10.1016/j.
jclepro.2020.125409

Nepal, P., Ince, P. J., Skog, K. E., and Chang, S. J. (2013). Forest carbon benefits, costs 
and leakage effects of carbon reserve scenarios in the United States. J. For. Econ. 19, 
286–306. doi: 10.1016/j.jfe.2013.06.001

Ouyang, X., Tang, L., Wei, X., and Li, Y. (2021). Spatial interaction between 
urbanization and ecosystem services in Chinese urban agglomerations. Land Use Policy 
109:105587. doi: 10.1016/j.landusepol.2021.105587

Ouyang, X., Xu, J., Li, J., Wei, X., and Li, Y. (2022). Land space optimization of urban-
agriculture-ecological functions in the Changsha-Zhuzhou-Xiangtan urban 
agglomeration, China. Land Use Policy 117:106112. doi: 10.1016/j.
landusepol.2022.106112

Pingoud, K., Ekholm, T., Soimakallio, S., and Helin, T. (2016). Carbon balance 
indicator for forest bioenergy scenarios. GCB Bioenergy 8, 171–182. doi: 10.1111/
gcbb.12253

Pukkala, T. (2017). Does management improve the carbon balance of forestry? 
Forestry 90, 125–135. doi: 10.1093/forestry/cpw043

Schimel, D., Stephens, B. B., and Fisher, J. B. (2015). Effect of increasing CO2 on 
the terrestrial carbon cycle. Proc. Natl. Acad. Sci. 112, 436–441. doi: 10.1073/
pnas.1407302112

Tcherkez, G., Gauthier, P., Buckley, T. N., Busch, F. A., Barbour, M. M., Bruhn, D., et al. 
(2017). Leaf day respiration: low CO 2 flux but high significance for metabolism and 
carbon balance. New Phytol. 216, 986–1001. doi: 10.1111/nph.14816

Wang, R., Li, F., Hu, D., and Li, B. L. (2011a). Understanding eco-complexity: social-
economic-natural complex ecosystem approach. Ecol. Complex. 8, 15–29. doi: 10.1016/j.
ecocom.2010.11.001

Wang, W. Z., Liu, L. C., Liao, H., and Wei, Y. M. (2021). Impacts of urbanization on 
carbon emissions: an empirical analysis from OECD countries. Energy Policy 
151:112171. doi: 10.1016/j.enpol.2021.112171

Wang, H., Lu, S., Lu, B., and Nie, X. (2021). Overt and covert: the relationship between 
the transfer of land development rights and carbon emissions. Land Use Policy 
108:105665. doi: 10.1016/j.landusepol.2021.105665

Wang, C., Zhan, J., Zhang, F., Liu, W., and Twumasi-Ankrah, M. J. (2021). Analysis of 
urban carbon balance based on land use dynamics in the Beijing-Tianjin-Hebei region, 
China. J. Clean. Prod. 281:125138. doi: 10.1016/j.jclepro.2020.125138

21

https://doi.org/10.3389/fevo.2023.1195833
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1126/science.172.3983.526
https://doi.org/10.1126/science.172.3983.526
https://doi.org/10.1038/s41586-022-05500-8
https://doi.org/10.1111/gcbb.12369
https://doi.org/10.1111/gcbb.12369
https://doi.org/10.1007/s11356-020-11042-1
https://doi.org/10.2112/SI98-041.1
https://doi.org/10.1016/j.landusepol.2019.03.003
https://doi.org/10.1016/j.scitotenv.2020.141868
https://doi.org/10.1016/j.scitotenv.2020.141868
https://doi.org/10.1007/s10533-014-0060-5
https://doi.org/10.1088/1748-9326/aac78e
https://doi.org/10.1111/nph.15283
https://doi.org/10.1016/j.rse.2012.01.014
https://doi.org/10.3389/fpls.2018.01952
https://doi.org/10.1111/gcb.15385
https://doi.org/10.1016/j.landusepol.2022.106057
https://doi.org/10.1038/nature12957
https://doi.org/10.1016/j.resconrec.2017.02.019
https://doi.org/10.5194/bg-9-5125-2012
https://doi.org/10.1038/s41467-018-03374-x
https://doi.org/10.1126/sciadv.1601063
https://doi.org/10.1038/s41558-018-0141-x
https://doi.org/10.1038/s41558-018-0141-x
https://doi.org/10.1016/j.landusepol.2020.105275
https://doi.org/10.1016/j.agrformet.2019.01.036
https://doi.org/10.1016/j.jenvman.2022.116064
https://doi.org/10.1007/s11111-013-0198-4
https://doi.org/10.1080/17583004.2016.1180587
https://doi.org/10.1139/cjss-2018-0013
https://doi.org/10.1111/ele.13945
https://doi.org/10.1088/1748-9326/abf28b
https://doi.org/10.1016/j.jenvman.2021.114271
https://doi.org/10.1016/j.jenvman.2021.114271
https://doi.org/10.1007/s11273-019-09661-8
https://doi.org/10.1007/s11273-019-09661-8
https://doi.org/10.1016/j.jclepro.2020.125409
https://doi.org/10.1016/j.jclepro.2020.125409
https://doi.org/10.1016/j.jfe.2013.06.001
https://doi.org/10.1016/j.landusepol.2021.105587
https://doi.org/10.1016/j.landusepol.2022.106112
https://doi.org/10.1016/j.landusepol.2022.106112
https://doi.org/10.1111/gcbb.12253
https://doi.org/10.1111/gcbb.12253
https://doi.org/10.1093/forestry/cpw043
https://doi.org/10.1073/pnas.1407302112
https://doi.org/10.1073/pnas.1407302112
https://doi.org/10.1111/nph.14816
https://doi.org/10.1016/j.ecocom.2010.11.001
https://doi.org/10.1016/j.ecocom.2010.11.001
https://doi.org/10.1016/j.enpol.2021.112171
https://doi.org/10.1016/j.landusepol.2021.105665
https://doi.org/10.1016/j.jclepro.2020.125138


Li et al.� 10.3389/fevo.2023.1195833

Frontiers in Ecology and Evolution 15 frontiersin.org

Wang, R., Zhou, T., Hu, D., Li, F., and Liu, J. (2011b). Cultivating eco-sustainability: 
social–economic–natural complex ecosystem case studies in China. Ecol. Complex. 8, 
273–283. doi: 10.1016/j.ecocom.2011.03.003

Wei, G., Bi, M., Liu, X., Zhang, Z., and He, B. J. (2022). Investigating the impact of 
multi-dimensional urbanization and FDI on carbon emissions in the belt and road 
initiative region: direct and spillover effects. J. Clean. Prod. 384:135608. doi: 10.1016/j.
jclepro.2022.135608

Wei, G., Bi, M., Liu, X., Zhang, Z., and He, B. J. (2023). Investigating the impact of multi-
dimensional urbanization and FDI on carbon emissions in the belt and road initiative region: 
direct and spillover effects. J. Clean. Prod. 384:135608. doi: 10.1016/j.jclepro.2022.135608

Wei, G., Zhang, Z., Ouyang, X., Shen, Y., Jiang, S., Liu, B., et al. (2021). Delineating the 
spatial-temporal variation of air pollution with urbanization in the belt and road 
initiative area. Environ. Impact Assess. Rev. 91:106646. doi: 10.1016/j.eiar.2021.106646

Williams, D. R., Alvarado, F., Green, R. E., Manica, A., Phalan, B., and Balmford, A. (2017). 
Land-use strategies to balance livestock production, biodiversity conservation and carbon 
storage in Yucatán, Mexico. Global Change Biol. 23, 5260–5272. doi: 10.1111/gcb.13791

Xing, L., Zhu, Y., and Wang, J. (2021). Spatial spillover effects of urbanization on ecosystem 
services value in Chinese cities. Ecol. Indic. 121:107028. doi: 10.1016/j.ecolind.2020.107028

Xu, Y., Dong, Z., and Wu, Y. (2023). The spatiotemporal effects of environmental 
regulation on green innovation: evidence from Chinese cities. Sci. Total Environ. 
876:162790. doi: 10.1016/j.scitotenv.2023.162790

Yang, B., Liu, L., and Yin, Y. (2021). Will China’s low-carbon policy balance emission 
reduction and economic development? Evidence from two provinces. Int. J. Clim. 
Change Strat. Manag. 13, 78–94. doi: 10.1108/IJCCSM-08-2020-0093

Yao, X., Kou, D., Shao, S., Li, X., Wang, W., and Zhang, C. (2018). Can urbanization 
process and carbon emission abatement be harmonious? New evidence from China. 
Environ. Impact Assess. Rev. 71, 70–83. doi: 10.1016/j.eiar.2018.04.005

Yao, L., Liu, J., Wang, R., Yin, K., and Han, B. (2015). A qualitative network model for 
understanding regional metabolism in the context of social–economic–natural complex 
ecosystem theory. Eco. Inform. 26, 29–34. doi: 10.1016/j.ecoinf.2014.05.014

Ye, X., Zhang, Q., Liu, J., Li, X., and Xu, C. Y. (2013). Distinguishing the relative 
impacts of climate change and human activities on variation of streamflow in the 

Poyang Lake catchment, China. J. Hydrol. 494, 83–95. doi: 10.1016/j.
jhydrol.2013.04.036

Yuan, W., Liu, X., Wang, W., Di, M., and Wang, J. (2019). Microplastic 
abundance, distribution and composition in water, sediments, and wild fish from 
Poyang Lake, China. Ecotoxicol. Environ. Saf. 170, 180–187. doi: 10.1016/j.
ecoenv.2018.11.126

Zhang, D., Zhao, Y., and Wu, J. (2023). Assessment of carbon balance attribution and 
carbon storage potential in China’s terrestrial ecosystem. Resour. Conserv. Recycl. 
189:106748. doi: 10.1016/j.resconrec.2022.106748

Zhang, C. Y., Zhao, L., Zhang, H., Chen, M. N., Fang, R. Y., Yao, Y., et al. (2022). Spatial-
temporal characteristics of carbon emissions from land use change in Yellow River Delta 
region, China. Ecol. Indicat. 136:108623. doi: 10.1016/j.ecolind.2022.108623

Zhenmin, L., and Espinosa, P. (2019). Tackling climate change to accelerate 
sustainable development. Nat. Clim. Chang. 9, 494–496. doi: 10.1038/
s41558-019-0519-4

Zhou, Y., Chen, M., Tang, Z., and Mei, Z. (2021). Urbanization, land use change, 
and carbon emissions: quantitative assessments for city-level carbon emissions in 
Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 66:102701. doi: 10.1016/j.
scs.2020.102701

Zhou, L., Dang, X., Mu, H., Wang, B., and Wang, S. (2021). Cities are going uphill: 
slope gradient analysis of urban expansion and its driving factors in China. Sci. Total 
Environ. 775:145836. doi: 10.1016/j.scitotenv.2021.145836

Zhou, L., Hu, F., Wang, B., Wei, C., Sun, D., and Wang, S. (2022a). Relationship 
between urban landscape structure and land surface temperature: spatial hierarchy 
and interaction effects. Sustain. Cities Soc. 80:103795. doi: 10.1016/j.
scs.2022.103795

Zhou, L., Yuan, B., Hu, F., Wei, C., Dang, X., and Sun, D. (2022b). Understanding the 
effects of 2D/3D urban morphology on land surface temperature based on local climate 
zones. Build. Environ. 208:108578. doi: 10.1016/j.buildenv.2021.108578

Zhou, L., Zhou, C., Che, L., and Wang, B. (2020). Spatio-temporal evolution and 
influencing factors of urban green development efficiency in China. J. Geogr. Sci. 30, 
724–742. doi: 10.1007/s11442-020-1752-5

22

https://doi.org/10.3389/fevo.2023.1195833
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1016/j.ecocom.2011.03.003
https://doi.org/10.1016/j.jclepro.2022.135608
https://doi.org/10.1016/j.jclepro.2022.135608
https://doi.org/10.1016/j.jclepro.2022.135608
https://doi.org/10.1016/j.eiar.2021.106646
https://doi.org/10.1111/gcb.13791
https://doi.org/10.1016/j.ecolind.2020.107028
https://doi.org/10.1016/j.scitotenv.2023.162790
https://doi.org/10.1108/IJCCSM-08-2020-0093
https://doi.org/10.1016/j.eiar.2018.04.005
https://doi.org/10.1016/j.ecoinf.2014.05.014
https://doi.org/10.1016/j.jhydrol.2013.04.036
https://doi.org/10.1016/j.jhydrol.2013.04.036
https://doi.org/10.1016/j.ecoenv.2018.11.126
https://doi.org/10.1016/j.ecoenv.2018.11.126
https://doi.org/10.1016/j.resconrec.2022.106748
https://doi.org/10.1016/j.ecolind.2022.108623
https://doi.org/10.1038/s41558-019-0519-4
https://doi.org/10.1038/s41558-019-0519-4
https://doi.org/10.1016/j.scs.2020.102701
https://doi.org/10.1016/j.scs.2020.102701
https://doi.org/10.1016/j.scitotenv.2021.145836
https://doi.org/10.1016/j.scs.2022.103795
https://doi.org/10.1016/j.scs.2022.103795
https://doi.org/10.1016/j.buildenv.2021.108578
https://doi.org/10.1007/s11442-020-1752-5


Monitoring and control of
water-ecological space in the
Dongting Lake region

Zhiwei Zeng1,2,3, Hua Yang4*, Hui Zhou4, Nan Lai4, Qidi Song4,
Qianfu Ji4 and Qimeng Ning1,2,3

1College of Architecture and Urban Planning, Hunan City University, Yiyang, China, 2Key Laboratory of Key
Technologies of Digital Urban-Rural Spatial Planning of Hunan Province, Yiyang, China, 3Key Laboratory of
Urban Planning Information Technology of Hunan Provincial Colleges, Yiyang, China, 4Hunan Provincial
Territorial Space Survey and Monitoring Institute, Changsha, China

The territorial spatial planning in the new era strengthens the control of different
functional spaces and emphasizes integrated and coordinated development of
each functional space. Therefore, it is important to monitor the “structure-
function” characteristics of water-ecological space based on the context of
territorial spatial planning and develop a management and control framework.
Based on land use and social statistics, and with the help of ArcGIS analysis, this
paper examined the structure and function of the water-ecological space in the
Dongting Lake study for 2010, 2015, and 2020, generating a control framework
and proposing key initiatives. Themain results are as follows: 1) The overall scale of
the water ecological space in the Dongting Lake study is over 7,300 km2. Water
bodies had the largest share, followed by coastal terrestrial areas, while the land-
water ecotone was the smallest. There was a small decrease in the water
ecological space during the study period. Yueyang had the largest overall scale
of water ecological space, while Linli had the smallest. 2) The comprehensive
function of water ecological space in the Dongting Lake study was about 0.4000,
increasing somewhat during the study period. Among the units, the
comprehensive function value was highest in Yuanjiang City, while Jincheng
City had the lowest. 3) From the structural elements of water ecological space,
scientific planning of functional zoning of water ecological space should be
carried out and combined with the delineation of “three zones and three lines.”
Key initiatives such as multi-scale and multi-level planning and control, use
control and access restrictions, determination of water ecological space
ownership, pollution control and accountability, and comprehensive water
ecological treatment and restoration should be promoted.

KEYWORDS

water-ecological space, structure-function, monitoring and control, Dongting Lake,
territorial spatial planning

1 Introduction

Water ecological space pertains to areas that provide for hydrological-ecological
processes, maintain the health and stability of water ecosystems, and guarantee water
security; as a core constituent of ecological space and the basic support of urban space and
agricultural space, it has an important position in the national spatial system (Yang et al.,
2017a; Zhu et al., 2017). However, rapid urbanization and industrialization have caused
damage to the water ecological environment. Regional water shortage, water pollution,
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flooding, and other water-related problems frequently occur, leading
to enormous pressures on the water ecological space (Yang et al.,
2021). Therefore, under the new territorial spatial planning system,
mapping the dynamic evolution of regional water ecological space
and enhancing the control and management of regional water
ecological space are essential measures to implement territorial
spatial use control, optimize territorial spatial layout, and
enhance territorial spatial quality, in order to promote high-
quality regional development.

Monitoring and control of water-ecological space is to measure
and collect data on the real-time status of water spatial structure,
hydrology, aquatic biology, water quality, water function and other
elements, analyze and evaluate the status quo and development
trend of water ecosystem on this basis, and propose corresponding
regulation and control measures, with the purpose of protecting and
restoring water ecological environment. It is the foundation of water
ecosystem protection, management and sustainable utilization in the
new era (Liu et al., 2022). Domestic and foreign scholars have
explored the monitoring and control of water ecological space.
Foreign researchers have had an early start, focusing mainly on
water quality monitoring (Aina et al., 2015), water ecological habitat
(Cecilia et al., 2016), water resource management (Chitresh et al.,
2017), and water environment management (Gerald and Galloway,
1997), and attaching importance to the relationship between land
use and water ecological space and its impact effect (Ghosh and
Maiti, 2021; Baltodano et al., 2022). For example, Benra et al. (2021)
used the InVEST model to monitor the service value of the water
ecosystem. Alberti et al. (2006) found a clear correlation between the
water ecosystem and urban land use structure (Marina et al., 2006).
Gerald et al. analyzed the Mississippi River flood in 1993 and
proposed a sustainable water space management model that
integrates environment, economy and culture. Over time, a
systematic paradigm of “classification system-evolution
characteristics-control measures” was gradually established in
water ecological space research.

Combining international research on water ecological
monitoring and control concepts and methods with China’s own
land ownership, space development, and environmental
management systems, domestic scholars have explored traditional
water quality detection (Yin et al., 2021) and water resource
management (Zuo et al., 2021), expanding into water ecological
space classification (Li et al., 2009) and control planning systems
(Wu et al., 2021). And with the establishment and improvements in
territorial spatial planning, water ecological space classification has
gradually become a research hotspot. Local scholars have largely
focused on the spatial causes, composition media, and spatial forms
of the classification criteria (Deng et al., 2004; Liu C. et al., 2018;
Kang et al., 2022). For example, Huang et al. (2012) proposed a
zoning method for water ecological space based on regional
differences in river basin water ecosystems. Yang et al. (2017b)
and Yang et al. (2017c) defined the scope of water ecological space
into three types: water ecological protection red line study, water
ecological restricted development study, and water security guidance
study.

The current concept of water ecological space control and
related studies are based on extending the idea of land use
control. Research has been conducted in terms of control zones,
control systems, and control indicators (Du et al., 2013; Qiu et al.,

2017). For instance, Cao et al. (2014) used current ecological
elements, important rivers, lakes, reservoirs, wetlands, and green
parks and proposed the water ecological control standards for water
ecological space. Qiu et al. (2017) explored and analyzed the water
ecological space control system based on the supporting
requirements of water ecological space. Other studies have
analyzed the spatial evolution of the water ecological
environment (Su et al., 2021), the water ecological effects of land
use and urban activities (Ren et al., 2016), and water ecological
civilization (Jiang et al., 2018). In general, domestic and
international research on spatial monitoring and control of
water-ecology is developing from small to large scales (Yin et al.,
2021).

According to system theory, water ecological space can be
regarded as a water-centered eco-economic system formed by the
interaction of natural and human elements disturbed by human
activities; its structure and function are the most fundamental
attributes of the system (Liu et al., 2010; Liu W. et al., 2018).
Structure reflects the external form of water ecological space,
while function harbors its internal role (Bo et al., 2022).
Therefore, understanding the dynamic change process and
characteristics of the structure and function would be crucial
in protecting and optimizing water ecological space and
integrating and coordinating national space. The impact of
urbanization, population growth, industrial and agricultural
production and FDI on changes in the spatial scale of water
and ecology has been investigated (Zhou et al., 2022a; Wei et al.,
2023), and the relationship between the optimization of water
and ecological functions and the coordination of national spatial
functions has been discussed (Ouyang et al., 2022). However,
there is a paucity of literature on the study of water ecological
spaces from an integrated “structure-function” perspective. Most
are based on specific management purposes (Zuo et al., 2021),
often overlooking the perspective of new territorial spatial
planning. Their results are decoupled from the new planning

FIGURE 1
Overview of the study area.
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system, which is not conducive to the practical operations of
territorial spatial zoning, use control, and optimal management.
Therefore, based on the new territorial spatial planning context, it is
necessary to monitor the regional water ecological environment from
the perspective of “structure-function” and explore feasible control
strategies for regional territorial spatial planning.

The study area is Dongting Lake, which is the ecological
security lifeline of the Yangtze River basin. It is an important
storage lake ecological zone in the middle and lower reaches of the
Yangtze River, which is a typical fragile zone of interlocking water
and land ecology (Chen et al., 2013; Ning et al., 2020). Due to
accelerated urbanization, industrial and agricultural activities
around Dongting Lake have increased, intensifying land use and
damaging the water ecosystem. The region’s water areas have
shrunk considerably, soil erosion has become common, flooding
is frequent, and the water ecological environment has shown a
declining trend (Liu and Wang, 2008; Chen Q. et al., 2015). As an
important hub of Hunan Province’s “one belt, one city” strategy,

the protection and construction of Dongting Lake’s water
ecological space are closely linked to the high-quality
development of the province and the Yangtze River Economic
Belt. The main scientific question that this study focuses on is how
to scientifically and effectively monitor the water and ecological
space in the Dongting Lake area in the context of the new territorial
spatial planning and the “structure-function” perspective? How to
build a reasonable control strategy? This is also the main objective
of this study.

2 Study overview, study methods and
data sources

2.1 Study overview

The study area is a watershed unit centered on Dongting
Lake, transitioning to plains, tablelands, and low hills (Deng

TABLE 1 Indicator system for “structure-function” monitor of the water-ecological space in the Dongting Lake study.

Secondary
classification

Specific indicators Secondary
classification

Specific indicators

Structure Water space River channel Function Ecology function Water conservation

The linear or zonal water surface between the
constant water level shorelines of rivers formed
by natural or artificial excavation

It can show the ability of water ecological space
to retain precipitation, regulate runoff, purify
water quality and affect precipitation

Lakes Soil-water conservation

The surface water formed by the natural water
level shoreline in the water accumulation study

It reflects the ability of water-ecological spaces to
maintain soil and water, regulate sediment and
maintain ecological security

Reservoir pond Social function Reservoir pond area

Artificial interception of the water surface
enclosed by the normal water level shoreline and
the smaller water surface formed by natural or
artificial excavation

It can reflect the water supply capacity of society
to a certain extent

Water-land mosaic
zones

Beach Embankment length

The study between the flood and flat water levels
of river and lake waters

It can reflect the ability of flood control and
flood storage to a certain extent

Swamp Economic function Aquatic product yield

The land where wet plants grow on the surface
that is too wet and often waterlogged

The initial product output that can show the
output of water ecological space

Adjacent terrestrial
zone

Sparse woodland Fishery output value

The study within a certain distance from the
water body space, with strong water connotation
and soil conservation ability

It can show the economic production capacity of
the initial products of water ecological space

TABLE 2 The coefficients of ecosystem service value for various water-ecosystem spaces in the Dongting Lake study (yuan·hm-2*a-1).

Ecological function
type

Water space (including rivers, canals, lakes, reservoirs and
ponds)

Wetlands (including marsh
flats)

Forest
land

Water conservation 65,932.31 50,358.29 10,146.56

Soil and water conservation 33.77 5,603.45 12,588.47
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FIGURE 2
Changes in the spatial structure of water ecology in the Dongting Lake region from 2010 to 2020.

TABLE 3 Area of different types of water-ecological space in the Dongting Lake region from 2010 to 2020.

Type of water ecological space Land type 2010 2015 2020

Water area lake 1,901.74 3,772.41 1,622.64 3,499.99 1,604.14 3,470.19

River channel 684.10 679.96 679.09

Reservoir pond 1,186.57 1,197.40 1,186.97

Water-land mosaic zones Beach 637.09 1,597.86 917.38 1,877.89 943.38 1,895.81

Marsh 960.78 960.51 952.430

Adjacent terrestrial zones Sparse woodland 2,020.55 2,020.55 2,002.27 2,002.27 1,985.00 1,985.00

FIGURE 3
Regional Structural Differences in water-ecological Space in the Dongting Lake Region from 2010 to 2020.
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et al., 2019). It is located in the northern part of Hunan Province
at the confluence of the Xiangjiang, Zijiang, Yuanjiang, and Li
rivers and has important hydrological regulating and
agricultural production functions in the middle and lower
reaches of the Yangtze River (as shown in Figure 1). Most of
the study area is at an altitude of 30–50 m, belonging to the
subtropical monsoon climate. While the Dongting Lake study
site has a dense river network and abundant water, gas, soil, and
biological resources, it has significant ecological vulnerability
and sensitivity. Given the sharp contradiction between human
activities and the water ecological environment (Wang and
Tang, 2015), analyzing the monitoring and control system of
water ecological space would be of great significance. Nineteen
counties (cities, districts) closely related to the Dongting Lake
Basin comprised the study site: Yueyang, Changde and Yiyang
(Yueyanglou District, Junshan District, Yunxi District, Wuling
District, Dingcheng District, Heshan District, Ziyang District)
and Yueyang County, Huarong County, Xiangyin County,
Miluo City, Linxiang City, Hanshou County, Anxiang
County, Lixian County, Linli County, Jinshi City, Nanxian
County, Yuanjiang City. The municipal districts of Yueyang,
Changde, and Yiyang were each treated as an overall study unit,
resulting in a total of 15 study units established for this study.

2.2 Study methods

2.2.1 Construction of the index system
Water ecological space is a vast and intricate system that

includes not only bodies of water like lakes, rivers, and reservoirs
but also water-land transitional zones like wetlands and mudflats, as
well as terrestrial territorial systems close to the shore, which act as
its structural components (Yang et al., 2017b). Meanwhile, it is also
an important part of the regional landscape structure and a
fundamental element of the regional landscape ecosystem (Zhou

et al., 2022b). Given the diverse spatial structure, the water ecological
space has both natural and human attributes (Tang et al., 2020),
providing important values for the health and stability of natural
ecosystems (e.g., water containment, soil conservation, and
biodiversity maintenance) and fundamental carrying and
supporting services to human development, including water
supply, flood control and storage, and aquaculture (Zhou et al.,
2020a).

Therefore, based on the structural elements and functional
attributes of water ecological space, and considering data
availability and the regional characteristics of the Dongting Lake
water ecological space, three structural monitoring indicators
(i.e., water space, water-land ecotone and coastal terrestrial) and
three functional monitoring indicators (i.e., ecological function,
social function, and economic function) were used in constructing
the “structure-function” monitoring system of the aquatic biological
space. Among the structural monitoring indicators, rivers/canals,
lakes, and reservoirs/ponds were used for water spaces, mudflats
and swamps were used for the water-land mosaic zone, and open
woodlands were used for the shoreline terrestrial zone. For functional
monitoring, water conservation was selected as an ecological
indicator, reservoir pond area and bank length were used as social
indicators, and fish production and fishery output value were selected
as economic indicators. The specific index system is shown in Table 1.

2.2.2 Functional value calculation method
2.2.2.1 Calculation of ecological function value

Soil and water conservation are basic ecosystem service value
components of water ecological space (Li et al., 2011). Water
conservation and soil-and-water conservation are used in this
paper to describe the ecological function of the water ecological
space in the Dongting Lake study area. The value of ecosystem
services is frequently evaluated using the equivalent factor method
in both local and international research. Ecosystem service value
refers to the proportional value a specific service contributes to an

FIGURE 4
Regional structural differences of water bodies in the Dongting Lake region from 2010 to 2020.
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ecosystem and is typically converted using the market price of grain
output per unit (Chen Y. et al., 2015). Based on the research findings
of Costanza et al., Xie et al. (2003) created an equivalent table of
ecosystem service value in China. However, due to the large regional
differences, the service value of the same ecological type may vary
significantly in different regions and may require corrections to the
national equivalent factor coefficient. Based on the equivalent factor
table developed by Xie Gaodi et al. and referring to the results of
Deng et al. (2019), this paper evaluated the service value coefficient
for water conservation and for soil and water conservation of
different water ecological space types in Dongting Lake (Table 2).
The calculation formula for the ecological function value is:

WESV � ∑n
i�1

Ai × VCsi( ) +∑n
i�1

Ai × VCti( )/2 (1)

where WESV is the ecological function value of the water ecological
space; Ai is the study of the i th water ecological space type; VCsi is
the service value coefficient of water conservation of i water
ecological space type; VCti is the service value coefficient of soil
conservation of i water ecological space type. The value of n is 3; the
calculation results are dimensionless in order to integrate the social
and economic function values.

2.2.2.2 Social and economic function value measurement
Social and economic functions support and promote the water

ecological space for human economic production and social activities.
Using statistical data, the extreme difference standardization method
was used on the social and economic indicators. Since the related
indicators were all positive, the standardization formula is:

Xij �
xij −min xij( )

max xij( ) −min xij( ) (2)

where Xij is the standardized index value; xij is the original value of
the index; min(xij) and max(xij) are the minimum and maximum values
in the data set of the index, respectively.

The final values for the social and economic functions were
obtained using the weighted average method. The weight setting of
each relevant index was determined by the entropy weight method.
The calculation formula of the entropy weight method is:

ej � − 1
ln n( ) × ∑n

i�1
Pij × ln Pij( ) (3)

Wj � 1 − ej( )/∑m
j�1

1−( ej⎞⎠ (4)

where ej is the information entropy of the corresponding index;Wj

is the weight of the corresponding index, such that Pij � Xij/∑n
i�1Xij.

2.3 Data sources

The main data used in this study include basic geographic data, land use
data and social statistics. Among them, the base map of the basic geographic
data was obtained from the National Standard Map Service Platform (http://
bzdt.ch.mnr.gov.cn/) with the review number GS (2019) 3333. The land use
data was obtained from the Resource and Environment Science and Data
Centre, Institute ofGeographical Sciences andResources, ChineseAcademyof
Sciences (https://www.resdc.cn/), classified with reference to the LUCC
classification standard, and spatially analysed in ArcGIS. Social statistics
such as length of embankments, fish production and fishery output value
were obtained from the Hunan Statistical Yearbook and statistical bulletins of
the relevant years.

3Monitoring of water ecological spatial
structure of Dongting Lake

3.1 Overall structure

The water ecological space of the Dongting Lake area is more
than 7,300 km2, accounting for about 28.35% of the total land

FIGURE 5
Regional structural differences of water-land mosaic zones in the Dongting Lake region from 2010 to 2020.
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area. During the study period, the total aquatic ecological space
decreased slightly from 7,390.81 km2 in 2010 to 7,350.99 km2 in
2020, a decrease of 39.82 km2. Among the aquatic ecological
space types (Figure 2), water area accounted for the largest
proportion but decreased significantly during the study period.
Water ecological space decreased from 3,772.41 km2 (51.04%) in
2010 to 3,470.19 km2 (47.21%) in 2020, a decrease of 302.22 km2.
The largest decrease occurred in 2010–2015, with a total decrease
of 272.41 km2. The land-water ecotone accounted for the smallest
proportion but showed a clear upward trend during the study
period. Aquatic ecological space increased from 1,597.86 km2

(21.62%) in 2010 to 1,895.81 km2 (25.79%), an increase of
297.95 km2; the growth was largest during 2010–2015,
increasing by 280.03 km2. Coastal terrestrial areas comprised
27.00% of aquatic ecological space, decreasing by only
35.55 km2 during the study period, from 2,020.55 km2 in
2010 to 1,985.00 km2.

In terms of water space, the lake area was the largest, occupying
more than 45%. Total lake area decreased from 1,901.74 km2

(50.41%) in 2010 to 1,604.14 km2 (46.23%) in 2020, a decrease of
297.60 km2; the fastest decline occurred during 2010–2015.
Reservoir pond was the second largest, increasing from 31.45% to
34.21% during the study period. The spatial area slightly increased
by 10.83 km2 during 2010–2015, then slightly decreased in
2015–2020, but the overall change was not pronounced. The
proportion of the river channel was relatively low, accounting for
about 680.00 km2 (19.00%); the change in the area and proportion
for river channels was low for the given study period.

In the aquatic-terrestrial ecotone, swamps accounted for
more than 50%, with a spatial area of more than 950.00 km2.
During the study period, the proportion of swamps decreased
from 60.13% to 50.24%, while its spatial area changed little. The
proportion of beach land was relatively small but exhibited a
significant upward trend during the study period. The proportion
increased from 39.87% to 49.76%, while the area increased from
637.09 to 943.38 km2. The areas for the different types of water
ecological space in Dongting Lake are summarized in Table 3.

3.2 Regional structure

From the perspective of regional units, the water ecological
space in the Dongting Lake area has prominent structural
differences (Figure 3). As shown in Figure 3, the water
ecological spaces in Yueyang County and Yuanjiang City
were larger than 1,000 km2. Water ecological spaces in
Yueyang County and Yuanjiang City were 1,332.98 and
1,327.99 km2 in 2010, 1,323.92 and 1,038.45 km2 in 2015, and
1,043.94 and 1,043.43 km2 in 2020. The scale of water ecological
space in Xiangyin County, Hanshou County, and Li County was
in the second echelon, having an overall scale between 500 and
1,000 km2. In 2010, the water ecological spaces in Xiangyin

FIGURE 6
Regional structural differences of the adjacent terrestrial zone in the Dongting Lake region from 2010 to 2020.

FIGURE 7
Changes in the spatial function of water ecology in the Dongting
Lake area.
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County, Hanshou County, and Li County were 735.08, 731.52,
and 728.04 km2, 656.17, 659.65, and 659.16 km2 in 2015, and
522.74, 521.33, and 521.32 km2 in 2020. In other regional units
(e.g., Yueyang City, Changde City, Linxiang City, Miluo City,
Huarong County, Linli County, Anxiang County, Jinshi City,
and Nanxian County), the water ecological space was below
500 km2. Linli County had the smallest overall scale, having a
water ecological space area of 189.32 km2 in 2010, 188.09 km2 in
2015, and 187.57 km2 in 2020. During the study period, there
was no significant structural difference in water ecological space

in the Dongting Lake area, and the overall scale in each regional
unit slightly fluctuated.

For water space (Figure 4), Yueyang County and Yuanjiang City
were larger, with water space areas of more than 400 km2. Yueyang
County’s water space area was the largest but decreased significantly
for the research period (762.54 km2 in 2010, 542.76 km2 in 2015, and
526.40 km2 in 2020), decreasing by 236.14 km2 in 10 years. Hanshou
County, Xiangyin County, Huarong County, Nanxian County,
Changde City, and Yueyang City followed, with water bodies
between 200 and 400 km2; the change in water spaces in these

FIGURE 8
Differences in the integrated function value of water-ecological space in the Dongting Lake region from 2010 to 2020.

FIGURE 9
Differences in the ecological function value of water-ecological space in the Dongting Lake region from 2010 to 2020.
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areas was not significant for the study period. In seven regional units
(e.g., Linli County, Miluo City, and Jinshi City), the water space
scales were relatively small, with areas of less than 200 km2. Linli
County had the smallest water area (about 40 km2) and exhibited no
pronounced spatial change during the study period.

For the water-land mosaic zones (Figure 5), the spatial scale
of Yuanjiang City had the largest spatial scale at over 500 km2,
increasing slightly from 568.33 km2 in 2010 to 569.81 km2 in
2015 and 575.46 km2 in 2020. For Yueyang County, the spatial
scale of the water-land interface area increased significantly in
2015, reaching 410.87 km2 and surpassing Xiangyin County; by

2020, it reached 427.10 km2, increasing 235.78 km2 in 10 years,
mainly due to the increase in beach areas. This is related to the
previously mentioned reduction in water spaces, i.e., the
conversion of water space into beach land. The spatial scale of
the water-land interface area in 11 regional units (e.g., Linli
County, Linxiang City, Jincheng City, and Yueyang Municipal
District) was relatively small, mostly below 100 km2; Linli County
had the smallest water-land interface area (2.70 km2). Except for
Yueyang County, the changes in the spatial scale of the
interlocking land and water areas in the remaining units were
not pronounced.

FIGURE 10
Differences in the social function value of water-ecological space in the Dongting Lake region from 2010 to 2020.

FIGURE 11
Differences in the economic function value of water-ecological space in the Dongting Lake region from 2010 to 2020.
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For the adjacent terrestrial zone (Figure 6), Yueyang County had
the largest size, with a coastal terrestrial area of 379.11 km2 in 2010,
374.36 km2 in 2015, and 370.42 km2 in 2020. Lixian County came in
second with a coastal terrestrial area of 308.59 km2 in 2010,
306.74 km2 in 2015, and 306.25 km2 in 2020. Nanxian County
had the smallest coastal terrestrial area, less than 1 km2, followed
by Anxiang County, with about 1.50 km2 coastal terrestrial area; they
had no significant spatial changes in coastal terrestrial extent during
the study period.

4 Monitoring of the water ecological
space function of Dongting Lake

4.1 Overall function monitoring of water
ecological space

As shown in Figure 7, the comprehensive functional value of the
water ecological space in the Dongting Lake area improved from
0.3879 in 2010 to 0.4221 in 2020, increasing by 0.0341 and indicating
an overall increase in functional service. Growth was most
pronounced during 2010–2015, increasing by 0.0264.

Additionally, there were more pronounced differences between
units in terms of the integrated function of the water ecological space
(Figure 8). Yuanjiang City had the highest integrated function value
(0.7185 for 2010, 0.8210 for 2015, and 0.7748 for 2020), experiencing
a process of rising and then falling, with a total increase of 0.0563.
Huarong County and Xiangyin County had the next highest
comprehensive functional values (above 0.6), improving over the
given research period. Huarong County increased from 0.6092 in
2010 to 0.6527 in 2020, while Xiangyin County increased from
0.6030 in 2010 to 0.6350 in 2020. The comprehensive function of
water ecological space in Jinshi City and Linli County was relatively
low, which did not exceed 0.1 and slightly decreased for the study

period. Linli County’s comprehensive function value decreased from
0.0693 in 2010 to 0.0665 in 2020, while Jinshi City’s decreased from
0.0544 to 0.0527. The comprehensive function of water ecological
space declined at varying degrees in Linxiang City, Nanxian County,
and Hanshou County. In ten units, including Anxiang County,
Yueyang Municipal District, and Changde Municipal District, the
overall functional value of the water ecological space increased to
varying degrees; Anxiang County had the largest increase of
0.1450 among them.

4.2 Ecological function monitoring

From Figure 7, the ecological function of the water ecological
space in the study area exhibited a decreasing trend, decreasing from
0.3382 in 2010 to 0.3182 in 2020. This suggests that the ecological
service function of the water ecological space in Dongting Lake had
been disturbed to a certain extent, leading to a decrease in its natural
regulation and support capacity. However, this decline has slowed,
decreasing by 0.0167 in 2010–2015 to 0.0032 in 2015–2020,
indicating that the construction of ecological civilization has
significantly promoted the protection and restoration of water
ecological spaces.

The spatial function values of the water ecological space differed
significantly between units (Figure 9). In 2010, the unit with the
highest ecological function value was Yueyang County (0.9586),
followed by Yuanjiang City (0.7448) and Xiangyin County (0.5164),
while Jin City had the lowest at 0.0970. The function values in the
remaining units weremostly between 0.1 and 0.5, consistent with the
distribution of water zones in the Dongting Lake area. The core
waters andmarshes of Dongting Lake are mainly located in Yueyang
County, Yuanjiang City, Xiangyin County, Huarong County, and
Yueyang City, so their water conservation value is high. Yueyang
County, Xiangyin County, and Li County have wide forest regions,

FIGURE 12
Spatial management and control framework for water-ecological space in the Dongting Lake region.
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so their water and soil conservation value is relatively high. In these
areas, the ecological function values of water ecological space are
comparatively higher than the other units.

The spatial pattern of ecological function values did not change
significantly. The largest ecological function value in 2015 and
2020 was still Yueyang County, at 0.9429 and 0.9401,
respectively. The next two were still Yuanjiang City and Xiangyin
County, with function values of 0.7254 and 0.5049 in 2015 and
0.7277 and 0.50 in 2020, respectively. In most units, the ecological
function value of water ecological space decreased at varying
degrees; Li County had the largest decrease at 0.0574, while
Huarong County had the smallest decrease at 0.0054. Only
Anxiang County and Nan County had an increase in the
ecological function of water ecological space, but the
improvement was relatively weak, both within 0.01.

4.3 Social function monitoring

As shown in Figure 7, the social function value increased from
0.47 in 2010 to 0.49 in 2020. This suggests that the reservoir pit
building and shoreline flood management in the Dongting Lake area
has improved, boosting the water resource support capacity and
strengthening the region’s water security.

There were noticeable disparities in the social function values of
water ecological space among the different units, with the spatial
pattern changing dramatically during the study period (see
Figure 10). In 2010, Linli county had the lowest social function
value at only 0.0275, followed by Jin city at 0.0498. The remaining
units had social function values between 0.1000 and 0.8000.
Changde city had the highest social function value at 0.9075,
followed by Hanshou county at 0.8997. In 2015, the two still had
the highest social function values at 0.9443 and 0.9319, respectively,
much higher than in 2010; Linli County and Jincheng City had the
lowest at 0.0197 and 0.0455, both lower than in 2010. By 2020,
Anxiang County had the highest social function value at 0.9157,
followed by Nan County at 0.7826; Linli County (0.0331) and Jinshi
City (0.0583) still had the lowest amounts but have greatly improved
compared to 2010 and 2015. Ten units, including Anxiang County,
Nanxian County, Lixian County, Yueyang Municipal District, and
Yiyang Municipal District, had improved social function values;
Anxiang County increased by 0.3022, the highest among the five.
Changde City, Hanshou County, Linxiang City, Yuanjiang City, and
Miluo City had declining values, with Hanshou County having the
largest decline, decreasing by 0.2072.

4.4 Economic function monitoring

As observed in Figure 7, the economic function value exhibited
an upward trend, rising from 0.3619 in 2010 to 0.4611 in 2020. This
indicates that the Dongting Lake area’s economic production
capacity and efficiency, which depend on water space, have
increased and that the economic function of water ecological
space has further developed.

For the regional units (see Figure 11), the values of the economic
function of water ecological space also varied considerably,
exhibiting temporal changes in the spatial pattern. In 2010, Nan

County had the highest economic function value at 0.9283, followed
by Huarong County at 0.8279 and Xiangyin County at 0.8034. Jin
City had the lowest economic function value at 0.0163, followed by
Linli County at 0.0427. In the remaining units, the economic
function value of water ecological space typically ranged between
0.1000 and 0.8000. In 2015, Yuanjiang City had the largest economic
function value of water ecological space at 0.9480 (increasing by
0.2758 from 2010), followed by Huarong County at 0.9431
(increasing by 0.1152 from 2010) and Xiangyin County at 0.8366
(increasing by 0.0333 from 2010). Jinshi City and Linli County came
in last with 0.0118 and 0.0484, respectively; Jinshi City decreased by
0.0045 from 2010, while Linli County increased by 0.0057 from
2010. For 2020, Huarong County (0.9827) had the largest economic
function value of aquatic ecological space, followed by Yuanjiang
City (0.8658) and Xiangyin County (0.8593); the lowest economic
function values of water ecological space were still Jinshi City
(0.0103) and Linli County (0.0548). During the study period,
only Nanxian County and Jinshi City had a decrease in
economic function value of water ecological space, declining by
0.1902 and 0.0059. The economic functional value of the other units
increased at varying degrees. Changde City’s growth rate was the
highest, increasing by 0.4581, from 0.3078 in 2010 to 0.7659 in 2020.

5 Water ecological space control
strategy of Dongting Lake

5.1 The overall framework of water
ecological space control of Dongting Lake

The Dongting Lake area is a regional basin unit with Dongting
Lake and several rivers at its core, and its development is centered on
water ecological space. The region includes core water spaces, the
areas where land and water crisscross, and lands adjacent to water.
These form the foundation of the water ecological space and should
be considered when managing and controlling the space. Water is a
fundamental element that maintains the health and order of natural
ecosystems and is vital for human survival. Therefore, the water
ecological space has dual attributes, playing a decisive role in
environmental sustainability and human development (see
Figure 12).

Water ecological space can be divided into different functional
zones, such as core water conservation, water source conservation,
soil erosion control, water source protection, flood regulation and
storage, and aquatic product culture. The key to managing and
protecting water ecological space is controlling these different
functions. Therefore, this paper developed a water ecological
space management and control framework from the perspective
of “structure-function”, as shown in Figure 12.

The framework construction starts with identifying the
structural elements, differentiating the functional spaces, and
then delineating the zones (e.g., ecological protection red line,
urban development boundary, and permanent basic farmland) to
layout the functional regions of water ecological space, and
systematic monitoring of this structural system of the water
ecological space. We should strictly implement the access list
system, improve the water resource confirmation and
management system, strengthen source control, control pollution
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discharge, and strengthen ecological restoration to improve water
quality and promote soil and water conservation.

5.2 Mainmeasures of water ecological space
control in Dongting Lake

5.2.1 Multi-scale and multi-level planning control
The Dongting Lake area is crucial in the development of the

Yangtze River Economic Belt and an important ecological and
economic zone in Hunan Province. It comprises many counties
andmunicipalities, so its management is multi-scale andmulti-level.
The upper limit of water resources, the bottom line of water
environment quality, and the red line of water ecology protection
should be used as constraints to scientifically and reasonably develop
river and lake management and protection. The Dongting Lake will
be integrated with other types of ecological protection red lines and
protected areas to form a regional ecological barrier, combined with
urban development boundaries and farmland borders, and
incorporated into the national spatial planning system at
provincial, municipal and county levels. The revisions to the
Dongting Lake area plan should be accelerated to determine the
strategic focus of spatial control.

5.2.2 Strict use control and access restrictions
The zoning control and hierarchical management should be

strengthened from the watershed level, and positive and negative
access lists should be developed for each control zone. The water
ecological space control methods and systems should be
improved, prohibiting water-related activities that do not
conform to the positioning of each functional zoning of water
ecological space. Existing water ecological space layouts and
facilities should be integrated and optimized, promoting green
construction that meets ecological requirements. To avoid
disorderly development, ecological red lines (e.g., protecting
drinking water, water conservation areas, protecting sensitive
soil erosion areas) should be classified as prohibited development
zones, where large-scale development and construction activities
are strictly controlled and ecological core functions are resolutely
maintained. Industries and facilities that do not meet the
requirements to occupy water ecological spaces should be
withdrawn unconditionally.

In restricted development zones, no urban construction
activities should be carried out. Existing urban construction
areas should be gradually withdrawn under conditions,
establishing a scientific and reasonable exit mechanism and
promoting technological upgrading and green transformation.
Ecological industries should be encouraged in the restricted
development zone, building green infrastructure such as
ecological corridors and ecological isolation zones. In the
buffer guidance area, low-polluting, low-energy consuming,
and environment-friendly industrial activities should be
supported, encouraging the development of modern waterfront
leisure, ecological healthcare, green aquaculture, and other
industries. The production activities of high pollution and
high energy consumption should be carefully monitored and
managed, controlling the scale of urban construction and
building a compound layout integrated with water ecology.

5.2.3 Accelerate the determination of water
ecological space ownership

The watershed is a systematic, holistic, and tightly connected
area with strong interactions and constraints between upstream and
downstream, trunk and tributaries, and left and right banks. Since it
also involves different regions and sectors, spatial ownership and
synergistic regional management should be clarified to promote
high-quality development of the water ecological spaces. Water
ecological space rights should be properly identified based on the
waters, shorelines, staggered areas, and the scope of each delineated
control area. The ownership and use rights of waters and shorelines
(e.g., rivers, lake beaches, reservoir pits, ponds, wetland marshes)
should be established to improve the utilization and management of
water resources use. Market allocation and amarket-oriented system
of water ecological space property rights should be established,
giving full play to the ecological, resource, social, and economic
values of water spaces and guiding relevant interests to solve
problems through market means. In addition, efforts should be
made to build a regional collaborative governance mechanism,
strengthen intra- and inter-regional synergy, and create a
collaborative governance community with regional linkage,
government organization, enterprise promotion and public
participation. Differentiated ecological compensation standards
should be developed for different regions, improving the docking
mechanism of upstream, downstream, trunk, and tributaries and
building a networked ecological compensation system.

5.2.4 Strengthen pollution control and
accountability

The water resources and water quality management system
should be improved, and the total water resources index should
be decomposed to the relevant county-level administrative regions
according to the actual situation of each unit. The total amount of
restricted discharge of each municipal, county, and administrative
unit should be decomposed step by step, and pollution restriction
plans should be formulated in stages and regions. A suitable water
quality assessment network should be established, strengthening the
monitoring of water quantity, quality, and ecological value of
important ecological function areas. A regional water ecological
space quality monitoring and management index system should be
established, and water ecological space control target assessment
should be implemented based on the index system. Furthermore, the
regional sewage reward and punishment system should be
improved, cracking down on illegal and illicit sewage discharge
and increasing administrative penalties.

5.2.5 Increase the comprehensive management
and restoration of water ecology

Adhering to the concept of integrated management of
“mountains, rivers, forests, fields, lakes, grass and sand,” the
comprehensive management and restoration of water ecological
space in the Dongting Lake area should be promoted. Polluted
water bodies should be treated, and the water quality of the
watershed should be improved. The treatment and restoration of
mudflats and swamps should be increased to improve the ecological
functions of wetlands and bring into play their great water
purification, storage, and transfer values. The return of farming
to the lake and forest should be scientifically and orderly promoted,
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developing a modern, green, and comprehensive agricultural
industry system that reduces encroachment on water bodies and
water-land intersection areas and avoids further shrinkage of
Dongting Lake waters. At the same time, afforestation measures
in the upstream areas should be strengthened to enhance water and
soil ecosystem services and increase regional water security. In
addition, a diversified water ecology governance and restoration
system should be actively explored. The government can adopt
purchasing services to attract social capital to participate in water
ecology restoration and protection and adopt restoration and
protection funds to support areas with weak payment capacity
and improve water ecology governance and protection.

6 Conclusion and discussion

6.1 Conclusion

From the “function-structure” standpoint, this paper
investigated the monitoring and control of water-ecological space
in the Dongting Lake area. The structure and function of the water
ecological space were assessed in 2010, 2015, and 2020 using land-
use and related statistical data and ArcGIS analysis, and the
framework system and key initiatives for spatial control were
explored. The main conclusions obtained are as follows:

(1) The scale of water ecological space in the Dongting Lake area
is more than 7,300 km2. The water area accounts for the
largest proportion, accounting for about 50%, while the
land-water ecotone accounts for the smallest proportion,
accounting for about 24%. During the study period, the
total area of aquatic ecological space decreased slightly; the
decrease in water space was most pronounced, its proportion
decreasing from 51.04% to 47.21%, while the area of land-
water ecotone increased from 21.62% to 25.79%. In addition,
there were considerable variations in the scale of water
ecological space among the different administrative units.
Yueyang County and Yuanjiang City had water ecological
spaces larger than 1,000 km2, while Linli County and Jinshi
City had below 200 km2.

(2) The comprehensive function of water ecological space in
Dongting Lake increased from 0.3879 in 2010 to 0.4221 in
2010, indicating improved overall functional service. In
particular, the social and economic function values
increased considerably, while the ecological function value
somewhat decreased. Yuanjiang City had the highest
comprehensive function with a value of over 0.7000, while
Jinshi City and Linli County had the lowest value of less than
0.1000. For ecological functions, the highest value was
Yueyang County, while the lowest was Jinshi City. For
social functions, the highest was Changde City and
Anxiang County and the lowest was Linli County. For
economic functions, the highest values were Nanxian
Yuanjiang and Huarong while the lowest was Jinshi.

(3) The concept of harmony between man and nature should
guide the management and control of the water ecological

space in the Dongting Lake area. Starting with the structural
components of the water ecological space, the various
functional areas should be logically separated, the
functional zoning of the water ecological space should be
scientifically planned and laid out, and the delineation of
ecological protection red lines, urban development
boundaries, and permanent basic farmland should be
combined. Based on this, multi-scale and multi-level
planning oversight should be improved, access and use
restrictions should be strictly regulated, the ownership of
water ecological space should be properly defined, water
quality monitoring and treatment should be integrated,
pollution control and accountability should be improved,
and comprehensive management and restoration of water
ecology should be increased.

6.2 Discussion

According to the research idea of “land use foundation-
structural function system-pattern evolution monitoring-
control system construction,” this paper explored the theory
and method of water ecological space monitoring and control
in the context of land space optimization. This study provides an
in-depth analysis of water ecological space control, expanding the
literature on water ecological space and offering a comprehensive
perspective of micro-monitoring and single-function
measurement. It is also a development in the study of national
spatial planning for the modern era, advancing the reasonable
delineation and adjustment of the “three zones and three lines”
and crucial to the control of spatial use of national land and the
preservation and high-quality development of water ecological
spaces. In the age of ecological civilization, resolving conflicts
between people and land and people and water is crucial in
economic and social advancement (Zhou et al., 2020b). To
mitigate the adverse effects of human activity on water
ecosystems and promote water sustainability, it is crucial to
explore and understand the various functions of water
ecological spaces and the relationship between function and
structure.

However, it should be noted that the classification system of
water ecological space structure and function in this paper is still
not sufficiently detailed due to limitations in data availability. For
example, the subdivision structure and function did not include
climate regulation, biodiversity maintenance, flood storage
capacity, and other water ecological functions (e.g., waterfront
leisure area, paddy field, and water buffer zone), limiting the
current analysis depth. Subsequent studies should collect more
data through multiple channels and means to establish a more
comprehensive and detailed “structure-function” classification
system. Additionally, due to space constraints, this paper did
not address micro-water ecological quality monitoring and
restoration issues, including water quality monitoring, aquatic
organism quantity and diversity monitoring, water purification,
and water resources supply management. This may limit future
research on the quality supervision of water ecological space. In
future research, the theory and technique for monitoring the
pattern and quality of the landscape should integrate macro,
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meso, and micro scales to thoroughly assess the dynamic evolution
of the water ecological space and carry out thorough scientific
management and control.
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Spatiotemporal trends and factors
influencing online attention for
China’s tea industry
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Geography and Environmental Processes of Qinghai Province, Xining, China, 3College of Tea Science and
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In the context of the “Internet plus” era, the study of tea industry online attention is
a new perspective in research on the tea industry and an opportunity for the
sustainable and high-quality development of this industry. Based on the Baidu
index, this paper obtains web attention data from 2012 to 2021, analyzes the
spatial and temporal evolution characteristics of online attention using the
seasonal concentration index and geographic concentration index, and
quantitatively discusses the influencing factors using correlation analysis and
GeoDetector. The results show the following: The interannual change in
China’s tea industry online attention shows “rapid growth, high level of stability,
slow decline,” the monthly distribution has an intense concentration, mainly in
March-April and October, and the interday distribution of attention peaks on
weekdays. The spatial distribution shows an intense geographical concentration,
with an overall trend of “light concentration first, then light dispersion.” The
migration trajectory of the center of attention is tilted toward the southwest.
Economic development status, residents’ income, the natural environment of tea
growing, the leisure time of followers, and the price level of tea are the essential
factors affecting the of the tea industry online attention. In contrast, the other
factors we have chosen have a weaker impact on online attention compared to
the few factors just mentioned.

KEYWORDS

internet plus, tea industry, online attention, influencing factors, GeoDetector, baidu
index, spatiotemporal trends

1 Introduction

1.1 Background and literature review

China is the birthplace of tea (Meegahakumbura et al., 2017), and tea culture has a long
history. Tea is an essential traditional economic crop in China. Over the past 40 years,
China’s modern tea industry has been developing rapidly, with tea plantation area, tea
production, and domestic tea consumption ranking first globally. However, with “Internet
plus” and globalization vision, the traditional model of the tea industry is facing
unprecedented challenges. With the rapid development of network applications,
“Internet plus” is becoming a catalyst for dramatic changes in various fields and
industries. The development of the “Internet plus tea industry” model is a crucial way to
promote regional development, improve the living standards of residents, and support rural
revitalization and industrial integration and is a typical example of the transformation of the
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development of traditional industries and a new opportunity for the
high-quality development of the tea industry.

Online attention (OA) refers to the users’ degree of concern and
demand for information through online searches for relevant
information (He et al., 2017), which reflects the degree of
concern and request of users according to the search volume,
and its data sample size is large and time-sensitive (Sun et al.,
2017). Chinese users mainly use the search engines Baidu, Bing, and
Google, of which Baidu accounts for approximately 72.4%, so the
Baidu index, as one of the big data indicators for studying online
attention, can broadly reflect the temporal and spatial characteristics
of Chinese users in regard to the tea industry online attention
(Abbreviated as TIOA). Producers release information to the
public through online platforms. Consumers, in turn, follow,
understand and access information through Internet channels to
inform their decisions. Online attention on the one hand becomes
an important channel for followers to obtain information and assist
in decision-making. On the one hand, researchers and some
industry personnel can use big data technology to analyze and
mine the historical data and dynamic evolution, summarize
industrial development laws, patterns and predict development
trends. The study of the spatial and temporal characteristics of
network attention and its influencing factors has certain guiding
significance for production information management and online
marketing.

Research on online attention was first started by Western
scholars (Katz and Aspden, 1997; Kwan et al., 2006), mainly
exploring topics such as search behavior and consumer decision-
making based on Google Trends. It is found that Internet search data
reflect users’ attention to a certain phenomenon or thing to a certain
extent, and to a certain extent there is a correlation with real social
behavior (Ginsberg et al., 2008). In recent years, global scholars have
focused their research on online attention in tourism (Yang et al.,
2015; Zhang et al., 2022), media (Holt et al., 2013), disease
surveillance (Hu et al., 2022), hazard monitoring (Guo et al.,
2022), finance and trade (Jue et al., 2017; Cheraghali et al., 2022).
This research is mainly concerned with the spatiotemporal
characteristics (Zhang et al., 2016), marketing strategies (Cai
et al., 2016), and empirical coupling studies (Ju et al., 2017) of
online attention.

Research on “Internet plus” in the tea industry has focused on
the following areas. Hu’s research review provides an outlook on
Internet + tea through concept definition, overview framework, and
application prospects (Hu, 2015). In terms of empirical research,
Shen conducted a sample of respondents through in-depth
interviews in the field. It was concluded that the media and the
Internet provide opportunities for the development of small and
medium scale, pointing out the contribution made to the economy
of the tea industry and rural revitalization (Shen and Chou, 2022).
Paul developed a conceptual model of a BCT-driven tea supply chain
by integrating BCT into the tea supply chain and investigated its
positive impact on the tea supply chain based on the structural
equation of partial least squares regression (Paul et al., 2021). Dou
et al. (2021) used data from yearbooks, statistical handbooks, etc. An
evaluation index system affecting the price of pu-erh tea was
established and an empirical study was conducted using TOPSIS
method. It was pointed out that economic development factors and
Internet development level factors have a great influence on the

price, so it proposed that the need to use Internet thinking is an
important work for the tea industry in the future (Dou et al., 2021).
Liu et al., studied an IoT-aware machine learning (ML) approach for
early prediction of disease probability in agricultural environment,
which plays an active role in the application of precision agriculture
(Liu K. et al., 2022). Xu adopted a mixed-method approach and
conducted a questionnaire survey of key practitioners, the public
sector, and domestic and international tourists during fieldwork in
the West Lake Longjing tea region, with the aim of analyzing the
problems and proposing countermeasures for the development of
tea tourism in China in the era of the experience economy (Xu,
2022). KHAN used a structured questionnaire and constructed a
structural equation model. The extent of customers’ decision to
purchase tea was studied in terms of social influence, shared vision,
psychological evaluation and mutual trust, concluding that
internet always has a crucial role in individuals’ decision to
purchase, use and change their perception. (Khan et al., 2021).
For concern people, information was usually obtained through TV,
radio, books, and conversations, but nowadays, the Internet can be
used to obtain a large amount of information easily and quickly. For
researchers and practitioners, data are usually obtained through field
research, in-depth interviews, volunteer experiments, statistical
yearbooks, etc., which is more difficult to obtain information and
the amount of data is limited. Compared with traditional
information dissemination methods, Internet+ and big data have
convenient and efficient features, which make up for these problems
very well.

