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Biotic pest disturbance - risk, evaluation, and management in
forest ecosystems

Introduction

Forests are complex, adaptive ecosystems whose resilience depends on their capacity

to withstand and recover from disturbances. Historically, forest ecosystems have always

been shaped by a diverse array of disturbance agents, from storms to fires and fungal and

insect outbreaks, that are integral parts of natural forest dynamics (Seidl and Turner, 2022).

However, the past few decades have witnessed a dramatic rise in the frequency and intensity

of biotic pest disturbances (Patacca et al., 2022); this has overwhelmed the adaptive capacity

of the forests (Forzieri et al., 2024). Invasive insects and pathogens pose a growing threat

to health, productivity, biodiversity, ecosystem services, and socio-economic function

of forests (Hartmann et al., 2025) and can cause extensive tree mortality (Senf et al.,

2020). These biotic threats are interacting with a complexity of other environmental

challenges, such as rapid climate change (Ramsfield et al., 2016), global increase in travel

and trade (Fenn-Moltu et al., 2023), andmonocultural plantations to reshape the structure,

composition (Forrester and Bauhus, 2016), and ecosystem services of forests around the

world (van Lierop et al., 2015). Windstorms, drought, fire, and human interventions

exacerbate the spread and impact of insects and diseases (Seidl et al., 2017), while climate

change is altering pest population dynamics, extending ranges and outbreak periods (Jactel

et al., 2019), and introducing new risks such as novel disease vectors and pest-pathogen

interactions (Franic et al., 2023).

This Research Topic, Biotic Pest Disturbance - Risk, Evaluation, and Management

in Forest Ecosystems, provides a timely synthesis of current research that offers a

multifaceted perspective on how science and practice can respond to these forest

threats and challenges. Biotic Pest Disturbance includes all living agents that damage

a forest, mainly insects and pathogens. The Research Topic of 15 studies exemplifies

the diverse strategies needed to better understand, detect, and respond to biotic threats

in forests. It emphasizes the need for improved risk identification, robust evaluation of

the impact of biotic pest disturbance agents under changing environmental conditions,
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and the deployment of innovative, sustainable management

solutions. Together, these contributions advance our

understanding of how to maintain resilient forests in an era

of multiple global change pressures, reflecting the need for a

comprehensive, multidisciplinary, and innovative approach to

safeguarding forests for future generations.

Below, we synthesize the accepted articles under three main

sections, i.e., Risk: recognizing emerging threats from pests and

pathogens, Evaluation: understanding host-pest interactions under

climate change and advancing pest detection, and Management:

toward innovative, integrated solutions for sustainable forest health

that move beyond traditional chemical control.

Risk: recognizing emerging threats
from pests and pathogens

Risk in forest pest management is the probability of an

outbreak or the likelihood of damage in a particular stand,

considering pest population density and stand susceptibility

(Wainhouse, 2008). Early and accurate pest risk assessment is

fundamental for preventing and mitigating large-scale insect

and pathogen outbreaks, and it forms the cornerstone of any

proactive pest management strategy. Understanding risk begins

with recognizing which insects and pathogens threaten forests,

and how multiple agents can act synergistically. Life history

characteristics offer a general insight into the damaging potential of

pests, providing a starting point for comprehensive risk assessment.

The characteristic features of an outbreak vary depending on the

type of pest involved. While the timing of outbreaks remains

difficult to predict, estimating the risk to specific forest stands holds

considerable practical value. Anticipating where outbreaks aremost

likely to occur enhances the likelihood of early detection during

pest evaluations.

Effective forest pest management begins with understanding

and anticipating risk—not only from individual agents but from

multi-faceted, interacting threats under changing environmental

conditions. The contributions in this section collectively

underscore how pathogen complexity, pest interactions, climate-

induced shifts, and human-mediated pathways are reshaping our

understanding of forest health risks.

Several papers highlight the increasing relevance of multiple

agents acting simultaneously. For instance, Zlatković et al. and

Marković et al. both focus on pedunculate oak Quercus robur,

a keystone species in European lowland forests, demonstrating

how co-occurring foliar pathogens and insects significantly impact

tree health and regeneration. Zlatković et al. reveal a complex of

pathogenic fungi, such as Tubakia spp., Didymella macrostoma,

and Apiognomonia errabunda, that contribute to anthracnose and

leaf spot on Q. robur leaves in riparian forests. This article

underscores how even well-studied species can harbor previously

underrecognized pathogen complexes, raising questions about

latent risk and the importance of accurate species-level diagnostics.

Complementing this, Marković et al. show how multiple foliar

pests, including oak powdery mildew Erysiphe alphitoides and oak

lace bug Corythucha arcuata, can collectively suppress growth

in young trees—especially when compounded by environmental

stressors like drought and groundwater decline. Together, these

studies emphasize the need for integrated risk frameworks that

account for synergistic interactions and cumulative stress.

Climate change as a modifier of pest risk emerges as another

critical cross-cutting issue. Macháčová et al. offer compelling

evidence that elevated atmospheric CO2-a hallmark of future

climate scenarios –can influence host-pathogen interactions. Their

study on Alnus glutinosa responses to Phytophthora bark infections

reveals that disease outcomes vary under different CO2 levels,

suggesting that future pest dynamics may shift in non-linear,

species-specific ways. These findings reinforce the necessity of

integrating climate variables into risk assessments, expanding from

pest virulence to also consider host physiological responses and

ecosystem-level vulnerabilities.

Climate change is a driving factor for shifts in the distribution

areas of many species. Gao et al. use predictive modeling to project

the expansion of Monochamus saltuarius, a vector of Pine wilt

disease in China, under current and future climate scenarios. Their

results point to a marked northward and regional expansion of risk

zones, offering important insights for biosecurity planning. The

study reflects the growing importance of bioclimatic modeling in

forecasting risk trajectories—especially invasive species—but also

illustrates the uncertainty that accompanies such projections across

decadal timescales.

Various preventive actions must be applied to minimize the

threat of invasive species to forests. Budzyn et al. evaluate a

firewood transport campaign in Michigan, revealing that campaign

awareness slightly decreased between the survey years, personal

firewood transport has decreased, and knowledge of invasives

remains low. Their findings call attention to the behavioral

dimension of forest pest risk, suggesting that outreach should

be paired with stronger regulatory mechanisms to meaningfully

mitigate spread.

Despite differences in taxa and regions, all four studies point

to the need for early detection, cross-disciplinary approaches,

and multi-agent monitoring systems. They also reveal that pest

risk is no longer a static or localized concept—it is dynamic,

multi-scalar, and increasingly shaped by climate, connectivity,

and complexity. The emergence of underestimated pathogen

complexes, the cumulative impact of mild but chronic stressors,

and the interaction between human behavior and pest movement

are key themes that emerge across the studies.

In sum, this section demonstrates that risk assessment must

evolve toward flexible, integrative, and anticipatory models—ones

that account for biological complexity, environmental change, and

human activity in concert.

Evaluation: understanding host-pest
interactions under climate change and
advancing pest detection

Evaluation of forest pests includes characterizing the symptoms

of pest infestation, developing an appropriate detection method for

monitoring, and establishing specific critical thresholds. In general,

two primary methods of evaluation are distinguished: population

sampling and damage monitoring. For both approaches, stand-

level risk rating can help identify priority areas for targeted
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monitoring. In the case of invasive species, presence–absence

strategies are commonly employed, with detection methods

requiring high sensitivity—such as pheromone traps—to provide

rapid confirmation of species presence. Population data are

frequently evaluated to classify pest levels as above or below critical

thresholds, often using sequential assessment methods. Damage

monitoring is a rapidly evolving field, driven by technological

advances in unmanned aerial vehicles (UAVs), satellite imagery,

remote sensors, and classification algorithms. One of the main

functions of monitoring is to support decision-making in forest

pest management by providing timely and actionable information.

Evaluating forest pest outbreaks is a crucial step toward timely

management interventions, particularly under the pressures of

climate change and increasing global trade. The studies in this

section explore innovations in early detection—from physiological

and biochemical responses in trees to remote sensing technologies

and pheromone-based trap networks. Collectively, they reinforce

that successful pest evaluation will combine early physiological

signals, volatile chemical detection, and spatial monitoring tools

into an integrated approach.

Several papers focus on the devastating impact of the spruce

bark beetle Ips typographus—the most important pest in Central

Europe, responsible for the loss of ca. 100 mil. m3 of growing

stock in Czechia between 2016 and 2022 (Washaya et al., 2024).

Stríbrská et al. assess physiological and biochemical changes in

Picea abies, identifying reduced sap flow, stem increment, and

increased monoterpene emissions in freshly infested trees. These

biological responses, along with bark temperature measurements

and trap catches, could enhance early warning systems. Similarly,

Hüttnerová and Surový test three electronic nose devices for their

ability to detect bark beetle-induced volatile organic compounds.

Their findings confirm that infestation can be detected within 1

week of attack onset, pointing to the potential of chemical sensing

for rapid, non-invasive diagnostics.

In parallel, Klouček et al. explore UAV-borne multispectral

imaging to distinguish between healthy and infested spruce

trees at early infestation stages. Vegetation indices, particularly

NDVI and BNDVI, proved more effective than individual

spectral bands, and detection accuracy improved as infestation

progressed. These results underscore the growing utility of remote

sensing technologies for large-scale forest health evaluation,

especially when integrated with on-ground physiological and

chemical indicators.

While much focus is placed on I. typographus, Fiala and Holuša

broaden the scope by proposing a national-scale monitoring

network targeting invasive bark and ambrosia beetles in Czechia.

They recommend 24 high-risk locations based on proximity to

borders, trade hubs, airports, and botanical gardens, using ethanol-

baited traps as a sensitive detection method. This proactive

approach provides an early warning infrastructure aimed at

intercepting invasive species before establishment, reinforcing the

need for geographically targeted surveillance.

Together, these studies demonstrate that forest pest evaluation

is evolving into a multi-level and multi-method discipline, bridging

physiological measurements, chemical ecology, spatial modeling,

and biosecurity infrastructure. They also highlight the importance

of early signals, both from trees and pests, as well as the need

for flexible monitoring strategies that can adapt to shifting pest

dynamics in a changing climate.

The research article Modlinger et al., “Ectomycorrhizal response

to bark beetle attack: a comparison of dead and surviving trees”,

contributes insights into the ecological consequences of bark

beetle infestations on below-ground interactions, offering a deeper

understanding of forest ecosystem responses to widespread tree

mortality. In this study, the dynamics between tree root systems of

the Norway spruce and ectomycorrhizal fungi in the aftermath of

bark beetle-induced tree mortality were investigated. The density

of vital mycorrhizal tips (VM) on living trees gradually increased,

peaking in the 2nd and 3rd years after the surrounding forest

decay. VM on bark beetle snags was significantly lower compared

to living trees, with minimal variation over time. Most of the

fine root biomass decomposes within the first half year after

tree death.

Management: toward innovative,
integrated solutions for sustainable
pest control

Knowledge of risk from emerging pests and pathogens and

advanced impact assessment and detectionmethods must be paired

with practical strategies and new technologies to manage pest

outbreaks in forests. Managing biotic disturbances demands novel,

innovative solutions that are effective, sustainable, and ecologically

responsible. Recent cutting-edge advances in biotechnology and

biological control offer promising new avenues for managing

pest outbreaks while minimizing environmental impacts. Early

stages of pest detection improve the efficiency and effectiveness

of management. However, in most forest areas of Europe, the key

changes should lie in modifying forestry practices and mitigating

the impacts of climate change in forests.

The review Sharan et al. “Transgenic poplar for resistance

against pest and pathogen attack in forests: an overview”

explores advances in genetic engineering aimed at enhancing

tree resistance against multiple pests and pathogens, an approach

that could potentially reduce reliance on chemical treatments

and safeguard plantation productivity. It explains how Populus

spp., a model genus for forest biotechnology, can be engineered

to express resistance genes targeting key pests and pathogens

and reviews transformation techniques (Agrobacterium-mediated,

CRISPR/Cas, RNA interference). It also reminds us of the need

to navigate regulatory, ecological, and ethical considerations

surrounding the deployment of geneticallymodified trees in natural

and plantation forests.

Complementing this technological approach, Gupta et al.,

in “Prospects for deploying microbes against tree-killing beetles

(Coleoptera) in the Anthropocene”, explore the potential and

challenges of using microorganisms as nature-based biopesticides

to combat devastating bark beetle outbreaks. By targeting bark

beetle symbiotic bacteria and fungi and their microbial volatile

organic compounds (VOCs), beneficial microbes in forest soil

and plants, entomopathogenic fungi, and even symbiont-mediated

RNA interference (RNAi), researchers could develop biocontrol

tools that work in synergy with tree defenses. Given the destructive

power of bark beetles globally, microbial biocontrol presents a

sustainable alternative that can be integrated with existing forest

management practices.
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Finally, the perspective by Mogilicherla and Roy, “RNAi-

chitosan biopesticides for managing forest insect pests: an

outlook”, presents an exciting frontier of how precision-targeted

biopesticides such as RNA interference technology (RNAi) that

can silence essential species-specific pest genes combined with

biodegradable carriers like chitosan could revolutionize pest

management by offering precision pest control with minimal off-

target effects. RNA interference (RNAi) enables highly targeted pest

suppression, and chitosan-based carriers improve environmental

safety and application efficiency. If further developed for field

applications, these innovations that offer high specificity could

serve as next-generation biopesticides that align with ecological

conservation and sustainability goals, offering an alternative to

broad-spectrum insecticides that harm beneficial insects and

forest microbiota.

Mass trapping of bark beetles is a traditional pest management

approach, which has many supporters but also a lot of criticism

in terms of the actual impact on the population density of the

pest (Kuhn et al., 2022). One of the current scientific directions

is developing an anti-attractive blend and using it to protect

vulnerable forest stands. Various compounds behaviorally active

for spruce bark beetle were tested in research by Moliterno

et al. in “Field effects of oxygenated monoterpenes and estragole

combined with pheromone on attraction of Ips typographus and

its natural enemies”. Based on the catches to the traps at low,

medium, and high doses of the compounds, they found that

all 1,8-cineole doses and the high estragole dose acted as anti-

attractants for I. typographus, whereas all (+)-isopinocamphone

doses enhanced attraction to the pheromone. The compounds 1,8-

cineole, isopinocamphone, and estragole may play vital roles in

tritrophic interactions among spruce trees and I. typographus and

its natural enemies, and these compounds may be developed into

new or enhanced semiochemical-based pest control methods.

A direct trapping and tree protection experiment with an anti-

attractant blend containing 1-hexanol, 1-octen-3-ol, 3-octanol,

eucalyptol, trans-thujanol, and trans-conophthorin (see Jakuš

et al., 2024) was reported in an article by Korolyova et al.,

“Mitigating Norway spruce mortality through the combined use

of an anti-attractant for Ips typographus and an attractant

for Thanasimus formicarius”. The anti-attractant blend was

compared with commercial pheromone bait and attraction lure

for Thanasimus formicarius, an important spruce bark beetle

predator. Tree mortality was observed exclusively among trees

treated only with T. formicarius attractant and in their vicinity,

suggesting a unique bark beetle response to the mixture of

predator’s attractant and host tree kairomones, a phenomenon

that was not previously reported. Application of anti-attractant

and T. formicarius treatment effectively prevented tree mortality,

demonstrating the repellent potential of anti-attractant against

bark beetles.

Outlook and future directions: toward
resilient, innovative, and integrated
forest pest management

Taken together, the contributions in this Research Topic

illustrate complex challenges of biotic pest disturbances in a

rapidly changing world. They remind us that while disturbances

are natural and often necessary drivers of forest renewal, their

increasing frequency and severity, exacerbated by climate

change, pose unprecedented risk. They also show how Risk,

Evaluation, and Management of biotic disturbances must be

viewed as interdependent and interconnected elements of

forest resilience strategies. The growing complexity of forest

threats demands interdisciplinary integrated approaches that

bridge pathology, entomology, ecophysiology, microbiology,

biochemistry, molecular biology and biotechnology, remote

sensing, climate science, forest policy, and silviculture. To

address these challenges, we must continue to expand our

knowledge of disturbance agents and their complex interactions,

develop advanced monitoring and evaluation tools, and pursue

integrated management strategies that enhance the resilience of

our forests.

Looking forward, priorities for research and practice should

include the following:

• Expanding monitoring networks and early-warning systems

that combine traditional field methods with remote sensing

and molecular diagnostics.

• Developing predictive models that integrate climate

projections, multiple disturbance agents, and forest

stand dynamics.

• Advancing biotechnology and biocontrol, ranging from

natural enemy enhancement, semiochemicals, and microbial

biocontrol to precision biotechnology and transgenic trees

while ensuring safety, efficacy, and societal acceptance.

• Promoting forest management practices that enhance species

diversity, structural heterogeneity, and adaptive capacity.

The diverse articles in this Research Topic show that

addressing forest pest disturbance demands research that is

holistic, anticipatory, integrated, and socially accepted. Amid rapid

environmental challenges, no single discipline can tackle this

challenge alone. By fostering collaboration across disciplines and

bridging fundamental science with technological innovations, we

can better understand the role of disturbances while developing

innovative tools and practices that maintain forest health and the

vital ecosystem services forests provide.
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Physiological and biochemical
indicators in Norway spruces
freshly infested by Ips
typographus: potential for early
detection methods
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Roman Modlinger, Ivana Tomášková and Anna Jirošová*†

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia

Intoduction: The bark beetle Ips typographus currently represents the primary

pest of Norway spruce (Picea abies) in Central Europe. Early detection and

timely salvage cutting of bark beetle-infested trees are functional management

strategies for controlling bark beetle outbreaks. However, alternative detection

methods are currently being developed, and possible indicators of bark beetle

infestation can be assessed through changes in the physiological, biochemical,

and beetle-acceptance characteristics of trees.

Method: This study monitored infested and non-infested Norway spruce trees

before and 3 weeks after Ips typographus natural attack. Permanently installed

sensors recorded physiological features, such as sap flow, tree stem increment,

bark surface temperature, and soil water potential, to monitor water availability.

Defensive metabolism characteristics, beetle host acceptance, and attractiveness

to trees were monitored discretely several times per season. The forest stand that

was later attacked by bark beetles had lower water availability during the 2018–

2020 seasons compared to the non-attacked stands.

Results: After the attack, sap flow and tree stem increment were significantly

lower in infested trees than in intact ones, and bark surface temperature

moderately increased, even when measured in the inner forest stand from the

shadowed side. Infested trees respond to attacks with a surge in monoterpene

emissions. In addition, freshly infested trees were more accepted by males in the

no-choice bioassays, and a significantly higher number of beetles were caught in

passive traps in the first week of infestation.

Conclusion: The most promising characteristics for early detection methods of

bark beetle-infested trees include tree bark temperature measured only in certain

meteorological conditions, elevated monoterpene emissions, and significantly

high catches in passive traps.

KEYWORDS

green attack, tree defence, bark beetles, Picea abies, tree physiology, VOC, sap flow,
dendrometer

1. Introduction

The Eurasian Spruce Bark Beetle Ips typographus (Linnaeus, 1758) (Coleoptera:
Scolytinae) is the most devastating pest of Norway spruce [Picea abies (L.) Karst.] and
forests in the Palearctic region (Christiansen and Bakke, 1988). When its population is
in the endemic phase, it attacks weakened trees, contributing to the ecological balance
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in natural forests. However, the incidence of disturbance agents,
such as strong winds or drought periods, lead to the transition of
the I. typographus population to the epidemic phase (Kausrud et al.,
2012). Ongoing climate change, the occurrence of spruce stands
outside their natural range, and economically oriented silviculture
practices have led to intense bark beetle outbreaks over the last
decade (Seidl et al., 2016; Marini et al., 2017; Biedermann et al.,
2019). The Central European region has been seriously affected by
I. typographus outbreaks that started after severe drought events in
2015 and 2018 (Hlásny et al., 2021a). The scenario resulted in an
exponentially growing volume of salvage logging from 2017 to 2020
(approximately 5.9 mil m3 in 2017 to 26.2 mil m3 in 2020 in the
Czech Republic) (Hlásny et al., 2021b, 2022).

A traditional method for managing bark beetle outbreaks is the
early detection of infested trees prior to the emergence of offspring
generation (Hlásny et al., 2019). The presence of boring dust at
the base of the trunk is considered the most reliable symptom of
bark beetle infestation (Kautz et al., 2023), but its use requires
personal inspection of each trunk, which is difficult to achieve. The
extent of the forest stands, the intensity of the outbreaks, and the
ability to distinguish infested trees were the main limits for applying
this procedure. The possibility of including modern tools and
procedures in the search for bark beetle-attacked trees is currently
being intensively researched. Currently, the most promising and
advanced methods are remote sensing methods, which include a
wide range of approaches (Huo et al., 2021). Despite the large
number of areas that they are able to scan, there remain problems
with the demands of time and expertise involved in processing
the captured records and the inaccuracy of detection owing to the
considerable variability of the attack signs. A different method for
detecting infested trees is based on the chemical communication
between bark beetles (Raffa et al., 2016). For this purpose, specially
trained dogs have recently been used (Johansson et al., 2019),
which can detect trees more successfully and efficiently than human
experts (Vošvrdová et al., 2023). The first study using an artificial
nose to detect substances in the forest environment is currently
underway (Hüttnerová et al., 2023). However, for the purpose of
early detection of bark beetles, the sap flow, tree increment and
content of terpenes in phloem and catches to passive traps in
infested trees have not been evaluated.

Like all plants, trees infested by bark beetles rouse defense
mechanisms against herbivores that have evolved over a million
years (Berini et al., 2018). In conifers, it manifests itself
with an immediate response as resin exudations and leads
to changes in basic tree physiology, such as transpiration
(Wang, 1983) and resource allocation (Franceschi et al., 2005;
Boone et al., 2011). The metabolism in trees is based on
the fundamental process of photosynthesis, when atmospheric
carbon is sequestered, and carbohydrates are synthesized (Lawlor
and Cornic, 2002). These carbon resources are distributed
between primary tree metabolism (tree growth or reproduction)
and secondary metabolism (constitutive defense compounds as
phenolics and terpenes important in conifers) (Huang et al., 2020).
Physiological characteristics that describe these processes can be
measured using specific techniques. These characteristics have been
previously recorded in various contexts related to tree stress and
susceptibility to bark beetle attacks.

The sap flow value, which expresses a deficit in tree
transpiration measured in short time intervals, is often used as

a quantitative characteristic of drought stress in trees (Střelcová
et al., 2013; Gebhardt et al., 2023) or stress from sudden sun
radiation in fragmented forests (Özçelik et al., 2022). The acute
transpiration deficit positively correlates with the lowering of the
defense ability of trees against bark beetle infestation (Netherer
et al., 2015; Matthews et al., 2018).

Another physiological characteristic of Norway spruce
discussed in the article as an indicator of infestation is the tree
stem diameter. Measuring stem increment has been reported
in the literature to indicate reductions in growth rates related
to drought (Ježík et al., 2015). It has also been used to evaluate
wood production in different tree species or genotypes (Cocozza
et al., 2016). Fluctuations in stem circumference are influenced
by the dynamics of plant tissue water balance on a daily and
seasonal basis, with radial growth increments depending on these
fluctuations (Offenthaler et al., 2001). The stem increment is also
influenced by carbohydrate distribution. In healthy trees, there
is a balance between growth and defense, with carbon resources
allocated to both. However, during herbivore or pathogen attacks,
the allocation of carbon resources shifts toward the production of
defense metabolites, limiting investment in growth, including stem
increment (Huang et al., 2020).

A previous study (Majdák et al., 2021) reported a measurable
increase in bark surface temperature following bark beetle
infestation in sun-exposed trees on the forest edge. These
trees were weakened by infestation and could not keep the
optimal temperature. Generally, the temperature of the cambium
and phloem in a healthy tree with sufficient water content
is well-regulated. Healthy trees can maintain their internal
thermal environment and prevent excessive temperature increase
(Leuzinger and Korner, 2007) through evaporative cooling
facilitated by the water movement within the sap flow. However, the
bark surface temperature is influenced by direct radiation and air
temperature (Hietz et al., 2005), and there exists some correlation
between phloem temperature and surface temperature (Powell,
1967).

The most noticeable changes in tree characteristics following
bark beetle infestation are chemical defense reactions. These
reactions occur in two stages. The first stage is the immediate
defense response, where conifers exude stored resin. The second
stage, known as the induced defense response, involves the
formation of traumatic resin ducts (Franceschi et al., 2005) and is
triggered within the first few weeks following a bark beetle attack
(Celedon and Bohlmann, 2019). The overall resin exudation of
trees measured as resin flow was in several studies suggested as a
marker of resistance of Norway spruce trees against the bark beetles
and characteristics of conifer defense (Netherer et al., 2015). Resin
flow varies from tree to tree owing to genetic variation and age
(Christiansen and Horntvedt, 1983; Schroeder, 1990) and strongly
depends on temperature and meteorological conditions (Baier
et al., 2002; Stříbrská et al., 2022) and on phenotypic variables, and
location (Zas et al., 2020).

Resin is a mixture of terpene compounds with toxic and
immobilizing effects on bark beetles; however, it also has a
communication function for them (Erbilgin et al., 2007). In
spruce, the predominant volatile monoterpenes are alpha-pinene,
beta-pinene, 1-carene, limonene, β-phellandrene, camphene
and myrcene (Borg-Karlson et al., 1993). Resin also contains
sesquiterpenes in smaller quantities and higher content of
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diterpenes (Netherer et al., 2021). Oxidized forms of all terpenes
are also present at a low level, and the content of oxygenated
monoterpenes is modified by a stress reaction and tree decay
(Schiebe et al., 2019) caused alternatively by inoculation by beetle’s
symbiotic ophiostomatoid fungi (Kandasamy et al., 2023). Even
non-infested conifers emit large amounts of terpenes, mainly
from the needles (Juráò et al., 2017). The emission has a diurnal
rhythm and depends on the actual meteorological and physiological
conditions of trees (Kopaczyk et al., 2020) as well as on genetic
origin (Kännaste et al., 2013). These phytochemicals play their role
in the selection of suitable bark beetle habitat (Erbilgin, 2019).
When Norway spruce is attacked by bark beetles, either due to
constitutive resin storage opening or induction of defense terpene
biosynthesis, the content of emitted terpenes increases 10–100 fold
(Ghimire et al., 2016; Jaakkola et al., 2022).

The attractivity of the freshly attacked trees for additional beetle
conspecifics is modified based on olfactometric cues perceived
by beetles, predominantly on aggregation pheromones (Schlyter
et al., 1987a) and host volatiles (Erbilgin et al., 2007). The
acceptance of host tree by attacking beetles is a function of
the defense ability of trees and stadia of beetle attacks. The
I. typographus infestation begins with the selection of a suitable
host tree by pioneer males (Byers, 1989; Lehmanski et al., 2023).
When males successfully overcome tree defenses, they produce
potent aggregation pheromones to attract conspecifics and start
mass aggregation. Pheromone consists of oxidized terpenes 2-
methyl-3-buten-2-ol and cis-verbenol 10:1 (Birgersson et al., 1984;
Ramakrishnan et al., 2022). Bark beetles can detect these highly
biologically active compounds from a complex mixture of other
compounds in the forest owing to their specific antennal receptors.
However, pheromones are only a minor component of the total
volatile emissions of infested trees.

This study aimed to identify alternative tools for the early
detection of I. typographus attacks based on modifications in
physiology, defense biochemistry, and insect-tree interaction levels.
In particular, we compared changes in Norway spruce trees in the
first stadia of I. typographus attack in terms of (i) physiological
and physical parameters (sap flow, stem increment, and surface
temperature); (ii) spruce defense reaction (resin flow, emission,
and phloem content of defensive terpenes, including selection of
compounds specific for infested trees); and (iii) beetles attraction
to infested and non-infested stands by monitoring beetles using
non-baited passive traps and (iv) beetle acceptance of the host tree.
Furthermore, measurable characteristics that displayed significant
differences in infested trees compared to non-infested trees were
evaluated as potential tools for developing early attack detection
methods for more efficient bark beetle management.

2. Materials and methods

2.1. Study area and sampling setup and
conditions

The study was conducted from May 6th to July 2nd, 2020 at
the property of the Forests CZU in Kostelec nad Černými lesy in
central Czech Republic (Figure 1). The weather during the growing
season of 2020 was humid and warm. The detailed recording

FIGURE 1

Arrangement of study plots with the naturally attacked plot. Green
circles represent the inner forest plots (non-attacked trees),
corresponding to plots A, B, and D. Plot C was infested by
I. typographus on June 16th and salvaged in July (red circle). The
gray spots are areas of previous natural bark beetle attack. The
black thermometer marks the meteorological station.

of the meteorological conditions has been previously published
(Stříbrská et al., 2022) and is attached as a supplement to this article
(Supplementary Table 1).

As part of the Extemit-K project, a large study area was
established in 2018 to measure physiological and dendrological
characteristics in trees exposed to stress conditions such as drought
and forest fragmentation in the context of bark beetle attack.
Originally, eight plots with different treatments were monitored
(Stříbrská et al., 2022). However, the study reported in this article
focuses on four non-treated plots established within a closed,
undisturbed area in Norway spruce stands (Table 1).

From 2018 to 2020, the soil water potential was monitored for
all plots. In 2020, sensors for sap flow, tree stem increment, and
bark surface temperature collected data from a total of eighteen
trees. Four trees were monitored in plots B and D, while five
trees were monitored in plots A and C. Additionally, monoterpene
sampling and non-choice beetle bioassays were conducted six times
per growing season in 2020 on three selected trees in each of the
four studied plots (12 trees in total).

Throughout the study period, we checked the entire area within
a 500 m distance from the monitored trees for bark infestation
at approximately weekly intervals. However, on June 16th, 2020,
a fresh infestation was detected in all five trees in plot C at the
stage of the nuptial chamber building by male beetles. In next
3 weeks, from June 16th to July 2nd, these five infested trees were
further monitored with sensors, along with the remaining thirteen
uninfested trees. On July 2nd, the infested trees had to be cut
down to prevent the emergence of new beetle generations, and the
observation was concluded.

Frontiers in Forests and Global Change 03 frontiersin.org12

https://doi.org/10.3389/ffgc.2023.1197229
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1197229 July 6, 2023 Time: 15:4 # 4
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TABLE 1 Information about study area.

Studied
plots

Coordinates Altitude [m
a.s.l.]

Age of Norway
spruces

Monitored trees† Tested
trees††

lat. long.

A 49.912771 14.873291

430 90- to 95-year-old

5 3

B 49.912819 14.873778 4 3

C 49.914527 14.877892 5 3

D 49.914667 14.877344 4 3

†Number of trees continuously monitored for sap flow, bark surface temperature, and tree increment.
††Number of trees on which resin flow, monoterpenes content in VOC, phloem, and non-choice bioassay with beetles were repeatedly tested.

In 2020, an outbreak of I. typographus occurred in the Norway
spruce forests of the Forests CZU. Extreme droughts in the years
2015 and 2018 were the cause of the exponential increase in infested
trees, which started in 2017 with 284 m3 and culminated in 2020
with 76,113 m3 of salvaged cut wood (Klinovský, 2021). In 2018
and 2019, the local centra (gray spots in Figure 1) of bark beetle
infestation was detected in the studied area and cut down. None
of them were closer than 50 m from the monitored trees (Stříbrská
et al., 2022).

In each plot, the soil water potential was recorded to check
the water availability of trees using five sensors (Teros 21, Meter
Group, München, Germany) distributed in each plot and placed
20 cm below the surface. The whole dataset (Supplementary
Figure 1) was taken from the 2018 to 2020 seasons to examine water
stress on the trees.

2.2. Physiological characteristics of trees

The methodology for data sampling was modified from
Stříbrská et al. (2022).

Briefly, sap flow, tree stem increment, and bark surface
temperature were measured using sensors installed on individual
trees. Data were stored in a single data logger (GreyBox N2N
3P; EMS Brno, Brno, Czech Republic) and connected to a cloud
system via the GSM. To enable statistical analysis, we express the
continuously recorded values of physiological characteristics as
means per collection day or a specific period, which allowed us to
process them together with discretely measured characteristics and
show changes in the same time points.

Sap flow was measured based on the thermodynamic principle
by heating the wood around stainless-steel electrodes (EMS 81;
EMS Brno) using the trunk heat balance method. Data were
recorded at 10-min intervals (Čermák et al., 2004; Stříbrská et al.,
2022). The data were subjected to post-processing, including
baseline correction, and sap flow rates were recomputed as kg/h as
the sum for each sampling date.

Tree stem increment was recorded using a sensor (DR26E Band
dendrometer for sap flow system; EMS 81 DR26E; EMS Brno),
which was installed 3.5 m above the ground. The change in trunk
circumference was measured every 5 min and stored in the data
logger as a 10-min average. After cleaning up the errors caused by
various influences, the data were converted to 1 h averages, and
then divided by two times 3,14 (pi). The beginning of the season
is determined according to the growth and the start of sap flow as

the zero point of tree increment increases in a given year, for this
season, it was determined on April 1st.

Bark surface temperature was measured on the north side of
the tree stem to eliminate the influence of sun radiation. Infrared
thermometers (Apogee Instruments, Logan, UT) were installed at a
height of 3 m. Data were collected at hourly intervals, and averages
for days (24 h) for the collection period were calculated (Stříbrská
et al., 2022).

2.3. Defense characteristics of trees

Resin flow was measured using glass tubes (inner diameter:
3 mm; outer diameter: 5 mm; length: 12 cm). One glass tube per
tree/repetition was inserted into holes (6 mm) drilled into the
bark and phloem at breast height (1.3 m) from the north and
south exposed sides of the trunks. The resin was collected for 24 h
(start and end of collection between 3 and 5 pm), and the level of
exudated resin in glass tubes was measured (Netherer et al., 2015;
Stříbrská et al., 2022).

The main monoterpenes in the close vicinity of the spruce
stem were collected using SPME (Solid Phase Microextraction)
fiber (PDMS/CAR/DVB; Supelco, USA), which was placed in an
aluminum box (25 cm × 5 cm × 5 cm) loosely fixed by rope on
the tree stem surface at 3.5 m height. When collected from infested
trees, the boxes were attached out of the beetle’s entrance hole and
frass. The collection took 1 h (from 1 pm to 2 pm) on the day of
the sampling. Immediately after sampling, the fibers were sealed,
stored on dry ice, and transported to the laboratory. Desorption
and compound measurements by gas chromatography-electron
impact-time of flight-mass spectrometry (GC-EI-TOF-MS) were
performed within 3 days after collection (Stříbrská et al., 2022).

Bark samples for analysis of compounds extractable from
phloem were collected on May 27th, June 16th, and June 30th.
Three sections (8 mm diameter) were pinched out using a cork
borer at a distance of 15 cm from each other at a height of 2 m
on the south side of the tree trunks. Samples were stored in liquid
N2 and transported to the laboratory. Three sections from each tree
were pooled and ground in liquid nitrogen to obtain a fine powder.
The powder (200 mg) was extracted for 10 min in 2 mL of hexane
(containing 5 µg/mL of the internal standard 1-bromododecane)
in an ultrasonic bath. Extracts were filtered into 2-mL vials for
GC-EI-TOF-MS (Stříbrská et al., 2022).

The collected monoterpenes and compounds from the phloem
were analyzed using a gas chromatograph (Agilent 7890 B; Agilent,
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USA) coupled to a mass spectrometer with a time-of-flight mass
analyzer GC-EI-TOF-MS Pegasus 4D (LECO, St. Joseph, MI, USA).
The instrument was equipped with a capillary column HP-5MS
UI (30 m, 0.25 mm i.d., 0.25 µm film thickness; Agilent). The
analysis setups were as follows. For analysis of SPME, a hot PTV
inlet (265◦C) was used in a 2 min spitless period. The temperature
program for the GC oven was 40◦C (1 min) - 15◦C/min to
210◦C - 20◦C/min to 280◦C. To analyze phloem extracts, 1 µL
of hexane extract was injected in spitless mode into the PTV
inlet (programmed from 20◦C–8◦C/s to 265◦C). The GC oven
was programmed: 40◦C (1 min) - 5◦C/min to 210◦C - 20◦C/min
to 320◦C (6 min). The mass spectrometer setup was as follows:
ionization energy in electron impact mode was 70 eV, ensuring
spectra compatibility with NIST library. Full spectra were collected
in mass range, 35–500 Da with speed of 10 spectra per second.

The ChromaTOF software (LECO) was used for
chromatographic data processing. Compound identification
was performed using comparison of measured mass spectra and
spectra in mass spectral library NIST (2017), using comparison
of measured retention indexes (counted on C8-C40 saturated
alkane scale) with retention indexes published in NIST. For main
monoterpenes, retention times of analytical standards measured by
the same methods as samples were used.