Internet data is rich in value, which helps to discover the
development rules of the industry and provide information for
industry decision-making. Baidu index is used to conduct
statistics and analysis of internet search attention of the tea
industry, with a view to providing reference for tea industry
producers to better understand and grasp market demand. It has
certain significance for the tea industry to formulate regionalized,
seasonal and precise marketing strategies and deploy transportation
resources, revealing the precursor effect and spatio-temporal
characteristics of online attention, and providing scientific
reference for the layout of the tea industry. The application of
Internet + helps the transformation and optimization of the tea
industry, a traditional industry, to upgrade.

From the research method, the current research is mostly
qualitative research, and the results of quantitative research are
relatively few. From the data sources, it is mostly questionnaire
interviews, statistical data and yearbook data, and the data types are
mostly cross-sectional data. In terms of research content, the fields
involved are relatively broad, and there are fewer studies combining
Internet + tea with geography. Therefore, compared with previous
studies, this paper is innovative in terms of research design.

In the context of “Internet + tea industry”, there are more
achievements in other fields, but there are fewer studies on the tea
industry online networks, and the tea industry “Internet+" has not
been studied quantitatively using big data. Studies of the tea online
attention perspective based on internet big data are even rarer. Thus,
As for the innovation point of this paper, a cross-disciplinary study
of the spatial and spatiotemporal distribution characteristics and
influencing factors of China’s tea industry online attention is
conducted based on a multidisciplinary perspective and
geographic spatiotemporal thinking and using internet big data.
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In addition, in the research of influencing factors, compared with the
same type of research, qualitative analysis, GWR model and
correlation analysis are mostly used, and we introduce
GeoDetector to detect factors and interact with influencing
factors, which are less used in the same type of research. The
aim of this paper is to provide data support for the marketing
decisions of the tea industry, which is helpful for accurately
understanding demand so that targeted products and services can
be offered and is greatly significant for the high-quality and
sustainable development of the tea industry.

1.2 Study area overview

The research object of this paper is the tea industry online
attention in 31 provincial administrative regions in China, excluding
Hong Kong, Macao and Taiwan. In this paper, China is divided into
tea production and marketing areas according to the production
status of the tea industry (Xiao et al., 2018). The production and
marketing area, that is, the tea production area, is mainly distributed
in the latitude range of 18°N~37°N and the longitude range of
95°E~122°E. It is primarily classified into four tea regions, namely,
the North Yangtze, South Yangtze, South China and Southwest tea
regions. Warm weather, suitable ground that is acid and not alkali,
and shade, not Sun, are best for growing tea, so the tea industry and
the distribution of tea-producing areas and the geographical
environment of tea growth are closely linked. The tea production
distribution map of China was drawn based on tea production data
from 2012 to 2021 (Figure 1). The spatial distribution of the tea
industry reflects the tea production of each province. Provinces with
high production include Hubei, Zhejiang, Yunnan, Fujian, Anhui,
Jiangsu, Sichuan and Henan. These provinces are the main tea-
producing areas in China and have more complete supportive
industrial chains, with higher production and marketing value
and a more intensive tea industry. Other provinces such as
Shaanxi and Shandong also have a small amount of tea industry
distribution. The above areas are the production and marketing
areas of China’s tea industry, and other areas are the sales areas of
China’s tea industry. In general, the distribution of China’s tea
industry has a “dense south and sparse north” pattern.

2 Theoretical framework

The theory of limited attention is derived from psychology and
was first applied to research in the field of investment. It focuses on
the relationship between asset prices and investor behavior. Scholars
have concluded in their research that people can only pay attention
to one thing within a time period, and it is difficult to pay attention
to more than one thing at the same time (Cherry, 1953). People
cannot obtain and understand information in a timely manner due
to limited time and energy and can only analyze and judge the
information that attracts their attention. For followers and potential
followers, there is a large amount of information about the tea
industry on the Internet, and usually only a limited amount of
attention will be directed to attractive content at a certain time. This
also leads to differences in the degree of attention received by
different regions at different times, which provides the basis for

this paper to analyze the spatial and temporal differences in the
online attention of the tea industry in China and the influencing
factors.

Spatio-temporal thinking is one of the characteristics of
geographic research. Temporal thinking is reflected as ephemeral
research, cotemporal research and anticipatory research; spatial
thinking is reflected as spatial distribution, spatial structure and
spatial relationship (Yao-feng et al., 2011). The organic combination
of spatial thinking and temporal thinking reflects the unity of
ephemerality and co-occurrence. In this paper, the use of Spatio-
temporal thinking helps to enhance the depth and scientificity of
research on issues such as spatial evolution and temporal research.

As a new subdiscipline of geography, cyberspace geography is an
extension of real space to virtual space, which transforms the
traditional human-land relationship into a new human-land-net
relationship (Gao et al., 2019). Big data technology has “6 V″
characteristics: volume, variety, velocity, veracity, value, and
valence. Based on the principle of big data visualization to
visualize abstract data in visual graphics, geospatial thinking is
used to present the information and Spatio-temporal dynamic
laws implied in the data.

Hypotheses H1. and H2 were proposed based on limited attention
theory and Spatio-temporal thinking theory, and the hypotheses
were verified using geospatial statistical methods, correlation
analysis and geographic detectors.

H1. Chinese tea industry network attention has significant divergent
characteristics in Spatio-temporal distribution.

H2. Natural factors, economic factors and social factors have a
significant influence on the spatial pattern of attention.

To study the distribution characteristics of network attention,
first, hypothesis H1H2 is proposed based on theories such as limited
attention theory, Spatio-temporal thinking and network spatial
geography theory. Second, the Spatio-temporal pattern of
Chinese tea industry network attention is analyzed with the
theoretical framework of the scale-pattern-process-mechanism;
geospatial statistical methods, correlation analysis and geographic
detectors are used to study the influencing factors to verify the
hypothesis of H1H2 (Figure 2).

3 Materials and methods

3.1 Data source

Since the study area of this paper is China, we used the Baidu index,
which is owned by Baidu, the world’s largest Chinese search engine,
with the aim of improving the accuracy of the study. For this paper, we
use “cha (tea)" and “cha ye (tea leaf)" as keywords in the Baidu index
platform to obtain daily, monthly and yearly data on the internet
attention of 31 provincial-level administrative regions (Hong Kong,
Macao and Taiwan are not included in the study because the values for
these areas are too low). The Baidu index data for this term started in
February 2011. For the sake of data integrity, 2012 is taken as the
starting year of data, and 2021 is taken as the cutoff year of data. The
climate data and socioeconomic statistics from 2012 to 2021are
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obtained from the statistical yearbooks, statistical bulletins and
government work reports of each province (autonomous region).

3.2 Research methods

3.2.1 Interannual variation index
The interannual variation index is an index that describes the

interannual variation inweb attention based on the average value of web
attention over many years, where Yv is the interannual variation index,
Ni is the value of web attention in year i, and n represents the number of
study years. The closer to 100% the value of Yv tends to be, the less the
interyear variation of online attention is, and the more stable the online
attention is, and vice versa. A Yv value greater than 100% indicates that
the web concern of the place is higher than the overall average. A Yv
value less than 100% indicates that it is lower than the overall average
(Bao and Chen, 2017; Wang et al., 2022; Yan, 2023).

Yυ � Ni

∑n
i�0

Ni

n

× 100% (1)

3.2.2 Seasonal concentration index
This index is used to reflect the concentration of the research

subjects in monthly time (Zhang et al., 2016). In this index, xi is the
proportion of the attention of eachmonth in thewhole year, andR is the
seasonal concentration index. The more R tends to zero, the more
uniform the monthly online attention distribution and the smaller the
seasonal concentration; the more significant the R value is, the more
dispersed the attention distribution and the greater the seasonal
concentration (Ma and Long, 2017; Tang and Bao, 2018; Guan
et al., 2022).

R �

������������
∑12
i�1

xi − 8.33( )2

12

√√
(2)

3.2.3 Geographical concentration index
This index is an indicator of the degree of geographical

concentration of an economic activity (Xiao et al., 2018),
reflecting the concentration or dispersion of the regional
distribution of the tea industry online attention. In the formula,
pj indicates the tea industry online attention in region j; p indicates
the total amount of tea industry online attention, and G is the
geographical concentration index, n represents the number of
regions. The closer G is to 100, the more concentrated the online
attention is in a particular region, and vice versa, the more dispersed
it is (Frandsen, 2005; Wren, 2012).

G � 100 ×

���������
∑n
j�1

pj/p( )2
√√

(3)

3.2.4 Intra-weekly distribution skewness index
This index is used to measure the concentrated distribution

characteristics of the tea industry online attention on the micro time
scale within weeks. The calculation formula is:

W � 100 ×
2
7

∑7
i�1
ifi − 7 + 1( )

2
⎛⎝ ⎞⎠ (4)

In the formula, ifi is the ratio of online attention on day i to
online attention in the week. If W < 0, the online attention is
distributed in the early part of the week; if W > 0, the attention is
mostly concentrated in the late part of the week; and if W = 0, the
attention is symmetrically distributed throughout the week (Liu
et al., 2010; Qiu and Zheng, 2017; Rosselló and Sansó, 2017).

3.2.5 GeoDetector
GeoDetector (GD) is a model that is used to detect spatial

heterogeneity, explain the explanatory strength of the differential
driving forces behind its influencing factors, and reveal factor
interactions (Wang et al., 2016). In this paper, we use the factor
detection and interaction detection functions to clarify the
explanatory strength of each influencing factor on the attention
of the tea industry online and to detect the interaction between each
influencing factor indicator.

q � 1 −
∑L
h�1

Nhσ2h

Nσ2
(5)

The q in the formula is the impact factor impact strength
detection value, Nh is the number of cells contained in the probe
element and the whole area, and N is the variance between the
element layer h and the Y value of the whole area, L is the
stratification (Strata) of variable Y or factor X, representing the
classification or partition. q has a value range between 0 and 1 if the
stratification is generated by the independent variable X; the larger
the q value is, the more substantial the explanatory power of the
independent variable X on the attribute Y, and vice versa (Liao et al.,
2021; Liu Z. et al., 2022).

4 Results

According to the theoretical analysis framework of “scale -
pattern - process - mechanism”, the research results mainly
illustrate three academic issues: firstly, to explore the temporal
characteristics of the Chinese tea industry online attention;
secondly, to explore the evolution of the spatial distribution
pattern of the Chinese tea industry online attention; thirdly, to
establish the index system of the influencing factors of the tea
industry online attention, and to study the influencing factors
based on qualitative and quantitative analysis and geographic
detectors.

4.1 Temporal distribution trends of TIOA

There are various scales for analyzing the temporal
characteristics of online attention, and this study aims to analyze
the temporal characteristics of online attention in detail and
specifically through three time scales: annual, monthly, and intra-
weekly, and to provide reference for production operators to develop
seasonal and seasonal production and marketing strategies through
temporal characteristics.
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4.1.1 Inter-annual characteristics
The interannual variation index was used to quantify the

interannual variation in tea industry online attention (Figure 3).
The resulting Yv values all ranged from 50% to 120%. When Yv is
closer to 100%, it indicates that the interannual variation in online
attention is more stable. A Yv value greater than 100% indicates a
good development trend. Yv rose from 2012 to 2017 and peaked in
2017. From 2017 to 2019, the online attention remained relatively
stable at a high level, and after 2019, the online attention gradually
declined. Among these years, the one with the most significant
increase in online attention is 2013–2014, with a rise of 32.12%, and
the largest decline is 2019–2020, with a decrease of 12.98%; the rate
of decline for 2020–2021 is 2.89%, slowing down the rate of decline.
Yv values after 2014 are more significant than 100%, and the overall
development trend of the tea industry online degree is good. The
2017 tea industry online attention peaked, which may be related to
the professional qualification certificate of tea artisan “return”,
China’s first discovery of the tea tree genome, the death of tea
industry titan Zhang Tianfu and other public opinion events related
to the tea industry. The inter-year characteristics show us the trend
of concern in different years.

4.1.2 Monthly characteristics
Online attention is a reflection of consumer demand and search

behavior on the internet. Visualize the monthly distribution of
online attention in China’s tea industry from 2012–2021, roughly
showing a bimodal pattern (Figure 4). The peak periods are March
to May and October every year. The rest of the months have a more
even distribution of tea industry online attention, which is the
trough period of attention. Overall, the tea industry online
attention has more obvious seasonal characteristics, with the
highest attention in spring, followed by autumn, and the lowest
online attention in winter. It is initially speculated that the monthly
change in tea industry online attention may be related to the climate,
which will be verified later.

Mathematical model analysis was used to enhance the accuracy
of the study, based on the visual presentation of monthly
characteristics, the seasonal intensity index R is used to analyze
the degree of temporal concentration of the Chinese tea industry
online attention. A larger value of R indicates more significant
monthly differences, and vice versa, it tends to be evenly
distributed. As shown in Table 1, the R values of Chinese tea
industry online attention are all concentrated between 8.2 and
8.3, and the seasonal concentration index is relatively stable.
Among them, the R-value of 2021 is the largest, indicating that
the monthly variation in tea industry online attention is the largest
in 2021, and the R-value of 2017 is the smallest, which means that
the monthly variation in 2017 is the smallest. This indicates that the
distribution characteristics of tea industry online attention have a
strong monthly concentration. Through the monthly distribution

characteristics analysis, we can see a “bimodal”, indicating that the
tea industry online attention in a year there are 2 periods of higher
attention.

4.1.3 Interday characteristics
The intraweekly distribution of tea industry online attention was

further analyzed using the intraweekly distribution skewness index
W. The results are shown in Table 1. The results show that W <
0 from 2012 to 2021, and the value of W does not vary significantly,
indicating that the intraweekly distribution of tea industry online
attention is skewed toward the front part of the week and that the
degree of skewness does not vary significantly. Among them, the
smallest W value in 2013 indicates that the degree of intraweek bias
is the largest, and the largest W value in 2016 tends to 0, indicating
that the intraweek distribution bias in that year is the weakest and
tends to the average intraweek distribution.

The data superimposed on daily attention from 2012 to 2021 are
superimposed, and the average value is needed to obtain the
distribution of online attention within each year. Its distribution
is consistent and generally manifests as the characteristics of high
working days and low weekends. The highest value is Monday, and
the minimum attention value is Saturday (Figure 5). Therefore, it is
speculated that the distribution characteristics of the tea industry
online may be related to work needs. The intra-week distribution
study aims to explore whether weekends have an impact on the
attention of the tea network.

4.2 Spatial distribution characteristics of
TIOA

This section aims to explore, through visualization, whether
there are spatially concentrated characteristics of online attention,
how differences are presented, what kind of differences are
presented, and how the center of gravity of spatial distribution is
shifted in direction.

4.2.1 Spatial aggregation characteristics
To analyze the spatial distribution clustering characteristics of

China’s TIOA, a quantitative analysis with the geographical
concentration index was conducted.

First, the geographical concentration index was used to measure
the spatial concentration degree of tea industry online attention.
Assuming that tea industry online attention is uniformly distributed
across 31 provincial administrative regions, the geographical
concentration index ‾G was calculated as 17.96. As shown in
Table 2, the geographical concentration index of attention from
2012 to 2021 is greater than ‾G, indicating that the degree of
concentration of attention distribution is greater than the
concentration when it is uniformly distributed. From 2012 to

TABLE 1 Seasonal intensity index and intraweekly distribution skewness index of China’s tea industry online attention from 2012 to 2021.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

R 8.247 8.247 8.238 8.231 8.226 8.227 8.233 8.232 8.247 8.252

W −2.472 −7.725 −2.088 −1.705 −0.644 −1.144 −1.221 −1.391 −2.362 −1.291
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2021, the degree of attention G first showed an overall increase and
then decreased. In 2016, the geographical concentration index was
the highest, indicating that the degree of attention was most
concentrated at this time. Overall, the spatial distribution of
online attention shows a trend of mild concentration and then
slight dispersion, and there is no drastic change in the attention of
each year, indicating that the spatial distribution is relatively stable.
It is preliminarily speculated that the changes in the geographical
concentration index after 2016 may be related to factors such as the
popularity of regional internet and the rise of the concept of “health
preservation” in recent years, making tea popular inmore regions, so
the attention tends to be scattered. The study of "Spatial aggregation
characteristics" based on the geographical concentration index aims
to initially determine whether the Chinese tea industry network
attention is spatially clustered.

4.2.2 Spatial divergence characteristics
Using ArcGIS 10.8, the spatial distribution characteristics of

China’s tea industry online attention were visualized and analyzed.
The values of tea industry online attention in each province in 2012,
2015, 2018 and 2021 were selected for stratified coloring, and the
results are shown in Figure 6.

The overall spatial distribution of the TIOA shows the
characteristics of “China’s east more west less, coastal high
inland low”. The north and south have high value area
distributions, and the difference between the north and south is
not significant. From a spatial point of view, the TIOA is the highest
in Guangdong Province, and Jiangsu, Zhejiang, and Shandong also

have a high degree of concern. The provinces with the lowest
attention are Tibet, Qinghai and Ningxia. In addition, the online
attention of Sichuan is higher than that of surrounding provinces,
forming an island of high values; the online attention of Shanxi,
Chongqing, Guangxi and Jiangxi is also significantly lower than that
of neighboring provinces, forming a low value area. From a regional
point of view, the value of online attention in each year by regional
summation from high to low, in order, are as follows: East China,
followed by North China, Southwest China, South China, Central
China, Northwest China and Northeast China, with the overall
spatial distribution of tea industry online attention around those
that are more stable. It is preliminarily speculated that East China
may have the highest ranking because of the degree of economic
development in the region. The regional economic status and
material conditions largely determine the level and volume of
regional consumption, determine the development scale of the
industry, and thus affect online attention. The lower TIOA in
Northwest China is presumed to be related to the local dietary
habits and preferences as well as the smaller population and lack of
enough people to pay attention and search.

Referring to the research method of scholars (Tang and Xu,
2021). The rank order of online attention in each province and
region was divided into cold spot and hot spot areas (Figure 7). The
1st-15th place of attention ranking is the hot spot area, and the 16th-
31st place is the cold spot area. Meanwhile, the ranking changes are
divided into growing, stable and declining. The average rank order
and rank order change rate of online attention of each province and
region from 2012 to 2021 were visualized, and the rank order and

TABLE 2 2012‒2021 China’s TIOA geographic concentration index.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

G 19.927 19.757 19.838 19.943 20.050 19.931 19.877 19.841 19.680 19.540

FIGURE 1
Tea-producing areas and production distribution in China.
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change rate were divided into six types. In terms of bit order
characteristics, the top ten provinces in terms of online attention
are Guangdong, Zhejiang, Jiangsu, Shandong, Beijing, Henan,
Fujian, Sichuan, Hebei and Shanghai, in that order. In terms of
the rate of change, provinces and regions with faster growth in rank
order include Jiangsu, Yunnan, Anhui and Chongqing; provinces
and regions with faster decline in rank order include Beijing, Fujian
and Tianjin. Provinces and regions such as Guangdong, Zhejiang,
Fujian and Hunan have a stable ranking while maintaining a high
level of online attention. Provinces and regions such as Tibet,
Qinghai, Hainan and Ningxia have lower and more stable
attention. In addition, among the top 10 provinces of China’s
TIOA, 7 provinces are the production areas of China’s tea
industry and have better development of this industry and
related industries. The spatial pattern of China’s tea industry
reality has a certain coupling with the spatial pattern of online
attention. Based on the Spatial Interpolation Chart and rank order

change diagram of China’s tea industry online attention, the aim is
to clarify which provinces have high attention and which provinces
have low attention, and to analyze the overall trend of change in the
attention of these provinces.

4.2.3 Spatial orientation characteristics
The standard deviation ellipse tool (SDE) and the center of

gravity model tool in ArcGIS 10.8 were used to visualize and analyze
the center of gravity of the distribution of TIOA, and the results are
shown in Figure 8. The standard deviation ellipse distribution of
China’s TIOA from 2012 to 2021 is relatively stable, and its long axis,
short axis, flatness and distribution direction have not changed
significantly, which indicates that the geographical space of the tea
industry online attention distribution is also relatively stable. The
mean center tool was used to determine that the center of gravity of
the Chinese tea industry online attention is located in Henan
Province. From 2012 to 2013, the center of gravity of attention

FIGURE 2
Theoretical framework.

FIGURE 3
Interannual change index of China’s TIOA from 2012 to 2021.
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was located in the Yicheng District of Henan Province, in 2020, it
was located in Tongbai County, and for the rest of the years, it was
located in Biyang County. The migration trajectory of the center of
attention shows a shift from the northeast to the southwest,
Combining the direction of change of the long axis of the SDE,
i.e., the Chinese tea industry online attention tends to the southwest
of China. In the study of the ranking characteristics above, among
the 11 provinces that have risen in the ranking of China’s tea
industry, the southwest region accounts for 4 places. Since 2012,
tea production and sales, planting area and other indicators in
Yunnan, Guizhou and Sichuan have grown rapidly. The reality of
the rapid development of the tea industry in Southwest China in
recent years is consistent with the fact that the center of gravity of
China’s tea industry online attention is shifting to the southwest.
Spatial orientation characteristics aims to explore which part of
China’s regions are developing faster in terms of online attention
from a more macro perspective, and to explore whether there is a
coupling between the online attention situation and reality.

4.3 Influencing factors of TIOA

Scholars believe that any factor that can influence the needs and
access to information of followers is a factor that affects online
attention (Dann, 1977; Tang and Xu, 2021). Based on the research of
scholars (Zhang et al., 2016; Li et al., 2019; Mei et al., 2020; Hu et al.,
2022), combined with the spatial and temporal characteristics of
TIOA, this paper uses a combination of quantitative and qualitative
approaches to explore the influencing factors that may affect tea
industry online attention in natural, economic and social
dimensions and uses a geographic detector to validate the
influencing factors and measure the degree of influence of
different factors.

4.3.1 Selection and analysis of influencing factors
This section aims to make a preliminary exploration of the

influencing factors by correlation analysis of the influencing factors.
in order to prepare for the geographic probe in the latter part.

FIGURE 4
Monthly distribution characteristics of China’s TIOA from 2012 to 2021.

FIGURE 5
Intra-week distribution characteristics of China’s TIOA from 2012 to 2021.
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4.3.1.1 Natural factors
Natural factors are the fundamental factors that affect

attention. Tea is the material basis of the tea industry. If we

only study the influencing factors of the tea industry from
economic and social perspectives, we will split the natural
attributes of the tea industry. The spatial distribution of tea

FIGURE 6
(A) is 2012’s spatial interpolation chart of China’s TIOA, (B) is 2015’s spatial interpolation chart of China’s TIOA, (C) is 2018’s spatial interpolation chart
of China’s TIOA, (D) is 2021’s spatial interpolation chart of China’s TIOA.

FIGURE 7
Average rank order and change rate of TIOA by provinces and regions from 2012 to 2021.
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industry online attention is closely related to the distribution of tea-
producing areas and the geographical environment of tea growth. The
environmental factors that affect the distribution of teamainly include
moisture, accumulated temperature, light, soil pH, drought and flood
disasters. A good climate and natural environment are conducive to
the growth of tea, while unsuitable natural environmental conditions
make it difficult for the tea industry to develop, which in turn affects
attention to the tea industry on the internet. Considering the
availability of national-scale data, precipitation, temperature,
sunshine and humidity were selected as indicators of natural
factors affecting the attention of the TIOA (Lu et al., 2018; Shimei
et al., 2018; Guo et al., 2022), and Pearson correlation analysis was
conducted with the online attention of the tea industry. The results are
shown in Table 3.

The tea season is the best period for natural conditions and tea
growth and is therefore an important factor influencing the
attention of the TIOA. According to the monthly distribution
characteristics of the tea industry, two peaks of attention are
formed in March to April and October every year. March to
April coincides with the tea season dates of spring tea every year,
while October corresponds with the autumn tea season every year.
Every year, when a large number of new teas are listed in the tea
season, it is not only the peak of consumers’ attention to the tea
industry but also the peak time for each tea production operator to
obtain information, which drives up the TIOA under the joint action
of production and consumer demand. The correlation analysis
initially showed that natural factors are one of the factors
influencing online attention.

4.3.1.2 Economic and social factors
Economic and social factors are the direct factors affecting the

attention of the TIOA. Referring to the relevant literature, GDP,

income, industrial base, and output were selected as the indicators to
measure economic factors (Liu and Liao, 2021; Liu et al., 2023). For
consumers, the economic level determines the income consumption
level and purchasing power of residents. The more developed the
economy is, the stronger the potential willingness to buy, and the
higher the demand for information, which in turn affects online
attention. Tea is a nonessential good, and tea consumption can also
reflect its income consumption level to a certain extent. Second, for
producers, the economic level determines the level of tea industry
funds, technical base and related supporting facilities. The industrial
base determines the integrity of the upstream and downstream
industrial chain of the tea industry, which in turn affects the level
of development of the tea industry and ultimately affects the yield and
healthy development of the tea industry. Combined with the actual
situation in China, the level of economic development and
marketization of the eastern coastal region is higher than that of
the central and western regions during the same period, which is also
one of the reasons for the divergence between east and west in the
presentation of tea industry network attention (Sang et al., 2023).

In terms of social factors, the factors that affect the TIOAmainly
include the online penetration rate, brand density, tea price index,
education level and age of the followers (Lin, 2021; Wenjing and
Gang, 2021; Zhao et al., 2022; Chen et al., 2023). Since population
bases and internet user bases vary among different places, it is not
accurate enough to adopt the number of internet users as the
influencing factor, as the online attention penetration rate can
directly affect the number of users who can search for
information about the tea industry through the internet.

Brand density can reflect the level of development of the tea
industry and the level of awareness of property rights protection in a
certain place, and this paper uses the number of “China’s top ten
famous teas” and geographical indication products as the basis for

FIGURE 8
The SDE of TIOA distribution and the migration trajectory of center of gravity from 2012 to 2021.
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measuring brand density. Third, price is a reflection of demand,
which can have an impact on the production arrangement of
producers and the consumption intention of residents, which in
turn can convey the degree of attention to information about the tea
industry. In addition, demographic characteristics are also
important factors that influence the online attention of the tea
industry. For example, the age and education level of the
followers are important factors that affect the degree of users’
usage of the online and the way they use it. Pearson correlation
analysis was conducted between the above influencing factors and
tea industry online attention, and the results are shown in Table 3.
Most of the factors showed moderate correlation, and the p values of
all factors passed the significance test.

The correlation analysis initially showed that Economic
and social factors are one of the factors influencing online
attention.

4.3.1.3 Other factors
The intraweekly distribution skewness characteristics above

show that weekdays and nonworking days have an impact on tea
online attention. Since leisure time is difficult to quantify, on the
basis of reference to scholars’ assignments (Lijun et al., 2011; Zhang
et al., 2016; Wang and Meng, 2023), a social virtual index (Hi) was
used to assign a value between 0 and 1 to the degree of leisure in the
intraweekly distribution from 2012 to 2021. 1 is busy, and 0 is
leisure. Correlation analysis was performed between Hi and the

mean value of online attention from 2012 to 2021, and the Pearson
correlation coefficient was 0.901 and p < 0.001, which passed the
consistency test (Table 4).

The second factor is the impact of festival activities or special
events on the tea industry online attention. Relevant studies by
scholars show that public opinion events and events also have a
significant impact on online attention (Luo et al., 2011). For
example, in March 2018, on the day when the “first bamboo tea”
of Mengdingshan tea was launched, the attention of the tea
industry online increased significantly. Major events not only
drive the development of related industries but also play a
positive role in stimulating demand, and some factors are not
easily quantifiable. Examples include the personal preferences,
living habits, consumption habits, and regional cultural
background of the followers. The formation of living habits is
a product of the natural climate, economy, culture and other
factors formed under long-term effects. For example, the
difference between the northern and southern tea drinking
habits, the difference between coastal and inland areas, the
demand for tea and the demand for tea types, clear drinking
and blending and other drinking methods are also different, and
these individual preferences also have an impact on attention.
The correlation analysis tentatively showed that other factors
were one of the factors influencing network attention, but we did
not include other factors in the GeoDetector because they were
not easily quantifiable.

TABLE 3 Correlation analysis of influencing factors of TIOA.

Factor Index Pearson correlation coefficient (two-tailed)

Natural Factors Precipitation Annual precipitation 0.503**

Temperature Average annual temperature 0.417*

Sunlight Annual sunlight hours −0.389*

Humidity Relative humidity 0.372*

Economic factors GDP GDP 0.918***

Income Disposable income per capita 0.510**

Industrial Base Percentage of primary industry −0.448*

Capacity Tea production 0.345*

Social factors Internet Internet penetration rate 0.584***

Brands Geographical Indication Tea Brands 0.403*

Price Tea price indices 0.508***

Education level Percentage of higher education 0.382*

Other factors Leisure time Social Virtual Index 0.901***

TABLE 4 Intra-week TIOA and social virtual indicators table.

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

NA 29,062.59 29,015.66 28,930.12 28,810.44 27,368.25 26,961.29 27,932.74

Hi 1 0.95 0.9 0.85 0.7 0.25 0.5
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4.3.2 Validation of impact factors based on
geodector

The methods that scholars have used to research influencing
factors mainly include correlation analysis, multiple linear
regression (Xiao et al., 2017), and GWR models (He et al.,
2018) among others. GeoDetector is an effective tool for
studying and analyzing driving factors. Since GeoDetector can
only detect the intensity of the impact factor and cannot discern
the direction of the impact, correlation analysis needs to be
performed first, and then GeoDetector can be used to verify
the impact factor.

4.3.2.1 Factor detection
As shown in Table 5, all factors passed the Pearson

correlation analysis as well as the p-value significance test. The
data mean value was processed, and the influence factor data were
clustered and discretized based on the Jenks natural break
method to generate type data. Finally, each influence factor
was imported into the geographic detector for influence
q-value measurement to analyze the strength of the
explanatory power between the influence factors and attention
values of Chinese tea industry online attention. A total of 3 major
categories and 12 index systems were established.

Referring to the classification method of scholars on the q-value
of influencing factors (Ruan et al., 2019), the influencing factors were
classified into three categories: core influencing factors (q ≥ 0.5),
important influencing factors (0.4 ≤ q < 0.5) and general influencing
factors (q < 0.4). Among them, Y1 (GDP) and Y2 (per capita
disposable income) are core influencing factors, X3 (annual
sunshine hours), Y4 (tea yield), and Z3 (tea price index) are
important influencing factors, other detection factors have
relatively low q values, and the relative humidity (X4) and the
education level of followers (Z4) have a weak degree of influence on
the attention of the TIOA. The factor detection aims to know which
factors have a strong influence on the attention and which factors
have a weak influence on it.

4.3.2.2 Interaction detection
Interaction detection is mainly used to analyze whether there are

interactions among the factors that influence tea industry attention.
The interactions are classified into the following five categories
according to the relevant definitions. If q(X1∩x2)<Min (q(X1),
q(X2)), the interaction shows nonlinear weakening; if Min
(q(X1), q(X2))< q(X1∩X2)<Max (q(X1), q(X2)), it shows one-
factor nonlinear weakening; when q(X1∩X2)>Max (q(X1), q(X2)),
both show bifactor enhancement; when q(X1∩X2) = q(X1)+q(X2), it
exhibits independence; and finally, when q(X1∩X2))> q(X1)+ q(X2),
it exhibits nonlinear enhancement. Interaction detection aims to
analyze whether the joint effect between factors presents a positive
or negative effect on attention.

As shown in Table 6, the interaction types of each main
influencing factor were two types of two-factor enhanced and
nonlinear enhanced. Among them, there were 51 groups of the
two-factor enhanced type and 27 groups of each nonlinear enhanced
type. The interaction detection results show that there is an
interaction between any two influencing factors, and the results
all show that the interaction enhances the strength of the
explanation of the TIOA. That is, the two-factor interaction is
stronger than the single-factor effect strength. This indicates that
the spatial and temporal characteristics of tea industry online
attention are influenced not only by the natural environment,
society and economy but also by the joint effect of the
interaction of each factor that finally forms the spatial and
temporal distribution pattern of TIOA.

5 Discussion

At present, some progress has been made in the research on
online attention, but there are few research results with a certain
industry or a certain product as the research object, and it does not
involve the tea industry for the time being, so further research is
needed. In addition, due to the dual natural and social attributes of
the tea industry, this paper differs from those of scholars in terms of
influencing factors regarding online attention, so the selection of
indicators has been innovated. Unlike most scholars who only
analyze 1 year or individual years, we focus on Chinese tea
industry online attention from 2012 to 2021 as the data source,
which has a longer time span and helps to better reveal the spatial
and temporal divergence pattern of tea industry online attention.
This paper takes internet big data as the data source, which enriches
the perspective of tea industry research from geographic
spatiotemporal thinking and provides a useful reference for the
high-quality development of the tea industry under the perspective
of “Internet+".

Since natural factors are the innate and limiting factors affecting
the attention of the tea industry network, natural conditions such as
climate, precipitation are difficult to change, therefore the
optimization measures in this study are mainly from economic
and social factors. As agriculture, disorderly development must be
avoided and attention needs to be paid to the ecological harmony
between human and nature. In the context of the “Internet +" era,
the following suggestions are proposed based on the optimization of
China’s TIOA and the sustainable and high-quality development of
the tea industry:

TABLE 5 TIOA influence factor detection results.

Factor Index q

Natural Factors X1 Annual precipitation 0.45

X2 Average annual temperature 0.353

X3 Annual sunlight hours 0.435

X4 Relative humidity 0.223

Economic Factors Y1 GDP 0.884

Y2 Disposable income per capita 0.51

Y3 Percentage of primary industry 0.31

Y4 Tea production 0.436

Social factors Z1 Internet penetration rate 0.373

Z2 Geographical Indication Tea Brands 0.306

Z3 Tea price indices 0.447

Z4 Percentage of higher education 0.289
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Economic factors are important elements that influence the
attention of the tea industry network. We propose suggested
measures based on Y1-Y4, GDP, disposable income, share of
primary production, and tea production from the perspective of
product, culture, and industry. (1) First, for the product side, the
technological content of tea production should be improved, the
product system should be further developed, and product quality
should be optimized to create the core competitiveness of the tea
industry. (2) Second, for the cultural aspect, the tea industry is a
traditional industry with thousands of years of heritage and should
involve the active inheritance and promotion of traditional tea
culture and the enhancement of the cultural connotation of
products in this industry. (3) For industrial integration, the new
“Internet + tea” and “tea + tourism” business models should be
actively promoted. Relying on internet technology, through the
Internet + agricultural e-commerce model, there is a direct
connection between consumers and tea industry business entities,
extending the tea industry chain, broadening the distribution
channels, and promoting the transformation of traditional
agricultural industries to modern agriculture. Combined with tea
resources and seasonal characteristics, local conditions are used to
create a tea tourism area and develop tea tourism, study, experience
and other forms to achieve the interactive development of the tea
industry and tourism. (4) For the spatial and temporal
characteristics of online attention and Price Index (Z3), a
differentiated and accurate marketing strategy should first be
developed. Spatially, for the lower attention to the northwest and
northern regions, the tea industry market should be actively
explored, new channels should be developed, potential markets
should be targeted, etc. At the same time, the eastern and central
advantageous markets should be consolidated, and products and
services should be improved; in terms of time, the tea industry online
attention has strong seasonal characteristics. Therefore, off-season
marketing, differentiated marketing, anti-seasonal promotion and
other measures can be carried out; in terms of population

characteristics, as preferences for tea vary across different regions
and age groups, product differentiation and precision strategies
should be implemented to provide diversified and multiple price
options. At the same time, for the trend of tea drinking younger,
traditional marketing methods should also be adjusted. (5) For the
spatial and temporal characteristics and geographical indication tea
brand (Z2), followed by the strengthening of publicity efforts. In the
context of the Internet +, a combination of online and offline
marketing should be utilized. For online publicity, the internet
and new media platforms should be actively employed for
publicity and promotion to enrich the channels of information
understanding. Offline publicity can be organized through the tea
industry fair, “National Tea Day” and other high-quality activities to
promote the local tea industry and representative industry brands to
enhance the visibility of the industry. At the meantime, it should
actively declare geographical indication products and do a good job
of brand protection. It also improves customer satisfaction by
increasing brand reputation and loyalty, and in the long term
(Gong et al., 2021). (6) Internet penetration (Z1) is an important
indicator that affects online attention, based on this, the internet can
be used to build a comprehensive information service platform for
the tea industry. In the context of Internet +, the internet has become
an important platform for information elements. First, the
construction of web infrastructure should be improved, and
internet platforms should be well built and maintained. The
second step is to build a wisdom platform for the tea industry
based on internet big data. Big data, cloud computing, the Internet of
Things and other technologies can be used to support tea industry
production and processing, sales promotion of agricultural
products, consumer shopping and other preproduction and
postproduction digital information sharing and linkage to
provide producers and consumers with intelligent services. At the
same time, agricultural big data application services should be put to
good use. This includes using agricultural environment big data,
production and marketing big data, etc., to provide scientific and

TABLE 6 TIOA influence factor interaction detection results.

X1 X2 X3 X4 Y1 Y2 Y3 Y4 Z1 Z2 Z3 Z4

X1 0.450

X2 0.643 0.353

X3 0.775 0.676 0.435

X4 0.641 0.502 0.840 0.223

Y1 0.966 0.987 0.979 0.987 0.884

Y2 0.975 0.954 0.968 0.919 0.950 0.510

Y3 0.790 0.866 0.874 0.918 0.938 0.788 0.310

Y4 0.797 0.691 0.746 0.679 0.923 0.834 0.762 0.436

Z1 0.899 0.861 0.897 0.752 0.950 0.827 0.905 0.809 0.373

Z2 0.670 0.664 0.690 0.582 0.943 0.868 0.837 0.641 0.754 0.305

Z3 0.978 0.935 0.931 0.915 0.940 0.555 0.755 0.828 0.807 0.830 0.447

Z4 0.912 0.862 0.893 0.797 0.931 0.810 0.673 0.790 0.611 0.751 0.722 0.288

Bold text indicates nonlinear enhanced type.
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efficient technical support for decision-making and high-quality
development in the tea industry. (7) At the government level, the
relevant departments should do a top design, while giving
production operators to develop “Internet + tea industry”
funding and policy support (Cui and Xu, 2022). In addition, the
proportion of higher education (Z4) is also an important factor
affecting the online attention, and “Internet +" should be used to
train highly qualified personnel in modern agriculture and improve
the literacy level of practitioners through continuing education. At
the same time to strengthen cross-regional collaboration in the tea
industry, the integration of the advantages of local resources, to
achieve resource sharing, complementary advantages, mutual
benefit and win-win.

This paper has some shortcomings. Due to the use of different
keywords and different search engines, the presented results are not
the same. In addition, the Baidu index does not comprehensively
reflect the demographic attributes of users, so future research can
integrate online and offline data in terms of data sources to improve
the completeness and reliability of the data. In addition, the factors
influencing online attention are complex and multifaceted, and this
paper is not sufficiently comprehensive in selecting the index
system. In terms of research scale, further small-scale, microlevel,
and refined research on tea industry online attention, as well as
comparative research at different regional levels, can be carried out
in the future to enrich the depth and breadth of research.

6 Conclusion

(1) In terms of temporal characteristics, the interannual
characteristics of China’s tea industry online attention from
2012 to 2021 show a trend of rapid growth, a high and stable
period, and then a slow decline. In 2017, tea industry online
attention reached its highest peak. In terms of monthly
characteristics, the seasonal intensity index of attention is 8.2,
with a strong monthly concentration. March to April and
October in each year are the two peaks of TIOA, which
coincides with the tea seasons of spring tea and autumn tea.
In terms of intraweekly distribution, the intraweekly
distribution skewness index is negative, indicating that the
online attention is mainly concentrated in the first part of
the week, i.e., weekdays, and the TIOA is significantly lower
on Fridays and weekends.

(2) In terms of spatial characteristics, the geographic concentration
indexG of online attention from 2012 to 2021 is approximately 19,
and the overall value is stable, showing a trend of mild
concentration first and then mild dispersion. The interprovincial
differences in online attention are relatively obvious. The migration
trajectory of the center of attention shows a shift from the northeast
to the southwest, and the online attention of China’s tea industry
has a tendency to tilt toward the southwest.

(3) In terms of influencing factors, the core factors of TIOA are
economic development and residents’ income. The natural
environmental conditions of tea growth, leisure time of
followers and tea price level are important factors affecting
attention but are less influential. Each factor presents nonlinear
enhancement and dual-factor enhancement, and the dual-factor
interaction is stronger than the single-factor effect. Under the
joint action of each factor, the spatiotemporal distribution
pattern of TIOA is finally formed.
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productivity of vegetation in the
Yangtze River Economic Belt: a
comprehensive analysis from
global and local effects

Sicheng Wang1,2, Guoen Wei3, Mingming Gao1

and Yuemin Fan4*

1College of Architecture and Urban Planning, Guizhou University, Guiyang, China, 2College of Urban
and Environmental Sciences, Peking University, Beijing, China, 3College of Resources and
Environment, Nanchang University, Nanchang, China, 4New Development Institute, Guangdong
University of Finance & Economics, Guangzhou, China
The stressful effects of urbanization on vegetation net primary productivity (NPP)

and vegetation–carbon cycle functions within the Yangtze River Economic Belt

(YEB) under the sustainable development goals (SDG) and the concept of

coordinated regional development, have garnered growing attention. Existing

studies have been insufficient in comprehensively examining both the global

effects and local variations resulting from urbanization in the region. Additionally,

insufficient attention has been given to the heterogeneity of the ecological

negative effects of urbanization in the three major urban agglomerations within

the YEB. Based on multivariate remote sensing image and socioeconomic

statistics data, this study integrates population, economic and land dimensions

to construct comprehensive urbanization indexes and quantify the spatio-

temporal evolution patterns of NPP and urbanization in the YEB. The focus is

on detecting the global response of NPP to urbanization using the Spatial Durbin

model and discussing the local heterogeneity of the effect in the Yangtze River

Delta urban agglomeration (YRD), the middle reaches of Yangtze River urban

agglomeration (MRYRU), and the Chengdu-Chongqing urban agglomeration

(CCU) based on a geographically weighted regression model. The results show

that the average NPP of the YEB increased from 592g*c/m2 to 670g*c/m2 at a

rate of 0.621% from 2000 to 2020, with the most significant growth in the CCU,

and the overall pattern of change is “increased in the north and decreased in the

south”. The negative spatial autocorrelation between urbanization and NPP is

becoming increasingly significant, and the negatively correlated clusters is the

dominant type of local autocorrelation, among which the number of “High-Low”

type cities is the largest and growing, mainly located in the northern regions of

Anhui and Jiangsu. The significant negative effect of urbanization on the

productive capacity of vegetation cover systems was verified, and a negative

spillover effect that far exceeded the local negative effect was also confirmed.

The effect of urbanization on NPP has significant local variability and gradually

shifts to the effect pattern of positive effect in the east and negative effect in the
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west, while the pattern of urbanization-driven effects in the three urban

agglomerations also continues to change. This study increases the concern

about the negative ecological effects of urbanization, and more importantly,

provides a basis for the joint action of ecological restoration and management in

the Yangtze River Economic Belt and the implementation of differentiated

governance policies around urban agglomerations.
KEYWORDS

net primary productivity of vegetation, urbanization, driving effect, ecological
restoration, Yangtze River Economic Belt (YEB)
1 Introduction

Net primary productivity (NPP) of vegetation is the residual of

the total organic matter produced by photosynthesis in a green

plant community per unit area and per unit time, after deducting

the organic matter required for its own respiration (Zhong et al.,

2023). NPP is a key element in measuring the health and resilience

of terrestrial ecosystems. It has also been shown to be an important

indicator for regulating the “structure-function” of ecosystems,

their carbon sequestration capacity, sustainability of material

cycles and even the evolution of ecosystem dynamics (Yang et al.,

2021). NPP’s response to long-term global climate change has been

confirmed by numerous investigations. Climate change factors

such as precipitation, temperature, and humidity affect NPP

levels through direct or indirect pathways and have complex

implications for ecosystem suitability management in human

settlements (Wei et al., 2021). As human activities have increased,

the increasing conflicts between human and natural systems due to

the migration of residents, urban land expansion, and predatory

exploitation of natural resources have attracted worldwide attention

(Liu et al., 2019; Wang et al., 2022; Wei et al., 2023; Wei G.E. et al.,

2023). In particular, the global urban land area grew from 239,000

km2 to 519,800 km2 in the first two decades of the 21st century, an

increase of 117.49% (Liu et al., 2019). Accelerated urbanization has

changed the structure of urban land use and the size of built-up

areas, and consequently affected soil fertility, space for vegetation

growth and the risk of growth pollution (Muhammad et al., 2023).

These process pathways put a heavy burden on urban landscape

ecological patterns and global vegetation cover systems, and have

become important constraints on sustainable urban development

goals such as sustainable urban construction (Goal11, SDG),

maintenance of ecosystem carbon cycles (Goal13, SDG), and

ecosystem conservation (Goal15, SDG) (Chen et al., 2023).

Therefore, it is important to reveal the response pattern of NPP

to urbanization and provide macro-management strategies to

mitigate the stressful effects of urbanization. This is important for

deepening the knowledge and understanding of global

environmental change, promoting urban ecosystem restoration

and resilience enhancement, and even sustainability of urban

planning and land use management (Tang et al., 2023; Wei et

al., 2022).
0255
To mitigate the negative effects of human activities on NPP

represented by urbanization, national organizations and local

governments have put a lot of practice based on consensus

frameworks such as the 2030 Agenda for Sustainable Development,

the Paris Agreement, and the International Geosphere-Biosphere

Programme (IGBP) (Saiu et al., 2022). For example, the U.S. Strategic

Plan for the Conservation of Ecosystems and Biodiversity, China’s

Plan for the Advancement of Ecological Civilization, and Europe’s

Biodiversity Strategy 2020 all consider harmonious, orderly, and

healthy urban development as an important area for restoring the

carbon storage and species conservation capacity of vegetated

ecosystems (Guido et al., 2017). Scholars have mainly developed

case studies on the mechanisms of urbanization on NPP in terms of

the impact of urban land expansion, population urbanization and

economic urbanization processes on NPP and the simulation of

future trends of this impact. For example, Liu et al. (2020)

investigated global built-up land expansion encroaching on

terrestrial vegetation NPP at a rate of 22.4 Tg-C per year in the

early decade of the 21st century and offsetting 30% of climate change-

driven NPP growth. Li et al. (2022) revealed that there are direct and

indirect effects of urbanization on NPP, and the direct effects have

significant spatial non-stationarity characteristics, providing evidence

for the development of differentiated urban ecological governance

strategies. These studies have focused more on the negative ecological

effects of urbanization unidimensionally on NPP, while rarely

examining the integrated effects of urbanization as a systemic

project on NPP in multiple domains such as residential migration,

economic growth, and land use change. This has led to a significant

reduction in quantitative support for relevant urbanization

management strategies (Wu et al., 2014). In addition, the

transboundary spillover effects of urbanization on NPP have not

been generally appreciated, which clearly lacks support for carrying

out joint conservation and restoration strategies for regional

vegetated ecosystems (Zhong et al., 2021).

The Yangtze River Economic Belt (YEB) is a major national

strategic development region spanning three geographic regions in

China: the east, the middle and the west, and an inland urban

economic belt with global influence. It contains the Yangtze River

Delta urban agglomeration (YRD), the middle reaches of Yangtze

River urban agglomeration (MRYRU), and the Chengdu-Chongqing

urban agglomeration (CCU), which are strategic national urban
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https://doi.org/10.3389/fevo.2023.1231487
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2023.1231487
agglomerations in China and bring together internationally

important cities such as Shanghai, Wuhan, Chengdu and

Chongqing (Liu et al., 2023). According to data from China’s

National Bureau of Statistics, the YEB has a key position in China’s

macroeconomic growth and human capital market with a total GDP

and population of 47.15 trillion yuan and 606 million people in 2020,

accounting for 46.4% and 42.92% of China’s total, respectively (Yang

et al., 2022). The rapid clustering of economic and demographic

elements promotes rapid urbanization and changes the form,

compactness and structure of urban land, which in turn affects

regional landscape patterns and ecological networks. This generates

ecological problems such as habitat degradation, species loss, carbon

sequestration and water retention capacity decay (Yan et al., 2021).

Although in 2016, the Chinese government issued the initiative of

“Grasping great protection and not engaging in great development”

for the YEB, and released the Ecological Protection Plan for the YEB

focusing on key ecological elements such as vegetation cover systems.

It aims to enhance the conservation of ecosystem diversity, resilience,

and sustainability in the region (Bai et al., 2023). However,

monitoring the response rule of vegetation ecosystem production

capacity to urbanization is still an urgent issue to understand the

ecological carbon cycle process and ecological sustainable

development path in the YEB.

Existing studies have focused more on changes in vegetation

ecosystem response to human urban construction activities in a single

province or urban agglomeration in the YEB, providing an effective

reference for ecosystem restoration and management in the region.

For example, Li et al. (2022) analyzed the local direct and spatial

spillover effects of urbanization on NPP using the CCU as a case

study; Wang et al. (2021) measured changes in vegetation carbon

stocks in the Yangtze River basin based on NPP data and revealed the

synergistic effects of urbanization-dominated human activities and

climate factors on different segments of the Yangtze River basin.

However, as an important strategic region crossing different

economic and topographic divisions and population density

boundaries in China (the “Heihe-Tengchong” line), significant

regional differences in industrial structure, urban form, and

population migration patterns dominated by urban agglomerations

have developed within the YEB (Li et al., 2022). More often, existing

studies need to focus more on the intrinsic variability of urbanization

impacts on NPP in the YEB in the context of such significant cross-

regional differences in natural (topography, climate, etc.) and human

factors (population size, city size, etc.) (Chen et al., 2023; Xia and

Zhai, 2022). Otherwise, this will create a realistic gap that makes it

difficult to provide site-specific and systematic urbanization

optimization strategies and urban vegetation ecological

conservation solutions for the YEB from a theoretical perspective.

In summary, existing studies have made prominent

contributions to the understanding of the spatial dependence

pattern of NPP, the response of NPP under the influence of

climate change and human activities represented by urbanization,

but the exploration of the mechanism of the impact of urbanization

on NPP in the YEB is still far from being addressed: (1) Rarely

considered urbanization as a multi-dimensional whole

encompassing residential migration, economic growth and land

use change, and considered the driving impact of integrated
Frontiers in Ecology and Evolution 0356
urbanization on NPP; (2) The comprehensive assessment of the

local direct effects and cross-border spillover effects of urbanization

on NPP in the YEB needs to be strengthened; (3) The response

mechanism of NPP to urbanization in the YEB is clearly site-

specific, influenced by the disparities in topography, urbanization

stage and economic base, while previous studies have paid

insufficient attention to the local heterogeneity of the influence

mechanism within it dominated by urban agglomerations. To fill

these knowledge gaps, our study uses the YEB as a case study to

analyze the spatio-temporal evolution patterns of NPP based on

MODIS-17A3HF NPP image products. The comprehensive

urbanization index is also constructed based on population

urbanization, land urbanization and economic urbanization. The

focus is on investigating the global and local effects of

comprehensive urbanization on the impact of NPP in the Yangtze

River Economic Zone using spatial econometric regression models

and geographically weighted regression models. The focus is on the

use of spatial regression models to investigate the global effects of

integrated urbanization on NPP impacts in the YEB, and the local

effects and spatial heterogeneity of the impacts of the three major

urban agglomerations are further diagnosed under Geographically

Weighted Regression (GWR) models.
2 Study area, methods and
data sources

2.1 Study area

The YEB is a major national strategic development area in

China with the Yangtze River basin as the main trunk, which

contains three national strategic urban agglomerations: YRD,

MRYRU and CCU (Figure 1). YEB involves 130 prefecture-level

cities in 11 provinces and municipalities, including Shanghai,

Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Chongqing,

Sichuan, Yunnan, and Guizhou (Chen et al., 2023). This study

takes the YEB as the case study, with 130 cities within it as the

research sample. The Yangtze River basin, with its warm climate,

abundant rainfall, numerous tributary lakes and rich species

resources, is a concentrated distribution area for rare and

endangered wildlife in China. The per capita GDP of Yangtze

River Economic Zone increased from 7506.25 yuan to 71,102.70

yuan from 2000 to 2020, an increase of 8.472 times, and the

population density increased from 454.65 person/km2 to 490.6

person/km2, an increase of 7.907%. Despite the Chinese

government’s initiative of “Grasping the big protection, not big

development”, the conservation and restoration of forest and

ecological space in the YEB has achieved significant achievements.

However, the rapid growth of economic scale and population size,

as well as the significant disparities between provinces and cities in

socio-economic and natural contexts have led to the continued

contradiction between human urban activities and ecological

environmental protection in the region. Therefore, it is important

to study the impact mechanism of urbanization on NPP in the YEB

for the construction of ecological resilience and sustainable

development in the region.
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2.2 Methods

2.2.1 Comprehensive urbanization
level accounting

Urbanization is a systemic project involving multi-domain

contents such as urban population growth, land expansion and

economic revitalization (Figure 2). The comprehensive urbanization

level referred to in this study includes three dimensions of population,
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land and economic urbanization. Referring to the studies of Peng et al.

(2020), Wei G. et al. (2023) and Ouyang et al. (2021), the above

indicators were measured in terms of urban resident population share,

urban land area share and GDP density. Based on Chen et al. (2022),

the data of urbanization sub-dimension indicators were standardized

based on the extreme value method, and the standardized results were

summed and averaged to obtain the comprehensive urbanization level

of each city in the YEB. The formula is as follows:
FIGURE 2

Study route.
FIGURE 1

Study area.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1231487
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2023.1231487
x   0ij −
xij −min xij, · · · xij

� �
max xij, · · · xij

� �
−min xij, · · · xij

� � (1)

ULi =
xiPU + xiLU + xiEU

3
(2)

Where: xij′ is the standardized value of the j indicator of city i;

xiPU, xiLU and xiEU are the indexes of city i after standardization,

respectively; ULi is the comprehensive urbanization level of city i.

2.2.2 Bivariate spatial autocorrelation
The bivariate spatial autocorrelation model is used to analyze

the spatial correlation between integrated urbanization and NPP.

Among them, the local bivariate spatial autocorrelation is calculated

as:

I =
ULi − UL

sUL
:o

n

j=l

Wij
NPPj − NPP

sNPP

 !
(3)

Where: Wij is the spatial weight matrix; ULi and NPPj are the

UL and NPP of cells i and j, respectively; sUL and sNPP are the

variances of UL and NPPl, respectively (Dong et al., 2023).

2.2.3 Spatial regression model
The study investigates the global driving effect of urbanization

on NPP in the YEB with a spatial regression model. Compared to

the Spatial error model (SEM) and Spatial lag model (SLM), the

Spatial Durbin model (SDM) integrates the quantitative advantages

of both for exogenous and endogenous interaction effects of

variables and can decompose the driving effects into direct and

spillover effects based on partial differential equations (P.D.E.) (Guo

et al., 2023). The calculation formula of SDM is as follows:

NPPit = rWNPPit + b(ULit ∼ PREit) + qW(ULit ∼ PREit) + ϵit (4)

Where: NPPit is the explanatory variable NPP for region i in

period t; ULit~PREit is the explanatory variable for region i in period

t, containing the key explanatory variables integrated urbanization

and other control variables (including natural and socioeconomic

control variables); ϵ is a normally distributed random disturbance

term; r, b and q are parameters to be estimated; W is the spatial

weight matrix;WY is the spatial lagged dependent variable; andWX

is the spatial error independent variable. The Lagrange multiplier

(LM) was used to assess the necessity of incorporating spatial effects

into the regression model; the Likelihood Ratio estimation (LR) was

used to evaluate whether the SDM can be reduced to SLM or SEM.

2.2.4 Geographically weighted regression model
This study measures the local variation effect of urbanization on

NPP in the YEB based on the GWR model for discussing the

differential performance of the driving effect among the three major

urban agglomerations (Tian et al., 2023). The model is calculated as

follows:

NPPit = b0(ui, vi) +o
k

j=l

b(ui, vi)(ULi ∼ PREi) + ϵi (5)
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Where: (ui,vi) is the geographic location coordinates of region i;

bi is the corresponding geospatial location function of region i;

ULi~PREi are the explanatory variables for region i, containing the

key explanatory variable UL and other control variables.
2.3 Data sources

2.3.1 Urbanization level
The three urbanization dimensions of population urbanization,

land urbanization and economic urbanization are measured by the

percentage of urban resident population, the percentage of urban land

area and GDP density, respectively. Among them, the data of urban

resident population ratio are mainly from the statistics of population

number in China Urban Statistical Yearbook, China Statistical

Yearbook; the data of urban land area and GDP density are from

the remote sensing dataset of land use (30m) and spatialized dataset of

GDP density (1km) provided by the Environment and Resources

Data Center of Chinese Academy of Sciences (http://www.resdc.cn).

2.3.2 Net primary productivity of vegetation
The NPP data were taken from the MOD17A3 Global Net

Primary Productivity product (https://modis.gsfc.nasa.gov/) from

NTSG (Numerical Terradynamic Simulation Group), USA, with a

spatial resolution of 500m. This dataset has now been used in a large

number of research areas such as global NPP spatial distribution

and carbon cycle.

2.3.3 Control variables
In addition to urbanization, regional physical context and

socioeconomic development are also considered to have important

effects on NPP in existing research and theoretical systems. Referring

to studies such as Yue et al. (2022) and Sun et al. (2016), we also

selected socioeconomic indicators such as industrial structure share,

energy consumption, actual utilization of foreign investment, and

pressure on transportation infrastructure, as well as natural indicators

such as slope, elevation, average annual precipitation, and average

annual temperature as control variables to improve the fit of the

regression model (Table 1). Among them, the data of natural control

variables were mainly obtained from the relevant data products

provided by the Geographic Data Cloud Platform of CAS (http://

www.gscloud.cn/sources/index) and the Earth System Science Data

Center (http://www.geodata.cn/). We extracted the dataset of 130

prefecture-level cities in the Yangtze River Economic Belt based on

the image cropping and zoning statistics tools of ArcGIS platform.

The socio-economic control variables were mainly obtained from the

China City Statistical Yearbook, the China Energy Statistical

Yearbook, and the statistics of relevant index data from the

provincial and municipal statistical yearbooks. We extracted the

dataset of 130 prefecture-level cities in the Yangtze River Economic

Belt based on the image cropping and zoning statistics tools of

ArcGIS platform. The socio-economic control variables data were

mainly obtained from the China City Statistical Yearbook, the China

Energy Statistical Yearbook, and the statistics of relevant index data

from the provincial and municipal statistical yearbooks.
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3 Result

3.1 Spatio-temporal evolution patterns of
NPP and urbanization in the YEB

Combining GIS zoning statistics tools and spatial interpolation

techniques to measure the dynamic trend of NPP in the YEB, as

shown in Figures 3, 4. The investigation shows that the average NPP

in the YEB increased from 592 g*c/m2 to 670 g*c/m2 at a rate of
Frontiers in Ecology and Evolution 0659
0.621% from 2000 to 2020 (Figure 3A). Among them, the NPP

growth of CCU is the most significant, with an increase of 39.387%

from 2000 to 2020, followed by MYRYU and YRD, with increases of

14.867% and 6.495%, respectively. In terms of spatio-temporal

dynamics, the NPP level in the YEB shows a clustering pattern of

“high in the south and low in the north, high in the west and low in

the east” (Figure 4), both in terms of remote sensing images and

distribution based on administrative districts. The three major low-

value clusters (NPP<450 g*c/m2) in the eastern, central and western
A B

FIGURE 3

Dynamics of NPP (g*c/m2) (A) and urbanization (%) (Bs) (B), 2000–2020.
TABLE 1 Indicator data sources.

Data type Variables Unit Data name Data sources Abbreviation

Socioeconomic

Population
urbanization

%
Urban resident population as a

share of total population
Urban statistical yearbook of China PU

Land urbanization %
Land use data in 2000, 2010,

2020
Data Centre for Resources and Environmental Sciences of
the Chinese Academy of Sciences (http://www.resdc.cn)

LU

Economic
urbanization

yuan/
km2

GDP density grid data set in
2000, 2010, 2020

Data Centre for Resources and Environmental Sciences of
the Chinese Academy of Sciences (http://www.resdc.cn)

EU

Industrial structure %
Value added of tertiary

industry as a percentage of
GDP (%)

Urban statistical yearbook of China IS

Energy
consumption

Billion
kwh

Electricity consumption Energy Statistics Yearbook of China ES

Openness
USD
million

Actual use of foreign capital Urban statistical yearbook of China OP

Transportation
infrastructure

pressure

Million
people

Road passenger volume Urban statistical yearbook of China TIP

Natural

Slope ° Slope
Geospatial Digital Cloud Platform of Chinese Academy of

Sciences (http://www.gscloud.cn/sources/index)
SLO

Elevation m DEM digital elevation data
Geospatial Digital Cloud Platform of Chinese Academy of

Sciences (http://www.gscloud.cn/sources/index)
ELE

Average annual
precipitation

mm
China's monthly precipitation

data in 2000, 2010, 2020
National earth system science data science

(http://www.geodata.cn/)
PRE

Average annual
temperature

°C
China's monthly precipitation

data in 2000, 2010, 2020
National earth system science data science

(http://www.geodata.cn/)
TEM

Net primary
productivity

g*c/m2
NPP data from MODIS-

MOD17A3
MODIS-17A3HF data products are available on the NASA

website (https://modis.gsfc.nasa.gov/)
NPP
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parts of the study area in 2000 gradually developed toward

dispersion in 2020, and the high-value clusters, mainly in Yunnan

Province, spread further in 2020. In terms of the change trend, the

average NPP of the YEB shows a general pattern of change of

“increased in the north and decreased in the south”. The NPP

degraded cities with 13.178% of all cities are mainly located in the

southeastern and southern part of the YEB. The most prominent

NPP degradation is Xishuangbanna and Lishui, with decreases of

9.787% and 4.575%, respectively. The cities with high values of NPP

growth are mostly distributed in the CCU and northern areas of the

MYRYU, especially Suining and Ziyang with increases of 84.486%

and 78.810%, respectively.

The overall average UL index of the YEB grew from 22.485% to

23.652% with an average annual growth rate of 0.253% from 2000 to

2020 (Figure 5). Among them, the UL index of the MYRYU has the

most significant growth, with an increase of 17.455% from 2000 to

2020, followed by CCU and YRD, while the UL index of YRD is

usually the highest, with a UL index of 42.982% in 2020. In terms of

spatio-temporal dynamic distribution, the level of urbanization in the

YEB gradually changes from “high in the east and low in the west” to

a distribution pattern with urban agglomerations as the regional core.

In 2000, it was presented as the eastern UL high-value group with

Shanghai as the core. By 2010 and 2020, the UL indexes of Wuhan,

Changsha, Chongqing and other central cities in the central and

western regions grew rapidly, gradually forming a pattern of UL high-

value distribution led by the core cities of urban agglomerations. In

terms of the change trend, 37.984% of the cities in the YEB have a

decreasing trend in UL index, mainly in the northwestern cities

represented by Aba and the northeastern cities represented by

Bozhou. However, this does not imply a degradation of the

urbanization process, as the UL index is performed based on a

standardized formula (Eq. 2), the variation of the UL index mainly

shows the degree of difference in urbanization levels and the change
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in the rank order among cities in the YEB. The cities with significant

UL index growth are mainly located in the eastern part of the

MYRYU and the southern part of the YRD. In particular, the UL

indexes of Jiujiang, Suzhou and Changsha increased by 17.747%,

14.900% and 15.444%, respectively.
3.2 Spatial correlation analysis of
urbanization and NPP in YEB

Figure 6 shows the change trend of bivariate global

autocorrelation and local autocorrelation of UL index with NPP

in YEB from 2000 to 2020. The global Moran’s I for UL and NPP in

2000, 2010 and 2020 are −0.350, −0.380 and −0.419 (p-value =

0.001), respectively, which indicate an overall increasingly

significant negative spatial autocorrelation between urbanization

and NPP in the YEB. In terms of bivariate local autocorrelations, UL

and NPP negatively correlated cluster cities (containing both High-

Low and Low-High cluster types) are dominant, and the share

increases from 24.806% to 33.333% during the study period. This

validates the increasingly significant negative spatial autocorrelation

between urbanization and NPP in the YEB, and confirms the urgent

need to adjust urbanization pathways in the region to reduce the

negative impacts on vegetation ecosystems and carbon cycle

functions. “High-Low” is the dominant cluster type in the

bivariate spatial correlation, and the number of cities increased

from 13.178% to 20.930%, followed by “Low-High” clusters, whose

overall share also increased from 11.628% to 12.403%. In terms of

spatio-temporal evolution, the distribution pattern of bivariate local

spatial autocorrelation cluster types is relatively stable during the

study period. Specifically, the “High-Low” negative correlation

clusters are mainly located in Bozhou, Huai’an and other cities in

Anhui and northern Jiangsu. The prominent scale of population,
FIGURE 4

Spatio-temporal changes of NPP in YEB, 2000–2020.
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arable land, and construction land in these cities (Figure 1)

generates significant encroachment on vegetated ecosystems,

resulting in relatively high levels of urbanization and relatively

low NPP in the region.

The “Low-High” negative correlation clusters cities are generally

located in the southwestern region, such as Xishuangbanna, Lincang

and Pu’er. These cities are located near the “Hu Huanyong

population density line” in China, where the human footprint is

relatively sparse and the terrain is complex, with many forested and

mountainous areas off the beaten path. The excellent natural
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ecological background and the low intensity of urban development

have contributed to the low level of urbanization but high quality

plant ecosystems in the area. The “High-High” positive correlation

clusters are mainly located in Kunming, reflecting the high quality

ecological environment and the strong “siphon effect” of population,

industry and resources in the region. The “Low-Low” positive

correlation agglomeration is mainly laid out in Huanggang,

Jingzhou and Jingmen and other cities in the middle reaches of the

Yangtze River. Combined with the performance of multidimensional

urbanization, these cities have low levels of land and economic
FIGURE 5

Spatio-temporal changes in urbanization levels in the YEB, 2000–2020.
FIGURE 6

Bivariate spatial global autocorrelation scatter plot and local autocorrelation LISA plot of urbanization and NPP in YEB, 2000–2020.
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urbanization, have significant gaps in urban development intensity

compared to Wuhan, and are subject to significant resource

siphoning. At the same time, due to the location in Jianghan Plain,

organic matter produced by photosynthesis of grassland vegetation is

more disadvantaged than that of mountainous woodlands in humid

climate, resulting in relatively disadvantaged urbanization level and

vegetation ecosystem productivity in this region.

3.3 Analysis of the driving impact of urbanization
on NPP in the YEB
3.3.1 Driving impact of urbanization on NPP in a
global perspective

All variables after logarithmization and normalization passed the

multi-collinearity and Moran tests, while LM-SLM, LM-SEM tests

and LR-SLM and LR-SEM significantly rejected the original

hypothesis at 1% confidence level (Table 2). Based on this, we used

SDMmodel to detect the driving impact of urbanization onNPP, and
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the regression results are shown in Table 2. It was found that the

driving effect of UL on NPP was significantly negative in different

periods, verifying the significant negative feeder effect of urbanization

on the productive capacity of vegetation cover systems in the YEB. In

terms of coefficient changes, the driving influence of UL showed an

inverted “U” shape, with statistically significant regression coefficients

of −0.165, −0.223 and −0.166 in 2000, 2010 and 2020, respectively.

The effect of control variables also received further attention. For

example, the driving influence of the value added of the tertiary sector

as a share of GDP onNPP is significantly positive in different periods.

This indicates that the tertiary sector not only has low consumption

and emission characteristics, but also the businesses involved in

computer and digital information technology contribute to the

restoration and management of urban vegetation ecosystem. Slope

and elevation had a significantly positive effect on NPP during some

periods, indicating that slope and elevation also played a significant

role in contributing to the conservation of vegetated ecosystems.
TABLE 2 Regression results based on SDM model.

SDM_2000 SDM_2010 SDM_2020

UL −0.165* (−1.957) −0.223** (−2.235) −0.166* (−1.948)

lnELE 0.047 (1.584) 0.089** (2.913) 0.048 (1.586)

lnSLO 0.081* (1.684) 0.010 (0.190) 0.080* (1.655)

lnTEM −0.108 (−1.030) −0.041 (−0.381) −0.110 (−1.039)

lnPRE 0.049 (0.553) −0.008 (−0.086) 0.050 (0.568)

lnIS 0.102** (2.000) 0.152*** (3.666) 0.104** (2.022)

lnES 0.011 (0.735) 0.008 (0.822) 0.011 (0.739)

lnOP 0.001 (0.179) 0.001 (0.251) 0.001 (0.155)

lnTIP −0.003 (−0.356) −0.024** (−2.209) −0.003 (−0.351)

W*UL −0.071 (−0.420) 0.203 (1.148) −0.070 (−0.420)

W*lnELE −0.022 (−0.639) −0.008 (−0.214) −0.020 (−0.577)

W*lnSLO −0.141** (−2.246) −0.116 (−1.597) −0.143** (−2.256)

W*lnTEM 0.337** (2.080) 0.189 (1.074) 0.350** (2.143)

W*lnPRE −0.035 (−0.328) −0.021 (−0.187) −0.037 (−0.342)

W*lnIS −0.086 (−1.035) 0.321*** (3.664) −0.077 (−0.917)

W*lnES 0.037 (1.300) −0.028 (−1.296) 0.038 (1.313)

W*lnOP −0.010 (−1.127) 0.024 (1.341) −0.010 (−1.153)

W*lnTIP 0.021 (1.250) −0.057*** (−2.784) 0.020 (1.232)

Direct effect (UL) −0.274** (−1.997) −0.212* (−1.853) −0.277* (−1.941)

Spillover effect (UL) −1.463*** (−4.034) 0.127 (0.149) −1.319*** (−3.930)

R-squared 0.662 0.869 0.675

Log-likelihood 184.044 174.645 183.694

sigma^2 0.003 0.004 0.003

LM-SLM 5624.942*** 4214.041*** 4587.462***

LM-SEM 53.273*** 45.427*** 53.321***

Moran's I 0.519*** 0.440*** 0.420***
*, **, and *** indicate significance at the confidence level of 10%, 5%, and 1%, respectively.
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However, according to LeSage and Pace (2009), the SDM

coefficients do not reflect either the direct, spillover, or total effects

of the independent variables. This is because analyzing the spatial

spillover effects between regions through simple point regressions

would produce erroneous estimates, and a decomposition with

reference to P.D.E is needed to better understand the effect of

urbanization on NPP. It is found that urbanization in both local

and neighboring regions has a significant negative effect on NPP in

the Yangtze River Economic Zone in some periods. For example,

every 1% increase in the UL index in 2020 will directly lead to a

0.277% decrease in local NPP and indirectly lead to a 1.319% decrease

of NPP in neighboring regions. Among them, the direct negative

effect of urbanization is statistically significant in all periods, and this

direct effect generally fluctuates in growth, with direct effect elasticity

coefficients of −0.274 and −0.277 in 2000 and 2020, respectively.

Although the elasticity coefficient is not significant in 2010, the

spillover effect of urbanization on the impact of NPP achieves an

overall convergence from 2000 to 2020. The elasticity coefficients of

spillover effects for UL are −1.463 and −1.319 in 2000 and 2020,

respectively, with an absolute decrease of 9.843% in the regression

coefficient. This indicates that the negative effect of urbanization on

NPP in neighboring areas has converged. In addition, the comparison

of the direct effect with the spillover effect raises concern, as the

survey shows that the spillover effect of urbanization on NPP is much

more than the direct effect in a statistical sense. For example, the

elasticity coefficient of the direct effect of urbanization in 2000 is

−0.274, while the spillover effect is −1.463.

3.3.2 Driving impact of urbanization on NPP in a
local perspective

To further analyze the local effects of urbanization on the NPP in

the YEB, especially to reveal the local heterogeneous characteristics of

the impact in the three major urban agglomerations, we constructed a

GWR analysis model based on ArcGIS platform (Figure 7). The
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investigation showed that the Adjusted R2 was 0.945, 0.909 and

0.971, Sigma was 57.816, 78.262 and 46.461, and AICc was 1430.183,

1508.319 and 1374.427 for the three periods in GWR estimation,

respectively. The spatially heterogeneous characteristics of the impact

of urbanization on NPP in the YEB are significant, validating the need

to monitor the driving effects from a local perspective. Specifically,

urbanization in the west maintains a significant negative shock, while

the overall pattern of the driving effect of UL onNPP gradually shifts to

a regional heterogeneity of positive in the east and negative in the west.

The reasonmay be that western cities such as Lincang and Baoshan are

located on the Yunnan-Guizhou Plateau where forest vegetation is

abundant, and the base of urban development intensity is low, but the

risk sensitivity of the forest cover system is higher, and they are more

affected by the disturbance of human activities in the crude urban

construction activities. In contrast, with the continuous development of

urban ecological resilience construction concepts and low-carbon green

development technologies in the eastern region, the impact of

urbanization on vegetation ecosystems and their productivity has

gradually diminished. It even promotes the growth of urban NPP to

some extent based on urban ecological planning policies such as park

cities and green corridors.

In terms of the divergent performance of the urban

agglomerations, the effect of UL on NPP is negative for all of the

YRD in 2000. While most of the cities in the MYRYU show negative

effects, the effects in western mountainous cities such as Jingmen,

Xiangyang and Yichang are positive. The driving influence of UL in

the western cities of CCU is significantly negative, while Chongqing

and Dazhou show positive effects. In 2010, the negative effect of UL in

the YRD urban agglomeration further increases and shows a gradient

pattern of decreasing from east to west. The pattern of regression

coefficients is more stable in the MYRYU, but the negative effect of

UL on NPP increases overall, and the UL turns negative in the whole

area of CCU. In 2020, the impact of UL on NPP for cities in the whole

YRD turns from negative to positive, the positive effect cities in the
FIGURE 7

Distribution of regression coefficients based on GWR model.
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MYRYU shift to eastern cities such as Shangrao, Huanggang and

Jiujiang, and the impact of UL on NPP for cities in CCU are still all

negative, but the overall negative impact has converged.
4 Discussion

4.1 Direct and spillover effects of the
impact of urbanization on NPP

The direct effect of urbanization on NPP has been confirmed in

previous studies, which emphasize the substantial conversion of

ecological spaces such as grasslands and woodlands to production-

living spaces during urbanization, resulting in the derogation of

vegetation cover systems and leading to a decrease in regional NPP

levels (Yang et al., 2021). Our study considers urbanization as a

unified system, integrating urbanization elements such as population

urbanization, economic urbanization, and land urbanization,

providing an comprehensive perspective for investigating the

impact of urbanization on NPP (Chen et al., 2020). The findings

emphasize that the negative effect of urbanization on NPP is not only

in the local area, but more widely a spillover effect that goes far

beyond the local effect. The former may be related to the inherent

resource-consuming activities of cities (Sharma et al., 2022; Zhong

et al., 2021; Chen et al., 2023). Urban population migration and

industrial boom increase the demand for natural resources and

production-living space, while land urbanization implies the

conversion of a large amount of ecological space to artificial

impervious surfaces. These urbanization processes have, to some

extent, directly or indirectly enhanced the encroachment on native

vegetation cover systems and challenged the carbon cycling capacity

of vegetation. The latter may have some connection with the regional

integration construction of the Yangtze River Economic Belt. As a

national strategic development region in China, the Yangtze River

Economic Belt forms an integrated cooperation space with Shanghai

as the leader and urban agglomerations along the route as the core.

The region has gradually built synergistic channels in technological

innovation, data integration, and industrial chain construction (Tian

and Pang, 2022). With the support of regional integration, ecological

product consumption actions can influence neighboring urban

markets through the integrated “land, water, and air” channel, thus

indirectly causing cross-regional ecological consumption of

vegetation (Wang et al., 2022).
4.2 Heterogeneity in the impact of
urbanization on NPP in three major
urban agglomerations

The spatial heterogeneity of the impact of UL on NPP in urban

agglomerations in the YEB is verified in this study, which complements

previous studies based on individual urban agglomerations or the YEB

as a whole. For example, Qiao and Huang (2022) assessed the

ecosystem health of the YRD and evaluated the impact of land

urbanization on ecosystem health. Chen et al. (2022) based on

NDVI index explored the ecosystem health level of the MYRYU,
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and pointed out a U-shaped relationship between urbanization and

ecosystem health. Our investigation finds that the NPP of the CCU is

most strongly influenced by UL, especially the negative influence of

western cities is significantly stronger than that of eastern cities such as

Chongqing. The reason for this phenomenon may be that the western

part of the CCU is surrounded by mountains and hills, with a high

quality forest ecological substrate and carbon sequestration capacity,

and urban development activities have modified the local forest

ecosystem to a more obvious extent. In contrast, most of the eastern

cities such as Chongqing are located in the plains and have relatively

more homogeneous NPP of grassland ecosystems, which, together with

more modern urban planning and green economy construction,

contribute to the ecological resilience of these cities to resist

urbanization (Li et al., 2023; Luo et al., 2023). The distribution

pattern of UL effects in the MYRYU remains relatively stable, but it

is noteworthy that the UL of cities in the eastern part of the urban

agglomeration is positive in 2020. This may have some synergistic

relevance to urban ecological planning in the region (Chen et al., 2022;

Liu et al., 2023; Ma et al., 2023). At the end of 2009, China released the

“Poyang Lake Ecological Economic Zone Plan”, which tries to build the

Poyang Lake area into an advanced and efficient ecological industrial

cluster and gradually build a new urban agglomeration with ecological

livability. This promotes the ecological restoration of vegetation and the

sustainable construction of urbanization in the area. The driving effect

of UL on NPP in the YRD turns from negative to positive, which may

be related to the implementation of ecological co-protection planning

in the region. By proliferating green production processes, circular

economy technologies and energy saving and emission reduction

standards of the core cities of Shanghai, Nanjing, Hangzhou and

Hefei, the overall ecological restoration governance and urban

sustainability of the YRD urban agglomeration can be promoted

(Luo et al., 2021; He et al., 2023).
4.3 Policy implications

Our study confirms that widespread significant negative

ecological effects of urbanization exist in the YEB, where vegetation

carbon cycle function and ecological stability were challenged, and

ecological resilience building strategies based on optimal urbanization

management perspectives should receive attention. In terms of land

urbanization, constraints on the rough expansion of production-

living space should be strengthened, and more attention should be

paid to the vegetation protection and land development approval in

new urban areas. The renewal of urban parks, corridors, green space

construction and intensive and optimal use of land in old urban areas

should also be mentioned more often. In terms of population

urbanization, a concept that focuses on green and low-carbon

living and consumption should be mentioned more often, with

attention to people-centered vegetation and ecological restoration

efforts. In terms of economic urbanization, we will strengthen the

breakthrough of circular economy and green production process, and

accelerate the transformation of low carbon and green industry for

alleviating the plundering of vegetation and ecological resources by

urban economic development. Moreover, our study confirms that the

negative ecological effect of urbanization has a significant spillover
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effect, which actually provides fundamental evidence for the joint

regional ecological management of the YEB. More improved

communication channels on information technology, greening

industrial chains and pollutant emission standards should be

established between cities. Meanwhile, the sharing of information

related to ecological monitoring, pollution emission and climate

change should be enhanced to optimize the urbanization paths and

patterns of the YEB from an overall perspective. From the direction of

urban agglomeration optimization, the CCU needs to strengthen the

ecological restoration of vegetation in western cities and formulate

gradual construction of human settlements and resource extraction

activities. The MYRYU should pay more attention to the ecological

conservation work in the western Hunan region, and strengthen the

protection of mountainous forests and grassland management. The

YRD should further improve urban ecological planning policies and

enhance urban livability, focusing on the transmission of urban

ecological resilience construction ideas and the diffusion effect of

green production technologies. In this way, to promote the YEB to

form a green development path guided by urban agglomerations.
5 Conclusion

Previous studies have rarely considered the global and local effects

of urbanization on NPP in the YEB, and the direct and spillover

effects of urbanization have rarely been systematically investigated.

This study analyzed the spatio-temporal dynamic patterns of NPP

and urbanization levels in the YEB based on remote sensing images

and socioeconomic statistics, and investigated the global and local

impacts of urbanization on NPP based on the SDM and GWRmodel.

The highlight of our study is to focus on the direct and spillover effects

of urbanization on NPP, in particular, we also explore the regional

heterogeneity of the impact of urbanization on NPP at the scale of

urban agglomerations based on local effects analysis. To our

knowledge, this is rare in previous studies on the linkage between

urbanization and ecological environment in the Yangtze River

Economic Belt, especially since the natural and socio-economic

differences among the three major urban agglomerations prompt

this impact differentiation analysis to be more instructive. Some

meaningful conclusions are drawn as a result: (1) From 2000 to

2020, the average NPP of Yangtze River Economic Zone increased

from 592g*c/m2 to 670g*c/m2 at a rate of 0.621% (Figure 3A), and

showed a distribution pattern of “high in the south and low in the

north, high in the west and low in the east” and the change pattern of

“increasing in the north and decreasing in the south”. (2) The average

UL index of the YEB in general grew from 22.485% to 23.652% with

an average annual growth rate of 0.253% from 2000 to 2020, and

gradually changed to a clustering pattern with urban agglomerations

as the regional core. (3) There is an increasingly significant negative

spatial autocorrelation between urbanization and NPP in general,

with “High-Low” being the dominant cluster type in the bivariate

spatial correlation between UL and NPP, followed by “Low-High”

clusters. (4) The negative direct effect of urbanization on NPP in the

Yangtze River Economic Zone shows a fluctuating growth trend,

while a negative spillover effect, which far exceeds the direct effect and

declines slowly, is widespread. In addition, the local non-stationarity
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of the impact of urbanization on NPP is verified, and the three major

urban agglomerations show a differentiated pattern and development

direction of the driving effect. More importantly, based on the

“population–land–nature” complex ecosystem theory, our study

explores the optimal strategies for vegetation ecological security

maintenance and sustainable urban development in the YEB.

Mainly from various aspects, including multi-dimensional

urbanization management, joint spatial governance and ecological

conservation paths of urban agglomerations.

This study provides new evidence to reveal the driving

mechanism of vegetation net primary productivity by urbanization

construction in the YEB. The study of local changes in the

mechanisms of the impact of urbanization on vegetation

ecosystems can provide important conditions for the development

of vegetation ecosystem management strategies in the YEB. The

discussion of direct and spillover effects has the potential to provide

the necessary support for joint urban governance and ecological

synergistic optimization pathways. There are still some shortcomings.

First, the study is based on cross-sectional data, which makes it

difficult to observe long-term continuous changes in the impact of

urbanization on NPP. In the future, a panel database will be

established to focus on the long time series variation of the driving

effects based on the SPDM model. Second, the study focused on the

driving effect of the combined urbanization indicators on NPP, but

the decomposition effects of population urbanization, economic

urbanization, and land urbanization on NPP could not be

investigated. The heterogeneity of the effects of urbanization sub-

dimensional indicators on NPP will be further analyzed in the future.
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Spatio-temporal analysis of the
impact of land urbanization on
the gross primary productivity of
vegetation in the Middle Reaches
of the Yangtze River Urban
Agglomeration: new evidence
from the township scale

Duming Peng1*, Yakai Chen1 and Wulin Wang2

1Hunan Provincial Institute of Land and Resources Planning, Changsha, China, 2College of Tourism,
Hunan Normal University, Changsha, China
The urgent need to maintain ecosystem provisioning services and achieve urban

sustainable development goals has led to a long-standing focus on the driving

effects of land urbanization (LU) in the Middle Reaches of the Yangtze River Urban

Agglomeration (MRYRU) on vegetation cover system productivity. Previous studies

have lacked consideration for the long-term correlation between land urbanization

(LU) and the Gross Primary Productivity (GPP) of vegetation, as well as the spatial

non-stationarity of LU’s impact in the region. This study is based on land cover

remote sensing data and GPP imagery data to monitor the long-term evolution

trends of LU and GPP in MRYRU from the perspectives of townships and grids. It

further investigates the spatial correlation and clustering characteristics between the

two using bivariate spatial autocorrelation method. Additionally, a Geographically

and Temporally Weighted Regression (GTWR) model was employed to analyze the

spatial effects of LU on GPP. The results indicate that the GPP of MRYRU grows to

1572.88gCm-2a-1 with an average annual growth rate of 0.848% from 2000 to 2020.

High-value areas are distributed in the central and easternmountainous of the urban

agglomeration, while low-value areas gradually formed an “n”-shaped clustered

distribution pattern. The negative spatial autocorrelation between LU and GPP

shows a general upward trend, and Low-High is the dominant agglomeration

type, concentrated in Hengyang and some mountainous cities in Jiangxi Province.

The overall negative impact of land urbanization on GPP in MRYRU is maintained in

the spatially nonstationary pattern of driving coefficients, with negative impact areas

mostly concentrated in the city’s main city zone and positive impact areas

concentrated in the urban agglomeration’s mountainous townships. This study

provides support for MRYRU to adopt more resilient land optimization

management strategies and vegetation ecological restoration plans.

KEYWORDS

land urbanization, vegetation gross primary productivity, GWTR, driving influence,
Middle Reaches of the Yangtze River Urban Agglomeration (MRYRU)
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1 Introduction

Gross Primary Productivity (GPP) is the amount of organic

matter produced from carbon dioxide fixation by photosynthesis in

green plants per unit area per unit time. It determines the initial

organic matter and energy that enters terrestrial ecosystems and

directly or indirectly determines the ecosystem’s provision of

product services such as food, fiber, and fuel needed for human

survival (Kim et al., 2017; Jia et al., 2022; Wang et al., 2022). GPP is

also commonly used as a key element in measuring terrestrial

ecosystem health and land-atmosphere CO2 exchange. GPP has an

irreplaceable contribution to the regulation of the global bio-

carbon balance, the maintenance of global climate stability and

the sustainability of the material cycle, and is the ecological basis

for the survival and development of human society (Guido et al.,

2017; Dyvavani et al., 2023; Yang et al., 2023). Regional GPP

variations due to global changes in environmental and biological

factors have been recognized in previous studies, such as

temperature, humidity and solar radiation, and changes in

vegetation phenology (Zhong et al., 2021; Zhao et al., 2022; Guo

et al., 2023; Tan et al., 2023). However, with the rise of the human

footprint and urban construction activities, it has changed urban

land use functions, scale, and product services of vegetation

ecosystems, and as a result, posed risks to soil fertility, vegetation

growing space, and bio-carbon cycling processes (Hu et al., 2022;

Wei et al., 2023b). For example, a study by Liu et al. (2019)

confirms that global urban land expansion encroached on

terrestrial vegetation net primary productivity (NPP) at a rate of

22.4 Tg·C per year in the first decade of the 21st century and offset

30% of climate change-driven NPP growth. In particular, the

encroachment of urban production-living space on ecological

space during land urbanization has placed a heavy burden on the

ecological pattern of urban landscapes and the global vegetation

cover system and its productivity, as well as posing a challenge to

the maintenance of the carbon cycle in urban ecosystems and the

construction of sustainable cities (Tan et al., 2023; Xu et al., 2023).

How to measure the change in the intensity of intrusion of land

urbanization process on vegetation ecosystems and the response

pattern of GPP to urban land transformation is of great

significance for urban ecological environment governance and

sustainable land management.

During the past 20 years of the 21st century, the global urban

land area grew from 239,900 km2 to 519,800 km2, expanding by

117.49%, especially in Asia, where the urban land area grew by

133,700 km2 (Liu et al., 2019; Wei et al., 2023b). Governments have

developed a series of binding strategies based on macro-consensus

strategies such as the Global Assessment Report on Biodiversity and

Ecosystem Services and the International Geosphere-Biosphere

Program (IGBP) (Guido et al., 2017; Xie et al., 2022). Aiming to

mitigate the encroachment of urban sprawl on the productive

capacity of vegetated ecosystems in order to better serve the

urban sustainable development goals of sustainable urbanization

(Goal11, SDG), maintenance of the ecosystem carbon cycle

(Goal13, SDG) and ecosystem conservation (Goal15, SDG). For

example, China has recently issued policies such as the Opinions on

Comprehensively Implementing the Forest Chief System and the
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Natural Forest Protection and Restoration System Program to

mitigate the negative ecological impacts of urban construction

activities, to increase natural ecosystem and environmental

protection, and to promote the protection and ecological

restoration of pristine forests (Zhao et al., 2022). Similar policies

have been implemented in the United States in terms of financial

disbursement, where a national ecological compensation program,

the Land Fallow Conservation Program (CRP), has been

implemented to achieve the objectives of returning ecologically

fragile agricultural lands to forests, restoring vegetation cover,

improving forest land quality, and enhancing the carbon storage

capacity of forests. Scholars have mainly developed case studies on

the long-term trends of land urbanization and vegetation cover

systems and the prospects for sustainability, the driving effects and

correlations of urbanization on vegetation production capacity

under climate change, and the externalities and indirect effects of

the impacts of land urban expansion (Chen et al., 2019; Gui et al.,

2021; Wang et al., 2021). For example, Zhou et al. (2023)

constructed an “urbanization-vegetation cover coordination

index” to analyze the coordinated relationship between

urbanization and vegetation cover systems and their productivity

in China, and found that the expansion of urban land use has

caused a significant decline in the greenness of urban areas in

China, with the degradation of new urban areas being the most

significant. Zhuang et al. (2022) investigated the joint mechanism of

“climate-urbanization-soil” driving spatio-temporal changes in

NPP, and found that soil salinization has a stronger impact on

the productive capacity of vegetation cover systems than

urbanization. Zafar et al. (2023) predicted the future trends in the

productive capacity of urban and rural vegetation in a typical

Pakistani city and analyzed the long-term impact of urbanization

on urban and rural vegetation and environmental vulnerability. Mu

et al. (2023) estimated the trend of NPP in the Central Plains Urban

Agglomeration over the past 40 years, and found that NPP showed a

continuous downward trend under rapid urbanization, and that the

indirect impact of urbanization on the high-speed developing cities

was higher than that of the medium- and low-speed cities. These

studies provide support for building sustainable and resilient urban

agglomerations and green and sustainable urban planning policies.

However, whether land urbanization contributes to or coerces total

vegetation productivity? As well as the potential correlation and the

estimation of the spatial effects of land urbanization on GPP are still

insufficiently integrated. This is clearly detrimental to the

development of site-specific regional vegetation ecosystem

restoration strategies and green urban planning policies.

The Middle Reaches of the Yangtze River Urban Agglomeration

(MRYRU) is another strategic urban cluster in China after the

Beijing-Tianjin-Hebei Urban Agglomeration, the Yangtze River

Delta Urban Agglomeration, the Guangdong-Hong Kong-Macao

Greater Bay Area, and the Chengdu-Chongqing Urban

Agglomeration, and the region brings together Wuhan, Changsha,

and Nanchang, which are important supportive cities in China

(Yang et al., 2022; Zeng et al., 2023). According to data released by

China’s Bureau of Statistics, the total GDP and population of the

city cluster in the middle reaches of the Yangtze River in 2020 will

be 9.3 trillion and 120 million people, accounting for 9.175% and
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9.207% of China’s total, respectively. Rapid clustering of population,

knowledge, information and technology factors has contributed to

the rapid development of the socio-economic level of MRYRU, but

also generated mutant expansion of urban land to meet the demand

for the construction of transportation, housing, factories and power

generation sites in the urban agglomeration (Su et al., 2013). A large

number of ecosystem protection and restoration projects have been

constructed in the region since the implementation of the

“Development Plan for the Urban Agglomeration in the Middle

Reaches of the Yangtze River” to achieve a green and low-carbon

transition and ecological civilization. However, the long-term

evolution of land urbanization and GPP and the impact of land

urbanization on the vegetation ecology of MRYRU in the context of

the human-land conflict of “development and conservation” still

need to be further explored (Zhu and He, 2021; Ma et al., 2022).

This is an urgent issue for understanding the eco-carbon cycle

process and ecologically sustainable development pathways of

MRYRU. MRYRU contains three key regions, that is, Wuhan

City Circle, Changsha-Zhuzhou-Xiangtan Urban Agglomeration

and Poyang Lake Urban Agglomeration, and the existing studies

focus more on the evolutionary trends of land urbanization and

vegetation ecosystems in these subregions. The quantification of the

overall evolutionary pattern and spatial correlation characteristics

of land urbanization and GPP in MRYRU is still insufficient (Luo

et al., 2020). In particular, there is a lack of impact analysis

experiments based on township or grid perspectives, and few

studies have focused on the regional heterogeneity of impacts

exerted by land urbanization (Chen and Chi, 2022). This is not

conducive to providing targeted green urban planning strategies,

vegetation ecological resilience development and ecological

conservation programs for the MRYRU.

Overall, the existing studies provide a rich practical basis for

revealing the effects of land urbanization on vegetation GPP from a

doctrinal perspective, but further discussion is needed on the spatial

effects of land urbanization on the vegetation cover systems in

MRYRU: (1) Insufficient attention has been paid to the spatial

correlation between land urbanization and vegetation GPP; (2) the

study scale usually focuses on the individual analysis of subdivided

urban agglomerations, and seldom concerns the comprehensive

impacts of land urbanization in the urban agglomeration areas in the

MRYRU from the townships perspective; (3) the estimation of the

spatial effects of land urbanization on vegetation GPP needs to be

improved, in order to accommodate the spatial heterogeneity of the

driving impacts brought about by regional differences in topography,

meteorology, urbanization processes and socio-economic levels. Based

on multivariate remote sensing image data, this study utilizes GIS

spatial analysis techniques, land use transfer matrix and bivariate

spatial autocorrelation to monitor the long-term trends and spatially

correlated clustering features of land urbanization process and GPP in

the MRYRU, both from the grid and the township perspectives.

Further integrating anthropogenic and natural control variables such

as climate, topography, spatial distance and socio-economic factors, a

Geographically and Temporally Weighted Regression (GTWR) model

was used to investigate the spatially differentiated impacts of land

urbanization on GPP under the township perspective. The purpose is
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to provide a decision-making reference and scientific guidance for

MRYRU to adopt more resilient land optimization management

strategies and vegetation ecological restoration programs.
2 Study area, methods and
data sources

2.1 Study area

MRYRU is a Chinese strategic urban agglomeration with

Wuhan City Circle, Changsha-Zhuzhou-Xiangtan Urban

Agglomeration and the Urban Agglomeration around Poyang

Lake as the main components, and is also an important part of

the Yangtze River Economic Belt, which involves the three

provincial-level central cities of Wuhan, Changsha, and

Nanchang as well as 28 prefectural-level municipalities, and

contains 4,037 townships units in total. Our study takes 4037

townships as the study sample to explore the spatio-temporal

evolution and spatial correlation between land urbanization and

GPP, and to reveal the spatio-temporal impact effect of land

urbanization on the GPP in the MRYRU region. MRYRU is an

important part of the Yangtze River Basin, which belongs to the

subtropical monsoon climate region and the evergreen broad-

leaved forest belt. With its warm climate, abundant rainfall, well-

developed water system, lush vegetation and rich species resources,

the region is a concentrated area for a large number of rare and

endangered wild animals and plants in China. However, owing to

the high population density and long history of urbanization, the

coercion on the vegetation cover system by population movement,

land use expansion and economic factor agglomeration under the

land urbanization process still need to be mitigated. In particular,

under the regional differences in the “natural-social-economic”

complex ecosystems of urban agglomerations, the complexity of

vegetation ecosystem restoration and resilience building projects

and the coordination of “urban construction-ecological protection”

need more attention. Therefore, studying the impact of land

urbanization on GPP in MRYRU has great practical and doctrinal

value for building ecological resilience and sustainable development

in the region (Figure 1).
2.2 Methods

2.2.1 Accounting for land urbanization levels
Land urbanization is generally regarded as the proportion of

built-up land area to all land area in a city, reflecting the process of

urbanization in which urban built-up land is increasing and rural

land is contracting. It is a core indicator for evaluating the level of

urbanization, along with population urbanization and economic

urbanization. Drawing on the studies of Peng et al. (2020) and Wei

et al. (2023a), the spatio-temporal dynamic evolution of the land

urbanization level in the MRYRU is measured using the proportion

of urban land size to the overall land size. The calculation formula is

as follows:
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LUi =
Uurban

Utotal
� 100% (1)

where LUi is the land urbanization level of unit i; Uurban is the

urban land area; and Utotal is the total urban area.

2.2.2 Land-use transfer matrix
Land urbanization is intuitively reflected in the variation and

scale change of urban land use types. We use the land use transfer

matrix to quantify the area conversion process of each land use type

in the urban agglomeration in the MRYRU from 2000 to 2020 for

showing the encroachment of urban land on other types of land use

and the dynamic change of scale (Yang and Liu, 2022; Tan et al.,

2023). The land use transfer matrix is calculated in the ArcGIS

platform with the following formula:

Sij = ½
S11S12 ⋯ S1n

⋮ ⋱ ⋮

Sn1Sn2 ⋯ Snn

� (2)

Where S is the area of a certain land use type in the city; n is the

number of land use types; and Sij is the area of conversion from land

use type i to land use type j in a certain period of time.

2.2.3 Bivariate spatial autocorrelation
Bivariate spatial autocorrelation models are used to analyze the

spatial correlation between land urbanization and GPP. The

method can test the global and local correlation features that exist

between the two systems in geospatial terms. Among them, the local

bivariate spatial autocorrelation is calculated as:

I =
LUi − LU

sLU
on

j=1(Wij
GPPj − GPP

sGPP
) (3)

where Wij is the spatial weight matrix; LUi and GPPj are the land

urbanization level and total vegetation productivity of units i and j,

respectively; sLU and sGPP are the variances of LU and GPPl,

respectively (Dong et al., 2023).
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2.2.4 Geographically and temporally
weighted regression

The GWR model focuses on the effect of spatial heterogeneity in

local areas on the overall regression fit, and can be used to test for

individual spatial variation in regression coefficients (Tian et al., 2022).

The GTWR model takes into account the expansion of geographically

weighted regression models due to the non-stationarity of time, and

incorporates both temporal and spatial effects into the model, which

allows the model to deal with spatial-temporal heteroskedasticity at the

same time. In this study, the local variation effect of the impact of land

urbanization on the GPP of MRYRU was measured based on the

GTWR model for discussing the spatio-temporal characteristics of the

impacts generated by land urbanization (Tian et al., 2023). The model

calculation formula is as follows:

Yi = b0(ui, vi, ti) +okbk(ui, vi, ti)� Xik + ϵi (4)

Where b0(ui,vi,ti) is the regression constant; ϵi is the residuals of

the model; the Xik table is the observed values of the drivers,

including the key explanatory variable LU and the other control

variables; and bk(ui,vi,ti) is the regression coefficients of the

variables, i.e., the weighting coefficients of the variables at the

spatio-temporal location (ui,vi,ti).

To measure bk(ui,vi,ti) for each variable k in all spatio-temporal

positions i, bk(ui,vi,ti) can be transformed as follows:

b̂ (ui, vi, ti) = ½XtW(ui, vi, ti)X�−1WTW(ui, vi, ti)Y (5)

Where W(ui,vi,ti) is the spatio-temporal weight matrix taking

into account spatio-temporal effects.
2.3 Data sources

2.3.1 Land cover remote sensing data
The land urbanization level measurement was based on land

cover remote sensing data, which was obtained from the

Environment and Resources Data Center of the Chinese Academy
FIGURE 1

Study area.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1260641
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Peng et al. 10.3389/fevo.2023.1260641
of Sciences (http://www.resdc.cn) with a spatial resolution of 30m

(CNLUCC). The dataset is a national-scale multi-period land-use

thematic database of China constructed through manual visual

interpretation, using Landsat TM/ETM and Landsat 8 remote

sensing images as the main information source. The dataset

involves 25 land-use types, which can be grouped into six primary

classifications: cropland, forest land, grassland, watershed, urban land

and bare land, and has been widely used in many research fields, such

as land urbanization, expansion of urban land, carbon storage and

ecological spatial dynamics evolution (Table 1).

2.3.2 Gross primary productivity
Gross primary productivity (GPP) of vegetation is an important

basis for food production and the ecological-carbon cycle in

terrestrial ecosystems. Internationally recognized methods for

estimating GPP include continuous observation at flux stations,

estimation by terrestrial ecological process models, and other

methods. In this study, we used the GPP dataset provided by Fan

et al. (2023) in China Scientific Data Platform. This dataset is based

on the long-term networked observation data and open datasets of

ChinaFLUX, combining biological, climatic and soil factors, and

using the random forest regression tree model to simulate GPP per

unit of leaf area to construct the GPP dataset of China from 2000 to

2020, with a spatial resolution of 30 arcsec (Dataset doi: 10.57760/

sciencedb.o00119.00077).

2.3.3 Natural and socio-economic
control variables

In addition to land urbanization, the natural geographic

context and socio-economic conditions are also considered to

have important effects on terrestrial vegetation ecosystems.

Referring to the study of Li et al. (2022), we selected natural

indicators such as temperature, wind speed, humidity, and

distance to rivers, and anthropogenic indicators such as GDP

density, population density, distance to county administrative

centers, and distance to railroads and highways as control

variables to be introduced into the regression model in order to

improve the degree of model fit. The data for the natural control
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variables are mainly derived from relevant data products provided

by the Geographic Data Cloud Platform (http://www.gscloud.cn/

sources/index) and the Earth System Science Data Center (http://

www.geodata.cn/) of the Chinese Academy of Sciences. The GDP

density among the anthropogenic control variables is mainly

derived from the grid dataset of China’s regional GDP density

with a spatial resolution of 1km constructed by the Resource and

Environmental Science Data Center of the Chinese Academy of

Sciences (https://www.resdc.cn/). Population densities are

expressed as Landscan Global Population Statistics Analysis

data, developed by the U.S. Department of Energy’s Oak Ridge

National Laboratory (ORNL), with a spatial resolution of nearly

1km x 1km (https://www.satpalda.com/product/landscan/).
3 Result

3.1 Evolution of the spatio-temporal
dynamics of the GPP

From the grid perspective, the overall average GPP of MYRYU

increased from 1328.40 gCm-2a-1 to 1572.88 gCm-2a-1 at an average

annual growth rate of 0.848% from 2000 to 2020, which is an increase

of 18.404% (Figures 2A–C). This indicates that ecosystem vegetation

cover and productivity inMYRYU showed a rapid increasing trend in

the first two decades of the 21st century. From the township

perspective, the overall GPP also showed an increasing trend from

2000 to 2020, with the mean value of GPP increasing from 1166.649

gCm-2a-1 to 1368.795 gCm-2a-1, an increase of 17.733%

(Figures 2E–G). The spatial distribution pattern of GPP is relatively

stable, with high values distributed in the Luoxiao Mountains in the

central part of the urban agglomeration, the MofuMountains and the

Wuyi Mountains in the east. These areas have sparse human

footprints, lush vegetation, and vegetation ecosystems that maintain

good carbon sequestration and production services. Low-value areas

are concentrated in the Wuhan, Changsha and Nanchang

metropolitan areas and the surrounding densely populated urban

areas, and gradually forming an “n” shaped cluster distribution
TABLE 1 Variable settings and attributes.

Data type Variables Unit Abbreviations

Explained variable Gross Primary Productivity gCm-2a-1 GPP

Explanatory variables Land urbanization % LU

Control variables

GDP density 10000CNY/km2 GDP

Population density person/km2 PD

Distance to the county administrative center m Dis-county

Distance to highway m Dis-highway

Distance to railroad m Dis-railroad

Temperature ° TEM

Wind m/s WIND

Distance to river m Dis-river
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pattern. However, the overall upward trend in GPP does not mean

that the level of vegetation coverage levels and productivity are

increasing across MYRYU. In terms of changing trends, despite

significant GPP growth in the southern and eastern regions of the

urban agglomeration from 2000 to 2020, the GPP in parts of the main

city zone of the cities of Wuhan, Changsha, Nanchang, Xiangyang

and Yichang showed a significant downward trend. This may be due

to the gradual degradation of the natural habitat and vegetation cover

of the ecosystem as a result of the crowding out of a large amount of

ecological space by productive-living space in the main city zone

during the study period (Figures 2D, H).
3.2 Evolution of the spatio-temporal
dynamics of land urbanization

The land use types of MYRYU are dominated by two categories,

farmland and forest land, which are distributed in the plain areas

(Jianghan Plain, Dongting Lake Plain and Poyang Lake Plain) and the

mountainous areas (Luoxiao Mountains, Shufu Mountains and Wuyi

Mountains, etc.) of the urban agglomeration, respectively. The average

share of them was 37.091% and 49.588% in 2000 and 2020,

respectively, but decreased by 4,798.480km2 and 2,063.764km2

during the study period (Figures 3A–C). The urban land in MYRYU

increased from 9,098.238km2 to 15,394.108km2 at an average annual

growth rate of 2.664% from 2000 to 2020 (Figure 3E). According to the

land use transfer matrix information, the growth of urban land in

MYRYU from 2000 to 2020 is mainly realized by encroachment on

farmland and forest land. Especially in 2000-2010, the scale of

conversion of farmland and forest land to urban land was

2882.403km2 and 1048.1643km2, respectively, and in 2010-2020, the

scale of conversion was 1487.278km2 and 293.614km2, respectively
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(Figure 3E). These new urban land uses occurred mainly in the areas

surrounding the Wuhan, Changsha and Nanchang metropolitan areas

(Figure 3D). The LU level of MRYRU increased from 2.657% in 2000

to 4.496% in 2020. And the high value area were clustered in point-

shaped distribution centered on the main city zone of the provincial

capital city in 2000, and by 2020 are gradually shifting to a face-shaped

cluster centered on the metropolitan area of the provincial capital cities,

such asWuhanmetropolitan (Wuhan-Xiaogan-Xiantao-Jingzhou) and

the Changsha metropolitan (Changsha-Zhuzhou-Xiangtan).

Geographically, the distribution of high values has formed a “ring-

shaped” due to the socio-economic disparity of the region and the

mountain range barrier (Figure 4).
3.3 Spatio-temporal correlation between
land urbanization and GPP

The bivariate global spatial autocorrelation indices of LU and

GPP for MYRYU are -0.499, -0.510 and -0.504 in 2000, 2010 and

2020, respectively (Figure 5). This showed that the negative

correlation between land urbanization and vegetation GPP in

MYRYU is on a general upward trend in geospatial terms, and an

urgent need to regulate the correlation among them. Negative

correlation clusters (including High-Low and Low-High) are the

main type of local spatial autocorrelation of the LU and GPP bivariate

at the township scale, with the share increasing from 27.467% in 2000

to 29.607% in 2020. In particular, Low-High clusters accounted for

more than 18% of all townships in each of the study periods. This

suggests that land urbanization is an important geographic factor

associated with the productivity of vegetated ecosystems, and that

there is an urgent need for MYRYU to regulate land expansion

strategies to reduce the negative impacts on the stability of vegetated
B C D

E F G H

A

FIGURE 2

2000-2020 GPP distribution (A–C) and trends (D) of MRYRU at grid scale; GPP distribution (E–G) and trends (H) at township scales.
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ecosystems and carbon stock functions. In terms of spatial

distribution, High-Low cluster townships are stably distributed

around the main city zone of Wuhan, Nanchang, and Changsha-

Zhuzhou-Xiangtan, while Low-High cluster townships are mainly

distributed in Hengyang and some mountainous cities in the Urban

Agglomeration around Poyang Lake (Yichun, Ji’an, Fuzhou, Yingtan

and Shangrao). Low-Low cluster townships are distributed in the

mountainous areas at the junction of Hunan, Hubei and Jiangxi

provinces, and High-High type townships are in a fragmented layout.
3.4 Spatio-temporal impacts of land
urbanization on GPP based on the
GTWR model

The control variables were selected to input into the GTWR

model (spatial distribution of control variables shown in Figure 6),

and the Adjusted R2 of the model was 0.619, 0.632, and 0.756 for

2000, 2010, and 2020, respectively (Figure 7). Our study confirms that
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the regression coefficients of land urbanization in MYRYU have

significant spatial non-stationary properties in 2000, 2010 and 2020,

validating the importance of investigating the impact of LU on GPP

from a spatially localized perspective. Overall, the LUs of more than

2/3 of theMYRYU townships exert a negative depressing effect on the

GPP in the study period, especially in the 2020 when 77.241% of the

townships are in a negative impact. Geospatially, the spatial effect of

LU on GPP shows obvious steadily characteristics, and the negatively

affected areas are concentrated in the main city zone of the cities,

especially in Changsha-Zhuzhou-Xiangtan area, Wuhan, JingZhou

and Nanchang. The reason for this phenomenon may lie in the long

history of disturbance of the vegetation cover system in the main city

zone by urban construction activities, with a large amount of

vegetated ecological space being crowded out by houses, factories

and transportation routes. However, with the implementation of the

concepts of urban ecological resilience and sustainable development,

the three major urban agglomerations with the centers in Wuhan,

Changsha and Nanchang, respectively, have proposed urban land

optimization management plans and the concepts of forest city and
B CA

FIGURE 4

Trends in spatio-temporal distribution of land urbanization levels in MRYRU, 2000 (A), 2010 (B) and 2020 (C).
B C

D E

A

FIGURE 3

Trends in land-use transformation (A-C), urban expansion process (D) and the land-use transfer matrix (E) in MRYRU, 2000-2020.
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park city. This will provide more possibilities for regulating the

relationship between the demand for urban landuse and the total

primary productivity of the ecosystem. The townships where LU has

a positive impact on GPP account for about 22% of the whole

number of townships in MYRYU, and are mainly located in

Xiangyang, Yichang, and the southern counties of Zhuzhou

(Youxian, Chaling, and Yanling counties). A possible reason is that

these areas are covered with high-quality vegetation cover, and the

terrain is mainly mountainous and hillyhave. For example,

Xiangyang and Yichang are located in the mountains of western

Hubei, and the southern counties of Zhuzhou are located in the hills

of central Hunan, which are more resilient to land urbanization and

human remodeling activities, and have a certain degree of resistance

to ecological risks and disruptive capacity. Furthermore, a series of

ecological restoration measures taken by the national and local

governments in the Yangtze River Basin Ecological Conservation

Area optimized the environmental conditions for the vegetation

growth and the ecological suitability of urban expansion activities,

and may have contributed to the increase in vegetation cover

and productivity.

4 Discussion

4.1 Driving mechanisms and spatial
heterogeneity effect of LU on GPP

Natural variations in temperature, precipitation, and

photosynthesis of vegetation can shape the long-term steady-state
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evolution of vegetation cover and productivity, while anthropogenic

programs such as land urbanization, farmland expansion, and

predatory exploitation of forest resources can shift this stable

evolution process, resulting in abrupt changes in the vegetation

GPP (Qin and Sha, 2023). However, green urban planning,

environmental regulation and eco-engineering are considered to

be an optimization measure that can achieve the gradual

harmonization of “development and conservation” objectives at

the land urbanization level. The pathway is to control the pattern of

land urbanization at the front end of ecological restoration, to

modulate the input technology, capital and knowledge of ecological

restoration at the middle end, and to strengthen comprehensive

ecological management at the end (Guan et al., 2019; Zafar et al.,

2023; Zhang et al., 2023). Our study confirms the joint growth trend

of LU and GPP at the township level in the MYRYU region,

however, the encroachment of vegetation by urbanization is still

occurring, especially in the major urban areas where the significant

decline in GPP and the rapid growth of LU are forming an opposite.

Although the high quality ecological substrate of MYRYU itself is

trying hard to whitewash the overall increase in vegetation GPP in

the area, investigations based on the GWTR model confirm that the

negative impacts of the LU are in control of the bigger picture in the

long term, and that the rapid growth of the main city zone in

particular is exacerbating this productivity deprivation. This has

been mentioned in previous studies that the effects of deep

modification of human settlements on the productivity of

vegetation cover systems are significant and sustained over time

(Zhong et al., 2021; Muntasir et al., 2022; Mu et al., 2023). The study
B C

D E F

A

FIGURE 5

Evolution of global (A–C) and local bivariate spatial correlation pattern (D–F) between land urbanization and GPP in MRYRU, 2000-2020.
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B CA

FIGURE 7

Distribution of regression coefficients for land urbanization under the GTWR model in 2000 (A), 2010 (B) and 2020 (C).
B C

D E F

G H I

A

FIGURE 6

Spatial distribution of control variables: temperature (A); wind (B); humidity (C); GDP density (D); distance to river (E); distance to highway (F);
population density (G); distance to county (H); distance to railroad (I).
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also further observed some success in the conservation of mountain

vegetation. In contrast to the declining trend of GPP in the main

city zone and the metropolitan area of the provincial capital city, the

mountainous cities around MYRYU have a significant trend of GPP

growth and land urbanization has a positive impact on GPP in some

mountainous areas. This is similar to the findings of several studies

(Asif and Almagul, 2022; Hu et al., 2023; Liu et al., 2023). We

suggest that this is related to the implementation of tightened and

sustainable environmental regulations, urban planning and

ecological engineering policies in the Yangtze River Basin in

China in recent years. For example, the Action Plan for the

Protection and Restoration of the Yangtze River, the 13th Five-

Year Plan for Environmental Protection in Hubei Province, and

Hunan Provincial Government’s “No. 1 Key Project”. These policies

focus on building ecological corridors along the river, strengthening

the conservation and ecological restoration of forests, wetlands and

other ecosystems, and helping to enhance the service functions and

productivity of various types of ecosystems. These policies pay

attention to the construction of ecological corridors along the

rivers, strengthening the conservation and ecological restoration

of forests, wetlands and other ecosystems in mountainous areas,

and helping to enhance the service functions and productivity of

various ecosystems.
4.2 Policy implications and shortcomings

The long-term spatial correlation between land urbanization

and GPP was confirmed in this study, and a macro-optimization

strategy of the vegetation cover system and its productivity based on

the land urbanization perspective should be given first priority. First

of all, the development strategy of the Yangtze River Basin of

“grasping great protection, not engaging in great development”

should be further practiced. The development of a resource-saving

and ecologically optimized industrial structure and production and

living style should be promoted, as these factors largely determine

the process of land urbanization and the demand for urban land.

Secondly, strict curbing of disorderly development activities and

nature modification activities in urban agglomerations should be

emphasized. A range of ecological protection measures should be

mentioned, such as the construction of urban green corridors, park

cities and forest cities. More over, the spatial non-smoothness of the

impact of land urbanization on GPP is confirmed, and it is time for

differentiated urbanization management strategies and ecological

restoration policies based on the mountainous areas around urban

agglomerations and the main city zone to be further mentioned. In

the case of main city zone, vegetation system productivity

enhancement projects with more resilient and ecologically

resilient should be implemented. These areas should take into

account the ecological value, landscape integrity, and connectivity

of the city in urban planning practices, improve the urban ecological

environment management system, and emphasize the economic,

residential, and ecological functions of main city zone. In the case of

mountainous cities with high ecological quality and a relative lack of

urbanization activities, further monitoring of risks and challenges is
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needed, despite the relatively minor impacts of land urbanization

and the positive increase in regional GPP. These areas should

continue to implement projects such as returning farmland to

forest and planting artificial forests and grasses, strengthening

ecological protection and management of vegetation in

mountainous areas, and constructing green barriers for soil and

water conservation, water protection and other vegetation

ecological security. Adequate and sustainable financial investment

is also important. The establishment of ecological compensation

mechanisms, such as resource development compensation and

watershed compensation, should be explored, and comprehensive

forest and grassland ecological improvement and monitoring

management systems should be strengthened. The key is to

address the coordinated relationship between regional socio-

economic development and ecological protection, increase the

rate of intensive urban land use and the rate of integrated

resource development, and support more effective and flexible

policies for environmental restoration of vegetation growth.

This study has several shortcomings. First, the mediating

mechanisms through which land urbanization affects GPP are

insufficiently quantified. In the future, mediating variables such as

ecosystem organization, structure, and provisioning service

functions can be included, and the theoretical thinking of

economics and geography can be combined to further explore the

profound mechanism of the impact of LU on GPP. Second, GWTR

well illustrates the long-term comprehensive impact of LU on GPP.

However, in the future, we can focus on the comparative differences

in the impacts of land urbanization patterns on vegetation cover

systems and their productivity, and the paths that can be taken for

land ecological management between MYRYU and other urban

agglomerations in the Yangtze River Economic Belt, as well as in

China and globally, from a broader perspective. This is important to

further enrich the global value and macro-reference of the study.

Third, population and economic urbanization as important areas of

urbanization were not considered in this study. In the future,

population, land and economic urbanization can be integrated to

monitor the mechanisms of urbanization impacts on vegetation

ecological resources, structure and function.
5 Conclusion

Previous studies have paid little attention to the associative

relationship between land urbanization and vegetation GPP in

MYRYU, and the spatially localized effects of land urbanization

on GPP have been less comprehensively investigated. This study

explores the spatio-temporal evolution of land urbanization and

GPP in MYRYU from a township perspective based on multivariate

remote sensing datasets. The spatial correlation properties of the

two were further investigated, as well as the spatial effects of LU to

produce driving impacts were analyzed based on the GTWR model.

This study has drawn widespread attention to ecological

engineering in mountainous areas and green urban planning in

the main city zone of the city, and more importantly the findings

provide evidence for a subject area and regionally differentiated
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management strategies for ecological restoration of vegetation in

MRYRU. This leads to some interesting conclusions: (1) The

average GPP of MYRYU grows overall to 1572.88 gCm-2a-1 from

2000 to 2020. High-value areas are distributed in the central and

eastern mountainous areas, while low-value areas gradually form an

“n”-shaped cluster distribution pattern, and the GPP of some areas

in the main city zone has decreased significantly. (2) The negative

spatial autocorrelation between LU and GPP shows a general

upward trend, and Low-High is the dominant cluster type for the

bivariate spatial correlation, followed by High-Low. (3) The impact

of land urbanization on GPP has obvious spatial non-stationary

distribution characteristics, and is dominated by negative impact.

More importantly, based on the theory of “population-land-nature”

complex ecosystem, our study explores the coordinated and

optimized strategies and sustainable development paths of land

urbanization and vegetation ecosystem productivity in MYRYU

from the perspectives of land policy, green urban planning, and

ecological engineering.
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The deterioration of the urban surface thermal environment has seriously affected
regional environments and human health, becoming a critical ecological problem
faced by cities worldwide. This study focused on surface urban heat island effect in
metropolitan area and selected the emerging metropolitan area of Zhengzhou,
China, as a case study. Based on the MODIS land surface temperature data
obtained from the Google Earth Engine the surface urban heat island intensity
(SUHII) was calculated and its temporal and spatial dynamics were analyzed from
2003 to 2022. The main findings indicated that Zhengzhou, the core city of the
metropolitan area, had the strongest urban heat island effect with day surface
urban heat island intensity of 1.10°C and night SUHII of 1.39°C). Generally, the
average annual SUHII was higher during the day than at night, and the maximum
value was detected in summer (2.43°C). SUHII showed an increasing trend at night,
especially in summer during the study period. It decreased obviously in urban
centers during the day, while it increased obviously in the outer urban areas at
night. The results of this study contributed to the understanding of the
spatiotemporal dynamics of the urban heat island effect in the Zhengzhou
metropolitan area.