The main monoterpenes detected in Norway spruce were
tricyclene, α-pinene, and β-pinene in coelution with myrcene,
β-phellandrene, 1-carene, camphene (quantification mass m/z
93) and limonene (quantification mass m/z 68). To statistically
evaluate the monoterpenes collected from air by solid-phase
microextraction (SPME) close by infested and non-infested trees,
the sum of peak areas of quantification masses of these compounds
were summed and treated as a single value per tree per collection.
The concentration of the sum of the same monoterpenes extracted
from the phloem was quantified as µg/mg of the dry weight
of material using calibration curves constructed for α-pinene,
β-pinene, 1-carene, camphene, and limonene. Peak areas were
normalized by internal standard (1-bromodecane) to correct
injection volume fluctuation. Furthermore, differences in the
content of these eight monoterpenes individually were compared
in air collected by SPME as peak areas and in the phloem extract as
concentration (µg/mg of dry weight).

The peak areas of quantification masses of all detectable
compounds with a sufficient threshold in GC-EI-TOF-MS
chromatograms, which were recorded from the collection by SPME
on June 24th, were preprocessed by aligning software and analyzed
using principal component analysis (PCA) and the discriminant
analysis model (PLS-DA).

2.4. Beetle catches in passive traps and
beetle acceptance bioassays

Catches of beetles in passive traps made from transparent
plastic (40 × 60 cm) indicated the attractivity of trees. Traps were
mounted on the southern side of the tree trunk at breast height
(Schlyter et al., 1987b; Stříbrská et al., 2022). Ten passive traps
were mounted on trees, which were infested on June 16th, and ten
passive traps on trees within the control plots. The checking of the
number of beetles caught in passive traps without any additional

pheromone attraction was conducted from May 1st, and the last
catch collection was on June 16th.

No-choice bioassay to monitor beetle acceptance was
performed by encapsulating males of I. typographus to Eppendorf
tubes (one male per tube). Ten tubes were attached to the south-
exposed side of the tree trunk at a height of 2 m and fixed with
tape. The beetles were left to feed for 24 h (Turčáni and Nakládal,
2007; Stříbrská et al., 2022). Active beetles used in the statistical
evaluation were assigned into three behavioral categories: beetles
that bored inside the bark and stood inside the pitch tubes, beetles
that bored inside but were expelled by resin, and beetles that
started to feed but were interrupted. The Eppendorf bioassay was
performed three times per season (June 16th, June 24th, and June
30th).

2.5. Statistical analyses

The R statistical software (R Core Team, 2022) was used for
statistical analyses.

For testing the hypothesis that infested and non-infested
trees differ, we utilized a general linear mixed model (glmer()
function from the lme4 package; Bates et al., 2015). We split
measurements into the pre-attack period and post-attack period
to assess differences between those periods separately. Repeated
measures model was fit with the fixed effect of measurement time
and bark beetle attack and random effect of the plot. We used
the gamma distribution with log link; in cases of count data in
response (number of beetles), we used the Poisson distribution.
Post hoc Tukey analyses between infested and non-infested trees
in overall repeated measures model and inside each measurement
separately were performed using lsmeans() function from the
lsmeans package (Lenth, 2016). Histograms of residuals and
residuals vs predicted values plots were inspected.

The total profile of compounds collected on SPME fiber was
normalized (constant raw sum), central log transformed and pareto
scaled for PCA and subsequent partial least square-discriminant
analysis (PLS-DA) created in the SIMCA 17 software (Sartorius
Stedim Data Analytics AB, Malmö, Sweden).

3. Results

3.1. Soil water potential

Within the vegetation season of 2020, the soil water potential
did not decrease below -200 kPa in all monitored plots A, B, C,
and D, which suggests sufficient water supply for all studied trees;
however, in plot C, infested in June 16th, soil water potential was
significantly lower than on non-infested plots (p = 0.04; Figure 2).
The history of water supply in the study site revealed mild water
stress in the trees in 2018. Soil water potential values ranged
between -800 and -1400 kPa, with a short decrease below the wilting
point of -1500 kPa in August 2018. In the growing season of 2019,
the lowest values of soil water potential were from -400 kPa to -
900 kPa. In both years preceding the study, the soil water potential
in plot C was lower than that in plots A, B, and D (Supplementary
Figure 1).
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FIGURE 2

Seasonal trend of soil water potential (2020). Individual lines represent measurements through the season in freshly attacked plot C (red color)/the
non-attacked plots A, B, and D (green color). The gray color (vertical line) represents individual experiments.

3.2. Physiological characteristics

The sap flow of trees in the monitored area (quantified as the
sum of sap flow in kg per data sampling day (Figure 3A) did not
show a significant difference in data sampling days from May to the
date of beetle attack detection in plot C. On June 16th, the first week
of infestation in plot C, sap flow significantly decreased in attacked
trees (p = 0.035), and this difference was even more prominent in
the next 2 weeks of advance infestation (p = 0.019 on June 24th and
p = 0.010 on June 30th).

Tree stem increment counted for the week prior to the data
sampling days was lower for trees in plot C from the beginning of
the season. After the second week of the bark beetle attack on June
24th, there was a significantly lower increment in infested trees than
in non-infested, with a continuing trend in the following weeks
(Figure 3B).

The bark surface temperatures measured on the north side
of tree stems before the attack was detected, were equal on all
monitored plots on May 19th and May 27th. Only on May 7th were
temperature higher for plots A, B, and D, which later remained non-
infested. On the monitoring day of June 16th, in the first week of
the attack, the temperature of infested trees in plot C significantly
increased (but the difference between infested and non-infested
trees was only + 0.4◦C) (Figure 3C). The average temperature of
plot C in the period after infestation was 18.2◦C, whereas that of
the non-infested control was 17.8◦C.

All the statistical details are listed in Supplementary Table 2.

3.3. Tree defense characteristics

The abundance of the sum of eight main spruce monoterpenes
in the headspace close to the tree was similar in all monitored

plots at the beginning of the season; however, after the bark beetle
infestation of plot C on June 16th, their emission significantly
increased in the vicinity of the affected trees and was significantly
higher than in the non-infested trees for all three sampling
days (Figure 4A). Nevertheless, monoterpene emissions declined
during the third week of the attack. The progress of individual
monoterpene emissions was similar to the progress of their sum
(Supplementary Figure 2).

The total content of monoterpenes extracted from the phloem
of infested and non-infested trees did not differ significantly during
the first and third weeks of bark beetle attack on June 16th and June
30th (Figure 4B). When focusing on individual monoterpenes,
in the third week of the attack, statistically significant differences
were found only in the content of 1-carene, which increased, and
camphene, which decreased in infested trees. The other monitored
monoterpenes were less abundant in plot C, even before bark beetle
infestation, and maintained the same trend after infestation on
June 16th, but not significantly lower in infested plot compared to
non-infested (Supplementary Figure 3).

The resin flow values recorded for individual trees showed
a large variability; therefore, after the bark beetle attack, no
significant differences were observed between infested and non-
infested trees (Figure 4C). In the second week after attack detection
(June 24th) was resin flow higher in infested trees, but this
difference was not significant.

PCA score plots were created from metabolomic profiles
recorded via GC-EI-TOF-MS from SPME-sampled volatiles on
June 24th. The PCA (Figure 5A) explained 51% of the variance in
data. A clear separation of two (from three) infested trees is shown.
Following PLS-DA (Figure 5B) had parameters R2X(cum) = 0.48,
R2Y(cum) = 0.97, Q2(cum) = 0.74, and connected variable
importance plot revealed a higher abundance of terpinolene, α-
and β-pinene, campholenal, limonene, sabinol, pinocamphone,

Frontiers in Forests and Global Change 06 frontiersin.org15

https://doi.org/10.3389/ffgc.2023.1197229
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1197229 July 6, 2023 Time: 15:4 # 7
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FIGURE 3

Physiological and physical characteristics of individual trees during the experimental period. (A) Mean daily sap flow. (B) Mean tree increment 1 week
before sampling. (C) Mean bark surface temperatures on the north side of individual trees; boxplots summarize measurements on respective
experimental days at the freshly attacked subplot C (red color) and control subplots A, B, and D (green color). Individual measurements are
represented by circles (subplot C) and squares, triangles and diamonds for subplot A, B and C. Numbers on the top are p-values of differences
between attacked and non-attacked plots calculated by post hoc Tukey analyses based on repeated measures GLMM separately for pre-attack and
attack period; bottom numbers are p-values of differences between attacked and non-attacked plots estimated by post hoc Tukey analyses in the
given sampling time. The dashed line represents the period when the bark beetle attack was detected (from June 16th).

and myrtenal, which had the highest importance for separation
between the two classes of samples. Compounds of I. typographus
aggregation pheromone, cis-verbenol, and 2-methyl-3-but-2-enol
were not detected under the setup conditions on any experimental
day.

All the statistical details are listed in Supplementary Table 2.

3.4. Beetle catches in passive traps and
beetle acceptance bioassays

The total number of beetles caught in passive traps was low for
most of the observational period. Before the detection of the beetle
attack, none or only few beetles (no more than one) were recorded.
In the first week of the attack (June 16th), the number of beetles
caught in traps mounted in the infested plot C increased steeply.
The difference in the number of beetles caught in traps in the
non-infested control plots A, B, and D was significant (p = 0.001)
(Figure 6A).

The non-choice bioassay in Eppendorf tubes was performed
three times per season after the detection of a beetle attack on June
16th. Therefore, all data from plot C were collected from infested
trees and compared with non-infested trees in control plots A, B,
and D. The number of beetles actively boring in the infested trees
was significantly higher (p = 0.002) than that in non-infested trees
in the first week of attack (Figure 6B). In the second and third
weeks, bark beetle behavior was similar in both studied groups of
trees. All the statistical details are listed in Supplementary Table 2.

4. Discussion

Previous studies have explored the connection between
transpiration deficit (expressed as changes in sap flow) and tree
defense ability in relation to bark beetle attack (Kirisits and
Offenthaler, 2002; Matthews et al., 2018). Our study focuses on
the characteristics of infested Norway spruce stands and reports
a significant decrease in sap flow during the development of
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FIGURE 4

Tree defense characteristics recorded on individual trees on different experimental days. (A) Sum of peak areas of selected monoterpenes emitted by
bark (B) Sum of peak selected monoterpenes extracted from phloem - performed three times per season; (C) resin flow per 24 h; boxplots
summarize measurements on respective experimental days at the freshly attacked subplot C (red color) and control subplots A, B, and D (green
color). Individual measurements are represented by circles (subplot C) and squares, triangles and diamonds for subplot A, B and C. Numbers on the
top are p-values for differences between attacked and non-attacked plots calculated by post hoc Tukey analyses based on repeated measures
GLMM separately for pre-attack and attack period; bottom numbers are p-values for differences between attacked and non-attacked plots
estimated by post hoc Tukey analyses in the given sampling time. The dashed line represents the period when the bark beetle attack was detected
(from June 16th).

I. typographus infestation, consistent with previous findings (Wang,
1983). However, sap flow changes are variable and influenced
by factors such as diurnal or seasonal rhythm (Nehemy et al.,
2023), selective tree cutting (Özçelik et al., 2022), terrain shape,
and soil properties affecting water supply (Netherer et al., 2015).
Direct measurement of sap flow changes using the heat balance
method (Čermák et al., 2004) for early detection of beetle attack
is impractical due to technical, cost, and knowledge requirements.
Further research is needed to develop more easily measurable
indicators of sap flow changes.

Before infestation, the tree stem increment measured in plot
C was lower compared to other plots, likely due to lower soil
water potential recorded not only in the study season 2020 but
also in the two previous seasons, 2018-2019. This relationship
between water availability and stem increment in conifers has
been previously reported (Ježík et al., 2015). However, we did not
conclude that lower water availability in plot C caused the later

bark beetle attack since the trees were not exposed to real drought
stress because the soil water potential did not decrease below
−1500 kPa (Lopushinsky and Klock, 1974; Brodribb et al., 2014).
After infestation was detected, the growth of infested trees stopped
while the healthy trees continued to grow, as the affected trees
saved carbon resources for defense by limiting growth investment
(Hartmann et al., 2013). Although tree stems increment changed
significantly in infested trees, it is challenging to measure such small
alterations in diameter (less than 1 mm) using basic dendrometry
methods on the scale of a large forest area on the individual trees.
Terrestrial laser scanning could provide a solution but is currently
capable of monitoring seasonal increments greater than 1 mm in
diameter (Yrttimaa et al., 2023).

The higher bark temperature recorded in plots A, B, and D
before infestation most likely indicates that these plots were located
in areas within the inner forests that received more sunlight.
The bark surface temperature correlated with the air temperature
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FIGURE 5

(A) PCA scores plot, showing the distribution of samples, according to the whole collected profile of volatiles, measured using GC-EI-TOF-MS.
Individual points represent measurements of trees on June 24th in freshly attacked plot C (red color) with three trees/Non-attacked plots A- three
trees, B-three trees, D-three trees (green color). Hoteling ellipse with significance level 0.05, t1 and t2 stand for the two most important
components, together explaining 51% of the variance in data (B) PLS-DA scores plot showing the distribution of samples in the discriminant analysis
model, using attacked vs. non-attacked as classes.

FIGURE 6

Absolute numbers of active I. typographus in the field. (A) Number of beetles caught in passive traps in the long-distance attraction bioassay.
(B) Number of beetles that attacked trees in Eppendorf tubes in the no-choice bioassay; boxplots summarize measurements on respective
experimental days at the freshly attacked subplot C (red color) and control subplots A, B, and D (green color). Individual measurements are
represented by circles (subplot C) and squares, triangles and diamonds for subplot A, B, and C. Numbers on the top are p-values of differences
between attacked and non-attacked plots calculated by post hoc Tukey analyses based on repeated measures GLMM separately for pre-attack and
attack period; bottom numbers are p-values of differences between attacked and non-attacked plots estimated by post hoc Tukey analyses in the
given sampling time. The dashed line represents the period when the bark beetle attack was detected (from June 16th).

overall (Stříbrská et al., 2022), but it increased significantly in
affected trees after infestation. However, the average difference
compared to the intact trees was only about 0.4◦C, which is
below the sensitivity threshold of the sensors. A study by Majdák
et al. (2021) reported using an infrared-based thermo-camera to
distinguish infested trees on forest edges. They found a significant
difference in bark surface temperature (reaching tens of◦C) only on
the sun-exposed side of infested trees on days when air temperature
reached 34◦C and bark surface temperature was nearly 60◦C.
The temperature difference on the shaded side was lower, and
on colder days (maximum air temperature of 24◦C), it was not

significant, which corresponds with our findings. Still, scanning the
bark surface temperature from a distance using a Thermo camera
can be considered a promising method for detecting infested trees.
However, the methodology needs optimization, including using
cameras with sufficient resolution, and measurements should be
taken only in certain conditions on the sunny sides of stems on
warm days with high sun radiation.

Resin exudation in the conifers, expressed as a measurement
of resin flow, has been reported several times as a factor of the
defense ability of trees against wood-boring insects (Turtola et al.,
2003; Boone et al., 2011). However, resin flow varies significantly
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within a tree, limiting its usefulness as a defense marker. In our
study, plot C had insignificantly higher resin flow after infestation,
suggesting induced tree defense. However, the differences in resin
flow between infested and intact trees were non-significant, making
it an unreliable early attack detection marker. These findings align
with the low incidence of resin flow as a visual symptom of
I. typographus infestation (Kautz et al., 2023).

In volatiles collected close by infested and non-infested Norway
spruce were the most abundant monoterpene fraction of resin,
which was likely due to opening of constitutive resin storage.
The main monoterpenes were α- and β-pinene in coelution with
myrcene, 1-carene, limonene, β-phellandrene and camphene, The
summary emission of these compounds steeply increased in 1 week
after infestation and remained higher till the end of the study
similarly to previous findings by Ghimire et al. (2016) and Jaakkola
et al. (2022). Notably, I. typographus pheromone 2-methyl-3-buten-
2-ol and cis-verbenol were not detected in the overall headspace,
probably because its content was below the detection limit of the
used technique.

A detailed metabolomic study of the GC-EI-TOF-MS
chromatograms of volatiles collected during the second week after
infestation (June 24th) was conducted to identify compounds
that may be significant for infestation. In addition to the major
spruce monoterpenes mentioned earlier (namely terpinolene, α-
and β-pinene, campholenal, and limonene), the infested trees
were clustered based on a higher abundance of minor oxygenated
monoterpenes (here sabinol, pinocamphone, and myrtenal) in two
of the three infested trees. The increase of these compounds is a
consequence of stress-related oxidations of spruce monoterpenes
caused by the beetle attack and ophiostomatoid fungi infestation
(Schiebe et al., 2019; Kandasamy et al., 2023). Even though internal
cross-validation of the PLS-DA model provided a predictive
power of 74%, owing to the lack of natural replication, the relative
abundance of these compounds is only mentioned as a possible
marker of tree infestation.

Despite the significant increase in the amount of emitted
monoterpenes by infested trees, the content of the same
monoterpenes extracted from the phloem does not increase
significantly after infestation. This impairing has been previously
reported by Hietz et al. (2005) and Stříbrská et al. (2022). It can
be explained by the fact that while the immediate emission after
tree infestation is due to the opening of constitutive resin storage,
the tree response by the biosynthesis of defense compounds against
herbivore attack in phloem requires a longer time. The content of
major monoterpenes in the phloem, except 1-carene, was found
to be higher in intact trees even before the attack when these
compounds were individually analyzed. This corresponds with the
theory that higher content of toxic monoterpenes can make trees
more resistant in certain circumstances (Raffa et al., 2016).

Based on these findings, there are two possible approaches for
using volatile compound emissions as markers for early detection
of tree infestation. The first approach involves using non-specific
sensors that react to the concentration gradient of the most
abundant compounds emitted by an infested tree. Pilot studies have
already been carried out using an electronic nose with sensors based
on metal oxidation or a change in electrical conductivity, showing
promising potential for application in broad-scale volatile organic
compound (VOC) scanning, including mounting on unmanned

aerial vehicle (UAV) carriers (Paczkowski et al., 2021; Hüttnerová
et al., 2023).

The second principle involves focusing on compounds
specific to infested trees, such as oxygenated monoterpenes and
I. typographus pheromones. However, the detection of these
compounds requires sensitive and specific methods, such as a
special mass detector (Juráò et al., 2017) or a special sampling
device (Křůmal et al., 2016), which are not available for field testing
yet.

Our observations from the non-choice assay align with research
on bark beetle attack dynamics (Byers, 1989). According to this
theory, male beetles show a preference for boring into trees that
have already been attacked, particularly in the initial week of
infestation when their conspecifics have already overcome the trees‘
defense abilities. However, as the infestation progresses and the
resources of the trees are depleted, and the previously attacking
beetles enter the mating and egg-laying stages, the beetles no longer
prefer the previously infested trees. In the context of bark beetle
management, the acceptance of trees determined in a non-choice
assay is not suitable. However, it can still provide insights into the
dynamics of bark beetle attacks.

On the other hand, passive traps have been shown to be
potentially useful for early attack detection, as catching beetles
significantly increases when trees are infested. The use of unbaited
traps for bark beetle research is rather uncommon. Changes in
the biodiversity of saproxylic beetles (including bark beetles) with
respect to the age of the windblown trees were evaluated using a
window trap by Wermelinger et al. (2002). The same type of trap as
in our research was used by Schlyter et al. (1987a) for a behavioral
study on I. typographus. The sensitivity of the trap and the fast-
signaling of changes in the aggregation activity of I. typographus
evidenced the suitability of this method for early attack detection
research.

The present study had a limitation due to the small number
of I. typographus attacked Norway spruce trees, which were
monitored. However, despite this limitation, this study observed
significant differences in physiological, defense biochemistry, and
bark beetle acceptance characteristics between infested and non-
infested trees.

We evaluated the potential use of the measured characteristics
as a supporting research tool for developing early bark beetle
attack detection methods through the following three approaches.
The first is scanning the bark temperature of infested trees using
a high-resolution thermal camera when used on days with high
temperatures and sun irradiation. The second is monitoring the
abrupt increase in the emission of defense monoterpenes using
non-specific sensors, such as an electronic nose, with the possibility
of carrying it on the UAV. Specific detection of spruce stress and
I. typographus aggregation pheromone compounds can also be
considered. The third is installing passive traps for the automatic
detection of trapped or attacking beetles.

The determination of certain measurable characteristics of
freshly infested trees can provide opportunities for developing
alternative methods of early attack detection as a complement to the
traditional and functional approach of early detection of infested
trees through personal inspection of boring dust and entrance
holes. Follow-up studies should focus on a deeper understanding
of the physiological and defense mechanisms in relation to
the detailed stage of bark beetle infestation. Future research is
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required to obtain practical outcomes that would lead to improved
management of bark beetle outbreaks, especially the technical
development of the solutions suggested in the present study.
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Forests form rich biodiversity hubs that act as large reservoirs of natural carbon.

The spatial and temporal heterogeneity of these complex habitats of forest

floors provides ecological services of immense socio-economic importance.

However, these socio-economic ecological hotspots are incessantly exposed

to multifarious abiotic, biotic, and anthropogenic disturbances, amongst which

unpredictable forest pest (i.e., bark beetle) outbreak account for the loss of

vegetation and microbiome of measurable quantum. The importance of the

microbiome in forming an inseparable functional unit of every host and shaping

its interaction with other partners has been well realized. Interestingly, forest

pests, including bark beetles, are also reported to rely on their endosymbiotic

microbial partners to manipulate tree defense machinery. In contrast, the

microbiome forming the holobiont of trees also regulates the overall function

and fitness of the host and significantly contributes to tackling these challenging

situations. Nevertheless, how the holobiont of trees directly or indirectly influence

beetle holobiont is still an enigma. The present review shall elaborate on the

role of microbial tools in enhancing tree performance and fitness, which helps

counter beetle damage. Besides, it shall also emphasize exploiting the role of

microorganisms in acting as biocontrol agents in shielding the trees against beetle

destruction. The application of endosymbiont-mediated RNA interference (RNAi)

in working with two-tier specificity for controlling beetle devastations shall be

discussed as new-age technological advances. All explanations are expected

to put forth the potential of the microbial toolbox in offering better and more

sustainable beetle management strategies in the future.

KEYWORDS

forest microbiome, bark beetles, biocontrol agents, microbial volatile organic
compounds (MVOCs), coleopteran forest pest management, RNA interference (RNAi),
symbiont-mediated RNAi (SMR)

1. Introduction

Forests are immensely important due to their socio-economic and ecosystem services
(Pan et al., 2013). They serve the ecosystem as a large sink of atmospheric carbon, supporting
wildlife habitats and timber industries. Over the years, the resilience and functionality
of forests have been under constant threat due to rise in temperature, drought stress,
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windthrows, wildfire outbreaks, and pest infestation (Hlásny et al.,
2019). Amongst them, pest infestation is reported to account
for measurable losses and hence has drawn the concern of
forest scientists. Climate-driven intensification in the frequency,
severity, and cyclicity of coleopteran forest pest outbreaks has
already been documented (Haynes et al., 2014; Hlásny et al.,
2021). Besides, bark beetles have expanded their geographic range
by exploiting native hosts previously unexplored due to low
temperatures (Ramsfield et al., 2016; Howe et al., 2021). Such
insect range expansion also causes widespread tree mortality,
decreasing forest productivity and carbon storage and enhancing
discharges from the decayed dead wood. Frequent pest outbreaks
cause severe forest depletion triggering trajectories outside the
resilience limits of forest ecosystems, causing irreversible ecosystem
regime shifts (Dhar et al., 2016). With global climate change,
beetles have become a formidable threat to forest health worldwide
(Hlásny et al., 2021). The most common aggressive tree-killing
coleopteran beetles that have caused widespread damage to millions
of trees across Europe and North America include Emerald
Ash Borer (EAB) [Agrilus planipennis (Fairmaire)] (Coleoptera:
Buprestidae), Asian long-horned beetle (ALB) [Anoplophora
glabripennis (Motschulsky)] (Coleoptera: Cerambycidae), and
bark beetles (Coleoptera: Curculionidae: Scolytinae); ambrosia
beetle, mountain pine beetle (Dendroctonus ponderosae Hopkins),
Eurasian spruce bark beetle [Ips typographus (L.)]. Several
conventional approaches, such as sanitation felling (Seidl et al.,
2016), removal of wind-felled trees (Leverkus et al., 2018), and
deployment of pheromone-baited and poisoned log tripod traps
(Wermelinger, 2004) have been deployed for the last few decades
to manage the pest population levels within endemic limits.
However, the success of all these approaches remains questionable
in managing the recent outbreaks (Hlásny et al., 2019). Several
synthetic pesticides have been used to suppress forest beetles
over the past years (Holmes and MacQuarrie, 2016; Liebhold
and Kean, 2019). However, many of these compounds caused
other problems, such as environmental pollution, detrimental
effects on non-target organisms, and caused widespread pesticide
resistance (Billings, 2011; Bras et al., 2022; Avanasi et al., 2023;
Kenko et al., 2023). Therefore, questions have been raised about
the effectiveness of conventional phytosanitary measures. Hence,
eco-friendly alternatives for controlling these devastating tree-
killing forest beetles have become the utmost priority in the
Anthropocene.

Very interestingly, the associations between the forest beetles
and their bacterial and fungal endosymbionts are reported to add
to the host fitness by aiding them to feed on recalcitrant bark
tissues, provide protection against pathogens and increase intra and
intercellular communicability that helps to overpower host defense
and build up pest population (Cheng et al., 2018; Chakraborty et al.,
2020a,b). Besides, forest flora, predominantly comprised of trees,
house a huge population of diverse microorganisms both above
and belowground. These forests exhibit a wide and dynamic spatial
and temporal heterogeneity ranging from short-term seasonal
events to long-term standing developments, allowing diverse
microorganisms to thrive in these variable habitats and form an
ecosystem of rich bio-resources (Baldrian, 2017). Soil microbiome
and plant-associated above and below-ground microbiome, also
called the “plant holobiont,” are believed to directly influence plant
metabolism and defense that ultimately demarcate the expanses and

limitations of an ecosystem (Soldan et al., 2022). Soil microbial
profiles are often similar to gut microbial profiles of herbivorous
insect pests suggesting a direct link between soil and insect pest
microbiome, which are often independent of tree host microbiome
(Hannula et al., 2019). On the contrary, studies conducted on
forests and woodlands have shown spruce beetle infestation to
modify soil microbial assemblage by altering edaphic properties
(Custer et al., 2020). Such resemblance of microbial composition
across several microbiomes indicates bottom-up and top-down
connectivity amongst food webs. However, how these microbial
assemblies add to the functionality of diverse holobionts is still
an enigma. Research on the role of plant and pest holobionts and
their microbial exchange is increasing (Pirttilä et al., 2023). Few
knowledge bases are being translated from laboratory benchtops
to agricultural fields. However, owing to the vastness of forests,
comparative analyses and similar studies conducted on forests
are notably less (Figure 1). Research on agriculture is prioritized
as it meets the growing population’s demand and ensures food
security. Hence, forest research is trailing behind (Figure 1), but
it has recently gained more interest. The beneficial impact of a less
polluted environment is vivid after COVID-19 pandemic. Forests
play a major role in our environment, and saving forest ecosystemss
from insect pests are crucial. However, limited studies have been
conducted on forest pests and their microbiomes (Figure 1). There
are a handful of forest pest genomes published so far. Besides, how
the edaphic and other environmental cues alter the soil biodiversity
and biogeochemical performance in forest ecosystems is also
understudied (Chen et al., 2019). The present review shall look
into the different aspects of tree-beetle interaction, emphasizing
the role of forest beetles and their associated microorganisms
that directly or indirectly influence the host-beetle-microbiome
tripartite relationships. Using such knowledge for future forest
beetle management is also debated (Figure 2).

2. Coleopteran insect pests: a
constant threat to forest flora

Forest beetles, such as Asian longhorn beetles, EAB, bark
beetles, etc., have been reported to have taken advantage of
current climate change and caused substantial damage to the
forests worldwide (Aukema et al., 2011; Meng et al., 2015;
Hlásny et al., 2019). EAB is a tree-killing forest insect pest from
northeastern Asia that recently entered North America via solid
wood packaging material (Poland and McCullough, 2006). EAB
has killed millions of North American Ash (Fraxinus sp.) and is
recognized as one of the costliest insect pest invaders in American
history (Aukema et al., 2011). EAB larvae disrupt the translocation
of water and essential nutrients in the attacked plants during
phloem and cambium feeding (cambio-xylophages), killing Ash
trees within 3–4 years of infestation (Haack et al., 2002). Like EAB,
the Asian longhorn beetle (A. glabripennis), native to China and
Korea, is a globally known invader with the potential to thrive on
more than 100 species of trees (Meng et al., 2015). If uncontrolled,
the ALB population is believed to cause tremendous economic
losses (in billions of dollars) (Pedlar et al., 2020). Fascinatingly,
the trunk injection of imidacloprid (systemic insecticide) was
documented to be effective against ALB infestation. However,
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FIGURE 1

Comparative analyses of numerical data of studies on plant-microbe-pest interaction of typical habitats versus forest areas over the past decade.
The source of publications is core collections indexed in the Web of Science (January 2023).

the cost and environmental impact of using chemical pesticides
jeopardize such strategies, which demand better eco-friendly
alternatives for ALB management (Avanasi et al., 2023).

The forest beetles, primarily bark beetles (Coleoptera:
Curculionidae: Scolytinae), feed as larvae and adults in the
phloem of trees and woody shrubs (Coulson, 1979), have caused
widespread coniferous tree mortality and severe economic losses

around the globe (Sun et al., 2013). Bark beetles are thought
to destroy more trees than all other natural factors combined
(Franceschi et al., 2005). Furthermore, these insects are enormous
profiteers of global climate change, as increasing temperatures
have contributed to historically unprecedented beetle outbreaks,
killing hundreds of millions of conifer trees (Raffa et al., 2008).
One important tree-killing species is I. typographus, which has
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FIGURE 2

Schematic illustration projecting the probable roles of the microbial toolbox in developing a direct or indirect defense of forest trees against beetle
infestation.

decimated more than 170 million m3 of spruce in Europe over
the last 65 years (Økland et al., 2016). During outbreaks, the
beetle population surpasses a critical threshold and overwhelms
the defensive capacity of individual trees in pheromone-mediated
mass-attacks (Wermelinger, 2004). Males are the pioneering sex
that selects trees, tunnels into the bark to make a mating chamber
and produces aggregation pheromones while detoxifying fierce
spruce defenses. Females are attracted to the pheromones and
ingest large quantities of well-defended spruce tissues as they
chew out ∼10 cm long tunnels in the inner bark where they
deposit their eggs (Wermelinger, 2004; Schebeck et al., 2023).
Despite their enormous economic and ecological importance, the
exact mechanisms by which these tiny insects can overwhelm the
defenses of giant conifer trees are still unknown (Krokene, 2015).
Only limited studies provided molecular insights into bark beetle
adaptive strategies (Liu et al., 2022; Naseer et al., 2023; Tholl et al.,
2023; Zaman et al., 2023).

3. Microbial symbiosis: ecological
benefits

The recipe for such adaptive success intended for thriving
under the bark is often hinged on the association with microbial
mutualists that benefit its host by feeding on recalcitrant

plant material, protecting against pathogens, and enhancing the
inter-and intraspecific communications (Chakraborty and Roy,
2021; Singh et al., 2021; Picciotti et al., 2023). Interestingly,
microorganisms exhibit extremely short generation times and
thus possess rapid evolutionary rates compared to multicellular
organisms. Hence, they can evolve various metabolic pathways
and adapt to diverse ecological niches. Multiple studies suggest
mutualistic associations with microbes in coleopteran forest pests;
however, rigorous experimental validation remains lacking. Thus,
the exact mechanisms or the molecular dialogue during symbiosis
enabling the spectacular destructiveness of tree-killing forest
beetles is still unknown (García-Fraile, 2018). However, it is
already established that microorganisms could give their host
a substantial advantage over non-symbiotic competitors in the
severe interspecies competition. Insects, including forest beetles,
cannot survive without their associated microbes. Hence, such
microorganisms can be alternative targets for controlling forest
beetles (García-Fraile, 2018; Rupawate et al., 2023). Although, in
most cases, these symbiotic associations are species-specific and
fine-tuned on the ecological requirements of their host, targeting
symbionts for pest management reduces the chances of non-target
effects (Douglas, 2007; Chung et al., 2018).

The advent of high throughput omics technology such as
genomics, metagenomics, meta-transcriptome, meta-proteomics,
and metabolomics has provided exciting insights into the function
of the microbiome in forest beetle ecology and evolution. It
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has been possible to characterize the full spectrum of biological
diversity of previously hidden habitats, including inside plants
and insects. This has opened up fascinating new research fields,
such as the study of phytobiomes, i.e., all microbial diversity in
and around plants (Ledford, 2015), and endomicrobiomes, i.e.,
primarily gut symbionts of different animals (Adams et al., 2013).
Many studies suggest that microbes in and around an insect’s
body are more critical to its success than was once believed
(Picciotti et al., 2023). Symbiotic bacteria and fungi have been
found to play essential roles in many processes, including the
breakdown of food (Scully et al., 2014; Lee et al., 2015), protection
against plant defenses (Ceja-Navarro et al., 2015; Howe and
Herde, 2015) and fungal pathogens (Cardoza et al., 2006), and
even affecting insect reproduction and development (Vavre and
Kremer, 2014). For instance, in some North American bark beetle
species, the endomicrobiome is critical for the digestion of plant
tissues, breakdown of plant defenses (especially terpenes), and
parts of pheromone production (Adams et al., 2013; Boone et al.,
2014). Adams et al. (2013) conducted a shotgun metagenomic
sequencing analysis of microbiota in the mountain pine beetle, a
severe pest of pine, and detected enrichment in bacterial genes
involved in diterpene degradation. Also, most of these genes
were derived from Gamma-proteobacteria and Beta-proteobacteria
(genus Burkholderia) (Adams et al., 2013). Coupled with this
culture-independent analysis, they isolated terpenoid-degrading
bacteria from mountain pine beetle gut belonging to the bacterial
genera Serratia, Rahnella, and Brevundimonas.

Moreover, symbiont-mediated terpenoid degradation in the
large pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae),
in vitro and in vivo analyses is already reported (Berasategui
et al., 2017). In conjunction with physiological confirmations, the
metagenome and metatranscriptome investigations have identified
microbial genes involved in the detoxifying symbiosis in beetle
systems (Itoh et al., 2018). This opens up the opportunities to
search for essential microbial genes within tree-killing beetles, give
vital survival services, detoxify terpenes, and aggregate pheromone
production in EAB, ALB, and other targets beetles that pose a
constant threat to forests globally under the influence of climatic
changes. Such genes of microbial origin can be targeted to
formulate eco-friendly strategies to control the beetles via symbiont
management (Rupawate et al., 2023). For instance, targeting
horizontally transferred genes to manage whitefly, Bemisia tabaci
(Gennadius) (Hemiptera: Aleyrodidae) (Wang and Luan, 2023).
The work on genetic engineering of honeybee gut microbiota shows
the feasibility of such an approach (Leonard et al., 2018; Chhun
et al., 2023). Although there is increasing scientific literature on
the importance of symbiotic microorganisms in forest beetles that
evolved from our perspective of viewing them as a holobiont,
the idea of decoding such knowledge into developing forest pest
management tools is still limited.