KEYWORDS

urban heat island effect, surface heat island intensity, trend analysis, spatial
disparities, GEE

1 Introduction

The urban heat island effect is defined as the phenomenon by which temperatures in
urban areas are higher than those in surrounding rural areas. This effect can have an impact
on the microclimate, atmospheric environment, and the wellbeing and health of urban
residents (Manoli et al., 2019; Yang D. et al., 2022; Vinayak et al., 2022; Ma and Dong, 2023).
Within the context of global climate change, urban heat islands exacerbate the risk of heat-
related deaths (Wang J. et al., 2021; Tong et al., 2021). With the acceleration of urbanization,
the urban heat island effect has become an important environmental issue. The phenomenon
is caused by the gradual replacement of natural land surfaces (vegetation and water bodies)
with impermeable surfaces and by the increase in heat emissions derived from urban human
activities. As China’s massive urbanization continues to progress, the expansion of urban
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land use and population growth will continue to have a significant
impact on the urban heat island effect (Chen et al., 2018; Vinayak
et al., 2022). Studying urban heat islands can provide a theoretical
basis for urban planning and sustainable development, which is
urgently needed and have significant practical implications for
improving the living environment of urban residents.

Extensive research has already been conducted on the urban
heat island effect. In terms of measurement methods, it is common
to calculate the air temperature or land surface temperature
differences between urban and suburban areas based on data
obtained on-site or using remote sensing technology (Khan and
Chatterjee, 2016; Levermore et al., 2018; Zhang X. et al., 2022). In
recent years, the urban heat island effect has been increasingly and
primarily quantified by calculating the surface urban heat island
intensity (SUHII) using land surface temperature data derived from
remote sensing (Deilami et al., 2018; Kumar and Mishra, 2019; Yao
et al., 2019). The temporal and spatial characteristics of SUHII and
its influencing factors are the main focus of current research.
Typically, Meng et al. (2018) conducted a temporal analysis of
the urban heat island effect in Beijing and found a higher
average daytime SUHII, which was associated with higher density
of impervious surfaces (Meng et al., 2018). Wang et al. (2021)
investigated urban heat island and the influences of air pollutants in
cities in the Yangtze River Delta during 2015–2019 and also
documented that annual average daytime SUHII was higher than
nighttime SUHII, and O3 concentration presented a significant
positive correlation with daytime SUHII (Wang Y. et al., 2021).
Zhang et al. (2022) documented a decrease in SUHII in the Yangtze
River Delta, Beijing-Tianjin-Hebei region, and the middle reaches of
the Yangtze River from 2003 to 2019, as well as an increase in SUHII
in the Chengdu-Chongqing and Pearl River Delta urban
agglomerations, with significant impacts of land cover changes
on the urban heat island effect in the Beijing-Tianjin-Hebei,
Yangtze River Delta, and Chengdu-Chongqing urban
agglomerations (Zhang H. et al., 2022). Additionally, Siddiqui
et al. (2021) investigated the temporal variations of SUHII in
three cities in India from 2001 to 2019, revealing a significant
increasing trend in annual average SUHII in Kolkata and Pune,
with particularly high warming rates during summer, especially at
night. (Siddiqui et al., 2021). Generally, previous studies have mainly
shown that the urban heat island effect is obvious in summer and at
night. Aspects of the underlying surface, including land use/cover,
urban morphology, landscape pattern, as well as anthropogenic heat
and atmospheric pollution, are considered to be major factors
influencing the urban heat island effect (Wang et al., 2018; Li
et al., 2020; Wang J. et al., 2021; Yang F. et al., 2022; Sun et al.,
2022). Regional climate conditions also have an important impact
on the urban heat island effect. For example, Wu et al. (2019)
explored the heat islands of 44 cities in South America based on the
Köppen-Geiger climate zones and found that the average SUHII in
all climate zones (except for arid zones) was higher during the day
than at night (Wu et al., 2019).

In China, research is concerned with this issue in multiple cities
or at the national scale (Peng et al., 2012; Debbage and Shepherd,
2015; Zhao et al., 2016; Yang et al., 2019; Liu Y. et al., 2020; Ke et al.,
2021; Marando et al., 2022), especially where major megacities are
located, such as the Yangtze River Delta region and the Beijing-
Tianjin-Hebei region (Zhao et al., 2016; Liu X. et al., 2020; Zhang X.

et al., 2022). These studies have greatly contributed to understanding
this harmful phenomenon and the mechanisms that influence it.
While, urban heat island effects may have different temporal and
spatial characteristics in different regions and at different stages of
urban expansion. Particularly, with the development of urban
agglomerations, the urban heat island effect may extend beyond
individual cities and spread throughout the entire urban
agglomeration. While there have been numerous studies on the
urban heat island effect in single cities or megacities, research
specifically focusing on urban agglomerations remains relatively
limited. Previous studies have mainly examined the temporal
variations of the overall urban heat island effect in single cities
and the differences among different cities (Meng et al., 2018; Yang
et al., 2019). Some scholars have also investigated the spatial
differences of the urban heat island effect within urban areas,
such as the differences among different urban functional zones
(Zhao et al., 2016; Ke et al., 2021). However, less attention has
been given the temporal trends of the urban heat island effect within
urban areas and its spatial differences. Therefore, further
investigation is warranted to explore these aspects.

Therefore, to bridge this knowledge gap, long-termMODIS land
surface temperature data obtained from the Google Earth Engine
(GEE) cloud platform and related auxiliary data were here used to
measure the SUHII of each city in the Zhengzhou metropolitan area
from 2003 to 2022. Then, the annual variation and seasonal
differences in SUHII during the day and at night were analyzed.
Finally, the temporal trends of this parameter and its spatial
differences within the cities in the area were further explored.
The aim was to describe the spatiotemporal dynamics of the
urban heat island effect and provide support for the formulation
of policies to mitigate this harmful phenomenon in the Zhengzhou
metropolitan area.

2 Materials and methods

2.1 Study area

The Zhengzhou metropolitan area is located in the central and
lower reaches of the Yellow River in China, a favorable geographical
location at the center of China (Figure 1). Its total area is about
15.90 thousand square kilometers. It consists of five cities,
i.e., Zhengzhou, Kaifeng, Xuchang, Xinxiang, and Jiaozuo, among
which Zhengzhou is one of the nine national central cities of China.
The Zhengzhou metropolitan area is characterized by a mainly flat
terrain and mild climate. It is a key development area in Henan
Province, and its economic hinterland is vast and has a great
potential for future expansion. In 2021, the permanent
population in the Zhengzhou metropolitan area was
31.60 million people, accounting for 32% of the total population
in Henan Province; the regional gross domestic product was
2.43 trillion RMB, accounting for 41% of that of Henan Province
(Henan Province Bureau of Statistics, 2022). It is one of the most
developed and fastest-growing regions in central and western China.
However, the rapid expansion of cities has damaged the urban
ecological environment, leading to changes in the thermal
environment and to the consequent urban heat island effect in
this region.
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2.2 Data sources and preprocessing

2.2.1 Surface temperature data
In previous studies, surface temperature has been used as a

common indicator to quantify the urban heat island effect (Schwarz
et al., 2011; Halder et al., 2021; Sekertekin and Zadbagher, 2021). In
this study, the MODIS surface temperature product dataset,
MYD11A2 V6.1, was obtained from the NASA’s Land Processes
Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.
gov) through the GEE platform. This dataset has a spatial resolution
of 1 km and provides daytime and nighttime surface temperatures
over an average period of 8 days. The images in the form of average
values were synthesized to obtain the 20-year, annual, and seasonal
land surface temperatures for the Zhengzhou metropolitan area on
the GEE. Seasons were defined based on the traditional Chinese
classification: spring (from March to May), summer (from June to
August), autumn (from September to November), and winter (from
December to February of the following year). TheMYD11A2 dataset
is available from 4 July 2002, therefore data from 1 March 2003, to
28 February 2023, were used in the present investigation.

2.2.2 Land use data
Land use data were obtained from the China National Land Use/

Cover Change dataset at the Resource and Environment Science and
Data Center (https://www.resdc.cn/). This dataset is a national-scale
thematic database of variations in land use/cover in China that was
compiled through manual visual interpretation of Landsat-derived

remote sensing images. The dataset, which has been updated to
2020, adopts a two-level classification system, with Level 1 consisting
of six categories: cultivated land, forest land, grassland, water area,
construction land, and unused land; the spatial resolution is 30 m.

2.3 Methods

2.3.1 Subdivision of urban and suburban areas
A core issue in the remote sensing-based monitoring of urban

heat islands is how to subdivide urban and suburban areas. In this
study, an area buffer method was developed to determine the
boundary between urban and suburban areas based on relevant
previous investigations (Clinton and Gong, 2013; Zhou et al., 2014;
Tan and Li, 2015; Liu X. et al., 2020). This method consisted of four
steps. Firstly, land use data were processed using a binary system;
construction land was defined as 1 and other land cover types were
defined as 0. Secondly, the largest urban patches were identified and
selected, and a 3 × 3 convolution filter was applied to extract urban
boundaries. Thirdly, the “holes” formed by non-urban land cover
within the urban boundary were filled to obtain a complete urban
boundary. The resolution was very high: some patches north and
east of Zhengzhou are separated from urban Zhengzhou by the Jialu
River, Lian-Huo highway, and their green belt. In reality, these
patches are also part of Zhengzhou’s urban area (they are main areas
of Huiji District and Zhengdong New District). Thus, mask
processing was applied to gap areas north and east of

FIGURE 1
Map of the Zhengzhou metropolitan area and its urban and suburban areas.
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Zhengzhou. Finally, equal-area buffers were established outside the
urban boundary to determine the suburban area (Liao et al., 2021).
The derived urban and suburban boundaries are shown in Figure 1.
The method ensures that urban built-up areas are concentrated
contiguous areas, and the urban area is similar to the outer area,
which is conducive to the comparison of surface temperature in the
two regions.

2.3.2 Surface urban heat island intensity
SUHII is commonly measured by calculating the differences

in surface temperature between urban area or sites and suburban
area or sites. Based on the above-mentioned preprocessing of
daytime and nighttime surface temperature data at the
interannual and seasonal scales, we calculated the difference in
the average surface temperature of all pixels between the urban
and suburban areas of each city and considered it as the surface
heat island intensity of each city. The following equation was
applied:

SUHII � ∑n
u�1Tu

n
− ∑m

s�1Ts

m

where SUHII is the surface urban heat island intensity, n and m
represent the total number of pixels in urban and suburban areas,
respectively. Tu is the surface temperature in pixel u in urban areas,
and Ts is the surface temperature in pixel s in suburban areas.

2.3.3 Sen’s slope
Sen’s slope, also known as Theil-Sen median, is a robust

nonparametric statistical method used to calculate trends. As it
has a high computational efficiency and is insensitive to
measurement errors and outliers, this method is commonly used
in trend analyses of long time series data. It is described by the
following equation:

β � mean
xj − xi
j − i

( ), j> i( )
where, xi and xj are the time series of observed values (surface
temperature in the current study). A β value higher than 0 indicates
an upward trend in the time series, while a β value lower than
0 indicates a downward trend.

The Sen’s slope method is usually applied in combination with
the Mann–Kendall test.

2.3.4 Mann-Kendall test
TheMann-Kendall test is a nonparametric statistical method. Its

null hypothesis assumes the absence of a trend, while the alternative
hypothesis assumes the existence of some trend. Through this test,
the difference between each data point and all subsequent data
points in a given time series was calculated, and the trend of the time
series was then determined based on the sign of the differences
obtained. Finally, by applying the rank-sum test it was established
whether the trend was significant or not. A significant test result
indicated the presence of a trend in the time series; otherwise, it was
concluded that there was no trend.

The test was described as follows:
The standardized test statistic Z for time series

Xi, i � 1, 2,/, i,/, j,/, n, is defined as:

Z �

S�������
VAR S( )√

0
S + 1�������
VAR S( )√

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S> 0( )

S � 0( )

S< 0( )

S � ∑n−1
i�1 ∑n

j�i+1sign xj − xi( )
sign θ( ) �

1
0
−1

⎧⎪⎨⎪⎩
θ > 0( )
θ � 0( )
θ < 0( )

where, xi and xj are the time series, and n is the time series length. If
n≥ 8, the expectation and variance of S is:

E S( ) � 0

VAR S( ) � n n − 1( ) 2n + 5( )
18

If |Z|>Z1−α
2
(α is the given significance level), the time series

exhibits a significant variation trend. When α is 0.05, Z = 1.96. If
|Z | > 1.96, the variation trend is significant at the confidence
level of 95%.

3 Results

3.1 Daytime and nighttime SUHIIs in each
city of the Zhengzhou metropolitan area

3.1.1 Average daytime and nighttime SUHIIs in each
city

Based on the daytime and nighttime land surface
temperature data from 2003 to 2022, the multi-year average
land surface temperatures of urban and suburban areas and the
annual average SUHIIs of each city during the day and at night
were calculated and are shown in Figure 2. Among the cities in
the Zhengzhou metropolitan area, Zhengzhou showed the
strongest SUHII during the day (1.10°C) and at night
(1.39°C). The annual average SUHIIs during the day in the
other cities were all less than 1°C. However, at night, Xinxiang
and Xuchang exhibited SUHII higher than 1°C, reaching 1.23°C
and 1.18°C, respectively. The lowest annual average SUHII

FIGURE 2
Average daytime and nighttime surface heat island intensity in
each city of the Zhengzhou metropolitan area.
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during the day was 0.34°C, detected in Kaifeng, while the lowest
value at night was 0.76°C, detected in Jiaozuo. Overall, the
multi-year average land surface temperatures of urban and
suburban areas in the Zhengzhou metropolitan area during
the day were 26.38°C and 25.66°C, respectively, while at night
they were 10.34°C, and 9.24°C, respectively. The SUHII in the
Zhengzhou metropolitan area was higher at night (1.10°C) than
during the day (0.72°C).

3.1.2 Daytime and nighttime SUHIIs in different
seasons in each city

Subsequently, the average daytime and nighttime SUHIIs in
each city in different seasons were calculated, and the results are
shown in Table 1. The highest daytime SUHII was detected in
Xuchang in spring (2.11°C), followed by that in Xinxiang
(2.05°C), while that in Kaifeng was the lowest (0.67°C). In
summer, the highest SUHII was detected in Zhengzhou,
where it reached 2.43°C, while the values in other cities were
all below 2.00°C. In autumn, the SUHII in Zhengzhou was still
the highest, reaching 0.78°C, while that in Xinxiang was the
lowest, at only 0.06°C. In winter, the SUHIIs in all cities were
negative due to the cold island effect. The strongest and weakest
effects were detected in Xinxiang (−0.72°C) and Zhengzhou
(−0.28°C), respectively.

At night, the highest SUHII was recorded in Xuchang in spring
(1.57°C), followed by the values in Zhengzhou (1.47°C) and
Xinxiang (1.46°C). The lowest SUHII in spring was detected in
Kaifeng (0.94°C). In summer, Zhengzhou exhibited the highest
SUHII (1.35°C), followed by Xinxiang (1.27°C) and Xuchang
(1.19°C), while the lowest value was detected in Kaifeng
(0.90°C). In autumn, the highest SUHII was still recorded in
Zhengzhou (1.40°C), followed by Xuchang (1.28°C) and
Xinxiang (1.27°C). In winter, Zhengzhou again recorded the
highest SUHII (1.67°C), followed by Xinxiang (1.38°C) and
Xuchang (1.33°C), while the lowest intensity was recorded in
Jiaozuo (0.71°C).

Among the four seasons, spring and summer recorded higher
SUHIIs in each city during the day. Among the examined cities,
similarly to the results reported in Figure 1, Zhengzhou, Xuchang,
and Xinxiang exhibited relatively high SUHIIs, while the values in
Kaifeng and Jiaozuo were low.

3.2 Temporal variation of daytime and
nighttime SUHIIs

3.2.1 Interannual variation of daytime and
nighttime SUHIIs

The annual average daytime and nighttime SUHIIs in each city
from 2003 to 2022 were plotted to determine temporal variations,
and the results are shown in Figure 3. During the day, the SUHII in
Kaifeng and Jiaozuo showed a fluctuating downward trend from
2003 to 2018, while that in Zhengzhou, Xuchang, and Xinxiang
showed an increasing trend from 2003 to 2008 and a fluctuating
downward trend from 2008 to 2018 (Figure 3A). After 2018, the
overall trend in all cities except for Jiaozuo showed a significant
increase. The daytime SUHII in Zhengzhou was positive in all years
examined, while in the other cities it was positive in most years and
negative in some years. Specifically, in Kaifeng, SUHII was negative
in 2016, 2019, and 2022, with values of −0.04°C, −0.14°C,
and −0.10°C, respectively. In Jiaozuo and Xinxiang, this
parameter was negative in 2018, with values of −0.02°C
and −0.38°C, respectively. In Xuchang, it was negative in 2013,
with a value of −0.18°C.

In all cities except for Jiaozuo, SUHII showed a fluctuating
upward trend at night. In 2003, the nighttime SUHIIs in Kaifeng,
Xinxiang, Xuchang, and Zhengzhou were 0.67°C, 0.87°C, 1.04°C, and
0.92°C, respectively. By 2022, these values had increased to 1.12°C,
0.98°C, 1.33°C, and 1.69°C, respectively.

The daytime and nighttime SUHIIs in the study area in summer
and winter from 2003 to 2022 were plotted to analyze temporal
variations in different seasons. The temporal changes in SUHII
during summer days reported in Figure 4 indicate no significant
increasing or decreasing trends in the cities examined. Among these,
Zhengzhou exhibited a relatively large fluctuation in SUHII values
during summer days. However, during summer nights, the
intensities generally increased in all cities, and the increase was
significant especially between 2003 and 2010 (Figure 4B). During
winter days, SUHII showed a decreasing trend in all cities before
2009 and displayed interannual non-significant fluctuations after
2009, which basically indicated the presence of the cold island effect
(Figure 4C). During winter nights, SUHII did not very significantly
in Jiaozuo, but in the other cities it generally showed an increasing
trend (Figure 4D).

TABLE 1 Surface heat island intensity in each city of the Zhengzhou metropolitan area across seasons.

City Day Night

Spring Summer Autumn Winter Spring Summer Autumn Winter

Jiaozuo 1.04 1.53 0.34 −0.54 0.94 0.95 0.77 0.71

Kaifeng 0.67 1.89 0.26 −0.70 1.12 0.90 1.10 1.14

Xinxiang 2.05 1.78 0.06 −0.72 1.46 1.27 1.27 1.38

Xuchang 2.11 1.68 0.35 −0.26 1.57 1.19 1.28 1.33

Zhengzhou 1.36 2.43 0.78 −0.28 1.47 1.35 1.40 1.67

Mean 1.44 1.86 0.36 −0.50 1.31 1.13 1.16 1.25
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3.3 Variations and spatial differences in
daytime and nighttime SUHIIs within cities

SUHII was expected to vary at different locations within each
city. The pixel-scale SUHII was here calculated based on the daytime
and nighttime surface temperatures of urban and suburban areas in

each city from 2003 to 2022. Then, based on the values obtained for
each year, the Sen’s slope was calculated at the pixel scale and the
Mann–Kendall trend test was conducted. Using a confidence level of
95% (α = 0.05, Z = 1.96), the SUHII trends of all cities were
categorized into four types: significant increase, non-significant
increase, significant decrease, and non-significant decrease.

FIGURE 3
Temporal variation of surface heat island intensity in each city of the Zhengzhou metropolitan area between 2003 and 2022: (A) day, (B) night.

FIGURE 4
Temporal variation of SUHII in each city of the Zhengzhoumetropolitan area during summer andwinter from 2003 to 2022: (A) summer daytime, (B)
summer nighttime, (C) winter daytime, (D) winter nighttime.
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Figure 5 shows the spatial distribution of daytime SUHII trends
in the five cities examined. This parameter significantly decreased
during the day in the old city areas and increased primarily in the
peripheral urban areas, namely, in the northern parts of Xuchang
(Figure 5A) and Kaifeng (Figure 5B), the eastern and western parts
of Jiaozuo (Figure 5C), the western and southern parts of Xinxiang
(Figure 5D), and the northeastern and southeastern parts of
Zhengzhou (Figure 5E). The proportion of areas showing a
significant decrease in SUHII during the daytime was relatively
large in each city (Table 2). Specifically, the proportion in the urban
area of Xinxiang was the largest, at 55.11%, while that in the urban
area of Zhengzhou was the smallest, but still up to 39.67%. The areas
in each city showing a significant increase in SUHII during the

daytime were relatively small. The largest proportion (18.02%) was
detected in the urban area of Zhengzhou, followed by Xuchang
(12.04%) and Kaifeng (10.44%). In both the urban areas of Xinxiang
and Jiaozuo, the proportion was lower than 7.00%.

Figure 6 shows the spatial distribution of nighttime SUHII
trends for the five cities examined. A significant decrease in
nighttime SUHII was detected southwest of Xuchang
(Figure 6A), while a significant increase was observed northeast
of this city. In other areas, the upward or downward trends were not
significant. In Kaifeng, most areas northwest of Longting District
showed a significant increase in SUHII at night, while other areas
mainly exhibited non-significant upward or downward trends
(Figure 6B). In the southern part of Jiaozuo, the nighttime SUHII

FIGURE 5
Spatial distribution of daytime SUHII trends in different cities within the Zhengzhou metropolitan area: (A) Xuchang, (B) Kaifeng, (C) Jiaozuo, (D)
Xinxiang, (E) Zhengzhou.
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increased significantly, while in some central, northeastern, and
northwestern areas of the city, this parameter showed a significant
decrease (Figure 6C). Significant increases in nighttime SUHII were
observed in some eastern, southeastern, and northern areas of
Xinxiang (Figure 6D), while some small areas northwest and
southwest of this city showed significant decreases in this
parameter. In most other areas, the upward or downward trends
were not significant. Significant increases in nighttime SUHII were
observed in most southeastern, northwestern, and southwestern
areas of Zhengzhou (Figure 6E), while individual areas northeast
and southwest of this city showed a significant decrease in this
parameter. The values in the old city area and its surroundings
exhibited a downward and upward trend, respectively, but these
were not significant.

Based on the data reported in Table 2, large areas of Kaifeng
(51.51%) and Zhengzhou (41.14%) exhibited a significant increase in
nighttime SUHII, while this trend was observed in relatively small
areas in Jiaozuo (13.93%) and Xinxiang (14.70%). The largest area
showing a significant decrease in nighttime SUHII was detected in
Jiaozuo, reaching 35.86%, followed by Xuchang at 10.11%. In all the
other cities, the proportions were smaller than 6.50%.

Several studies have been conducted to investigate urban heat
island in the study area. However, previous research has primarily
focused on Zhengzhou. Notably, Min et al. (2018) and Yang et al.
(2022) examined the temporal and spatial variations of urban heat
island using radiation brightness temperature data for the periods of
1996–2014 and 2006–2020, respectively (Min et al., 2018; Yang Y.
et al., 2022). These studies analyzed the spatial patterns of urban heat
island and documented the area of urban heat island generally
increased during over the study periods. Additionally, Min et al.
(2018) reported an overall rise in average land surface temperature
during 1996–2014. Furthermore, Zhou et al. (2022) investigated the
temporal and spatial variations of land surface temperature across
the entire city of Zhengzhou, encompassing both urban and rural
areas (Zhou et al., 2022). The study utilized the MODIS land surface
temperature data from 2005 to 2020 and found that the average land
surface temperature exhibited an upward trend, with the urban heat
island predominantly concentrated in the main city. It is important
to note that these aforementioned studies differ significantly from
the present study, as they used land surface temperature as a metric
to characterize urban heat island and focused on analyzing the
spatial distribution and temporal changes of land surface
temperature. Nevertheless, there were some similar findings

indicating a general increasing trend in surface temperature
within Zhengzhou (see Fig. A1 and Fig. A2).

4 Discussion

In this study, the SUHII in the cities of the Zhengzhou
metropolitan area was calculated and its temporal variation,
seasonal differences, and spatial differences during the day and at
night were analyzed. The core city of the metropolitan area,
Zhengzhou, exhibited the strongest SUHII and, in all cities
examined, this parameter was higher during the day than at
night. Significant seasonal differences in SUHII were detected in
each city, with generally stronger daytime intensities in summer and
cold island effects in winter. From 2003 to 2022, the annual average
SUHII at night and the average SUHII in summer and winter nights
showed overall increasing trends in all cities except for Jiaozuo.
Values varied significantly in different areas within each city during
the day, with significant downward trends detected in the central
areas (referred to as “old city”) and significant upward trends in
some peripheral areas. Significant regional differences in the
increase or decrease of nighttime SUHII in each city were also
observed.

The urban heat island effect is a widespread phenomenon,
especially in large cities (Yang et al., 2019), and the present study
confirmed that the city of Zhengzhou had the strongest SUHII in the
metropolitan area. In comparison, the values detected in Kaifeng and
Jiaozuo were relatively low, and this difference is closely related to the
geographical environment of these two cities. Kaifeng, known as the
“water city” of northern China, hasmany water bodies in its urban area,
which result in a weak heat island effect. Due to the exposure of Jiaozuo
to the Taihang Mountain in the north and its winds, the nighttime
surface temperature in this city was lower than 1°C, and SUHII was also
consequently low. As reported in previous studies of the seasonal
patterns of SUHII in Chinese cities (Zhou et al., 2014; Wang et al.,
2015), the present study found that the daytime heat island effect in the
Zhengzhoumetropolitan area was the strongest in summer, followed by
that in spring, autumn, andwinter, while the nighttime heat island effect
was stronger in spring and winter and weaker in summer and autumn.
The Zhengzhoumetropolitan area is located in the temperate monsoon
climate zone of the northern hemisphere and is characterized by long
sunshine hours and a high solar elevation angle in summer. The
continuous heat storage by artificial surfaces in urban areas causes

TABLE 2 Proportion of areas (%) showing increasing (Rise) or decreasing (Fall) trends in SUHII during the day and at night in different cities within the Zhengzhou
metropolitan area.

City Day Night

Fall Fall* Rise* Rise Fall Fall* Rise* Rise

Jiaozuo 26.24 43.05 5.08 25.62 36.27 35.86 13.93 13.93

Kaifeng 31.10 43.96 10.44 14.50 27.61 6.18 41.15 25.07

Xinxiang 25.24 55.11 6.92 12.73 29.63 4.65 14.70 51.02

Xuchang 25.39 40.25 12.04 22.32 31.98 10.11 28.38 29.54

Zhengzhou 23.58 39.67 18.02 18.73 16.43 4.66 51.51 27.41

Note: *represents significant values.
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higher daytime surface temperatures that result in stronger daytime
SUHIIs in summer. In contrast, in suburban areas, where there are
more agricultural activities or forest vegetation, the evapotranspiration
effect of plants reduces surface temperatures (Yao et al., 2019; Meng
et al., 2023). In this study, the lowest SUHIIs were detected in winter,
indicating the presence of the cold island effect, which is associated with
weak solar radiation and differences in the thermal properties of urban
and suburban areas. This effect has been shown to vary in different
regions. At night, suburban vegetation activity and reduced surface
reflectivity as well as human-induced heat emissions cause higher
surface temperatures in urban areas than in suburban areas in all
seasons (Yang et al., 2019).

In terms of the interannual variation of daytime and nighttime
SUHIIs, we found no significant trends during the day in any of the
cities examined, except for Jiaozuo. However, the SUHII at night
showed an increasing trend in all cities except for Jiaozuo. In terms of
seasonal variation, no clear trend in daytime SUHII was detected either
in winter or summer. However, the nighttime SUHII in summer
showed a clear increasing trend in all cities, while that in winter showed
a clear increasing trend for all cities except for Jiaozuo. Similar findings
have also been reported in other studies (Zhou et al., 2016; Meng et al.,
2018). The present study also revealed the spatial differences in SUHII
within urban areas. During the day, this parameter exhibited a
significant decreasing trend in the “old city” areas and a non-

FIGURE 6
Spatial distribution of nighttime SUHII trends in different cities within the Zhengzhou metropolitan area: (A) Xuchang, (B) Kaifeng, (C) Jiaozuo, (D)
Xinxiang, (E) Zhengzhou.
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significant decreasing trend in the surrounding areas. On the other
hand, some areas on the outskirts of the cities examined showed a
significant increasing trend. This indicated that the urban heat islands
effect shifts from central cities to the suburbs, and we believe that this
phenomenon is related to the processes of urbanization and spatial
expansion of cities. The earliest increases in surface temperature and
SUHII were recorded in the central areas of cities, which were
developed first. With the expansion of cities, the surface
temperature in the peripheral areas increased rapidly, leading to an
increase in surface temperature in the suburbs. At the same time, the
surface temperature in the old cities increased relatively slowly due to
the higher initial surface temperature. Consequently, the difference in
the increase of surface temperature between the central and peripheral
areas (see Figure A1) resulted in a weaker increase in SUHII in the
central area, and even in a decreasing trend. At night, obvious
differences among cities were detected in the areas where SUHII
significantly increased or decreased. This was due to the main
direction of urban expansion and to the population and industrial
concentrations in each city. Over the past 20 years, Xuchang has
mainly expanded to the northeast, Kaifeng has expanded on a large
scale in Longting District, and Jiaozuo and Xuchang have expanded
toward their southeastern/eastern areas. In contrast, in Zhengzhou, the
areas of urban and population expansion have been the eastern
Zhengdong New District, southeastern Economic Development
Zone, northwestern High-Tech Zone, and Huiji District, and they
have been rapidly developed moving from the city center toward the
periphery.

The above findings can contribute to the understanding of the
spatiotemporal dynamics of the urban heat island effect in the
study area. Especially, the spatial differences in SUHII within
urban areas, which previous studies have focused less on, were
also revealed. The specific mechanisms that determine the urban
heat island effect in each city and its influencing factors are
different and complex and need to be further investigated.
However, urbanization and urban expansion undoubtedly
resulted in spatial differences in the increase of surface
temperature (Figure A2) and SUHII within each city. In
addition, the large area of the water body (in Kaifeng)
effectively mitigates the urban heat island effect from the
comparison of heat island effects in the five cities. Thus, these
findings have important practical policy implications for the
ongoing urban renewal projects and urbanization development
planning in China. It is recommended to add more green
vegetation around buildings, city roads, and large squares, and
to include new water urban bodies, and increase the existing urban
water bodies according to the area of urban function zones. The
plan for ventilation corridors and green belts between urban
function zones should be given full attention in future
urbanization and urban agglomeration development.

There were two main aspects of limitation that needed clarification
in this study. The first was the coarse resolution of the surface
temperature data. A resolution of 1 km is sufficient to reveal spatial
differences in surface temperatures at a regional or national scale, but it
fails to capture the spatial variability in temperature within urban areas
effectively. Fortunately, significant progress has beenmade in producing
finer resolution surface temperature data products, such as 100 m and
30 m, based on the Landsat data (Wang et al., 2020; Cheng et al., 2021).
Therefore, finer-resolution surface temperature product data should be

applied in future studies. The second limitation stems from the division
of urban areas and suburban areas. Urban areas are dynamic and
rapidly expand into rural regions. In urban agglomerations, some cities
are even adjacent to each other through critical infrastructure and
functional zones, blurring the boundaries between urban and suburban
areas. Consequently, some urban areas may be excluded in this study.
More scientific and effective quantization methods for defining urban
and suburban areas should be explored, particularly in urban
agglomerations.

5 Conclusion

In this study, the SUHIIs of cities in the Zhengzhou
metropolitan area were calculated based on the difference in
surface temperature between urban and suburban areas. Then,
the differences in this parameter during the day and at night, as
well as its seasonal variation, temporal trends, and spatial differences
among different cities were analyzed. Overall, it was shown that
Zhengzhou, the core city of the metropolitan area, had the strongest
urban heat island effect. The nighttime SUHII of each city examined
exhibited a clear increasing trend; however, the daytime SUHIIs
outside the urban areas showed a significant decreasing trend, while
the nighttime values in the main regions of urban expansion in each
city showed a clear increasing trend. The results obtained provided a
knowledge base to understand the spatiotemporal variation of the
urban heat island effect in the Zhengzhou metropolitan area.
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Appendix

FIGURE A1
Spatial distribution of daytime surface temperature trends in different cities within the Zhengzhou metropolitan area.
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FIGURE A2
Spatial distribution of nighttime surface temperature trends in different cities within the Zhengzhou metropolitan area.
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Digital research on the resilience
control of water ecological space
under the concept of urban-water
coupling
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Qianfu Ji1 and Zhiwei Zeng2

1Hunan Provincial Territorial Space Survey and Monitoring Institute, Changsha, China, 2College of
Architecture and Urban Planning, Hunan City University, Yiyang, China

Introduction: The construction of digital governance of national land space
depends greatly on the development of a digital model for robust control of
water and ecological space. However, how changes to the urban-water coupling
relationships affect the resilience control of water ecological space is rarely
reported.

Methods: The evolution characteristics of urban and water space in the study area
from 2000 to 2020 and the correlation between them are analyzed based on the
grid analysis using InVEST and Moran’I methods. Based on the theory of human-
environment interaction territorial system to provide a theoretical framework to
explain the urban and water space. We used digital to construct an resilience
control framework in the Dongting Lake area based on the correlation between
the urban and water space.

Results: The results show that: 1) From 2000 to 2020, the geographical evolution
of towns and cities in the research area displayed obvious spatial variation in
intensity, indicating a process of expansion and change. The regional and
temporal fluctuations of the water conservation function are significant. The
mountainous areas in the east, south, and northwest are where the high values
of the water conservation function are primarily found. These regions have more
vegetation, which increases the water conservation function. 2) According to the
results of local binary spatial autocorrelation analysis, it can be seen that from
2000 to 2020, the high-high agglomeration of town space and water-related is
mainly distributed in Linxiang City, Yueyang County, Miluo City, Li County, and
Yiyang City, and the low-low agglomeration ismainly distributed in Dongting Lake,
Datong Lake, and along the Yangtze River. 3) Based on how urban spatial evolution
affects water ecological space, we construct a theoretical framework of urban-
water coupling and establish a digital model of water ecological space resilience
control in the Dongting Lake area from four perspectives: threshold, visualization,
dynamics, and intelligence.

KEYWORDS

urban-water coupling,water ecological space, resilience control, digitalization, Dongting
lake area
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1 Introduction

Digital governance of land space is an important component of
the modernization of the national governance system and
governance capacity (Corodescu-Roșca et al., 2023). In May
2019, “Several Opinions of the State Council of the Central
Committee of the Communist Party of China on Establishing a
Land Space Planning System and Supervising its Implementation”
were issued, and land space governance entered a new stage of
development. The Proposal of the CPC Central Committee on
Formulating the 14th Five-Year Plan for National Economic and
Social Development and the 2035 Visionary Goals proposes to
realize the digitization, networking and intelligence of the whole
process of national land spatial governance and build a new pattern
of national land spatial development and protection. Therefore,
relying on digital technology to promote the digital transformation
of land space governance has become an inevitable choice for the
refinement of land space governance under the new situation.
Rapid urbanization has caused the destruction of water ecological
space, and the government now needs to learn more about its
structure and function in order to build a digital model of
toughness control that will allow it to assess, monitor, and
control changes to water ecological space in an efficient manner
(Zeng et al., 2023). This is important for the digital governance of
national land space in the Dongting Lake area.

High-urbanization areas in China are generally characterized by
more artificial intervention in ecosystems and stronger ecological
vulnerability (Zhang et al., 2023). For a long time, the construction
of various water conservancy engineering facilities such as river
hardening, cut-off and straightening, sluice gates, reservoirs and
artificial drainage ditches has changed the connectivity and
infiltration capacity of surface water systems, resulting in the
reduction of water ecosystem functions (Jaiswal and Pandey, 2021;
Wang et al., 2023). Driven by urban expansion, the construction of
lake-fenced and reclaimed land has caused a significant reduction in the
area of rivers, lakes and wetlands and seriously damaged the circulation
system of rivers and wetlands, weakening the ecosystem service role of
water ecosystems in storing rain and floods, purifying water bodies,
regulating microclimate, controlling soil erosion and beautifying the
environment (Paiva et al., 2020; Yao et al., 2021). In the practice of urban
spatial planning, how to organize the spatial form, functional layout,
road system, open space, infrastructure and other elements of the city to
achieve coordination and adaptationwith the characteristics of the urban
water ecological environment has also been a common concern of
planning scholars and local governments in recent years (Huang et al.,
2023). Meanwhile, the research on the interaction between urban and
water environments shows a development trend from empirical analysis
to quantitative and data-based research, and scholars at home and
abroad analyze the interaction between urban development and water
environmentsmore systematically and completely by combining various
computer simulationmodels such as urban growthmodels, hydrological
models, and ecological models. For example, MaeveMcBride and Derek
Booth (2005) analyzed the scale sensitivity of the effect of urban
construction on water systems and the effect of urban land form
through regression models of the physical environmental
characteristics of water systems in urban areas and urban
construction in watersheds (McBride and Booth, 2005). Bach et al.
(2013) simulated the interaction between plot-scale, water-sensitive

infrastructure construction (Bhaskar et al., 2016). And Bhaskar et al.,
2016 applied the SLEUTHmodel, which simulates urban spatial growth,
and the ParFlowmodel, which simulates the water circulation system, to
study the characteristics of surface vegetation and the water circulation
system in Baltimore, United States, as urban spatial growth occurs, and
found that urban expansion will lead to a decrease in surface water and
that the sensitivity of the water environment varies among different
locations. The sensitivity of thewater environment varies, and the surface
water in some sensitive areas will be more significantly affected by the
spatial growth of the town (Bhaskar et al., 2016). Xu Kang et al. (2013)
applied a cellular automaton (CA) model and a regional hydrological
model (SCS) to simulate the proportion and risk of urban flooding under
different urban growth rates, and then guided the delineation of urban
growth boundaries (XU et al., 2013). Zhang et al. (2021) used the
distributed metacellular automata model (CA) and BP neural network
model to construct an urban land use change and water quality response
simulationmodel to simulate regional urban land use change, predict the
response relationship of upstream and downstream water quality to
urban area pollution discharge, and quantitatively analyze the
characteristic law between urban spatial expansion and water
environment quality change (Zhang et al., 2021).

There are close interactions and interactions between urban
spatial development and water environmental protection, both in
terms of constraints and coercion, as well as reciprocal promotion and
enhancement (Meng, 2021) (Table 1). Further research is needed on
the kind of relationship between urban and water and how to improve
the resilience of water ecological space in the process of urban spatial
evolution. As an example, this thesis uses the Dongting Lake area to
apply the theory of “urban-water coupling concept” and the technical
framework of spatio-temporal interaction to identify the urban-water
contradiction in the Dongting Lake area, construct a theoretical
framework of urban-water coupling, and build a digital model of
water-ecological spatial resilience control in the Dongting Lake area
from four aspects: threshold, visualization, dynamization, and
intelligence. It is investigated how to put the concept of ecological
civilization into practice in the field of spatial planning in order to
advance the theoretical and methodological framework for the
digitalization of territorial spatial governance.

2 Study area, methods and data sources

2.1 Study area

Dongting Lake Eco-Economic Zone is located at 28°30′N-
29°40′N, 113°10′E-114°40′E, in the north of Hunan Province and
the south of Hubei Province, and is the second largest freshwater lake
in China, as well as an important storage lake and ecological security
function area in the Yangtze River Basin. The overall plain is
dominant, but there are still many types of landforms, which can
be roughly divided into four types: lake water bodies and continental
beaches, plains and hills around the lake, hills and low mountains
around the lake area, and river valley plains and hills (Zeng et al.,
2023). It is a typical subtropical monsoonal climate, with simultaneous
rain and heat, long sunshine hours, abundant precipitation, and a
dense network of rivers in the lake area, through which the Xiang,
Zizhi, Yuan and Li rivers flow. The region has good coastline
resources, thriving interior river ports like Yueyang Port and
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Jingzhou Port, and is well-served by a variety of transportation modes
including high-speed rail, highway, railroad, water transport, and air
transport. The area has a thriving agricultural products processing
business and is a key producer of agricultural goods such as grain,
cotton, oil, and freshwater fish in China (Xiong et al., 2022). Here,
some counties (cities and districts) in three prefecture-level cities of
Yueyang, Yiyang, and Changde in the Dongting Lake Ecological and

Economic Zone were selected as the study area, including Yueyang
city, Linxiang city, Yueyang county, Huarong county, Miluo city,
Xiangyin county, Yiyang city, Yuanjiang city, Nan county (including
Datong lake area), Changde city, Hanshou county, Anxiang county, Li
county, Jin city, and Linli county, a total of 19 counties (cities and
districts) (the study area in the following refers to this range), as
shown in Figure 1, with a total area of about 25,800 km2, accounting

FIGURE 1
Study area.

TABLE 1 The core control index system of water ecological space.

Urban space evolution Population urbanization rate GDP

Natural population growth rate GDP per capita

Density of population GDP annual rate of growth

Proportion of impermeable ground surface Industrialization level index

Million yuan GDP wastewater emissions Water consumption per million yuan of GDP

Water ecological space Landscape fragmentation index (water wetland) Household water consumption

Water wetland area Daily water consumption per capita

Change rate of water wetland area Domestic wastewater discharge per unit area of living area

Water conservation Urban domestic sewage discharge rate

Natural shoreline retention rate Sewage centralized treatment rate
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for about 12.18% of Hunan Province, a resident population of about
10,075,800 as of the end of 2020, accounting for 16.11% of the
province, and a gross product of about 710.44 billion yuan,
accounting for about 17% of the province.

2.2 Methods

2.2.1 Spatial expansion intensity of urban land
The spatial expansion intensity of urban land (USEI) indicates

the percentage of the spatial size of a cell town to its cell area in
different periods, and is used to analyze the size of spatial expansion
intensity of towns in different periods (Wang et al., 2022), in %. Its
formula is:

USEI � Uurban/Ufishnet( ) × 100% (1)

Where: Ufishnet、 Uurban represent respectively the area of each
cell and the sum of the urban space area.

2.2.2 Water production service
The water production service is generally defined as the

difference between precipitation and evapotranspiration and is
one of the measures of the water availability of an ecosystem.
Based on the Budyko coupled water-energy balance theory (Jin
et al., 2022), the InVEST model’s water production service module
(water yield) determines the average annual water yield by
subtracting the average annual precipitation from the actual
annual evapotranspiration. The calculating formula is as follows:

Yij � 1 − AETij

Pi
( ) · Pi (2)

Where: Yij is the annual water yield (mm) of grid unit; AETij

represents the annual actual evapotranspiration (mm) of grid unit ;
Pi indicates the annual precipitation (mm) of grid unit i.

2.3 Data sources

The Urban land, Annual actual evapotranspiration and Annual
precipitation datasets were obtained from the Resource and
Environmental Science and Data Center of the Chinese Academy
of Sciences, accessible through the specific website (https://www.
resdc.cn/).

3 Results analysis

3.1 Spatial-temporal evolutionary
characteristics of urban land intensity and
water-related function

Along with the beginning and speeding up of urbanization, the
amount of agricultural land being converted into non-agricultural
construction land has accelerated and expanded, and the intensity of
land disturbance by human activities has steadily increased. This is
partially reflected in the spatial evolution of towns. From Figures
2A–C, it can be seen that the intensity of urban spatial evolution in

the study area from 2000 to 2020 shows obvious spatial divergence
characteristics and exhibits a process of growth and change. In
general, the low intensity is mainly distributed in Dongting Lake,
coastal rivers and lakes and mountainous hilly areas, while the high
intensity is concentrated in areas with higher urbanization levels
such as urban counties and cities. The higher intensity is located in
the combined urban-rural areas around towns, the medium
intensity is mainly distributed in the fringe areas of combined
urban-rural areas, and the lower intensity is mainly concentrated
around ecologically sound areas such as rivers and hills. From
2000 to 2010, the area of high intensity has shrunk, mainly
showing the obvious reduction of high intensity areas in Yiyang
city, Miluo city, Huarong county and Nan county; the distribution
range of higher intensity has slightly expanded, mainly transformed
by the high intensity area in 2000; while the area of low intensity,
lower intensity andmedium intensity is more stable. This reflects the
slow urbanization process, slow population concentration and small
scale of economic activities in the ecological economic zone of
Dongting Lake during this period, resulting in a small change in
the overall land use intensity. From 2010 to 2020, there is a
significant increase in land use intensity in the study area, mainly
in the high-intensity areas of Huarong County, Nan County,
Yuanjiang City, Yiyang City, Changde City, Miluo City and
Yueyang County At the same time, the low-intensity area in the
northern waters of Dongting Lake, Linxiang City and the eastern
side of Yueyang County decreased significantly, while the lower-
intensity area increased significantly. In the eastern, southern and
western shore areas of Dongting Lake, the higher-intensity and
medium-intensity areas also expanded to a certain extent compared
with 2010. This is related to the accelerated urbanization in recent
years, the increasing concentration of population, the accelerated
expansion of construction land, the sharp changes in the original
land use structure, and the increased economic pressure on land.
Thus, the change process of land use intensity from 2000 to
2018 indicates the importance of continuing to implement the
concept of ecological civilization and the development plan of an
ecological economic zone in the future study area, vigorously
developing the ecological economy, accelerating industrial
transformation and upgrading, and strengthening ecological
environmental protection.

In terms of the water-related function (Figures 2D–F), the
spatial and temporal variation of the water-related function from
2000 to 2020 is large. The highest value of the water-related function
is found mostly in the eastern, southern, and northwestern
mountainous areas, where the vegetation cover is dense and thus
the water-related function is high. From 2000 to 2010, the
distribution area of high water-related function increased slightly,
mainly in Changde city, Linli county, Yiyang city and Miluo city;
from 2010 to 2020, the area of high water-related function decreased
significantly in Linli county, southern Changde city, Yueyang
county, Linxiang city and Miluo city. In 2010–2020, the area of
high water-related function in Linli County, the southern part of
Changde City, Yueyang County, Linxiang City and Miluo City
decreased significantly. At the same time, the area of higher
water content function in the study area is always shrinking, as
the ecological and economic zone of Dongting Lake is in the stage of
accelerated urbanization and the scope of human activities is
expanding, and the regional water content function is obviously
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reduced due to the influence of anthropogenic activities such as
forest land reclamation and sloping land development, etc. From
2000 to 2020, the area of medium water content function is
characterized by a continuous increase, which is manifested in
the plains on the west bank of Dongting Lake and the hills and
mountains in the east and south. From 2000 to 2020, the area of
medium water-related function is characterized by a continuous
increase, as shown by the plain on the west bank of Dongting Lake
and the hilly mountains in the east and south. The lower values of
the water-related function are mainly distributed along the
Dongting Lake watershed, Datong Lake, along the Yangtze River,
the western part of Xiangyin County, Changde City, and Jincheng
City, and their distribution is relatively stable from 2000 to 2020,
with little spatial change.

3.2 Spatial-temporal interaction analysis
between urban and water ecology

The greater the intensity of urban spatial evolution, the
deeper the impact of human activities on water ecology, which
will eventually contribute to the decline and reduction of water
ecological functions. The analysis of the spatial evolutionary
intensity of towns and cities and the spatio-temporal
relationship between water ecological functions is of great
relevance to the realization of sustainable development. From
the results of the local binary spatial autocorrelation analysis
(Figure 3), it can be seen that in the local spatial autocorrelation
distribution of the spatial evolutionary intensity of towns and

cities and water ecological functions, the high-high concentration
is mainly distributed in Linxiang City, Yueyang County, Miluo
City, Li County and Yiyang City, and from 2000 to 2010, its
distribution area shows a shrinking feature, while there is a small
expansion in Changde City and Yiyang City; From 2010 to 2020,
its distribution area increases, and the expansion is more obvious
in Yueyang County, Miluo City, Xiangyin County, Yiyang City, Li
County and Linli County. Low-low agglomeration is mainly
concentrated in Dongting Lake, Datong Lake and along the
Yangtze River; From 2000 to 2010, its distribution area in
Datong Lake and North Dongting Lake showed a small
increase, and its spatial pattern did not change much from
2010 to 2020. The low-high concentration is mainly located in
Li County, Linxiang City, Yueyang County, Miluo City, Linli
County, Yiyang City and the southern part of Changde City, and
its area has an increasing trend; From 2000 to 2010, the area of
low-high concentration in Linli County, the southern part of
Changde City, the southern part of Yiyang City and the southeast
of Linxiang City increased significantly; From 2010 to 2020, its
distribution in Linli County, Changde City, Linxiang City and
Yueyang County. From 2010 to 2020, the distribution area in
Linli County, Changde City, Linxiang City and Yueyang County
decreased significantly, while the distribution area in Yiyang City
increased. The area of high-low agglomeration is smaller and
more concentrated on the south bank of Dongting Lake, the
south bank of the Yangtze River and the Changde urban area.
From 2000 to 2010, its area in Xiangyin County showed a large
increase, but the area of high-low agglomeration remained
basically the same from 2010 to 2020.

FIGURE 2
Spatial distribution of urban and water ecology in study area 2000–2020.
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4 Digital intelligence control mode of
water ecological space under urban
water coupling

The urban space in the Dongting Lake area shows the
characteristics of spreading expansion, polycentric structure
evolution and jumping land expansion. The analysis of water
ecological functions reveals that while pressure on the supply of
water ecological functions is relieved with the implementation of
projects like the return of farmland to the lake in the Dongting Lake
area, the problem of water ecological space risk remains severe and
water ecological space, such as waters and wetlands, is reduced in a
significant amount of urban space (Namavar et al., 2023).

4.1 Theoretical framework of urban water
coupling

Established studies have employed a range of quantitative
variables to assess the regional population, industrial scale,
industrial structure, etc. with regard to the pressure that urban
socio-economic development has on the aquatic environment.
Among them, for the measurement of population pressure,
some studies have used indicators such as population
urbanization rate (Lu et al., 2019), natural population growth
rate, and population density (Duan et al., 2021) to directly
quantify the population scale, arguing that the carrying pressure
on the water environment is also higher in regions with a higher
population scale; or they have used household water consumption,
per capita daily domestic water consumption, domestic wastewater
discharge per unit area of living area, urban domestic wastewater
discharge rate (Bi et al., 2023) and other indicators to measure the
pressure on the water environment caused by domestic water use
and sewage discharge. Similarly, for industrial scale and industrial
structure, evaluation indexes such as GDP, per capita GDP, annual
growth rate of GDP, industrialization level index, water
consumption per 10,000 yuan GDP, and wastewater discharge
per 10,000 yuan GDP (Ferrer et al., 2012) can be used. According
to the principle of representativeness, this study adopts a pressure
measurement index that integrates the level of population and
economic development, the water resources load index to measure

the change in pressure exerted on the water environment by
socioeconomic development.

The pressure that urban development has put on the aquatic
environment is mostly manifested in the alteration of the original
hydrogeomorphological characteristics and the rise in pollutants in
surface runoff. As mentioned above, the process of urban
construction has the problem of filling small water bodies and
rivers and changing the connected structure of water systems,
which causes a change in the water flow state and habitat of
aquatic animals and plants (Wei et al., 2023a; Wei et al., 2023b).
Drawing on the landscape pattern index method of landscape
ecology (Yu et al., 2019), this study used the landscape
fragmentation index of watershed wetlands to measure the
magnitude of changes in hydrogeomorphic characteristics caused
by urban construction. For the problem of surface runoff pollution
caused by urban construction, which mainly originates from the
runoff pollution of impervious surface surfaces in cities and towns,
the percentage of impervious surface surfaces is used as an
evaluation index, which can be calculated by extracting remote
sensing images, and the data are available and connected with
the manageable indexes of territorial spatial planning.

4.2 Water ecology spatial digital intelligence
control model

Digital intelligence control of territorial space has been
emphasized in China’s planning community, but the main
control contents are mostly qualitative planning effectiveness
and macro-socio-economic indicators, while there is a lack of
specific policy evaluation, external evaluation and dynamic
monitoring of the implementation process. Therefore, the
development trend of the digital intelligence control model
must achieve threshold identification, dynamic visualization
and intelligence, and improve all aspects of digital intelligence
control of land space (Wei et al., 2023a). Thresholds: The
indicator thresholds are essentially the boundaries of the
numerical interval of the constraints in the water ecology
spatial digital intelligence control, which is the key
information for the implementation of supervision (Ouyang
et al., 2019). The key to measuring indicator thresholds is to

FIGURE 3
Spatio-temporal interaction between towns and water ecology.
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identify the key indicators related to human activities, sort out
how system components interact, and take into account
exogenous factors like large-scale climate change and regional
main functions, along with the goals of territorial spatial
planning and indicator sets, to establish the many-to-many
relationship between human activities and the resource
environment. Based on this, the relationship between key
indicators and each resource and environmental component is
quantified employing system model simulation, and the indicator
thresholds are then determined by identifying abrupt change
points. The current assessment methods for water resource
carrying capacity mainly include the empirical formula
method, the multi-objective decision method, the system
analysis method, the artificial intelligence algorithm, etc. To
determine the threshold value of urban space scale, we need to
estimate the total amount of regional water resources and the
upper limit of water resource carrying capacity. Then, using the
aforementioned method, we can forecast future urban
production and living water demand. Based on per capita
water consumption, we can then determine the size of the
urban population that can be supported by regional water
resources, or we can directly forecast it using the
aforementioned method. Finally, we can multiply the size of
the urban population by the per capita urban construction land
area of the planning target. Additionally, the buildable land area
of the entire region must be taken into account. The appropriate
scale of urban construction land is determined by taking the
smaller value of the buildable land area and the maximum scale of
urban construction land carried by water resources.

Dynamic: By establishing a long-term monitoring system for
national spatial planning, it can realize dynamic mastery of the
implementation and operation of the plan and provide powerful
support for the development and utilization of national spatial
resources and planning management (Ouyang et al., 2022). The
scope of long-term monitoring should include monitoring of
land use changes, monitoring of planning implementation and
approval, monitoring of planning target indicators, etc. The
monitoring department should compare the most recent data
of each indicator obtained by the system with the historical data
and target values, respectively. Through the former, it can learn
the benefits and drawbacks of the corresponding planning
policies brought on by implementation and change trends, and
through the latter, it can clarify the status of planning
implementation as well as the next focus and direction of
action. Extending the application of artificial intelligence (AI)
and regional block chain technology in the field of territorial
spatial planning, integrating the complex supervisory views of all
social parties, and conducting scientific calculations on the
revision of territorial spatial planning to as closely match the
needs of all parties as possible.

Visualization: Identifying the key information from a large
number of complex data sets to create an interactive image,
implementing the two- and three-dimensional integrated graph-
number linkage visualization so that the supervision results can be
presented to regulators, technical parties, and the general public in a
clear and efficient manner, and comprehensively integrating
changes to multi-period remote sensing image changes (Eilola
et al., 2023). Automatic extraction, video image interpretation,

real-time processing of UAV aerial data flow, and other technical
means are all realized, as are quick monitoring and verification and
quick modeling of three-dimensional situations. Investigate the
integration of 3D GIS, BIM, and IOT technology, develop a
spatial planning management and application system based on
an urban information model (CIM), and provide visual technical
support for intelligent scenario simulation.

Intelligent: Form a feedback process of implementation
evaluation-planning adjustment for two-way improvement.
Therefore, during the decision-making process, the administrative
bodies should conduct evaluations and gather feedback data in a
timely manner (Ghavami et al., 2022). They should also build a real-
time interactive and co-consultative urban spatial governance
platform using the metaverse and digital twin city, and they
should use a variety of tools like model algorithms to analyze
and correct the implementation of policies and regulations,
technical standards, and operating guidelines of the territorial
spatial planning and enhance the entire system for spatial
planning. We will improve the scientific and intelligent level of
all aspects of spatial planning and focus on the system construction
and platform development of systems for intelligent review of
planning results, intelligent approval of construction projects,
auxiliary site selection for major projects, intelligent supervision
of the whole planning process, and dynamic evaluation of planning
implementation.

5 Conclusion and discussion

5.1 Conclusion

1) From 2000 to 2020, the spatial evolutionary intensity of towns in
the study area shows obvious spatial differentiation
characteristics and exhibits a process of growth and change.
The high intensity is concentrated in areas with high
urbanization levels, such as urban counties and cities; the
higher intensity is located in the urban-rural combination
areas around the towns; the medium intensity is mainly
distributed in the fringe areas of the urban-rural combination;
and the lower intensity is mainly concentrated around
ecologically sound areas, such as rivers and hills. The spatial
and temporal variation of the water-related function is large. The
high value of the water-related function is mainly distributed in
the eastern, southern and northwestern mountainous areas,
where the vegetation cover is higher and thus the water-
related function is higher.

2) According to the results of the local binary spatial
autocorrelation analysis, the high-high urban space and water-
related agglomerations are primarily distributed in Linxiang
City, Yueyang County, Miluo City, Li County, and Yiyang
City from 2000 to 2020, while the low-low agglomerations are
primarily distributed in Dongting Lake, Datong Lake, and along
the Yangtze River.

3) The theoretical framework of urban-water coupling is sorted out,
the core index system of digital intelligence control is
constructed, and the digital model of water-ecological spatial
toughness control in the Dongting Lake area is built from four
aspects: threshold, visualization, dynamization, and intelligence.
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5.2 Discussion

How to understand the dynamic interaction between urban space
and the water environment system from the perspective of spatial
planning is one of the core issues of this paper. On the basis of
sustainable development theory, ecological adaptability theory,
coupling relationship theory and other theories on the harmonious
coexistence of humans and nature (Huang et al., 2022), this paper
identifies the interaction between urban spatial evolution and water
ecological space through a spatial autocorrelation model, constructs a
framework for coupling urban spatial evolution and water ecological
space, and sorts out and summarizes the core index system for the
control of urban spatial and water ecological space. In the current
territorial spatial planning, the ecological protection red line mainly
refers to the boundary line of spatial management to protect
important ecological function areas and sensitive areas (Liu et al.,
2023), but for water ecosystems, water quality, water quantity and
water ecological space are all three key factors to maintaining the
health of water ecosystems, so some scholars propose to construct the
water ecological red line framework from the three dimensions of
structure-function-quality (Zeng et al., 2023). This paper agrees with
and perpetuates this idea of water ecology protection and takes
Dongting Lake as an example to discuss the spatial control model
of water ecology in the region. Specifically, it is suggested to set the
core control indexes related to water ecological space related to urban
space and the water environment and to clarify the bottom line of
water ecological protection. This paper proposes to use different non-
linear methods to get the thresholds of different indexes, and at the
same time, it integrates technologies such as the metaverse and digital
twin cities to explore the control strategy of water ecological space in a
spatial planning system through thresholds, visualization, dynamics
and intelligence. For the territorial spatial system, it is not only
necessary to couple the relationship between the urban and the
water environment, but also to comprehensively coordinate the
relationship between other ecological and environmental protection
needs, basic farmland protection needs, etc., (Qu et al., 2023). And the
water ecological space. Therefore, the spatial planning strategy
proposed in this study can be used as a special study on water
environment in the process of spatial planning of the whole area,
and the complete delineation of “three zones and three lines” should
also integrate other ecological environment elements and basic
farmland protection related research results. Water ecological space
monitoring is a complex project. This paper attempts to construct a
digital technology of resilience from the perspective of urban-water

relationship, which is an innovation. However, a comprehensive
framework should be further constructed formonitoring in the future.
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Construction and optimization of
ecological security pattern based
on landscape ecological risk
assessment in the affected area
of the Lower Yellow River

Yicheng Huang1, Jinbing Zhang1, Pengyan Zhang1,2,3*,
Zhuo Chen4, Xinyue Zhang1, Rong Lu1, Mengfan Li1,
Guangrui Xing1 and Yongpeng Song1*

1College of Geography and Environmental Science, Henan University, Kaifeng, China, 2School of
Urban Economics and Public Administration, Capital University of Economics and Business,
Beijing, China, 3Xinyang Vocational and Technical College, Xinyang, China, 4School of Medicine, Case
Western Reserve University, Cleveland, OH, United States
In the context of urban expansion and climate change, the world is under

pressure from multiple ecological risks. Key ecological protection areas play a

pivotal role in preserving ecological stability and promoting development. Due to

its unique geographical conditions, the Yellow River basin has been facing huge

ecological risk pressure. In the affected area of the Lower Yellow River (AALYR) as

an agricultural hub, ecological protection has gradually become a key factor

restricting the development of cities and agriculture. Taking AALYR as an

example, the landscape ecological risk assessment (LERA) system is established

based on three aspects “natural environment—human society—landscape

pattern”. We construct a comprehensive cumulative resistance surface based

on the risk assessment results as the basis for the future study. Ecological

corridors are identified by minimum cumulative resistance (MCR) models to

establish and optimize Ecological security pattern (ESP) in the AALYR. We found

that the landscape ecological risks (LER) in the study area show a uniform spatial

distribution, with a slightly higher distribution in the northeast than the

southwest. The ecological risk levels are generally high in AALYR, indicating a

more severe risk problem in this area. A total of 56 ecological sources were

identified, with a total area of 21176 km2. The ecological sensitivity of AALYR was

high, and 99 ecological corridors and 59 ecological nodes were extracted.

Ecological corridors and nodes were consistently and densely distributed

throughout the study area. The network analysis method improves the stability

of the network structure after optimization. Based on the key components of the

ESP, with the combination of geographical characteristics and local policy

planning guidance, we constructed the “One Belt and One Axis, Two Cores
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and Two Corridors, Four zones” ESP. The study results may offer guidance and

suggestions for the construction of ESP and ecological environment protection

system in the world’s major river basins, and may also provide information for

ecological planning of other similar river basins in the world.
KEYWORDS

landscape ecological risk assessment, ecological security patterns, spatial principal
component analysis, minimum cumulative resistance model, the affected area of the
Lower Yellow River
1 Introduction

Technological advances and population growth have changed

the global environment and led to a range of ecological problems

such as global warming (Schiermeier et al., 2019; Rong et al., 2022),

deteriorating air quality (Castells-Quintana et al., 2021) and

declining biodiversity (Mupepele et al., 2021). Ecological

problems in many watershed areas have the potential to worsen

ecological security risks (Luo et al., 2018). Ecological risk

assessment has also become a hot topic of discussion and

research for domestic and international scholars. Landscape

ecological risk assessment (LERA) as an important subfield of

ecological risk at the regional scale is widely used for risk area

identification. LER refers to the possible negative effects of the

interaction between landscape pattern and ecological process (Gong

et al., 2020). Recently, researchers have carried out a lot of fruitful

exploration of LERA by choosing relevant indicators, methods and

models for different regions and different assessment purposes

(Kayumba et al., 2021). However, there have been few studies on

the multi-faceted quantitative assessment of ecological risks in basin

landscapes from both “natural-social” dimensions (Zhu et al.,

2022). Therefore, the combination of the landscape pattern index

and the “natural-social” multi-source elements of the basin into the

basin LERA system could offer a basis for building safety patterns

(Chen et al., 2022). As an ecological space consisting of key

locations, positions, and spatial connections in the landscape

(Yang et al., 2022c), the Ecological Security Pattern (ESP) should

prioritize resource elements that link human well-being and

construct relevant ecological sources, nodes and corridors, etc. to

optimize regional ESP in a targeted manner and make practical

suggestions. By constructing a reasonable land ESP, the ecological

security problems brought about by river basin development

planning can be effectively guaranteed (Gao et al., 2021).

Concepts similar to ESP include urban growth boundaries

(Dawkins and Nelson, 2002), ecological networks (Chen et al.,

2023), green infrastructure (Zhang et al., 2022b), ecological control

lines (Chen et al., 2021). In 1960s. Warntz and Woldenberg (1967)

point, line and surface model for constructing flow surfaces provides

a good picture of the “ecological flow” process in the landscape.

McHarg (1969) used a “lasagna” superimposed model to reveal

vertical links between vegetation, animals, soils and human

activities in the landscape. Odum and Barrett (1971) proposed a
02104
regional ecosystem development strategy based on systems theory. In

1990s, Forman (1995) proposed a “patch-corridor-matrix” model of

landscape ecology based on theories of landscape and regional

ecology, laying the foundation for the study of landscape patterns.

Subsequent research has focused mainly on ecological reserve zoning

and regional landscape planning from the perspective of biodiversity.

For example, Budaeva et al. (2021) planned the nature park reserve

using a multi-criteria decision analysis method, which provided a

reference for the nature conservation and tourism development of the

park through sensitive zoning results. Otuoze et al. (2021) used

cellular automata theory to construct a dynamic model to simulate

and quantitatively predict urban growth, strengthened scientific

urban planning and control of green space patterns. Zhelonkina

et al. (2021) promoted regional conservation planning by identifying

key spatial components of ecological conservation and evolutionary

processes from the perspective of biodiversity conservation. Saleh and

Abeer (2021) and Saleem et al. (2022) used correlation to assess land

suitability and provided a theoretical basis for regional urban and

rural land planning and forestry planning.

Following the proposal of the concept of landscape ESP for

biological conservation by Yu (1999), Chinese scholars have

conducted in-depth exploration and research on regional LER and

the ESP based on theories andmethods such as “source and sink” and

landscape patterns. Existing research areas in LERA are mainly

focused on ecologically fragile areas. Examples include large urban

areas (Zhang et al., 2021), river basins (Wei et al., 2022), industrial,

mining areas (Xu et al., 2021) and Wetland Nature Reserve (Yang

et al., 2022a). Early LERA mainly continued the “source-sink” theory

of regional ecological risk assessment (Zhu et al., 2020), calculating

the ecological risk of a target unit by predicting the spatial dispersion

effect of risk sources in a given landscape pattern (Li et al., 2023b). In

the aspect of ESP, the study paradigm of “identifying sources—

establishing resistance surfaces—extracting corridors—discerning the

ESP” has been developed in the development practice (Zhang et al.,

2022a). More research results have been achieved at national (Li et al.,

2022b), provincial and municipal scales (Li et al., 2022c), as well as in

urban clusters (Ran et al., 2022), basins (Wei et al., 2022a) and

counties (Fan et al., 2021). The main research methods are graph

theory (Urban and Keitt, 2001), circuit theory (Wang et al., 2022a)

and the minimum cumulative resistance (MCR) model (Chen et al.,

2020). The MCR model is the most commonly used and the study

gradually attempted to establish a “bridge” between LERA and the
frontiersin.org
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construction of the ESP (Li et al., 2023a). Previous studies have

identified sources and constructed general ideas for ESP by analyzing

morphological spatial patterns and the importance of ecological

services (Lin et al., 2021). There are relatively few studies on the

construction of ESP from the perspective of LERA (Chen et al., 2022).

Therefore, this study uses the “source—sink” theory to assess the LER

areas in basin areas, construct ESP and propose locally appropriate

protection strategies.

The affected area of the Lower Yellow River (AALYR) is

currently relatively ecologically fragile, with low flows in the

lower basin and shrinking estuarine wetlands starting to occur in

some places. Five of the 14 concentrated contiguous destitute areas

across the country involve the Yellow River basin (Wohlfart et al.,

2016). The AALYR as the basin continues to develop socially and

economically, the basin will be further exposed to ecological

pressures and risks caused by economic growth and land use

expansion (Zhang et al., 2020; Tang et al., 2023). Due to the

interference and destruction of human activities in recent years,

the spatial differentiation characteristics of landscape pattern in the

AALYR are significant (Lou et al., 2022). Serious problems such as

severe alkalinization, desertification, drought, waterlogging and

poor drainage have occurred in the basin, resulting in serious

damage to the ecological risk and the ESP of the basin. Ecological

security issues pose a serious challenge to maintaining the LER

issues in the AALYR. As one of the key areas for the ecological

civilization construction in the Yellow River basin, the construction

and optimization of ESP is of strong practical significance for the
Frontiers in Ecology and Evolution 03105
management of the AALYR. Therefore, the aim of this study is to

assess the ecological risk of the AALYR using a LERA method.

Overall, the study takes the AALYR as an example. Firstly, The

SPCA is used to analyze the spatial distribution of LER in the

AALYR. Then, the method of ecological sensitivity assessment is

combined to extract high-value areas, which are considered as

ecological sources. Finally, the ecological corridors are extracted

using the MCR model to build an ESP (Figure 1). Research results

can provide important information and reference for the

development, utilization and conservation planning of the Yellow

River basin.
2 Materials and methods

2.1 Study area

Lower Yellow River is 785.6 km in length. According to existing

studies on the division of the AALYR (Cen et al., 2019), and taking

into account the Yellow River basin irrigation area, the integrity of

regional urban development, and administrative divisions, 20

prefecture-level cities in Henan and Shandong provinces with a

total area of 148,100 km2 are considered as the affected areas of the

lower Yellow River (Figure 2). It is a flat plain area that contains

seven major landscape types: cultivated land, forest, shrub, wetland,

water, bare land and construction land. The cultivated land

accounts for 68.67% of the total area; followed by built-up land,
FIGURE 1

Research framework. (DEM, Digital Elevation Model; SHEI, Shannon’s evenness index; CONTAG, Contagion; FVC, Fraction Vegetation Coverage).
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which accounts for 18.94% of total area; Forestland and grassland

account for only 7.12% of the total area. Considering the

development of the lower Yellow River area in recent years and

the availability of data, this study selected 2018 data to analyze.

Since Laiwu, Shandong Province was approved by the State Council

to be abolished as a district in 2019, it is still considered to be a

prefecture-level city in our study. The terrain of the affected area of

the AALYR is dominated by plains, mountains and hills. At the end

of 2018, the total GDP of the study area reached 6.63 trillion RMB,

accounting for>40 percent of the total GDP of the basin. In 2019,

ecological protection and high-quality development of the Yellow

River basin were upgraded as a major national strategy, providing

unprecedented opportunities for regional development. Therefore,

it is urgent to study the status of ecological risk in the lower reaches

of the Yellow River area and to analyze the influencing factors in

order to provide relevant policy suggestions for the study of regional

ecological protection research in small and medium-sized basins

and similar areas.
2.2 Data sources

The study data include land use, digital elevation model (DEM),

soil types and other geographic data in 2018.
Fron
(1) Land use from the Resource and Environmental Science

Data Center (http://www.resdc.cn). Land use is divided into

cultivated land, forestland, grassland, built-up land, water,

and unused land. The spatial resolution is 30 m.

(2) DEM from Geospatial Data Cloud (http://www.gsclound.cn).

The spatial resolution is 30m.

(3) Vegetation cover from United States Land Processes

Distributed Data Archive center’s (https://e4ftl01.cr.usgs.gov/
tiers in Ecology and Evolution 04106
MOLT/MOD13Q1.006/) MOD13A3 dataset product. Data

products have a time resolution of 16 days and a spatial

resolution of 250 m.

(4) Soil types data from the Chinese soil dataset (http://

www.fao.org/home/en/) of the World Soil Database. The

spatial resolution is 1 km.

(5) Other basic geographic data from the Global Geographic

Information Resources Directory Service System (https://

www.webmap.cn). The scale of natural scenic spots, built-up

land and water are 1: 250000. The spatial resolution is 30 m.
2.3 Methods

This study mainly aiming at the current situation of ecological

environment in the study area, and selects indicators from the

natural environment, human society, and landscape pattern as the

evaluation elements of the LER of the study area, and constructs a

three-dimensional comprehensive LREA system, which is based on

the “nature-human society-landscape pattern”. Construct a three-

dimensional comprehensive LERA system of “nature—human

society—landscape pattern”. The results of LREA were used as

evaluation factors for landscape pattern resistance, and the

ecological source was identified by combining with ecological

sensitivity assessment, and ESP optimization was carried out by

using the MCR model and network structure analysis method.

2.3.1 Selection of ecological risk
assessment indexes

According to the natural environment and economic

development of the AALYR, and considering the scientific

soundness and data availability, we selected 10 influencing factors

from three perspectives: nature, human disturbance, and landscape
FIGURE 2

Location of the study area.
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pattern, to assess the LER of the study area. These include: DEM,

Slope, Soil types, Distance from water, Distance from built-up land,

Distance from natural scenic, Shannon’s evenness index (SHEI),

Contagion (CONTAG), Land use, Fraction vegetation coverage

(FVC). Indicators of natural factors: the DEM, the higher the risk

of landscape ecology; the higher the slope, the higher the risk of the

existence of landscape ecology; soil type can reflect the growing

condition of crops, which has a good improvement effect. Due to

human interference and highway construction, the original

ecological conditions have been altered and the original landscape

pattern has been disturbed. The closer the distance from the built-

up land, the higher the LER; The greater distance from the water

and distance from the natural scenic higher ecological risk to the

landscape; Landscape factor indicators: The higher the Shannon

evenness index, the higher the ecological stability of the area; The

lower contagion index corresponds to the vulnerability of the

disturbance to external activities in the landscape pattern;

Vegetation cover indicates the degree of greening of an area, with

larger values indicating a better ecological environment. Land use is

classified according to the first-level reclassification. The selection of

assessment indicators is based on relevant literature (Chi et al.,

2022) and the environmental conditions of the AALYR. The

ecological security classification standards for each factor in the

study area are formulated using the natural breakpoint method,

which divides the factors into 5 levels (Table 1). Figure 3 classifies

the indicators by using the reclassification tool.

2.3.2 Spatial principal component analysis
Spatial principal component analysis (SPCA) is widely used in

ecological risk assessment (Wei et al., 2020). The key risk factors are

identified by extracting the principal components of the original
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assessment factors to remove the correlation and redundancy of the

influencing factors, so that the calculation results of the principal

component factors are uniformly presented on each corresponding

raster in space, with good spatial visualization effect (Wang et al.,

2021). The principal component factors are weighted and

superimposed using the raster calculation tool in ArcGIS 10.6

software. Equation is as follows:

E =o
m

i=1
o
n

j=1
aijFj (1)

Where E is the comprehensive assessment results of LER. aij is

the j principal component corresponding to the i raster. Fj indicates

the eigenvalue contribution rate of the j principal component.

2.3.3 Construction and optimization of ESP
The MCR model is often used to simulate the minimum cost

path of the cost of species crossing different landscape substrates

from the source (Yi et al., 2022). Early on, the concept of MCR

model was proposed by Dutch scholars (Knaapen et al., 1992), and

then it was improved by Chinese scholar Yu (1999) and has been

widely studied in the field of regional ESP. Its advantages include

convenient data processing, comprehensive process analysis and

visual results. In addition, the MCR model not only analyzes the

superposition of vertical factors, but also uses the geographic

information system to analyze the horizontal flow trend of land

landscape units, making it one of the important models for

connectivity and suitability analysis of large-scale space. Equation

is as follows:

MCR = fmino
m

i=1
o
n

j=1
DijWj (2)
TABLE 1 Landscape ecological risk indicators and assessment grading criteria for the AALYR.

Index
type

Assessment
index

Unit
Grading standard

Level 1 Level 2 Level 3 Level 4 Level 5

Natural

DEM m 0-97 97-244 244-442 442-752 752-1680

Slop degree 0-3 3-8 8-15 15-25 >25

Soil types –

lime concretion black
soil, brown soil,
Alluvial soils

Cinnamon soil, Yellow-
cinnamon, Skeletol soils,

Red clay soils

Cultivated loessial
soils, Aeolian soils,

Solonetzs

Fluvo-aquic, soils, Bog
soils, Solonchaks,

Paddy soils

Meadow
soils, Litho

soils

Society

Distance from
water

m 0-1000 1000-2000 2000-3000 3000-4000 >4000

Distance from
natural scenic

area
m 0-1000 1000-3000 3000-5000 5000-7000 >10000

Distance from
built-up land

m >13500 10000-13500 7000-10000 3500-7000 0-3500

Landscape
pattern

SHEI – 0.8-1 0.6-0.8 0.4-0.6 0.2-0.4 0-0.2

CONTAG % >67 54-67 41-54 18-41 0-18

Land use – forestland, water grassland cultivated land unused land
built-up
land

FVC – >0.85 0.69-0.85 0.49-0.69 0.20-0.49 0-0.20
fro
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WhereMCR is the cumulative value of the minimum resistance

between the ecological source j and any grid i. Dij is the path

distance of species form source j to another possible destination i of

a source or region. Wi is the resistance value of the i grid on the

landscape resistance surface to the ecological flow.
Fron
(1) Identification of ecological sources. Source areas, as habitat

patches, are crucial for improving the optimization of

landscape patterns. They serve as source points for

species migration and maintenance, with good stability

and expansion potential (Ding et al., 2022). In this study,

we employ the ecological sensitivity assessment method to

identify ecological sources. Ecological sensitivity refers to

the ability of ecological factors to adapt to external pressure

or human disturbance when the environmental quality does

not decrease (Wang et al., 2017b). Specifically, this method

first constructs the index system and assigns a weight to
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each index, then superposes and analyzes each ecological

factor, and finally obtains the ecological sensitivity

distribution of a region in space. Considering the

ecological characteristics of the lower Yellow River and

the applicability of the data, a total of 5 ecological factors

were selected (DEM, slope, FVC, water, and land use).

Combined with analytic hierarchy process (CR=0.0356<0.1,

pass the test) to determine the weight of each factor (0.10,

0.15, 0.29, 0.22, and 0.24). The areas with higher ecological

sensitivity are relatively rich in ecological resources, and

most of the current situation is dominated by woodlands

and hills with higher slopes, which have high ecosystem

service values (Du et al., 2020; Cui et al., 2022). Finally,

taking into account the description of ecological sensitivity

classification in the National Ecological Function Zoning

issued by the Ministry of Environmental Protection of

China in 2015 (No.61 of 2015) and related studies
A B D

E F G

I

H

J

C

FIGURE 3

Spatial visualization of ecological risk levels of assessment index in the AALYR. (A) DEM, (B) Slope, (C) Soil types, (D) Distance from water, (E) Distance
from natural scenic area, (F) Distance from built-up land, (G) SHEI, (H) CONTAG, (I) Land use, (J) FVC).
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Fron
(Jin et al., 2021). on this basis, we extracted a large area of

patches in highly sensitive areas as ecological sources.

(2) Determination of resistance surfaces. The resistance surface

is calculated using the results of the basin LERA and the

screened sources as the basis for the generation of the

resistance surface of the landscape pattern, and the size of

the integrated resistance surface is classified into 1-5 grades

using the natural breaks method. Table 2 shows the

graded criteria.

(3) Extraction of ecological corridors. The shortest consumption

paths for the exchange of materials and energy between

different ecological source areas are referred to as corridors

(Li et al., 2022d). The length of the corridor is divided into

3 levels, the first level corridor is greater than 50 km, the

second level corridor is between 30 km and 50 km, and the

third corridor is less than 30 km.

(4) Identification of ecological nodes. Nodes are areas on the

ecological corridor where ecological functions are weakest

and need to be identified and protected as a priority

(Yu et al., 2021). The extraction of ecological nodes

was performed by utilizing the intersection tool of

hydrological analysis.

(5) Assessment of ecological network structure. The assessment

indicators mainly include: closure index (a), connectivity
rate (b) and linkage index (g). These indicators show the

relationship between the number of corridors and nodes, and

also the complexity of the network structure, with larger

values indicating a more complex network structure and a

better ecological environment. Closure index is used

to indicate the extent to which network loops occur

(Equation 3), the range of change is between 0-1, and the

larger the number, the more species transport paths and the

better the circulation of the network. Connectivity indicates

the degree of connectivity of the intersection points in the

ecological network (Equation 4), the range of change is

between 0-1, connectivity rate represents the average

connectivity probability between the nodes of the ecological

network (Equation 5), b<1 shows that the network structure
is dendritic, b=1 explain that the network is the structure of a
one-route circuit, and b>1 indicates a complicated network

shape. Equation is as follows:
a =
L − V + 1
2V − 5

(3)
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g =
L

3(V − 2)
(4)

b =
L
V

(5)

Where L is used to mean the number of corridors, V is used to

mean the number of nodes.
3 Result

3.1 LERA

3.1.1 Assessment of ecological resistance of
landscape pattern

In this study, 10 influencing factors were selected, including

DEM, Slope, Soil types, Distance from water, Distance from natural

scenic, Distance from built-up land, SHEI, CONTAG, Land use,

and FVC. Table 3 shows the characteristic roots and cumulative

contribution rates. We extracted factors with characteristic roots

and cumulative contribution rate above 85% to improve the

reasonableness of the ecological resistance pattern of the AALYR.

Table 4 shows the values of the loadings of the assessment factors

that correspond to every principal component. From a natural

factors point of view, the results indicate that DEM, slope, and soil

types have lower loadings on the third principal component

compared to the other index factors. Specifically, the loading

value of soil types is 0.590, indicating a higher loading on the

sixth principal component. This suggests that natural indicators

have a weaker effect on LER, and that soil types have a more

significant impact on the integrated risk. Among the indicators of

human interference, the Distance from water factor had the highest

factor load in the second principal component with a value of 0.937,

indicating the strongest influence on the comprehensive LER. The

Distance from natural scenic area index had a higher factor load of

0.739 in the first principal component, indicating a significant

impact on the comprehensive risk. As for the aspects Landscape

pattern, the SHEI has the highest loading of 0.596 in the third

principal component factor; the FVC has a higher loading of 0.559

in the fourth principal component factor and the CONTAG has a

loading of 0.731 in the tenth principal component factor. This

shows that CONTAG, FVC and SHEI contribute significantly to the

integrated ecological risk of the landscape.

3.1.2 Spatial analysis of LER
Figure 4A shows the spatial distribution characteristics shown by

the results of the LERA in the AALYR region: (1) Highest ecological

risk area. The risk index was 3.30-4.95, and the area was 26106.36 km2.

It is centered in the southwest area of the AALYR and some areas with

built-up land and settlement distribution in the northeast region. This

pattern is mainly caused by the municipality being the administrative

center unit and the large interference from human activities, resulting

in a serious LER. (2) Higher ecological risk area. The risk index was

2.85-3.30 and the area was 44466.70 km2. Such regions are mainly

located at the edge of high-risk areas and are affected by parts of

industrial land and urban built-up land. (3) Middle ecological risk area.
TABLE 2 Grading standard for cumulative resistance of landscape
pattern in the AALYR.

Resistance grade Cumulative resistance value

1 0-44023

2 44023-76759

3 76759-116267

4 116267-163677

5 163677-287846
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The risk index is 2.39-2.85 and the area is 43751.21 km2. This risk area

is uniformly distributed throughout the study area and occupies the

largest area. (4) Lower ecological risk area. The risk index was 1.07-

2.39, and the area was 20926.18 km2. These risk areas are mostly

located at the edge of the medium ecological risk area. (5) Lowest

ecological risk area. The risk index is 0-1.07, and the area is 12849.55

km2, which is the smallest proportion of the study area. This area is

mainly located in regions with high vegetation cover and along river

corridors, where ecosystem services have a high value and human

interference is relatively low. These conditions are conducive to the

gathering of natural species and the maintenance of ecological balance

in this type of habitat.
3.2 Construction of the ESP

3.2.1 Identify ecological sources
Figure 4B shows the integrated ecological sensitivity assessment

obtained by AALYR after weighting and superimposing single-factor
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ecological sensitivity indicators. The Natural Break was used for

grading treatment, and five grades were obtained: non-sensitive, light

sensitive, medium sensitivity, highly sensitive and extremely sensitive.

From Figure 4B, highly sensitive areas are distributed in Dezhou,

Liaocheng, Puyang, and Zhengzhou, mainly because the area is close

to the Yellow River. The landscape substrate is mainly forestland and

grassland, the landscape types are rich, and the ecological

environment is high and sensitive. Areas with low ecological risk

sensitivity are located in populated areas, urban built-up land and

settlements are densely distributed, and the ecological sensitivity is

relatively low due to the destruction of human activities. In order to

ensure the relevance and integrity of source areas within the AALYR,

as well as the appropriate patch size, a careful screening process was

carried out to identify ecological sources. After comparing different

patch area sizes, patches with high sensitivity areas larger than 200

km2 were selected as ecological sources. A total of 56 sources were

identified, covering an area of 21176 km2, which represents 14.30% of

the total study area. Figure 5A shows that most of the sources are

concentrated in the northeastern and southwestern parts of the
TABLE 3 Principal component related indicators.

Principal component Characteristic value Contribution rate/% Cumulative contribution rate/%

1 0.06342 22.5784 22.5784

2 0.05265 18.7439 41.3223

3 0.03726 13.2639 54.5862

4 0.03307 11.7740 66.3602

5 0.02816 10.0270 76.3872

6 0.02219 7.8994 84.2866

7 0.01835 6.5314 90.8180

8 0.01436 5.1129 95.9310

9 0.00636 2.2629 98.1939

10 0.00507 1.8061 100%
TABLE 4 Principal component loading matrix.

Evaluation factor 1 2 3 4 5 6 7 8 9 10 Weight

DEM 0.025 0.161 -0.218 -0.101 0.303 -0.125 -0.189 0.346 -0.800 0.115 0.018

Slope -0.004 0.096 -0.231 0.008 0.330 -0.167 -0.242 0.650 0.563 -0.050 0.100

Soil types 0.022 0.124 0.061 -0.653 0.053 0.590 0.376 0.246 0.034 -0.018 0.079

Distance from water 0.032 0.937 0.244 0.219 -0.102 0.027 0.013 -0.024 0.038 -0.005 0.187

Distance from natural scenic area 0.739 -0.160 0.370 0.282 0.296 0.318 -0.137 0.058 -0.023 0.016 0.226

Distance from built-up land 0.324 0.095 -0.059 -0.204 0.410 -0.547 0.556 -0.240 0.079 0.011 0.065

SHEI -0.256 -0.072 0.596 -0.213 0.148 -0.185 -0.154 0.031 0.073 0.665 0.133

CONTAG 0.235 0.076 -0.546 0.131 -0.166 0.189 0.083 -0.083 0.112 0.731 0.023

Land use 0.189 -0.132 0.200 0.141 -0.572 -0.271 0.397 0.559 -0.111 0.054 0.051

FVC -0.437 -0.091 0.036 0.559 0.391 0.252 0.498 0.124 -0.058 0.067 0.118
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AALYR, where the high vegetation cover and rich biodiversity are

conducive to the dispersal and conservation of species.

3.2.2 Integrated ecological resistance surface
Based on the ecological source and integrated resistance surface

as the reference surface, the MCR surface of the AALYR is

calculated by using the cost distance tool. Figure 5B shows the

spatial distribution characteristics of the resistance surface: (1) The

lowest resistance area is the largest in range, with a total area of

38847.90 km2, mostly distributed in the northeast and southwest
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regions and in areas with high vegetation cover. (2) Lower

resistance area of 7159.58 km2, 3.13% of the total study area,

mostly distributed in Zhengzhou, Xuchang, Kaifeng, Xinxiang,

Zhoukou, Shangqiu, Jinan, Taizhou, Liaocheng, Binzhou, and

Dongying. (3) Middle resistance area is 32800.07 km2, 22.15% of

the total study area, mainly located in the peripheral edge region of

lower resistance. (4) Higher resistance area is mostly located in the

study area in various types of areas such as cultivated land,

grassland and unused land, 14.31%, and the area was 21186.08

km2. (5) Highest resistance area makes up the smallest percentage,
A B

FIGURE 4

(A) Classification of landscape ecological risks in the AALYR; (B) Spatial distribution of ecological sensitivity in the AALYR.
A B

FIGURE 5

(A) Spatial distribution of ecological source area of the AALYR; (B) Spatial distribution of resistance in landscape patterns in the AALYR.
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accounting for 6.19%. The area is 9,164.50 km2, mostly

concentrated in the central areas of Dezhou and Heze in the

AALYR. The main reason is that the region has historically seen

several major Yellow River migrations, influenced by factors such as

floodway, flow velocity and wind, resulting in a spatial distribution

characterized by higher and undulating terrain and poorer

connectivity between source sites in high resistance areas and

larger patches, creating greater resistance to the flow between

species. The lowest resistance values occur in the middle of the

Henan and Shandong regions of the basin, so it is necessary to build

corresponding ecological corridors to make the resistance surface of

the AALYR connected to the ecological source and to obtain the

exchange between energy.

3.2.3 Extraction of ecological corridors
Corridor extraction is based on the technical principle of using

the geometric centroid of the source site as the source input and

clustering the remaining n-1 (where n means the number of

ecological source geometric centroids) to create target output

clusters. Figure 6A shows that Cost path tool was used to extract

the shortest costly paths for clusters of source centroids and target

points to obtain ecological corridors between ecological source sites.

99 corridors were built in the study area, with a total length of 3670

km, 51.65% of the total length. The results show: (1) There are 27

first-level ecological corridors whose total length is 1933.004 km,

and most of the first-level ecological corridors are concentrated in

the area of dense source patches, mainly in Dongying, Binzhou,

Jinan, Liaocheng, Jining, Shangqiu, and Zhengzhou, and have a high

degree of connectivity. The primary ecological corridor mainly
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connects the entire the AALYR with its length, thus facilitating

movement of species and exchange of energy within the study area.

This forms an important hub for maintaining ecological balance in

the relevant areas. (2) There are 32 second-level ecological

corridors, which are short and scattered, but they are distributed

in the AALYR, effectively linking the scattered ecological sources in

the study area with smaller regions, improving biodiversity and

increasing the value of ecological services. The total length is

1268.14 km, 33.88%. Second-level ecological corridors are mainly

distributed with the cities of Laiwu, Taian, Xinxiang, and Zhoukou.

(3) There are 41 three-level ecological corridors, with a total length

of 541.65 km, only 14.47% of the length of all corridors. Due to the

lack of a relatively perfect ecological corridor network system, the

ecological connection is weak and cannot adapt to the circulation

between “ecological flows”.

3.2.4 Identify ecosystem nodes
Figure 6A shows the ecological nodes. The identification of

nodes is obtained by extracting the valley lines of the cumulative

resistance surface and intersecting the corridors. We identified 59

ecological nodes, including 30 primary and 29 secondaries nodes.

The primary ecological nodes intersect the first-level corridors

mainly with the least costly paths and play a strategic position in

the construction of ESP. The secondary ecological nodes intersect

with the second-level and three-level corridors with the maximum

cumulative resistance path, forming a radiation driving effect on the

surrounding fragile ecological pattern. Ecological nodes are key

points of weak ecological functions and should be given key

ecological protection and construction.
A B

FIGURE 6

(A) Length of ecological corridors and number of ecological nodes in the AALYR; (B) The optimized framework to better balance ecological
conservation and economic development in the AALYR.
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3.2.5 Optimization of ecological
network structure

Table 5 shows the calculation results of ecological network

indexes before and after optimization. Optimized connectivity was

significantly improved, which promoted the stability of ESP in the

study area. g before and after optimization are 0.5789, 0.5819,

indicating that the ecological network nodes before optimization

are sparse and poorly connected to each other, and the connection

of the ecological network nodes after optimization is improved. a
before and after optimization are 0.3628, 0.3675. It reflected that

there were fewer ways of species migration and diffusion in the

AALYR before optimization, and the circulation was poor, which

increased the material, energy and information exchange capacity

between landscape patches after optimization, and promoted the

interoperability between ecological patches. b before and after

optimization are 1.6780, 1.5885, indicating that the ecological

network is no longer a tree or a single loop network, but a more

complex network structure. The stability of the network structure is

enhanced by proposing optimized paths for adding some ecological

sources, corridors and nodes in the study area.

3.2.6 Optimization framework of the ESP
Identifying and preventing LER is an important prerequisite for

improving regional ecological security. From this perspective, this

paper proposes to construct a trans-administrative boundary basin

ESP, which is of great significance for solving large-scale regional

ecological security problems. Combine various landscape elements

to optimize ESP. The distribution of corridors, the construction of

sources and the selection of nodes are important parts of the

construction of ESP. The analysis showed that the AALYR is

most affected by human interference, as well as the relatively

complex and heterogeneous land use types within the ecological

source region. Corridors selection aspect, unlike other research

methods, this paper only connects the edges of the source’s region,

ignoring the connectivity within the source region. In addition, the

role of primary nodes is to focus more on the protection and

adjustment of current environmental conditions and to provide

optimal conditions for species movement, while secondary nodes

are mainly used to improve the balance between human destruction

and ecological protection and to enhance the basic requirements for

species movement between source regions. Based on this, the ESP

strategy for the AALYR was established by combining the spatial

distribution of ecology, agriculture and cities in Shandong and

Henan provinces, as well as the ecological networks constructed.
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Specifically, with the Yellow River basin as the guiding main line,

Zhengzhou and Jinan as the main cores have established an

optimization framework based on “One Belt and One Axis, Two

Cores and Two corridors, Four zones” (Figure 6B).
4 Discussion

4.1 Comparison and connection with
similar studies

Based on the results of ecological security assessment, the present

situation of ESP and ecological risks in the AALYR were further

clarified. We conclude that the LER in the study area continues to

intensify, and the northeast is higher than the southwest, and the LER

in the basin area is increased by the influence of man-made

destruction, which is consistent with the research results of other

similar basins (Ai et al., 2022). At present, China’s ecological

protection policy is based on the ecological protection red line

(Gao et al., 2020), evaluating important ecological sources

according to the importance of ecosystem services and ecological

sensitivity, and dividing areas far from the scope of human activities

according to their importance (Wang et al., 2017a). Source areas are

identified by analyzing methods of ecological sensitivity assessment

and taking into account the impact of environmental and human

activities when selecting sources. This paper mainly draws on the

research ideas of other similar basins (Li et al., 2020), compared with

the method of directly selecting a nature reserve or a fixed patch of

forestland as an ecological source, this study overcomes the

limitations of single-factor assessments, enabling a more

comprehensive evaluation of ecosystem benefits and providing

valuable insights. This is similar to the ESP of the Minjiang River

Basin (Wang et al., 2022b). A total of 56 ecological source areas were

extracted, and 99 ecological corridors and 59 ecological nodes were

identified. The distribution characteristics of the corridors were

mostly concentrated in areas with low resistance accumulation and

dense source patches, which provided convenience for the exchange

of matter and energy, which was consistent with the research results

of other similar basins (Li et al., 2022a). Moreover, there is growing

evidence that fertile agricultural and forestland areas are often taken

up by construction activities, resulting in urban sprawl and ecological

land loss (Yang et al., 2022b; Zhou et al., 2023). At present, the

methods and standards for constructing resistance surfaces are not

unified (Su et al., 2016), and some scholars construct resistance value
TABLE 5 Landscape optimization assessment.

The number of corri-
dors (L)

The number of nodes
(V)

Linkage index
(g)

Closure index
(a)

Connectivity rate
(b)

Before
optimization

99 59 0.5789 0.3628 1.6780

After
optimization

103 61 0.5819 0.3675 1.6885
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coefficient by biodiversity conservation (Fu et al., 2019). Therefore,

the construction of the resistance surface should fully consider

regional differences to improve the reliability of simulation results.

In addition, biologists (Salviano et al., 2021) have shown that an

ecological corridor of 60-100 m was the best width for species

migration and had a better ecological conservation effect. Narrow

corridors do not meet the basic needs of migrating species, while wide

corridors increase the need for additional land and elevate conflict

with landowners (Dong et al., 2020). Therefore, we set the width as

100 m for the extracted first-level ecological corridors and 60 m for

the other ecological corridors. In summary, our constructed ESP is

scientifically sound and can provide more accurate information for

maintaining ecological security when compared to existing research

and ecological policies.
4.2 Reasonableness of the LERA

With further urban development and use, landscape

fragmentation is not only limited to change the shape of the

landscape, but further affect the internal environment, eventually

leading to changes in landscape structure and function. Research

has shown that changes in landscape patterns and internal

relationships are dynamic processes that cannot simply be

analyzed in terms of landscape fragmentation and connectivity.

Rather, it is important to consider these patterns in relation to

specific temporal and spatial changes (Yang et al., 2023; Zou et al.,

2022). Therefore, in the management and planning of urban space

in the AALYR, corresponding measures are required according to

the different development stages of urbanization, not only to

coordinate the contradiction of land use, but also to optimize the

internal structure, especially to improvement of cultivated land

quality. For the more developed Jinan and Zhengzhou, the need for

socio-economic development needs to be seriously considered. At

the same time, it is important to protect areas where natural habitats

are concentrated, especially habitat margins and corridors, in order

to achieve a positive balance between natural and economic

interests (Liu et al., 2022). This approach can promote regional

planning and support the healthy development of the city.
4.3 Limitations and future
research directions

This research not only ensures the integrity of the ecosystem,

but also provides direct insights for policy makers and planners.

However, a number of important issues related to the ESP need to

be further explored. Firstly, in establishing the resistance surface

factors, although an attempt was made to adequately reflect the

natural and socio-economic elements, the socio-economic factors

were still generalized due to the lack of regionally corrected

ecosystem service values, and the values quoted only reflect the
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relative differences between the factors rather than reflecting the

absolute values (Geng et al., 2022). The selection of ecological

sources only relied on what can be ecological sources, and there is

no in-depth research on the issue of the scale of ecological sources

and how large an area can meet the function of ecological land.

Meanwhile, the construction of ecological corridors will inevitably

change the land use structure, and the resulting changes in the

environment are also a research direction that should be concerned

in the future. Our study only analyzed the current ESP based on

land use data, and researchers can predict future pattern trends in

the context of the corresponding development status.

This study takes the AALYR as the research object. On the one

hand, it is because the study area is rich in natural conditions and

biodiversity resources; on the other hand, the rapid urbanization

and frequent anthropogenic damage have led to environmental

degradation, which seriously threatens the regional ecological

security. The results of this study expand the understanding of

the ecological characteristics of the area and provide suggestions for

urban planning and environmental protection in the AALYR and

other areas facing similar challenges.
5 Conclusions

Planning urban ecological space is effective in weakening threats

to ecological security from urban sprawl at the landscape scale. In

this study, we analyzed the ESP of the basin with the by the aid of

LERA and MCR model. Figure 6B shows our proposed optimal

ecological optimization framework of “One Belt and One Axis, Two

Cores and Two Corridors, Four zones”. We followed the sequence

of “determining the sources, building the resistance surface,

selecting corridors and nodes, constructing and optimizing the

ESP”, which is a more scientific approach. This allowed us to

propose specific countermeasures for optimizing the ecological

service pattern. It is recommended that a part of the plantation

forestland be added, the protective zone on both sides of the river be

expanded and an ecological reserve be built to enhance the

ecological protection of the AALYR. In order to optimize the

ecological environment in the AALYR, local government

departments should focus on the construction of ESP and

reasonably plan and allocate control measures such as ecological

land and built-up land. In addition, in the context of promoting

ecological conservation and ecological restoration in the Yellow

River basin, it is necessary consider the effectiveness of

differentiated policy development at different scales.
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evaluations and zones of territorial
spatial functions in Yibin, China
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Objectively evaluating and defining territorial spatial functions are important
prerequisites for optimizing the use of territorial space. However, the results of
the evaluation of functions at different levels may differ significantly. How to
integrate the evaluation results and guide the spatial utilization at different levels
more effectively is worth exploring. This study takes as the research area Yibin City,
China, a node city along the Yangtze River in the upper reaches of the Yangtze
River. In the study, 185 towns in that city were taken as the primary evaluation units
for an indicator system of territorial spatial function constructed on the basis of
multivariate data. Research methods such as the entropy method and cluster
analysis were adopted to do multilevel evaluations and zoning of territorial spatial
functions in Yibin City. The results suggest the following: 1) The distribution of
agricultural production, rural living, and ecological regulation functions among the
second-level production-living-ecological (PLE) functions of townships were
relatively balanced in Yibin City. The production function of industry and
mining, urban life function, and ecological product supply function showed
spatial directivity. 2) The evaluation results of the first-level PLE functions of
townships showed that the areas with substantial PLE functions accounted for
approximately 20%, whereas the areas with insignificant functions accounted for
approximately 80%, which reflected the “80/20 rule” of spatial functions. 3) In
accordance with the cluster analysis of the multilevel evaluation results, the
township functions in Yibin were divided into 5 functional areas: urban life-
industrial production advantage areas (12%), urban life-rural life advantage
areas (8%), rural life-agricultural production-ecological function product supply
advantage areas (29%), rural life-agricultural production-ecological service
function advantage areas (20%), and ecological service function-agricultural
production function advantage areas (31%). 4) In the future, Yibin City should
focus on 20% of the significant functional areas and attach importance to the
relativity of spatial functions to form a high-quality territorial spatial protection and
development pattern. Based on the objectives and requirements of the new
territorial spatial planning in China, this study reconstructed the municipal
territorial spatial functional areas through a multilevel functional evaluation,
which has theoretical and practical significance for forming a new pattern of
territorial spatial development and use with joint production, living, and ecological
functions.

KEYWORDS

80/20 rule, function evaluation, production-living-ecological function, territorial spatial
function, township scale
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1 Introduction

Since China’s Reform and Opening Up, with the rapid
development of industrialization and urbanization, the use
pattern of territorial space has been reshaped constantly, and the
spatial functions based on spatial patterns have become disordered
(Kim and Arnhold, 2018). It is difficult to guarantee a “production-
living-ecological” (PLE) functional form and demands, which will
greatly restrict regional sustainable development (Cheng et al., 2022;
Qiu et al., 2023). Especially in the key river basins (e.g., Yangtze
River and Yellow River) of China, the optimization of territorial
spatial functions is associated with national ecological security and
has been highly valued by the Chinese government in recent years
(Xi et al., 2020; Niu et al., 2022). The proposal to promote “well-
coordinated environmental conservation and avoid excessive
development” in the Yangtze River basin has brought new
challenges to the territorial spatial development and functional
trade-offs of the basin, especially in the upper reaches of the
Yangtze River (Fan et al., 2015; Zhao et al., 2022a). Research on
current functional identification and zone optimization might lead
to improved policy insights for the best development of watershed
territorial space.

According to regional function-structure theory, differences in
spatial function are determined by spatial heterogeneity. There are
differences in the components or quantity compositions of spatial
elements in each region, the effect of natural evolution, and human
activities, which result in various spatial patterns (Xie et al., 2021a;
Zhao et al., 2022b). The failure of those patterns to adapt to
sustainable human development is regarded as spatial
dysfunction, which can be balanced by artificial planning
constraints (Fu et al., 2021; Zhang, 2022). The evolution of
territorial space also follows the general laws of geography: the
initial pattern and process determine the pattern and the
corresponding functions, while the pattern in turn affects the
evolution of the process (Fu, 2002; Brooks and Lee, 2019). After
a territorial spatial pattern and its corresponding functions are
formed, the pattern will be stable for some time, but the

evolution of its driving mechanism and process can be influenced
by human planning. That planning will affect the spatial state and
quality of the pattern and functions and provide decision-making
support for spatial optimization and use (as shown in Figure 1) (Wei
et al., 2021; Wang et al., 2022).The spatial scope of various resource
allocation and development demands results in no unified model for
dividing territorial spatial functions. However, there is a consensus
to scientifically define a region’s most appropriate regional function
in a specific development stage through evaluation. The function
should be conducive to the increase of the sustainability of spatial
use and the positive effect (Li et al., 2021a). It should also enable top-
down spatial control and formulating a spatial intervention policy
(Ma et al., 2022). As a direct basis for the division of territorial spatial
functions, evaluating spatial suitability and primary zones is vital. In
particular, selecting evaluation units and evaluation perspectives and
methods is a focus of research and practice.

The main methods for identifying territorial spatial functions
are evaluating resources and environmental carrying capacity and
determining the suitability of territorial spatial development
(referred to as a “double evaluation”) (Wang et al., 2019). Those
methods have already been used by the Chinese government, and
they provide scientific support for planning China’s “urban-
agricultural-ecological” spaces (Hsu et al., 2021). Different from
the urban, agricultural, and ecological functions, the current spatial
production-living-ecological (PLE) function originated from the
agricultural multifunctional classification system of the European
Union. Later, with the rise of research on land multifunctionality,
the PLE function concept was introduced in land use classification
and spatial policies (Callo-Concha and Denich, 2014; Xue et al.,
2022). For example, the Chinese government’s PLE space division
and development aspirations are expressed as promoting intensive
and efficient production spaces, livable and moderate living spaces,
and beautiful ecological spaces (Yang et al., 2020).That emphasis at
the national strategic level has attracted academic attention, and the
comprehensive index of the PLE function has become the basis for
spatial function, identification, and comprehensive spatial
governance (Xie et al., 2021b; Hou et al., 2022). The current

FIGURE 1
Pattern and process of territorial space function.
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research on evaluating the PLE territorial spatial function is essential
to understanding the spatial quantitative structure, function level,
and function divisions of territorial space. That includes selecting
stable and reasonable spatial evaluation units and establishing an
evaluation system and model (Zhang and Xu, 2021; Xiao et al., 2022;
Zhang et al., 2022). As for the scale, regional and watershed-level
evaluations are based primarily on grid units (30 m × 30 m, 100 m ×
100 m, 1,000 m × 1,000 m) or standard evaluation units
(nomenclature of territorial units for statistics) (Fu et al., 2022;
Liao et al., 2022).Generally, the evaluation results offer little
guidance for arranging industrial land use types in a city or for
spatial control zoning. Therefore, great importance has been
attached to evaluating a county’s territorial spatial function (Li
et al., 2021b; Fu and Zhang, 2021). To construct a scientific
evaluation model as a breakthrough focus, the evaluations
involve using powerful computing hardware, mathematical
methods, and 3S technology (geographic information system
technology, global positioning system technology, remote sensing
technology) (Ling et al., 2022). Data from multiple sources, such as
remote sensing images, geographical conditions, and internet points
of interest (POI) have also been comprehensively adopted (Han
et al., 2019; Li et al., 2022a). For example, the development of a land
suitability evaluation model, the Intelligent Geographical
Information System (LEIGIS) (Kalogirou, 2002), and a suitability
evaluation of a particular type of crop planting area for agriculture
(Ostovari et al., 2019). Current research often focuses on a function
(life, production, or ecology) as an entry point. Few studies of

multifunctional fusion zones based on a dominant function have
been done, and evaluating single functions is done at the level of data
sources. In practice, that fails to obtain sufficient richnesses of the
functional connotation and practical guidance because the
evaluation unit cannot match the primary administrative unit
(the township). The township is the smallest socio-economic
management unit in China, which takes into account the socio-
economic unity, the integrity of the natural ecosystem and the
scientificity of spatial management. How to scientifically conduct
multilevel territorial spatial function evaluation and comprehensive
zoning at township scale is a scientific issue worth exploring. For the
complexity and evolution of spatial functions, a multilevel
evaluation of spatial functions that aligns with the control subject
is better adapted to the characteristics of the functional area and
more conducive to integrating multiple functions under the
dominant function. It is also more conducive to a detailed
analysis of evaluation results and to obtaining practical guidance
for optimizing territorial spatial development.

Yibin City, in the upper reaches of China’s Yangtze River
Economic Belt, was this study’s research area. Considering the
administrative subject of spatial control and the scope of the
research area, this study adopted 185 townships in Yibin City as
the primary evaluation units. In accordance with the spatial and
statistical data, the basic concept of PLE space was applied to
evaluate the research area’s spatial functions. The evaluation was
divided into three levels: a second-level PLE function, a first-level
PLE function, and a comprehensive PLE function. The second-level

FIGURE 2
Location of Yibin city.
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PLE function of a township evaluated the dominant spatial functions
of different townships: urban living, rural living, industrial and
mining production, agricultural production, ecological regulation,
and ecological product supply. Based on the second-level PLE
functions of a township, its first-level PLE functions (production,
living, and ecological functions) were obtained. Then, based on the
evaluation results of spatial functions at various levels and the
dominant spatial function, the comprehensive PLE functions area
is divided. This study aims to explore the evaluation and
comprehensive zoning methods of multi-level spatial functions to
define the territorial spatial functions more scientifically, and to
understand the territorial spatial functions of townships (the lowest
and most direct level of spatial control subjects in the current
Chinese system) more objectively in the spatial utilization and
management.

2 Study area

Yibin, a city in China’s Sichuan Province, is located in the upper
reaches of the Yangtze River, where the Jinsha and Minjiang rivers
converge to form the Yangtze River (Figure 2). With an area of
13,283 km2, it covers 3 districts, 7 counties, and 185 townships. By
the end of 2018, the registered population of Yibin was 5.523million,
and the permanent population was 4.556 million. The annual GDP
of the region was 234.931 billion yuan, and the ratio of the three
industrial structures was 12.2:49.7:38.1. Yibin is in the transition
zone from the Sichuan Basin to the Yunnan-Guizhou Plateau. That
zone is characterized by a transition from low and mild hills to steep
hills and low mountains with an altitude of 500–2,000 m and
marked differences in territorial spaces. The Jinsha and Minjiang
rivers intersect in the central urban area, then become the Yangtze
River’s mainstream, traversing central and eastern Yibin from west
to east. The spatial functional zone is important because of the
influence of the geomorphic pattern, which further affects the use
complexity.

Yibin has entered an accelerated stage of urbanization and
industrialization driven by the development of western China
and the strong development of its urban economy, the changes
in its transport methods (multi-transportation such as water
transport and high-speed railway), and its interregional location
(central city of southern Sichuan Province).From the perspective of
the watershed ecosystem, Yibin City plays a major part in the
ecological barrier in the upper reaches of the Yangtze River.
Because of the ecological environment protection in the Yangtze
River Basin, the territorial spatial function of Yibin City is mainly
ecological, which is of great significance for maintaining the
ecological security pattern in the upper reaches of the Yangtze
River (Li et al., 2022b). As a modern economic location, Yibin is
developing into a growth point that extends westward along the
Yangtze River Industrial Belt. It is a subcentral city in Sichuan
Province and a central city in the southern region of Sichuan
Province, whose urban development functions are also important.
From the perspective of development status, territorial spatial
development is not only extensive; it is also constrained by
national and provincial policies such as the grain for green
project, transformation development, environmental protection
requirements, and ecological environment restoration in the

Yangtze River basin. The rapid expansion of urban and industrial
land has encroached on cultivated and ecological lands, which
changed the original territorial spatial structure and functions
and had a marked effect on the sustainable development of the
territorial space (Zhou et al., 2017). Therefore, scientifically
evaluating and defining territorial spatial functions and guiding
the formation of a new pattern of territorial spatial development and
use are conducive to offering guidance to the high-quality
development of Yibin’s territorial space. They also lay a scientific
foundation for constructing and developing the upper reaches of the
Yangtze River economic belt.

3 Data and methods

3.1 Data sources

This study’s datasets include spatial, statistical, survey,
generated, and report data (Table 1).

3.2 Research methods

3.2.1 Construction and description of evaluation
indicators

Based on the PLE classification of territorial space, this study’s
evaluation divided the production function into agricultural
production and industrial and mining production. The living
function was divided into rural and urban life, and the
ecological function was divided into ecological regulation and
product provision, forming a criterion layer. Because the
evaluation was based on the township as the primary research
unit, the form and content of statistical data items at the township
level and statistical yearbooks at the district and county levels were
not uniform, and there were differences between the main
statistical items, so an attempt was made to adopt the indicator
data with unified statistics for each township. Referring to the
relevant literature (Yang et al., 2020; Xie et al., 2021b; Wang et al.,
2023), taking the actual situation of territorial spatial development
and the pertinence, stability, scientificalness, and accessibility of
indicators into consideration in Yibin City, the final evaluation
index system comprised 3 target layers, 6 criterion layers, and
28 indicator items, as shown in Table 2.

3.2.1.1 Indicators of the production function
Soil thickness, nutrient level, soil erosion intensity, and

cultivated land slope are the key indicators that characterize the
geographical conditions of cultivated land and can be used as natural
factor conditions for agricultural production functions. The current
cultivated land area was the result of the influence of cultivation
conditions and cultivation willingness and reflected the foundation
of agricultural production functions. Therefore, it was included in
the indicator system.

In the industrial and mining production functions, the regional
gross domestic product, value added by secondary industries, and
the number of industrial enterprises can effectively represent the
current regional industrial development. (The secondary industries’
added value was chosen as a factor because the industries contribute
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much to the regional gross domestic product in Yibin City.)The
parks included industrial parks, agricultural industrial parks, and
comprehensive industrial parks (e.g., logistics and specialty
commerce), which were assigned values based on their quantity
and scale. The assigned values for the planned parks were halved.

The reason for adding the terrain undulation is that Yibin City is
a low-mountain and hilly area with few flat land resources, whereas

the areas with minor terrain undulations and abundant flat land
resources can provide alternative land for industrial and mining
layouts.

3.2.1.2 Indicators of living function
The rural residents’ per capita disposable income and the

impoverished population in rural areas were important current

TABLE 1 Research data description.

Data
type

Content Source

Statistical Gross domestic product in renminbi (RMB 10,000), the added value of the
second industry (RMB 10,000), number of industrial enterprises, per capita
disposable income of rural residents (RMB), permanent population of urban

build-up areas, and total retail sales of consumer goods (RMB 10,000)

Statistical Yearbook and Bulletin of Each District and County in Yibin City in
2018 (provided by District and County Statistical Bureau)

Spatial Cultivated land slope, cultivated land area, distance from the main urban area,
altitude, topographic relief, geo-hazards, water area, and drainage density

The Resource and Environment Science and Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/)

Survey Soil thickness, soil nutrient levels (organic matter, available phosphorus,
available potassium), soil erosion intensity, bamboo forest area (km2), garden
area (km2), tea garden area (km2), and foundation-bearing capacity (level)

Functional departments: Yibin City Agricultural and Rural Bureau and Yibin
Natural Resources and Planning Bureau

Generated POI types and density of each township POI classification coding table of the Gaode map API (extracted with Python)

Report The rural poor population, mineral resource development, and industrial park
situation

Report of precision poverty alleviation work in Yibin and the 13th Five-Year
Industrial Development Plan of Yibin City

TABLE 2 Function evaluation index system and weight allocation of the current situation of the PLE space in Yibin City.

Criterion layer Indicator layer/unit Weight Criterion layer Indicator layer/unit Weight

Urban living function Permanent population in urban built-up
areas

0.093 Rural living function Per capita disposable income of
rural residents

0.156

Total retail sales of social consumer
goods

0.240

Urban construction land area 0.283 Rural poor population 0.128

Geo-hazards 0.025 Altitude 0.237

Foundation-bearing capacity 0.063 Road network density 0.255

POI type 0.010 POI type 0.029

POI density 0.286 POI density 0.195

Industrial and mining production
functions

Regional gross domestic product
(10,000 yuan)

0.126 Agricultural production
function

Cultivated land slope 0.106

Value added of the secondary industry
(10,000 yuan)

0.177 Soil thickness 0.046

Number of industrial enterprises 0.081 Organic matter 0.134

Industrial park situation 0.334 Available phosphorus 0.256

Development of mineral resources 0.254 Available potassium 0.103

Regional gross domestic product
(10,000 yuan)

0.018 Soil erosion intensity 0.108

Value added of the secondary industry
(10,000 yuan)

0.010 Cultivated land area 0.248

Ecological regulation function NDVI 0.512 Ecological product supply
function

Bamboo forest area 0.240

Water area 0.146 Garden area 0.344

Drainage density 0.342 Tea Garden Area 0.416
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indicators of rural living functions. Although at the time of the study
Yibin City had no absolute poverty, it aimed to help people out of
poverty. Therefore, the number of poor people at the beginning of
targeted poverty alleviation reflected the overall rural human
settlements and living conditions to some extent. Altitude and
traffic accessibility, which directly affect the environment and
conditions of rural entrepreneurship, had an important effect on
the return of rural youth laborers and was adopted to be an
important indicator for evaluating the rural living function.

As for the urban living functions, the permanent population of
the built-up area and the total retail sales of social consumer goods
effectively represented the current urban living situation. Geo-
hazards and foundation-bearing capacity were included in the
index system, which focused on the deep dependence of high-
density living facilities on urban environments.

3.2.1.3 Indicators of ecological function
The ecological product supply function was evaluated based on

the advantageous tea and bamboo industries in Yibin City (the
capital of bamboo in China and the famous hometown of tea in early
China). Bamboo forest, garden, and tea garden areas were taken as
evaluation criteria.

3.2.2 Comparative advantage index
The first stepwas to build the original matrix of indicator based on

the indicator system. The second step was normalizing the original
matrix to obtain a new one. During that process, attention was paid to
the distinction between positive and negative indicators. The third
step was calculating the entropy and weight of the functional area
indicators by the entropy weight method. The specific weights of each
indicator are shown in Table 2. To better understand the patterns and
statuses of the PLE functions of townships at the municipal level, the
normalized revealed comparative advantage index (NRCA) was
applied to calculate the comparative advantage index of the PLE
function of each township:

NRCAij � Xij/X −XjXi/XX (1)

where Xij refers to the ith functional value of the jth township, X
refers to the sum of all functional values of the township,Xj refers to
the sum of the jth function of the township, andXi refers to the sum
of all functions of the ith township. When NRCA >0, it indicates
that a function (living, production, or ecological) of the township has
a comparative advantage in the city; otherwise, the function has no
comparative advantage.

3.2.3 Ward system clustering method
The ward system clustering method used the sum of squared

deviations to calculate the distance. The sum of square Euclidean
distances from each element in a class to the class center of gravity
(i.e., the class mean) is called the sum of squared deviations in a class.
Assuming that GK and GL are clustering as a new class GM, the sum
of squared deviations within the classes ofGK,GM andGL are shown
in Eqs (2), (3), and (4) respectively:

WK � ∑
xi∈GK

xi − �xK( )′ xi − �xK( ) (2)
WL � ∑

xi∈GL
xi − �xL( )′ xi − �xL( ) (3)

WM � ∑
xi∈GM

xi − �xM( )′ xi − �xM( ) (4)

Assuming that whenGK andGL are merged into a new classGM,
WM >WK +WL , the sum of squared deviations within the class
increases. If GK is close to GL, the sum of squared deviations should
be smaller. Therefore, the squared distance of GK and GL was
calculated by Eq 5:

D2
KL � WM − WK +WL( ) (5)

It can be seen that the ward-clustering analysis applied the
analysis of variance to classification, making the sum of squares of
deviation in the same category small, which suggested the high
similarity between samples. If the sum of squares of deviations
between different classes were large, the similarity between samples
would be low. By studying the first-level territorial spatial
classification of PLE values as the clustering analysis factors, the
comprehensive spatial clustering analysis results of PLE space at the
township level in Yibin City were obtained through ward system
clustering.

4 Results and analysis

Based on the total scores of different functional properties of
each township calculated by the methods mentioned above, they
were divided into 4 levels with natural breaks: high-value area,
higher-value area, lower-value area, and low-value area. The
visualization display and analysis follow.

4.1 Classification and evaluation of second-
level functions of PLE space

The evaluation results of urban and rural living functions at the
township level in Yibin are shown in Figure 3. Six townships were in
high-value areas of urban living functions, 16 townships were in
higher-value areas, 124 townships were in lower-value areas, and
39 townships were in low-value areas. The proportions of high,
higher, lower, and low-value areas in the study area were 3%, 8%,
71%, and 18% respectively. The proportions of townships with high,
higher, lower, and low value living functions in rural areas were 41,
84, 49, and 11 respectively, accounting for 15%, 46%, 30%, and 9% of
the study area respectively. From the perspective of the living
functions in the city, most areas were mainly rural living
functions; the areas with high and higher urban living functions
accounted for only 11%.