4. Tree defense against coleopteran
forest beetles

Statistical records suggest that tree mortality is caused by the
sporadic outbreaks of the beetle population, which under natural
environmental conditions, remain confined within endemic limits

(Raffa et al., 2008). Such restrain in the beetle population is
attributed to the intrinsic surveillance and defense system of the
host trees (Krokene et al., 2013; Whitehill and Bohlmann, 2019).
Minor fractions of aggressive beetles that usually thrive on dead and
decayed wood tissues are known to succeed in overwhelming host
defense and colonizing tree trunks under conducive conditions,
while semi-aggressive and facultative parasitic members complete
their life cycle primarily on weak and/or dead trees (Krokene
et al., 2013). Beetles are reported to entrap the host immune
system by employing pheromone-mediated mass attack. Symbiotic
microbes residing in the beetle gut collaborate with the host
beetle in devastating tree defense (Six and Wingfield, 2011). Beetle
mass outbreaks are reported predominantly in coniferous forests
where colonization is predominantly found on the bark tissues.
Successful establishment of the beetles on its prospective hosts is
achieved in a phase-dependent manner where the first stage is to
inhibit the pest by the preformed defenses. The second stage is to
compartmentalize the attackers by inducible defenses. The third
stage means sealing damaged areas, while the last stage imparts
systemic acquired resistance to tackle consecutive outbreaks (Eyles
et al., 2010). Heavy impregnation of lignin and suberin polymers
in the periderm of bark regions are reported to provide preformed
constitutive defense against invasion and establishment of beetle
pests, while the inducible defense is offered by chemicals such
as tree metabolites, proteins and enzymes (Franceschi et al.,
2005; Keeling and Bohlmann, 2006). The conifer stem anatomy
offers a highly structured natural barrier for the invading beetles
(Figure 3). The bark is the primary site of conifer defense. The
bark tissue is known to impart mechanical support and also
supply photosynthates. Besides, the specialized cells of the inner
secondary phloem named polyphenolic parenchyma cells (PP),
lignified sclerenchyma cells, cells with calcium oxalate crystals,
resin ducts and the connecting radial cells, contribute to providing
resistance against beetle aggression (Franceschi et al., 2005). The
sap wood also contains a few resin ducts that help act as sources
of inducible chemical defenses (Krokene et al., 2013; Whitehill
and Bohlmann, 2019). The defenseless vascular cambium plays a
pivotal role in tissue differentiation and supplying needful cells to
outer bark region and inner sapwood region. Hence, damage of the
said region due to beetle infestation leads to irreversible loss and
ultimately death of the host conifer (Franceschi et al., 2005).

Chemical signaling has been known to impact almost all
facets of species-species interaction. Amongst several chemicals,
terpenoids, and phenolics stored in resin ducts, PP cells
and secondary phloem are considered to modulate beetle-tree
interaction (Keeling and Bohlmann, 2006). Terpenoids are reported
to have mutually exclusive bidirectional roles of acting as flavoring
and venomous agents for beetles from time to time. On one
hand, they assist the beetles in locating compromised hosts and
exhaust their immune system, while on the other hand, they
form a formidable barrier against their mass colonization and
attract their predators and competitors (Gitau et al., 2013; Zhang
et al., 2013). Besides terpenoids, tree phenolics are also known to
induce immune responses upon beetle infestation (Krokene et al.,
2013). Different secondary phenolic compounds, such as soluble
stilbenes and flavonoids, condensed tannins, polyphenols, and
structural lignin polymers, modulate host defense. Majority of these
secondary metabolites are produced via the shikimic acid pathway,
where carbohydrate metabolism is connected to producing the

Frontiers in Forests and Global Change 05 frontiersin.org27

https://doi.org/10.3389/ffgc.2023.1182834
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1182834 July 20, 2023 Time: 15:19 # 6

Gupta et al. 10.3389/ffgc.2023.1182834

FIGURE 3

A schematic graphic illustration shows tree defense against forest beetle destruction and the role of soil microbiome and tree holobiont in providing
indirect host resistance in a forest ecosystem. The unidirectional dashed arrows show the unidirectional regulation of the aerobic environment with
its different biotic and abiotic components of soil, the tree host, tree holobiont, and beetle holobiont. The bidirectional arrows show bidirectional
regulation between the soil microbiome tree holobiont and the host tree. The interrogation sign shows unknown roles and regulations of the tree
holobiont and soil microbiome with beetle endosymbiont. Red, purple, and pink stars indicate soil, rhizosphere/endosphere, and phyllosphere
microbiome, respectively. These star indicators have been used to mark the microbiome services they provide in a forest ecosystem. The small
square-marked boxes of tree trunks have been enlarged to highlight the different layers of tree trunk sections. The roles of different layers of bark in
providing defense against attacking beetles are elaborated in brief.

primary precursor aromatic amino acid of all secondary phenolics,
the phenyl alanine (Ralph et al., 2006).

Over the past two decades, research has defined different
types of acquired resistance mechanisms in forest trees, especially

conifers, that have made them resistant to consecutive attacks
(Whitehill and Bohlmann, 2019; Mageroy et al., 2020). Two such
defense mechanisms are reported in conifer hosts, one induced
upon fungal attack while the other upregulated following treatment
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with the phytohormone methyl jasmonate (MeJA) (Wilkinson
et al., 2019). Although defense priming has provided experimental
evidence in sufficiently equipping the immunogenic memory of a
host plant, similar studies showing comparable results in real-world
ecological contexts of forest regions are still not adequate. Besides,
the long generation time of forest trees makes it hard to quantify
the fitness versus allocation costs (Neilson et al., 2013). Moreover,
the priming-induced decline in a symbiotic relationship that
otherwise imposes additional fitness costs on trees by increasing
their vulnerability toward pathogenic attack also questions the
sustainability of priming as a defense measure in forest backdrops
(Martinez-Medina et al., 2016). Despite of highly structured defense
system of forest trees, the devastating bark beetles manage to
bring on mass killings mainly by exploiting their own bacterial
and fungal symbionts (Krokene, 2015; Zaman et al., 2023). In
contrast, tree hosts are also shelter-providers to a large number of
microorganisms referred to as the “tree holobiont”(Soldan et al.,
2022). These microorganisms are also supposed to significantly
contribute to shaping “tree health” and “immunity.”

5. Role of microbiome in boosting
tree fitness: indirect protection
against beetle damage

The role of microbiome in shaping the entire biological world
and its communication with all other biotic entities have been well
established (Berg et al., 2020; Singh et al., 2021). Plants depend
on beneficial microorganisms to enhance their stress tolerance and
pathogen resistance. The discovery and refinement of technological
tools as well as continuing upgradation of understanding has
provided re-definitions of “microbiome” and “microbiota” where
any and every eukaryote is considered to have an inseparable unit
referred to as “second genome” or “holobiont” or “meta-organism,”
and likewise, death of any and every organism is considered as
“dysbiosis” and loss of biodiversity comprising of its entire meta-
organism (Lakshmanan et al., 2014; Stegen et al., 2018; Berg et al.,
2020). Hence, the addition and/or alteration of microbial entities
could result in significant alterations in the immune signaling
cascade and lead to a paradigm shift in the health and productivity
of the primary host (Bello et al., 2018). The following sections shall
elaborate on the potential roles of the microbiome in developing
tree resistance against beetle destruction.

5.1. The role of the below-ground
microbiome and its potential for forest
insect pests management

Plants being stationary, are predominantly dependent on their
roots for their development from the onset of the seed emergence
stage. These roots are exposed to a plethora of microorganisms both
externally (by soil and rhizospheric organisms) as well as internally
(by endophytic organisms) (Leach et al., 2017). Among the external
members, soil microbes influence almost all spheres of below and
aboveground ecosystems directly by altering the plant performance
and/or indirectly by modulating the mutualistic or pathogenic

interactions which ultimately impact host fitness (Pieterse et al.,
2016).

The belowground microbiome of a forest comprises biotic
entities present in various habitats ranging from soil, in close
proximity to tree roots and within their rhizosphere, in litter, in
deadwood, on the rock surfaces, inside rock clefts, etc. (Baldrian,
2017). Amongst all habitats, forest soils are known to regulate
microbial behavior to a large extent. The spatial diversity of
microorganisms of forest top soils is controlled by primarily two
driving factors (1) soil and litter chemistry that regulate the primary
metabolism of soil bacteria and fungi; and (2) the attributes of
above-ground vegetation that alter the performance and efficiency
of soil microorganisms (Tedersoo et al., 2016). Spatial variation
and the relative effects of the above-mentioned two driving
factors cause wide diversity in microbial abundance and activity,
often restricting them to form “activity hotspots” comprising of
the rhizosphere, the detritusphere and biopores which altogether
regulate the soil ecosystem of vast expanses (Baldrian, 2014;
Kuzyakov and Blagodatskaya, 2015). Soil microbiota comprises
predominantly fungal and bacterial members. Fungal members
belong to the ectomycorrhizal class (EMF), which forms almost
one-third of the soil microbial biomass and adds to 50% of
dissolved organic carbon (Ekblad et al., 2013). These EMFs not
only supply nitrogen and phosphorus from the dead organic
remains to their symbiotic hosts but also form communication
networks with different tiers of vegetation. Besides, they also
form mats and establish interaction with other saprophytic fungi,
endobacteria belonging to the Alphaproteobacteria group, amoeba,
nematodes, microarthropods, enchytraeids, etc., that influence the
mycelial growth to a large extent (Bertaux et al., 2005; Anderson
et al., 2014). Archaebacteria of class Thaumarchaeota, known to
recycle nitrogen, are dominantly found in acidic soils with low
ammonia (Levy-Booth et al., 2014). However, soil microorganisms
exhibit variation across soil profiles, natural seasonal variation,
as well as variation due to abrupt climatic eruptions referred
to as “hot moments” of climatology and also variation due to
anthropogenic disturbances (Kuzyakov and Blagodatskaya, 2015;
Žifčáková et al., 2016). The saprophytic basidiomycetes solely
or in combination with ascomycetes microfungi and bacterial
members belonging to Proteobacteria and Bacteroidetes act
as decomposers of the recalcitrant plant remains (Eichlerová
et al., 2015). Deadwood, rock surfaces and rock clefts harbor
cord-forming saprophytic basidiomycete decomposers, low pH
tolerant bacteria, macrophages, commensal bacterial population,
lignicolous lichens, and EMF members. These microorganisms
aid in the decomposition and/or weathering process of organic
matter or rock surfaces and deliver essential mineral nutrients to
the host trees (Johnston et al., 2016). Metagenomic data of the
forest soil samples from the Lipova region of the Czech Republic
showed a predominance of Ectomycorrhiza (ECM), fungal
basidiomycetes population, and acidophilic bacterial members are
known to control nitrogen-supply mediated metabolical processes
of aboveground vegetation (Chakraborty et al., 2023). However,
the assemblage and activity of microorganisms of bulk soil
and/or soil adjoining specialized habitats are exposed to constant
modification during soil degradation, changing climatic conditions
and throughout anthropogenic disturbances to provide resilience
against any form of opposing selection pressure (Liu et al., 2019).
On the contrary, the climatic alteration cause changes in above
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ground vegetation which in turn modify their root exudations of
antimicrobials and/or semiochemicals to attract suitable microbes
of the soil toward their rhizospheric zones and/or beyond to the
endospermic regions to help the host trees tackle the stressful
situation by triggering induced systemic responses (ISR) and
recruiting antagonistic/parasitic approaches against pathogens and
pests (Rolfe et al., 2019).

Apart from soil microbes, rhizospheric and endophytic
microbes significantly promote plant growth and immunity to
above-ground vegetation. Besides, they are known for their crucial
role in manipulating belowground microbial assembly, building
up “activity hotspots” and controlling ecological parameters of
vast expanses (Baldrian, 2014; Kuzyakov and Blagodatskaya,
2015). Comparative studies carried out with temperate, boreal
and Mediterranean forest trees revealed that apart from fungal
members belonging to EM class, Ascomycetes and saprophytic
Basidiomycetes, bacterial members belonging to Actinobacteria,
Acidobacteria, Firmicutes, Bacteroidetes, Proteobacteria, etc. were
found in the rhizosphere, endosphere, and root adjoining soil
samples. All of this microbiota, in a concerted manner, played
essential roles in nutrient acquisition, proper allocation, and
recycling within host trees, thus helping maintain their vigor
and vitality (Pettifor and McDonald, 2021). Detailed analyses
conducted on the belowground microbiota and its effect on tree
health using both conventional (community-based physiological
fingerprinting methods) and advanced molecular approaches
(epifluorescence-based assays and meta-omics techniques),
explained multidimensional beneficial roles of belowground
microorganisms (Mercado-Blanco et al., 2018). The mycorrhizal
fungi [EMF and arbuscular mycorrhiza fungi (AMF)], the
endophytic bacterial and fungal members and diazotrophs
secrete different volatile organic compounds (VOCs), which
altogether alter soil attributes for promoting soil-water-tree growth
relations, increase soluble phosphate and availability of iron
by synthesizing siderophores, increase root absorbing surface
area by hundred to thousand manifold, control the invasion of
pathogens and alien species, increase hormonally mediated tree
tolerance toward both abiotic and biotic stressors, manipulate
internal ROS levels to decrease self-decay, influencing primary
and secondary metabolic signaling to balance optimum growth
of host trees, etc. Besides, these microorganisms also account
for properly restoring destroyed forest lands, upholding plant
succession and maintaining above and belowground biodiversity
(Rasmann et al., 2017; Mercado-Blanco et al., 2018). In addition,
the belowground microbiome is also known to contribute to
induced priming and inheritance of above-ground host plants
(Tiwari et al., 2022). However, similar generalized interpretations
in the case of forest trees are complex since plant-soil-microbe
inter-chemistry is still not very clearly understood in different
forest ecosystems. Moreover, studies on Arabidopsis spp. and
other uncultivated species showed that belowground microbiomes
controlled above-ground herbivores and cell-feeding pests through
complex plant-soil-feedback (PSF) (Pineda et al., 2020). However,
such PSF studies in forest backgrounds are still challenging due to
the unavailability of growth and survival models of complex and
bio-diverse microbial populations that are perpetually exposed
to dynamic environmental factors. Considering the established
role of the belowground microbiome, including soil, rhizosphere,
and endospermic members in well-studied agricultural backdrops,

it is time to think about how this information can aid in
boosting tree resistance against biotic stresses, including beetle
attacks. Preparation of beneficial soil microbial formulations for
boosting tree health and stress resistance and testing them in the
experimental forest can be a good starting point, and inspirations
can be taken from agricultural set-ups (Naik et al., 2020; Tyagi et al.,
2023). However, the primary task will be ensuring the survival and
establishment of soil microbial inoculants in the forest (Kaminsky
et al., 2019).

5.2. The role of above-ground
microbiome and its potential for forest
insect pests management

In the forest ecosystem, above ground microbiome comprises
of foliar parts, stem and bark regions, and reproductive parts
(Sieber, 2019). The foliar microbiome consists of beneficial and
pathogenic fungi (epiphytic and endophytic), bacteria (pathogenic,
commensal, and symbiotic) and invertebrates. All these organisms
are known to help in hormone-mediated plant growth, nitrogen
uptake, plant protection through antibiosis and control secretion
of organic volatiles, thus regulating inter and intra-communication
signaling and overall host metabolism. Studies on forest regions
of temperate zones suggest that epiphytic fungi belonging to
Ascomycetes and Basidiomycetes classes mainly colonize on foliar
surfaces. These epiphytic fungi depend on host exudations, spores,
pollens, organic aerosols, and honeydew released from sucking
pests for their nutrition (Menkis et al., 2019). Besides, endophytic
and pathogenic fungi also comprise a large portion of the foliar
microbiome. However, the segregation between the endophyte
and pathogen often becomes inconspicuous as many pathogenic
fungi (for example, rust, mildew, and snow mold-forming fungi)
remain as harmless endophytes for long periods, while many
defined pathogens restrict themselves as local endophytes under
unfavorable conditions (Schlegel et al., 2018; Sieber, 2019).
The climatic conditions, location, precipitation amounts, host
specificity, site specificity, host, and tissue age, interaction with
other symbiotic and/or pathogenic entities and anthropogenic
hindrances define the etiology of the endophyte/pathogen (Sieber,
2021).

In forests, the phyllosphere is inhabited by many bacterial
members who reside in phylloplane and inside the phyllotelma
region (Doan and Leveau, 2015). They belong to class
Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria,
Firmicutes, Saccharibacteria, etc. (Doan and Leveau, 2015).
The phyllosphere forms an extreme habitat for the bacterial
population because of its variable phylloplane topology, trichome
physiology, uneven nutrient distribution within its internal
segments, and direct exposure to extreme environmental factors.
The phyllosphere bacteria depend on minimal amounts of carbon,
nitrogen, volatiles, etc., for nutrition (Vorholt, 2012). Some
bacteria may be transitory, while others may be permanent
residents (Suslow, 2002). However, the biodiversity of the
bacterial population supporting selection or drift is driven by
co-evolutionary parameters of both the phyllobiome and the host
(Vacher et al., 2016). The phyllobacteria are known to influence
host metabolism and fitness either by producing or by altering
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the production of host phytohormones IAA (indole acetic acid),
cytokinins, ABA (abscisic acid), etc., which control host growth,
transportation of nitrogen, and regulate the opening and closure of
stomata thus controlling the entry of pest and pathogens (Holland,
2011; Munemasa et al., 2015; Romero et al., 2016). On the other
hand, Pseudomonas syringae and many other epiphytic bacteria
are known to emit bio-surfactants that form biofilm and help in
their uniform distribution on the host phylloplane. Besides, they
alter cuticle permeability and increase water and sugar availability,
supporting their growth (van der Wal and Leveau, 2011). Besides,
the phyllobacteria are also known to enhance the abiotic stress
tolerance of the host, prime the host against biotic stressors and
promote ISR-mediated resistance response (Schlechter et al.,
2019). However, research regarding how these phyllofungi and
phyllobacteria and their community dynamics shape host health is
still being extensively performed (Gong and Xin, 2021).

In addition to the above, the microorganisms (fungi and
bacteria) associated with reproductive structures are also known
to contribute remarkably to transgenerational microbiome transfer
(Ren et al., 2021). The microbiome (mainly endophytes) associated
with reproductive structure may result from vertical transfer
from the maternal parent or environment through horizontal
transfer (Perlmutter and Bordenstein, 2020). Maternal effects of
the reproductive microbiome are reported to impact offspring
physiology and its relation with other abiotic and biotic factors,
especially in choosing pollinators (Vannette and Fukami, 2016). It
also helps in nullifying the ill effects of climatic change (Burgess
and Marshall, 2014). Interestingly, the reproductive microbiome
inherited through vertical transfer is also known to bring about
epigenetic modifications such as histone methylation and modulate
the expression of many stress-induced host tree genes (Vivas et al.,
2015). In the case of horizontal microbiome transfer, the role of soil
in transferring microbes to seeds, the role of sap-sucking and non-
sap sucking insects and animal pollinators in introducing and/or
relocating microbes to visiting floral parts as well as agents (wind,
water, human interference, etc.) influencing the pollination appears
to be very important in building up of tree holobiont (Ren et al.,
2021).

Experimental studies involving multitrophic interaction
comprising microbial pathogens, symbionts, higher-order pests,
and predators showed that complex, stressful situations induced
localized and systemic defensive responses in tree hosts and
enhanced their metabolic performance compared to trees exposed
to symbionts only (Saleem et al., 2017). This view was further
supported by dysbiosis of Pseudomonas population during insect
herbivory, which enhanced immune responses in Cardamine
hirsuta (Humphrey and Whiteman, 2020). Such information at
the level of above-ground microbial interactions with trees can be
used to formulate strategies to boost tree resistance against pests
and pathogens using microbes (Ajayi and Olufolaji, 2023). For
instance, priming inducible defenses can protect Norway spruce
(fungus-inoculated trees) against tree-killing bark beetles (Mageroy
et al., 2020). However, more research endeavors toward delineating
the role of microbes at tree holobiont in various forest ecosystems
define the feasibility of such a management approach. A better
understanding of the defense priming of forest trees and its impact
on establishing beneficial microbial communities and vice versa
will be an essential starting point for assessing the ecological
implication of forest tree defense priming. Such knowledge is

vital to employ defense priming as an effective pest management
strategy in forestry.

6. Biological control of coleopteran
forest pests: exploring the microbial
toolbox

6.1. Entomopathogenic control of
coleopteran beetles

Coleopteran forest insect pests cause economic damage
and impact the environment globally. Chemical pesticides have
been a primary measure for pest control for several decades.
Extensive use of these pesticides and the constant evolutionary
dynamics of insects have introduced pesticide resistance in
target species and have killed several non-target beneficial
insects (Usta, 2013; Bras et al., 2022). Therefore, integrated pest
management (IPM) strategies have emerged to address these
issues and promote environmentally friendly, economically viable,
socially acceptable, and sustainable alternatives to managing
insect pests (Dara, 2019). Classical biological control involves the
introduction of living organisms such as parasitoids, predators, and
entomopathogenic microbes to reduce pest populations (Eilenberg
et al., 2001; Heimpel and Mills, 2017). Entomopathogenic
microbes are the natural regulators that significantly control
insect populations (Roy and Cottrell, 2008). Entomopathogens as
pest regulators controlling insect pest populations efficiently and
are environmentally safe for non-target organisms (Hajek and
Bauer, 2009). Several invasive forest pests belonging to the order
Coleoptera, Hemiptera, Hymenoptera, and Lepidoptera have been
a target for management practices, including using microbes as a
control agent.

Over the years, several entomopathogenic microbes, including
viruses, bacteria, fungi, and nematodes, have been commercially
produced and used augmentatively as microbial pesticides (Lacey
et al., 2015). Baculoviridae has been commercially developed
significantly among the different viral pesticides (Moscardi et al.,
2011). For instance, the naturally occurring host-specific virus
Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV)
successfully controls the outbreak gypsy moth (L. dispar
L.) population in the United States, Canada, and Germany
(Boukouvala et al., 2022). Similarly, other nucleopolyhedroviruses
are used to control forest pests, including balsam fir sawfly
(Neodiprion abietis Harris), pine sawfly (Neodiprion sertifer
Geoffroy), and Douglas-fir tussock moth (Orgyia pseudotsugata
McDunnough) (Moscardi, 1999). Compared to viral pesticides,
entomopathogenic bacteria are commercially less available (Jurat-
Fuentes and Jackson, 2012). For example, Bacillus thuringiensis
var. kurstaki (Btk) is commercially used worldwide to suppress
defoliate forest insects and crop pest outbreaks (Hajek and Van
Frankenhuyzen, 2017). However, suppressing the pest population
is temporary and requires repeated application of Btk during the
outbreak event (Hajek and Van Frankenhuyzen, 2017). Btk is
extensively used to control forest pests, including spruce budworm
(Choristoneura fumiferana Clemens); gypsy moth (L. dispar),
and other lepidopteran forest defoliators (Polanczyk et al., 2017).
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The phytophagous beetle Chrysomela tremulae Paykull is also
susceptible to Btk, but large-scale field trials have not yet been
conducted against these forest pests (Génissel et al., 2003). Other
commercially used entomopathogenic bacteria include Serratia
entomophila, Paenibacillus spp., and Chromobacterium subtsugae
(Lacey et al., 2015). Besides entomopathogenic viruses and
bacteria, fungal entomopathogens or mycoinsecticidal products
from entomopathogenic fungi are widely used as microbial
control agents for managing insect populations, including many
bark beetle species belonging to genera Dendroctonus, Ips, and
Polygraphus (Mann and Davis, 2021). Several fungal species,
including Beauveria bassiana, Metarhizium anisopliae, Hirsutella
guignardii, Isaria farinosa, and Lecanicillium lecanii are applied to
manage bark beetle populations (Mann and Davis, 2021). These
fungi species are considered generalist pathogens that are virulent
against arthropods that occupy trees, vegetation, and forest soil.
For instance, Metarhizium brunneum is deployed against Asian
longhorn beetles in field trials in China and North America
(Hajek and Bauer, 2009). Similarly, the isolate of B. bassiana
is virulent against the EAB (Hajek and Bauer, 2009). These
entomopathogenic fungi can be isolated from different sources
and cultured to produce a large number of spores for potential
commercial applications. In contrast to other entomopathogenic
organisms that kill the insects after their entry through wounds or
after ingestion, the entomopathogenic fungi infect the insect host
by penetrating directly into their exoskeleton (Lacey et al., 2015).
Furthermore, host-associated microbes from genera Wolbachia
spp., Arsenophonus spp., Cardinium spp., Rickettsia spp., and
Spiroplasma spp. often influence host reproduction by inducing
cytoplasmic incompatibility parthenogenesis, feminizing genetic
males, or male-killing (Lv et al., 2021). Using such reproductive
manipulators may be an alternative strategy for controlling insect
pests (Chakraborty and Roy, 2021).

Despite extensive research on entomopathogenic microbes
as biological control agents, their large-scale commercial
field application is limiting due to several abiotic and biotic
factors, including susceptibility to ultraviolet light, low moisture,
temperature, plant secondary metabolites, and competition with
other microorganisms that impact their pathogenicity (Mann and
Davis, 2021). The colonization of entomopathogens is achieved
mainly by foliar spraying, injections, seed soaking, and soil
drenching (Peña-Peña et al., 2015; Qayyum et al., 2015; Jaber
and Araj, 2018; Rondot and Reineke, 2018). Direct spraying with
entomopathogens or their products to the affected area is the most
common and straightforward application practice that requires
less equipment. Nevertheless, such an approach is not consistently
successful in the field application against wood-boring insects due
to their susceptibility to environmental conditions. Hence, adding
protectants such as polymeric matrix, plant oils, clays, and humic
acid increases the viability of the entomopathogenic microbes
under laboratory and field conditions without compromising
their pathogenic efficiency (Barta et al., 2018; Kaiser et al., 2019).
However, spraying an entire forest to control pest infestation is
not feasible. Alternatively, using an auto dissemination device to
control pests is a promising strategy. The semiochemical baited
traps connected to an auto-inoculative device attract insect pests
and then contaminate them with the entomopathogen before
returning to the environment to infect other pests horizontally
or vertically (Dimbi et al., 2003; Ekesi et al., 2007). Such a

dissemination approach can protect entomopathogens from UV
exposure and rainfall (Srei et al., 2017). For instance, B. bassiana
is introduced into a spruce bark beetle, I. typographus population,
via an auto-inoculative device (Kreutz et al., 2004). Although
this approach is reported to be successful against bark beetles,
the studies are done on relatively smaller areas and for a shorter
period. Hence, large-scale field applications need to be done to
assess the feasibility of such a strategy further. Additionally, the
formulations used should effectively kill all the developmental
stages of the bark beetle. The formulation targeting only adults
will not effectively control the beetle population unless they die
before reproduction (Mann and Davis, 2021). Another approach is
establishing entomopathogenic fungi as plant endophytes through
colonization through seed and root coatings (Brownbridge et al.,
2012). For example, studies reported that soil fungi, B. bassiana,
colonize the pine trees via root and are pathogenic against invasive
bark beetle species (Hylastes ater Paykull and Hylurgus ligniperda
Fabricius) in New Zealand (Brownbridge et al., 2012).

Until recently, the identification of potential pathogens was
limited to microscopy-based methods. With the advancement
in genome sequencing and other molecular tools like
RNA interference (RNAi), the construction of recombinant
entomopathogenic microbial strains with enhanced virulence
can be achieved (Chen et al., 2015; Wang et al., 2020). The
advent of “omics” technologies can provide new insights into
interactions among entomopathogens, host insects, and their host
trees (Akinola and Babalola, 2020). Identifying new diverse host-
specific entomopathogens and improvements in mass production,
formulation, and their application will increase the commercial
application of entomopathogens for efficient and sustainable use
in pest management. Furthermore, deploying entomopathogens
in combination with inorganic insecticides will help mitigate the
risk of resistance and reduce environmental pollution caused
due to excessive use of chemical pesticides (Al-Ani et al., 2021).
An alternative strategy is integrating entomopathogens with
semiochemicals and other natural enemies of insect pests that
successfully manage insects (Sharma et al., 2019). A similar
concept was recently used to protect agricultural and forest crops
from the Arvicolinae rodents in Sweden (Villalobos et al., 2022).
Although the application of entomopathogens or their products
serves as a promising alternative to chemical pesticides, more
research is still needed in this field to delve into their services
thoroughly. Moreover, the policy and regulations for applying
entomopathogens must be addressed apart from the laboratory
and field trials.

6.2. Microbial volatile organic
compounds as biocontrol agents

Like plants and animals, microbes also emit a plethora of
VOCs in their metabolic processes (Bitas et al., 2013; Binyameen
et al., 2021). These microbial volatile organic compounds
(MVOCs) belong to different chemical classes, including alkenes,
alcohols, ketones, benzenoids, pyrazines, sulfides, and terpenes
(Kanchiswamy et al., 2015; Schmidt et al., 2015; Lemfack et al.,
2018). The volatile compounds are perceived as chemical signals
to communicate with each other, partaking in innumerable
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interactions and contributing significantly to multitrophic
interaction (Schulz-Bohm et al., 2017). Insect chemoreception
of microbial emissions plays a major role in insect-microbe
interactions. Apart from the gustatory, tactile, and visual cues,
insects have evolved complex chemosensory systems influencing
their behavior. Insects are primarily sensitive to odors that endorse
nutrient resources, predators, competitors, potential mates, and
suitable habitats (Price et al., 2011; Davis et al., 2013). Although
the ability of odor to influence animal behavior is long studied,
relatively little is known about MVOCs as behavioral cues. MVOCs
have been shown to influence insect behavior, such as stimulating
insect oviposition, signaling food sources, and attracting or
repelling insects (Davis et al., 2011). Furthermore, insects possess
pheromones that are emitted by or associated with microbial
symbionts (Tillman et al., 1999; Wertheim et al., 2005). Studies
reported that gut symbionts could produce compounds used as
pheromones by their hosts (Hunt and Borden, 1990; Zhao et al.,
2015). For instance, yeasts, Hansenula capsulata Wickerham, and
Pichia pini (Holst) Phaff are associated with the mountain pine
beetle, D. ponderosae. They can convert cis and trans-verbenol
to the anti-aggregation pheromone verbenone in female beetles
(Frühbrodt et al., 2023). The anti-aggregation pheromone signals
subcortical population density and terminates aggregation and
mass attack on host trees (Hunt and Borden, 1990). Mycangial
fungi and yeast Candida nitrophila play a similar role in the
southern pine beetle and spruce beetle, respectively (Brand et al.,
1976; Leufvén et al., 1984). Nevertheless, the mutualistic fungus,
Grosmannia clavigera, associated with D. ponderosae produces
sterols that act as a precursor for the biosynthesis of aggregation
pheromones by the females (Bentz and Six, 2006). Interestingly,
fungal volatiles also increased the attractiveness of host-mimic
volatiles to the invasive ambrosia beetle, serving as insect lures.
Despite the importance of microbes in insect life, combining
chemical, and microbial ecology in entomological research is
rarely explored. Integrating these approaches in entomological
research, harnessing the MVOCs, and targeting these candidates
is a promising avenue for controlling insect pests (Baig et al.,
2023). Currently, less than 10% of MVOCs have been functionally
described (Lemfack et al., 2018), suggesting the immense potential
of MVOCs in sustainable pest management.

Furthermore, bark beetle-associated ophiostomatoid fungi
release many volatile compounds such as terpenoids, aliphatic
alcohols, fusel alcohols, and aromatic compounds, which positively
or negatively influence the behavior of bark beetle, I. typographus
(Kanchiswamy et al., 2015; Kandasamy et al., 2016; Tanin et al.,
2021). Hence, they can potentially be used in bark beetle control
(Table 1). For instance, studies revealed that the symbiotic
fungi (ophiostomatoid fungi such as Grosmannia europhioides,
Endoconidiophora polonica, Grosmannia penicillata, Ophiostoma
bicolor, and Ophiostoma piceae) of I. typographus modify the
spruce bark volatile profiles by converting the major spruce
monoterpenes into a blend of oxygenated derivatives that are
more attractive to bark beetles (Kandasamy et al., 2023). Other
interesting fungal associates of bark beetles from the genera
Geosmithia spp. (e.g., Geosmithia morbida), and Fusarium spp.
(e.g., Fusarium circinatum), might serve as a nutrient source for
the beetles and exhibit antimicrobial activity, but their role in
ecological implications is unknown (Teetor-Barsch and Roberts,
1983; Bezos et al., 2018; Zhang et al., 2022). Interestingly,

bark beetle species vector primarily either Geosmithia spp. or
ophiostomatoid fungi, but not both. The less water content of
the tree substrate facilitates Geosmithia association (Williams and
Ginzel, 2021). Several independent studies have proven Geosmithia
species as stable and dominant symbionts of many bark beetles
worldwide, as described thoroughly in a recent comprehensive
review article (Kolaøík and Hulcr, 2023). Interestingly, Geosmithia
is an ecological complement to the ophiostomatoid fungi and co-
evolved with bark beetle vectors (Kirschner, 2001). However, the
molecular basis underlying Geosmithia–bark beetle symbiosis and
the potential of volatile compounds (MVOCs, Table 1) identified
from Geosmithia for bark beetle management demands further
investigation (Blood et al., 2018; Kolaøík and Hulcr, 2023).

The MVOCs, recognized by beetles to aid in host finding, are
currently being tested along with aggregation pheromones in the
forests in Czechia. In this study, the fungal volatile and aggregation
pheromone used in the dispensers worked synergistically to attract
I. typographus (Figure 4; Jirošová et al., 2022). However, such
preliminary observations must be further experimentally validated
by performing similar field experiments across different forest
locations under different forest management regimes. It is worth
mentioning here that beetle symbiosis is very complex, and the
behavior of the bark beetles varies depending on the bacterial or
fungal species, host tree, and stage of the beetle life cycle (Popa
et al., 2012; Briones-Roblero et al., 2017; Netherer et al., 2021).
Further research on the bark beetle symbiosis by taking advantage
of affordable omics and electrophysiological methodologies will
facilitate the deployment of MVOCs as management tools.
Identifying and characterizing next-generation semiochemicals
from microbial origin, their emission pattern, and the influence
of target forest pests, including bark beetles, will ensure the
sustainability of the pest management products based on MVOCs.
It is interesting to point out that the influence of such MVOCs
on the natural enemies of the coleopteran insect pests needs
to be evaluated for their greater exploitation for safeguarding
conifer and other broadleaved forests. Nevertheless, local laws and
the government must approve the ecological consequences and
environmental risks of introducing fungal or bacterial cultures and
other potential pathogenic microbes into the forest ecosystem via
traps and dispensers. Deploying fungal MVOCs, in general, may
avoid these issues as they can be used in pheromone dispensers
similar to the field trials in Czechia. Such deployments of MVOCs
as attractants or deterrents (i.e., push and pull strategy) alone or
in combination with other types of existing semiochemicals could
substantially improve our chances against forest pests.

7. Molecular control of coleopteran
insect pests: a new age
technological development

7.1. Targeting coleopteran forest insect
pest symbionts using RNAi

A surge of recent studies highlighted the contribution
of the symbiotic microbiome underlying insect adaptations,
ecological niche expansion, and invasion. However, symbionts
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TABLE 1 A list of fungal volatile organic compounds (VOCs)* from different coleopteran beetles that can be applied for management practices.