From the perspective of distribution, the townships with a high
value for urban living functions in Yibin were distributed mainly in
the central urban areas along the Yangtze River, including the
current streets in Cuiping District, Baixi Town in Xuzhou
District, Nanxi Street in Nanxi District, and Jiang’an Town in
Jiang’an County. In addition, it included Xunchang Town and
Changning Town. The towns with higher value were mainly the
central towns of the district and county, whereas townships with a
low urban living function were distributed mainly in the southern
part of middle- and low-mountain counties such as Xingwen
County, Changning County, Gong County, and Junlian. The
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areas with high value for rural living functions in Yibin included
Cuiping District, Nanxi District, and most northern townships in
Changning County. The areas with higher value were mainly the
townships in Xuzhou District, Jiangan County, and Gao County,
and the areas with low value included the townships in the western
part of Pingshan County and three Miao townships in the southern
part of Xingwen County. The areas with high value for urban and
rural living functions reflected the characteristics of concentrated
distribution along the Yangtze River. Because of many flat dams
along the river, intensive production factors, and earlier
development history driven by the advantages of water

transportation, it became the first choice for the layout of living
areas. In mountainous and hilly areas with little flat land, the
shoreline areas along the river that were unaffected by floods
greatly attracted urban and rural residents.

The evaluation results of the production function of each
township’s industrial and mining industry are shown in Figure 4.
The numbers of townships with high-value, higher-value, lower-
value, and low-value industrial and mining production functions
were 22, 19, 14, and 130 respectively, accounting for 13%, 11%, 9%,
and 67% of the study area respectively. The distribution of high-
value areas with Yibin industrial and mining production functions

FIGURE 3
Urban living and rural living function zones of townships in Yibin.

FIGURE 4
Industrial and mineral production function and agricultural production function zones.
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had two basic characteristics: First, they were distributed in the
central towns where the district and county governments were.
There were convenient transportation and infrastructures in those
towns, which were located near government departments, making it
easy to lay out the industrial parks or industrial development
concentration areas. Second, they were distributed in some
townships with resource advantages. For example, Guhe Town in
Changning County, Didong Town and Luodu Miao Township in
Gong County, and Mu’ai Town in Junlian played an important part
in shale gas development. However, such a phenomenon is not
consistent. For example, although Qingping Yi Township in
Pingshan County had mineral resources like basalt, it was in the
safety zone of Xiangjiaba hydropower station, where mining was
prohibited. Therefore, it was a low-value township with industrial
and mining production functions.

The number of townships with high, higher, lower, and low
agricultural production functions was 21, 64, 81, and 19 respectively,
accounting for 19%, 36%, 36%, and 9% of the study area respectively.
It can be seen that the towns with a high value of agricultural
production function in Yibin were distributed mainly in Xuzhou
District. Some townships were locatedmainly in the northern part of
Xuzhou District, e.g., Liujia Town and Guluo Town. The higher-
value areas were distributed in Shengtian Town in Gao County,
Zhuhai Town in Changning County, and Bowangshan Town in
Xingwen County. From a geomorphologic perspective, those areas
were composed mainly of low and gentle hills, not along the river or
in the middle and low mountains. The agricultural production
functions were dominant because they were under little pressure
from urban and ecological spaces. Townships unsuitable for
agricultural production were distributed mainly in the central
and western parts of Pingshan County. The evaluation results of
the built-up area in Cuiping District were also suitable; they were
affected mainly by the natural basement conditions. From a practical
perspective, most of those areas were urban built-up areas, and
although there were good functional conditions for developing

agriculture, they were forced to give in to the industrial and
urban areas.

As shown in Figure 5, the numbers of townships with high,
higher, lower, and low ecological regulation functions were 38, 89,
51, and 7 respectively, accounting for 23%, 47%, 29%, and 1% of the
study area respectively. High-functional and higher-value areas
accounted for 60%, and lower and low-value areas accounted for
40%. The numbers of townships with high-value, higher-value,
lower-value, and low-value ecological product supply functions
were 19, 36, 53, and 77 respectively, accounting for 16%, 24%,
29%, and 31% respectively. The proportion of functional high and
higher-value areas was 40%, and the proportion of lower and low-
value areas was 60%, which was opposite to the proportion of
ecological regulation functions. That suggested that 60% of the
city area in Yibin currently had good ecological regulation
functions. Considering the overlap of the two, approximately
40%–50% of that 60% of townships had favorable ecological
regulations and ecological product supply; for example, the
resources of camphor trees and bamboo forests had dual
ecological functions.

From the distribution perspective, the ecological regulation
function was evenly distributed in the city. Except for the old
central urban area where the three rivers join, the high-value
areas of ecological regulation functions were mainly middle- and
low-mountain areas such as Pingshan, Gao, and Junlian counties.
The low and gentle hills in the northern part of Nanxi District were
also high-value areas of the ecological regulation function. The
townships with the highest ecological supply capacities were
mainly the villages along the Jinsha River in Pingshan County,
the northern towns, the southern towns such as Qingfu Town in Gao
County, and several townships in Junlian and Xingwen County. The
features common to those towns were the wide distribution of
bamboo forests and tea gardens, the low level of industrialization
and urbanization, and the outstanding ecological background. The
distribution of areas with low ecological supply functions was

FIGURE 5
Ecological regulation function and evaluation zones of ecological product supply function townships in Yibin.
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mainly in the regions along the Yangtze River of Xuzhou District,
the Nanxi District, and to the north of Jiang’an County.

4.2 First-level function evaluation of PLE
space

The territorial spatial function of a township has a complex
nature. Although a township’s second-level territorial spatial
function has the characteristic of spatial heterogeneity, their
functions are diversified and coexisting in some extent. To better
express a township’s comprehensive functions at the territorial PLE
space level, 6 second-level functional indicators of a territorial PLE
space were used to evaluate its first-level PLE function.

The numbers of townships with high value, higher value, lower
value, and low values of first-level living functions (Figure 6) were 9,
14, 100, and 62 respectively. The proportion of townships with
higher and high values was 13%, and the proportion with lower and
low values was 87%. The area proportions of high, higher, lower, and
low-value areas in the city area were 5%, 11%, 58%, and 26%
respectively. The areas of higher and high-value townships
accounted for 16%, and the areas of lower and low-value
townships accounted for 74%. The high-value areas were almost

consistent with the current central urban area and the central town
where the district and county governments were. The low-value
areas with first-level living functions included mainly the townships
in Pingshan County and most towns in the southern part of the city.
Some of the townships in mosaic shapes, such as Yachi Township,
Majia Township, Furong Town, Dongdi Town, and other low-living
function areas, might have been related to the selection of indicators
and the calculation of specific indices. From the evaluation
perspective, the high-value function areas were not absolute,
especially the townships that were administrative units whose
boundaries were unstable and easily affected by external factors;
for example, the trunk roads (highway or industrial park
construction). They neither weakened nor enhanced the
functional differences between adjacent administrative districts.

The numbers of townships with high, higher, lower, and low
first-level production functions (Figure 7) were 16, 24, 26, and
119 respectively. Townships with higher and high values
accounted for 22%, and townships with lower and low values
accounted for 78%, which was almost the same as the numbers
and proportions of townships with industrial and mining
production functions. The area proportions of high, higher,
lower, and low-value areas in the city area were 9%, 14%, 16%,
and 61% respectively. The areas of higher and high-value townships

FIGURE 6
First level of living function zones of townships in Yibin.
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accounted for 23%, and the areas of lower and low-value townships
accounted for 77%. Their distribution was highly similar to the
overall pattern of industrial and mining production functions
(Figure 4). That was because the general level of the current
agricultural development was not high, but in a low-level
equilibrium state in Yibin City. However, because industry
greatly relied on transportation, location, and natural resource
endowment, there were marked regional differences in industrial
and mining production functions. Therefore, the spatial difference
distribution of first-level production functions was similar to that of
industrial and mining production functions.

The numbers of townships with high, higher, lower, and low
first-level ecological functions (Figure 8) were 11, 31, 49, and
94 respectively. The proportion of townships with higher and high
values was 23%, and the proportion with lower and low values was
77%. The area proportions of the city’s high-, higher-, lower-, and
low-value areas were 8%, 20%, 27%, and 45% respectively. The
areas of higher and high-value townships accounted for 28%, and
the areas of lower- and low-value townships accounted for 72%.
The first-level ecological function patterns of the townships in
Figure 8 were similar to the ecological product supply function of
the townships in Figure 5, which suggests that the ecological
service function was relatively balanced in the cities like Yibin
with a good ecological foundation. In the future, the ecological

supply should be given priority in future ecological civilization
construction: it should not only meet the essential ecological
services and generate pure ecological benefits but also provide
ecological products and bring corresponding economic benefits.
Because of the comprehensive value of the ecological effect, the
ecological function of territorial space becomes an important
direction and approach to optimize the use of territorial space.

4.3 Zone and development guidance for a
comprehensive PLE function

Based on the evaluation of the PLE function of basic spatial units
in townships, the ward system clustering method was adopted to
obtain the zone result of a comprehensive PLE function of the
territorial space in Yibin City (Figure 9). That space was divided into
5 comprehensive PLE function areas: urban life-industrial
production advantage, urban life-rural life advantage, rural life-
agricultural production-ecological function product supply
advantage, rural life-agricultural production-ecological service
function advantage, and ecological service function-agricultural
production function advantage.

Twenty-three townships were in the urban life-industrial
production advantage area, accounting for 12.04% of the total

FIGURE 7
First-level production function zones of townships in Yibin.
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townships and 9.25% of the area. That functional area combined
urban life and industrial production functions, focusing on
centralized urban construction and developing green industries
with low environmental friendliness. The area included mainly
streets and townships where the central cities along the river
were located. Note that Pu’an, Gaodian, and Xijie towns and
Liangjiang Township were classified into this category but not as
a direct result of clustering. Instead, they were appropriately revised
based on the current planning of urban expansion and industrial
concentration areas in Yibin City. The current planning had
included them in the central urban expansion area or key
industrial parks.

An urban life-rural life advantage area focuses mainly on urban
living space and also serves as a rural living space. An urban and
rural life advantage zone is an area that focuses mainly on urban and
rural living spaces. Its distribution is characterized by being
geographically close to the central city (e.g., Nanguang and
Lizhuang towns) or being far away from the central city.
However, other areas belonged in this category, including a total
of 14 townships in the city with prominent central characteristics,
long development histories, and vast rural hinterlands (e.g., Junlian
and Gusong towns), or towns where important tourist attractions
were located (for example, Zhuhai and Shihai towns). They
accounted for 8% of the total townships and 8.81% of the area.

A rural life-agricultural production-ecological function product
supply advantage area is a township comprising mainly rural life,
agriculture, or other business forms around the extension of a
modern agricultural industry chain as the leading industry and
values the development of ecological agriculture. Although those
townships are dominated by rural life and agricultural production,
they attach great importance to developing beautiful new villages
and the economic benefits of ecological construction driven by a
rural revitalization strategy. Such strategies include improving the
quality of the ecological product supply of bamboo food, high-
quality early tea, and ecotourism. Fifty-three townships were in this
area, accounting for 29% of the total townships and 31.14% of
the area.

A rural life-agricultural production-ecological service functional
advantage area is similar to a rural life-agricultural production-
ecological function product supply advantage area, but the former
attaches greater importance to ecological service benefits than the
latter. That type of area covered 37 townships, accounting for 20% of
the total number and 22.55% of the area.

An ecological service function-agricultural production function
advantage area puts the achievement of ecological service functions
as the top priority and has a scale of agricultural production
functions. From a distribution perspective, that area was located
in the city’s southern, western, and northern parts because they were

FIGURE 8
First-level ecological function zones of townships in Yibin.
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mainly mountainous and hilly. Such areas covered 58 townships,
accounting for 31% of the total number and 25.46% of the area.

5 Discussion

5.1 The 80/20 rule of space: occasional or
objective?

Taking 2018 as the evaluation base year and townships as the
primary evaluation unit, this study evaluated the territorial spatial
function of Yibin City at 3 levels This study put forward a multi-
level territorial spatial function evaluation and comprehensive
zoning method, which had important guiding significance for
coordinating the territorial spatial function of Yibin City and
scientifically carrying out the protection, development and
utilization of territorial space. The evaluation results showed an
important phenomenon: from the perspective of the
comprehensive PLE functions, the towns with higher values and
high values and the towns with lower values and low values showed
a 2:8 distribution pattern (Table 3).

In other words, the territorial space with important functions in
the PLE function accounted for approximately 20% and insignificant

functions approximately 80%. Because the 80/20 rule is usually used
in social and economic fields, further research is required to
determine whether that phenomenon existed in the objective
regional space or was an occasional or universal phenomenon.
However, the present research partially characterized that
phenomenon. For example, an evaluation of the environmental
function in Guangxi showed that the high and higher
development and construction areas in Guangxi accounted for
15% of the total area of the autonomous region (Bu et al., 2018).
Another emulation measured the suitability of the PLE function in
the Bailong River Basin, Gansu Province, and showed that the area
of highly suitable and appropriate production functions in the basin
accounted for 28.78% of the available space (Liu et al., 2019). This
may prove the rationality of the territorial spatial function zoning
results in this study to some extent. But how to understand and deal
with the contradiction of spatial functions at different levels? The 80/
20 rule of territorial spatial function demonstrates that, for a
particular type of function, whether it is developing, protecting,
or optimizing, more than 20% of the functional areas should be
focused on, the input-output ratio of space should be improved,
space use efficiency should be increased, space governance should be
improved, and regional social and economic development should be
served. For example, the current Chinese government’s guarantee of

FIGURE 9
Comprehensive PLE space function clustering results of townships in Yibin.
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functional areas for grain planting should make good use of 20% of
the plains areas rather than take mountainous and hilly areas as the
key areas for grain planting.

5.2 Relativity of spatial functions

The comprehensive zoning results of PLE function are the result
of comprehensive clustering based on the first-level PLE functions,
reflecting the commonality of spatial functions and development
directions among regions and playing a macro-guiding role for
regional development. Therefore, the comprehensive partition
results have important reference significance for the gradual
optimization of the current function. Note that this study’s
evaluation of the PLE function was based on social economic
indicators and few natural background indicators, with
administrative regions (townships) as the primary evaluation
unit. The township boundaries were unstable, and major
adjustments of townships at the county level in Sichuan have
increased in recent years. However, the evaluation results can be
used only as a reference for gradually optimizing the current
functional areas. Also, the current functional status is often the
result of the joint action of spatial base conditions, the historical
inertia of development, and the selection of practical development
requirements, which have a strong current situational and
developmental selectivity. As the lowest and most direct level of
spatial control subjects in the current Chinese system, townships will
further explore the functional orientation more in line with their
own development on the basis of the comprehensive PLE function
zoning results according to their development reality.

According to the evaluation results, Shaping Street belonged to
the urban life-industrial production advantage area. As for the
current situation, it was the core area for urban spatial expansion
in Yibin City. However, before 2009, Shaping Street belonged to a
typical agricultural area along the river. The agriculture was mainly
rice planting, characteristic breeding (for example, chickens and
ducks), and characteristic fruit (for example, kiwi, honey pomelo,
and citrus) planting. With the vigorous development of the port
economy in Yibin City, that area has been transformed from the
original agricultural space to urban and industrial production
spaces. Also, the living space has been changed from

decentralized rural dominance to compact urban dominance. The
area of the production space has expanded and increased gradually,
and the ecological space has been compressed and divided into an
isolated-island distribution (Figure 10). In accordance with the
planning, that area will become the core area of the Sanjiang
New District, the first provincial-level new district in Sichuan
Province. Therefore, the built-up area will be further expanded,
and the breakthrough of function definitions will continue to iterate:
rural life-agricultural production-ecological functional product
supply advantage area → urban life-industrial production
advantage area → High-quality urban living space and strategic
emerging industry demonstration area. Although the spatial
function is relative, for the special ecological sensitive area of the
upper reaches of the Yangtze River, the cities along the river should
strictly abide by the ecological bottom line in the process of
expansion. Some riverside shorelines and wetlands should ensure
the absoluteness of their functions to curb the degradation trend of
their ecological functions.

5.3 Conservation and development

Coordinating the relationship between territorial spatial
conservation and development and optimizing its pattern are
important parts in achieving the construction of ecological
civilization. The limited spatial resources and the multi-suitability
of spatial functions will lead to conflicts between spatial functions,
directly affecting the sustainable regional development (Zou et al.,
2019). However, how to coordinate and optimize the various
territorial spatial functions, alleviate functional conflicts, and
realize the high-quality development of the territorial space is an
issue that must be paid attention to in the regional territorial spatial
protection and development.

Ecological security is the most important reflection of national
strategy in the upper reaches of the Yangtze River economic belt.
Therefore, at the national level, it is first necessary to satisfy
ecological functions such as ecological barrier construction, soil
and water conservation, water conservation, aquatic organism
protection, water security in the basin, and coastal spatial
protection. Of course, that economic belt is also expected to
achieve regional economic and social development while fulfilling

TABLE 3 Area proportion of various functional areas in the evaluation results of the PLE function.

Urban
life (%)

Rural
life
(%)

Industrial
and mining
production

(%)

Agricultural
production

(%)

Ecological
regulation

(%)

Ecological
product

supply (%)

Comprehensive

Living
function

(%)

Production
function (%)

Ecological
function

(%)

Proportion of
functional
areas (high
and higher-
value areas)

11 61 24 55 60 40 16 23 28

Proportion of
insignificant
functional

areas (low and
lower-value

areas)

89 39 76 45 40 60 84 77 72
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ecological functions and considering food security and overall basin
development (Qian, 2021; Liu et al., 2023). However, local
governments such as in Yibin City should focus on how to
increase regional development, how to achieve leapfrog
development by actively connecting with major national and
provincial strategies, and how to increase new industrial
economic growth points by doing an industrial transfer, which
will help to improve quality and compete for position. Different
perspectives on national and regional development lead to different
trends in spatial use: conservation demands at the national level
require maintaining ecological functions, which might lead to the
compression of current production and living spaces in the region.
The development demands at the local level drive the continuous
expansion of urban and industrial areas, causing an increase in
nonagricultural production space, a transformation of traditional
agricultural spatial development models and landscapes, and the
pursuit of a diversified output of ecological spaces. Therefore,
investigating and tackling the relation between development and
protection play a key role in the spatial function of that region. For
example, great importance should be attached to a more scientific
understanding and positioning of ecological functions, the
combination of elastic and rigid management, and the integrated
development and protection of watersheds. In the future, the
maintenance of the spatial function in the upper reaches of the
Yangtze River should not only guarantee the reasonable spatial
scope, but also pay more attention to the evaluation of the spatial
function efficiency, so as to alleviate the direct functional conflicts
and coordinate the relationship between protection and
development.

6 Conclusion

This By taking 185 townships in Yibin City as evaluation units,
this study adopted multivariate data to evaluate the PLE function of
Yibin City in 2018 from 3 levels. The results show that:

(1) For the second-level PLE space of the townships in Yibin City,
the high-value areas for urban and rural living functions
reflected the characteristics of a concentrated distribution
along the Yangtze River. The characteristics of the
concentrated distribution of high-value industrial and mining
production areas were the distribution around the central
townships where the district and county government were
located and the concentrated distribution of some townships
with mineral resource advantages. High-value areas for

agricultural production functions were distributed mainly in
shallow-hill and flat areas with better light, heat, and water
resources in the northern part of the city. The ecological
regulation functional areas were evenly distributed
throughout the city. The high-value areas of the ecological
product supply function were distributed mainly in areas
with dense ecological resources such as tea, camphor trees,
and bamboo forests.

(2) The distribution of high-value areas for the first-level PLE
spatial function of the townships in Yibin City was as follows:
high-value areas with first-level living functions were basically
consistent with the current central urban areas and central
towns where the governments of each district and county were
located. The overall pattern of the first-level production
function was very similar to that of the industrial and
mining production function. The major functional areas
were distributed mainly in some central townships with
resource advantages. The distribution of first-level
ecological functions was similar to the pattern of ecological
product supply in various townships, and the major functional
areas covered a larger area of bamboo forests and tea gardens
in Yibin City.

(3) As for the characteristics of the 80/20 rule of the proportion of
significant and insignificant areas in the comprehensive PLE
function in the townships, the significant areas accounted for
approximately 20%, whereas the insignificant areas accounted
for approximately 80%. By applying a cluster analysis to the
evaluation results, the functions of townships in Yibin City
were divided into 5 types of comprehensive PLE function
areas: urban life-industrial production advantage (12%),
urban life-rural life advantage (8%), rural life-agricultural
production-ecological function product supply advantage
(29%), rural life-agricultural production-ecological service
function advantage (20%), and ecological service function-
agricultural production function advantage (31%). The
5 types of functional areas showed important spatial
differences.

In addition to multiple data sources and multilevel function
evaluations, importance should be attached to how to use the
functional effects of a particular type of functional advantage
area and reduce the pressure of multifunctional and functional
integration in disadvantaged areas. Moreover, the evaluation of
territorial spatial functions is a dynamic process, and
conventional function evaluation mechanisms should be explored
in the future.

FIGURE 10
High-resolution image of Shaping Street from 1990 to 2018.
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As earth surface human activities become more frequent, global ecosystem

service functions and especially biodiversity maintenance functions are

challenged. This study aimed to analyze spatiotemporal changes in Xi‘an section

of the northern foothills of the Qinling Mountains from 1990 to 2020. Temporal

and spatial changes in habitat quality in the study areawere visualized using InVEST

model and land use data, and factors affecting habitat quality were analyzed using

Geodetector. The results showed that during the study period, the cultivated land,

grassland, and water decreased by 16.40%, 74.37%, and 35.39%, respectively, while

the area of forest land and construction land increased, among which the

construction land increased by 117.70%, the largest increase, and the forest land

increased by 8.47%. The main changes in land use are the conversion of cultivated

land into forest land and construction land, and the conversion of grassland into

forest land and cultivated land. During the period 1990–2020, the average habitat

quality index in the study area changed from 0.8617 to 0.8585, showing a slow

decreasing trend. The spatial distribution of habitat quality showed a trend of “high

in the south, moderate in the north, and low in the northwest”. The high habitat

quality was mainly concentrated in the southern forest land, the middle habitat

quality was mainly distributed in the northern cultivated land, and the low

habitat quality was mainly distributed in the northwest construction land. The

land use type has a great influence on habitat quality, and the interaction between

any two factors is stronger than that of a single factor. The temporal and spatial

variation of habitat quality is influenced by both natural and human factors. This

study provides a theoretical basis for ecological protection and nature reserve

planning in the Qinling Mountains region.
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habitat quality, InVEST model, land use change, spatiotemporal change, Geodetector
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Introduction

Habitat quality (HQ) can represent the supply capacity of

ecosystem services and biodiversity in a region and is an

important basis for ensuring ecological security and reflecting the

pros and cons of the human living environment (Silvis, 2012; Zhang

et al., 2020). In recent years, with the rapid growth of population

and the continuous development of the social economy, the

excessive occupation of land resources and the rapid change of

land use mode has caused a series of environmental problems,

resulting in serious damage to ecosystem service functions and

endangering human welfare (Newbold et al., 2015; Sallustio et al.,

2017; Li et al., 2020a; Li et al., 2020b). Therefore, it is of great

practical significance for realizing sustainable development of

resources and maintaining ecosystem security to analyze and

study the habitat quality in the region and evaluate the changing

trend of the ecosystem service function.

The methods of habitat quality assessment are mainly divided

into the quantitative index method and model method. The

quantitative index method is to obtain the relevant parameters of

habitat quality through field investigation and construct an

evaluation index system for comprehensive evaluation (Wynne

and Côté, 2007; Yang et al., 2021a). Due to the large amount of

human and material resources invested in the evaluation process

and the lack of universality, it is not suitable for large-scale regional

and long-term time series research (Chen et al., 2019; Muñoz-Barcia

et al., 2019). The model rule uses mathematical models to

quantitatively assess habitat quality, which has the advantages of

convenience, speed, and low cost (Moreina et al., 2018). ARtificial

Intelligence for Ecosystem Services (ARIES), Social Values for

Ecosystem Services (SoIVES), and Integrated Valuation of

Ecosystem Services and Trade-offs (InVEST) are widely used in

related research (Bagstad et al., 2011; Mushet et al., 2014; Sherrouse

et al., 2014; Huang et al., 2020). Among these models, the InVEST

model jointly developed by Stanford University, the World Wide

Fund for Nature, and The Nature Conservancy is the most well-

developed, with advantages such as easy access to data and strong

visibility of results (Huang et al., 2020).

Qianqian et al. (2022) analyzed the habitat quality and degree of

degradation in the Ebinur Lake Basin of Xinjiang from 1990 to

2020, and predicted the spatiotemporal changes in habitat quality in

the Ebinur Lake Basin under inertial development and ecological

protection scenarios. Cao et al. (2017) studied the impact of the

urbanization process on ecosystem service function in Zhoushan

Island and revealed the response relationship between urban

expansion encroachment on other land use types and temporal

and spatial changes in habitat quality. Pan et al. (2022) explored the

temporal and spatial changes in habitat quality in the source region

of the Yellow River and analyzed the effects of vegetation cover

change and human activities on habitat quality combined with

NDVI and land use data. Wang and Cheng (2022) conducted a

study on the spatial aggregation characteristics of habitat quality

under different topographies using DEM, and analyzed the

distribution patterns of habitat quality in different altitude areas.
Frontiers in Ecology and Evolution 02135
At present, a large number of studies mainly explore the

characteristics of habitat quality changes based on different land

use, climate types, geomorphic features, and altitude (Arunyawat

and Shrestha, 2016; Wu et al., 2021; Zhang et al., 2022a). However,

there are relatively few studies on the spatiotemporal evolution of

habitat quality in complex areas in geographical transition regions.

As an important natural geographical transition area in China,

the Qinling Mountains plays a key role in water conservation and

biodiversity maintenance, has important ecological service value,

and is an indispensable natural ecological barrier in China (Li et al.,

2013; Zhang et al., 2017; Zhang et al., 2019). However, the climate,

terrain, and biological species of Qinling Mountain are complex and

varied, and its ecological environment has obvious spatial differences

under the dual influence of climate change and human activities

(Shu-Yan, 2002), which has become the main focus of most studies

at present (Ma et al., 2019; Zhao et al., 2021; Zhang et al., 2022b).

Ting et al. (2014) evaluated the ecological benefits of soil and water

conservation in the Qinling Mountains region using the InVEST

model. Ning et al. (2020) analyzed the spatiotemporal changes in the

water conservation function of the Qinling Mountains. These studies

mostly focus on the evaluation of ecosystem service functions in the

Qinling Mountains, lacking research on the spatiotemporal changes

of habitat quality over a long time series. Xi’an, at the northern

foothills of the QinlingMountains, has always had a large population

and high intensity of human activities, which have a profound

impact on the natural environment. Especially in recent years,

with the continuous advancement of urbanization and the rapid

increase of urban construction land, the natural ecosystem and

ecological functions in the region have been affected (Zhou and Li,

2017; Li et al., 2019). Therefore, based on NDVI, land use, night

light, and other data, this paper uses InVEST model to analyze the

temporal and spatial changes of habitat quality in the Xi’an section of

the northern foothills of the Qinling Mountains from 1990 to 2020

and discusses the impact of urban expansion on habitat, to provide

the scientific basis for ecological civilization construction in the

Qinling Mountains.
Materials and methods

Study area

Referring to the narrow definition of the Qinling Mountains as

defined in the “Overall Plan for Ecological Environment Protection in

Qinling Mountains, Shaanxi Province” (http://www.shaanxi.gov.cn/

zfxxgk/zfgb/2020/d17q/202009/t20200921_1728563.html), the

northern and southern slopes of Qinling Mountain and the eastern

and western borders of Shaanxi Province are defined as Qinling

boundary. Combined with the administrative division of Xi’an City,

the Xi’an section at the northern foothills of the QinlingMountains was

selected as the study area (Figure 1). The geographical range was 107°

24′–109°49′E, 33°45′–34°22′N, the climate type is the warm temperate

semi-humid climate, and the vegetation is mainly warm temperate

deciduous broad-leaved forest.
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Data source

The land use raster datasets with 30 m resolution ratio of the

Qinling mountains in 1990, 2000, 2010 and 2020, the Normalized

Differential Vegetation Index (NDVI), night light, temperature, and

precipitation data resolution ratio were acquired from the Resource

and Environment Science and Data Center (http://www.resdc.cn).

Among them, land use data is obtained from the visual

interpretation of landSat 8 remote sensing images, The annual

dataset of night light is processed based on DMSP/OLS and NPP-

VIIRS satellite night light remote sensing image data, precipitation

and air temperature grid data is generated based on the spatial

interpolation of Anuspl interpolation software, and NDVI data is

obtained by the maximum synthesis method of remote sensing

images. DEM data is downloaded from Geospatial data (http://

www.gscloud.cn/). The population density data with 1 km

resolution ratio are derived from the worldpop database

(www.worldpop.org.uk). Traffic data are from the National

Geographic Information Center of China (https://www.ngcc.cn).

All raster data unified the resolution to 30 m using resampling and

clipped by the study area for Geodetector analysis.
Methods

Assessment of habitat quality
Referring to the principle of InVEST model, the calculation

formula of habitat quality is as follows:

Dxj =o
R

r=1
o
Yr

y=1
ry

wr

o
R

r=1
wr

0
@

1
ArjirxybxSjr (1)
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irxy = 1 −
dxy

dr max

� �
(liner) (2)

irxy = 1 −
−2:99dxy
dr max

� �
(exponential) (3)

Where: Dxj is the degree of habitat degradation in the grid cell x

with habitat type j, and R is the number of potential threats. Yr is the

grid number of r on the grid plot; ry is the strength of the grid cell y;

w r represents the weight of the threat source; the distance between

the habitat and the threat source is represented by irxy. bx represents
the antiinterference level of the grid cell x; Sjr indicates the relative

sensitivity of habitat type j to the threat source r; dxy represents the

distance between grid cells x and y; and dr max represents the

maximum impact distance of the threat source.

Qxj=HJ 1� Dxj
z

Dxj
z+Kz

 !" #
(4)

Where: Qxj is the habitat quality of pixel x in land-use/cover

type j, Dxj is the threat level of pixel x in land-use/cover type j, Hj is

the habitat suitability of land-use/cover type j, and K is half the

saturation constant (which is half of the maximum value of Dxj). z is

a default parameter in the model and is set as 2.5 (Chen et al., 2021).

InVEST’s habitat quality model is based on land use data,

habitat threat source data, habitat threat source weights,

sensitivity of different land classes to threat sources, and habitat

suitability of local classes. Many studies have selected different

threats factors and related parameters, this study referred to the

InVEST model manual (Sharp et al., 2020) and other relevant

studies (Fan et al., 2021; Cui et al., 2022; Qianqian et al., 2022),

based on the spatial scale of this study and expert consultation, the

relevant parameters are determined as follows (Tables 1, 2):
FIGURE 1

The map of study area.
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Where: The max distance of influence is defined as the maximum

range of the threats factors on the quality of surrounding habitats, the

weight represents the relative destructiveness of threats factors to all

habitats, which the value range is [0,1]. Decay type is used to describe

the attenuation of environmental threats by threats factors as distance

increases, divided into linear attenuation and exponential attenuation

(Sharp et al., 2020).

Where: The sensitivity parameters included habitat suitability

parameters for each land use type and sensitivity parameters of each

land use type to stressors, all ranging from 0 to 1.

Geodetector
Geodetector is a model used to detect the spatial heterogeneity of

geographical elements and identify the interaction between multiple

factors. Through the analysis based on the spatial stratification

characteristics of variables rather than linear relationships, the

explanatory power and mutual relationship of different factors on

habitat quality can be truly and accurately reflected (Ma et al., 2022;

Chen et al., 2023). Detectors are divided into four types: factor

detector, ecological detector, interaction detector, and risk detector,

which are widely used in the ecological research field (Jing et al., 2017;

Sun et al., 2021; Qu et al., 2022). In this study, an interaction detector

was used to analyze the interaction between different factors. The

calculation formula is as follows:

q = 1�
o
m

i=1
nis

2
i

ns 2 = 1 − SSW
SST

SSW =o
m

i=1
nis

2
i ,

SST = ns 2

(5)
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where i (i = 1, 2,…, l) is the stratification of dependent variable y

or independent variable %, i.e., classification or partition; ni and n are

the unit numbers of layer i and the whole region, respectively; s 2
i and

s2 are the variances of layer i and region Y, respectively; SSW and SST

are the sum of variances within the layer and the total variances of the

whole region, respectively; and the value range of q is [0, 1], where the

larger the value, the stronger the explanatory power of independent

variable % to dependent variable y.

The interaction detector is to determine the interaction between

various factors and assess whether multiple factors work together to

increase or reduce the driving force of HQ, or whether there is an

interaction between these factors (Table 3). The habitat quality of the

ecosystem is the result of the interaction of multiple factors. In terms of

natural factors, considering the influence of topography and climate, the

distribution of vegetation is closely related to topography, and the

distribution of vegetation in different land forms is quite different,

which affects the habitat quality. Therefore, elevation are selected as

influence factors in terms of topographic factors. Land use type

influences the spatial distribution of habitat quality, so land use data

was chosen as the influence factor. Climate factors on land cover affect

habitat quality, so precipitation and temperature are selected as influence

factors; vegetation can reflect habitat quality to some extent, and

vegetation growth through the vegetation normalization index

(NDVI). In terms of socioeconomic factors, population density and

the night light index are important indicators of the intensity of human

activity, which can also have an impact on habitat quality. The habitat

quality is used as the dependent variable, and the natural break point

method is used as the independent variable. Habitat quality was treated

as dependent variable and each driver as independent variable and

discretized by natural break point method. The ArcGIS software was

used to create fishing nets, and the sampling interval was set at 1 km after

multiple debugging. The spatial analyst-extraction analyst-sampling tool

was used to input the independent variable and dependent variable layer.

The sampling point was the fishing net point in the study area, and the

values of the independent variables and dependent variables were

extracted and input into the geographic detector model.

Results

Land-use change in the northern foothills
of the Qinling Mountains

Land use changed dramatically during 1990–2020 as in Table 4. The

cultivated land and grassland showed a continuous decreasing trend,
TABLE 1 Threat factors and maximum effect distances, weights of threat
factors, and decay types identified in the study area.

Threats
factor

Max distance of
influence (km)

Weights Decay
type

Cultivated
land

4 0.4 linear

Construction
land

8 1 exponential

Highway 3 0.6 linear

Main road 2 0.5 linear

Railway 5 0.9 linear
TABLE 2 Habitat suitability and sensitivity of land use types to each threat factor.

Land-use
Habitat
suitability

Cultivated
land

Construction
land

Highway Main road Railway

Cultivated land 0.6 0.0 0.9 0.7 0.4 0.6

Woodland 1 0.5 0.8 0.7 0.5 0.8

Grassland 0.9 0.2 0.5 0.5 0.4 0.5

Water area 0.8 0.4 0.7 0.6 0.4 0.5

Construction land 0.0 0.0 0.0 0.0 0.0 0.0
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decreasing by 16% and 74% respectively. Forest land and construction

land showed a trend of continuous growth, increasing by 8% and 118%

respectively. Water area shrank significantly during 1990 to 2000,

however, it has increased between 2000 to 2020. As shown in the

graph below, the major types of land use in the study are forest land and

cultivated land. In the study cultivated land is mainly distributed in the

north of the study area which account for about 24% of the total area;

where forest land is primarily distributed in the southern part of the

study area and it account for about 70% of the total area; The remainder

grassland and water area is distributed dismissively. Lastly, the

construction land ismainly distributed in the northwest of the study area.

This research is based on the four stages land use data (Figure 2),

combined with the land use transfer matrix. From 1990 to 2020, land use

transformation in the study area mainly involves cultivated land, forest

land, grassland, and construction land (Table 5). The cultivated land was

mainly changed into forest land of 240.22 m2, indicating that the project

of returning farmland to forest was implemented in the local area during

the study period. In addition, 90.35 km2 of cultivated land has been

transformed into construction land, indicating that the urbanization of

urban suburbs is relatively significant. The forestland mainly flows into

cultivated land, which accounts for about 77% of the forestland outflow

area. 190.05 km2 and 38.64 km2 of grassland were mainly converted into

forest land and cultivated land. The water area is mainly converted into

cultivated land and construction land, both of which are 4.87 km2.

Construction land was mainly converted into cultivated land, with an

area of 8.23 km2, accounting for 79% of the transferred area.
Temporal and spatial variation of
habitat quality

Natural break-point method is often used for grading the results of

habitat quality, most studies generally classify the habitat quality level into

3 or 5 levels (Fan et al., 2021; Yang et al., 2021b; Cui et al., 2022; He et al.,
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2023). Using the natural breakpoint method, based on the calculation

results of the habitat quality and the range of the study area, the habitat

quality retention at 1 decimal point from 1990 to 2020 was divided into

three levels: low (0–0.4), medium (0.4–0.8), and high (0.8–1.0). Habitat

area and percentage at each level in the four periods are summarized

below (Table 6). From the perspective of time scale, the mean value of

habitat quality in the study area decreased slightly during 1990–2020, but

the range of change was small. The mean values were 0.8617, 0.8629,

0.8604, and 0.8585. Overall, the area proportion of high-quality habitat

increased, the area of medium-quality habitat gradually decreased, and

the area of low-quality habitat increased slowly.

From a spatial perspective (Figure 3), regions with high habitat

quality were mainly distributed in the southern mountains of the

study area, where regions with low habitat quality were mainly

distributed in the northwestern part of the study area, and regions

with medium habitat quality were mainly distributed in the

northern part of the study area. The habitat quality of

construction land is low. The land type of the region with high

habitat quality is mainly forest land, the land type of the region with

medium habitat quality is mainly cultivated land, and the land type

of the region with low habitat quality is mainly construction land.

To further understand the spatiotemporal variation characteristics

of habitat quality in the study area, the arcgis10.8 software was used to

make the spatiotemporal variation map of habitat quality levels in the

study area from 1990 to 2020 (Figure 4). During 1990–2020, habitat

quality levels in most areas of the study area remained stable (Table 7).

About 93% of the total area of the habitat quality grade remained

unchanged, about 5% of the total area of the habitat quality grade

increased, and about 2% of the total area of the habitat quality grade

decreased. medium to high area accounts for about 3% of the total area,

showing an east-west zonal distribution in space, mainly distributed in

the area of human production and living and the border zone of high-

altitude mountains. Low to medium areas are mainly distributed in the

northeast of the study area, and High to medium areas account for

about 2% of the total area, mainly distributed in the eastern part of the

study area and scattered in the southern mountain settlements. The

area of Medium to low is mainly distributed in the northern part of the

study area where the altitude is lower and the population is denser.
Factors influencing spatial variations in HQ

Single factor analysis
The results of the geographic detector analysis (Table 8) show

that there are differences in the driving forces (q values) of various
TABLE 4 Variations in the areas of different land types in study area (km2) from 1990 to 2020.

LULC 1990 2000 2010 2020 Change (km2) Change (%)

Cultivated land 1577.63 1533.27 1459.43 1318.83 −258.8 −16.40

Woodland 4519.47 4647.54 4755.28 4902.09 382.62 8.47

Grassland 276.70 183.23 115.21 70.92 −205.78 −74.37

Water area 12.84 3.76 6.22 8.27 −4.57 −35.59

Construction land 73.52 92.37 124.03 160.05 86.53 117.70
TABLE 3 Types of interactions between two Covariates to HQ.

Judgments based Interaction

q(x1∩x2)<min(q(x1),q(x2)) Non-linear weaken

Min(q(x1),q(x2))<q(x1∩x2)<max(q(x1),
q(x2))

Single-factor
nonlinearity weaken

q(x1∩x2)>max(q(x1),q(x2)) Two-factor enhancement

q(x1∩x2)=q(x1)+q(x2) Independent

q(x1∩x2)>q(x1)+q(x2) Nonlinear enhancement
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factors affecting the change of HQ. The order of q value is land use

type (X3) > NDVI (X5) > altitude (X4) > temperature (X6) >

precipitation (X7) > population density (X2) > night light index

(X1). Thus, land use type was identified as the key factor affecting HQ

change (q = 0.788), followed by NDVI (q = 0.467). Temperature,

rainfall, population density, elevation, and night light index are weak
Frontiers in Ecology and Evolution 06139
in explaining the spatial variation of habitat quality, but these factors

need to be considered. In general, natural factors (land use type,

NDVI) had a significant impact on the spatial distribution pattern of

habitat quality, and its q value was greater than that of terrain

(altitude), meteorological (precipitation, temperature), and social

economy (night light index, population density).
TABLE 5 Land-use change transfer matrix of the study area (km2) from 1990 to 2020.

Land-use type Cultivated land Woodland Grassland Water area Construction land

Cultivated land 1229.41 240.22 14.94 2.72 90.35

Woodland 37.68 4471.34 9.66 0.31 0.48

Grassland 38.64 190.05 46.17 0.58 1.27

Water area 4.87 0.25 0.08 2.78 4.87

Construction land 8.23 0.23 0.08 1.89 63.09
A B

C D

FIGURE 2

Land use type in 1990 (A), 2000 (B), 2010 (C), 2020 (D).
TABLE 6 Areas and proportions of HQ levels in study area from 1990 to 2020.

HQ grade
1990 2000 2010 2020

km2 % km2 % km2 % km2 %

Low 113.04 2 126.33 3 163.23 3 217.05 3

Medium 1810.24 28 1762.80 27 1684.46 26 1565.16 24

High 4542.57 70 4576.72 70 4618.16 71 4683.65 73

Mean 0.8617 0.8629 0.8604 0.8585
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Analysis of interactions between bi-factors
The driving force of two-factor interaction on HQ was analyzed

using the interaction detector of the geographical detector. The

results (Table 9) show that the q value of two-factor interaction is

greater than that of a single factor. The interaction was

characterized by two-factor enhancement. The most significant

interaction effect on spatial variation of habitat quality is land use

∩ temperature (0.865), followed by land use ∩ altitude (0.860).

When one dominant single factor (land use type) is combined with

another factor, the interaction of dominant factors is most

significant, indicating that different land use types determine the

distribution pattern of ecosystem types. The interaction of NDVI

with precipitation, temperature, and elevation showed a

considerable driving force, indicating that natural factors such as

temperature, precipitation, and slope had a certain impact on the

change of land use type and habitat quality. While the single-factor

drivers of nighttime lighting and population density are low,

interactions with other factors outweigh the single-factor drivers.
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Discussion

In this study, the InVEST habitat quality model and interactive

detector were applied to analyze the temporal and spatial changes

and influencing factors of habitat quality in the Xi’an section of the

northern foothills of the Qinling Mountains from 1990 to 2020,

which has great practical significance in the protection of ecological

diversity and the construction of ecological civilization in the

Qinling Mountains.
The relationship of land use change and
habitat quality

Land use change is the direct reflection of the interaction between

humans and the natural environment, it is also an important reason

for changes in habitat quality (Li S. et al., 2020a). Research shows that

the land use of the northern foot of the Qinling Mountains has

changed enormously in the past 30 years; cultivated land, forest land,

and construction land are the main types of land use in the region.And

the area of cultivated land and grassland continued to decrease

between 1990 and 2020, while the area of construction land

continued to increase, the development of social economy and the

rapid expansion of cities have been the main reasons for the rapid

changes in land use in China in recent decades (Ma et al., 2022; Qu

et al., 2022).

There is a certain response relationship between the spatiotemporal

changes in habitat quality and land use changes. From 1990 to 2020,
A B

C D

FIGURE 3

Habitat quality in 1990 (A), 2000 (B), 2010 (C), 2020 (D).
TABLE 7 Habitat quality level transfer matrix from 1990 to 2020.

1990 2020

Low Medium High

Low 77.16 35.22 0.46

Medium 138.85 1457.70 210.01

High 0.99 70.6554 4469.2263
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the mean value of habitat quality in the northern foot of the Qinling

Mountains decreased slightly, showing an overall trend of first

increasing and then decreasing. The areas with improved habitat

quality are mainly concentrated in the north and central regions,

these areas are supported by a series of ecological protection policies

such as returning farmland to forests, naturally protected forest (Liu

et al., 2018). Therefore, the land use in this region has mostly shifted

from arable land to forest land. The areas with declining habitat quality

are mainly concentrated in the densely populated areas of Xi’an,

including the northern urban areas and towns in the southern

mountainous areas, during the period from 1990 to 2020, the area of

construction landmore than doubled. The rising industry of tourism in

the northern foot of the Qinling Mountains has promoted the

construction of rural infrastructure and economic development in

the area on one side; on the other side, it negatively impacted on the

local ecosystem which resulting in the decline of habitat quality (Zhang

S. et al., 2022; Han et al., 2023).

Despite the support of various government policies, the habitat

quality of the northern foothills of the Qinling Mountains

continued to decline from 1990 to 2020, mainly due to the

continuous increase in construction land. However, there is a

clear boundary between medium and high habitat quality in the

northern foothills of the Qinling Mountains, distributed in the

central region, and the habitat quality in this region is continuously

improving. This indicates that the government has to some extent

clarified the boundary between human activities and nature, and

has constrained the scope of human activities through a series of

measures such as returning farmland to forests, demolishing illegal

buildings, and establishing nature reserves (Liu et al., 2018; Chen,

2019). In addition, as the growth rate of China’s population slows
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down, the scale of urban expansion tends to stabilize (Hou et al.,

2022), which will provide favorable conditions for the continuous

improvement of habitat quality in the region.
Driving factors of habitat quality

During the study period, land use type was the main determinant

of habitat quality, this is consistent with previous research results (Cui

et al., 2022). followed by the NDVI index, which had a strong impact

on habitat quality and was an important parameter reflecting

vegetation growth status and coverage in the region. NDVI is

closely related to habitat quality, which is different from Zhang X.

et al. (2022a). Differences in the geographical environment of the

study area led to different drivers of habitat quality. The interaction

test results show that natural factors and social factors have a

significant influence on the temporal and spatial changes of habitat

quality in the study area. The interaction of all factors enhanced the

impact on habitat quality, indicating that the interaction of two

factors was much greater than that of single factors. The interaction

between land use and other factors was significantly stronger than the

interaction between other factors, indicating that land use was the

main factor affecting habitat quality change. This indicates that

the biodiversity maintenance function of the ecosystem is affected

by many factors, but the land bearing the ecosystem is a decisive

factor for the habitat quality of the ecosystem.
Limitations

In this study, the quantitative and computational results of HQ

are visualized by the InVEST-HQ model. However, there are some

limitations to our study. First of all, the regional scale results can only

be used as a reference for the relationship between LULC changes and

HQ changes in the northern foot of the Qinling Mountains. It is

necessary to carry out large-scale and more comprehensive research

on the study area to formulate appropriate ecological protection

measures. Secondly, due to the limitation of data, this study only

considers the impact of internal threat sources on the headquarters

but does not evaluate the impact of threat sources outside the study

area, so it may affect the evaluation results of HQ. Similarly, previous

studies have shown that the internal mechanisms of habitat quality

are complex and vary greatly in different regions, which may lead to

unclear results. Further research is needed on the accuracy of regional

headquarters assessments based on field survey data parameters. In

addition, due to the limited data collected, although the resolution of

the driver layer data is unified by resampling, there are still some

uncertainties in the analysis of the geographic detector model, which

needs to be further explored in future studies.
TABLE 8 q Values of factors influencing spatial variations in HQ.

Driving factor X1 X2 X3 X4 X5 X6 X7

Driving force (q) 0.300 0.326 0.788 0.448 0.467 0.431 0.371

p Value 0 0 0 0 0 0 0
TABLE 9 The results of interactive detection.

Interaction Influence Interaction Influence

X1 ∩ X2 (0.391) Enhance,bi- X3 ∩ X4 (0.860) Enhance,bi-

X1 ∩ X3 (0.812) Enhance,bi- X3 ∩ X5 (0.845) Enhance,bi-

X1 ∩ X4 (0.501) Enhance,bi- X3 ∩ X6 (0.865) Enhance,bi-

X1 ∩ X5 (0.570) Enhance,bi- X3 ∩ X7 (0.847) Enhance,bi-

X1 ∩ X6 (0.492) Enhance,bi- X4 ∩ X5 (0.668) Enhance,bi-

X1 ∩ X7 (0.462) Enhance,bi- X4 ∩ X6 (0.484) Enhance,bi-

X2 ∩ X3 (0.822) Enhance,bi- X4 ∩ X7 (0.505) Enhance,bi-

X2 ∩ X4 (0.508) Enhance,bi- X5 ∩ X6 (0.668) Enhance,bi-

X2 ∩ X5 (0.579) Enhance,bi- X5 ∩ X7 (0.655) Enhance,bi-

X2 ∩ X6(0.497) Enhance,bi- X6 ∩ X7 (0.466) Enhance,bi-

X2 ∩ X7 (0.482) Enhance,bi- –
Enhance, bi-: means that the interaction between the two factors is a bi-factor enhancement.
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Conclusions

This research is completed using the InVEST-HQ model and

Geodetector were used to study the spatiotemporal changes of the

Xi’an section at the northern foothills of the Qinling Mountains and

the factors driving the changes of the headquarters.The main

conclusions are as follows:

During 1990–2020, themain land use types in the northern foothills of

the Qinling Mountains are forest land, cultivated land, and grassland. The

area of cultivated land, grassland, and water area decreased by 16.40%,

74.37%, and 35.39%, respectively, while the area of forest land, construction

land, and water increased by 8.47% and 117.70%, respectively.

During 1990–2020, the average habitat quality index in the

study area first increased and then decreased. The spatial

distribution of habitat quality was high in the south, moderate in

the north, and low in the northwest.

The single interactive factor detection results of the geodetic detector

show that LULC is themain driving force for the change of HQ, followed

by natural factors such as NDVI and altitude. Socioeconomic factors

such as population density and GDP are secondary drivers of HQ.
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Changes in habitat quality transfer at different levels.
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Spain. Cuadernos Investigación Geográfica. 45 (2), 533–549. doi: 10.18172/cig.3628

Mushet, D. M., Neau, J. L., and Euliss, N. H. (2014). Modeling effects of conservation
grassland losses on amphibian habitat. Biol. Conserv. 174, 93–100. doi: 10.1016/
j.biocon.2014.04.001

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, L., Senior, R. A., et al.
(2015). Global effects of land use on local terrestrial biodiversity. Nature 520 (7545),
45–50. doi: 10.1038/nature14324

Ning, Y. Z., Zhang, F. P., Feng, Q., Wei, Y. F., Ding, J. B., and Zhang, Y. (2020).
Temporal and spatial variation of water conservation function in Qinling Mountain
and its influencing factors. Chin. J. Ecol. 39 (9), 3080–3091. doi: 10.13292/j.1000-
4890.202009.031

Pan, Y., Yin, Y., Hou, W., and Han, H. (2022). Spatiotemporal variation of habitat
quality in the source region of the Yellow River based on land use and vegetation cover
changes. Acta Ecologica Sin. 32 (19), 1–11. doi: 10.5846/stxb202105131254

Qianqian, W., Mukadasi, A., Abudureheman, H., Kaixuan, Y., Lei, Y., Hua, T., et al.
(2022). Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST
model for Ebinur Lake Basin, China. Ecol. Indicators. 145, 109632. doi: 10.1016/
j.ecolind.2022.109632

Qu, Z., Zhao, Y., Luo, M., Han, L., Yang, S., and Zhang, L. (2022). The effect of the
human footprint and climate change on landscape ecological risks: A case study of the
loess plateau, China. Land. 11 (2), 1–19. doi: 10.3390/land11020217

Sallustio, L., De Toni, A., Strollo, A., Febbraro, M. D., Gissi, E., Casella, L., et al.
(2017). Assessing habitat quality in relation to the spatial distribution of protected areas
in Italy. J. Environ. Management. 201 (oct.1), 129. doi: 10.1016/j.jenvman.2017.06.031

Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., et al.
(2020). InVEST 3.8.7. User's Guide; Collaborative Publication by the Natural Capital
Project, Stanford University, University of Minnesota, the Nature Conservancy, World
Wildlife Fund. (Stanford, CA, USA: Stanford University).

Sherrouse, B. C., Semmens, D. J., and Clement, J. M. (2014). An application of Social
Values for Ecosystem Services (SolVES) to three national forests in Colorado and
Wyoming. Ecol. Indic. 36, 68–79. doi: 10.1016/j.ecolind.2013.07.008

Shu-Yan, Y. (2002). Studies on the climate changes in the northern and the southern
regions of the qinling mountains and correlated analysis between climate changes and
el nino/la nina phenomenon during the recent 40 years. J. Mountain Res. 20 (4), 493–
496. doi: 10.1002/mop.10502

Silvis, H. (2012). The economics of ecosystems and biodiversity in national and
international policy making. Eur. Rev. Agric. Economic 39 (1), 186–188. doi: 10.1093/
erae/jbr052

Sun, Y., Guan, Q., Wang, Q., Yang, L., Pan, H., Ma, Y., et al. (2021). Quantitative
assessment of the impact of climatic factors on phenological changes in the Qilian
Mountains, China. For. Ecol. Management. 499 (7), 119594. doi: 10.1016/
j.foreco.2021.119594

Ting, L., Liu, K., Sheng, H. U., and Bao, Y. B. (2014). Soil erosion andecological
benefits evaluation of Qinling Mountains based on the InVEST model. Resour. Environ.
Yangtze Basin 23 (9), 1242–1250.

Wang, B., and Cheng, W. (2022). Effects of land use/cover on regional habitat quality
under different geomorphic types based on InVEST model. Remote Sens. 14, 1279.
doi: 10.3390/rs14051279

Wu, L., Sun, C., and Fan, F. (2021). Estimating the characteristic spatiotemporal
variation in habitat quality using the inVEST model—A case study from Guangdong–
Hong Kong–Macao greater bay area. Remote Sens. 13 (5), 1008. doi: 10.3390/rs13051008
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Introduction: A series of significant ecological construction projects in the

southern hilly region have brought about substantial changes to the ecological

status and comprehensive zoning of the region. Hunan Province, with its

strategic significance, was chosen as a representative research subject in the

southern hilly region.

Methods: We conducted a dynamic evaluation of the ecological status change

and comprehensive zoning of Hunan Province from a structure–function

perspective by applying the transfer matrix, Theil-Sen, Mann-Kendall, and

ecosystem service trade-offs or synergies methods. The research goal was to

integrate and harmonize structural complexity and functional diversification,

providing valuable insights for optimizing both ecological background and

territorial background.

Results: Themain results are as follows: (1) The structural changes of ecosystems

were mainly concentrated in settlement and Cropland ecosystems. While the

area of bulti-up ecosystems has increased significantly, from 1.34% in 2000 to

2.72% in 2020. Cropland ecosystems marking a decrease of 1.39%, with a

continued conversion of Cropland into construction land ecosystems.

(2) Ecosystem function changes have introduced instability. Over time, NPP

exhibited an oscillating trend of increase followed by a decrease. Spatially, there

was a sharp decline in peripheral building land, and the regions of declining NPP

displayed a lateral U-shaped distribution. (3) The overall trend in ecosystem

service changes was positive. Quantitatively, GP and CS experienced an

ascending-then-decreasing pattern, while HQ showed a weak decline and WY

increased annually. At the county scale, there was noticeable spatial

heterogeneity. Human socio-economic activities and environmental

protection policies exert a significant impact on the ecological conditions

within the study area. (4) Regarding the national territory space function

partition, urban functional zones have primarily catered to residential functions

and were mainly distributed in the Changsha-Zhuzhou-Xiangtan area.
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Discussion: Ecological functional zones were mainly centered on ecological

functions, and most were located in the mountainous areas of western and

southern Hunan Province. The agricultural function areas were mainly to serve

production functions and were mainly located in the Dongting Lake Plain, the

nearshore plain of the mainstream and tributary systems of the rivers of Xiang, Zi,

Yuan, and Li. In general, the changes in ecosystem structure and function in the

study area reflect changes in ecological conditions. In the future, ecosystem

diversity, stability, and sustainability should be improved from an integrated

structure–function perspective.
KEYWORDS

southern hilly region, structure and function, ecosystem service clusters, national
territory space function, ecosystem pattern transfer
1 Introduction

The analysis of changes in ecological status constitutes a pivotal

model for the comprehensive assessment of ecosystems. These

changes are primarily influenced by natural and human factors,

resulting in significant changes in ecosystem structure, function,

and services (Hou et al., 2015; He et al., 2021; Liu G.B. et al., 2023),

such as the loss of Cropland (Zhu et al., 2022), fragmentation of

landscape structure (Peng et al., 2017), and reduction of habitat

quality (Ouyang and Zhu, 2020), among others. Ecosystem services,

which emerge directly or indirectly from functioning (Hou et al.,

2015), embody another facet of this functioning. Therefore, it is

crucial to quantify the state of regional ecosystems from both

structural and functional perspectives. This understanding is

essential for evaluating regional high-quality development,

optimizing regional territorial spatial planning, and making

informed decisions.

As the primary determinant shaping the context and spatial

variations of ecosystem function, ecosystem structure reveals the

spatial distribution patterns of its internal subsystems and their

spatial structural interrelationships (Xu et al., 2008; Ouyang et al.,

2023). Ecosystem structure refers to the proportionality or

composition of various ecosystems at a given scale. Ecosystem

function can be represented by three key axes: maximum

productivity, water utilization strategy, and carbon utilization

strategy. When describing the condition of an ecosystem, the

structure and function approach takes both aspects into account.

The foremost key axis, contributing the most significantly,

represents the ecosystem’s maximum productivity and is mainly

affected by vegetation structure (Migliavacca et al., 2021).

Consequently, it is paramount to unveil changes in ecological

status from both structural and functional perspectives in order

to achieve integrated governance of ecosystem systems. This

approach offers theoretical and practical reference values for the

overall protection and synergistic governance of social-ecological

systems (Dan et al., 2020; Wei et al., 2023a). To reinforce the

cohesion and systemic coherence of ecosystems, fostering mutual

feedback between their structure and function is needed. Many
02146
scholars have extensively investigated changes in ecological

conditions from the perspectives of ecosystem structure and

ecosystem function. Based on the ecosystem structure perspective,

it is evident that frequent human activities can result in significant

alterations in land use type, thereby impacting the landscape and

ecosystem health of the region. Existing literature mainly employs

methods such as the transfer matrix (Li et al., 2023; Zhang et al.,

2023) and landscape pattern index (Liu et al., 2022b; Chen et al.,

2023; Wei et al., 2023b). For example, the ecosystem transfer matrix

was used to reveal temporal and spatial changes in the ecosystems of

the Yellow River Basin over the past 35 years. The benefit transfer

method and elasticity coefficient were utilized to evaluate their

impact on ecosystem service values (Liu et al., 2021). Additionally,

the landscape pattern index was used to construct an ecosystem

health evaluation system for wetlands in the urban area of Xiongan,

exploring its landscape pattern and ecological health status (Xu

et al., 2020). As for the ecosystem function perspective, it can be

categorized into methods evaluating value quantity and those

evaluating physical quality (Zhao et al., 2023). For instance, the

ecosystem service value equivalent factor was applied to estimate

the ecosystem service value of known land use areas (Shi et al., 2022;

Zhou et al., 2022). Using variables like NPP, water retention

services, and habitat quality, the spatial pattern of ecosystem

service functions in the Beijing-Tianjin-Hebei region was

modeled. Next, the region’s raster-scale ecosystem health

variations were assessed (Ning et al., 2021). On the other hand,

there are researchers who perceive ecosystem service clusters from a

different perspective (Pan et al., 2021; Zhang et al., 2021; Liu et al.,

2022b). Ecosystem service clusters encompass collections of

ecosystem services occurring in close proximity in space (Li et al.,

2016). They assist in coordinating the composite functional zoning

of territorial space and support the overall optimization and

improvement of local ecosystems. In particular, Zhang Chunyue

et al. used K-Mean cluster analysis to identify clusters of ecosystem

services and examined their synergistic relationships to improve the

comprehensive ecosystem service capacity of the study area (Zhang

et al., 2021). Likewise, Pan Ying et al. utilized the PAM module

within the “cluster” package of the R language to conduct cluster
frontiersin.org
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analysis of ecosystem services in the Daqing River Basin, identifying

driving factors (Pan et al., 2021).

The structure and function of ecosystems are essential elements

for partitioning the functions of national territory space, in line with

the objective of achieving high-quality development. This

comprehension stands as a pivotal aspect to understanding the

evolution of ecological conditions and enabling comprehensive

national territory space function partitioning. Some scholars have

suggested that single dominant function zoning is inadequate in the

current literature on qualitative analysis, and that the new era of

territorial spatial function classification should be divided into

multifunctional mixed zoning and combined with spatially

secondary functions (Zou et al., 2022; Hu et al., 2023). In

quantitative research, ecosystem macro-structure, NDVI, and

NPP were used to examine changes in the ecological status of

different principal functional zones within the Yangtze River

Economic Zone (Wu et al., 2018).Remote sensing classification

data was used to measure the ecological function, and its value was

calibrated by integrating ecosystem service values. Consequently,

the spatial function of land within Henan Province was evaluated,

and the functional zoning was subsequently established based on

the two-dimensional graph theory clustering algorithm (Zhou

et al., 2020).

In general, numerous findings have emerged from studies

focusing on ecosystem change through a single perspective of

either structure or function. However, a comprehensive

understanding of how ecosystem conditions evolve under the

integrated structure–function perspective requires further

investigation, particularly in terms of the synergistic effect of

ecosystem structure and function on the functional zoning of

land space. As a result, this study concentrates on addressing the

following scientific issues: (1) how to characterize ecosystem

changes from a structure–function perspective; (2) how to

delineate different integrated functional regions from a service

cluster perspective. The southern hilly mountainous belt stands as

a significant ecological security barrier in southern China,
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containing the world’s largest and most well-preserved meso-

subtropical woodland ecosystems within the same latitudinal belt

(Ma et al., 2021). Based on this, this paper employed methodologies,

such as the transfer matrix and ecosystem service trade-offs or

synergy, to reveal the spatio-temporal dynamic change patterns of

ecosystem conditions and identify integrated functional areas in

Hunan Province between 2000 and 2020. The ultimate goal is to

furnish a scientific and theoretical foundation for ecological

construction and planning within the context of the southern

hilly mountainous belt.
2 Overview of the study area

The southern hilly region, which encompasses seven provinces:

Zhejiang, Fujian, Jiangxi, Hunan, Guangdong, Guangxi, and

Guizhou (Figure 1), is characterized by a wealth of heat and

water and pleasant temperatures due to its subtropical monsoon

climate. The southern hilly areas have made immeasurable

contributions to the ecological security of China’s southern region

as an integral part of the country’s “two screens and three belts”

ecological pattern. They also play an indispensable role in exploring

the spatial functional zoning of the country’s land and fostering the

high-quality development of the southern region.

Hunan Province is situated between latitude 24°38′–30°08′N
and longitude 108°47′–114°15′E, sharing borders with Chongqing

and Guizhou in the west, Jiangxi in the east, Guangxi and

Guangdong in the south, and Hubei in the north (Figure 1),

covering a total land area of 211,800 km2. The majority of its

landforms are mountains and hills, including the Mufu-Luoxiao

mountain range in the east, the Nanling mountain range in the

south, the Wuling and Xuefeng Mountains in the west, and the

Dongting Lake Plain in the north (Zheng et al., 2023). The

province’s center consists of hills and valleys, a dense network of

rivers, and well-established water systems across Hunan (Chen

et al., 2019). In 2022, the GDP of Hunan Province was 4,867.037
FIGURE 1

Schematic location diagram of Hunan Province.
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billion yuan, with a resident population of 66.220 million people.

The province contains 122 county-level divisions and 14

prefectural-level administrative districts. Being a key development

axis in the central region, Hunan Province boasts diverse ecosystem

types and performs ecosystem service activities such as water

conservation, regional climate regulation, and biodiversity

maintenance. It also serves as a significant ecological reserve and

water conservation area in the southern hilly region, with its

favorable ecological environment being essential for maintaining

and sustaining regional ecosystem functions (Xiong et al., 2020). To

provide an ecological foundation and a national territory

foundation for the thorough implementation of the significant

strategy of “three highs and four news” in Hunan Province, it is

of utmost importance to study how to integrate changes in

ecological conditions and spatial functional zoning of the

national territory.
3 Data sources and processing and
research methods

3.1 Data sources

The data utilized in this study primarily consists of the

following: Social and natural economic development datasets were

predominantly sourced from the Hunan Statistical Yearbook

(2000–2020) and the China Meteorological Data Network.
Fron
(1) Ecosystem-type datasets were primarily ecosystem-type

records for Hunan Province spanning from 2000, 2005,

2010, 2015, and 2020. The datasets were obtained from the

Resource and Environmental Science and Data Center of the

Chinese Academy of Sciences, accessible through the specific

website (https://www.resdc.cn/). The spatial resolution was

set at 0.03 km, with the transfer matrix generated post-

processing using ArcGIS 10.2. This classification involves

referencing the “Third National Land Survey Land

Classification” alongside relevant findings pertaining to

ecosystem-type divisions. The classification encompasses

various types, including cropland, woodland, grassland,

built-up, and waterbody, among others.

(2) Nighttime light data were acquired from the National Earth

System Science Data Center (http://geodata.nnu.edu.cn/).

The data processing procedure involves utilizing the

Sigmoid function conversion, resampling SNPP-VIIRS

data, and splicing DMSP-OLS from the Colorado School

of Mines (http://eogdata.mines.edu/nighttime_light/) to

obtain China-wide DMSP-OLS (1 km) spanning from

2000 to 2020.

(3) Net primary productivity (NPP) data from 2000 to 2020

were derived from the National Aeronautics and Space

Administration MOD17A3HGFd dataset, which featured a

spatial resolution of 0.5 km. The resolution was harmonized

to 1 km for consistency
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3.2 Research methods

3.2.1 Ecosystem pattern transfer matrix
The conversion link between ecosystem patterns in Hunan

Province was examined at the start and the conclusion of the

study period using the transfer matrix of the ecosystem pattern

(Shi et al., 2000):

Sij =

S11 S12 ⋯ S1n

S21 S22 ⋯ S2n

⋯ ⋯ ⋯ ⋯

Sn1 Sn1 ⋯ Snn

�����������

�����������
(1)

In the above equation, n is the number of ecosystem types; i, j

refers to the ecosystems at the beginning and end of the study

period; Sij denotes the area where ecosystem type i was transferred

to ecosystem type j during the study period.

3.2.2 Trend analysis of NPP changes
We examined the variations in vegetation NPP characteristics

within Hunan Province using the Theil-Sen median trend analysis.

Among these, the Theil-Sen median trend analysis employs the

median function to generate the detection factor, signifying a

reliable nonparametric calculation method unaffected by

measurement errors and outlier data. This approach is commonly

used for trend analysis of extensive time series data (Wan et al.,

2023):

b = Median
NPPi − NPPj

i − j

� �
(2)

In the above equation, NPPi and NPPj denote the NPP values of

the sample time series iand j, respectively; b denotes the median of

the slopes for calculating n(n−1)
2 data combinations.

The Mann-Kendall significance test is a nonparametric

statistical test that is unaffected by missing values and outliers

and does not require that the measurement data follow a normal

distribution or that the trend be linear (Wan et al., 2023):

S = o
n−1

i=1
o
n

j=i+1
sgn(xj − xi) (3)

sgn(xj − xi) =

+1, xj − xi > 0

  0, xj − xi = 0

−1, xj − xi < 0

8>><
>>: (4)

Z =

S−1ffiffiffiffiffiffiffiffiffiffiffi
VAR(S)

p , S > 0

    0, S = 0

S+1ffiffiffiffiffiffiffiffiffiffiffi
VAR(S)

p , S < 0

8>>><
>>>:

(5)

Var(S) =

n(n − 1)(2n + 5) −o
m

i=1
ti(ti − 1)(2ti + 5)

18
(6)
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The test statistics (Sand S), the number of replicated data sets in

the study time series (m), the number of repetitious data in the ith
set of replicated data (ti), and the variance of S (Var(S)) are all

included in Equations (3–6). When the absolute value of Z is greater

than 1.96 or 1.65, the significance test is considered to have been

successfully conducted with a 95% or 90% confidence level. When

the value is greater than 0, the table NPP displays an increasing

trend; when the value is 0, a falling trend.

3.2.3 Ecosystem service clusters
The Self-Organizing Feature Mapping network (SOFM) is a neural

network approach used in this study for unsupervised learning. It

identifies ecosystem service clusters at the county scale and assigns each

county unit to an ecosystem service cluster based on the spatial co-

occurrence similarity of ecosystems (Xia et al., 2023). In order to

guarantee consistency and comparability of defined ecosystem service

clusters across a 20-year period, the SOFM implementation used

normalized values for ecosystems of the same scale.

Food production exhibited inconsistency across different land-

use types, and we evaluated the region’s food supply capacity by

converting food mass into corresponding energy (kJ/kg). (Li et al.,

2016; Zhang et al., 2017). When combined with land cover data and

biodiversity threat indicators, the InVEST model’s Habitat Quality

module serves as raster data. (Di Febbraro et al., 2018). To assess

carbon storage in each cell, the InVEST model analyzes carbon

densities and maps for each land-use type (Natural Capital Project,

2023). The InVEST model’s water yield service module is based on

Budyko’s coupled hydrothermal equilibrium assumption. (Zhu

et al., 2023). Water yield service typically represents the difference
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between precipitation and evapotranspiration, which measures the

ecosystem’s supply water capability.

The “Kohonen” package in R4.0 software was used to run

SOFM, clustering and analyzing five distinct ecosystem services:

food production, nighttime light index, habitat quality, carbon

storage, and water yield service, across 122 counties (urban areas)

throughout the entire study area in 2000, 2010, and 2020. These

specific indexes are detailed in Table 1. Based on the features of each

cluster’s ecosystem services, they were designated as urban

functional area, agricultural functional area, and ecological

functional area (Zhang et al., 2019; Hu et al., 2022; Niu et al.,

2022; Qiu et al., 2023). Radar diagrams were created to depict the

ecosystem service cluster structures. SOFM has the advantage of

being more stable and insensitive while dealing with a larger

amount of data than general K-mean cluster analysis.

3.2.4 Driving factor analysis
Several factors collaborate to influence changes in ecosystem

conditions. These variables include those that are intrinsic to

ecosystem changes, like temperature and precipitation; extrinsic

variables, like human activity; and changes in ecosystem patterns,

which are subject to the effect of national policy (Di Febbraro et al.,

2018). In this study, the anthropogenic disturbance index was used to

assess the impact of human activities on ecosystem conditions changes

in Hunan Province. The least squares method was employed to analyze

interannual trends in natural factors like temperature and precipitation.

Given that human activities affect different ecosystems to

varying degrees, causing varying levels of disturbance, such as

minimal disturbance to unutilized land and substantial

disturbance to cropland, hierarchical assignments were assigned

to each ecosystem. Anthropogenic disturbance indices were

categorized into four levels (as shown in Table 2) based on the

degree of disruption to different ecosystems. This categorization is

referenced in the study by Zhao et al. (Zhao et al., 2023).

For a given region, ecosystem types with multiple disturbance

grading indices generally exist simultaneously. Therefore, the

composite human disturbance index for ecosystems in the region is

calculated through a weighted summation method, resulting in a

composite human disturbance index for ecosystems between 0 and 3:

D =
o
3

i=0
Ai � Pi

3o
n

i=1
Pi

(7)

In the above equation, D is the human disturbance index, Ai

denotes the grading index of the ecosystem at level, and Pi denotes

the percentage of area of the ecosystem at level i.
4 Results and analysis

4.1 Macro-structural change of
the ecosystem

During the study period, significant changes occurred in various

ecosystems (see Table 3). Notably, cropland ecosystems experienced
TABLE 1 Comprehensive zoning evaluation index system.

Function Indicators Explain
Calculation
methods or Data
sources

Production
function

Grain
production
(GP)

Refers to the
production of
grain from
agricultural land.

References (Li et al.,
2016; Zhang et al., 2017)

Life function
Nighttime
lights index
(NLs)

Reflect the
degree of
economic growth
to a certain
extent.

References (Wu et al.,
2022)

Ecological
function

Ecologically
functional
habitat quality
(HQ)

Reflect
biodiversity in
the region.

References (Di Febbraro
et al., 2018; Natural
Capital Project, 2023;
Zhu et al., 2023)

Carbon
storage(CS)

Provide a variety
of basic
ecosystem
services.

Water yield
service(WY)

represents the
surface water
yield in the
study area.
HQ, habitat quality; WY, water yeild; GP, grain production; CS, carbon storage; NLs,
nighttime lights.
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a continuous 1.39% decline, equivalent to 2948.14 km2, from 2000

to 2020. In contrast, bulti-up ecosystems spatially expanded by

2917.82 km2, growing from 1.34% in 2000 to 2.72% in 2020.

Woodland ecosystems and waterbody ecosystems increased

slightly in their respective areas, with no substantial alterations

observed. Grassland ecosystems continued to decrease, covering an

area of 679.6 km2. The area of unused land exhibited a fluctuating

pattern, initially increasing and then decreasing, ultimately covering

an area of 989.87 km2 in 2020, accounting for only 0.47% of the total

land area within the study area.

To illustrate the configuration of each ecosystem’s land use type

and the corresponding transitions occurring within Hunan

Province from 2000 to 2020, this study employed a transfer

matrix. The results of ecosystem transfers were then visually

represented through a chordal diagram (Figures 2A–D). Within

the four phases of ecosystem area transformation, the primary

interchanges involved cropland and woodland, exhibiting

bidirectional conversion attributes.

From 2000 to 2005, land-use conversion was significant,

equivalent to 1.07% of the total area. This indicates the high

intensity of human activities affecting land use during the study

period, resulting in notable land-use alterations. Specifically, the

principal conversions comprised cropland and woodland, totaling

1122.88 km2 and 808.28 km2, accounting for 49.36% and 35.53% of

the transferred area, respectively. Notably, cropland mainly shifted

to woodland, encompassing an area of 696.96 km2, while woodland

primarily converted to cropland, encompassing 542.08 km2.

From 2005 to 2010, this phase predominantly followed the

trajectory of ecosystem area conversion from the previous stage.

The main types of conversion remained cropland(3,291.2 km2) and

woodland (1,747.24 km2), accounting for 46.19% and 24.5% of

converted areas, respectively. Cropland was primarily converted to

woodland (1,931.16 km2) and built-up land (745.36 km2). This
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pattern aligns with the ongoing “Return Farmland to woodlands”

initiative, which has already made a substantial impact. woodland,

amounting to 556.6 km2, was converted into built-up land as well,

primarily driven by rapid urban development and the need for

expanded built-up land areas, resulting in the encroachment on

both cropland and woodland ecosystems.

From 2010 to 2015, the majority of conversions consisted of

cropland (3,571.92 km2) and grassland (484 km2), accounting for

48.64% of the total transfer area. Grassland shifted mainly to

woodland, while cropland was primarily converted to woodland

(2691.04 km2) and built-up land(454.96 km2), showcasing the

significant impact of the farmland-to-woodland conversion. A

smaller amount of land was converted between 2015 and 2020,

with the majority undergoing conversions to cropland (2,350.88

km2) and woodland(2,550.22 km2). During this stage, the

transitions involved reciprocal conversions between cropland and

woodland, with a substantial portion being converted into built-up

land(1,258.25 km2), reflecting the continued expansion of built-up

land. Additionally, there was an increase in the proportion of

waterbody ecosystem area, aligning with the effectiveness of

returning cropland to water.
4.2 Spatiotemporal change of
ecosystem function

4.2.1 Temporal variation characteristics of
vegetation NPP

Figure 3 illustrates the trend in the annual average vegetation

NPP within the study area from 2000 to 2020, demonstrating a

noticeable upward trajectory (p<0.01). The trend exhibits a rate of

2.96 gC/m2/a and a mean value of 603.47 gC/m2/a for the given

study period. This value is comparable to the estimated 2000–2019
TABLE 2 Grading scale of human disturbance.

Type Natural unused land
Natural
regeneration

Anthropogenic
regeneration

Anthropogenic
non-regeneration

Ecosystem type Unused land
Woodland, Grassland,
Waterbody

Cropland Built-up land

Disturbance grading
index

0 1 2 3
TABLE 3 Land use types and proportions of land in Hunan Province from 2000 to 2020.

Ecosystem type
In 2000 In 2005 In 2010 In 2015 In 2020

Area(km2) % Area(km2) % Area(km2) % Area(km2) % Area(km2) %

Cropland ecosystem 62108.90 29.32 61746.57 29.15 60061.99 28.36 59695.20 28.18 59160.76 27.93

Woodland ecosystem 131399.80 62.04 131290.38 61.98 132335.08 62.48 132099.57 62.37 131772.25 62.21

Grassland ecosystem 7570.20 3.57 7553.48 3.57 6997.67 3.30 6946.73 3.28 6890.60 3.25

Waterbody ecosystem 7140.73 3.37 7314.05 3.45 7175.41 3.39 7202.87 3.40 7236.81 3.42

Built-up ecosystem 2847.19 1.34 3195.09 1.51 4241.64 2.00 4866.86 2.30 5765.01 2.72

Unused ecosystem 746.34 0.35 715.00 0.34 1003.11 0.47 1002.68 0.47 989.87 0.47
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vegetation NPP of 566.92 gC/m2/a, as assessed by Yan Yan et al.

(2022) utilizing the CASA model. By including the mean NPP

value for 2020, the present study’s mean value increased to

625.37 gC/m2/a. The highest value, 658.62 gC/m2/a, was observed

in 2015, while the lowest value, 549.97 gC/m2/a, was recorded in
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2000, reflecting a variation of 108.65 gC/m2/a. From 2000 to 2015,

there was an upward oscillation, whereas from 2015 to 2020, a

downward oscillation was observed.

Figure 4 presents the distribution of the annual average

vegetation NPP area share across different classes within the study
B

C D

A

FIGURE 2

Ecosystem transfer in Hunan Province from 2000 to 2020. (A) 2000–2005, (B) 2005–2010, (C) 2010–2015, and (D) 2015–2020.
FIGURE 3

Inter-annual trend of NPP in Hunan Province, 2000–2020.
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area from 2000 to 2020. This distribution can be divided into three

subperiods based on their change characteristics: (1) The period

2000–2002 represents the growth phase, during which the area with

NPP>500 experienced a 15.18% increase. (2) The period from 2003 to

2010 is characterized as the stabilization period, in which the area

share of different grades remained within a narrow range. The

maximum increase was 5.61%, and the maximum decrease was

−5.18%, corresponding to the 400–500 range in 2003–2004 and

2004–2005, respectively. (3) The period from 2011 to 2020 can be

viewed as the gearing period, with changes in the share of different

grades showing fluctuation and some instability. Notably, the

maximum increment of 305.26% and the maximum decrement of

−59.42% occurred within the NPP intervals greater than 900 in 2012–

2013 and 2013–2014, respectively.
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4.2.2 Characteristics of vegetation NPP
spatial distribution

The distribution of average vegetation NPP in Hunan Province

from 2000 to 2020 (Figure 5) showed distinct characteristics: high

along the southeast, even higher in the northwest, lower in the

central areas, and further decreased in the northern parts. The

southeastern part of the Xiangnan region experienced an average

annual NPP exceeding 900 gC/m2/a. In the northwestern part of the

Great Xiangxi region, NPP ranged between 600–900 gC/m2/a. The

Dongting Lake region’s north-central part and the CZT region’s

center had NPP proportions below 500 gC/m2/a. The NPP values

notably less than 300 gC/m2/a, mainly distributed around built-up

land. From 2000 to 2020, the average vegetation NPP in Hunan

Province remained high in the southeast while being lower in the
FIGURE 4

Circumferential stacking of NPP area share in Hunan Province, 2000–2020.
FIGURE 5

Spatial distribution and variation characteristics of NPP from 2000 to 2020.
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central and northern regions. Throughout this period, the trend of

vegetation NPP change in Hunan Province primarily centered

around ±12 gC/m2/a. Decreasing NPP trends mainly

encompassed the northern part of the Dongting Lake area, the

CZT area’s center, the southwestern part of Daxiang, and the

southeastern part of the Xiangnan area. This distribution

exhibited a side U-shape pattern, covering a total area of 17.60%.

In contrast, areas displaying an upward trend accounted for 77.76%,

indicating an overall positive annual mean NPP in Hunan Province.

Combining the results of the Theil-Sen median trend analysis

and Mann-Kendall significance test, and referring to the type

classification of Liu G. et al. (2023), vegetation NPP changes in

Hunan Province from 2000 to 2020 can be classified into five types:

significant increase, relatively significant increase, no significant

change, relatively significant decrease, and significant decrease (Liu

et al., 2022a). Significantly declining areas accounted for 3.74% of

the total area, mainly distributed in the southern Xiangnan region

and around the CZT region’s built-up land. The area proportion of

regions with an upward trend was 58.54%, indicating a general

increase in the average annual NPP over the study period. The area

share of the average annual vegetation NPP change rate in Hunan

Province from 2000 to 2020, greater than zero, accounted for

74.83%, while the proportion with a change rate below 25% was

4.24%. The downward trend in the NPP change rate corresponded

with the main distribution around the Dongting Lake area and the

CZT region, encircling built-up land. The southern part of the

larger Xiangxi region displayed a less pronounced negative

change characteristic.

4.2.3 Spatial and temporal changes in
ecosystem services

Table 4 presents the quantities of four distinct types of

ecosystem services and their temporal evolution. In Hunan

Province, the average values of grain production, carbon storage,

habitat quality, and water production services were 452.14 KJ/hm2,
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147.59 t/hm2, 0.79, and 940.81mm in 2000, 2010, and

2020, respectively.

Over the past two decades, the maximum grain production

increased by 70.94 t/hm2, which can be largely attributed to

advancements in grain production technology and ongoing

improvements in agricultural infrastructure. During this period,

both the maximum and minimum values of grain production have

shown a steady rise. The province’s average grain production

exhibited a pattern of decrease followed by increase, a trend

influenced by rapid urbanization occurring between 2000 and

2010, leading to a reduction in Cropland available for grain

cultivation. However, with increasing emphasis on Cropland

protection, implementation of stringent protection measures, and

initiatives such as establishing high-standard basic farmland, the

province’s grain output rebounded and improved between 2010

and 2020.

Both carbon stock and habitat quality values underwent

marginal changes during the study period. Specifically, habitat

quality decreased by 0.007 over two decades, indicating some

level of ecological disturbance in Hunan Province due to

anthropogenic activities and the development and exploitation of

land resources. In comparison, the mean value of the water

production service has displayed an annual increase, rising by a

total of 113.44 mm.

Figures 6A–L show the marked spatial heterogeneity of

ecosystem services across different counties. Between 2000 and

2020, regions with elevated and even higher GP, CS, and HQ

were primarily concentrated in the mountainous southwestern

Hunan area, encompassing Suining, Xinning, and Chengbu

counties. Similar patterns are observed in the western Hunan

region, including Yongshun, Sangzhi, and Longshan counties, as

well as the hilly southeastern Hunan regions, including Rucheng

County, Guidong County, and Zixing City. These areas are

characterized by abundant woodland, relatively plentiful water

resources, and less human intervention. The coastal regions
TABLE 4 Changes in ecosystem services in Hunan Province, 2000–2020.

Type of service 2000 2010 2020

Grain production (KJ/hm2)

Maximum 570.82 604.79 641.76

Average value 433.91 417.59 504.91

Minimum value 0.69 17.85 16.76

Carbon storage (t/hm2)

The maximum 183.06 187.12 182.85

Average value 147.66 147.81 147.31

Minimum value 58.32 62.43 57.19

Habitat quality

Maximum 1 1 1

Average value 0.793 0.791 0.786

Minimum value 0 0 0

Water production service (mm)

Maximum 1732.17 1944.89 1662.37

Average value 866.16 976.67 979.60

Minimum value 0 0 0
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around Dongting Lake, including Yueyang County, Huarong

County, and Yuanjiang City, predominantly exhibit lower values

of WY, CS, and HQ. This disparity is attributed to factors such as

flat topography, high population density, and significant

agricultural activity in these areas, contributing to diminished

levels of these three ecosystem services. These challenges are

expanding due to ongoing ecosystem disturbance in these regions.

Areas demonstrating average performance across the four

ecosystem services are primarily located in the central Hunan
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region, which includes Lianyuan City, Shuangfeng County, and

Xiangxiang City.

Hunan Province exhibits noticeable latitudinal and vertical

heterogeneity in ecosystem services. In general, the capacity for

ecosystem services in the hilly and mountainous regions in western

and southern Hunan markedly surpassed that of the Dongting Lake

Plain area in northern and central Hunan. Moreover, the ecosystem

service capacity of the CZT urban agglomeration constituted the

ecological weak point of the study area. In terms of the four
B C
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FIGURE 6

Spatial change of ecosystem services of Hunan Province in 2000-2020. (A–C) GP in 2000, 2010 and 2020, (D–F) CS in 2000, 2010 and 2020,
(G–I) HQ in 2000, 2010 and 2020 and (J–L) WY in 2000, 2010 and 2020.
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ecosystem services, GP exhibited a spatial distribution that is higher

in the west and lower in the east. The number of counties with

average GP values increased, and the spatial distribution of high and

higher values gradually shrank to the west and became more

compact. CS was mainly affected by the land-use type and the

natural environment of the region, demonstrating a spatial pattern

with the Dongting Lake area as the core low-value region, expanding

irregularly towards the periphery. HQ remained relatively stable

during the 20-year period, maintaining a capacity significantly

higher than that of the Dongting Lake Plain area and Xiangzhong

City Cluster, consistent with that of Cropland and built-up areas in

various cities. Given that built-up land can negatively impact HQ

significantly, counties with a larger proportion of built-up land tend

to have relatively lower HQ values. HQ was concentrated in

woodland with excellent ecological environments, while areas with

intensive human activities exhibited lower HQ values. In terms of

WY, a spatial pattern emerged with higher values in the south and

lower values in the north. However, during the study period, WY did

not show any noticeable regular geographical changes because it is

mostly driven by natural precipitation.
5 Discussion and conclusion

5.1 Discussion

5.1.1 Impact factors of ecological
condition change

Ecological condition change drivers include various factors that

contribute to shifts in ecosystem utilization, encompassing natural

factors, socio-economic dynamics, and policy systems. Natural

drivers include climate, geomorphology, and plant succession,

while socio-economic drivers include social, economic, and

technological variables as well as those that have a direct impact

on how regional ecosystems evolve over time (Ji et al., 2020; Hou

et al., 2022; Yan et al., 2022; Zhang et al., 2022; Liu S. C., et al., 2023).

Hunan Province experiences a subtropical monsoon climate

characterized by abundant sunlight, heat, and precipitation, with

simultaneous rain and warmth. The region’s topography is

predominantly mountainous and hilly, flanked by mountains on

three sides, resulting in elevated terrain in the south and lower

elevation in the north. Climatic factors, such as temperature,

precipitation, wind speed, and humidity, have a significant

influence on the growth conditions of surface vegetation.

Therefore, comprehending the impact of natural variables on

changes in the land surface ecosystem pattern within the research

area is essential. The ecological landscape of Hunan Province has

transformed over the the past two decades, spanning from 2000 to

2020, driven by a synergy of natural and anthropogenic forces.
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Climatic conditions in the study area are generally favorable,

and factors like a suitable temperature and a low wind speed can

directly affect the rate of change in both natural and human-

influenced vegetation-based ecosystems (Niu and Liu, 2022). In

addition, conditions that promote alterations in biodiversity and the

extent of soil erosion can indirectly affect ecosystem changes in

Hunan Province. In particular, average temperatures remained

relatively stable within the study region from 2000 to 2020.

Socio-economic development stands as a pivotal driving factor

that influences and changes the pattern of artificial ecosystems.

Hunan Province has witnessed rapid socio-economic progress, with

a substantial surge in GDP from 369.188 billion yuan in 2000 to

4,178.15 billion yuan in 2020, marking an increase of 1131.7%.

Similarly, Hunan’s population has increased considerably. Since

2000, alongside urbanization initiatives, a growing rural population

has migrated to urban areas due to increasing settlement needs,

particularly for residential land and transportation land. This trend

has led to the continual conversion of surrounding Cropland and

woodland ecosystem areas into urban infrastructure and residential

zones, aligning with the findings of previous analyses (Xu

et al., 2023).

Over the past two decades, Hunan Province has experienced

significant landscape changes due to the successive implementation

of various policies, including the Xiangjiang River Basin and

Dongting Lake ecological protection and restoration project, the

middle and upper reaches of the Yangtze River protective woodland

project, the returning farmland to woodland project, and the pilot

project for ecological protection and restoration of mountains,

water, forests, fields, lakes, and grasses. Specifically, Cropland

ecosystems, which accounted for 29.32% of the province’s land

area in 2000, shrank to 29.15% in 2005, 28.36% in 2010, 28.18% in

2015, and 27.93% in 2020, demonstrating a steady decline in

Cropland area. About 5319.16 km2 of Cropland was converted

into woodland ecosystems, constituting 66.61% of the total

transformed area. A smaller portion of Cropland was converted

into watersheds. This transformation was primarily influenced by

policies promoting the conversion of farmland back into woodland,

leading to increased fragmentation of Cropland ecosystems. Over

time, the Cropland ecosystems in the study area also displayed a

trend toward simplification.

From 2000 to 2020, the comprehensive human disturbance level

in Hunan Province experienced fluctuations, initially rising, then

declining, and again rising (Table 5), exhibiting an overall upward

trajectory and a net change of 0.0027. Specifically, the

comprehensive human disturbance index from 2005 to 2010

increased by 0.0112 compared with that from 2000 to 2005. This

increase was primarily attributed to the shift of cropland and

woodland with lower disturbance levels into colonies with higher

disturbance levels (Table 3). The rapid expansion of built-up land

drove the augmentation of the composite human disturbance index.
TABLE 5 Human disturbance index.

2000–2005 2005–2010 2010–2015 2015–2020

Composite Human Disturbance Index 0.4404 0.4516 0.4417 0.4431
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Hunan Province initiated the farmland-to-forest project in

2002, which was followed by increased efforts by the national and

provincial governments to conserve the environment. Policies

encompassing returning farmland to woodland, closing

mountains to forests, prohibiting cutting and logging, and

reforestation initiatives have yielded significant outcomes. The

composite human disturbance index decreased from 2010 to 2015

(Table 3), then again from 2015 to 2020 (Table 4), though at a

slower rate than the preceding period, as higher-disturbance

Cropland was converted to lower-disturbance wooded area. In

2020, there was a small increase of about 0.0014 compared with

2010–2015. The first period of the study was primarily focused on

ecosystem transformation, while the subsequent period witnessed a

reduction in the transformation of ecosystems, emphasizing the

consolidation of earlier transformation outcomes. As a result, the

average value of the comprehensive human disturbance index was

higher in the first ten years than in the following decade.

5.1.2 Comprehensive national territory space
function partition from the perspective of
service clusters

National territory space function partition can guide the

balance of supply and demand for social-ecological system

services. The foundation of comprehensive zoning lies in

delineating urban, ecological, and agricultural zones based on

their dominant functions. The integration of main functional

domains and social-ecological system components serves as a

crucial avenue for achieving multifunctional territorial spatial

functional comprehensive zoning (Hu et al., 2022; Qu et al., 2023).

The environmental service clusters in Hunan Province exhibited

regional and temporal variations from 2000 to 2020 (Figures 7A–C).

Urban functional zones, primarily concentrated in the CZT area and

the core regions of rapidly urbanizing cities like Changde Wuling

District and Hengyang Steam Xiang District, are primarily used for

residential functions. The number of counties (districts) covered

increased significantly from 31 to 49 between 2000 and 2020. The
Frontiers in Ecology and Evolution 12156
CZT urban agglomeration, witnessing continued population

concentration, is a prominent region experiencing substantial

transformations. In terms of the ecosystem service composition

structure, NLs are more prominent, with other services slightly

trailing at the mean level. Ecological function areas are mainly

located in the mountainous terrains of western and southern

Hunan province. These areas boast superior ecological environment

quality, high vegetation cover, and better carbon sequestration

services. However, due to topographic constraints, the proportion

of both NLs and GPs in this region remains quite low.

In the overarching framework of ecosystem service composition,

CS and HQ services are more prominent, and ecosystem regulating

services significantly outweigh provisioning services. However, due to

the rapid pace of urbanization, a discernible spatial shift in ecosystem

services has occurred from regulating services to provisioning services.

Additionally, the extent of ecological functional areas declined between

2000 and 2020. The agricultural functional area is dominated by the

production function and is mainly located in Dongting Lake Plain, the

near-shore plains of the four watercourses, and tributary water systems.

These areas have rich natural resources and favorable geographic

conditions, rendering them suitable for agricultural development.

They represent the primary food source region in Hunan Province

and are characterized by substantial human intervention, frequent

agricultural activities, prominent GP, high WY, and good synergistic

effects. However, the living and ecological functions within this zone

are relatively weak. Overall, the agricultural functional area is in a state

of growth.

5.1.3 Limitations
In summary, from a “structure–function” perspective, this paper

analyzed the shifts in ecosystem macro-structure, functions, and services

and integrated the driving factors of nature, social economy, and policy

to explore their influence paths and degrees on structural and functional

changes. Subsequently, guided by the service cluster concept, this paper

explored the current “structure–function” scenario within territorial

spatial comprehensive zoning, discussing potential optimization
B CA

FIGURE 7

Spatial distribution and composition of ecosystem service clusters, 2000–2020. (A) 2000, (B) 2010 and (C) 2020.
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strategies for future functional zoning. However, there are still several

research limitations. First, given the universal applicability of single

dominant function zoning and the study’s focus on comprehensive

zoning utilizing ecosystem service clusters, it becomes imperative to

clarify the relationship and interconnection between dominant and

secondary functions within the comprehensive zoning of the national

territory space in subsequent studies. This clarification would provide

insights into second-level guideline zoning. Second, this study first

investigated the path toward second-level zoning, utilizing the spatial

distribution of service clusters as the primary guideline and the

compositional structure as the second-level guideline. In future studies,

it is essential to meticulously refine the evaluation index system of

comprehensive zoning to enhance the precision of functional zoning

guidance. This refinement will facilitate a deeper exploration of primary

functional areas based on “double evaluation” and land spatial planning.

As a result, it will facilitate a more comprehensive connection between

secondary zoning and planning, guiding the delineation of diverse

primary comprehensive functional zones.
5.2 Conclusion

This study focuses on Hunan Province and utilizes land use data

from five distinct periods (i.e., 2000, 2005, 2010, 2015, and 2020), we

comprehensively analyzed the spatio-temporal characteristics of

ecosystems and their directional shifts within the province. This

analysis was accomplished using the transfer matrix, land use

dynamics, human disturbance index, and ecosystem service

clusters. Additionally, we explored the synergistic benefits of

ecosystem services. The main results of the study are as follows:
Fron
(1) The ecosystem structure of Hunan Province has undergone

substantial transformations from 2000 to 2020. Macro-

structural changes were concentrated in the ecosystems of

built-up land and Croplands. The area occupied by built-up

land has increased significantly, while Cropland has

experienced a marked decrease, steadily converting into

built-up land. Therefore, to maintain the ecological stability

of the province, a more cautious approach to growth should

be adopted, with a focus on containing expansion within

core areas and prioritizing the protection of regions that

provide crucial ecological functions.

(2) Human socio-economic activities and environmental

protection policies exert a significant impact on the

ecosystem configuration within the study area. The urban

periphery’s Croplands are gradually yielding to the

expanding city limits, caused mainly by the construction

of residences, public infrastructure, and road networks,

among others. Consequently, Croplands with lower

disturbance levels are being transformed into areas with

higher disturbance levels, leading to significant shifts in the

ecosystem layout.

(3) The functional areas of towns and cities have steadily

expanded, while the capacity of ecological functions

within the ecological space has gradually contracted.
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During this period, the zones with significantly decreasing

NPP change trends in Hunan Province experienced a U-

shape distribution, with woodland ecosystems being

prevalent. With the rapid development of society and

economy, people are increasingly pursuing high-quality

ecosystems that cater to recreational and cultural needs.

However, ecosystems in closer proximity to areas of human

production and habitation have experienced weakened

capabilities in providing essential functions, primarily due

to the continuous expansion of construction land.

(4) The overall trend of ecosystem service changes is favorable.

Quantitatively, GP and CS experienced initial increases

followed by declines, while HQ showed a gradual decline,

and WY increased year by year. Spatially, these changes

exhibited pronounced heterogeneity, marked by both

latitudinal and vertical variations. Ecological functional

zones were primarily designated for ecological functions,

with a majority situated in the mountainous areas of

western and southern Hunan. Agricultural functional

zones were mainly designated for production functions,

located mainly in the plains of Dongting Lake and the

nearby plains of the four main streams of the Xiangzhi

Yuanli water systems, along with their tributaries. The

agricultural functional areas were primarily situated in the

plains of Dongting Lake, as well as along the main streams

and tributaries of the Xiangzhi Yuan and Li Rivers.
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Introduction: It is of great significance to strengthen the evaluation research and
driving force analysis of ecosystem services value for the rational utilization and
protection of the ecological environment of Changsha-Zhuzhou-Xiangtan (CZT)
urban agglomeration and the promotion of the integration of urban
agglomeration.

Methods: Based on the remote sensing image data, the spatial and temporal
evolution characteristics and influencing factors of the ecosystem services value
of CZT urban agglomeration were analyzed by themethods of ArcGIS10.2, Geoda,
value equivalent and spatial statistics.

Results: The results showed that: 1) From 2000 to 2020, the total value of
ecosystem service in the CZT urban agglomeration decreased gradually, with
an overall decrease of 4,381.07 × 106 yuan. In the past 20 years, the ecosystem
service Value (ESV) of cultivated land, forest land and grassland had declined, but
the ESV of water area and unused land had fluctuated, and the single ESV had
declined. 2) From 2000 to 2020, the spatial distribution of ESV in the CZT urban
agglomeration showed an obvious pattern of “low in the middle and high in the
surrounding areas”, and the changes were quite different in different periods. 3)
The spatial correlation between ESV and distance from county government,
distance from railway, proportion of construction land, NDVI, population
density, economic density, slope and precipitation were significant. The spatial
distribution of the distance from the county government, the distance from the
railway, NDVI and ESV were similar; the population density and economic density
were consistent with the spatial distribution of ESV; and the spatial distribution of
construction land proportion, slope, precipitation and ESV were different.

Discussion: The results of the study can provide some reference for the further
development of ecological protection policies and related planning in urban
agglomerations.

KEYWORDS

ecosystem service, spatio-temporal evolution, influencing factors, spatial statistics,
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1 Introduction

Ecosystem services (ESs) refer to the environmental conditions
and utilities provided by ecosystems to support human survival and
development (Daily, 1997). Ecosystem service Value (ESV) is a
monetary evaluation of ESs that can partially indicate the quality of
the regional ecological environment (Zhao et al., 2014). Natural and
social forces both have an impact on changes in ESV. Investigating
the spatial and temporal changes in ESV and the spatial correlation
between the drivers and ESV can aid in understanding the spatial
and temporal variations of the drivers, and offer valuable insights for
developing effective ecological management plans, enhancing
ecological construction, and improving human wellbeing in the
region.

Existing academic research on ESs has yielded significant
findings, primarily focused on various aspects including the
assessment of ESV, spatio-temporal characteristics, and
influencing factors (Liu and Lv, 2009; Wei and Guo, 2015; Deng
et al., 2019). For example, Rui et al. (2019), Liu et al. (2016), and Rao
et al. (2013) conducted assessments on overall ecosystems,
individual ecosystems, and specific ecosystem service, analyzing
their functional values and corresponding driving factors. Studies
were conducted at different spatial scales, such as natural areas (Sun
et al., 2017; Nan et al., 2018), economic zones (Zhao et al., 2017), and
administrative regions (Xue and Luo, 2015; Gao et al., 2016). Li.
(2019) examined the spatial and temporal changes in the loss of ESV
in karst mountainous areas, while Li (2014) explored the dynamics
of ESV and its driving forces in the Guanzhong-Tianshui Economic
Zone. Additionally, Li. (2019b), Mao and Chen (2010), and Lin
(2019) evaluated the ESV in the Yangtze River Economic Zone,
Jiangsu Province, and Guangzhou City, respectively. Traditional
research methods primarily involve principal component analysis
(Zhang et al., 2017), multiple regression (Qiao et al., 2015), and
correlation analysis (Yang, 2018). However, with advancements in
geographic information systems and remote sensing, newer
statistical approaches like geoprospectors (Huang et al., 2019;
Huang and Yang, 2019), spatial autocorrelation (Yang et al.,
2012; Yao et al., 2015), the STIRPAT model (Sun et al., 2009;
Ran et al., 2018), and geographically weighted regressions (Chen
et al., 2014) have gained popularity. SU (2018) employed the
InVEST and CASA models to evaluate the ecosystem service
functions of sediment interception, water production, net
primary productivity (NPP), carbon sequestration, oxygen
release, and food production in the Upper Fen River Basin.
Additionally, Tang et al. (2016) utilized the STIRPAT model and
the GWR model to examine the drivers of ESV in Beijing. Previous
studies have provided some guidance for quantitatively analyzing
the driving factors of ESV. However, there are several deficiencies.
Firstly, research areas were mainly selected at medium and large
scales, such as national, provincial, prefectural, municipal, and
watershed levels. Less attention was paid to changes at smaller
scales, such as grids, which ignore the scale-dependence of
geographic element distribution. Secondly, the selection of
influencing factors mainly focused on natural and socio-
economic aspects and the analysis of quantitative relationships,
with less consideration of the influence of spatial location factors,
thus resulting in a relatively weak analysis of relevant spatial
characteristics. Furthermore, research methods were mainly

traditional quantitative methods like correlation and principal
components, which are difficult to reflect the spatially relevant
characteristics of the influencing factors, although they can be
better for the evaluation of the global effects of the influencing
factors.

The “Three Trunks and One Track” project of the western loop of
the CZT Railway, the accelerated construction of Changsha’s southern
new city and Zhuzhou’s Yunlong Demonstration Zone, as well as the
rapid transformation of Furong Avenue, Dongzhu Road, and Tanzhou
Avenue in the CZT urban agglomeration, have all contributed to the
integration of the three cities of the CZT. The population and economic
activity between cities will increasingly rise as a result of this quickly
developing integration process, having a substantial impact on the
structure, operation, and function of ecosystem service. The urban
ecological environment is likely to face increasing pressure, whichmight
ultimately affect human wellbeing. We estimated the ESV in the CZT
urban agglomeration area using remote sensing photos from 2005 to
2020, together with tools like GIS, SPSS, Geoda, and others, to better
understand this phenomenon. We looked at the spatial and temporal
evolution patterns of the ESs and their spatial interactions with the
drivers using the methodologies of value equivalence, multiple
regression, and bivariate spatial statistics. Our purpose was to offer
better solutions for the urbanization of CZT and to improve the ESs.
Moreover, we aimed to: quantify the ecosystem services change trends
in CZT, and explore the effects of different driving forces on the
ecosystem services, intending to provide guidance for ecological
management and ecological construction in the CZT urban
agglomeration area.

1.1 Overview of the study area

The CZT urban agglomeration, which is situated in Hunan
Province’s central and eastern region, is a significant component of
the urban agglomeration in the middle reaches of the Yangtze River
and serves as the province’s focal point for economic and social
growth as it gradually transforms into one of the driving forces
behind the “Rise of Central China.” CZT’s three cities are located in
the middle reaches of the Xiangjiang River. Along the Xiangjiang
River was “Pin” shape distribution, two and two less than 40 km
apart, in the middle of the ecological green heart of the natural
isolation, but also has dense high-speed, urban railroad network
connectivity, the urban agglomeration of the overall strength of the
significant increase (Figure 1). The CZT urban agglomeration is
located in the subtropical monsoon humid climate zone, with
sufficient heat and abundant rainfall. Basin and hills are
interlaced, urban areas and villages are intertwined, and the
spatial combination is unique; a good combination of mountains,
waters, and green heart form a unique ecological background, and
the regional ecological environment is superior (Zhang et al., 2020).
Referring to the studies of He and Zhou (2007) and Ouyang et al.
(2019), the metropolitan area of the urban agglomeration was
selected as the study area of this research, including the urban
areas of Changsha, Zhuzhou, and Xiangtan (Zhuzhou County was
changed to Bryan Kou District in 2018), as well as Changsha County
and Xiangtan County. By the end of 2018, the CZT metropolitan
area had a resident population of 9,041,600 people, with an average
urbanization level of 80.46%, a gross regional product of
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1,164,966 million yuan, accounting for about 73.43% of the CZT
urban agglomeration, and a retail sales volume of all consumer
goods of 534,823 million yuan.

2 Data sources and research
methodology

2.1 Data sources and processing

2.1.1 Land use data
The Landsat TM/ETM remote sensing images of the CZT urban

agglomeration from 2005, 2010, 2015, and 2020 were acquired from the
Resource and Environment Science Data Center, Chinese Academy of
Sciences (http://www.resdc.cn). The land use types were classified into
six categories based on the national standard classification of land use
and the study conducted by Liu et al. (2014): arable land, forest land,
grassland, watershed, construction land, and unutilized land.

2.1.2 Selection of influencing factors
Changes in ecosystem services impact ecological health, affecting

economic and social development and human wellbeing. Therefore,
based on existing research results (Jiang, 2010; Ouyang et al., 2020), this
study selected relevant influencing factors of ESV from three aspects:
natural environment, socio-economy, and spatial location.

For the natural environment, five factors are chosen:
Normalized Difference Vegetation Index (NDVI), air
temperature, precipitation, elevation, and slope. NDVI
reflects surface biomass and ESV (Chen et al., 2014).
Temperature and precipitation influence ES functions like
evapotranspiration and climate regulation. Higher elevations
and slopes are associated with less human activity impact and
more stable ESV. The NDVI, temperature, precipitation, and
Digital Elevation Model (DEM) data were obtained from the
Resource and Environment Science Data Center, Chinese
Academy of Sciences (http://www.resdc.cn), while the slope
was extracted from the DEM using the Slope Analysis
module in ArcGIS.

In socio-economic aspects, three factors are selected: proportion
of construction land, population density, and economic density
(GDP density). Increasing population and economic densities
exert pressure on ESs (Zuo and Ma, 2012). Proportion of
construction land reflects spatial expansion of human activities
(Xing, 2018). The proportion of construction land is obtained
using the Attribution Select tool in ArcGIS, while population
density and economic density are derived from the Resource and
Environment Science Data Center, Chinese Academy of Sciences
(http://www.resdc.cn).

Spatial location factors include distance to rivers, highways,
county government, and railways. Rivers have two main effects

FIGURE 1
Location of the study area.
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on human activities: providing sufficient water for production
and life, and offering convenient shipping conditions (Xie et al.,
2003). The distance from highways, county government, and
railways also reflects human influence on the ecological
environment (Wartenberg, 1985). Vector data for rivers,
highways, county government, and railways in the CZT
metropolitan area were obtained from Urban Data Pie
(https://www.udparty.com//). The distances were calculated
using the Euclidean Distance tool in ArcGIS 10.2. The
projected coordinates of all influencing factors were unified,
and the values of each influencing factor in each grid were
calculated using the Zonal Statistics as Table module in
ArcGIS 10.2.

2.2 Study methods

2.2.1 Calculation of ecosystem service value (ESV)
The functional value method and the equivalent value method

are the two main categories of assessment methods that have been
developed thus far, but there is currently a lack of a comprehensive,
unified, and scientific set of methods for accounting or assessing the
ESV both domestically and internationally. In this work, we utilize
the coefficients of ESV of CZT urban agglomeration of Ouyang Xiao
et al. (Ouyang et al., 2019) for computation, referring to the
equivalent ESV per unit area of Chinese terrestrial ecosystems as
developed by Xie et al. (2003) (Eqs 1, 2). Since the ESV of
construction land is zero, it is not listed in Table 1, and the ESV
coefficients and calculation formulas for the CZT urban
agglomeration are as follows:

ESVf � ∑ Ak × VCkf( ) (1)
ESV � ∑ Ak × VCk( ) (2)

Where: ESVf is the value of the f ecosystem service function,
VCkf is the value coefficient of the f ecosystem service function,
ESV is the total ESV in the study area,Ak is the area of the k land use
type, and VCk is the ESV of the k land use type.

2.2.2 Driving forces of ESV
(1) Variance Inflation Factor (VIF)

The VIF is a method of the degree of multicollinearity between
predictor variables. A VIF value > 10 is generally considered to
provide evidence of multicollinearity (Luo et al., 2020), and no
predictor variables had collinearity with the other variables.

(2) Spatial autocorrelation

Spatial autocorrelation offers significant advantages in analyzing
the effects of spatial locational factors and relevant spatial features.
By identifying patterns of similarity or dissimilarity and recognizing
the spatial dependency between neighboring locations, it helps
improve the accuracy of statistical models. By recognizing and
incorporating the spatial relationships between neighboring
locations, the model can better capture the underlying spatial
structure of the data. The bivariate global autocorrelation and
local autocorrelation are extended to show the correlation of the
spatial distribution of various factors, with reference to the research
of associated researchers (Eq. 3). The following is the formula (Gao
et al., 2019):

Iplm � zpl ·∑n

q�1Wpq · zqm (3)

Where: zpl � Xp
l
−Xl

el
; zqm � Xq

m−Xm

em
; Xp

l is the value of attribute l of

the spatial cell p, Xq
m is the value of attribute m of the spatial cell q,

Xl andXm are the mean values of attribute l andm, respectively, and
e
l
and e

m
are the variances of attribute l and m, respectively.

3 Results analysis

3.1 Spatio-temporal evolution of ESV

According to the change in total value, the CZT Urban
Agglomeration’s ESV decreased gradually between 2000 and
2020, falling from 64,955.87 × 106 yuan in 2000–60,574.80 × 106

TABLE 1 Coefficient of ESV per unit area (yuan·hm-2·a−1).

Ecosystem service function Land use type

Cultivated land Wood land Grass land Water area Unused land

Gas regulation 2,773.58 16,641.50 5,778.30 1964.62 231.13

Climate regulation 3,736.63 15,678.45 6,009.43 7,935.53 500.79

Water conservation 2,966.19 15,755.50 5,855.34 72,305.78 269.65

Soil formation and protection 5,662.73 15,485.84 8,628.93 1,579.40 654.87

Waste treatment 5,354.56 6,625.78 5,084.90 57,205.16 1,001.57

Biodiversity protection 3,929.24 17,373.42 7,203.61 13,213.04 1,540.88

Food production 3,852.20 1,271.23 1,656.45 2041.67 77.04

Raw materials 1,502.36 11,479.55 1,386.79 1,348.27 154.09

Recreational culture 654.87 8,012.57 3,351.41 17,103.77 924.53

Sum 30,432.38 108,323.85 44,955.17 174,697.25 5,354.56
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yuan in 2020, a decrease of 4,381.07 × 106 yuan or 6.74% (Table 2).
In the periods 2000–2005, 2005–2010, 2010–2015 and 2015–2020, it
fell by 1.04%, 0.62%, 3.7% and 1.57%, respectively. From the
perspective of each land use type, the ecological service value of
cultivated land, wood land and grass land also showed a decreasing
trend during the 20-year period, decreasing by 1,252.73 × 106 yuan,
3,103.95 × 106 yuan and 8.29 × 106 yuan from 2000 to 2020, with a
decrease rate of 12.3%, 6.29%, and 5.62%, respectively. However, the
ecological service value of water area and unused land is volatile,
with the ecological service value of waters experiencing a fluctuating
process of first decrease, then growth and then decrease, decreasing
by a total of 17.2 × 106 yuan, with a decrease rate of 0.33%.

In terms of the value of individual ecosystem service, the value of
all nine ecosystem service functions in the study area from 2005 to
2020 showed the same trend of change, i.e., a decreasing trend. As
can be seen from Figure 2, ESs in the CZT urban agglomeration area
are mainly dominated by the three functions of water conservation,
biodiversity protection, and soil formation and protection, with
three ESVs accounting for 16.05%, 14.86%, and 13.84% of the total
value in 2020 in that order, followed by the functions of gas exchange
and climate regulation, with the total share of gas exchange and
climate regulation accounting for 26.55%; Food production is the
weakest function, with only 2.91%. Meanwhile, waste treatment and

raw materials accounted for 10.07% and 8.91%, respectively, which
were much higher than that of food production. Due to the extensive
distribution of the Xiangjiang River and its tributaries and lakes in
the study area, the regional water conservation function is more
prominent. Coupled with the increasingly strict ecological
protection of the CZT ecological green center, the region
provides a good ecological background for biodiversity
conservation and soil formation and protection functions.

3.2 Spatial change of ESV

As can be seen in Figure 3, the spatial distribution of ESV in the
CZT urban agglomeration from 2000 to 2020 shows an obvious
pattern of “low in the middle and high in the surroundings”, and the
changes in different periods of time vary greatly, primarily in
Changsha City and Xiangtan City but also concentrated in
Tianyuan District. This decrease was largely driven by the rapid
pace of CZT integration and “melting city” constructions, resulting
in an accelerated expansion of construction land areas and
significant declines in the ESV of the three urban areas. Overall,
the ESV of the study area from 2005 to 2020 has decreased in a large
area, spreading in a piecemeal fashion, with a significant decrease in

TABLE 2 Change of ESV of individual land use types (106yuan).

Land use type Cultivated land Wood land Grass land Water area Unused land ESV

Year

2000 10,225.93 49,308.45 147.41 5,272.59 1.49 64,955.87

2005 10,068.54 48,797.51 145.15 5,270.53 1.64 64,283.37

2010 9,965.36 48,482.78 145.15 5,289.17 1.61 63,884.07

2015 9,271.85 47,014.54 139.68 5,113.37 2.98 61,542.43

2020 8,973.20 46,204.50 139.12 5,255.39 2.58 60,574.80

FIGURE 2
Change of individual ESV in 2000–2020.
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the urban areas of CZT and an increase in the value of ecosystem
service in the periphery of the urban areas. During the past 20 years,
the urbanization level of CZT urban agglomeration and the
integration construction of the three cities have increased the
population density and the scale of economic activities in the
region, which has intensified the squeeze and encroachment of
urban land on arable land and ecological land and consequently
led to a significant reduction of the ESV.

3.3 Analysis of influencing factors of ESV

Using SPSS23.0 to carry out the covariance test of the influence
factors, it can be seen from Table 3 that among the 12 factors, only
the inflated variance inflation factor (VIF) of population density is
10.13 > 10, and the VIF values of the rest of the factors are relatively
small, which indicates that the level of covariance among the factors
is low, and because population density is an important factor
affecting the ESV, it is retained here. Through multiple stepwise
regression of 12 factors, an adjusted R2 of 0.60 was obtained, and the
regression results passed the test of probability <0.05, and the factors
affecting the ESV of CZT urban agglomeration were finally screened
out to mainly include the factors of distance from district and county
governments and distance from railways in terms of the locational
conditions, the factors of NDVI, slope and precipitation in terms of
the natural environment, as well as the proportion of construction
land in terms of the socio-economic aspects, population density and
economic density factors.

In order to investigate the relationship between the spatial
distribution of the above eight major factors and the ESV in the
study area, a bivariate spatial autocorrelation test was conducted
using Geoda, and the results are shown in Table 4, the global
Moran’s I index of distance from Distance from county
government, Distance from railway, Proportion of construction
land, NDVI, Population density, Economic density, Slope and
Precipitation with ESV were 0.23, 0.12, −0.45, 0.34, −0.33, −0.32,
0.26, and 0.05, respectively, while all these eight factors passed the
1% significance level test, indicating that their spatial correlation
with ESV was significant. Among them, the proportion of
construction land, population density and economic density are
negatively correlated with the spatial distribution of ESV, and the
spatial agglomeration of dissimilar values is significant. Besides, the
remaining five factors have positive correlations with ESV in spatial
distribution, and the similar values are spatially agglomeration
significantly.

In Figures 4A, B, D, the spatial relationship between the three
factors, distance from county governments, distance from railway,
and NDVI, and ESV are similar, and the low-low concentration is
dispersed throughout CZT’s core urban areas. To be more precise, it
is primarily concentrated in Yuelu District’s northern portion, Kaifu
District’s southern portion, Furong District, Tianxin District’s
eastern and southern portions, Yuhua District’s northern portion,
the southwest portion of Changsha County, Yuhu District, Yetang
District, Shifeng District, Hetang District, and portions of Tianyuan
District. The southwest, Hetang, Yutang, Shifeng, Yuhu, and a
portion of Tianyuan districts. High-high agglomeration areas are

FIGURE 3
The spatial distribution of changes of ESV in 2000–2020 (106 yuan).

TABLE 3 Test of the influence factors.

Influencing
factors

Proportion of
construction land

NDVI Temperature Precipitation Altitude Slope

VIF 2.51 2.79 2.17 1.14 4.50 2.77

Influencing factors Distance from river Distance from
highway

Distance from county
government

Distance from
railway

Population
density

Economic
density

VIF 4.81 1.37 4.00 3.66 10.13 9.34
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concentrated in the northeastern part of the study area (Changsha
County), the southern part (Xiangtan County, Zhuzhou County)
and the ecological green heart, and other areas with lush vegetation
cover, whose ecological environments are well protected due to their
good vegetation cover, resulting in high ESV. The low-high value
areas are mainly distributed along the Xiangjiang River and lakes,
which are generally highly developed and utilised, resulting in a
lower ESV; the high-low value areas are scattered in the peripheral

areas of the urban area, which is mainly related to the planning of
transport routes. The high and low ESV areas in Figure 4C are
primarily found in Changsha City, Xiangtan City, Xiangtan County,
and Shifeng, Hetang, and Tianyuan Districts in Zhuzhou City. These
areas are concentrated in urban areas due to population density and
economic activity, rising levels of urbanization, and rising land
demand, which causes land to expand quickly for construction,
significantly lowering the ESV of the area. Value of the area’s

TABLE 4 Spatial auto-correlation test of influencing factors.

Influencing
factors

Distance to
county

government

Distance to
railway

Proportion of
construction

land

NDVI Population
density

Economic
density

Slope Precipitation

Moran’s I 0.23 0.12 −0.45 0.34 −0.33 −0.32 0.26 0.05

Z 22.77 11.94 −38.43 32.33 −31.54 −31.78 25.23 5.31

FIGURE 4
(A–H) Local spatial agglomeration graph of influencing factors and ESV.
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services. The low-low agglomeration area is located in the
southwestern part of Changsha County, the northwestern part of
Wangcheng District, and the periphery of Yuhu District and
Xiangtan County, which is far away from the urban area,
sparsely populated, economically inactive, and mostly farmable
land with a low ESV in general. The high - high agglomeration is
mainly along the Xiangjiang River, with a high proportion of
construction land, but the ESV is also relatively high due to the
proximity of the Xiangjiang River and lakes and wetlands.