Coleopteran pest Fungal associates Name of the substances References

Family: Nitidulidae

Carpophilus humeralis
(Fabricius)

Candida shehatae, Candida guilliermondii Ethanol, acetaldehyde,
2-methyl-1-propanol, 1-propanol, ethyl
acetate, 3-methyl-1-butanol,
2-methyl-1-butanol, 3-hydroxybutanone

Nout and Bartelt, 1998

Carpophilus hemipterus
(Linnaeus), Carpophilus
humeralis (Fabricius),
Carpophilus lugubris
(Murray)

Saccharomyces cerevisiae Acetaldehyde, ethanol, 1-butanol,
1-propanol, 2-methyl-1-propanol,
2,3-butanediol, 2-methyl-1-butanol,
3-methyl-1-butanol, ethyl hexanoate,
acetoin, ethyl octanoate, acetic acid,
ethyldecanoate, 2-phenylethanol, ethyl
acetate, isopentyl acetate

Lin and Phelan, 1991; Phelan and Lin,
1991; Nout and Bartelt, 1998

Carpophilus lugubris
(Murray)

Candida krusei Not determined Blackmer and Phelan, 1991

Family: Ciidae

Cis bilamellatus (Wood), Cis
boleti (Scopoli), Cis nitidus
(Fabricius), Octotemnus
glabriculus (Gyllenhal)

Coriolus versicolor, Ganoderma
adspersum, Piptoporus betulinus

1-Octen-3-ol, (R)-curcumen, α-cedrene Guevara et al., 2000

Family: Cantharidae

Malthodes fuscus (Waltl) Fomes fomentarius, Fomitopsis pinicola Rac-1-octen-3-ol Jonsell and Nordlander, 1995

Family: Curculionidae

Dendroctonus frontalis
(Zimmermann)

Endoconidiophora polonica, Grosmannia
clavigera, Grosmannia penicillata,
Grosmannia europhioides, Ophiostoma
bicolor, Ophiostoma piceae, Ophiostoma
minus, Ophiostoma ips, Leptographium
abietinum

Isoamyl alcohol, isoamyl acetate,
2-phenylethanol, 2-phenylethyl acetate

Brand et al., 1977; Sullivan et al., 2007

Dendroctonus frontalis
(Zimmermann),
Dendroctonus ponderosae
(Hopkins), Dendroctonus
rufipennis (Kirby), Ips
typographus (Linnaeus)

Grosmannia europhioides, Ophiostoma
bicolor, Ophiostoma piceae, Ophiostoma
minus

1-Hexanol Dickens et al., 1992; Borden et al., 1998;
Poland et al., 1998; Zhang et al., 1999

Dendroctonus brevicomis
(LeConte), Dendroctonus
ponderosae (Hopkins),
Dendroctonus rufipennis
(Kirby), Ips pini (Say)

Grosmannia penicillata, Ophiostoma
piceae, Ophiostoma ips

Benzyl alcohol Borden et al., 1998; Huber et al., 2001

Dendroctonus ponderosae
(Hopkins)

Hansenula capsulata, Pichia pinus Verbenone Hunt and Borden, 1990

Dendroctonus frontalis
(Zimmermann)

Hansenula holstii 3-Methyl-1-butanol; 3-methylbutyl
ethanoate, 2-phenylethanol, 2-phenylethyl
acetate

Brand et al., 1977

Dendroctonus armandi (Tsai
& Li), Pityogenes bidentatus
(Herbst)

Grosmannia penicillata (E)-β-Caryophyllene Byers et al., 2004; Zhang et al., 2010

Dendroctonus ponderosae
(Hopkins), Dendroctonus
rufipennis (Kirby), Ips pini
(Say)

Ophiostoma ips Acetophenone Pureswaran et al., 2000; Pureswaran and
Borden, 2004

Dendroctonus ponderosae
(Hopkins)

Endoconidiophora polonica, Grosmannia
clavigera, Grosmannia penicillata,
Grosmannia europhioides, Ophiostoma
bicolor, Ophiostoma piceae, Ophiostoma
minus, Ophiostoma ips, Leptographium
abietinum

2-Phenylethanol Pureswaran et al., 2000

(Continued)
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TABLE 1 (Continued)

Coleopteran pest Fungal associates Name of the substances References

Dendroctonus brevicomis
(LeConte), Dendroctonus
frontalis (Zimmermann),
Dendroctonus pseudotsugae
(Hopkins)

Ophiostoma ips Acetophenone Pureswaran and Borden, 2004; Erbilgin
et al., 2008

Ips typographus (Linnaeus) Endoconidiophora rufipennis Isoamyl acetate, sulcatone, 2-phenethyl
acetate, geranyl acetone, geranyl acetate,
citronellyl acetate, (R)- and (S)-sulcatol,
(R)-sulcatol acetate

Lindmark et al., 2023

Endoconidiophora polonica 3-Methyl-1-butyl acetate,
2-methyl-1-butyl acetate,
3-methyl-1-butanol, 2-methyl-1-butanol,
2-phenylethanol, 2-phenylethyl acetate

Kandasamy et al., 2019

Grosmannia penicillate, Grosmannia
europhioides

2-Methyl-3-buten-2-ol Zhao et al., 2015

Ips subelongatus
(Motschulsky)

Endoconidiophora polonica, Ophiostoma
bicolor, Grosmannia clavigera

Geranyl acetone Zhang et al., 2007

Xyleborus ferrugineus
(Fabricius), Xyleborus
glabratus (Eichhoff)

Ambrosiozyma sp. Not determined Hulcr et al., 2011

Xyleborus glabratus
(Eichhoff)

Raffaelea lauricola 4,5-Dimethyl-1-hexene, 7
ethylidenebicyclo [4.2.1] nona-2,4-diene,
4-ethenylidene-6,6-dimethylbicyclo
[3.1.1]heptane, 8-methylene
bicyclo[4.2.0]oct-2-ene

Simon et al., 2017

Xylosandrus crassiusculus
(Motschulsky), Xyleborinus
saxesenii (Ratzeburg)

Ambrosiella xylebori, Raffaelea lauricola Not determined Hulcr et al., 2011

Grosmannia clavigera, Ophiostoma ips,
Ophiostoma montium, Leptographium
longiclavatum

Acetoin Cale et al., 2016

Ophiostoma ips Ethyl cinnamate, ethyl benzoate,
2,3-dihydrobenzofuran, methyl cinnamate

Kandasamy et al., 2016

Grosmannia clavigera, Ophiostoma ips Verbenone Cale et al., 2019

Hylobius abietis (Linnaeus) Penicillium expansum 3-Methylanisole Azeem et al., 2013

Pityophthorus juglandis
(Blackman)

Geosmithia morbida Not determined Blood et al., 2018

*More information on VOCs was summarized in the following reviews: Davis et al. (2013), Kandasamy et al. (2016), and Cale et al. (2019).

can constrain the evolutionary potential by fostering niche
specialization; for instance, symbiont-aided detoxification of
caffeine by the gut bacteria (Pseudomonas fulva) enables coffee
berry borer beetles (Hypothenemus hampei Ferrari) (Coleoptera:
Curculionidae: Scolytinae) to thrive on unique caffeine-rich
coffee beans (Ceja-Navarro et al., 2015). There are copious
examples where symbionts aided their insect hosts to detoxify
entomotoxic compounds from plant origin from different insect
orders (Hosokawa et al., 2007; Xia et al., 2017; Cheng et al., 2018).
It is also documented that detoxifying symbionts confer pesticide
resistance in pest insects (Kikuchi et al., 2012; Cheng et al., 2017;
Bras et al., 2022). In the case of forest insect pests (Coleoptera),
symbiont-mediated detoxification of monoterpenoids such as
limonene or diterpene acids is also reported. Mountain pine
beetle (Coleoptera: Curculionidae), causing catastrophic damage
to pine forests (Pinus contorta and hybrid P. contorta × Pinus
banksiana), showed high expression of genes from the microbial

origin involved in diterpene degradation after shotgun DNA
sequencing (Adams et al., 2013). Most of these genes for diterpene
degradation originated from bacterial genera Serratia, Erwinia,
Rahnella, and Pseudomonas under Gammaproteobacteria and
genus Burkholderia under Betaproteobacteria (Adams et al., 2013).
Symbionts-mediated terpenoid degradation was also documented
in the H. abietis (L) (Coleoptera: Curculionidae) based on
in vitro and in vivo investigations (Berasategui et al., 2016,
2017). Serratia, Erwinia, and Rahnella were found within the
core bacterial community in H. abietis (L). Interestingly, a gut
bacteriome study on conifer-feeding bark beetles from the genus
Ips (Coleoptera; Curculionidae; Scolytinae) also documented the
same bacteria (Serratia, Erwinia, and Rahnella) within the core
microbial community (Chakraborty et al., 2020a). Hence, it can
be predicted that these symbiotic microbes perform a conserved
function, i.e., detoxification of host allelochemicals, in conifer-
feeding insect pests.
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FIGURE 4

Using MVOCs in bark beetle (Coleoptera: Curculionidae: Scolytinae) management. A typical way of trapping bark beetles in the forests by using
pheromone traps comprising fungal VOCs with or without beetle pheromones. Using MVOCs could enhance bark beetle capture substantially.

There are also reported symbionts offering defensive functions
for their insect hosts by protecting against pathogens. For instance,
filamentous actinobacteria are documented as defensive symbionts
in many insects due to their capacity to produce secondary
metabolites with antibiotic properties (Kaltenpoth, 2009; Seipke
et al., 2012; Qin et al., 2017; Rupawate et al., 2023). Symbiotic
bacteria (Streptomyces sp.) in southern pine beetle (Dendroctonus
frontalis Zimmermann) (Coleoptera, Curculionidae) produce
antifungal compounds against antagonistic fungi, Ophiostoma
minus (Scott et al., 2008). Furthermore, microbial symbionts can
protect their insects even against natural enemies (Flórez et al.,
2017; Wang and Rozen, 2018; Muhammad et al., 2019).

With the increase in the information about detoxifying
and defensive symbionts in pest insects, including forest insect
pests (Coleoptera), it is necessary to use that information to

formulate novel species-specific pest management opportunities.
With increasing genomes available for major forest pests (Powell
et al., 2021; Gagalova et al., 2022; Keeling et al., 2022) and
microbial genome sequencing advancements, the feasibilities for
conducting in-depth symbiosis studies, i.e., metatranscriptomic
and metaproteomic level, increased manifold. Such advanced
studies can delineate the metabolic exchange between beetles and
their symbionts (Liu et al., 2022; Salem and Kaltenpoth, 2022)
and offer exciting targets for future forest insect pest management
via molecular tools such as RNAi, a post-transcriptional gene
silencing mechanism suppressing protein formation by introducing
environmental RNA (Montgomery and Fire, 1998). Technically,
dsRNA can knock down key functional genes from symbionts
to intrude symbiosis, making the target pest more susceptible
to plant toxins or natural enemies (Chung et al., 2018). RNAi
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targeting symbiont genes is an intriguing idea worth dedicated
research efforts (Wang and Luan, 2023). However, there is a
significant concern about the environmental stability and biosafety
of RNAi-based wood-boring pest control products (Joga et al.,
2021; Mogilicherla et al., 2023; Singewar and Fladung, 2023).
Although the contribution of symbionts in the evolution of
bark beetles is unquestionable, targeting the symbionts inside
the beetles, completing most of their life underneath the bark,
is challenging and needs some intelligent strategy. Developing
a sophisticated, eco-friendly, species-specific delivery system for
dsRNA to reach its target will be crucial. Protection of dsRNA
can be obtained by coating it inside nanostructures such as
Chitosan, Carbon Quantum Dot, Silica nanoparticles, BioClay, etc.
(Das et al., 2015; Pugsley et al., 2021; Jain et al., 2022; Sandal
et al., 2023). Recent studies also documented the development
of catechin, poly-L-lysine, for optimizing dsRNA delivery against
target pests (Dhandapani et al., 2021; Yan et al., 2021). Such
biodegradable nano formulations open a possibility of safe and
efficient delivery of dsRNA to targets and often give protection
against dsRNases (i.e., cationic polymers) inside the pest. However,
spraying the nanoparticle-coated dsRNA is undoubtedly not the
most favorable option in forestry applications at the landscape
level.

Interestingly, using microbes (i.e., bacterial minicells) as
dsRNA carriers and for mass production seems a promising
alternative to pesticides (Guan et al., 2021; Whitten et al., 2023;
Xue et al., 2023). Unfortunately, investigation on these vesicles
for dsRNA delivery is limited; however, specific companies,
e.g., AgroSpheres,1 delve into such technology for dsRNA or
siRNA delivery for agricultural field applications. Another
attractive option might be the co-expression of viral-like
particles (VLPs) (Xue et al., 2023) and dsRNA inside the
bacterial cell to use in the forest or isolate dsRNA-containing
particles using the capacity of VLPs to self-assemble in vitro.
Replicating engineered viruses permit superior cellular uptake
and protection of the dsRNA in the extracellular environments
in the forest (Kroemer et al., 2015; Sun, 2015; Xue et al.,
2023), but after the COVID-19 pandemic, the approval of
such alternatives might encounter hurdles to receive societal
acceptance.

7.2. Symbiont-mediated RNAi: two-tier
specificity for enhanced coleopteran
forest insect pests control

A novel way to exploit the symbiotic associations for managing
forest pests (Coleoptera) is symbiont-mediated RNAi (SMR)
(Whitten et al., 2016). Strategies like feeding and injections
are labor-intensive, posing a significant limitation for practical
application. Alternatively, expressing dsRNA targeting specific
pest insects inside recombinant bacteria or yeast lacking RNase
III activity is a rewarding alternative when applied to the
food source (Tian et al., 2009; Zhang et al., 2019; Ma et al.,
2023). SMR is an advancement of this approach using symbiotic

1 https://www.agrospheres.com/

microbes as a carrier for the species-specific dsRNA delivery
against target pests (Whitten et al., 2016; Xue et al., 2023).
SMR has selective advantages over other strategies. Recombinant
bacteria can fail to establish themselves after entering the target
pest as they are alien inside the insect body (i.e., gut), and
the possibility of inducing an immune response is also high.
This limits the sustainable application as a minimum bacterial
cell number is required to stimulate a decent RNAi response
inside target pests. SMR technology will not have such issues.
After establishment, it helps continuous dsRNA synthesis inside
the pest, eliminating the necessity for repeated application for
longer living pest insects because the amplification of interfering
RNA is not possible due to the lack of RNA-dependent RNA
polymerases (RdRP) in an insect leading to transient RNAi
(Whitten and Dyson, 2017). It also facilitates the escape from
dsRNA degrading enzymes expressed in saliva and gut of many pest
insects based on the localization of SMR bacteria, or the dsRNA
produced continuously by symbionts can overwhelm the activities
of dsRNA degrading enzymes. There are already documented
successes for SMR against short and long-lived insects (Whitten
et al., 2016; Whitten and Dyson, 2017). Furthermore, SMR can
be transmitted horizontally to other members, i.e., engineered
Rhodococcus rhodnii expressing dsRNA transmitted horizontally
to other kissing bugs via ingestion of feces (Whitten and Dyson,
2017).

Species specificity of RNAi is one of the key advantages of
RNAi over other pest control strategies. SMR technology further
complements it as it enhances the specificity of RNAi. SMR
introduces two-tier specificity for RNAi; the first tier is from the
species-specific target dsRNA design, and the second is by selecting
the symbiont specific to the target pest. The inefficiency of true
symbionts outside the environment also minimizes the concern for
biosafety issues and their effect on non-target organisms. Although
SMR is intriguing, some key issues must be alleviated before taking
it to forest application (Elston et al., 2023; Whitten et al., 2023).
Understanding the true nature of insect-symbiont relationships is
fundamental for the success of SMR, as the optimal selection of
the symbiont for delivery of dsRNA is the key to success. The
information about the symbiont’s colonization potential (Engel and
Moran, 2013), cell number per insect and association with different
insect life stages is cardinal for the success of SMR technology. It is
worth mentioning that holometabolous insects (e.g., coleopterans,
dipterans, and lepidopterans) undergo a metamorphosis, implying
the loss and re-acquisition of symbionts that can limit the success
of SMR. However, with coleopteran forest pests, this might not
be an issue. The issue here might be the lack of studies on forest
pest symbiosis. For instance, only a few studies revealed the gut
microbial assemblage of bark beetles (Chakraborty et al., 2020a,b;
Cheng et al., 2023; Moussa et al., 2023). More in-depth studies are
necessary at the functional level, such as metatranscriptomics or
metaproteomics, to understand the molecular basis of symbiosis
within forest pests (Salem and Kaltenpoth, 2022). Identifying
symbionts with the possibility of in vitro culturing (Liu et al.,
2022) and manipulation is fundamental. The advent of genome
sequence data for a wide range of pest insects and their symbionts
undoubtedly facilitates in-depth studies on symbiosis. However,
more genome sequencing efforts for forest pests (Powell et al.,
2021; Gagalova et al., 2022; Keeling et al., 2022) and their
symbionts (Liu et al., 2022; Cheng et al., 2023) are required to
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develop SMR as a forest pest management tool in future. Another
major limitation of SMR is that often true symbionts are due
to genome reduction as a consequence of symbiotic tie-ups with
their insect host (McCutcheon and Moran, 2012; Boscaro et al.,
2017; Noh, 2021); hence they are not culturable and cannot be
engineered to express dsRNA. The technological development
in this area is impending and crucial for SMR against forest
pests.

8. Understanding of holistic
tree-beetle-microbe dialogue for
futuristic IPM

The rapid advancement of sequencing methodologies has
enormously increased microbiology research in the past few
decades. However, a vast number of the studies (approximately
50%) lack adequate details of experimental design (information
source: ESA 2020 conference presentation, titled: A synthesis of
insect-microbiome research). Thus, the requirement for standard
norms or protocols of metagenomic, metatranscriptomics, and
metaproteomic studies that can ensure the reliability and
reusability of the sequencing data is crucial. Besides, depositing
the obtained data in the appropriate public data repository is
also essential. Above all in-depth understanding of the plant
holobiont, beetle holobiont, and/or “plant-beetle-microbiome-
environment” interaction pyramid for protecting and improving
plant performance and managing beetle destruction is undoubtedly
critical. In addition, analytical evaluations of factors that are
likely to cause variation in data generation, such as nucleic
acid extraction method, sequencing platform used, primer pairs
used (i.e., 16S, ITS, and 18S studies) in microbial omics study,
insect handling procedure and material (whole body/gut, surface-
sterilized or not) and ecological factors such as phylogeny, sex, life
stage, diet, treatment, origin, etc., that are known to influence the
microbial community of insects, need to be sufficiently described.
Hence, mentioning the above information in the published report
is a prerequisite for accurately understanding the symbiosis
mechanism and using the information for management purposes.
The lack of good-quality bacterial and fungal databases for
microbial studies at a functional level is also considered a void in
forest-beetle-microbiome research.

Technological innovations such as SMR for the environmental
application of RNAi using symbiotic microbes as carriers (Zhang
et al., 2019) appear promising. Hence, bio-engineered microbes
could be applied in the forest for pest control and tree health
development in the near future. While we are at the onset
of such intriguing possibilities, the biosafety aspect for the
short- and long-term environmental impact of deploying such
genetically engineered microbes must be formulated under a
defined regulatory framework and evaluated in forest habitation.
Although risk assessment protocols exist for RNAi-based GM crops
or RNAi-based biocontrol products (De Schutter et al., 2022),
no published risk assessment protocol for GM microorganisms
obtained through targeted delivery of dsRNA has been reported.
Thus, certified regulatory agencies must formulate appropriate
risk assessment protocols for forest microbiome research. Such
protocols should also incorporate the short and long-term impact
of GM microbes on the forest ecosystem.

9. Conclusion

Even though safer GM microbes hold an excellent perspective
of the application instead of utilizing synthetic pesticides in
agricultural ecosystems, translation of the knowledge base from
agricultural fields to the forest is challenging because of landscape
enormity. Besides, knowledge of plant-soil feedbacks that largely
shape the soil and host microbiome in the forest is lacking.
Steering soil microorganisms in forest floors to assemble all
good things may be practically attainable only after extensive
in-depth experimentation. Thus, exploring and exploiting the
role of holobionts of forest tree hosts and their associated
beetle pests and implementing targeted bioengineering of beetle-
associated symbiotic microorganisms within the regulated legal
framework could help devise better management stratagem for
tackling the problem of Coleopteran insect pests-mediated forest
destruction in future.
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(2018). Behavioral responses of Pityophthorus juglandis (Coleoptera: Curculionidae:
Scolytinae) to volatiles of black walnut and Geosmithia morbida (Ascomycota:
Hypocreales: Bionectriaceae), the causal agent of thousand cankers disease. Environ.
Entomol. 47, 412–421. doi: 10.1093/ee/nvx194

Boone, C. K., Six, D. L., Zheng, Y., and Raffa, K. F. (2014). Parasitoids and
dipteran predators exploit volatiles from microbial symbionts to locate bark beetles.
Environ. Entomol. 37, 150–161. doi: 10.1603/0046-225x(2008)37[150:padpev]2.0.
co;2

Borden, J. H., Wilson, I. M., Gries, R., Chong, L. J., Pierce, J., Harold, D., et al. (1998).
Volatiles from the bark of trembling aspen, Populus tremuloides Michx.(Salicaceae)
disrupt secondary attraction by the mountain pine beetle, Dendroctonus ponderosae
Hopkins (Coleoptera: Scolytidae). Chemoecology 8, 69–75.

Boscaro, V., Kolisko, M., Felletti, M., Vannini, C., Lynn, D. H., and Keeling,
P. J. (2017). Parallel genome reduction in symbionts descended from closely related
free-living bacteria. Nat. Ecol. Evol. 1, 1160–1167.

Boukouvala, M. C., Kavallieratos, N. G., Skourti, A., Pons, X., Alonso, C. L.,
Eizaguirre, M., et al. (2022). Lymantria dispar (L.)(Lepidoptera: Erebidae): current
status of biology, ecology, and management in Europe with notes from North America.
Insects 13:854. doi: 10.3390/insects13090854

Brand, J., Bracke, J., Britton, L., Markovetz, A., and Barras, S. (1976). Bark beetle
pheromones: production of verbenone by a mycangial fungus of Dendroctonus
frontalis. J. Chem. Ecol. 2, 195–199.

Brand, J., Schultz, J., Barras, S., Edson, L., Payne, T., and Hedden, R. (1977). Bark-
beetle pheromones: enhancement of Dendroctonus frontalis (Coleoptera: Scolytidae)
aggregation pheromone by yeast metabolites in laboratory bioassays. J. Chem. Ecol. 3,
657–666.

Bras, A., Roy, A., Heckel, D. G., Anderson, P., and Karlsson Green, K. (2022).
Pesticide resistance in arthropods: ecology matters too. Ecol. Lett. 25, 1746–1759.
doi: 10.1111/ele.14030

Briones-Roblero, C. I., Hernández-García, J. A., Gonzalez-Escobedo, R., Soto-
Robles, L. V., Rivera-Orduña, F. N., and Zúñiga, G. (2017). Structure and dynamics
of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus
(Curculionidae: Scolytinae) across their life stages. PLoS One 12:e0175470. doi: 10.
1371/journal.pone.0175470

Brownbridge, M., Reay, S. D., Nelson, T. L., and Glare, T. R. (2012). Persistence of
Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation
of radiata pine seed and seedlings. Biol. Control 61, 194–200.

Burgess, S. C., and Marshall, D. J. (2014). Adaptive parental effects: the importance
of estimating environmental predictability and offspring fitness appropriately. Oikos
123, 769–776.

Byers, J. A., Zhang, Q.-H., and Birgersson, G. (2004). Avoidance of nonhost plants
by a bark beetle, Pityogenes bidentatus, in a forest of odors. Naturwissenschaften 91,
215–219. doi: 10.1007/s00114-004-0520-1

Cale, J. A., Collignon, R. M., Klutsch, J. G., Kanekar, S. S., Hussain, A., and Erbilgin,
N. (2016). Fungal volatiles can act as carbon sources and semiochemicals to mediate
interspecific interactions among bark beetle-associated fungal symbionts. PLoS One
11:e0162197. doi: 10.1371/journal.pone.0162197

Cale, J. A., Ding, R., Wang, F., Rajabzadeh, R., and Erbilgin, N. (2019).
Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other
semiochemicals in media amended with various pine chemicals and beetle-released
compounds. Fungal Ecol. 39, 285–295.

Cardoza, Y. J., Klepzig, K. D., and Raffa, K. F. (2006). Bacteria in oral secretions of
an endophytic insect inhibit antagonistic fungi. Ecol. Entomol. 31, 636–645.

Ceja-Navarro, J. A., Vega, F. E., Karaoz, U., Hao, Z., Jenkins, S., Lim, H. C., et al.
(2015). Gut microbiota mediate caffeine detoxification in the primary insect pest of
coffee. Nat. Commun. 6:7618. doi: 10.1038/ncomms8618

Chakraborty, A., and Roy, A. (2021). “Microbial influence on plant–insect
interaction,” in Plant-pest interactions: From molecular mechanisms to chemical
ecology: Chemical ecology, eds I. K. Singh, and A. Singh (Singapore: Springer), 337–363.

Chakraborty, A., Ashraf, M. Z., Modlinger, R., Synek, J., Schlyter, F., and Roy,
A. (2020a). Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae:
Scolytinae): identifying core bacterial assemblage and their ecological relevance. Sci.
Rep. 10:18572. doi: 10.1038/s41598-020-75203-5

Chakraborty, A., Modlinger, R., Ashraf, M. Z., Synek, J., Schlyter, F., and Roy,
A. (2020b). Core mycobiome and their ecological relevance in the gut of five Ips

Frontiers in Forests and Global Change 17 frontiersin.org39

https://doi.org/10.3389/ffgc.2023.1182834
https://doi.org/10.1128/AEM.00068-13
https://doi.org/10.1128/AEM.00068-13
https://doi.org/10.1111/nph.12637
https://doi.org/10.1371/journal.pone.0024587
https://doi.org/10.1007/s10886-012-0232-5
https://doi.org/10.1093/jee/toad027
https://doi.org/10.1111/mec.13702
https://doi.org/10.1111/mec.14186
https://doi.org/10.1111/mec.14186
https://doi.org/10.1111/j.1462-2920.2005.00867.x
https://doi.org/10.1094/MPMI-10-12-0249-CR
https://doi.org/10.1093/ee/nvx194
https://doi.org/10.1603/0046-225x(2008)37[150:padpev]2.0.co;2
https://doi.org/10.1603/0046-225x(2008)37[150:padpev]2.0.co;2
https://doi.org/10.3390/insects13090854
https://doi.org/10.1111/ele.14030
https://doi.org/10.1371/journal.pone.0175470
https://doi.org/10.1371/journal.pone.0175470
https://doi.org/10.1007/s00114-004-0520-1
https://doi.org/10.1371/journal.pone.0162197
https://doi.org/10.1038/ncomms8618
https://doi.org/10.1038/s41598-020-75203-5
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1182834 July 20, 2023 Time: 15:19 # 18

Gupta et al. 10.3389/ffgc.2023.1182834

bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 11, 568853.
doi: 10.3389/fmicb.2020.568853
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A monitoring network for the
detection of invasive ambrosia
and bark beetles in the Czech
Republic: principles and proposed
design
Tomáš Fiala and Jaroslav Holuša*

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia

Invasive bark beetles pose a threat to native biodiversity and to functional

ecosystems and the economic productivity of forests, parks, and orchards. In the

Czech Republic, there are six species of invasive ambrosia and bark beetles with a

stable natural population, and it can be assumed that other invasive species that

will be found. In the Czech Republic, there are no guidelines or methods for the

early detection of invasive ambrosia and bark beetles. We propose monitoring

at a total of 24 locations considering the following: (i) monitoring approaches

used in other countries; (ii) identified entrance gates of invasive ambrosia and

bark beetles found in the Czech Republic; (iii) presumed invasive species that

occur in surrounding countries and are expanding their range; (iv) substances

attractive to all the above mentioned species; (v) commonly available traps; and

(vi) minimization of operating costs. Most of the chosen locations are located

on the state borders and in river valleys, which are probably the entrance gates

to the Czech Republic for invasive ambrosia and bark beetles. In addition, two

large timber warehouses where international trade takes place, all international

airports and three botanical gardens with tropical greenhouses were selected.

Three Theysohn or Ecotrap impact traps should be installed every year at all

locations. Traps should be baited with ethanol and exposed from mid-April to

the end of July and should be checked every 2 weeks.

KEYWORDS

Cyclorhipidion bodoanum, Dryocoetes himalayensis, Gnathotrichus materiarius,
Phloeosinus aubei, Xyleborinus attenuatus, Xylosandrus germanus

1. Introduction

Invasive ambrosia and bark beetles (further BB) represent a threat to biodiversity,
functional ecosystems, and the economic productivity of forestry (Brockerhoff et al., 2006;
Aukema et al., 2011; Gohli et al., 2016), as well as to parks and orchards (Francardi et al.,
2017; Branco et al., 2019; Fiala et al., 2022). BB are important vectors of fungal diseases that
cause massive tree death. The simultaneous effect of several invasive species, their symbiotic
fungi, and the subsequent interaction with climate change creates a situation in which it is
difficult to predict the future impact of ambrosia and bark beetles on the environment (Lovett
et al., 2013). Early detection is key to controlling BB because only then can a real integrated
pest management (IPM) strategy be developed (Brockerhoff et al., 2006, 2010; Douglas et al.,
2009; Samons, 2022).
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Bark beetles spread in several ways, the most common being
the global trade in wood material (treated and untreated wood),
wooden packaging, and fruits or live seedlings of various non-
native trees (Mathew, 1987; Meissner et al., 2008; Pombo et al.,
2010; Augustin et al., 2012; Brockerhoff and Liebhold, 2017;
Meurisse et al., 2019). It has also been confirmed that they
can be introduced with wooden material that has been treated
according to the international standard ISPM 15 (Haack and
Petrice, 2009; Haack et al., 2014). In Europe, ports on the Atlantic
and Mediterranean coasts are most often the gateway (Hagedorn,
1910; Hoffmann, 1942; Schedl, 1962; Cola, 1971, 1973; Faccoli,
2008; Moraal, 2010; Inghilesi et al., 2013; Rassati et al., 2015; Binazzi
et al., 2019; Branco et al., 2019; Barnouin et al., 2020). Another
entry point is botanical gardens, where non-native ambrosia and
bark beetles may be introduced when expanding collections of
exotic trees (Chobaut, 1897; Merkl and Tusnádi, 1992; Schuler et al.,
2023).

Due to climate change, the host tree species are spreading
northwards into areas where they did not originally occur (Ge
et al., 2017). Even ambrosia and bark beetles, which are only
found in southern Europe, may spread north; e.g., the bark beetle
Phloeosinus aubei Perris, 1855 has spread to colder areas in Central
Europe (Fiala and Holuša, 2019). Ambrosia and bark beetles not
only spread through global trade but also naturally, as some
are good flyers (Nilssen, 1984; Jones et al., 2019). Dry summers
contribute to the appearance of ambrosia and bark beetles in
alpine locations, even though they do not normally ascend to high
altitudes, also (Marini et al., 2012).

However, the influence of humans on the spread of BB is
far greater than the influence of climate (Gohli et al., 2016;
Ward et al., 2019). Establishing plantations of non-native trees
increases the risk of introducing non-native ambrosia and bark
beetles (Lantschner et al., 2017). In Central Europe, this mainly
concerns the cultivation of black pine (Pinus nigra) and bark
beetles, which feed on it; Pityogenes bistridentatus Eichhoff, 1878
and Orthotomicus robustus Knotek, 1899 are found in several
areas in the Czech Republic (Pfeffer and Knížek, 1996; Urban,
2000; Knížek, 2006; Knížek and Mertelík, 2017; Fiala et al., 2022).
Climate change may help the maintenance of populations of BB on
continents (Rassati et al., 2016a).

Most ambrosia and bark beetles are native to temperate
and subtropical forests, so they represent the greatest danger
for southern Europe due to a similar climate; hence, damage is
most concentrated here (Pennacchio et al., 2004, 2012; Alfaro
et al., 2007; Francardi et al., 2017; Leza et al., 2020). In the
more northern countries of Europe, only damage by the ambrosia
beetle Xylosandrus germanus Blandford, 1894 has been recorded
(Maksymov, 1987; Graf and Manser, 2000; Galko et al., 2019).

Due to the economic and ecological damage caused by
ambrosia and bark beetles, some governments perform regular
monitoring of BB in their territory. This is helpful for identifying
risk in a timely manner. There have been several monitoring
attempts, of which baited traps are the most effective and least
expensive method (Poland and Rassati, 2019).

Since BB are spreading increasingly around the world, there
have also been efforts to introduce global monitoring. Observations
were made on several continents at the same time to determine
the abundance of ambrosia and bark beetles in the affected

regions. The following semiochemicals were used in the traps: α-
pinene + ethanol and α-pinene + ethanol + ipsdienol + ipsenol + Z-
verbenol. The study is the first step toward the development of an
international monitoring protocol based on trapping in traps baited
with different types of substances (Faccoli et al., 2020).

There are six species of BB in the Czech Republic with a stable
population in the wild (Knížek, 1988; Procházka et al., 2018; Fiala
and Holuša, 2019; Fiala et al., 2020, 2021), and other species can be
expected to occur in this territory (Gebhardt, 2014; Gebhardt and
Doerfler, 2018). In the Czech Republic, there are no guidelines or
methods for the early detection of BB. In addition, approximately
half of the records of new species of ambrosia and bark beetles
for the Czech Republic were accidental; the species were caught
by amateur entomologists, and there was a delay of approximately
1–3 years between detection and publication (cf. Knížek, 2009a,b,
2011; Knížek and Kopecký, 2021). An extreme example is a
report published 18 years after the species Pityophthorus balcanicus
Pfeffer, 1940 was captured (Knížek and Liška, 2015). Therefore,
it is necessary to create a stable network of traps for monitoring
invasive species of ambrosia and bark beetles. To determine the
methodology, several experiments were carried out in the Czech
Republic, providing basic knowledge about the spread of BB and
their bionomics in the Czech Republic (Fiala and Holuša, 2019,
2020; Fiala et al., 2020; Holuša et al., 2021; Fiala et al., 2023).

The aim of this work is to propose a methodology for
monitoring BB based on the following:

(i) monitoring approaches in other countries;
(ii) the entrance gates of the existing species of BB found in the

Czech Republic;
(iii) presumed species that occur in surrounding countries and are

expanding their range;
(iv) substances attractive to all of the above;
(v) commonly available traps;

(vi) minimization of operating costs.

1.1. Monitoring methods in North
America

In Canada, the first attempts to detect BB were made at the
end of the 1990s in the vicinity of Vancouver. The following
substances were used for trapping: ethanol, α pinene, and
attractants (cis-verbenol, ipsdienol, and methylbutenol) for Ips
typographus Linnaeus, 1758 (Humble, 2001). Ethanol and α-pinene
are kairomons for many ambrosia and bark beetles (Schroeder and
Lindelöw, 1989). After that, long-term monitoring began, and was
carried out in the period from 2000 to 2021. Each year between
2000 and 2011, six Lindgren funnel traps were installed at each
of 63–80 locations (ports, industrial zones, and wood processing
industries). Traps at each location included three baited with
ethanol + α-pinene and cis-verbenol + ipsdienol + methylbutenol
and three baited with ethanol alone. Since 2012, another trap
baited with ethanol + C6-ketol + C8-ketol as aggregation
pheromones have been added to longhorned beetles (see Hanks
et al., 2019). Since 2015, traps for longhorned beetles have been
baited with the combination of racemic (E,Z)-fuscumol + racemic
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(E,Z)-fuscumol acetate + ethanol and the combination of
ipsenol + monochamol + α-pinene + ethanol. During the
experiment, seven species of BB were captured, of which three
species were new to Canada (Thurston et al., 2022).

The most sophisticated system of regular monitoring is carried
out in the US, where monitoring has been ongoing for 20 years
(Rabaglia et al., 2008). Even before the start of this program,
BB were caught in ports and airports in the US (Rabaglia and
Cavey, 1994; Haack, 2001, 2006; Mudge et al., 2001). The American
system is based on a dense network of Lindgren funnel traps
lured with ethanol, α-pinene + ethanol, and ipsdienol + cis-
verbenol + methylbutenol, each separately. Traps are located
mainly along both ocean coasts but also in the interior of the
US. The US territory is divided into three parts, and each part is
monitored once every 3 years. Even connected overseas territories
such as Puerto Rico or Guam regularly participate in monitoring,
where other volatile substances are also used for captures, such as
manuka oil or ethanol + cubeb oil. Traps are located at seaports
or at companies in the wood processing industry (Rabaglia et al.,
2019). Data from this monitoring are used to determine the
behavior of BB and to model their spread in the US (Rassati et al.,
2016a). During the evaluation of this program (Rabaglia et al.,
2019), ethanol was found to be the most suitable for trapping BB,
while trapping with Ips lures was not effective for BB. Specific
substances can be used to target selected BB (Hartshom et al.,
2021).

1.2. Monitoring methods in Australia and
New Zealand

Efforts to detect BB has also taken place in New Zealand.
The first attempts to develop invasive species monitoring were
in the 1980s (Hosking and Gadgil, 1987; Carter, 1989). Lindgren
funnel traps with baits of α-pinene + ethanol, β-pinene + ethanol,
frontalin + ethanol, and ipsdienol were also used in ports,
international airports, and forests near these locations. This
monitoring model has been proven to be successful in the early
detection of BB, and it has, therefore, a good chance of eliminating
these ambrosia and bark beetles (Brockerhoff et al., 2006). There
was also an experimental trial to detect damage by invasive
pests using field observations (car and walking) in New Zealand.
Virtually no difference in results was found between these two
methods (Bulman et al., 1999).

The monitoring of invasive species in Australia was broader;
Lepidoptera was also caught. In sticky traps, Lindgren and
Ecotrap. Ethanol, cineole, α-pinene, phellandrene, and a mixture
of pinene, phellandrene, cineole, terpene, and cymene were used
as bait. Traps were placed near ports and airports, and others
were placed in a zone within 5 km of ports and airports
(Bashford, 2012). The following baits were also tested in Brisbane
harbor from 2006 to 2007: ipsenol, ipsdienol, frontalin, exo-
brevicomin, and a combination of ethanol and α-pinene; a total
of 29 species of ambrosia and bark beetles were caught (Wylie
et al., 2008). In Tasmania, a method of static traps baited
with a combination of α-pinene and ethanol was developed
to monitor BB in Pinus radiata plantations (Bashford, 2008).
These attempts subsequently developed into massive permanent

monitoring throughout Australia (Carnegie et al., 2018, 2022;
Carnegie and Nahrung, 2019).

1.3. Monitoring methods in Asia

In China, an IPM plan has been created and monitoring is
carried out in designated areas using various methods, from baited
traps with different types of semiochemicals to light traps to simply
patrolling the area (Anonymus, 2009). At the same time, ambrosia
and bark beetles are caught in ports (Lin et al., 2021). China also
has an IPM standard for P. aubei, which causes serious damage to
cypress trees there (Anonymus, 2017).

Other maritime countries also monitor BB in ports. In Japan,
BB have been monitored in ports since the 1950s (Murayama,
1957; Schedl, 1966, 1969, 1970; Browne, 1980a,b; Ohno, 1989). In
South Korea, BB were also monitored in harbors as early as the late
1970s (Choo et al., 1981; Choo and Woo, 1983; Choi et al., 2003).

1.4. Monitoring methods in Europe

In Italy, BB have long been monitored in ports (Cola,
1971, 1973). In total, 15 international ports and their adjacent
forest stands are monitored; for trapping, Lindgren funnel traps
and semiochemicals similar to those in the USA, ethanol, α

pinene + ethanol, and ipsdienol + ipsenol + methylbutenol, are
applied. Three traps were placed in the harbor, and three traps
were placed in the adjacent forests. More species were found
in deciduous forests than in coniferous stands. Invasive species
richness was higher in forests than in harbors. The ambrosia and
bark beetles were caught in the harbors, and were not yet able
to establish a permanent population in the surrounding forests
(Rassati et al., 2015). At Malpensa International Airport, the
capture of invasive beetles in PET bottles was successfully tested
using the following baits: apple cider vinegar, red wine, and 80%
ethanol (Ruzzier et al., 2021).

Monitoring of invasive longhorned beetles (Cerambycidae)
was launched in France, where they also tested trapping with α

pinene + ethanol in Ecotrap traps. The traps were placed in natural
forests and then in ports, airports, and orchards (Fan et al., 2019).

In Lithuania, as part of prevention, the bark beetle
Dendroctonus rufipennis Kirby, 1837 was monitored in 2000
in the port of Klaipeda, near the Vaidotai railway station and
along forest roads. D. rufipennis was not detected (Ostrauskas
and Ferenca, 2010). In the period from 2002 to 2005, further
monitoring was carried out at the borders, again in the port of
Klaipeda, and at temporary wood warehouses, but no BB were
caught. Lures α-pinene, myrcene, and cis-verbenol were used in
Lindgren funnel traps (Ostrauskas and Tamutis, 2012).

Extensive monitoring of invasive species took place in Great
Britain between 2013 and 2017. Lindgren funnel traps and cross-
vane panel traps were placed in different types of forests near the
ports. Ethanol and ethanol + α-pinene were used as bait. A total
of three species of BB, Cyclorhipidion bodoanum, Gnathotrichus
materiarius, and X. germanus, were captured (Inward, 2020).
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2. Invasive species of ambrosia and
bark beetles in the Czech Republic
and expected invasive species

In the Czech Republic, there are six species of BB with
a stable natural population: C. bodoanum Reitter, 1913,
Dryocoetes himalayensis Strohmeyer, 1908, G. materiarius
Fitch, 1858, P. aubei, Xyleborinus attenuatus Blandford, 1894,
and X. germanus (Knížek, 1988; Procházka et al., 2018; Fiala
and Holuša, 2019; Fiala et al., 2020, 2021, 2023). Furthermore,
several introduced species that could not form a stable population
due to an unfavorable climate or absence of host plants were
found in the territory of the Czech Republic: Coccotrypes
dactyliperda Fabricius, 1801, Hypothenemus areccae Hornung,
1842, Hypothenemus hampei Ferrari, 1867, Hypothenemus setosus
Eichhoff, 1868, Xyleborus affinis Eichhoff, 1868, Xyleborus
volvulus Fabricius, 1794, and Xylosandrus morigerus Blandford,
1894 (Reitter, 1913; Fleischer, 1927–1930; Pfeffer and Knížek,
1989).

New invasive species of ambrosia and bark beetles which
are already present in Germany may be expected to invade the
Czech Republic. These include, Xyloterinus politus Say, 1826, which
was detected in Bavaria in 2014 (Gebhardt and Doerfler, 2018),
and Cyclorhipidion pelliculosum Eichhoff, 1878, which was found
in Baden-Württemberg in 2013 (Gebhardt, 2014). The greatest
economic danger to tree species in the Czech Republic is the
bark beetle Pityophthorus juglandis Blackman, 1928, which has
been spreading in Italy since 2013 and is a carrier of the serious
fungal disease, thousand cankers disease (Montecchio and Faccoli,
2014). From the east, we can expect an invasion of the bark beetle
Polygraphus proximus Blandford, 1894, which spreads from Siberia
toward the west, and its harmfulness is comparable to that of
I. typographus (Peña et al., 2020). Therefore, a pest risk analysis was
developed for both species (EPPO, 2014, 2015).

The MaxEnt algorithm can be used to model the spread of
invasive species around the world. For the invasive ambrosia beetle
Xylosandrus compactus Eichhoff, 1876, which occurs in southern
Europe (Pennacchio et al., 2012; Barnouin et al., 2020; Leza et al.,
2020; Riba-Flinch et al., 2021), with the continuation of average
climatic values from 1970 to 2000, X. compactus is predicted to
find suitable ecological conditions for development in southern
Moravia (which is the warmest region of the Czech Republic) by
2050 (Urvois et al., 2021).

2.1. Basic points for determining the
monitoring methodology of invasive
ambrosia and bark beetles in the Czech
Republic

Since 2020, efforts have been underway to determine the
possible entry gates and directions of expansions of BB in the Czech
Republic (Figure 1; Fiala and Holuša, 2019; Fiala et al., 2020, 2021,
2022, 2023). Potential types of volatile substances that could be used
for monitoring were compared to find the simplest monitoring
method (Fiala and Holuša, 2020; Fiala et al., 2023).

The Czech Republic has no seaports, but has five international
airports (Prague, Brno, Ostrava, Pardubice, and Karlovy Vary;
Table 1) and many road and rail border crossings with foreign
countries. Therefore, global trade is a possible reason for the flight
activity of individual invasive species when entering the Czech
Republic. In 2022, 302,640 tons of wood materials with a size larger
than 6 mm were imported from all over the world into the Czech
Republic, of which 4,993 tons were tropical wood of all kinds (ČSÚ,
2023).

The invasive ambrosia beetle X. germanus in the middle of the
Czech Republic in 2007 (Knížek, 2009a) was first found near the
largest wood warehouse of Stora Enso in Ždírec nad Doubravou,
similar to the invasive sawfly Urocerus albicornis Fabricius, 1781,
was found on the grounds of the Kronospan wood processing plant
in Jihlava (Háva and Holuša, 2019). The occurrence in botanical
gardens through the importation of live exotic plants has only
been demonstrated once in the Czech Republic, in the case of
X. morigerus (Reitter, 1913); however, this does not mean that other
introductions have not occurred and escaped notice. The ambrosia
beetle G. materiarius was first found through flight monitoring
near the border with Bavaria in western Bohemia (Knížek, 2009a).
Likewise, the spreading of X. germanus in northern Bohemia and
southern Moravia (Fiala et al., 2020) or D. himalayensis in southern
Moravia (Procházka et al., 2018) is a result flight of beetles.

Most of the BB were found near the borders with Germany and
Austria (cf. Fiala et al., 2021; Figure 1). This is logical because most
of the BB in Europe have been detected near seaports in western
and southern Europe. The main entry points were clearly identified
as river valleys and border crossings (Fiala et al., 2020, 2023).

2.2. Results of case studies in the Czech
Republic

In 2021, two experiments were conducted to detect BB: (i) the
capture of ambrosia and bark beetles at a warehouse of tropical
wood imported from Central Africa in Pilsen – Doubravka town1

and (ii) the capture of ambrosia and bark beetles in the Botanical
Garden in Prague – Troja with a tropical greenhouse, where tropical
trees are brought in every year. This botanical garden is the largest
in the Czech Republic, and its tropical greenhouse offers vegetation
of dry tropics and subtropics, lowland rainforest, and tropical
forests of high mountains.2

No invasive bark beetle was caught near Pilsen (Appendix
Table 1); only the bark beetle Lymantor coryli Perris, 1855, which
is rarely found throughout Europe, was detected (Fiala, 2021). No
bark beetles were caught in the tropical greenhouse, but the two
BB, X. germanus and D. himalayensis, were caught at the edge of
oak forests (Appendix Table 2).

At the same time, at the end of 2021, 13 companies involved
in the coffee trade in the Czech Republic were asked to cooperate
to detect the occurrence of introduced species of ambrosia and
bark beetles damaging coffee beans. Several samples of damaged
beans were obtained, and the bark beetle H. hampei (Figure 2)
from Brazil, Colombia, and India (Appendix Table 3) was detected

1 www.exoticke-drevo.com

2 https://www.botanicka.cz/en
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FIGURE 1

The position of the Czech Republic in Europe (A) and the possible entry gates, places of first detections, and a proposal for monitoring locations for
invasive ambrosia and bark beetles in the Czech Republic (B).

by the occurrence several dead individuals in the Czech Republic.
However, H. hampei does not pose a danger, even to undamaged
coffee stocks, as its stages do not survive the Central European
climate (Jaramillo et al., 2009). It can be speculated that beetles
may, however, introduce various fungal and bacterial infections
into uninfected beans (Damon, 2000; Jaramillo et al., 2006).

3. Proposal of a methodology for
the detection of invasive species of
ambrosia and bark beetles in the
Czech Republic

The selection of locations is based on possible entry points
such as border crossings, border river valleys, international airports,
large timber warehouses, and botanical gardens; at the same time,
these points will be used to monitor already established species

whose abundance is still very low (Procházka et al., 2018; Fiala and
Holuša, 2019, 2020; Fiala et al., 2020, 2021, 2022; Holuša et al.,
2021). For the purposes of regular and permanent monitoring of
BB, we therefore propose the following locations (Table 1 and
Figure 1). A quarter of the locations are in protected areas; there is
sufficient dead wood, and there are overgrown stands that provide
a suitable environment for the development of ambrosia and bark
beetles (Lee et al., 2019; Fiala et al., 2021).

Some invasive bark beetles are polyphagous, such as
X. germanus (Weber and McPherson, 1983) and X. politus
(MacLean and Giese, 1967), and can attack both coniferous
and deciduous trees; some attack only deciduous trees, such as
X. attenuatus (Kvamme et al., 2020), or only conifers, such as
G. materiarius (Kamp, 1970). The representation of tree species is
not significant for ambrosia and bark beetle monitoring because
the type of forest has no effect on the abundance of beetles (Bouget
et al., 2008). Therefore, the type of forest in which the trap is
placed is not important, although a mixed forest with different tree

Frontiers in Forests and Global Change 05 frontiersin.org49

https://doi.org/10.3389/ffgc.2023.1239748
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1239748 August 18, 2023 Time: 12:51 # 6

Fiala and Holuša 10.3389/ffgc.2023.1239748

FIGURE 2

Dead individual of bark beetle H. hampei found in damaged coffee bean introduced to the Czech Republic.

species is preferable. We prefer oak forests, in the vicinity of which
there are also conifers. In the Czech Republic, almost all forests
are cultural, and conifers grow even at low altitudes. Therefore,
choosing a combination of forests at the different locations was
straightforward (Table 1).

Most BB in Europe are ambrosia species (Alonso-Zarazaga
et al., 2023), and in our study in oak forests in western Bohemia,
we found that ambrosia beetles had a higher abundance with a
greater canopy cover, due to the wetter microclimate and greater
amount of dead wood (Holuša et al., 2021). The influence of
the close canopy on the abundance of ambrosia and bark beetles
was also confirmed by Menocal et al. (2022). Therefore, forests
with close canopy is generally preferred, although we are aware
that C. bodoanum seems to prefer open forests (Fiala et al.,
2021).

We also tested substances suitable for trapping BB. Factory-
produced pheromones were suitable for trapping ambrosia and
bark beetles of the genus Trypodendron; we found one specimen of
X. germanus (Fiala and Holuša, 2020). Among volatile substances,

we found the best combination of ethanol and juniper twigs
suitable for trapping bark beetles P. aubei (Fiala et al., 2023).
We found ethanol to be the most suitable for G. materiarius
(Fiala et al., 2023). Likewise, C. bodoanum was captured in
ethanol (Fiala et al., 2021), and although D. himalayensis and
X. germanus were captured in impact traps as such, they were
also captured in ethanol (Procházka et al., 2018; Hauptman et al.,
2019a; Fiala et al., 2020; Appendix Table 2). X. attenuatus, like
the ambrosia bark beetle, was attracted to ethanol (Galko et al.,
2014).

Although sulcatol, which is considered a potential aggregation
pheromone of G. materiarius, was expected to be successful
(Flechtmann and Berisford, 2003), it was not the best lure tested
in Central European conditions. The combination of sulcatol
and ethanol resulted in the capture of a significantly greater
number of beetles of Gnathotrichus sp. (McLean and Borden,
1977). However, in our case, ethanol alone captured more beetles
than the combination of baits. Ethanol also significantly attracted
other invasive ambrosia beetles, C. bodoanum, X. germanus,
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TABLE 1 Proposed localities for permanent monitoring of invasive
ambrosia and bark beetles (types of protected areas of the Czech
Republic: NP, National Park; NPR, National Nature Reserve; PP, Nature
Monument; PR, Nature Reserve).

No. Monitoring
locations

GPS Reason for
location selection

and inclusion

1 Zoologická a
botanická

zahrada Plzeň

49.7595N,
13.3598E

Botanic garden

2 Botanická
zahrada Liberec

50.7768N,
15.0768E

Botanic garden

3 Pražská
botanická
zahrada

50.1224N,
14.4138E

Botanic garden

4 Ždírec 49.7022N,
15.8088E

Wood storage

5 Jihlava 49.4219N,
15.6050E

Wood storage

6 Česká Kubice 49.3643N,
12.8522E

Border crossing

7 PP Horní Malše 48.6553N,
14.4575E

Border crossing

8 Tvrdonice 48.7504N,
17.0210E

Border crossing

9 PP Okrouhlá 49.0466N,
18.0576E

Border crossing

10 Třinec 49.6795N,
18.6930E

Border crossing

11 Hronov 50.4776N,
16.2129E

Border crossing

12 PR Meandry
Smědé

50.9808N,
15.0345E

Border crossing

13 Velký Šenov 50.9960N,
14.4053E

Border crossing

14 Hřensko 50.8730N,
14.2392E

Border crossing

15 Karlovy Vary 50.1998N,
12.9028E

International airport

16 Praha Ruzyně 50.1244N,
14.3054E

International airport

17 Brno 49.1606N,
16.6602E

International airport

18 Pardubice 50.0203N,
15.7153E

International airport

19 Ostrava 49.6981N,
18.1397E

International airport

20 PR Rathsam 50.1013N,
12.2485E

Assumed migration path

21 NP Podyjí 48.8495N,
15.8835E

Assumed migration path

22 NPR Děvín 48.8587N,
16.6511E

Assumed migration path

23 NPR Jezerka 50.5433N,
13.4844E

Assumed migration path

24 PP Osoblažský
výběžek

50.3032N,
17.7005E

Assumed migration path

X. attenuatus, and other species of native ambrosia and
bark beetles. Ethanol attracts both ambrosia and bark beetles
X. politus and C. pelliculosum, which are already present in
Germany (Ranger et al., 2011, 2014). Ethanol generally has
a better capture ratio of invasive ambrosia beetles than the
other substances (Fiala et al., 2023). Ethanol has long been
known to be the main volatile substance on ambrosia and
bark beetles (Kelsey and Joseph, 2003; Ranger et al., 2013,
2019).

For capturing and monitoring the dangerous invasive species
P. juglandis, ethanol is also a suitable substance (Roling and
Kearby, 1975). However, in acute situations, the monitoring
network can be extended by adding a trap with the aggregation
pheromone prenol, which was detected in this bark beetle
(Seybold et al., 2015). Ethanol can also be used to detect
P. proximus, although the beetles will most likely be caught in
small quantities, as it reacts mainly to cis-verbenol, ipsdienol, and
ipsenol (EPPO, 2014), like I. typographus (Schlyter et al., 1987).
If the occurrence of P. proximus in the vicinity of the Czech
Republic has already been predicted, the monitoring network
can be expanded by adding another trap to the monitoring
location with one of the industrial attractants containing cis-
verbenol.

We propose total of 24 monitoring locations. Most of them
are located at the border crossings of the Czech Republic
and in river valleys, which are probably the entrance gates to
the Czech Republic of BB (Figure 1). In addition, two large
timber warehouses in which international trade takes place
were selected (Žemlička, 2012), along with all international
airports and three botanical gardens with tropical greenhouses.
The latter locations cover a variety of modes of invasion
by ambrosia and bark beetles: natural dispersal by the flight
abilities of ambrosia and bark beetles and spread by global trade
(Table 1).

We designed specific locations so that they were easily
accessible in forests and were warmer locations of southern
exposures. We selected overgrown forests near state borders or
places that represent a “steppingstone,” as in the case of point
22, NPR Děvín (a woven area in an agricultural landscape), and
point 23, NPR Jezerka (located on the migration route along the
Ohøe River valley). From airports and large timber warehouses,
we assume that bark beetles will fly to the nearest forest stands.
Botanical gardens have the character of open forests and are mostly
surrounded by forests, so localities in the territory of the garden
have been suggested.

Three traps at each location is sufficient (Rassati et al., 2015;
Thurston et al., 2022). In the Czech Republic, two types of impact
traps are used; both are inexpensive and commonly available. They
are easy to install and do not catch large numbers of non-target
insects (Lubojacký and Holuša, 2014; Galko et al., 2016). The
traps can be a Theysohn slot type, which is the most widely used
in forestry in the Czech Republic (Zahradník and Zahradníková,
2016), or impact type Ecotrap, from which it is easier to extract
the caught beetles. They can be disassembled after each season and
stored in a much smaller space than the Theysohn traps.

These types of traps are primarily intended for catching
economically important bark beetles that are attracted by specific
pheromones (Flechtmann et al., 2000; Šramel et al., 2021); however,
they can also be used to capture invasive species without any
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TABLE 2 Basic costs of operating the proposed monitoring network of invasive species of ambrosia and bark beetles in the Czech Republic (prices for
the year 2023 in €) [energy costs (freezer), human fieldwork and labor costs, and determination costs are not included].

Numbers
of traps

Cost per
trap

At total for
all traps

Number of
ethanol

lures

Cost per
lure

At total for
all lures

The total
postage for all

locations

At total

72 601/222 4,3201/1,5842 144 10.20 1,469 150 5,9391/3,2032

Additional years can be calculated without the cost of traps.
1Theysohn trap.
2Ecotrap.

problems (Holuša et al., 2021; Fiala et al., 2023). Different species
of ambrosia and bark beetles are found to prefer different types of
traps. Dryoxylon onoharaense Murayama, 1934, an invasive species
also found in Europe (Marchioro et al., 2022), or G. materiarius
prefer the Ecotrap type. In contrast, bark beetles X. affinis and
Premnobius cavipennis Eichhoff, 1878 prefer the Theysohn type
(Flechtmann et al., 2000; Dodds et al., 2010; Miller and Crowe,
2011).

Each trap is baited with ethanol, which is universal for catching
ambrosia and bark beetles (Rassati et al., 2016b; Chen et al., 2021).
Traps should be placed between 30 and 50 m apart (Niemeyer, 1997;
Rassati et al., 2014). Ethanol is also partly attractive to common
species of ambrosia and bark beetles that live on conifers (Fiala
et al., 2023). Traps should be operated from mid-April to the end
of July, as the flight activity of ambrosia and bark beetles decreases
in August (Fiala et al., 2023). Traps are checked once every 14 days,
and the collected samples are then stored in the freezer for later
determination. Ethanol should be changed in early June since the
evaporators are active for approximately 60 days.3

In total, there are only 72 traps (e.g., three traps at 24
locations), which represent 144 ethanol lures per year (Appendix
4). Given that the Czech Republic is a small country, the number of
locations is small, and monitoring should be carried out annually.
Since most of the locations are forested, we suggest, if agreeable,
partnering with the local forest administration of Forest of the
Czech Republic (LČR, s.p., in Czech), a company that manages
more than 50% of the Czech Republic’s forest stands and has
cooperation with the Forest Advisory Service (Lesní ochranná
služba in Czech) of Forestry and Game Management Research
Institute (FGMRI, VÚLHM in Czech) Jíloviště at Prague, capital
of the Czech Republic. In total, the LČR manages thousands of
trappers throughout the country every year. The traps that we
suggest, slightly more than 70 traps, are not difficult to manage
because foresters move around the forests every day. Similarly,
workers at the botanical gardens and timber warehouses move
around daily and can send samples for determination. The average
catch per trap in the world varies between 200 and 500 specimens,
similarly in the Czech Republic it is between 50 and 500 specimens
(Appendix Table 5).

The entire organization of monitoring corresponds to the
activity and assignment of the Forest Advisory Service. The Forest
Advisory Service deals with research, expert, and monitoring
activities in forest protection against biotic pests. It monitors the
occurrence of the bark beetle Ips duplicatus Sahlberg, 1836, every
year. This monitoring has been ongoing for a total of 25 years,
and during this period, a total of approximately 400 traps baited

3 www.e-econex.net

with I. duplicatus were placed around the country (Holuša et al.,
2010; Knížek and Liška, 2022). The traps were checked by foresters,
and beetles were collected and sent to FGMRI for determination.
In Central Europe, other forest research institutes have also been
involved in monitoring BB, e.g., in Slovenia (see Hauptman et al.,
2019a), Slovakia (see Galko et al., 2014), and Latvia (see Ostrauskas
and Tamutis, 2012); however, these were one-time events.

Our proposed monitoring of BB can be easily merged with
the existing monitoring of I. duplicatus. It involves incorporating
only 72 traps. The Forest Advisory Service would purchase ethanol
vaporizers for cooperating entities and provide basic operator
training; however, it is also possible to use a recorded instructional
video. The total volume of all samples from the three traps does not
exceed 1 dm3, so workers can place it in closed cans in any freezer
where the insects will be frozen. It is necessary to determine the
entire material of beetles into species by a specialist because data
will be obtained on several species of ambrosia and bark beetles,
especially rare ones (Fiala, 2021; Holuša et al., 2021; Fiala and
Nakládal, 2022; Fiala et al., 2023).

Due to the importance of early detection of invasive species
of ambrosia and bark beetles, the economic costs are minimal
(Table 2) compared to the damage that can occur. In the US, the
annual loss associated with all invasive species is estimated at $120
billion (Pimentel et al., 2005). In Europe, the loss caused by all
invasive species is estimated to be hundreds of millions of € per
year (Vilà et al., 2010); e.g., for invasive longhorned beetles of the
genus Anoplophora, the cost of eliminating one infested hectare of
vegetation is $25,000 (Anonymus, 2014). Estimated economic loss
to landowners exceeded hundreds of dollars per hectare for invasive
pests in Pinus taeda Linnaeus, 1753 stands in the southern US when
no monitoring was performed (Susaeta et al., 2016). When carrying
out integrated protection, the cost is less than the loss of value of
the wood (Franjević et al., 2016). At the same time, lures require
smaller financial expenditure than the human labor associated with
the control of traps (Šramel et al., 2021).

4. Conclusion

The proposed monitoring method based on commonly used
traps in selected locations (entrance gates at borders, wood
warehouses, tropical greenhouses, and airports) is necessary
because we BB have already been detected in the Czech Republic.
Therefore, it is necessary to monitor these species and be able
to detect new ones. Ethanol is effective for capturing the species
that have already been detected, and the method is inexpensive.
The method can be implemented by the research institute
for monitoring pests. The monitoring results can inform the
professional actions of the Central Institute for Supervising and
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Testing in Agriculture and for the targeted eradication of invasive
species, as required by EU regulations.
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Appendix

APPENDIX TABLE 1 Detection of ambrosia and bark beetles according to the type of bait at a tropical wood warehouse in Pilsen.

Species Ethanol Ethanol + α-pinen Ethanol + E-conophthorin

Anisandrus dispar Fabricius, 1792 1

Hylastes attenuatus Erichson, 1836 1 1

Hylesinus varius Fabricius, 1775 1

Lymantor coryli Perris, 1853 1

Scolytus rugulosus P.W.J. Müller, 1818 1

Tomicus piniperda Linnaeus, 1758 3

Xyleborinus saxesenii Ratzeburg, 1837 2 1

In Plzeò – Doubravka (GPS 49.7622N, 13.4095E), three Lindgren funnel traps with wet capture and ethanol, ethanol + α-pinene and ethanol + E-conophthorin were used as bait. Trapping
took place from mid-April to mid-July, and beetles were collected once a month (det. T. Fiala, M. Knížek).

APPENDIX TABLE 2 Detected species of ambrosia and bark beetles in the Prague-Troja Botanical Garden (GPS 50.1224N, 14.4139E).

Species Number of specimens

Anisandrus dispar Fabricius, 1792 599

Dryocoetes himalayensis Strohmeyer, 1908 1

Dryocoetes villosus Fabricius, 1792 12

Ernoporus tiliae Panzer, 1793 1

Pityogenes chalcographus Linnaeus, 1761 1

Polygraphus grandiclava C.G. Thomson, 1886 4

Scolytus rugulosus P.W.J. Müller, 1818 5

Xyleborinus saxesenii Ratzeburg, 1837 367

Xyleborus dryographus Ratzeburg, 1837 70

Xyleborus monographus Fabricius, 1792 44

Xylocleptes bispinus Duftschmid, 1825 1

Xylosandrus germanus Blandford, 1894 1

Theysohn traps baited with ethanol were used at the Troy Botanical Garden. Ten traps were placed in nature near the tropical greenhouse, and two traps were placed inside the tropical
greenhouse. Trapping was performed from mid-April to mid-August, and beetles were collected at 2-week intervals (det. T. Fiala, M. Knížek). Invasive species are in bold.

APPENDIX TABLE 3 The presence of feeding and the detected numbers of Hypothenemus hampei Ferrari, 1867 in samples of ten coffee beans
imported to the Czech Republic from seven countries in 2021–2022 (det. T. Fiala).

Country of
origin

Brazil Brazil,
region São

Paulo

Colombia Ethiopia,
region

Yirgacheffe

Ethiopia,
region Guji

India,
region

Tamil Nadu

Salvador

Presence of feeding Yes Yes Yes Yes Yes Yes Yes

Numbers of beetles 1 0 2 0 0 1 0

Appendix 4 | Basic monitoring design.

• Twenty-four localities
• Three traps per locality, 30–50 m each other
• Each trap baited with ethanol
• Traps checked once every 14 days
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APPENDIX TABLE 5 Overview of the number of scolytines caught by trap in the Czech Republic and in the world.

Country Year Traps/Sites Lures Total
Scolytinae

Numbers of invasive
species/Specimens

References

United States 2001–2005 1,240/310 Variable 250,000+ 24/? Rabaglia et al., 2008

1985–2000 ?/97 Variable 6,825 67/2,737 Haack, 2001

2007–2016 4,320/1,440 Variable 840,000+ 28/456,000+ Rabaglia et al., 2019

Italy 2009–2011 72/4 Variable 1,043 4/30 Rassati et al., 2014

2012 90/15 Variable 40,473 11/406 Rassati et al., 2015

Czech Republic 2020 10/10 Ethanol 4,179 3/24 Holuša et al., 2021

2022 20/4 Ethanol 1,176 4/186 Fiala et al., 2020

2018 1/1 Ethanol 124 0/0 Fiala, 2019

Slovenia 2017 19/19 Ethanol 94,104 3/67,605 Hauptman et al., 2019b

Slovakia 2010–2012 53/1 Ethanol mixture 24,705 2/561 Galko et al., 2014
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RNAi-chitosan biopesticides for
managing forest insect pests: an
outlook
Kanakachari Mogilicherla and Amit Roy*

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Praha,
Czechia

The expanding world population demands superior forest protection to fulfil

feasible environmental certainty. The persistent pest infestations negatively

influence forest health and cause substantial economic losses. In contrast,

the traditional use of conventional pesticides results in a loss of soil

microbial biodiversity, a drop in the population of pollinators, and adverse

effects on other non-target organisms, including humans. Global forestry

is looking for solutions to reduce the adverse environmental effects of

current chemical pesticides. RNAi-nanotechnology has recently drawn much

attention for its use in pest management. The advantages of engineered

RNAi-chitosan nano-formulations in terms of simple digestion and dissolution,

non-toxicity, high adsorption power, potential biodegradation in nature, and

widespread availability and cost-effectiveness, have been well documented

for pest management in agroecosystems. However, deploying such control

strategies in forest ecosystems is still pending and demands further research.

Hence, we highlight the putative uses of RNAi-chitosan biopesticides and their

preparation, characterization, and putative application methods for forest pest

management. We also discussed potential environmental risks and plausible

mitigation strategies.

KEYWORDS

forestry, RNA interference, nanotechnology, chitosan-RNAi biopesticides, forest insect
pest management, forest protection

Introduction

Given the ongoing increase in global population, many countries have lost forests and
facing climate change (Ritchie and Roser, 2021).1 Forestry is a crucial industry in many
developing countries, and it can produce food and gross income as a domestic product for
both people and animals, as well as contributes to balancing the environmental conditions,

Abbreviations: A. aegypti, Aedes aegypti; AchE, acetylcholine esterase; AMN, Aminopeptidase; AMY,
Alpha-amylase; A. gambiae, Anopheles gambiae; A. solani, Alternaria solani; BMI, bacterial metabolic
infiltrates; CAD, Cadheri; CHS, Chitin synthase; CHS1, chitin synthase 1; CHS2, chitin synthase 2;
CPB, Colorado potato beetle; D. melanogaster, Drosophila melanogaster; DCDA, degree of chitosan
deacetylation; dsRNA, double-stranded RNA; E. vittella, Earias vittella; H. armigera, Helicoverpa armigera;
IAP1, Inhibitor of apoptosis 1; JHAMT, juvenile hormone methyltransferase; mRNA, complementary
messenger RNA; N. lugens, Nilaparvata lugens; P. grisea, Pyricularia grisea; PEC, polyelectrolyte
complex; PRR, pattern recognization receptor; PSTV, Potato spindle tuber virus; RCNPs, RNAi-chitosan
nanopesticides; RISC, RNA-induced silencing complex; Sec23, Sec23 homolog A; SNF7, ESCRT-III subunit
protein SNF7; SRC, SRC proto-oncogene; S. frugiperda, Spodoptera frugiperda; S.litura, Spodoptera
litura; S. lycopersicum, Solanum lycopersicum; siRNA, small interfering RNA; TBSV, bean/tomato bushy
stunt virus; TNV, tobacco necrosis virus; Vg, vestigial; V-ATPase, V-type proton ATPase; V-ATPase B,
Vacuolar-type ATPase B; SMR, symbiont mediated RNAi.

1 https://research.wri.org/gfr/latest-analysis-deforestation-trend
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respectively. However, a variety of biotic factors like insect
pests (i.e., bark beetles, weevils, chewing, sucking, and foliage-
feeding insects) and diseases caused by pathogens (i.e., tree leaves
diseases, pine needle diseases, hardwood leaf diseases, tree bark
diseases, and tree root diseases) limit forest growth and tend
to get worse with a growing human population (Kan et al.,
2023). Consequently, to address pest-related issues, pesticides
(insecticides, fungicides, herbicides, etc.) have been overused
and often misused, which has had fatal short and long-term
effects on humans and other life forms (Chhipa, 2017). Pesticide
resistance is common in pest insects, and their preexisting
adaptive capabilities facilitate quick resistance in field conditions
(Bras et al., 2022). With the accessibility of new technologies,
superior approaches to controlling insect pests and disease-
caused pathogens can be considered. RNA interference (RNAi)
technology and nanotechnology have recently captured the interest
and imagination of scientists and researchers due to recent
advancements in the discipline. Delivering RNAi biopesticides
with the use of nanotechnology in the forestry sector is a quick,
innovative, and promising field (Shang et al., 2019; Joga et al., 2021;
Silver et al., 2021; Mogilicherla et al., 2022).

Polymeric nanoparticles are non-toxic, economical,
environmentally friendly, and most significant controlled-
release formulations, so researchers are interested in the feasibility
of their application in different sectors (Prajapati et al., 2022).
Nonetheless, employing some polymeric nanoparticles at higher
concentrations demonstrates a phytotoxicity effect on plants, and
it depends on initial material selection, nanoparticle preparation
methods, and the impact varies according to plant species (Jogaiah
et al., 2021). Remarkably, no instances of phytotoxicity have been
reported concerning RNAi-polymeric nanoparticles. Chitin is
the second-most common natural polymer after cellulose and
is obtained mainly from shrimps, crabs, lobsters, and crawfish
by-products (Figure 1; Faqir et al., 2021). Chitin is a linear, poly-
(1,4)-N-acetyl-D glucosamine that appears in nature as organized
crystalline microfibrils called α-chitin, β-chitin, and γ-chitin (Vani
and Stanley, 2013). Chitosan is a partly deacetylated polymer of
N-acetyl glucosamine produced by the alkaline deacetylation of
chitin (Figure 1). Chitosan has several unique features due to the
amine and hydroxyl groups, making it useful in many contexts
and accessible for chemical reactions (Chouhan and Mandal,
2021). Since it may produce safe and non-toxic complexes through
electrostatic interaction with its positive cationic group and the
negative anionic group of the RNAi molecules (dsRNA/siRNA), it
enhances the stability of RNAi molecules (Gurusamy et al., 2020a;
Sandal et al., 2023). A natural process of RNAi converts dsRNA
into 21-25-nucleotide-long siRNAs, which are then recruited to
the RNA-induced silencing complex (RISC), which then finds
and degrades the mRNA (Fire et al., 1998; Agrawal et al., 2003;
Yu et al., 2013). RNAi has demonstrated considerable potential
for formulating new pest control practices because of its species
specificity and high efficacy (Zhu and Palli, 2020; Joga et al., 2021).
However, it is underexploited in the forestry sector (Joga et al.,
2021; Mogilicherla et al., 2022).

Variable RNAi efficiency among insects has been linked
to several mechanisms, including dsRNA degradation in the
hemolymph and midgut lumen, decreased dsRNA uptake by
cells, decreased induction of RNAi components upon exposure
to dsRNA, missing components in the RNAi pathway, and

accumulation of dsRNA in endosomes (Katoch et al., 2013;
Shukla et al., 2016; Singh et al., 2017; Yoon et al., 2017; Cooper
et al., 2019). The last 10 years have spotted the development
and implementation of a chitosan-based dsRNA delivery method
that boosts the possibility of RNAi applications in insect pest
management (Table 1; Zhang et al., 2010; Das et al., 2015;
Gurusamy et al., 2020a; Kolge et al., 2021). In order to prevent
insect pests and diseases, chitosan-RNAi is utilized in the field
of agriculture (Reglinski et al., 2004; Fitza et al., 2013; Bharani
et al., 2014; Sahab et al., 2015; Silva-Castro et al., 2018; Ingle
et al., 2022) and can also be used for forest protection (Joga
et al., 2021; Mogilicherla et al., 2022). This succinct perspective
discusses the synthesis of RNAi-chitosan nanopesticides (RCNPs)
and characterization, as well as the evaluation of their effectiveness
and biocompatibility against insect pests and microbes from a forest
insect pest management and forest health point of view (Figure 1).