In Figures 4E, F, the spatial distribution of population and
economic densities and ESV is consistent, i.e., the high-low ESV
areas are mainly distributed in the inner five districts of Changsha,
Yuhu and Yutang districts of Xiangtan, and Shifeng, Tianyuan and
Hetang districts of Zhuzhou. In comparison to the neighboring
counties and districts, these districts have a higher population
density, more economic activity, and a higher demand for ESs
from human civilization. As a result, the ecological environment
is under more stress and has a lower value. However, Changsha
County, Wangcheng District, Xiangtan County, and other towns
and cities with lower population and economic densities are
primarily found on the periphery of the low-low agglomeration.
The low-low agglomeration is primarily concentrated in the urban
regions of Changsha, Xiangtan and its surrounding counties and
towns, as well as Shifeng, Tianyuan, and Hetang districts of
Zhuzhou. The spatial distribution of slope and ESV in Figure 4G
displays variability. Meanwhile, the high - low anomalies are also
intertwined and distributed in these areas. In the spatial distribution
of precipitation and ESV in Figure 4H, the low-low agglomeration
area is mainly distributed in the central and western parts of CZT
urban agglomeration, while the high-low anomaly area is mainly
distributed in the central-eastern part of the study area, including
Furong, Tianxin, Yuhua, and southwestern Changsha counties, and
Shifeng, Hetang, and Tianyuan districts. The high - high
agglomeration is mainly concentrated in the northeastern part of

Changsha County and the southeastern part of Zhuzhou County,
due to the rich vegetation, sloping topography, and more abundant
precipitation, thus making the value of ecosystem service higher
than that of the urban areas.

4 Conclusions and discussion

4.1 Conclusion

Taking CZT urban agglomeration as the study area, based on the
remote sensing image data and multifactor raster data from 2000 to
2020, using the value equivalent method, multivariate regression and
bivariate spatial statistical methods, we analyzed the temporal and
spatial change characteristics and driving factors of ESV in the study
area, and obtained the following main conclusions: The total ESV in
CZT urban agglomeration shows a changing trend of decrease. The
ESV of different land use type were declining trends. The ESs in the
CZT urban agglomeration area are mainly dominated by the three
functions of water conservation, biodiversity conservation and soil
formation and protection, followed by gas exchange and climate
regulation functions, and the weakest food production function. The
spatial distribution of ESV in the CZT urban agglomeration shows
an obvious pattern of “low in the middle and high in the
surroundings”. The spatial correlation between distance from the
county government, distance from the railway, Proportion of
construction land, NDVI, population density, economic density,
slope, precipitation, and ESV are significant.

4.2 Discussion

This study utilizes grid analysis to quantify the spatial and
temporal changes in the value of ESs in the CZT urban

FIGURE 5
The relationship between each influencing factor and ESV.
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agglomeration from 2005 to 2020, and finds that it shows a
decreasing trend in time, with an obvious decreasing trend; the
spatial distribution shows an obvious “low in the middle, high in the
periphery” pattern, which is consistent with Ouyang et al. This is
basically consistent with the conclusion of (Ouyang et al., 2019) that
“ESs in the CZT urban agglomeration in 2015 showed a spatial
pattern of “center-periphery” distribution, and showed a spatial
distribution trend of outward increase”. It is basically consistent.
Unlike most of the previous studies at the scale of administrative
division, economic division and natural division, the grid can avoid
the influence of artificial division boundaries to a certain extent, and
can more accurately reflect and portray the micro-scale spatial
changes of ESV and its influencing factors.

The sharp decline in the ESV is primarily caused by the rapid
urbanization of urban agglomerations since 2005, the rapidmigration of
rural residents to cities and towns, the conversion of significant amounts
of Cultivated land into construction land and industrial land, mining,
and transportation purposes, and the growing intensity of economic
activities. Industrialization has exacerbated environmental pollution
and ecological damage, thus changing the structure, function and
development process of ecosystems, and bringing about a decline in
ecological environment quality. The decline in ecological environment
quality is manifested in the reduction of ESV, which affects the
sustainable survival and development of human beings. In urban
areas with a high level of economic development, the population
density and economic activity levels are high, and human demand
for ESs is high. This combination creates an ecological crisis caused by a
lack of regional ESs, which limits the scale of economic development
and has an adverse impact on the improvement of people’s quality of
life.While in the periphery of urban agglomerationswith a lower level of
economic development, the area of ecological land is large, and with the
low intensity of economic activities, the ESV is high per capita, but the
ESV is low. The ESV is high, but the economic development of the
peripheral areas is slow and the development gap with the core urban
areas is large. It can be seen that the spatial imbalance of ESs will
constrain the coordinated integration and sustainable development
between the core and peripheral areas to a greater extent. The result
the consistent with Jiang. (2010) “the result of key area was contrary to
the whole study area”.

In addition to the natural and socio-economic factors like
climate, topography, population, and economic and social factors,
the spatial location of each grid was also taken into account when
choosing the influencing factors (Figure 5). Four influencing factors,
such as distance to rivers, distance to different transportation roads,
and distance to county government were chosen, based on the
studies of Jiang. (2010) and Xing. (2018). In general, the
direction of changes in the value of ecosystem service is
determined by the amount to which human activities have an
impact on different spatial regions’ ecosystems. The closer the
distance from rivers, highways, county government and railway,
and the more intensive the human activities, the more the ESs are
affected by human society, and the value of ecosystem service tends
to decrease. The spatial distribution correlation between ESV and
the influencing factors in CZT urban agglomeration is presented
visually using SPSS 23.0 to screen the pertinent influencing factors,
and Geoda and ArcGIS 10.2 software. This is of great importance for
the urban agglomeration to harmonize the ecological environment,
adjust the ecological management, and advance the experiment of

reforming the “two-type” society in the future. This will help to
coordinate ecological management in the urban agglomeration in
the future and will support the reform experiment of a “two types”
society. However, since it is difficult to identify the local anomalies of
the influencing factors, more accurate spatial heterogeneity
detection model should be applied in future studies. Moreover,
with the improvement of transportation conditions and information
networks, the linkage between urban agglomerations will also affect
the value of ecosystem service, and the spatial interactions between
cities should be quantified in the future. Meanwhile, the assessment
and analysis of multi-scale grids will be strengthened in the future in
order to more accurately recognize the scale effect.

In view of the declining trend of the total ESV and the value of
individual services in the CZT urban agglomeration, under the
background of accelerated urbanization and integrated urban
development, there are the following suggestions for the planning
and ecological construction of the urban agglomeration in the future:
First, appropriately promote the urbanization of CZT cities,
reasonably regulate the scale and speed of construction land
expansion, advocate saving and intensive use of construction land,
and improve the efficiency of land use; reasonably evacuate the
population in areas with high population and economic density
and poor ecosystem service function. Second, adhere to the red
line of basic farmland protection, encourage farming where
farming is appropriate, strengthen the efficient and modernized
production of basic farmland, increase the food production per
unit area of farmland, and enhance the capacity and security of
regional food supply. Third, strengthen the protection of ecological
land in urban agglomerations, plan and utilize the natural ecological
environment in the peripheral areas of urban agglomerations and
green heart areas, and rationally deploy ecosystem service to create an
ecological environment in urban agglomerations that is pleasant to
live in, pleasant to work in, and pleasant to visit.
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Study on the factors
influencing ecological
environment and zoning
control: a study case of
the Dongting Lake area
Xiangpeng Yin1,2, Zhaoyan Lu3 and Benqing Zhang2*

1School of Marxism, Hunan University of Science and Technology, Xiangtan, China, 2School of
Marxism, Hunan University of Finance and Economics, Changsha, China, 3Economic College,
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Introduction: Protecting the ecosystem of the Dongting Lake area is of utmost

importance formaintaining ecological balance and achieving humanwell-being.

Methods: This study identifies the key factors influencing the remote sensing

based ecological index (RESI) in the Dongting Lake area based on the spatial and

temporal evolution characteristics of the RESI and environmental changes and

anthropogenic disturbance factors. The priority zoning for ecological restoration

was delineated in combination with the anthropogenic composite index (ACI).

By exploring the influence of anthropogenic disturbances on RESI, the zoning

locations were determined using spatial statistics and linear regressionmethods.

Results: The overall RESI of the Dongting Lake area showed a decline from

2001 to 2020, with the mean value decreasing from 0.52 to 0.48. High-quality

zones were mainly located in mountainous and forested areas, while low-

quality zones were mainly distributed in more developed cities in the east

urban area. Anthropogenic factors were themain reasons for the decline in the

ecological environment, while natural factors showed a positive correlation

with RESI. Based on the RESI and ACI, four ecological control zones (H-H, H-L,

L-H, and L-L) were delineated, which accounted for a total of 45.66% of the

Dongting Lake area. Among them, 3.91% required immediate control and

management, while 17.80% required artificial maintenance. This study explores

the influencing factors and mechanisms of the ecological environment quality

in the Dongting Lake area, and explores the effective spatial paths for the

implementation of ecological restoration zoning control and differentiated

restoration strategies in the Dongting Lake area.

Discussion: This study provides a scientific basis for mitigating ecological and

environmental problems in the Dongting Lake area, and provides a reference

for ecological restoration and regulation and the realization of sustainable

development goals in China and global regions with complex

environmental problems.
KEYWORDS

Dongting Lake area, ecological environment, zoning control, influencing factors,
ecological restoration
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1 Introduction

Environmental changes, such as precipitation and temperature,

along with human disturbances, can lead to a range of ecological

effects that impact ecological health (Su et al., 2010; He et al., 2019).

In recent decades, the Dongting Lake area has faced numerous

threats to its ecological quality due to intensive and continuous

human activities, including lake encirclement, dam construction,

urban expansion, agricultural surface pollution, and irrational

exploitation. Of particular concern is the over-exploitation of

resource elements (Yu et al., 2018; Zhang et al., 2018b). These

activities have resulted in the decline of wetland area, deterioration

of water quality, destruction of ecosystem structure and habitats,

and loss of biodiversity, ultimately leading to a significant decline in

ecological quality and weakening of ecological service function

(Wang et al., 2022). Consequently, there is an urgent need to

effectively evaluate the RESI within the Dongting Lake area and

implement comprehensive spatial protection measures for this

national territory.

Numerous studies have been conducted to monitor and

evaluate the status or changes in the ecological environment.

Among these studies, remote sensing indices have been employed

for evaluation purposes. These indices include the Normalized

Vegetation Index (Kobayashi and Dye, 2005), enhanced

vegetation index (Matsushita et al., 2007), Normalized Difference

Water Index (Taloor et al., 2021), and the Normalized Difference

moisture Index (Jin and Sader, 2005). Scholars have increasingly

combined these remote sensing indices with socio-economic factors

to construct pressure-state-response models for evaluating

ecological health (Zhang et al., 2012; Qin et al., 2023). However,

the subjectivity involved in applying hierarchical analysis to

determine the weight of each factor reduces the credibility of the

evaluation results (Cheng et al., 2022). Alternatively, some scholars

have proposed a comprehensive ecological index, known as the

Remote Sensing Based Ecological Index (RESI), which integrates

four major ecological indicators: moisture, dryness, heat, and

greenness. The principal component analysis of covariance is

used to determine the weights of each factor on ecological quality.

This approach emphasizes the objectivity and reasonability of the

evaluation results by highlighting the influence of each indicator’s

impact on ecological quality based on data characteristics rather

than subjective factors (Xu et al., 2018). Thus, the use of the RESI to

evaluate changes in ecological quality in the Dongting Lake area is

both feasible and reliable.

Researchers have identified various factors that influence RESI,

including climate, land use change, population, and economy

(Ouyang et al., 2019; Hasan et al., 2020; Yang et al., 2022). The

composition and health of different land use types serve as direct

indicators of ecological quality (Hasan et al., 2020). Temperature

and precipitation are significant climatic influences (Zou et al.,

2020), while population density and socio-economic development

contribute as prominent anthropogenic disturbances (Liu et al.,

2023). It is reasonable to expect that higher population density will

have a greater negative impact on ecological health (Wei et al.,

2023). Therefore, it is imperative to study the factors influencing

RESI in the Dongting Lake area and identify key factors responsible
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for the changes in RESI. However, current research on RESI has

certain limitations. Firstly, it primarily focuses on urban areas,

neglecting the lake area. Secondly, it fails to consider long-term

changes in RESI and the varying intensity of influencing factors

across different time periods.

Climate change and large-scale land development have led to

changes in the structure and function of the lake and wetland

ecosystems in the region, and it is necessary to curb ecological

degradation by promoting ecological restoration. Efficient zoning

control strategies and rapid improvement of ecological quality

remain challenging. In this study, based on a 2 km × 2 km grid

scale covering the Dongting Lake area, the ecological environment

quality index (EEQI) was calculated from 2001 to 2020 by

integrating four indicators, namely, humidity, dryness, heat and

greenness, and the influencing factors of EEQ were analyzed by

using GWR (geographically-weighted regression), and the

relationship between ACI (Anthropogenic Composite Index) and

RSEI was quantified to determine the priority areas for ecological

restoration by combining the Anthropogenic Finally, the

relationship between ACI and RSEI was quantified by combining

the ACI to determine the ecological restoration priority areas. The

study aims to address the following scientific questions: (1) What

are the temporal and spatial characteristics of continuous changes

in the RESI in the Dongting Lake area during the study period.

(2) What are the potential factors that affect changes in the RESI in

the Dongting Lake area. The ultimate goal is to provide guidance for

formulating ecological restoration plans in the Dongting Lake area.
2 Materials and methods

2.1 Study area

The Dongting Lake area, centered on the waters of Dongting

Lake, exhibits diverse landscapes transitioning into wetlands, plains,

hills, and mountains (Tan et al., 2020). It serves as a significant

ecological zone for regulating water levels in the middle and lower

reaches of the Yangtze River. Additionally, it represents a fragile

zone where land and water ecosystems intertwine at the confluence

of four rivers: Xiang, Zizhi, Yuan, and Li. The region has a

subtropical monsoon climate characterized by abundant

precipitation, simultaneous rain and heat, and rich water, air, soil,

and biological resources. It hosts diverse ecosystems, including

wetlands, grasslands, forests, farmlands, and urban areas (Tan

et al., 2020; Xiong et al., 2022). At present, the ecological

environment of Dongting Lake is mainly facing problems such as

unstable water quality, degradation of wetlands, declining water

levels, loss of biodiversity, floods and land use conflicts. These

problems affect the ecological balance of the lake, the sustainable use

of water resources and the livelihoods of local residents.

To enhance the ecological quality of the Dongting Lake Basin,

the Hunan Provincial People’s Government implemented the

Three-Year Action Plan for the Ecological Environment of

Dongting Lake (2018–2020). This plan encompassed measures

such as addressing agricultural surface pollution, reforestation

and wetland conservation, the removal of invasive poplars in the
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core area of the Dongting Lake Nature Reserve, and wetland

restoration. The implementation of these measures has resulted in

notable improvements in the habitat quality of the Dongting Lake

Basin. However, serious threats to habitat quality persist. Hence,

studying the habitat quality in the Dongting Lake area is both

typical and representative. The study area includes selected counties

(cities and districts) in Yueyang, Yiyang, and Changde, three

prefecture-level cities located in the Dongting Lake area

(Figure 1). It covers an area of approximately 25,800 km2,

accounting for about 12.18% of Hunan Province. The resident

population was approximately 10,705,800 by the end of 2020,

constituting 16.11% of the province’s total, with a gross domestic

product (GDP) of around 710,440 million yuan, representing

approximately 17% of the province’s total.
2.2 Study methods

(1) Remote Sensing Based Ecological Index (RESI)

The Remote Sensing Based Ecological Index (RSEI) evaluates

the quality of the ecological environment using four indicators:

moisture, dryness, heat, and greenness. These indicators are closely

related to the human living environment. They can be obtained by

analyzing remote sensing images, and the specific data acquisition

methods can be found in the data source section. Compared with
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the Ecological Environment Status Index, RSEI provides a more

accurate assessment of the strengths and weaknesses of regional

ecological environments (Lakes and Kim, 2012; Xu, 2013; Zheng

et al., 2022). In this study, we utilized the ENVI 5.3 platform to

calculate the indicators of moisture, dryness, heat, and greenness

based on different bands of remote sensing images. Moisture was

represented by WET values, dryness was determined by integrating

surface building and surface bare soil indices, heat was derived

through the inversion of a single window algorithm, and greenness

was expressed using the Normalized Vegetation Index (NVI).

(2) Selection of Factors Influencing RSEI

When it comes to the selection of variables that affect RSEI,

moisture, dryness, heat, and greenness are the main factors. These

factors directly reflect the status of RESI. Moreover, the quality of

the ecological environment is affected by both natural and human

factors (Ouyang et al., 2021). Natural factors encompass climatic

and geographical aspects, with temperature and precipitation being

key climatic influences, while slope is an important geographical

factor (Peng et al., 2017). Human factors incorporate disturbances

such as proximity to the county government, population size, and

socio-economic development (Retallack, 2021; Li et al., 2022). Since

RSEI is constructed based on the metrics of moisture, dryness, heat,

and greenness, these factors were not taken into account during the

analysis of potential influencing factors. This study quantitatively

analyzed the relationship between the entire RSEI mean and factors
A

B

C

FIGURE 1

Study area. (A) Dongting Lake area; (B) DEM; (C) LUCC.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1308310
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yin et al. 10.3389/fevo.2023.1308310
such as slope, temperature, rainfall, population density, GDP, and

proximity to the county government using geographically weighted

regression to dissect the correlation between natural factors and

natural factors on RSEI.

(3) Selection of spatial priority areas for ecological restoration

This study utilized the Anthropogenic Composite Index (ACI)

to measure the intensity of human activities within each 2 km ×

2 km grid in the Dongting Lake area of Hunan Province, quantify

the relationship between ACI and RSEI” for concision (Equation 1),

and identify priority zones for ecological restoration using a spatial

statistical method that considers the removal of water bodies. The

calculation formula is as follows:

ACI = (Gstd + Pstd + Nstd)=3 (1)

Where, Gstd is the standardized value of GDP, Pstd is the

standardized value of population density, Nstd is the standardized

value of nighttime lighting index, all expressed in terms of a 2 km ×

2 km grid.

Based on the bivariate local Moran’s I (bi-LISA) method

(Equation 2), the spatial correlation between the RSEI and the

ACI was investigated to quantify the significance of DRSEI and

DACI in image elements and their neighbouring shares at the 2 km

grid scale. The calculation is as follows:

IB,i = zx,i o
N

j=1,j≠i
Wi,j zy,j (2)

Where, x is the average change in the DACI of a pixel and y

represents the average change in DRSEI of pixels nearby called j. The

first-order queen-neighbor matrix serves as the foundation for the

spatial weight matrix, Wi,j. Using significant values of p 0.001, 0.005,

0.01, and 0.05 as the discriminating criterion, the results revealed that

the restoration priority locations had four significant value types:

high-high (H-H), high-low (H-L), low-high (L-H), and low-low (L-L).
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2.3 Data sources

The data used in this study were mainly derived from the

Resource and Environment Science Data Centre of the Chinese

Academy of Sciences (www.resdc.cn); China statistical yearbook

(www.stats.gov.cn); OpenStreetMap (www.openstreetmap.org);

Landscan (https://landscan.ornl.gov); and National Aeronautics

and Space Administration (www.earthdata.nasa.gov). This study

considers paddy fields, drylands, construction land, and bare land as

potential threat sources due to their frequent human activities or

harsher natural environments. In this study, NDVI, NDBSI, LST

and WET data were calculated based on Landsat surface reflectance

data, and then RSEI was further measured. The Landsat surface

reflectance data were obtained from the USGS (United States

Geological Survey) (https://lpdaac.usgs.gov) with a resolution of

500m. The parameter settings, including habitat suitability, weights

of stressors, maximum stress distance, and sensitivity of habitat

types to stressors, were adopted from relevant literature.

3 Results

3.1 Temporal and spatial characteristics
of RESI

Based on the results of the spatial and temporal evolution of the

ecological quality of Dongting Lake at a raster scale of 2 km × 2 km

from 2001 to 2020 (Figure 2) and the categorical statistics of the

ecological quality area (Table 1), there was an overall slight

downward trend in the mean value of ecological quality. Over

time, the mean value of RESI in the Dongting Lake area decreased

from 0.52 in 2000 to 0.48 in 2020. The minimum value of RESI

fluctuated with a decrease from 0.28 in 2000 to 0.22 in 2020, while

the maximum value showed a fluctuating trend of ups and downs.
A B

D E F

C

FIGURE 2

Spatial and temporal evolution of RESI in Dongting Lake region, 2001–2020. (A–E) 2001, 2005, 2010, 2015 and 2020 of RESI, (F) mean, min and max
of RESI from 2001 to 2020.
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From a spatial perspective, the RESI in the Dongting Lake

region exhibits a concentration of high values and a dispersion of

low values. High-value and higher-value areas are primarily found

in Dingcheng District, Linxiang City, and other mountainous areas

with abundant vegetation cover. On the other hand, low-value areas

cluster in the eastern part of the Dongting Lake Basin, particularly

in regions characterized by extensive urban construction and

development, such as Heshan District, Yueyanglou District, and

Yunxi District. Between 2000 and 2020, the process of urban

expansion has led to a more extensive spatial distribution of low-

value and lower-value areas of ecological quality in the Dongting

Lake area. The area occupied by low-value areas increased by 4.43

times, while lower-value areas increased by 1.24 times. These areas
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have experienced rapid economic development, intense exploitation

of land resources, and high population concentration, resulting in

significant disturbances to the ecosystem.

During the period from 2001 to 2020, there were variations in

the transfer of RESI levels in Hunan Province, demonstrating an

overall gradient downward trend from high values to medium

values and then to low values (Figure 3).

Specifically, the transfer of different RSEI levels occurred in an

area of 15,222.85 km2 within the Dongting Lake area. The largest

proportion of transfers was from the middle value to the lower value,

accounting for 74.62% of the area (11,359.01 km2), followed by

transfers from the lower value to the lower value, accounting for

8.04% of the area (1,223.52 km2). Transfers from the high value to the
A

B C

FIGURE 3

Transfer of RESI level in Dongting Lake region, 2001–2020. (A) Transfer of RESI in 2001–2005, 2005–2010, 2010–2015 and 2015–2020; (B) transfer
of RESI from 2001 to 2020; (C) change of RESI from 2001 to 2020.
TABLE 1 Classification statistics of RESI in Dongting Lake area, 2001–2020/km2.

Year
Low Lower Medium Higher High

0.2–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.9

2001 5620 115400 25560 21920 5336

2005 12812 202980 154508 18980 4556

2010 9716 186264 166516 23692 7648

2015 15764 194940 150048 25972 7112

2020 30572 258712 73292 23080 8180
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higher value accounted for 1.38%, and transfers from the higher value

to the lower value accounted for 1.4%. Higher values were transferred

to higher values in 1.38% of the area, covering an area of 43.42 km2.
3.2 Analysis of influencing factors

In this study, the Geographically Weighted Regression (GWR)

model was developed to assess the ecological environment’s quality

in the Dongting Lake area. The dependent variable was ecological

environmental quality, while the independent variables included

population (POP), GDP, road network density (RND), nighttime

light index (NLI), elevation (DEM), slope (SP), temperature (TEM),

precipitation (PRE), sunshine duration (SD), and NDVI. The GWR

model’s goodness of fit was evaluated using R2, corrected R2,

residual sum of squares (RSS), and AICC. A fixed bandwidth of

3113.034 was selected for the regression. Table 2 provides the

corresponding parameters used in this study. The results

indicated that the GWR model yielded a corrected R2 of 0.58,

0.68, and 0.72 for the years 2001, 2010, and 2020, respectively,

which demonstrated a good fit.

The spatial distribution of each factor’s influence on the quality

of the ecological environment was visualized and analyzed using the
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GWR model, indicated by the regression coefficients (Figure 4).

Areas with the highest significance of influence were primarily

located in regions with high ecological environment’s quality values

and concentrated human activities. These regions included

Dingcheng District, Linxiang City, Wuling District, and

Yueyanglou District. Moreover, the center of gravity of the

significantly influential areas gradually shifted from the western

to the eastern part of the country during the period of 2001–2020.

Regarding human factors, POP, GDP, RND, and NLI were

found to be negatively correlated with the RSEI of the Dongting

Lake area. The mean regression coefficients for POP in 2001, 2010,

and 2020 were −0.14, −1.62, and −2.13. For GDP, the mean

regression coefficients were −5.16, −8.35, and −9.19 during the

same years. The RND had mean regression coefficients of −1.24,

−0.65, and −0.45, while NLI had mean regression coefficients of

−5.41, −9.45, and −15.70.

The negative influence of POP, GDP, and NLI on the RSEI

showed a gradual increase over time. This can be attributed to

accelerated industrialization and urbanization, which have led to

higher levels of disturbance and pollution in densely populated

areas, resulting in a decline in the ecological quality of the Dongting

Lake area. However, the negative impact of RND on RESI decreased

gradually as there were fewer excavation projects in the past two

decades, leading to a relatively stable spatial pattern.
TABLE 2 Statistical test of GWR results in 2001,2010 and 2020.

Year Bandwidth parameter Residual sum of squares Effective number AICC R2 Correction R2

2001 3113.034 7.576 41.132 −21352.916 0.584 0.580

2010 3113.034 7.643 42.139 −19654.469 0.681 0.678

2020 3113.034 9.463 40.755 −20092.645 0.722 0.720
A B C

FIGURE 4

Spatial distribution of GWR residual sum of squares and visualization of regression coefficients. (A) 2001; (B) 2010; (C) 2020.
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As for natural factors, DEM, SP, TEM, PRE, SD, and NDVI

were positively correlated with the quality of the ecological

environment during 2001–2020. The mean regression coefficients

for elevation in 2001, 2010, and 2020 were 7.27, 10.10, and 4.36,

respectively. The mean regression coefficients for SP were −0.95,

−0.15, and 1.91. TEM had mean regression coefficients of −1.51,

−2.16, and −5.39, while PRE had mean regression coefficients of

−6.8 and 0.8. SD had mean regression coefficients of −2.39, 1.10,

and 5.09, and NDVI had mean regression coefficients of 13.10,

14.97, and 14.44.

The positive influence of natural factors on RSEI increased from

two factors (DEM and NDVI) in 2001 to five factors (DEM, SP,

PRE, SD, and NDVI) in 2020. Specifically, SP, PRE, and SD

exhibited an increasing positive trend, while the impact of NDVI

consistently showed a high positive correlation with the quality of

the ecological environment. Furthermore, under the backdrop of

global warming, the annual mean temperature in the Dongting Lake

area gradually exerted a negative effect on the ecological quality.
3.3 Delineation of ecological priority zones

In order to identify potential areas for ecological restoration,

RSEI and ACI were used to perform spatial statistical tests. After the

spatial calculations, DRSEI and DACI for the period 2001–2020

were utilized for significance tests to classify the grids in the

Dongting Lake region of Hunan Province into four categories.

The four ecological restoration priority areas include critical

ecological restoration areas, important ecological restoration site
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areas, artificial ecological restoration site areas and natural base

ecological restoration areas. The ecological restoration priority areas

are considered as potential targets for artificial reconstruction or

natural restoration. Critical ecological restoration areas represent

pixels with large changes in ACI and large changes in neighboring

RSEI, which have the potential to provide more high-quality

ecosystem services. Critical ecological restoration site areas

indicate pixels with large changes in ACI and small changes in

neighboring RSEI, which have higher ecological sensitivity.

Artificial ecological restoration site areas indicate pixels with

small changes in ACI and large changes in the surrounding RSEI,

which have a high urbanization intensity, and changes in the

intensity of urbanization at a low level have a greater impact on

the RSEI. Natural-based ecological restoration areas represent

image elements with low ACI change and surrounding RSEI

change, which are characterized by low ACI and low RSEI within

the ecological red line, and ecosystems can be restored through

nature-based solutions. We classified 3106 grids measuring 2 km ×

2 km as priority control areas for ecological conservation in the

Dongting Lake region, accounting for 45.66% of all grids. Among

these, 3.91% exhibited significant ecological significance as the

high-high type, 7.95% as the high-low type, 17.80% as the low-

high type, and 16.00% as the low-low type (Figure 5).

The high-high type areas were primarily located in the

municipal districts of Yueyang City, Changde City, Yiyang City,

and surrounding areas such as Linli County. The high-low-type

areas indicated regions with long-term urbanization and high levels

of human disturbance, mainly concentrated in the central built-up

areas of cities and counties. The low-high type areas were primarily
A B

DC

FIGURE 5

Priority areas for ecological restoration in the Dongting Lake region of Hunan Province. (A) H-H; (B) H-L; (C) L-H; (D) L-L.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1308310
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yin et al. 10.3389/fevo.2023.1308310
distributed in regions with relatively favorable ecological

conditions, such as the suburbs of Linxiang City, Yueyang

County, and Li County. These areas are characterized by

abundant vegetation and minimal human interference, and their

ecological quality is mainly influenced by natural conditions such as

climate and topography. The low-low type areas were mainly found

in Anxiang County, Huarong County, and Hanshou County,

exhibiting more stable ecological environments.
4 Discussion

4.1 Mechanism of ecological quality impact

The RESI in this area is a complex process influenced by a

variety of factors, according to the findings of the spatio-temporal

characteristics of the RESI and the analysis of influencing factors

through GWR in the Dongting Lake region of Hunan Province

(Figure 6). Specifically, urbanization and the level of economic

development are considered to be among the most important

factors affecting the ecological environment (Li et al., 2023). The

advancement of urban expansion and industrialization has

intensified pollutant emissions and land resource exploitation,

thus exerting pressure on the ecosystem. Areas with high road

network density contribute to land fragmentation and ecosystem

destruction, negatively impacting the ecosystem.

Natural factors such as DEM, SP, PRE, SD, and NDVI positively

influence the quality of the ecosystem. The positive effect of NDVI

suggests that vegetation cover has a beneficial impact on ecosystem
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improvement, with higher NDVI values indicating healthier

vegetation. Areas at higher elevations typically exhibit better

ecological conditions, while regions with sufficient PRE and SD

are favorable for vegetation growth and maintaining

ecological balance.

However, the gradual increase in average annual temperature

has a negative impact on ecological conditions. Global warming

may lead to water scarcity, ecosystem disturbances, and species

extinction, thus affecting the quality of the ecological environment.

By comprehensively understanding and summarizing the

mechanisms influencing the quality of the ecological

environment, we can promote the orderly functioning of both

natural and artificial ecosystems, ultimately improving the

regional ecological environment. We can play a good role as a

spatial carrier of the ecological environment in urban activities,

which is essential in supporting human survival and promoting

economic and social development in the Dongting Lake region.
4.2 Suggestions for zoning control

High-high type zoning refers to image elements with significant

changes in anthropogenic disturbance intensity and surrounding

RESI. High-low type zoning denotes image elements with

significant changes in anthropogenic disturbance intensity but

minimal changes in the quality of the surrounding ecological

environment. Low-high type zoning indicates pixels with low

changes in anthropogenic disturbance intensity but high changes

in the quality of the surrounding ecosystem. Low-low type zoning
FIGURE 6

Mechanism of ecological quality impact in the Dongting Lake region of Hunan Province.
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represents image elements with low changes in anthropogenic

disturbance intensity and low changes in the quality of the

surrounding ecological environment. These categories,

respectively, represent critical control areas (KERS), important

control areas (IERS), artificially maintained areas (AERS), and

naturally maintained areas (NERS). This study put forward

suggestions for zoning control, which was in line with the

findings of Lv et al. (2023) and Zhang et al. (2023).

Therefore, to address the decline in RESI in the Dongting Lake

region during the period 2001–2020, it is crucial to exercise strict

control over construction land expansion while considering the

restoration of other land use types, such as land remediation and

lake restoration (Zhang et al., 2018a; Niu et al., 2022). Changes in

both the extent and quality of different land use types can better

explain variations in the RESI of the Dongting Lake basin. It is

strongly recommended to implement effective management plans,

particularly those focused on ecological restoration, for crucial land

use types within areas exhibiting low RSEI values.
4.3 Limitation and future
research directions

This study presents a case study on the spatial and temporal

variations in RSEI within the Dongting Lake area. Moreover, it

quantifies the influence of ten key drivers on RSEI changes at a 2 km

× 2 km grid scale, taking into account the contributions of human

activities and natural factors. These findings offer valuable insights

for future urbanization and ecological preservation efforts in the

Dongting Lake region. However, it is essential to acknowledge the

limitations of this study.

Firstly, it should be noted that the findings of this study are

specific to the Dongting Lake region and may not be generalizable.

While the Dongting Lake area possesses valuable wetland

ecosystems and represents a typical level of ecological damage,

conducting experiments on a larger scale and in additional regions

would yield a more comprehensive understanding. This approach

would enable researchers to assess if similar conclusions can be

drawn for other urban areas.

Secondly, this study underscores that anthropogenic factors exert

the most significant influence on regional RSEI, aligning with previous

research findings. Notably, human activities such as urban expansion

largely contribute to the ecological disparities among the three key

urban agglomerations in the Yangtze River Economic Belt. However,

balancing societal development and environmental preservation

remains a challenging task. Therefore, it is essential to identify other

influential factors that impact RSEI, thus facilitating its improvement

through effective urban planning. For instance, factors such as the

distribution of green infrastructure, the establishment of ecological

redlines, and energy consumption play pivotal roles in addressing the

regional disparity between RSEI and human social development.
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In conclusion, despite certain limitations, this study offers

valuable insights into the dynamics and determinants of RSEI in

the Dongting Lake region. Conducting future research on a broader

scale, encompassing multiple cities, and considering additional

factors like the distribution of green infrastructure will enhance

our comprehensive understanding of the underlying reasons behind

the RSEI imbalance and provide pathways towards its resolution.

Moreover, such research will contribute to well-informed urban

planning and ecological enhancement efforts.
5 Conclusion

This study is to evaluate the spatial and temporal evolution of

RESI in the Dongting Lake area and to analyze its relationship with

various anthropogenic and natural factors. The overall RESI of the

Dongting Lake area exhibited a declining trend from 2001 to 2020,

with the mean value dropping from 0.52 in 2001 to 0.48 in 2020.

The high-quality areas were primarily located in mountainous and

forested regions, whereas the low-quality areas were concentrated in

zones characterized by extensive urban construction and

development, particularly in the eastern watershed area. The

GWR results show that urban expansion and economic

development have significant negative impacts on the ecological

environment, which are related to economic development, land

resource development and population agglomeration, and also

reflect the importance of balance and sustainability between

human factors and natural factors. The geographically weighted

regression (GWR) analysis revealed a positive relationship between

urban expansion and the expansion of low-quality areas. This can

be attributed to economic development, land resource exploitation,

and population concentration. POP, GDP, RND, and NLI displayed

negative correlations with ecological quality, and these detrimental

effects intensified over time. Natural factors, including DEM, SP,

PRE, SD and NDVI, exhibited a positive influence on ecological

quality, with NDVI consistently showing a positive effect. The mean

annual temperature had an incrementally adverse impact on RESI,

possibly attributable to global warming. These divisions provide

governments and decision makers with information on how to

undertake sustainable ecological management and policy

development. Policies and plans can be developed accordingly for

each type of area to balance the need for resource utilization and

ecological protection. It provides a strong basis for targeted control

and management, ensuring effective resource utilization and

ecological protection.
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Introduction: This study aims to investigate the factors influencing ecosystem

service trade-offs/synergies (TOSs) in major agricultural production areas in the

southern hilly region and to propose optimization strategies to promote

ecosystem sustainability in agricultural areas.

Methods: The study used a geographical detector to analyze the determinants

influencing the ecosystem service trade-offs as well as correlation analysis,

geographically weighted regression (GWR), and a geographical detector to

analyze the spatial and temporal evolution of ecosystem service and TOS

relationships from 2000 to 2020 in Hunan Province.

Results: The results showed that the comprehensive value of ecosystem services

in Hunan Province showed an increasing trend from 2000 to 2020. With spatial

heterogeneity, the areas with high values were mainly distributed in the hilly areas

in the west, south, and east of Hunan Province, and the areas with low values were

mainly distributed in the Dongting Lake Plain and the Xiangzhong Hilly Basin. There

was a trade-off relationship between food production (FP) and all other ecosystem

services, of which FP has the strongest trade-off effect with habitat quality (HQ).

The synergy effect between HQ, water yield (WY), carbon storage (CS), and soil

conservation (SC) shows an increasing trend. Gross domestic product (GDP) and

SLOPE are the dominant factors for the strength of trade-offs between food supply

and other ecosystem services, and Digital Elevation Model (DEM) and Normalized

Difference Vegetation Index (NDVI) are the dominant factors for the strength of

synergy effects among ecosystem services. The strength of TOS effects of

ecosystem services is determined by interactions or co-influences between the

two services rather than by a single component.

Discussion: The results of this study can provide a reference basis for the

enhancement of ecosystem services and the sustainable planning of

agricultural landscapes in the southern hilly areas.
KEYWORDS

ecosystem services, trade-offs effect, geographical detector, influencing factors, hilly
areas of southern China
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1 Introduction

Ecosystem services (ESs) are provisioning (e.g., raw materials

and food), regulating (e.g., climate and gases), supporting (e.g.,

biodiversity and soil conservation), and cultural (e.g., outdoor

recreation and aesthetic landscapes) services that are directly or

indirectly provided by ecosystem structures, processes, and

functions, and that link ecosystems to human wellbeing

(Costanza et al., 1998; Ouyang et al., 2021a). However, the

increasing demand for food as well as agricultural land over the

past decades has had important impacts on biodiversity, water

resources, carbon cycle, etc., leading to TOS mutual gains among

ecosystem services (Li et al., 2020; Zhang et al., 2023). Coordinating

the multi-objective conflicts of ecosystem management and

mitigating the trade-off relationships and intensity among

ecosystem services are now unavoidable choices for achieving the

diversification of ecosystem services and high-quality regional

agriculture development. Therefore, it is of great significance to

explore the spatial and temporal changes of ecosystem services and

the characteristics of the TOS relationship, and to propose spatially

differentiated ecosystem service optimization countermeasures to

enhance the synergies and mitigate the trade-offs, in order to

maximize the comprehensive benefits of ecosystem services.

There are synergy relationships (simultaneous increase or

decrease of two services) and trade-off relationships (increase of

one service leads to decrease of another) among ecosystem services

(Bennett et al., 2010). Currently, the existing studies form a variety

of revealing ES and TOS relationships. Among them, ES TOS

relationship methods include spatiotemporal correlation analysis

(Xu et al., 2017) for quantifying ES TOS relationships in time and

spatial, while using a geographically weighted regression and binary

spatial autocorrelation analyses to reflect spatial TOS relationships

(Zhang et al., 2020). The analysis of ecosystem service trade-offs and

synergy relationships is a prerequisite for improving the level of

ecosystem service provision. Currently, many scholars have focused

on the quantification of ecosystem service TOS relationships at a

single spatial scale, lacking multi-scale analyses. In addition to the

analysis of ES TOS relationships, it is important and challenging to

use ES-related results to enlighten territorial spatial planning. Most

of the existing studies focus on administrative or physical

geographic scales such as county or watershed (Gong et al., 2022;

Liu et al., 2019), and there are fewer studies using grids as zoning

units, which is not conducive to small-area scale studies and refined

management. In addition, the analysis of ecosystem service TOSs

and influencing factors for the subregion is relatively lacking, which

cannot effectively provide recommendations for subregional

management. Thus, research on how to better integrate

spatiotemporal changes in ecosystem services and TOSs at many

scales to explicitly assist spatial planning remains unrepresentative

despite the advancements in spatiotemporal and cross-scale

assessments of ecosystems. There is an urgent need to explicitly

link ES information to policy development, regional planning, and

implementation. Numerous and intricate elements affect TOSs
Frontiers in Ecology and Evolution 02181
(Feng et al., 2021). TOSs are influenced by a multitude of natural

and anthropogenic factors, including DEM, slope, temperature,

precipitation, population growth, urban expansion, economic

development, and planning policies (Ouyang et al., 2023).

The southern hilly region accounts for 13% of China’s national

land area and is the southern hilly and mountainous belt in the “two

screens and three belts” of the national main ecological function

zoning, which is an important part of the national ecological

security pattern (Shao et al., 2023). In the process of urbanization

in China, significant natural resource plunder and extensive

ecological destruction have occurred in the pursuit of

development. This has resulted in a significant conflict between

ecological conservation and utilization in the southern hilly and

mountainous regions. The consequences include severe water

pollution, degraded forest quality, encroachment of urbanization

on ecological spaces, loss of ecological functionality in certain areas,

as well as issues such as soil and water erosion, rocky desertification,

and more. Hunan Province, serving as a crucial developmental axis

in the central region, also grapples with similar challenges, with soil

pollution being a particularly pressing issue. Most studies on

ecosystem services and TOS relationships in the southern hilly

areas are currently conducted from a single static ecosystem service

dimension, and lack quantitative geo-spatial information in long

time series, making it difficult to apply in China’s territorial spatial

planning. In view of this, this paper reveals the spatial and temporal

evolution of TOSs between five ecosystem services—food

production, water yield, carbon storage, soil conservation, and

habitat quality—over the period 2000–2020 and selects the factors

influencing them with the use of a geographical detector. This

study’s main contributions are as follows: First, we quantified the

major ESs to identify areas for ecological concerns. Next, we used

GWR and Spearman’s correlation to quantify TOSs between ES.

Finally, we investigated into the grid scale contributions of the TOS

components. Based on this, the ecosystem management measures

are put forward, in order to promote the southern hilly area

ecosystem service differentiation control and the modern

development of harmonious coexistence between man and nature.
2 Overview of the study area, study
methods, and data sources

2.1 Overview of the study area

The southern hilly region is the area south of the Qinling

Mountains, east of the Yunnan-Guizhou Plateau, and north of the

Leizhou Peninsula in China, covering seven provinces, namely,

Zhejiang, Fujian, Jiangxi, Hunan, Guangdong, Guangxi, and

Guizhou, with a total land area of approximately 1,276,000 km2

(Shao et al., 2023), constituting one of the important components of

China’s “two screens and three belts” ecological pattern (see

Figure 1). The region is interspersed with mountains, hills, and

plains, with a variety of ecosystems and the largest and most well-
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preserved middle-subtropical forest ecosystem in the same latitude

band. Hunan Province is located in the central part of the southern

mountainous and hilly region, with geographical coordinates of 24°

38’–30°08’N, 108°47’–114°15’E. Hunan Province has a humid

subtropical monsoon climate, with an average annual temperature

of 16–19°C. The average annual precipitation is 1,200–1,800 mm,

and the change of seasons is obvious, which is suitable for human

habitation and the growth of crops and green plants.
2.2 Study methods

2.2.1 Ecosystem service calculation
The InVEST model and the ArcGIS software were utilized in

this study to quantitatively evaluate five ecosystem services: food

production, water yield, carbon storage, soil conservation, and

habitat quality. The precise formulas are provided (see Ouyang

et al., 2023). The results of the above five ecosystem service types

were used to normalize the extremes and then averaged to measure

the ESV.

2.2.2 Ecosystem service trade-offs/synergies
2.2.2.1 Temporal trade-off/synergy analyses

Pearson’s non-parametric correlation analysis was used in this

study to determine trade-offs or synergy relationships between

different ecosystem service groups. A positive correlation implies

a synergy relationship, while a negative correlation is a trade-off

relationship (Gou et al., 2021). Pearson correlation analyses of five

ecosystem service bundles at three time scales, 2000, 2010, and

2020, and at grid scale were performed using the “corrplot” package
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in R4.3.1 software. Between 2000 and 2020, Hunan Province’s

urbanization experienced rapid development, resulting in notable

ecological changes. At the same time, 2000, 2010, and 2020 were

selected considering the periodicity of ecological change.
2.2.2.2 Spatial trade-off/synergy analysis

In addition to the general synergies and trade-offs obtained

through correlation analyses, in order to gain a more in-depth

understanding of the patterns in the spatial distribution of these

types of ecosystem services, this study used GWR to define the

spatial interaction correlations of TOSs. The GWR model modifies

the traditional regression framework to detect spatial non-

stationarity in the relationships between samples (Xue et al.,

2023). The strength and direction of the relationship between the

dependent variable and its predictors may change in response to

changes in the environmental components in the GWR, which fits

with one of the mechanisms that generate ecosystem service trade-

offs (common drivers affecting multiple ecosystem services

simultaneously). In addition, common drivers contribute to the

spatial heterogeneity and spatial non-stationarity of ecosystem

service TOSs. Since we only use ecosystem service variables as

independent and dependent variables, there is no problem of

multicollinearity. The GWR model (Equation 1) is formulated as

follows:

yi = b0(mi, vi) +op
k=1bk(mi, vi)Xjk + ei (1)

where (mi, vi) is the spatial location of the point, p is the number

of independent variables, yi is the dependent variable, Xjk is the

independent variable, ϵi represents the random error, b0(mi, vi)
FIGURE 1

Location diagram of Hunan Province.
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represents the intercept at i point, and bk(mi, vi) represents the

regression coefficient. Positive regression coefficients indicate

spatial synergies and negative regression coefficients indicate

spatial trade-offs.

2.2.2.3 Geographical detector

A geographical detector (GD) is used to detect the strength of

the effect of a single factor and the interaction of two factors on the

dependent variable, and to avoid the problem of multivariate

covariance (Wang et al., 2016). The GD model (Equation 2) is

formulated as follows:

q = 1 −
1

Kw2 o
L

h=1

Khw
2
h (2)
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where q is the influence of factors, K and Kh are the number of

the grids, L is the number of index samples, w2 and w2
h is the discrete

variance of the resilience of the study area and grid h.

We used each influencing factor as an independent variable

and the strength of ecosystem service trade-offs as the dependent

variable in this study. To analyze the degree of influence of each

driving factor and factor combinations on the spatial

heterogeneity of the degree of ecosystem service trade-offs, we

selected the “factor detection” and “interaction detection” in

geographical detector. Specific influencing factors are shown in

Table 1; Figure 2.
2.3 Data sources

Land use data: The land use data from 2000 to 2020 were from

the Resource and Environmental Science Data Center of the Chinese

Academy of Sciences (www.resdc.cn), with a spatial resolution of 30

m. Vegetation type data: MODIS13Q1 NDVI was derived from the

NASA Earth Data Center (www.earthdata.nasa.gov) with a spatial

resolution of 250 m. Digital Elevation Model (DEM) data: from the

geospatial data cloud, spatial resolution of 30 m; GDP density and

POP density are derived from the Resource and Environmental

Science Data Center of the Chinese Academy of Sciences

(www.resdc.cn), with a spatial resolution of 1 km. Grain

production: from 2000–2020, “Hunan Statistical Yearbook” and

“Hunan Rural Statistical Yearbook”. Finally, the resolution

resampling of each factor raster data is unified to 1 km, and the

projection coordinate system is unified by WGS_1984_Albers.
TABLE 1 The influencing factors selected for this study.

Factor name Factor description

Mean
annual

precipitation

Based on the interpolation of daily precipitation data of
surrounding stations

Elevation Based on DEM data

Slope Based on ArcGIS surface analysis

NDVI Vegetation cover

GDP density Reflects the GDP distribution of a 1-km2 grid

Population density Reflects the population distribution of a 1-km2 grid
B C

D E F

A

FIGURE 2

The spatial of influencing factors. (A) Precipitation, (B) DEM; (C) DEM; (D) Slope; (E) Population density and (F) GDP density.
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3 Analysis of the results

3.1 Spatiotemporal changes of
ecosystem services

The trend of integrated services in Hunan Province from 2000

to 2020 exhibited an overall upward trajectory. Specifically, the

average values of integrated ecosystem services at the provincial grid

scale in 2000, 2010, and 2020 were 0.533, 0.528, and 0.613,

respectively. From a spatial perspective, areas with high integrated

ecosystem service values at the provincial grid scale were

predominantly located in the western, southern, and eastern hilly

regions of Hunan Province. These areas boasted low population

density and high vegetation coverage rates, as depicted in Figure 3.

On the other hand, the areas with low values are mainly distributed

in the Dongting Lake Plain and Xiangzhong Hilly Basin, in which

the built-up areas of cities with intensive human activities have the

lowest integrated ecosystem services, due to the flat terrain, high

proportion of surrounding farmland, high population density, and

the high degree of interference with the natural ecosystems, which

leads to the low integrated ecosystem services in these areas.
3.2 Ecosystem service trade-offs
and synergies

From the temporal dimension (Figure 4A), in 2000, HQ and SC,

HQ and CS, and SC and CS in Hunan Province were highly

positively correlated, with correlation coefficients of 0.67, 0.93,

and 0.63, respectively. These three ecosystem service pairs passed

the significance test of 0.001, indicating that there was a strong

synergy effect between them. Similarly, there was a strong positive

correlation between HQ and WY, WY and SC, and WY and CS,

with correlation coefficients of 0.11, 0.24, and 0.19, respectively,

which also passed the significance test of 0.001. FP and HQ, FP and

WY, FP and SC, and FP and CS showed strong negative

correlations, with correlation coefficients of −0.53, −0.04, −0.47,

and −0.46, respectively. Among them, FP vs. HQ, FP vs. CS, and FP

vs. SC passed the significance test of 0.001, indicating a strong trade-

off effect between them.
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In 2010, HQ and SC, HQ and CS, SC and CS, HQ andWY, WY

and SC, and WY and CS still maintained strong spatial synergy

effects, with correlation coefficients of 0.59, 0.93, 0.55, 0.09, 0.19,

and 0.14, respectively. The spatial trade-off effects of FP and HQ, FP

and WY, and FP and SC diminished, with correlation coefficients

of −0.51, −0.01, and −0.39.

In 2020, a strong synergy relationship was still maintained

among the six ecosystem service pairs consisting of HQ, WY, CS,

and SC in Hunan Province. The highest correlation coefficient of

0.93 was found between HQ and CS, and strong synergy effects were

also found between HQ and WY, HQ and SC, WY and SC, WY and

CS, and SC and CS, with correlation coefficients of 0.13, 0.65, 0.93,

0.32, 0.18, and 0.61, respectively. The correlation coefficients

between HQ-WY, WY-CS, WY-SC, CS-SC, and HQ-SC showed a

significant increasing trend at the grid scale of 2000–2020. However,

FP-HQ and FP-SC showed a decreasing trend.

From the spatial dimension (Figure 4B), the proportion of

spatial synergies between HQ, WY, CS, and SC at the grid scale

in Hunan Province was significantly higher than the proportion of

spatial trade-offs, indicating that the spatial relationships among

these four types of ecosystem services were dominated by synergy

relationships. The areas with strong spatial synergies were mainly

distributed in the hilly areas of southern Hunan Province (e.g., HQ-

CS, WY-HQ, and CS-SC) and western Hunan Province (e.g., SC-

WY, WY-HQ, and CS-SC). In contrast, the areas of spatial trade-

offs between FP and other ecosystem services were mainly

concentrated in the western (FP-WY and FP-CS), southern (FP-

HQ, FP-WY, FP-CS, and FP-SC), and northern (FP-HQ, FP-CS,

and FP-SC) regions of Hunan Province.
3.3 Influencing factors of trade-
offs/synergies

At the grid scale, GDP has the highest degree of influence on the

trade-off effects of FP-CS, FP-HQ, FP-SC, and FP-WY, as well as the

highest degree of influence on the synergy effects of HQ-WY.

SLOPE has the second highest degree of influence on the trade-

off effects of FP-CS, FP-HQ, and FP-SC, and PRE has the lowest

degree of influence (see Figure 5).
FIGURE 3

Integrated services of grid ecosystems in Hunan Province, 2000–2020.
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In the results of the synergy effects of FP-WY, GDP has the

highest degree of influence with a q-value of 0.10, which is slightly

higher than DEM and PRE, followed by NDVI and SLOPE, and

POP is the lowest with a q-value of 0.05. In the results of the synergy

effects of SC-CS, the degree of influence of DEM is much higher

than that of other factors, with a q-value of 0.31, followed by SLOPE

with a q-value of 0.26. This indicates that in the synergy relationship

between SC-CS, the altitudinal position and topographic conditions

have a greater influence. NDVI and GDP both had q-values of 0.12,

while POP was lower than 0.08, and PRE was the lowest at 0.03.

In the results of the synergy influence of HQ-CS, DEM has the

highest degree of influence with a q-value of 0.21, followed by

SLOPE with a q-value of 0.15, while GDP, POP, and NDVI have q-

values of 0.10, 0.08, and 0.10, respectively, and PRE is the lowest at

0.03. In the results of the synergy effect of the influence of HQ-SC,

DEM, SLOPE, NDVI, GDP, POP, and PRE had q-values of 0.19,

0.18, 0.17, 0.15, 0.10, and 0.02, respectively. In the synergy effect

impact results of HQ-WY, GDP, DEM, NDVI, SLOPE, PRE, and

POP had q-values of 0.09, 0.07, 0.07, 0.05, 0.04, and

0.03, respectively.

In the synergy effect impact results of WY-CS, the q-values of

DEM, SLOPE, GDP, POP, NDVI, and PRE are 0.28, 0.27, 0.20, 0.16,

0.12, and 0.03, respectively. In the synergy effect impact results of

WY-SC, the q-values of DEM, POP, GDP, SLOPE, PRE, and NDVI

are 0.20, 0.17, 0.17, 0.16, 0.14, and 0.09, respectively.

At the 1-km grid scale of interaction detection results in Table 2,

the interaction results among the factors were more balanced

compared to the city and county levels. With a score of 0.54,

0.53, 0.52, 0.54, 0.55, 0.56, and 0.55, respectively, NDVI has the
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largest influence among them in the trade-off interaction detection

of FP-SC, FP-HQ, FP-SC, FP-WY, HQ-SC, HQ-CS, and HQ-WY,

while the GDP had the highest amount of influence in the

synergistic detection of SC-CS, WY-CS, and WY-SC, with

detections of 0.53, 0.80, and 0.64, respectively.
4 Discussion

During the study period, the value of integrated ecosystem

services showed an increasing trend over time and heterogeneity in

space, which has important implications for decision-making

related to sustainable development, environmental protection, and

regional planning. There was an overall trade-off relationship

between FP and any other ecosystem services, with the strongest

trade-off effect between FP and HQ, which was spatially distributed

mainly in the hilly and mountainous regions of the western part of

the Xiangxi region, which have favorable environmental conditions.

The synergy effect between HQ, WY, CS, and SC generally showed

an increasing trend during the study period (Shen et al., 2023). The

GD can then explore how the selected drivers affect TOSs at the gird

scale, and also investigate if there are any nonlinear effects between

the drivers on TOSs (Ouyang et al., 2023). TOSs were influenced by

a combination of natural conditions, socio-economic, and other

factors. Among them, GDP and slope factors had the greatest

influence on food production, along with other influencing

factors. Economic development led to a corresponding decrease

in the area of arable land, which, in turn, caused a decline in food

production services. However, the impact of human management
B

A

FIGURE 4

Changes in trade-offs and synergies of ecosystem services at grid scale in Hunan province. (A) Temporal dimension and (B) spatial dimension.
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FIGURE 5

Correlation coefficient of different factors and ES.
TABLE 2 Interactive influence coefficients of different factors and ES.

Ecosystem
service

Interaction
dominant
factor 1

Interaction
dominant
factor 2

Interaction dominant
factor 3

Interaction dominant
factor 4

Interaction dominant
factor 5

FP-CS POP∩SLOPE:0.252 PRE∩POP:0.377 GDP∩PRE:0.522 NDVI∩GDP:0541 DEM∩GDP:0.411

FP-HQ POP∩SLOPE:0.233 PRE∩POP:0.362 GDP∩PRE:0.512 NDVI∩GDP:0.535 DEM∩NDVI:0.377

FP-SC POP∩SLOPE:0.180 PRE∩POP:0.328 GDP∩PRE:0.478 NDVI∩GDP:0.522 DEM∩NDVI:0.362

FP-WY POP∩SLOPE:0.210 PRE∩POP:0.440 GDP∩POP:0.520 NDVI∩GDP:0.543 DEM∩GDP:0.7377

(Continued)
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activities on agriculture can have a positive effect on food

production. The more economically developed the region, the

higher the cost and management inputs in the agricultural

production process, leading to a higher intensity of agricultural

management measures such as agricultural fertilizers, farmland

irrigation, and agricultural machinery. These measures can

e ff e c t i v e l y inc r ea s e c rop y i e ld s and enhance food

production services.

This study analyzed the relationship between ecosystem

services, which can help to form spatially oriented strategies to

improve ecosystem service relationships and promote the

sustainable development of social–ecological systems. However,

there are limitations to the study, as only five representative

ecosystem services were analyzed. The study’s mapping results

may be less uncertain if these ecological indicators are improved,

data quality is raised, and the spatially explicit models used to

calculate ecosystem supply and demand are updated. These actions

may also have further policy and planning impacts. Considering

how the socio-ecological drivers of ecosystem service TOSs evolve

over time and scale is a next step to be taken in this study.

Despite some shortcomings, this study provides an attempt to

gain a deeper understanding of the various influences of socio-

ecological determinants on TOSs between ecological settings.

Firstly, spatially explicit details of the TOSs among ESs are

mapped as opposed to traditional correlation analyses that only

provide statistical results. In addition, a technique for quantifying

the degree of TOSs among ESs is suggested. In conclusion, many

connections between ESs and potential drivers have been revealed

and their spatial differentiation has been explored. The analysis then

explores the spatial implications of different drivers and offers more

theoretical and practical recommendations for local policymakers.

Furthermore, the study’s methodology and data are applied to other

places, making it a useful case study and resource for ecological

management in the hilly southern regions. (Li et al., 2019; Li et al.,

2022). Additionally, a technique is proposed to quantify the extent

of TOSs among ESs. In summary, this study identifies numerous

connections between ESs and potential drivers, and examines their

spatial variability. The analysis then explores the spatial

implications of different drivers and offers more theoretical and
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practical recommendations for local policymakers. Furthermore,

the study’s methodology and data are applied to other places,

making it a useful case study and resource for ecological

management in the hilly southern regions (Xia et al.,2023).
5 Conclusion

This study quantitatively assessed the temporal and spatial

change characteristics of five ecosystem services in Hunan

Province from 2000 to 2020, including water production, soil

conservation, carbon storage, habitat quality, and food

production. We measured the TOS relationships among these

ecosystem services using correlation analysis and GWR.

Additionally, we identified the primary influencing factors and

factor combinations for the degree of trade-offs in ecosystem

services by applying a geographical detector. The comprehensive

value of ecosystem services in Hunan Province showed an

increasing trend from 2000 to 2020, with high values mainly

distributed in the hilly areas in the west, south, and east of

Hunan Province, while low values were mainly distributed in the

Dongting Lake Plain and the Xiangzhong Hilly Basin.

There was a trade-off relationship between FP and all other

ecosystem services, with the strongest trade-off effect found between

FP and HQ. The synergy effect among HQ, WY, CS, and SC showed

an increasing trend. GDP and slope were the dominant factors for

the strength of trade-offs between food supply and other ecosystem

services, while DEM and NDVI were the dominant factors for the

strength of synergies among ecosystem services. Therefore, the

strength of trade-offs and synergies between ecosystem services

was not affected by a single factor. The interactions or the driving of

common influencing factors between the two services determined

the relationship.
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TABLE 2 Continued

Ecosystem
service

Interaction
dominant
factor 1

Interaction
dominant
factor 2

Interaction dominant
factor 3

Interaction dominant
factor 4

Interaction dominant
factor 5

HQ-CS POP∩SLOPE:0.314 PRE∩POP:0.330 GDP∩PRE:0.540 NDVI∩GDP:0.560 DEM∩NDVI:0.481

HQ-SC POP∩SLOPE:0.258 PRE∩POP:0.343 GDP∩PRE:0.508 NDVI∩GDP:0.544 DEM∩NDVI:0.445

HQ-WY POP∩SLOPE:0.176 PRE∩POP:0.280 GDP∩PRE:0.516 NDVI∩GDP:0.557 DEM∩GDP:0.368

SC-CS POP∩SLOPE:0.316 PRE∩POP:0.334 GDP∩PRE:0.534 NDVI∩GDP:0.534 DEM∩NDVI:0.498

WY-CS POP∩SLOPE:0.547 PRE∩POP:0.586 GDP∩POP:0.808 NDVI∩POP:0.714 DEM∩GDP:0.655

WY-SC POP∩SLOPE:0.371 PRE∩POP:0.552 GDP∩POP:0.641 NDVI∩POP:0.494 DEM∩GDP:0.557
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