RNAi-chitosan biopesticides synthesis
methods

Chitosan is a polycationic polysaccharide that occurs
naturally and is produced when chitin is partially deacetylated
(Figure 1). Chitosan has several physicochemical characteristics,
including molecular weight, viscosity, degree of deacetylation, and
crystallinity (Kas, 1997; Riseh et al., 2022). A primary amine group
with a pKa value of around 6.5 is present in every deacetylated
subunit of chitosan; as a result, chitosan is soluble in acidic pH, like
acetic acid but insoluble in neutral and alkaline pH. The amount
of chitosan© deacetylation, molecular weight, ionic strength
of the solution, and pH significantly impact its solubility (Mao
et al., 2010). Chitosan dissolved in acetic acid and spontaneous
mechanical churning at room temperature leads to caused
nanoparticles. In addition, adjusting the chitosan-to-stabilizer ratio
altered the particle size and surface charge (Hosseini et al., 2015).
Several methods have been described for synthesizing RCNPs,
such as electrostatic interaction, encapsulation, and adsorption
(Figure 1). When chitosan is dissolved in acidic circumstances,
the degree of chitosan deacetylation (DCDA) value influences
the positive charge density; more DCDA results in an enhanced
positive charge, allowing a better dsRNA/siRNA binding capacity
(Liu et al., 2007; Mao et al., 2010). The ionotropic gelation method
uses the electrostatic contact between a negatively charged group
of nucleotides (e.g., in dsRNA) and the amine group of chitosan
and self-assembled to form the polyelectrolyte complex (PEC)
as a result of a decrease in hydrophilicity caused by charge
neutralization between the cationic polymer and dsRNA. When
dsRNA is added to chitosan (in acetic acid) solution and with
continuous stirring at room temperature, the RCNPs can be
produced spontaneously (Figure 1). Also, chitosan© molecular
weight affects the physicochemical characteristics of RCNPs,
including their size, zeta potential, shape, and complex stability
(Mao et al., 2010). The surface charge of the RCNPs is dependent
on the molar ratio of chitosan nitrogen (N) to dsRNA phosphate
(P) (N/P ratio), which affects the particle capacity to efficiently
condense dsRNA and interact with negatively charged cells, which
in turn affects the transfection efficiency (Köping-Höggård et al.,
2001; Huang et al., 2005; Jeong et al., 2007; Nafee et al., 2007).
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FIGURE 1

Scheme illustrating the RNAi-chitosan biopesticides formulations and their applications for forest insect pest management. (A) Synthesis of chitosan
nanoparticles: marine by-products will produce chitin, which has been partially deacetylated and yields chitosan. Chitosan nanoparticles produced
by chitosan dissolved in acetic acid under spontaneous mechanical churning at room temperature. (B) Production of RCNPs: RCNPs can be created
via the adsorption, encapsulation, and electrostatic interaction approaches. Also, chitosan can be used as a coating material for dsRNA-expressed
symbiotic microbes. RCNPs can be characterized in terms of size, zeta potential, and shape. (C) Putative application of RNCPs: RCNPs can be
applied to forests to control forest pests and diseases using the foliar application, trunk injection, and soil drenching approaches leading to the
species-specific killing of forest insect pests (bark beetles, termites, ants). (D) Environmental impact: deploying RNCPs will reduce the application of
commercial pesticides.

The chitosan salt form also impacted the RCNPs, such as chitosan
glutamate, which had a larger molecular weight, created smaller
complexes with dsRNA/siRNA, and had a higher siRNA loading
efficiency than chitosan hydrochloride (Katas and Alpar, 2006).
The amount of dsRNA at a certain point within the RCNPs plays

a fundamental role in host cell transfection efficiency, whereas
more concentration of dsRNA will increase the diameter of the
particles and form an aggregation, and will decline the transfection
(MacLaughlin et al., 1998; Romøren et al., 2003; Zhao et al., 2006;
Mao et al., 2010). Chitosan can be employed as a dsRNA-chitosan
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TABLE 1 RNAi-chitosan biopesticides: current status against pest insects.

Insect species Target gene Nanomaterial dsRNA/siRNA/miRNA Delivery method References

Anopheles gambiae Chitin synthase 1 and Chitin
synthase 2

Chitosan dsRNA Feeding by diet Zhang et al., 2010;
Zhang et al., 2015

Aedes aegypti Semaphorin-1a Chitosan siRNA Feeding by diet Mysore et al., 2013

Aedes aegypti Vacuolar-sorting protein
SNF7 and SRC

proton-oncogene

Chitosan dsRNA Feeding by diet Das et al., 2015

Aedes aegypti Vestigial (vg) Chitosan dsRNA Feeding by diet Kumar et al., 2016

Aedes aegypti Inhibitor of apoptosis Chitosan-sodium
tripolyphosphate

dsRNA Feeding by diet Dhandapani et al.,
2019

Spodoptera frugiperda Inhibitor of apoptosis Chitosan dsRNA Feeding by diet Gurusamy et al.,
2020a

Ostrinia nubilalis lethal giant larvae protein
(OnLgl; MT467568)

Chitosan dsRNA Feeding by diet Cooper et al., 2020

Chilo suppressalis Glyceraldehyde-3-phosphate
dehydrogenase

Chitosan dsRNA Feeding by oral drinking Wang et al., 2020

Helicoverpa armigera Acetylcholinesterase (AChE) Chitosan dsRNA Feeding by topical spray Kolge et al., 2021

Helicoverpa armigera Lipase and chitinase Chitosan dsRNA Feeding by diet and leaf Kolge et al., 2023

Nilaparvata lugens Chitin synthase A Rosin-modified PEG
and chitosan

dsRNA Feeding by topical
application

Lyu et al., 2023

complex as well as a coating material for symbiotic microbes that
express dsRNA to provide a flexible technology platform for the
management of forest insect pests (Figure 1; Mao et al., 2010; Joga
et al., 2021; Riseh et al., 2022).

RNAi-chitosan biopesticides: current
status

RNAi-chitosan nanopesticides extend to precision use due
to their minuscule dimensions, high surface area, enhanced
permeability, thermal stability, dispersion, and biodegradability to
improve forest yield and to control target action based on insect
pests or microbes infection (Figure 1; Adisa et al., 2019; Kumar
et al., 2019). For applying RCNPs in forestry, several methods
like foliar application, trunk injection, and soil drenching can be
considered (Figure 1; Joga et al., 2021; Mogilicherla et al., 2022).
Chitosan nanoparticle-mediated RNAi has been developed over the
last 10 years as an alternative to traditional pest control methods
(Table 1).

The formulations of RCNPs have significant potential to
control the attack of several common pests like aphids, moths, and
beetles (Sahab et al., 2015; Gurusamy et al., 2020a). Silencing of the
CHS1, CHS2, semaphorin-1a, and vestigial (vg) genes by feeding
chitosan-dsRNA nanoparticles to mosquitoes (Anopheles gambiae
and Aedes aegypti) showed more pesticide-susceptible (Zhang
et al., 2010, 2015; Mysore et al., 2013; Kumar et al., 2016). Our
group and colleagues successfully knocked down the target genes
(CAD, AMN, CHS, JHAMT, AMY, V-ATPase, IAP1, V-ATPase B,
Sec23, SNF7, and SRC) using chitosan-dsRNA nanoparticles and
observed decent mortality in A. aegypti and Spodoptera frugiperda
(Das et al., 2015; Gurusamy et al., 2020a). Also, the complexes
of chitosan-sodium tripolyphosphate-dsRNA (CS-TPP-dsRNA)

showed improved mortality in A. aegypti (Dhandapani et al., 2019).
In another study, the chitosan-dsRNA nanopesticides showed good
stability, cellular uptake, and mortality in Chilo suppressalis (Wang
et al., 2020). Helicoverpa armigera was significantly controlled
when RCNPs were applied topically to chickpea plants (Kolge
et al., 2021). Additionally, RCNPs were stable for 5 days on leaf
surfaces, effectively protected from nuclease degradation and insect
gut pH, and efficiently knocked down the targeted genes (JHAMT
and AChE), resulting in 100% insect mortality, whereas the non-
targeted insects like Spodoptera litura and Drosophila melanogaster
were unaffected and showed no signs of toxicity (Kolge et al., 2021,
2023). A recent study demonstrated that topically applying dsRNA-
coated with rosin-modified PEG and chitosan (dsRNA/ROPE@C)
to Nilaparvata lugens (Brown plant hopper) causes excellent gene
knockdown and mortality (Lyu et al., 2023). Recently, our team
created chitosan-dsRNA nanopesticides, fed them to bollworms
(Earias vittella), and observed considerable target gene knockdown
and mortality (Sandal et al., 2023). Additionally, the price drop
from $12500 to $2 for 1 g of dsRNA has increased the likelihood
that RNAi technology will be applied in the field (Zotti et al.,
2018). Our colleagues successfully applied bacterially expressed
dsRNA in a tropical setting and observed a significant reduction in
Colorado potato beetle (CPB) infection (Máximo et al., 2020; Petek
et al., 2020). Most recently, researchers developed an RNAi-based
biopesticide known as “ledprona” against the CPB, which inhibits
enzyme expression, facilitates protein breakdown, and ultimately
causes mortality (Pallis et al., 2023). These investigations could pave
the path for creating and using RCNPs as a safe, effective, and novel
way to protect crops and forest trees.

Furthermore, researchers used the chitosan domain to
encapsulate metal-based nanoparticles (Ag, Au, Fe, Co, Cu,
TiO2, ZnO, SiO2, and CaCO3) to increase plant resilience to
salt, drought, and heavy metal environments (Souri et al., 2017;

Frontiers in Forests and Global Change 04 frontiersin.org62

https://doi.org/10.3389/ffgc.2023.1219685
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1219685 August 30, 2023 Time: 16:30 # 5

Mogilicherla and Roy 10.3389/ffgc.2023.1219685

Behboudi et al., 2019; Sen et al., 2020; Ali et al., 2021; Sheikhalipour
et al., 2021) and improve their health for protecting themselves
from other biotic stresses (Naidu et al., 2023). The previous
studies successfully used double-layered hydroxide (LDH), carbon
quantum dots (CQD), branched amphiphilic peptide capsules
(BAPCs), and lipid nanoparticle-based dsRNA formulations
to address biotic stress caused by insects (Mitter et al.,
2017; Christiaens et al., 2020; Gurusamy et al., 2020b; Kaur
et al., 2020). Such findings encourage researchers to adopt
similar approaches to improve forest health. However, the
above-mentioned nanomaterials have some limitations, i.e.,
manufacturing synthetic nanomaterials is expensive, and excessive
nanoparticle concentrations may negatively impact forest soil
health and microfauna. Dedicated studies can evaluate the
feasibility of these nanoparticles in forest protection.

Chitosan encapsulated microbes: new
hope against forest insect pests

Chitosan is frequently utilized as a carrier for encasing
microbial agents because of its ability to take the form of
particles, films, capsules, gels, fibres, and porous forms and its
unquestionable success in field applications (Lakkis, 2016; Saberi
Riseh et al., 2021). Three potential methods (diffusion, osmotic
burst, and erosion or breakdown) will work separately or together
and release the microbial substances from chitosan encapsulations.
Encapsulating chitosan-microbes (chitosan-ATCC393 and
chitosan-139S1) can protect against several environmental
challenges (Li et al., 2011; Vejan et al., 2019). Moreover, the
Harpinpss-chitosan, BMI-chitosan, B. thuringiensis-chitosan,
B. cereus-chitosan, E. fergusonii-chitosan, B. thuringiensis-chitosan,
and Pseudomonas-chitosan encapsulations tested on tomato,
soybean, cotton, tobacco, bean, corn, and Hyaloptera peroni
plants showed a reduction in egg-laying in female insects,
thereby reducing the population and insect damage (Badawy and
El-Aswad, 2012; Zeng et al., 2012; Chandrashekharaiah et al.,
2015; Sahab et al., 2015; Badawy and Rabea, 2016; Kitherian,
2017; Ureña Saborío et al., 2017; Nadendla et al., 2018; De
Oliveira et al., 2021). Based on the aforementioned findings,
RNAi molecules expressed in microbes that can be encapsulated
with chitosan are a viable technology and can be used as RNAi-
biopesticides in forest pest management (Figure 1). However,
such potential demands further dedicated studies and pilot field
experiments.

Chitosan-symbiont-mediated RNAi
(CSMR): an appealing idea

SMR is a potent tool, and researchers have developed
endogenous symbionts to express target dsRNAs for insect
control (Chen et al., 2015; Hu and Wu, 2016; Whitten
et al., 2016; Hu and Xia, 2019). Recent research identified the
bacterial symbionts, used them to express dsRNA effectively,
and controlled the two evolutionarily divergent insect species
(R. prolixus and F. occidentalis) (Whitten et al., 2016). Additionally,
entomopathogenic fungi were identified and used to induce

fungal-induced gene silencing (FIGS) in the insects B. tabaci
and L. migratoria (Chen et al., 2015; Hu and Xia, 2019). Our
colleagues from the United States are deploying fungal-induced
gene silencing (FIGS) technology to manage bark beetles, i.e.,
genetically modifying the bark beetle-associated yeast Ogataea
pini, to generate specific dsRNA molecules that target Ips
calligraphus (information based on personal communication).
Our team has also successfully identified and isolated insect-
symbiotic bacteria and fungi (Chakraborty et al., 2020a,b, 2023b)
and may use them as a CSMR for tropical application to
control the bark beetles and termites (Gupta et al., 2023).
Recently, our group identified 69 core bacterial genera and
19 fungal genera among six bark beetles (Ips typographus, Ips
duplicatus, Ips cembrae; Ips sexdentatus, Ips acuminatus, and
Polygraphus poligraphus). Notably, the most abundant bacterial
genera were Erwinia, Sodalis, Serratia, Tyzzerella, Raoultella,
Rahnella, Wolbachia, Spiroplasma, Vibrio, and Pseudoxanthomonas
whereas the most abundant fungal genera belong to the phylum
Ascomycota (Chakraborty et al., 2020a,b, 2023a). Further, our
group focused on exploring how varying ages of Norway spruce
wood and different terpene concentrations affect the microbial
compositions associated with two termite species, Reticulitermes
flavipes and Microcerotermes biroi (Chakraborty et al., 2023b).
In termite-infested wood samples, the relative abundance of
bacterial genera like Pseudomonas, Massilia, and Rhizobium was
high, and Spirochaeta and Treponema revealed notable changes
in relative abundance between these two species. Moreover,
within termite-infested wood, fungal communities affiliated with
the Eurotiales, Sordariales, Hypocreales, Trichospornales, and
Ophiostomatales orders were identified, notably, the fungal
genera Apiotrichum, Fusarium, Hawksworthiomyces, Lasiodiplodia,
Sporothrix, Trichosporon, and Trichoderma displayed substantial
prevalence in the termite-infested wood. As described thoroughly
in our recent review, some identified microbial associates of bark
beetle or termites can be good candidates for Symbiont-mediated
RNAi or SMR (Gupta et al., 2023). Nevertheless, SMR technology
can be considered for its potential in forest conservation; additional
refinements are necessary before applications.

Environmental risks and regulatory status
of RNAi-chitosan biopesticides

In order to increase forest production and health, RCNPs will
be utilized more frequently in forestry and dispersed into the
environment. Due to their biodegradable nature, these substances
may not harm non-target organisms; they may not bioaccumulate
and not interact with other environmental contaminants and
dissolved organic matter, which means they will not harm the
environment as well as humans and animals (Chandy and Sharma,
1990; Aspden et al., 1997; Rao and Sharma, 1997). RNAi-
biopesticides made of chitosan are easily dissolved in nature and
unable to accumulate in the food chain, stunt plant growth, or
potentially harm people and animals. Although studies have shown
that nanoparticles pose a risk to the environment, they have also
sparked much interest in environmental cleanup (Roy et al., 2021).
Therefore, more research is necessary to comprehend RCNPs and
their relationship to the environment thoroughly. Understanding
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the characteristics of various RNAi-chitosan bioformulation is
crucial, as is making comparisons between pure active ingredients
and both nanoformulations and traditional formulations to see how
the behaviour of the active components changes (Kah et al., 2018).

Future of RCNPs in forestry: a long way
to go

Applications for RCNP in the forest have numerous obstacles,
including developing different delivery strategies for various
microbes and insect pests, facilitating plant uptake and in planta
systemic movement of RCNPs, looking for synergistic effects,
such as dsRNAs targeting multiple genes and combining RNAi
with other pest control methods, and establishing a congruent
confluence, building a regulatory framework that is widely accepted
for the commercialization, therefore lowering the price for their
widespread use. Recently, RCNPs were used in the field, and
the result demonstrated their compact size, cationic charge,
effective loading, resistance to degradation, effective cellular uptake,
stability, and adhesion to leaf surfaces (Petek et al., 2020; Kolge
et al., 2021, 2023). Few RNAi-based insecticides have so far been
licensed and will soon be available on the market (Li et al., 2023;
Pallis et al., 2023).

The advancement of RNAi-nanotechnology has been beneficial
to forestry. However, strict controls are in place for forests to ensure
the security of feed and food sources, possible risks to human and
animal health, non-target organisms and beneficial microbes, and
the long-term environmental effects of the deliberate release of
RNAi-nanomaterials (Kumar et al., 2019; Gilbertson et al., 2020;
Hofmann et al., 2020; Mogilicherla et al., 2022). The European
Union is developing regulatory rules for engineered RNAi-
nanomaterials in forestry food safety (Lowry et al., 2019). Preparing
regulatory guidelines for RNAi-nanomaterials is more difficult due
to several factors, including the difficulty in defining nanomaterials,
tracing their sources and transport pathways, quantifying them
in environmental samples, assessing their bioavailability, and
interpreting their toxicity (Lai et al., 2018; Hofmann et al., 2020;
Gottardo et al., 2021). Under such circumstances, creating cutting-
edge analytical methods for regulatory purposes is necessary.

The capacity of researchers and scientists to develop forest
pest-specific dsRNAs will increase as more omics data for
forest insects, helpful microorganisms, and non-target organisms
become accessible and help to reduce possible risks. Fortunately,
our group and CZU colleagues (CZU, Prague) have recently
involved forest insects (bark beetles and termites) genome
and transcriptome sequencing and their symbiotic microbes
transcriptome sequencing, which along with other excellent efforts
from colleagues worldwide, will significantly enhance sequence
information on forest insect pests and facilitate future species-
specific RNAi-based biopesticides development.

Conclusion

RCNPs may replace currently used pesticides since they
are biodegradable, biocompatible, and low toxicity (Figure 1).
Chitosan nanoparticles can encapsulate different RNAi molecules
(dsRNA/siRNA) and RNAi-symbiotic microbes and form RCNPs.

They are more effective and have better bioavailability, a longer
half-life, and a higher surface-to-volume ratio and act as a bio-
stimulant used to combat microbial illnesses and insect pests
in forest management. RCNPs can be applied in forests using
various techniques, including foliar application, trunk injection,
and soil drenching. Based on current findings, using RCNPs
can also increase forest productivity, protect forests from insect
pests, and extend their commercialization. However, research
on product development and technique optimization is required
before commercial manufacture and environmental application.
Nevertheless, this perspective will provide new direction to the
research community working on forest protection and enhance
their interest in using alternative approaches, such as deploying
molecular toolboxes against forest insect pests.
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Monochamus saltuarius Gebler was first identified as a new vector of pine wilt

disease in Northeast China in 2018, and monitoring of M. saltuarius has become

a key strategy to prevent and control the disease in this region. However,

the potential distributions of M. saltuarius in China are unclear. In this study,

we clarified bioclimatic environmental variables affecting the distribution of

M. saltuarius, predicted the geographically suitable habitats of M. saltuarius in

current and future climate conditions, and determined changes in the spatial

pattern of a suitable distribution area of M. saltuarius under current and future

climate conditions. This is the first study to use the optimized maximum

entropy model and ArcGIS to accurately predict suitable geographical areas for

M. saltuarius based on different climatic conditions in China. and the average

area under the receiver operating characteristic curve reached 0.954 ± 0.0024.

Of the 32 bioclimatic variables, temperature seasonality, precipitation of wettest

month, precipitation seasonality, maximum temperature of the warmest month,

and elevation played significant roles in determining the potential distribution of

M. saltuarius, with contribution rates to the model of 32.1, 31.8, 11.5, 7.5, and

6.5%, respectively. Under the current climate scenario, the predicted suitable

areas for M. saltuarius were mainly at latitudes north of 33◦ in China, and larger

suitable areas were mainly distributed in Northeast China and North China, with

areas of 87.04 × 104 and 73.15 × 104 km2, respectively. Using future climatic

scenarios SSP126 and SSP585, the predicted suitable areas of M. saltuarius

will continue to expand from that of 2040, 2070, and 2100, with highly and

moderately suitable areas showing larger increasing trends but low suitable

distribution areas will decrease to varying degrees. The potential suitable areas

of M. saltuarius may increase greatly in Northwest, Central, and Eastern China.

This study provides important scientific theoretical knowledge for effectively

controlling and preventing M. saltuarius and pine wilt disease in northern China.

KEYWORDS

pine wilt disease, Monochamus saltuarius, Bursaphelenchus xylophilus, MaxEnt, climate
change
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1. Introduction

Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle can
cause pine wilt disease (PWD), which systematically infects and
causes wilting of healthy pines (Sun, 1982; Mamiya, 1983).
Bursaphelenchus xylophilus leads to high mortality of conifer trees,
including of Pinus plants and non-Pinus plants such as Picea, Larix,
Abies, and Cedrus (Nunes et al., 2013; Foit et al., 2019). PWD
was first discovered in 1982 in Pinus thunbergii Parl. in Nanjing,
Jiangsu province of China (Sun, 1982). Since then, it has become
one of the most destructive forest quarantine pests, causing very
large economic and ecological losses (Gao et al., 2017; Ye and Wu,
2022). As of February 2023, PWD had spread to 700 county-level
administrative regions in 19 provinces of China (Figure 1) and
continuously spread to the northern and western parts of China
(Li et al., 2022; Ye and Wu, 2022; Zhang et al., 2022; Zong and Bi,
2022).

As a plant parasitic nematode, B. xylophilus lives in the xylem
of host pines, and its natural transmission relies on insect vectors
that are transported from infected host plants to healthy plants
(Aikawa, 2008; Li M. et al., 2021). Currently, the main vector insects
that can carry B. xylophilus are beetles in the genus Monochamus
(Cerambycidae) (Linit et al., 1983; Kobayashi et al., 1984; Linit,
1988; Li et al., 2020; Li M. et al., 2021). The 4th dispersal juveniles
of B. xylophilus attach to the surface respiratory trachea and
reproductive systems of the vector insect before eclosion (Pan
et al., 2020). When vector insects eclose from pines killed by B.
xylophilus, they feed on a new healthy host plant and release B.
xylophilus, which then infects the healthy host tree (Balestrini et al.,
2009; Zhao et al., 2013; Zhang et al., 2020). Therefore, vector

insects are an important link in the PWD infection system, and
efficient control of vector insects is the most important measure
for preventing PWD (Linit et al., 1983; Kobayashi et al., 1984;
Linit, 1988; Li et al., 2020, 2022; Li M. et al., 2021 Ye and Wu,
2022).

Monochamus saltuarius is among the main vector insects of
B. xylophilus in Southeast Asia, including China, South Korea, and
Japan (Takizawa and Shoji, 1982; Sato et al., 1987; Jikumaru and
Togashi, 1995; Kim et al., 2006; Koo et al., 2013; Han et al., 2016;
Yu and Wu, 2018; Li et al., 2020; Li M. et al., 2021). Before 2016,
Monochamus alternatus was the only insect vector of B. xylophilus
in China and was widely distributed south of the Yellow River; its
northern boundary was Dalian, Liaoning province (Li et al., 2007;
Wu et al., 2013; Gao et al., 2023). However, in recent years, M.
saltuarius has been considered as a novel vector of B. xylophilus
in PWD-infected pines in high-latitude and newly invaded areas
of China, including in Jilin and Liaoning provinces (Yu and Wu,
2018; Li et al., 2020; Li M. et al., 2021). Monochamus saltuarius
plays a key role in carrying, spreading, and assisting the pathogen
B. xylophilus to enter its host, and in its transmission efficiency and
harmful effects (Ye, 2019; Li et al., 2022; Ye and Wu, 2022).

Monochamus saltuarius is a native species that is widespread
in northern China and was a common pest in Shanxi, Inner
Mongolia, Liaoning, Jilin, and Heilongjiang provinces before being
identified as a new vector insect of B. xylophilus in these areas
(Ye, 2019; Li M. et al., 2021; Figure 2). Moreover, by feeding
on host plants, M. saltuarius can enable full-scale invasion of
B. xylophilus and directly threaten healthy host trees in northern
China (Chen et al., 1959; Wang, 2014; Yu et al., 2019). However,
studies predicting M. saltuarius invasion in China have not been

FIGURE 1

Actual epidemic distribution areas of pine wilt disease in China by March 2023 (Data obtained from the No. 7 bulletin of National Forestry and
Grassland Administration [NFGA], 2023).
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FIGURE 2

Distribution areas of Monochamus saltuarius in China.

TABLE 1 The contribution rates of selected variables affecting the
geographical distribution ofM. saltuarius.

Code Variables Contribution
rate/%

Bio4 Temperature seasonality (◦C) 32.1

Bio13 Precipitation of wettest month (mm) 31.8

Bio15 Precipitation seasonality (mm) 11.5

Bio5 Max temperature of warmest month (◦C) 7.5

Elev Elevation (m) 6.5

Bio9 Mean temperature of driest quarter (◦C) 6.0

Wind3 Wind speed in March (m/s) 2.8

Wind9 Wind speed in September (m/s) 1.8

performed, preventing accurate prevention and control measures
for M. saltuarius and PWD.

There is an urgent need to carry out the research on
the distribution and change of the potential suitable areas of
M. saltuarius in China. An optimized MaxEnt model based on
the 175 latest county-level geographical distribution points was
used to predict a suitable distribution of M. saltuarius in China
during different climatic conditions. The main objectives of this
study were to (1) clarify the related bioclimatic environmental
variables affecting the distribution of M. saltuarius, (2) predict
geographically suitable areas for M. saltuarius under different
climate conditions, and (3) determine changes in the spatial pattern
of M. saltuarius in different climate conditions. This study provides
important scientific theoretical knowledge for the effective control
and prevention of M. saltuarius and PWD in northern China.

TABLE 2 The performance of MaxEnt model under default and
optimized settings.

Default Optimization

RM 1.0 0.5

FC LQHP LQHP

Mean AUC 0.904 0.906

AUCDIFF 0.058 0.054

ORMTP 0.076 0.076

OR10 0.355 0.360

1AICc 39.274 0

RM means regularization multiplier, FC means feature combination, AUC means area under
the ROC curve, AUCDIFF means the difference between the training AUC and the test
AUC, ORMTP means the “Minimum Training Presence” omission rate, OR10 means the 10%
training omission rate, 1AICc means Akaike information criterion.

2. Materials and methods

2.1. Data collection

A total of 175 county-level geographical distribution points of
M. saltuarius was obtained from four sources. First, 58 distribution
points were obtained from field surveys of the distribution of
M. saltuarius in different regions of China. Second, 69 distribution
points were obtained from published references. Third, seven
distribution points of M. saltuarius were obtained from the
National Animal Specimen Database.1 Fourth, 41 distribution
points were obtained from the relevant databases and official
websites. To remove the influence of spatial autocorrelation and

1 http://museum.ioz.ac.cn/index.html
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sampling bias, the distribution point data of M. saltuarius were
imported into ArcGIS10.7, and the buffer analysis function in the
software was used for sparse processing of distribution points to
ensure that there was one M. saltuarius distribution point within
areas of 25 km2.

2.2. Selection of variables

A total of 19 bioclimatic variables, 12 monthly average
values about the wind speed as historical weather data and

terrain elevation were downloaded from the WorldClim website
(Supplementary Table 1). Future climate data were simulated
using SSP126 and SSP585 of Beijing Climate Central Climate
System Model 2 Medium Resolution (BCC-CSM2-MR), and
the simulated time periods included the years 2050, 2070, and
2100. To avoid autocorrelation between bioclimatic variables
and overfitting (Sillero, 2011; Fotheringham and Oshan, 2016;
Li X. et al., 2021; Gao et al., 2023), the 32 variables were
screened and removed when the MaxEnt selected variables
affecting the distribution of M. saltuarius. This step was
performed to control the impact of redundant information

FIGURE 3

Receiver operating characteristic curve and areas under the curve for the optimized MaxEnt model.

FIGURE 4

Importance of key bioclimatic variables in MaxEnt model for the distribution of Monochamus saltuarius determined using the Jackknife test.
“Without variable” represents the regularized training gain of the model without this variable, “With only variable” represents the regularized training
gain of the model with only this variable, “With all variable” represents the regularized training gain of the model with all variables.
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on the simulation results and retain the environmental
variables that limited the distribution of M. saltuarius.
Initially, the MaxEnt was used to model the 32 variables,
and the contribution rate of each variable was calculated.
We continued to process bioclimatic variables using Pearson
correlation analysis and removed variables with correlation
coefficients higher than 0.8 (Supplementary Figure 1). Finally,
eight variables were selected from 32 bioclimatic variables to
predict the potential geographical distribution of M. saltuarius
(Table 1).

2.3. Model setting and analysis

The feature combinations and regularized multipliers of the
model were optimized using the “ENMeval” package in R to
screen the optimal combination and reduce the model complexity,
and then randomly selected 75% of the data for model training
and 25% for model testing. The regularization multiplier value
of the MaxEnt model was set to change from 0.5 to 4 with
an increase of 0.5 each time. Moreover, the accuracy of the
MaxEnt was evaluated as the area under the receiver operating
characteristic curve (AUC). A larger AUC value indicates higher
model accuracy, and the evaluation criteria of the model were
as follows: failure, poor, fair, good, and excellent. Finally, we
used the Jenks’ natural breaks method (Qi et al., 2015; Ge et al.,
2021) to reclassify the predicted suitable habitats for M. saltuarius
into four categories, namely non-suitable (0–0.09), low suitable
(0.09–0.0.28), moderately suitable (0.28–0.5), and highly suitable
(0.5–1.00).

3. Results

3.1. Optimization and evaluation

The optimized MaxEnt parameters were adjusted to feature
combination = LQHP, regularization multiplier = 0.5, 1AICc = 0,
and AUCDIFF = 0.054 (Table 2). Evaluation of the optimized
MaxEnt model showed that the average AUC (0.954 ± 0.0024) of
the simulation run results of the MaxEnt model repeated 10 times
was higher than 0.9 (Figure 3), demonstrating that the prediction
results reached an high standard. Therefore, the MaxEnt model,
which was set to optimize parameters.

FIGURE 6

Predicted suitable distribution areas of Monochamus saltuarius in
different regions of China under current climate conditions.

FIGURE 5

Predicted map of suitable distribution areas of Monochamus saltuarius in China under current climate conditions.
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FIGURE 7

Predicted map of potential suitable distribution areas of Monochamus saltuarius in China under the future climate conditions of SSP126 and SSP585.

3.2. Key bioclimatic environmental
variables

Eight variables were screened to predict the potential
geographical distribution of M. saltuarius. Among them, the
bioclimatic variables Bio4, Bio13, and Bio15 showed higher
contribution rates, with a cumulative contribution rate of 75.4%
(Table 2). Furthermore, the importance results of the selected
bioclimatic variables using the Jackknife test showed that Bio4,
Bio5, Bio13 and Elev were the variables with higher regularized
training gains were when only one bioclimatic variable was used
(Figure 4). Therefore, the key bioclimatic variables restricting the
distribution of M. saltuarius were Bio4, Bio5, Bio13, Bio15, and
Elev.

3.3. Current risk areas

Based on the historical climatic data and current distribution
data, a suitable area for M. saltuarius was predicted using the
current climate scenario (Figure 5), and the predicted total area was

approximately 193.59 × 104 km2, accounting for approximately
20.10% of the total land area of China. The predicted areas of high,
moderate, and low suitability for M. saltuarius were 40.26 × 104,
60.76 × 104, and 92.57 × 104 km2, accounting for 20.8, 31.38,
and 47.82% of the total predicted suitable areas, respectively. The
predicted suitable habitats of M. saltuarius were mainly at latitudes
north of 33◦ in China, and the larger suitable areas were mainly
distributed in Northeast and North China, with areas of 87.04 × 104

and 73.15 × 104 km2, respectively (Figure 6). There were some
suitable distribution areas for M. saltuarius in Central, East, and
Northwest China, with almost no predicted areas of M. saltuarius
in Southwest and South China.

3.4. Future risk areas

We predicted the potentially suitable areas of M. saltuarius in
2040, 2070, and 2100 using future climatic scenarios (Figure 7).
The predicted potentially suitable areas of M. saltuarius continued
to expand in future climatic scenarios (Figure 8). Moreover,
the center point of the suitable distribution area at different
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FIGURE 8

Changes in potential suitable areas of Monochamus saltuarius in different future climate conditions compared with the current areas.

times of M. saltuarius were predicted to shift with future
climate change, showing an obvious spreading trend to the
south and west (Figure 9). The range of centroid shifting
occurred in Inner Mongolia. Moreover, highly and moderately
suitable areas showed a larger increasing trend, but areas
with low suitability distributions decreased to varying degrees
(Table 3).

Similar to the current climate, the predicted areas of
M. saltuarius under future climatic conditions are concentrated
in Northeast and North China (Figure 10). In Northeast China,

highly suitable areas for M. saltuarius showed an increasing trend in
future climatic conditions, whereas moderately and low-suitability
areas generally showed a decreasing trend. In North China, highly
suitable and moderately suitable areas for M. saltuarius showed a
rising trend for future climatic conditions but low-suitability areas
showed an overall decreasing trend. Moreover, there was a large
increasing trend in the suitable distribution areas of M. saltuarius
in Northwest, Central, and Eastern China (Table 4); however, there
was almost no distribution area of M. saltuarius in Southwest and
South China.
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FIGURE 9

Changes in geographical centers of potential distribution areas of Monochamus saltuarius in different periods.

TABLE 3 The difference in potential suitable areas forM. saltuarius under current and future climate scenarios.

Decade Scenarios Total Predicted area (104 km2) Comparison with current (%)

Highly Moderately Low Highly Moderately Low

Current – 193.59 40.26 60.76 92.57

2040s ssp-126 216.10 54.60 70.73 90.77 35.62 16.41 −1.94

ssp-585 221.58 58.14 77.79 85.65 44.41 28.03 −7.48

2070s ssp-126 222.47 57.81 73.05 91.61 43.59 20.23 −1.04

ssp-585 213.85 56.19 69.27 88.39 39.57 14.01 −4.52

2100s ssp-126 218.78 58.12 73.22 87.44 44.36 20.51 −5.54

ssp-585 216.60 58.12 71.39 87.09 44.36 17.50 −5.92

4. Discussion

Monochamus saltuarius Gebler was first identified as a insect
vector of PWD in Northeast China in 2018 (Yu and Wu, 2018; Li
et al., 2020, Li M. et al., 2021). Monitoring M. saltuarius has become
a key strategy for the prevention and control of PWD in this region
(Ye, 2019; Li M. et al., 2021, Li et al., 2022; Ye and Wu, 2022).
Therefore, understanding the potential distribution of M. saltuarius
can facilitate the prevention and control of M. saltuarius and PWD.

The MaxEnt model is a widely used species distribution
model to predict the geographic spatial area of target species
and exhibits highly accurate prediction when only the “existence
only” distribution data of the target species are used (Ge et al.,
2018; Raffini et al., 2020; Lee et al., 2021; Ramasamy et al., 2022;

Gao et al., 2023). The maximum entropy distribution of a species
under environmental constraints in a specific area can be estimated
using the accurate geographical location of species occurrence and
related biological environmental variables (Jackson and Robertson,
2011; Mitchell et al., 2016; Cao et al., 2021). However, predicting
species distribution may be limited when using the MaxEnt model.
Setting the default parameters of the MaxEnt model may lead to
excessive model fitting, (Warren and Seifert, 2011; Muscarella et al.,
2014; Jin et al., 2022). Hence, the “ENMeval” packet in R software
was used to optimize the default parameters of the MaxEnt model
to reduce the fit degree of the model (Warren and Seifert, 2011;
Muscarella et al., 2014; Porfirio et al., 2014; Yan et al., 2021). The
MaxEnt model was optimized through ENMeval package, and it
was found that when the feature combination = LQHP and the
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FIGURE 10

Predicted suitable distribution areas of Monochamus saltuarius in different regions of China under future climatic conditions.

regularization multiplier = 0.5, the model was the optimal model,
and the predicted range of the suitable area of Pinus sylvestris
var. mongolica was basically consistent with the actual distribution
(Zhang et al., 2023).

In typical ectotherms, environmental variables can significantly
affect the diversity, richness, and geographical distribution
of insect species (Austin, 2002; Kreft and Jetz, 2007; Tang
et al., 2021). The selected eight key bioclimatic variables
in this study may significantly affect the distribution of

M. saltuarius. The results showed that Bio4, Bio5, Bio13,
Bio15, and Elev played important roles in restricting the
suitable distribution of M. saltuarius. In addition, Bio4 and
Bio13 contributed relatively more to the distribution of
M. saltuarius, indicating that M. saltuarius is highly sensitive
to fluctuations in precipitation and temperature. The change
in temperature is an important driving factor affecting the
growth, development, and diffusion of M. saltuarius, and changes
in temperature due to global warming will inevitably affect
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its distribution region (Cornelissen et al., 2019; Daniel et al.,
2020; Jin et al., 2022). In addition, the emergence period of
adults of M. saltuarius is concentrated from May to August
(Ochi, 1969; Jikumaru and Togashi, 1996; Han et al., 2007,
2009). This species is mainly active in the daytime, and its
flight distance is generally not more than a few hundred meters
(Ciesla, 2021); therefore, precipitation during this period affects
the flight and dispersal of M. saltuarius (Gao et al., 2019;
Zhao et al., 2021). Elevation was an important variable that
significantly affected the potential distribution of M. saltuarius,
possibly because of the close relationship between the host
plant distribution and altitude, which also greatly affected the
feeding and oviposition preferences of M. saltuarius (Zhao et al.,
2021).

To predict the potential distribution areas of M. saltuarius, we
previously obtained 175 distribution points of M. saltuarius from
published references, authoritative databases, and official websites,
and combined these data with field survey data. Each distribution
point had accurate data sources. The prediction results of the
MaxEnt model indicated that the potential distribution area of
M. saltuarius under current climatic conditions included actual
geographical distribution points, indicating that the optimized
model was highly reliable and accurate (Lee et al., 2021; Gao et al.,
2023).

Studies are urgently needed to accurately analyze and predict
the natural distribution patterns and potential distribution areas
of M. saltuarius in China. Under current climatic conditions,
the predicted suitable habitats of M. saltuarius were mainly
at latitudes north of 33◦N in China, and the larger suitable
areas were mainly distributed in Northeast China and North
China. Moreover, in areas with large numbers of geographical
distribution points of M. saltuarius, such as in Shanxi province,
Heilongjiang province, Jilin province, Liaoning, and Inner
Mongolia, the suitable areas for M. saltuarius will be further
expanded under future climate conditions. Furthermore, the
highly and moderately suitable areas of M. saltuarius have
spread to the eastern Gansu province, northeastern Shaanxi
province, northern Henan province, and southeastern Shandong
province; currently, there is almost no geographical distribution of
M. saltuarius in these areas. Therefore, local forestry departments
should increase their monitoring efforts to prevent M. saltuarius
from invading these areas. Our results also show that there
are almost no suitable distribution areas for M. saltuarius in
Southwest China and South China; however, M. saltuarius may
occur in these areas in the future. Furthermore, the impacts of
human activities and natural enemies on M. saltuarius should
be considered when predicting potentially suitable distribution
areas (Choi et al., 2017; Takahashi and Park, 2020; Gao et al.,
2023).

As an insect vector of PWD in northern China, M. saltuarius
can cause serious harm to the ecological environment and
economic production in invaded areas (Yu and Wu, 2018; Li et al.,
2020, Li M. et al., 2021). Previous studies showed that the effective
control of M. saltuarius and other vector insects is among the most
useful measures for preventing the occurrence of PWD (Linit et al.,
1983; Kobayashi et al., 1984; Linit, 1988; Li et al., 2020, 2022; Li M.
et al., 2021; Ye and Wu, 2022). Particularly, in areas where PWD
is not currently occurring, M. saltuarius is a common insect, such
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as Shanxi, Heilongjiang, Jilin, and Liaoning provinces, and PWD
monitoring should be a focus when evaluating vector insects.
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Introduction: Central European Norway spruce monocultures face Ips

typographus outbreaks due to decreasing resistance. These beetles use
volatile compounds to communicate and select suitable host trees. Spruce
trees, beetles, and their symbiotic ophiostomatoid fungi emit oxygenated
monoterpenes, including 1,8-cineole, α-terpineol, camphor, carvone,
terpinen-4-ol, isopinocamphone, and pinocamphone, and the phenylpropanoid
estragole, particularly in the infestation phase. These compounds trigger strong
responses in I. typographus antennae, motivating our field study.

Objective: This study aimed to assess how adding these compounds to the
aggregation pheromone of Ips typographus modulates the attraction of this bark
beetle and its natural enemies.

Methods: In combination with I. typographus pheromone, estragole,
1,8-cineole, (±)-camphor, (–)-carvone, alpha-terpineol, (–)-terpinen-4-ol,
(+)-pinocamphone, and (+)-isopinocamphone at low, medium, and high doses
were tested in pheromone traps at two sites in the Czech Republic.

Results: All 1,8-cineole doses and the high estragole dose acted as
anti-attractants for I. typographus, whereas all (+)-isopinocamphone doses
enhanced their attraction to pheromone. Catches of natural enemies, the
Staphylinidae and Pteromalidae, varied by location.

Conclusion: 1,8-cineole, isopinocamphone, and estragole may play vital roles
in tritrophic interactions among spruce trees, and I. typographus and its natural
enemies, and these compounds may be developed into new or enhanced
semiochemical-based pest control methods.

KEYWORDS

Eurasian spruce bark beetle, host compounds, Pteromalidae, Staphylinidae, Norway

spruce, Picea abies, spruce kairomone, pheromone traps
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1 Introduction

In Central Europe, Norway spruce (Picea abies) (L.) Karst.

(Pinales: Pinaceae) has been severely affected by infestations of the

spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae:

Scolytinae), that in the Czech Republic have resulted in timber

losses of 5.9 mil. m3 in 2017 and 26.2 mil. m3 in 2020 (Hlásny et al.,

2022). In outbreak regions, managing bark beetles often involves

applying insecticides to P. abies trunks or stored timber to eliminate

the emerging beetles (Fettig and Hilszczański, 2015). However,

the use of pesticides can negatively impact the forest ecosystem,

including beneficial bark beetle predator species (Hlásny et al.,

2019). The development of alternative, eco-friendly strategies

in forestry is a logical progression. One such strategy involves

utilizing semiochemicals, compounds that mediate the interactions

of beetles with each other and other organisms. These signals enable

beetles to locate a mate or host tree by providing intraspecific and

interspecific chemical information (Bergström, 2007). Aggregation

pheromone components, produced by male beetles after successful

colonization (Birgersson et al., 1984; Ramakrishnan et al., 2022),

have been employed for monitoring and controlling I. typographus

populations (Heber et al., 2021). Furthermore, recent research has

focused on the management potential of kairomones, compounds

originating from both host spruce trees and non-host trees, e.g.,

broadleaf trees (Zhang and Schlyter, 2004; Jakuš et al., 2022). Bark

beetles possess a sophisticated olfactory system that enables them

to detect and distinguish the chemical composition and quantity of

these odors (Andersson, 2012).

The principal olfactory stimulants for I. typographus emitted by

P. abies are primarily composed of high-abundance monoterpenes

such as α-pinene (23–39%), β-pinene (25–58%), β-phellandrene

(5–19%), limonene (1.5–4%), myrcene (1.6–3.4%), 1-3-carene

(0.6–1.1%), and camphene (0.2–1.1%; Netherer et al., 2021).

However, recent comparative analysis utilizing I. typographus

antennae as biological detectors (gas chromatography coupled

with electroantennography, GC-EAD) has identified several novel

compounds present in relatively small amounts but exhibiting high

activity with the beetles’ antennae (Kalinová et al., 2014; Schiebe

et al., 2019). These compounds include oxygenated monoterpenes,

1,8-cineole (eucalyptol), trans-4-thujanol (sabinene hydrate),

camphor, pinocarvone, pinocamphone, isopinocamphone,

terpinen-4-ol, alpha-terpineol, carvone, and phenylpropanoid

estragole (4-allylanisole and methyl chavicol). In single-cell

electrophysiological studies, researchers identified 24 classes of

olfactory sensory neurons (OSN) within olfactory sensillae for I.

typographus (Hallberg, 1982). Plant odor-responding OSNs exhibit

a variety of response specificities from broadly tuned OSNs for host

monoterpene hydrocarbons to several highly specific OSN classes

responding mainly to oxygenated monoterpenes (1,8-cineole,

isopinocamphone, trans-4-thujanol, or verbenone; Andersson

et al., 2009; Schiebe et al., 2019; Kandasamy et al., 2023).

In Norway spruce, oxygenated monoterpenes are minor

compounds (∼1% representation), and their content is influenced

by tree health and stress levels (Netherer et al., 2021). The

production of oxygenated monoterpenes in trees naturally

occurs through the cytochrome P450-catalyzed oxidation of

monoterpene hydrocarbons or by cyclization of oxygenated

intermediates (Celedon and Bohlmann, 2019). The release rate

of oxygenated monoterpenes, including 1,8-cineol, camphor,

pinocarvone, terpinen-4-ol, and α-terpineol, from healthy trees at

24◦C ranges from 0.1 to 7 µg/m²/h of stem surface area (Ghimire

et al., 2016). In infested trees, these rates increased 10–100 times

(Jaakkola et al., 2022), and in cut trees, they increased 10 times

(Schiebe et al., 2019).

Bark beetle symbiotic ophiostomatoid fungi generate

oxygenated terpenes in laboratory conditions when they are

inoculated onto a wood substrate (Kandasamy et al., 2023). In

the forest, fungi may assist beetles in colonizing healthy trees by

being involved in detoxifying host defense terpenes (Krokene,

2015; Kandasamy et al., 2021). Additionally, the beetles themselves

generate oxygenated monoterpenes, as they metabolize toxic

terpenes while feeding on the spruce tree’s phloem (Blomquist

et al., 2021). The detoxification process of terpenes involves a

series of steps. In the first step, a hydroxyl group is introduced to a

terpene molecule by cytochrome P450 catalysis. This modification

increases the molecule’s polarity and solubility in water, enabling

beetles to eliminate it (Blomquist et al., 2021). In subsequent steps,

the resulting terpenic alcohols are either excreted from the body

or bound to detoxification conjugative molecules, such as fatty

acid esters (Chiu et al., 2018) or glycosylates (Dai et al., 2021). This

mechanism was studied in Dendroctonus ponderosae (Chiu, 2018;

Chiu et al., 2019), Dendroctonus armandi (Dai et al., 2021), as

well as in Ips species (Blomquist et al., 2021; Ramakrishnan et al.,

2022) that feed on conifer trees, as these trees possess terpenes

as a defense trait. This adaptation allows the beetles to overcome

the tree’s defenses and successfully colonize it. It is theorized that

during evolution, some of these detoxification products, such

as cis-verbenol in I. typographus, started to serve as aggregation

pheromones for the bark beetles (Blomquist et al., 2021; Schebeck

et al., 2023).

The exact behavioral role of all host-produced oxygenated

monoterpene semiochemicals in bark beetles is not fully

understood. However, according to the primary attraction

theory proposed by Lehmanski et al. (2023), these compounds may

play a role in helping male bark beetles detect weakened host trees,

thereby facilitating successful colonization. Other compounds,

e.g., 1,8-cineole and trans-4-thujanol, have proved to be potent

anti-attractive compounds inhibiting beetle attraction to their

pheromone (Jirošová et al., 2022b). 1,8-cineole has been identified

as a potential predictor of bark beetle-resistant trees, along with

several other specialized metabolites (Schiebe et al., 2012). Higher

levels of trans-4-thujanol were detected in younger Norway

spruces. Given that this compound has demonstrated repellency in

high doses in laboratory olfactometer studies, it provides a potential

explanation for the reduced attraction of I. typographus to trees

below the age of 60 years (BlaŽyte-Cereškiene et al., 2016). The

activity of 1,8-cineole and trans-4-thujanol for I. typographus has

been evaluated in a field trapping experiment using different doses

in combination with pheromones. Both compounds demonstrated

a similar level of dose-dependent anti-attractant activity, with

trans-4-thujanol inhibiting more the captures of females than

males (Jirošová et al., 2022b). These compounds have been tested

in combination with other anti-attractants for the protection of

spruce trees in various forest environments, such as fresh forest
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FIGURE 1

Field experiment sites and cross-panel field traps in the Czech Republic: (A) Trap label, (B) synthetic aggregation pheromone dispensers, (C) synthetic
host tree odor dispenser, and (D) bait label for treatment identification.

edges or fragmented forests (Jakuš et al., 2022; Jirošová et al.,

2022a). Furthermore, individual compounds trans-4-thujanol,

(+)-isopinocamphone, camphor, and terpinen-4-ol were tested

in different doses in two-choice Petri dish walking laboratory

tests to assess their attractiveness to I. typographus. The activity

of these compounds was largely insignificant, and only trans-4-

thujanol and camphor at a high dose were attractive. In contrast,

a more complex mixture of oxygenated monoterpenes, generated

through the metabolization of (–)-β-pinene and (–)-bornyl acetate

by the ophiostomatoid fungus Grosmania polonica, exhibited

dose-dependent attractivity in the test (Kandasamy et al., 2023).

In multi-trophic interactions, the bark beetle predator-prey

relationships are influenced by qualitative and quantitative aspects

of host tree compounds and prey pheromones (Erbilgin and Raffa,

2001; Netherer et al., 2021). The natural enemies associated with I.

typographus include Hymenoptera: Pteromalidae (Rhopalicus spp.),

Diptera: Dolichopodidae (Medetera spp.), Coleoptera: Cleridae

(Thanasimus spp.), and Coleoptera: Staphylinidae (Nudobius sp.

and Quedius sp.; Wegensteiner et al., 2015). Laboratory bioassays

demonstrated the strong attraction of female Rhopalicus spp. to

infested logs, with antennal responses to oxygenated monoterpenes

including pinocamphone, pinocarvone, and the phenylpropanoid

estragole (Pettersson, 2001; Pettersson and Boland, 2003). Similarly,

camphor, pinocamphone, and terpinen-4-ol derived from bark

beetle-associated microorganisms in infested spruce logs exhibited

strong attraction with Medetera signaticornis Loew (Sousa et al.,

2023). Staphylinidae feeds on a wide range of prey, and some

species are hypothesized to be associated with bark beetles (Pelto-

Arvo, 2020). However, their specific association with host tree

volatiles, such as oxygenated monoterpenes and I. typographus

pheromone, remains unexplored.

The foraging strategies of some I. typographus predators,

Medetera spp. and Thanasimus spp., could be governed by a more

complete blend of the aggregation pheromone and host volatiles

(represented by oxygenated monoterpenes; Hulcr et al., 2006). The

hemiterpene pheromone component 2-methyl-3-buten-2-ol by

itself does not increase predator catch, while the minor component

ipsdienol does (Bakke and Kvamme, 1981; Hulcr et al., 2006; Raffa,

2014).

Further research is necessary to achieve a more comprehensive

understanding of the mechanisms and functions of oxygenated

monoterpenes and estragole in the behavior of bark beetles and

their predators.

In this study, we aimed to address the following

specific questions:

1. Can individual host tree-oxygenated monoterpenes and

estragole enhance or reduce the attractiveness of I.

typographus pheromones in field traps for capturing

bark beetles?

2. If so, which of the three tested decadic steps in release

rates, namely, low (representing conditions closest to natural

levels), medium, and high (representing doses used in

management), exhibits the highest efficacy?

3. What is the species composition and abundance of predatory

insects attracted to the tested compounds using the

methodology described?

4. Can we propose a specific role for the tested compounds in

bark beetle ecology?

We conducted a field trapping experiment to investigate

the activity of eight synthetic host tree compounds (estragole,

1,8-cineole, (±)-camphor, (–)-carvone, (–)-α-terpineol, (–)-

terpinen-4-ol, (+)-pinocamphone, and (+)-isopinocamphone) for

I. typographus and some of its natural enemies. The compounds

were tested at low, medium, and high release rates, in combination

with components in pheromone barrier traps.

2 Materials and methods

2.1 Experimental area and design

For field experiments, we chose two locations in the Czech

Republic. The first location was in North Moravia in Libavá
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TABLE 1 The gravimetric establishment of released rates of tested compounds performed in the laboratory and field.

Compounds Sources Purity (%) Doses Release rates (mg/day) Dispenser design

Nominal Lab. ± SEM N
= 3

Field ± SEM N =

3

Estragole Sigma-Aldrich 98 L

M

H

0.1 0.13± 0.04 0.14± 017 Glass vial (2ml), lid hole (1mm)

1 1.19± 0.17 1.72± 0.94 †Foil sachet: hole of 2 mm

10 8.78± 1.71 1.86± 0.4 †Foil sachet: hole of 9 mm

1,8-Cineol Sigma-Aldrich 98 L

M

H

0.1 0.06± 0.07 0.11± 0.01 ††PE-vial (Kartell 731), without

hole with paraffin oil (1ml)

1 0.66± 0.12 0.92± 0.12 Glass vial (2ml), lid hole (1mm)

10 5.20± 0.30 5.70± 6.7 ††Kartell 730 with hole (2mm)

(–)-terpinen-4-ol Sigma-Aldrich 98 L

M

H

0.1 0.07± 0.04 0.35± 0.06 Glass vial (2ml), lid hole (1mm)

1 0.41± 0.21 0.52± 0.49 ††Kartell 731 without hole

10 9± 2.34 7.8± 10.16 †Foil sachet: hole of 18 mm

(–)-carvone Sigma-Aldrich 95 L

M

H

0.1 0.13± 0.05 0.27± 0.13 Glass vial (2ml), lid hole (1mm)

1 0.66± 0.28 0.22± 0.16 ††Kartell 730 without hole

10 9.1± 2 4.92± 3.45 †Foil sachet: hole of 18 mm

(± )-camphor Alfa Aesar 95 L

M

H

0.1 0.09± 0.05 0.14± 0.9 Glass vial (2ml), lid hole (1mm)

1 0.58± 0.06 1.71± 0.77 ††Kartell 730: hole of 2 mm

10 7.33± 0.94 0.67± 10 PE-sachet without hole
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TABLE 1 (Continued)

Compounds Sources Purity (%) Doses Release rates (mg/day) Dispenser design

Nominal Lab. ± SEM N
= 3

Field ± SEM N =

3

(-)-α-terpineol Sigma-Aldrich 90 L

M

H

0.1 0.11± 0.05 0.05± 0.02 ††Kartell 730 without hole

1 1.37± 0.27 0.14± 0.07 †Foil sachet: hole of 9 mm

10 4.01± 0.4 1.11± 0.48 PE-sachet without hole

(+)-isopinocamphone ††† 99 L

M

H

0.1 0.37± 0.40 0.40± 0.11 †Foil sachet: hole of 1 mm

1 1.47± 0.08 1.87-0.67 ††Kartell 730 without hole

10 8.39± 0.98 8.21± 1.41 ††Kartell 731, lid hole (2mm)

(+)-pinocamphone ††† †††† L

M

H

0.1 0.4± 0.11 0.3± 0.6 †Foil sachet: hole of 1 mm

1 1.01± 0.34 1.32± 0.83 ††Kartell 730 without hole

10 9.1± 0.59 7.91-2.14 ††Kartell 731, lid hole (2mm)

2-methyl-3-buten-2-ol Across 97 H 50 32.2± 20.5 9.10± 16.1 ††Kartell 731, lid hole (1mm)

(S)-cis-Verbenol Sigma-Aldrich 95 H 1 1.53± 0.15 0.85± 1.34 ††Kartell 731, lid hole (9mm)

†Cellulose sponge square 7.5× 3.5× 0.25 cm sealed in PE foil thickness 0.1mm, loaded with 200 µl of compounds, finally sealed in an outer layer made of aluminum/PE foil with the hole with a given diameter in the middle of one side of the dispenser.
††PE vials Kartell (Labware-Italy) size 731 and 730.
†††Compounds synthesized in Unelius laboratory (Ganji et al., 2020).
††††The (+)-pinocamphone contained 29% (+)-isopinocamphone.
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(Military Forests, latitude 49◦38′49 “N, longitude 017◦33′50” E,

350m above sea level). It consisted of a 40-year-old Norway spruce

forest that has been heavily impacted by a bark beetle outbreak

since 2015 (Brázdil et al., 2022). The experiment in Moravia was

conducted from 18 May to 3 June 2022. The second location,

Kostelec nad Cernými Lesy (Forests CZU; latitude: 49◦55′57 “N,

longitude: 014◦55′13” E, 600m above sea level), consisted of a

70–90-year-old Norway spruce forest. Traps were placed in a 2-

year-old clearing measuring ∼200m × 300m. The experiment

was carried out from 3 June to 28 July 2022. The experiment was

designed identically in both locations (Figure 1).

The activity of estragole, 1,8-cineole, (±)-camphor, (–)-

carvone, (-)-α-terpineol, (–)-terpinen-4-ol, (+)-pinocamphone,

and (+)-isopinocamphone was tested at three different doses,

represented by their release rates evaporated/sublimated from the

dispenser (nominal 0.1, 1, and 10 mg/day, Table 1). The doses

were determined based on the published releases of oxygenated

monoterpenes from healthy trees at 24◦C, which varied from 0.1 to

7µg/m²/h of stem surface (Ghimire et al., 2016).When considering

a tree stem with a 50 cm diameter and an exposed surface area

of ∼24 m2 (representing 15m of stem height vulnerable to bark

beetle attack), the estimated daily release rate of these oxygenated

monoterpenes over a 24-h period would be ∼0.5–4 mg/day.

We used the pure enantiomers of (–)-carvone, (–)-terpinen-4-ol,

(+)-pinocamphone, and (+)-isopinocamphone, which triggered a

higher response on the I. typographus antennae (Schiebe et al., 2012;

Hou et al., 2021; Kandasamy et al., 2023) and were commercially

available or synthesized in the laboratory (Ganji et al., 2020).

Experimental dispensers were designed in the laboratory, and their

exact laboratory and field release rates were established using the

gravimetric method and measured six times (Jirošová et al., 2022b)

in a laboratory fume hood (temperature 25◦C and airflow 0.5

m/s) and in the field under the same weather conditions as the

experiments (Table 1).

In the field, the intercept pheromone traps (Ecotrap/Fytofarm,

Ltd., Bratislava; Slovakia) were mounted on poles 1.5m above the

ground in rows >30m from any forest edge. The distance between

traps was >15m (Supplementary Figure 1). In each field location,

32 intercept pheromone traps were baited with dispensers with I.

typographus pheromone (2-methyl-3-buten-2-ol at 9.1 mg/day and

(S)-cis-verbenol at 0.9 mg/day). In 24 of these traps, an additional

dispenser was placed with one of the eight test compounds in one

of three doses.

For each compound, one block represented four traps arranged

in a row: three traps with different doses in combination with

pheromone and one trap with pheromone-only (Control). The

position of the tested baits among these four traps was changed

four times according to the randomization scheme in a Latin square

design (Evans et al., 2020). These four rotations were repeated

twice for each compound, resulting in a total of eight collections

of catches for each treatment. Insects collected during the field

experiment in both localities were preserved in ethanol for further

analysis. Predators and parasitoids were sorted by family and

identified at the genus level. The identification of Pteromalidae

wasps followed the methods described by Peck et al. (1964),

Graham (1969), and Bouček and Rasplus (1991). For Staphylinidae

(rove beetles), the identification followed the guidelines provided

by Arnett and Thomas (2000) and Navarrete and Newton (2003). T
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2.2 Statistical analysis

For the evaluation of the effects of each individual compound,

a separate regression model was fitted with the relative number

of I. typographus as the dependent variable. The relative number

was expressed as the number of insects of a single taxon captured

by a treatment within a block divided by the total catches by

the block for a single catch collection. Due to the experimental

design, we utilized a mixed-effects model approach (Zuur et al.,

2009). The random part of the model was, in all cases, trap-

nested in the locality. During model building and validation, an

appropriate distribution function was selected by minimizing the

Akaike information criterion (AIC), and the significance of the

model was tested by the likelihood ratio test (χ2). Between the best

models, only two distribution functions were selected (Table 2):

generalized poison distribution (Joe and Zhu, 2005) and negative

binomial distribution in quadratic parameterization, according to

Hardin and Hilbe (2007). We used a t-test to compare the response

to each compound dose against the pheromone-only control. The

model formulation was performed in R version 4.3.1 (R Core Team,

2023) in the package glmmTMB following the procedures described

by Brooks et al. (2017).

3 Results

3.1 Ips typographus response to tested
compounds in combination with
aggregation pheromone

During field experiments, a total of 39,650 I. typographus

adults were caught. The number of adults captured in Kostelec

(N = 28,931) was 2.7 times higher than in Moravia (N =

10,719). However, the pattern of catches for the tested compounds

was almost the same. Compounds with significantly different

catches in the treatments: estragole (χ²; p < 0.01), 1,8-cineole

(χ²; p < 0.001), (+)-pinocamphone (χ²; p < 0.01), and (+)-

isopinocamphone (χ²; p < 0.01; Table 1, Figure 2). For 1,8-

cineol, all three doses in combination with pheromones resulted

in significantly fewer beetles caught than the pheromone-only

control, with stronger effects observed for the high dose (t-test;

p < 0.001, p < 0.01, p < 0.001; Table 2, Figure 2). For estragole,

the inhibitory effect was significant only for the high dose (t-

test; p < 0.05), while for pinocamphone, it was observed at

the medium dose (t-test; p < 0.001). However, regarding the

medium dose of pinocamphone, there were different catch rates

in Libava and Kostelec (Figure 2), suggesting a potential problem

with the dispenser used in Kostelec. Conversely, isopinocamphone

resulted in statistically higher catch rates at both high and

medium doses (t-test; p < 0.01 and p < 0.001, respectively)

compared to the pheromone-only treatment (Figure 2). A low

dose of isopinocamphone showed the same nearly significant

trend (t-test; p = 0.08; Table 2). Catches of beetles of remaining

tested compounds in combination with pheromone, including

(±)-camphor, (–)-carvone, (-)-α-terpineol, (-)-terpinen-4-ol, and

pheromone-only, did not exhibit significant differences (Table 2).

Additionally, there were no significant differences in catches

between the individual doses and the pheromone-only control

group for any of these compounds (Supplementary Figure 2).

For each compound, a separate model (GLMM) was created

with the formula: Relative count of I. typographus ∼ Compound

dose + (1|Locality). The appropriate distribution function

(model family: genpois—Generalized poison; nbinom2—Negative

binomial), Akaike information criterion (AIC), and significance

test (χ2) are stated for each compound. The results of the

t-test contrast comparison given for each compound and dose

combination against pheromone-alone (control). Asterisks mark a

significant difference (p < 0.05 ∗; p < 0.01 ∗∗; p < 0.001 ∗∗∗) of the

dose from pheromone alone.

3.2 Predatory insect response to tested
compounds in combination with
aggregation pheromone

The catch of natural enemies was three times higher in Kostelec

compared to Moravia, which corresponds to a higher number of

bark beetle catches in Kostelec. Four families of natural enemies of

bark beetles were identified with a prevalence of Pteromalidae and

Staphylinidae (Supplementary Tables 1, 2). In Kostelec, there were

93 specimens of parasitoid wasps belonging to the genus Rhopalicus

sp. (Hymenoptera: Pteromalidae), while in Moravia, there were

only 13 specimens. Additionally, in Kostelec, 19 specimens of rove

beetles (Coleoptera: Staphylinidae) were caught, and inMoravia, 23

specimens (Table 3).

The ratio between these two groups appeared different between

the two locations, with Kostelec having a higher proportion of

Pteromalid wasps compared to Staphylinids, while in Moravia, we

observed the opposite trend. There were a few catches recorded

forMedetera sp. (Diptera: Dolichopodidae), with five specimens in

Kostelec and three specimens in Moravia. There were four catches

of Lonchaea sp. (Diptera: Lonchaeidae), three in Kostelec, and one

in Moravia. For Thanasimus sp. (Coleoptera: Cleridae), there were

two catches in Kostelec and three catches in Moravia.

The catches of Rhopalicus sp. wasps did not show significant

differences between compounds and their doses. The number

of caught specimens in Moravia and Kostelec is listed in the

Supplementary Tables 1, 2.

4 Discussion

4.1 Response of Ips typographus to tested
compounds

The variability in total catches of I. typographus and

its predators, as well as their varying distributions across

different treatments in the experimental locations of Kostelec and

Moravia, could be attributed to the unique weather conditions

experienced during each field experiment, as described in

Supplementary Figure 3. Furthermore, this variation may have

been influenced by the season impacting the flight activity of the

beetles. The variation between catches in blocks of traps may have

been due to different locations of blocks within the clearing, in

terms of their distance to the forest edge and wind speed and
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FIGURE 2

Relative number of I. typographus captured in traps baited with pheromone attractant (Ph) alone or attractant with host volatiles (A) estragole, (B)
1,8-cineole, (C) (+)-pinocamphone, and (D) (+)-isopinocamphone in a low-medium, high-release dose combined with pheromone (Ph) and control
pheromone-only. The bigger black dot in the middle of the vertical line is a posterior mean value and whiskers. Error bars represent the 95%
confidence interval, and colored points represent the raw catches. The smaller dots are original values: blue Kostelec and red Libavá.

direction. The trap catches could also have been influenced by

different ages of spruce stands near the experiments.

In many cases, the beetles exhibited weak differences in

response to the tested compounds in combination with the

pheromone compared to the pheromone alone, and the observed

effects were only marginally significant. However, there was

a noticeable anti-attractive effect observed with 1,8-cineole, a

compound for which similar findings and similar trends have been

reported previously (Andersson et al., 2010; Binyameen et al., 2014;

Jirošová et al., 2022b).

New findings were the anti-attractive effect of a high dose of

estragole and the effect of (+)-isopinocamphone on enhancing

the attractive activity of the pheromone for I. typographus. There

was also a less clear inhibition effect of a medium dose of

pinocamphone, probably caused by a defective test dispenser for a

medium dose at Kostelec. In contrast, when α-terpineol, camphor,

carvone, or terpinen-4-ol were added to the pheromone, they did

not alter its attractiveness, despite these compounds eliciting strong

responses from I. typographus antennae (Kalinová et al., 2014;

Schiebe et al., 2019).

The ecological role of estragole, 1,8-cineole, and

isopinocamphone in the interaction between I. typographus

and Norway spruce trees was investigated by Schiebe (2012, 2019).

The amount of these compounds, along with other oxygenated

monoterpenes found in spruce, increased in felled trees and in

standing trees after the application of the plant hormone analogue

methyl jasmonate. The quantity of these compounds was negatively

correlated with the density of bark beetle attacks when the beetles

infested the felled trees, and the standing trees that exhibited a

higher induction of these compounds were able to survive a natural

bark beetle infestation.

The effect of estragole has been tested on several bark

beetle species (Coleoptera: Curculionidae: Scolytinae), including

Dendroctonus brevicomis LeConte (Hayes and Strom, 1994), Ips

pini (Say), Ips latidens (Leconte) (Joseph et al., 2001), and Tomicus

piniperda (Curculionidae: Scolytinae) (Haack et al., 2004). Its

inclusion in their host odor blend resulted in reduced trap catches.

Estragole was also reported to interrupt the responses of bark

beetle species Dedroctonus simplex (Le Conte) and D. ruffipenis

(Kirby) to their attractive pheromone components (Werner, 1995).
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However, recent research has revealed that the addition of estragole

increased catches of both Dendroctonus frontalis (Zimmermann)

and D. terebrans (Olivier) on their pheromone lures (Munro et al.,

2020). Based on these findings, we suggest that this semiochemical

has variable ecological roles for these different species.

In our study, (+)-isopinocamphone caused a synergistic

increase in beetle catches when added to the pheromone. This

observation, combined with the fact that bark beetles possess

specialized sensilla on their antennae (Hou et al., 2021) to detect

it, suggests the potential role of (+)-isopinocamphone in the

selection of host trees. Kandasamy et al. (2023) tested in a short-

range two-choice test in a Petri dish synthetically prepared (+)-

isopinocamphone added as a solution in mineral oil to spruce

bark agar, which did not exhibit significant attractivity for I.

typographus bark beetles in tested doses. This further indicates

that the effect of (+)-isopinocamphone we see in trap catches

may be a long-range attraction (in accordance with the known

long-range attraction of cis-verbenol; Schlyter and Birgersson,

1999).

4.2 Response of bark beetle insect natural
enemies to tested compounds

The anticipated captures of the common predatory

beetle Thanasimus sp. were relatively low. This could

be attributed to the fact that our pheromone bait only

contained the two major pheromone components, 2-methyl-

3-buten-2-ol and (S)-cis-verbenol, and not ipsdienol, an

I. typographus pheromone component emitted in smaller

amounts in the later attack states (Birgersson et al., 1984;

Hulcr et al., 2006). Furthermore, we observed only a few

captures of Medetera sp. and Lonchaea sp. flies, likely due

to the use of a trap optimized for Coleoptera that lacked

sticky surfaces.

Although there is limited information on Staphylinidae

predators using host tree volatiles for locating bark beetles

(Wegensteiner et al., 2015), it has been reported that they

are attracted to pheromone traps used for monitoring Ips

typographus (El-Sayed, 2023). Additionally, commercial

pheromone traps tested in combination with host tree

logs (P. abies) caught ∼38% more predatory Staphylinidae

than traps without logs, in comparison to a 32% increase

in catches of Thanasimus formicarius (L.) (Zumr, 1983).

Hence, host tree compounds may mediate staphylinid

prey location.

The pteromalid parasitoid wasp Rhopalicus sp. was the most

abundant among the captured bark beetle natural enemies, but

there were no significant preferences for any of the tested

compounds due to the low number of caught specimens. In

the literature, an electroantennographic study of bark beetle

gallery smell was tested on the antennae of Rhopalicus tutela

(Walker) females. The antennae showed sensitivity to oxygenated

monoterpenes and estragole (Pettersson, 2001). Additionally,

the olfactory response to estragole was reported in other

species of parasitoid wasps, Spathius pallidus Ashmead, 1893,
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and Roptrocerus xylophagorum (Hymenoptera: Pteromalidae;

Sullivan et al., 1997).

5 Conclusion

The effect of 1,8-cineole, estragole, and (+)-isopinocamphone,

as observed in our field experiments, provides evidence that these

oxygenated monoterpenes and estragole can exhibit biological

activity for I. typographus and their natural enemies when

combined with I. typographus aggregation pheromone. This

suggests that their long-range activity is not solely dependent

on a complex mixture, such as that emitted by symbiotic fungi

inoculated on wood substrates (Kandasamy et al., 2023).

The discovery of new attraction inhibitors or adjuvants for

attractants can be applied to the development of integrated

pest management methods for controlling I. typographus. Anti-

attractants, a term broadly used for attraction inhibitors, have

already been tested to deter various pest bark beetles, such as

Dendroctonus ponderosae, D. rufipennis, D. pseudotsugae, Ips pini,

and Dryocoetes confusus, from attraction to their pheromone or to

the host tree (Schlyter, 2012). These anti-attractants can originate

from host trees, non-host trees, associated microorganisms, or the

beetles themselves (Borden et al., 2000; Munro et al., 2020).

In the protection of Norway spruce trees against I. typographus,

verbenone, a well-established repellent for bark beetles, was tested

with varying success (Jakuš et al., 2003; Frühbrodt et al., 2023).

In nature, verbenone signals an old and over-exploited host. The

synergistic blend effect of verbenone mixed with green leaf volatiles

(C6 alcohols) and C8 alcohols (3-octanol and 1-octen-3-ol) and

the angiosperm and fungal spiroacetal conophthorin (Zhang and

Schlyter, 2004) was also evaluated for tree protection against I.

typographus (Schiebe et al., 2011), resulting in a reduction of tree

killing ranging from 35 to 76% in protected areas.

The recently tested anti-attractant mixture also includes,

besides the 3-octanol, 1-octen-3-ol, hexanol and conophthorin, 1,8-

cineole and trans-4-thujanol from spruce and excludes verbenone

(Jirošová et al., 2022a). Anti-attractant blends offer partial

protection for standing trees but are ineffective for windfallen trees.

Adding new anti-attractants, e.g., geranyl acetone (Lindmark et al.,

2023), to the mixture may enhance tree protection effects.

A comprehensive approach to semiochemical tree protection

against I. typographus attacks could employ the push-pull strategy.

Trees are protected by anti-attractants, and repelled beetles are

caught in pheromone traps baited with attractive I. typographus

pheromones. Both the push and pull might be enhanced by the

addition of new semiochemicals (Jakuš et al., 2022; Deganutti

et al., 2023). The addition of (+)-isopinocamphone to the

trapping lure could increase beetle attraction away from trees

while simultaneously protecting them from an estragole-enhanced

beetle repellant.
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Fettig, C. J., and Hilszczański, J. (2015). “Management strategies for bark beetles in
conifer forests,” in Bark Beetles: Biology and Ecology of Native and Invasive Species, eds
E. F. Vega and W. R. Hofstetter (Amsterdam: Elsevier Inc.), 555-584.

Frühbrodt, T., Schebeck, M., Andersson, M. N., Holighaus, G., Kreuzwieser, J.,
Burzlaff, T., et al. (2023). Verbenone—the universal bark beetle repellent? Its origin,
effects, and ecological roles. J. Pest Sci. 31, 1-37. doi: 10.1007/s10340-023-01635-3

Ganji, S., Svensson, F. G., and Unelius, C. R. (2020). Asymmetric synthesis of
oxygenated monoterpenoids of importance for bark beetle ecology. J. Nat. Prod. 83,
3332-3337. doi: 10.1021/acs.jnatprod.0c00669

Ghimire, R. P., Kivimäenpää M., Blomqvist, M., Holopainen, T., Lyytikäinen-
Saarenmaa, P., and Holopainen, J. K. (2016). Effect of bark beetle (Ips typographus
L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees. Atmos.
Environ. 1, 145-152. doi: 10.1016/j.atmosenv.2015.11.049

Graham, M. W. R. V. (1969). The Pteromalidae of North-Western Europe
(Hymenoptera: Chalcidoidea). Bulletin of the British Museum (Natural History).
London: London Press.

Haack, R. A., Lawrence, R. K., Petrice, T. R., and Poland, T. M. (2004).
Disruptant effects of 4-allylanisole and verbenone on Tomicus piniperda (Coleoptera:
Scolytidae) response to baited traps and logs. Gt. Lakes Entomol. 37, 4.
doi: 10.22543/0090-0222.2107

Hallberg, E. (1982). Sensory Organs in Ips typographus (Insecta: Coleoptera) Fine
structure of the sensilla of the maxillary and labial palps. Acta Zool. 63, 191-198.
doi: 10.1111/j.1463-6395.1982.tb00778.x

Hardin, J. W., and Hilbe, J. M. (2007). Generalized Linear Models and Extensions.
College Station, TX: Stata press.

Hayes, J. L., and Strom, B. L. (1994). 4-Allylanisole as an inhibitor of
bark beetle (Coleoptera: Scolytidae) aggregation. J. Econ. Entomol. 87, 1586-1594.
doi: 10.1093/jee/87.6.1586

Frontiers in Forests andGlobal Change 11 frontiersin.org90

https://doi.org/10.3389/ffgc.2023.1292581
https://www.frontiersin.org/articles/10.3389/ffgc.2023.1292581/full#supplementary-material
https://doi.org/10.1155/2012/149572
https://doi.org/10.1242/jeb.044396
https://doi.org/10.1016/j.jinsphys.2009.01.018
https://doi.org/10.1007/BF00995753
https://doi.org/10.1351/pac200779122305
https://doi.org/10.1111/1365-2435.12252
https://doi.org/10.1007/BF00987511
https://doi.org/10.1007/s13595-015-0494-5
https://doi.org/10.1016/j.cois.2020.11.010
https://doi.org/10.5194/cp-18-2155-2022
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.1111/nph.15984
https://doi.org/10.1073/pnas.1722380115
https://doi.org/10.1038/s41598-018-38047-8
https://doi.org/10.3390/insects12100926
https://doi.org/10.1111/afe.12600
http://www.pherobase.com/database/family/family-Staphylinidae.php
http://www.pherobase.com/database/family/family-Staphylinidae.php
https://doi.org/10.1007/s004420000606
https://doi.org/10.37236/8020
https://doi.org/10.1007/s10340-023-01635-3
https://doi.org/10.1021/acs.jnatprod.0c00669
https://doi.org/10.1016/j.atmosenv.2015.11.049
https://doi.org/10.22543/0090-0222.2107
https://doi.org/10.1111/j.1463-6395.1982.tb00778.x
https://doi.org/10.1093/jee/87.6.1586
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Moliterno et al. 10.3389/�gc.2023.1292581

Heber, T., Helbig, C. E., Osmers, S., and Müller, M. G. (2021). Evaluation of
attractant composition, application rate, and trap type for potential mass trapping of
Ips typographus (l.). Forests. 12, 1727. doi: 10.3390/f12121727
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The effect of the oak powdery 
mildew, oak lace bug, and other 
foliofagous insects on the 
growth of young pedunculate 
oak trees
Čedomir Marković 1, Branko Kanjevac 2, Uroš Perišić 2 and 
Jovan Dobrosavljević 1*
1 Faculty of Forestry, Department of Forestry and Nature Protection, Chair of Forest Protection, 
University of Belgrade, Belgrade, Serbia, 2 Faculty of Forestry, Department of Forestry and Nature 
Protection, Chair of Silviculture, University of Belgrade, Belgrade, Serbia

Pedunculate oak (Quercus robur L., 1753) is one of the widely distributed 
oak species in Europe. A large number of organisms develop on its leaves. 
To determine the extent to which the oak powdery mildew, oak lace bug, 
and other foliofagous insects affect the growth of young oak trees, three 
experimental fields were selected in a 10-year-old pedunculate oak stand. In 
each of them, 50 trees were randomly selected, and their height was measured 
at the beginning of the vegetative season. The first experimental field was 
treated with a systemic insecticide, the second with a systemic fungicide, 
and the third, a comparison area, with water, during the entire vegetative 
season. At the end of the vegetative season, 25 plants with one apical branch 
were selected in each experimental field. Their height was measured, and 20 
leaves were taken from each plant to determine the extent of the damage 
on them at the end of the experiment. After processing the obtained data, it 
was determined that: 1. Both foliofagous insects and oak leaf inhabiting fungi 
affect the growth of the oak trees significantly; 2. The oak lace bug did not 
influence the growth of the young trees significantly, as its abundance was 
low in all of the experimental areas; 3. The greatest damage on the leaves 
was caused by defoliator insects, which is why they contributed the most to 
the decrease in growth caused by insects; 4. The influence of the foliofagous 
insects on the growth of the trees was not significantly different from the 
influence of fungi; 5. Suppression of oak powdery mildew and foliofagous 
insects on young trees is useful as it positively influences the vitality and 
growth of those trees, and contributes to economic and ecological gain.

KEYWORDS

foliofagous insects, chemical control, Corythucha arcuata, defoliators, Erysiphe 
alphitoides, Quercus robur, height growth

1 Introduction

Pedunculate oak (Quercus robur L., 1753) is one of the most widely distributed oak 
species in Europe (Bobinac et al., 2012; Puchałka et al., 2017). Its range covers most of 
Europe, excluding its most southern and northern parts (Eaton et al., 2016). This species 
always had significant meaning for the people, as it provided construction and fuel 
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material, food for livestock, and bark for tanning (Eaton et al., 2016). 
Because of its impressive appearance and longevity, it has a symbolic 
role in many cultures in Europe (Askeyev et al., 2005; Mills, 2013; 
Eaton et al., 2016). Its forests have a significant ecological value as they 
provide high biodiversity (Mölder et al., 2019). Due to its high quality 
of wood, it is one of the most important species in managed forests in 
Europe (Eaton et al., 2016).

A large number of organisms develop on pedunculate oak 
leaves (Karadžić, 2010; Dobrosavljević et al., 2020; Ermolaev et al., 
2021; Mladenović et al., 2021; Marković, 2022). Among them, the 
oak lace bug  - Corythucha arcuata (Say, 1832) (Hemiptera: 
Tingidae) and oak powdery mildew, which is most frequently 
caused by Erysiphe alphitoides (Griffon and Maubl). Braun and 
Takam (Erysiphales: Erysiphaceae), present the most problematic 
ones in southeastern Europe (Glavaš, 2011; Pap et al., 2013; Simov 
et al., 2018; Drekić et al., 2019; Bălăcenoiu et al., 2021a; Franjević 
et al., 2023). Defoliators such as Lymantria dispar Linnaeus, 1758 
(Lepidoptera: Erebidae), Tortrix viridana Linnaeus, 1758 
(Lepidoptera: Tortricidae), Erannis defoliaria (Clerck, 1759) and 
Operophtera brumata (Linnaeus, 1758) (Lepidoptera: Geometridae) 
can also cause significant damage as their outbreaks can spread 
over large areas (Marović et  al., 1998; Harapin and Jurc, 2000; 
Pernek et al., 2008; Tomescu and Netoiu, 2008).

Corythucha arcuata and Erysiphe alphitoides are invasive 
species’ (Marçais and Desprez-Loustau, 2014; Bălăcenoiu et  al., 
2021a). The first one originates from North America (Csóka et al., 
2020), while the origin of second one is most probably from Asia 
(Desprez-Loustau et al., 2017). The first finding of C. arcuata in 
Europe happened in Italy in 2000 (Bernardinelli and Zandigiacomo, 
2000), while E. alphitoides was first found in France in 1907 (Hariot, 
1907). These two species are now one of the most widely distributed 
oak leaf-inhabiting pest organisms in Europe (Marçais and Desprez-
Loustau, 2014; Csóka et al., 2020). C. arcuata causes significant 
damage during each vegetative season. Severe outbreaks of this 
species have been reported in many European countries (Paulin 
et al., 2020). Its larvae and adults damage the leaves by sucking the 
sap on the underside of the leaf. Necroses which their feeding 
causes can cover the entire leaf area in the case of high abundance. 
That is why decolorization, lower photosynthetic activity, 
transpiration, and stomatal conductance occur on those plants 
(Nikolic et al., 2019; Paulin et al., 2020; Bălăcenoiu et al., 2021a). All 
of these effects can consequentially lead to a decrease in growth, 
premature leaf abscission, and a decrease in the size of the acorn 
(Tomescu et  al., 2018; Drekić et  al., 2019; Paulin et  al., 2020). 
E. alphitoides is constantly present in oak forests. This obligate 
parasite creates an epiphyte mycelium on the leaf, which takes 
nutrients from the host and covers the leaf surface (Karadžić and 
Milijašević, 2005). All this consequentially causes a reduction in 
photosynthetic activity and transpiration (Pap et al., 2014b). That 
causes a decrease in growth and can cause dieback of younger plants 
(Karadžić and Milijašević, 2005; Bert et al., 2016). The dieback of 
young oak trees which this fungus causes is a significant problem 
(Karadžić and Milijašević, 2005; Pap et al., 2012). That is why the 
control of this pathogen is conducted during forest regeneration 
(Bobinac and Karadžić, 1994; Glavaš, 2011; Pap et  al., 2012). 
E. alphitoides causes problems even in older forests in the cases of 
defoliation, when it can significantly diminish the vitality of oak 
trees (Pap et al., 2014b).

As E. alphitoides has been present in Europe for more than 
100 years, a lot is known about it (Desprez-Loustau et  al., 2011; 
Marçais and Desprez-Loustau, 2014; Lonsdale, 2015; Kebert et al., 
2022; Mieslerová et al., 2022). L. dispar, T. viridana, E. defoliaria, and 
O. brumata have also been a topic of many studies (Ivashov et al., 
2002; Tikkanen and Julkunen-Tiitto, 2003; Glavendekić, 2010; 
Milanović et al., 2020a,b, 2022). C. arcuata is still a new species for 
Europe so it is currently intensively studied (Bernardinelli, 2006; 
Franjević et al., 2018; Drekić et al., 2019; Nikolic et al., 2019; Csóka 
et al., 2020; Kern et al., 2021; Marković et al., 2021a; Bălăcenoiu et al., 
2021b; Paulin et al., 2023; Stancă-Moise et al., 2023; Valdés-Correcher 
et  al., 2023). As pedunculate oak is one of the most significant 
European oaks (Eaton et al., 2016; Mölder et al., 2019) we conducted 
a study to determine: how C. arcuata and other foliophagous insects 
affect the growth of young pedunculate oak trees; which type of 
foliofagous insect damage is dominant on the leaves; how oak powdery 
mildew affects the growth of young trees; and does the influence of 
foliofagous insect on the growth of young oak trees differ from the 
influence of oak powdery mildew.

2 Materials and methods

2.1 Study area

The study was conducted in 2022 in a 10-year-old regenerated 
pedunculate oak stand1 (44° 45′ 2.88˝ N and 19° 59′ 45.88˝ E). It is 
located in a plane, at an altitude of 74 m. The average tree height was 
2.4 m and the average diameter at root collar was 2.8 cm. The studied 
area is located on an alluvial deposit of clay and sand, where the soil 
is eutric cambisol. The average annual temperature is about 11°C, 
while the annual precipitation is 569.6 mm. The climate is 
characterized as continental with some features of the Pannonian-
steppe temperate continental climate. The plants in the investigated 
stand use only atmospheric water and underground water in spring 
since the area is not flood-prone.

2.2 Experimental design

Three experimental areas, measuring 20 × 10 m, separated by a 
distance of 100 m, were selected in the stand. At each of them, 50 
randomly selected trees were singled out at the beginning of the 
study (on April 1st). They were labeled and their heights were 
measured by a tape measure with a precision of 1 cm. The first study 
area was treated with the systemic insecticide Tonus (active 
substance Acetamiprid 200 g/kg) in a concentration of 0.25 g per liter 
of water to prevent and suppress insect damage. The second area was 
treated with the systemic fungicide Falcon 460-EC (Tebuconazole 
167 g/L + Triadimenol 43 g/L + Spiroxamine 250 g/L, in a 
concentration of 0.35 mL) per liter of water to prevent and suppress 
the harmful fungi. The third area was the comparison area which 

1  All the data except the plant dimensions were gathered from the Public 

company “Vojvodinašume” which manages the forests in which the experiment 

was conducted.
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was treated only with water. These pesticides were selected because 
they have a broad spectrum of effect and were already successfully 
used or they gave satisfactory results in similar experiments (Pap 
et  al., 2015; Drekić et  al., 2021). The pesticides were applied by 
spraying from the ground with a backpack sprayer. Each 
experimental area was treated with 10 liters of the listed formulation 
prepared with water (500 L/ha). All of the areas were treated 
simultaneously, every 15 days starting from April 1 to October 1 
(entire vegetation). After that, 25 plants with a single apex and 
similar initial heights (± 25 cm) were selected in each experimental 
field to isolate extreme values, as some plants were broken while 
some formed multiple apical branches. Their heights were measured 
on the 15th of October when the experiment was finished. Twenty 
leaves were then randomly selected from each of the plants to assess 
the amount of damage caused by the analyzed organisms. They were 
packed in plastic bags and brought to the laboratory of the University 
of Belgrade Faculty of Forestry, where they were kept in the 
refrigerator for 2 days until the analyses were done. Damages were 
divided into the following groups: defoliators, miners, gallers, 

sucking insects, and oak powdery mildew (Figure 1). The assessment 
of the damage by category was done visually by the naked eye. The 
damaged area was estimated as the share of leaf area covered by 
mycelia, mines, galls, discoloration or simply eaten (missing) in 
relation to the total surface area of the leaf. The damaged area was 
measured in percentages as a relative measure because the leaf size 
differed significantly between and within each tree.

2.3 Leaf damaging organisms

Before each treatment and at the end of the experiment, leaves 
from randomly selected plants in the comparison area were analyzed 
to identify the foliofagous insect fauna on them. The noted species 
were identified on the site as they are common for the area in which 
the study was conducted. As oak powdery mildew can be caused by 
multiple fungi (Karadžić and Milijašević, 2005) of which E. alphitoides 
is listed as the most important one in the studied area, the damage on 
the leaves was labeled only as oak powdery mildew.

FIGURE 1

Illustration of how the different damage types were identified and estimated: (A) galls (Cynipidae sp.); (B) oak powdery mildew; (C) oak lace bug 
(Corythucha arcuata); (D) mines (Phyllonorycter sp.); (E) defoliation.
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2.4 Statistical analysis

As the distribution of the analyzed parameters did not fit any of 
the standardized distributions (Kolmogorov–Smirnov test), 
nonparametric tests were used for further analysis. Kruskal-Wallis 
ANOVA by Ranks was used to determine the influence of the 
treatments on the growth of the analyzed trees and the influence of the 
treatments on the damage caused by different insect groups. Mann–
Whitney U test was used as a post-hoc test, to determine the 
differences between individual treatments where the Kruskal-Wallis 
ANOVA showed significant differences. Mann–Whitney U test was 
also used to determine the differences between the leaf areas damaged 
by different insect groups in each treatment. All the data were analyzed 
at the tree level, at the level of significance 0.05. All of the statistical 
analyses were performed using Statistica 8.0 (StatSoft, Inc., Tulsa, OK, 
United States).

3 Results

Among the insects observed on the experimental areas, the most 
significant sucking species was C. arcuata; defoliators L. dispar, 
E. defoliaria, O. brumata T. viridana and Periclista sp. (Hymenoptera, 
Tenthredinidae); gallers Andricus curvator Hartig, 1840, Neuroterus 
numismalis (Fourcroy, 1785) and N. quercusbaccarum (Linnaeus, 
1758) (Hymenoptera, Cynipidae); miners Profenusa pygmaea (Klug, 
1816) (Hymenoptera, Tenthredinidae), Phyllonorycter harrisella 
(Linnaeus, 1761), Ph. roboris (Lepidoptera, Gracillariidae), and 
Tischeria ekebladella (Bjerkander, 1795) (Lepidoptera, Tischeriidae). 
The dominant fungal damage on the leaves was caused by oak 
powdery mildew.

Statistically significant differences were identified between the 
treated and the comparison area in the intensity of the damage caused 
by oak powdery mildew, defoliator insects, sucking insects, and leaf 
miners (Figure 2; Table 1). No significant differences were observed in 
the damage caused by gallicolous insects. In the area treated with 
fungicide, the intensity of the damage caused by leaf miners and sucking 
insects was significantly higher compared to the comparison area.

Statistically significant differences in growth were identified 
between each of the treated and the comparison area (Insecticide - 
Zadj = 4.590, p = 0.000; Fungicide - Zadj =4.910, p = 0.000). There were 
no significant differences between the treated areas (Zadj = −1.136, 
p = 0.256). The greatest increase in growth was detected in the area 
treated with fungicide, less with insecticide and the lowest was in the 
comparison area (Figure  3). The growth on the area treated with 
fungicide was on average 62.3% higher, and on the surface treated 
with insecticide 50.5% higher in respect to the comparison area.

4 Discussion

Pedunculate oak hosts a large number of insects and fungi 
(Županić et al., 2009; Marković and Stojanović, 2011; Wrzesińska, 
2017; Demeter et al., 2021; Ermolaev et al., 2021; Milanović et al., 
2021; Jankowiak et  al., 2022; Pilipović et  al., 2022; Marković and 
Dobrosavljević, 2023). Many of them can be effectively suppressed by 
using insecticides and fungicides (Mihajlović and Glavendekić, 2006; 
Margaletić et al., 2007; Glavaš, 2011; Pap et al., 2012, 2014a; Pajnik 
et al., 2017; Drekić et al., 2021). The results of our study showed that 
the insecticide applied in the experiment can be successfully used for 
the control of sucking insects, defoliators, and leaf-mining insects, as 
the leaf area damaged by these groups was significantly lower in the 
insecticide-treated area. It should not be used to control gallicolous 
insects because it is not very effective. The applied fungicide can 
be used to efficiently control the oak powdery mildew as the damage 
caused by it was significantly lower in the fungicide-treated area.

Among the fungi, oak powdery mildew caused the greatest 
damage on the observed leaves on the area treated with insecticide, 
and the comparison area. This was expected because oak powdery 
mildew is one of the biggest problems on the leaves of young 
pedunculate oak trees in Southeastern Europe (Karadžić and 
Milijašević, 2005; Glavaš, 2011; Pap et al., 2013). The plants treated 
with fungicide showed lower oak mildew damage in comparison to 
other plots, and also the greatest height increment. This height 
increment is most likely connected to the lower share of damaged leaf 
area and subsequentially more available leaf area for photosynthesis 

FIGURE 2

Damaged leaf area per type of damage (%)  +  SD, per each treatment, with letters above indicating the significant differences.
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(Nikolic et al., 2019; Paulin et al., 2020; Bălăcenoiu et al., 2021a). Of 
the insect groups, defoliators damaged the greatest leaf area. Damage 
from sucking insects, leaf miners, and gallicolous insects was 
negligible on all three plots. The fact that the damage from the sucking 
insects was small is a real surprise because, among the foliophagous 
insects in the old pedunculate oak forest near the location where the 
study was carried out, significant discoloration in the leaves caused by 
C. arcuata was noticed. Since the discoloration of the leaves in the old 
forest was higher, C. arcuata may prefer older trees, as it is already 
known that insect community and abundance change with the forest 
ages (Nagy et al., 2016; Marković et al., 2021b). The reason for this 
may be the fact that the allocation of defense chemicals is highest in 
young trees. On the other side, mature trees require resources for 
flower and seed production, they are frequently water deficient and 
have unfavorable photosynthesis/respiration, and saplings need the 
energy for the production of more aboveground biomass and increase 
of photosynthetic area, so they have a significantly lower amount of 
defense chemicals (Boege and Marquis, 2005; Barton and Hanley, 
2013). In the forest where the research was carried out, areas with 
young trees of pedunculate oak, Turkey oak (Q. cerris L.), and 
Hungarian oak (Q. frainetto Ten.) of similar age were observed. The 
damage caused by C. arcuata was significantly greater on Turkey and 
Hungarian oak than on pedunculate oak. The pedunculate oak may 
be a less favorable host for C. arcuata compared to other oak species 
(Marković et al., 2021a).

There were no significant differences in tree growth between the 
treated areas. This shows that insects and fungi have a similar effect 
on their growth. This result is a novelty since the literature only 
mentions the effect of the oak powdery mildew (Bobinac and 

Karadžić, 1994; Karadžić and Milijašević, 2005; Glavaš, 2011; Pap 
et al., 2013; Rađević et al., 2020). In the area treated with the fungicide, 
the damage from sucking insects and leaf miners was higher than in 
the comparison area. Since oak powdery mildew was suppressed on 
it, this higher abundance indicates that there are competitive 
relationships between them. Such a relationship between the oak 
powdery mildew and insects is already known (Zargaran et al., 2012; 
Marković et al., 2021a).

The results of this study show that during the growing season, 
under the influence of fungi, the height growth of 10-year-old 
pedunculate oak trees decreases by 62.3%, and under the influence of 
insects by 50.5%. The real growth decrease is greater since the 
pesticides used did not achieve complete protection of the leaves from 
insects and fungi. The influence caused by these organisms is 
significant, which is why the need to suppress them arises. In plants 
up to 2 years of age, the control of oak powdery mildew should 
be  carried out, as it is one of the limiting factors of the plants’ 
development (Glavaš, 2011; Pap et al., 2012). Pesticide treatment of 
young trees older than 2 years is also useful as it positively influences 
their height growth and vitality. However, the treatment of older trees 
is complicated because of the characteristics of those stands (high 
density and height of trees), so the question of cost to benefit arises. 
The benefits of increased growth contribute both to the ecological 
functions such as sequestration of carbon dioxide, and economic 
functions such as the production of more wood. On the other side, any 
pesticide treatment affects other, non-targeted organisms, so the 
balance between these two needs to be found. The only place where 
the suppression of pest organisms on older trees should be carried out 
is in parks, gardens, and other areas where it does not require the use 
of expensive techniques and does not cause serious non-target effects.

Pedunculate oak is one of the dominant forest-forming species 
throughout Europe (Eaton et al., 2016). The restoration of its forests 
encounters many problems (Rumiantsev et al., 2018; Axer et al., 2023). 
To assist it, it is important to have a broader knowledge of the factors 
that can negatively affect those forests. When talking about the 
influence of insects and fungi on the growth of its young trees, based 
on the results of this study, it can be concluded that: 1. Both foliofagous 
insects and fungi significantly affect the height growth of the 
pedunculate oak, as the trees treated with pesticides had less damaged 
leaf area and grew significantly higher than trees in the comparison 
area; 2. C. arcuata did not influence the growth of the young trees 
significantly, as its abundance was low in all of the experimental areas; 
3. The greatest damage on the leaves was caused by defoliator insects, 
which is why they contributed the most to the decrease in growth 
caused by insects; 4. The influence of the foliofagous insects on the 
growth of the trees was not significantly different from the influence 
of the fungi; 5. Suppression of oak powdery mildew and foliofagous 

TABLE 1  Results of the Mann–Whitney U test between the damaged area of the leaf per category.

Insecticide - control Fungicide - control Insecticide - fungicide

Zadj p Zadj p Zadj p

Defoliators −12.52 0.00 −6.40 0.00 −6.14 0

Leaf miners −1.37 0.17 5.29 0.00 −6.74 0

Gallicolous insects 1.24 0.21 2.21 0.03 −1.02 0.31

Sucking insects −5.75 0.00 0.99 0.32 −6.37 0

Oak powdery mildew −1.58 0.11 −19.03 0.00 18.13 0

FIGURE 3

Influence of pesticide treatment on the height growth of the 
analyzed trees (cm)  ±  SD, with letters above indicating the significant 
differences.
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insects on young trees is useful as it positively influences the vitality 
and growth of those trees, and contributes to economic and ecological 
gain; 6. As pedunculate oak is a less favorable host for C. arcuata 
compared to other oak species, it would be  useful to determine 
whether there are differences between it and other oak species in 
terms of the influence of oak lace bug on the growth of young trees.
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machacovam@fld.czu.cz

Thomas Jung
thomas.jung@mendelu.cz

RECEIVED 31 January 2024
ACCEPTED 26 March 2024
PUBLISHED 17 April 2024

CITATION
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Oto Nakládal 1, Václav Zumr 1, Alina Kalyniukova 1,
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Introduction:Mortality of the riparian alder population caused by Phytophthora
pathogens has been studied for over 20 years throughout Europe, recently
gaining more importance in the context of evident climate change. The main
objective of this study was to examine the pathogenicity of species from the
“Phytophthora alni complex” present in the Czech Republic (P. ×alni and P.

uniformis) and P. plurivora to Alnus glutinosa seedlings grown at ambient and
elevated CO2 concentration.

Methods: An underbark inoculation test was performed with seedlings grown
from seeds collected from two Czech alder populations, one su�ering from
severe Phytophthora decline and the other disease-free.

Results: The results showed significant di�erences in lesion development and
seedling mortality. After a 13-week experimental period, at both CO2 levels P.
×alni and P. uniformis showed high aggressiveness to A. glutinosa seedlings
causing lesions of variable sizes and mortality of 33.3%, and 45.8% of plants,
respectively. In contrast, P. plurivora did not cause mortality to any plant, and
lesion sizes did not di�er significantly from those in control plants. Physiological
measurements did not reveal any significant di�erences between Phytophthora

species except for plants inoculated with P. plurivora showing increased values in
specific physiological parameters 4 weeks post-inoculation. Net photosynthesis
decreased over the measurement period in all treatments with significant
di�erences found between measurements conducted 2 and 4 weeks after the
inoculation. Transpiration showed a decreasing trend in all inoculated plants with
no significant di�erences between Phytophthora species at both CO2 levels.
Chemical analyses of root samples showed high variability in sugars and phenolic
compounds related to the plant’s health status.

Discussion: This is the first study to examine the response of alder seedlings
to Phytophthora pathogens at di�erent CO2 levels. The findings demonstrate
high aggressiveness of P. ×alni and P. uniformis and weaker aggressiveness of P.
plurivora to alder seedlings regardless of the CO2 level.

KEYWORDS

alder dieback, underbark inoculation, elevated CO2 concentration, sugars, phenolics,

photosynthesis rate
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Introduction

Phytophthora species are fungal-like organisms within the

kingdom Stramenopiles/Chromista and SAR supergroup (Beakes

et al., 2015). More than 260 species are currently described (Brasier

et al., 2022; Chen et al., 2022; Jung et al., 2022, 2024; Abad et al.,

2023) and most of them are pathogens causing numerous diseases

and devastating epidemics of agricultural crops, ornamental plants,

and natural ecosystems worldwide (Erwin and Ribeiro, 1996; Jung

et al., 2018; Brasier et al., 2022; Abad et al., 2023). The Phytophthora

genus contains both generalist pathogens like the notorious P.

cinnamomi Rands and P. ramorum Werres, De Cock & Man in

’t Veld with particularly wide host ranges (Grünwald et al., 2012;

Hardham and Blackman, 2018; Jung et al., 2021) and specialists like

the oak-specific P. quercina (Jung et al., 1999) or the species from

the “Phytophthora alni complex” which are exclusively pathogenic

to alder (Alnus spp.) trees (Brasier and Kirk, 2001; Jung et al., 2018).

Alder stands are ecologically very important and alder trees are

key nitrogen-fixing riparian species due to the symbiosis with the

actinomycete Frankia alni (Vor.) Von Tub., which enables them to

colonize extreme sites (Claessens, 2003). Most alder species grow in

riparian ecosystems stabilizing riverbanks, acting as riparian buffers

and windbreaks, and reduce erosion (Bjelke et al., 2016). Although

showing fast growth and strong vegetative regeneration alder trees

may suffer from multiple pathogens and pests with potentially

devastating effects to riparian forests. Large-scale decline of alder

stands across Europe, known as “alder dieback,” is attributedmainly

to root and collar infections by species from the “P. alni complex”

(Brasier et al., 2004; Jung and Blaschke, 2004; Černý and Strnadová,

2010; Jung et al., 2013; Bjelke et al., 2016). All European alder

species are affected by this epidemic which has caused devastating

mortality of alder trees in riparian and forest stands across Europe

(Gibbs et al., 1999; Streito et al., 2002; Jung and Blaschke, 2004; Jung

et al., 2013, 2018; Husson et al., 2015; Kanoun-Boulé et al., 2016;

Corcobado et al., 2023). The causal pathogen was first described

as P. alni by Brasier et al. (2004) with three subspecies, i.e. P. alni

subsp. alni, P. alni subsp. multiformis and P. alni subsp. uniformis,

which were later described as three distinct species, i.e., hybrid

species P. ×alni (PAA) and P. ×multiformis (PAM) and the non-

hybrid species P. uniformis (PAU) (Husson et al., 2015). It was

shown that P. ×alni originated from the hybridization between

P. uniformis and P. ×multiformis (Ioos et al., 2006; Husson et al.,

2015). Phytophthora uniformismay have been introduced to Europe

from North America (Aguayo et al., 2013), whereas the origin of

P. ×multiformis is still unknown. Besides the “P. alni complex,”

P. plurivora Jung and Burgess (PLU) was frequently isolated from

alder trees, including Alnus glutinosa L. and A. viridis (Chaix.) DC

(Jung and Blaschke, 2004; Májek et al., 2019; Corcobado et al.,

2023), indicating that the pathogen may also contribute to alder

decline. This was also indicated by several pathogenicity tests on

A. glutinosa (Jung and Nechwatal, 2008; Rytkönen et al., 2012;

Mrázková et al., 2013; Haque et al., 2015).

Surveys in several European countries demonstrated that

PAA is the most frequently isolated species, whereas PAU and

especially PAM are comparatively rare (Nagy et al., 2003; Jung and

Blaschke, 2004; Aguayo et al., 2013). Accordingly, pathogenicity

tests revealed significant differences between species within the “P.

alni complex” with PAA being more aggressive to A. glutinosa

than PAU when infecting black alder (Alnus glutinosa) (Brasier

and Kirk, 2001; Santini et al., 2003). Interestingly, PAU was

shown to play an increasing role in alder dieback with increasing

latitude in Scandinavia and increasing altitude in the Alps which

is related to the lower frost tolerance of PAA as compared

to PAU (Schumacher et al., 2006; Černý and Strnadová, 2010;

Redondo et al., 2015; Corcobado et al., 2023). This is particularly

important in the context of ongoing climatic changes and potential

spread of the aggressive PAA strains to the currently unfavorable

climatic regions.

Climatic changes are characterized by shifts in annual rain

patterns, increased frequencies of extreme weather events, and the

increase of average annual temperatures and atmospheric CO2

concentration (Moore et al., 2015). The most rapid increase of

CO2 concentration was recorded during the second half of the

20th century and the beginning of the 21st century (Belmecheri

and Lavergne, 2020). According to the Intergovernmental Panel

on Climate Change (IPCC) the projected concentration of CO2

in the year 2100 will range in different scenarios from 540 to 970

ppm (IPCC, 2001). Pessimistic scenarios predict an increase of CO2

levels to 900–1,000 ppm by the end of the 21st century (Van Vuuren

et al., 2011).

Elevated CO2 levels can have a significant impact on host-

pathogen interactions (Percy et al., 2002; McElrone et al., 2005).

Generally, a stronger resistance against plant pathogens is predicted

in relation to elevated CO2 level in the atmosphere, as the excess of

carbon can promote the production of plant defensive secondary

chemicals (Kazan, 2018). However, plants grown at elevated

CO2 can often alter constitutive and induced defense-related

phytohormone levels, reflecting complex and dynamic biochemical

interactions (Bazinet et al., 2022). So far, existing studies reported

positive, negative, and neutral effects of elevated CO2 level on

plant immune responses to fungal pathogen infection (Smith and

Luna, 2023). The majority of studies on plant-biotic interaction

investigate above-ground plant parts and related fungal pathogens

(Kazan, 2018). However, only a limited number of studies have

been performed on Phytophthora pathogens and underbark or

root infections. These studies showed both positive and negative

effects of elevated CO2 level on disease incidence depending on the

Phytophthora and host species and the length of the experiment

(Jwa and Walling, 2001; Fleischmann et al., 2010; Tkaczyk et al.,

2014; Oszako et al., 2016; Milanović et al., 2020).

Phytophthora-induced damage diminishes transpiration and

nitrogen allocation in leaves, affecting starch allocation (Clemenz

et al., 2008; Osswald et al., 2014). Before transpiration decline,

reduced stomatal conductance and assimilation are observed

(Clemenz et al., 2008). Water relations are more affected than

photosynthesis, with rapid hydraulic conductance decrease when

the pathogen colonizes up to 15% of the root system. The

swift response involves down-regulated cytokinins, up-regulated

ABA, and 1-aminocyclopropane-1-carboxylic acid (Osswald et al.,

2014). ABA and ethylene act as stress markers, closing stomata

and increasing antioxidant activity (Müller, 2021). Maximal

photosynthetic rate decreases with the extent of cortex destruction

from 12 to 4 µmol m−2 s−1, accompanied by a decrease of PSII

electron quantum yield (Osswald et al., 2014). Successful tree
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defense is suppressed, as Phytophthora deactivates salicylic-acid

response genes, resulting in the reduction of lignin, phenols, and

PR proteins in infected roots compared to healthy ones (Osswald

et al., 2014).

Changes in physiological parameters are reflected in

saccharides translocation. For example, in beech seedlings

inoculated by PLU, the content of total saccharides decreased

significantly compared to the control plants (Corcobado et al.,

2022). Even though the sugar alcohols were even higher in the

roots of control plants, the differences between infected and

control seedlings became less pronounced after three weeks of

inoculation (Corcobado et al., 2022). There is a different response

to Phytophthora attack in leaves and roots at the biochemical level

(Corcobado et al., 2022).

While the influence of temperature on the activity of different

species from the “P. alni complex” was discussed within previous

studies (Schumacher et al., 2006; Černý and Strnadová, 2010;

Redondo et al., 2015) suggesting possible further spreading due

to climatic changes, studies on Phytophthora-Alnus interaction

at elevated CO2 levels are, however, still missing. This study

aimed to compare the responses of A. glutinosa plants to

infections by PAA, PAU, and PLU at ambient and elevated

CO2 levels.

Prior to the experiment, the following hypotheses were raised:

(i) the survival of alders is influenced by the interaction between

Phytophthora species inoculation and CO2 level, and (ii) variations

in physiological and biochemical responses are expected in

inoculated alders depending on the Phytophthora species and the

CO2 level.

Materials and methods

Plant material and growth conditions

Alder (A. glutinosa) tree cones were collected in autumn

2020 in the Czech Republic. To achieve higher variability of

alder genotypes, two different riparian populations were selected:

one showing typical alder dieback and collar rot symptoms

(Jung and Blaschke, 2004; Jung et al., 2018), and the second

being asymptomatic (Table 1). The seedlings were grown in a

ready-mixed substrate containing peat and perlite (Forestina,

Czech Republic) in individual 2-liter containers. The plants

were watered to field capacity with tap water once per week.

Plants were fertilized 2 months before the inoculation (Osmocote,

ICL Specialty Fertilizers). No fungicides were applied during

the experiment.

All plants were grown in Walk-In growth chambers (PSI

Ltd., Drásov, Czech Republic) with the following conditions:

14/10 h photoperiod, 20/15◦C, 65 % relative humidity, light

spectrum 250 µmol m−2 s−1. Two chambers each were

used for the ambient and elevated CO2 levels, respectively.

The mean global atmospheric CO2 concentration of the

year 2020 (=415 ppm; https://gml.noaa.gov/webdata/ccgg/

trends/co2/co2_annmean_mlo.txt) was chosen as ambient

CO2 level whereas the elevated CO2 level was twice as high

(830 ppm).

Underbark inoculation test

Isolates of three Phytophthora species, PAA, PAU, and PLU

were sourced from the CZU/MM Oomycetes collection (Table 2).

Their identity was previously confirmed by sequence analysis of

the internal transcribed spacer (ITS1-5.8S-ITS2) region of the

ribosomal DNA according to Jung et al. (2019), for the PAU isolate

the β-tubulin gene was also sequenced using primers TUBUF2 and

TUBUR1 (Kroon et al., 2004) (Table 2). Underbark inoculation was

performed in June 2021 according to Milenković et al. (2018). The

bark surface of the alder saplings at a distance of 10–15 cm from the

collar was cleaned with 70% ethanol. Plants were wounded using a

sterilized 7-mm metal cork borer. Same-sized plugs cut from the

edges of 5 to 7-day-old Phytophthora colonies grown on V8-agar

medium (V8A) (Jung et al., 1996) were placed with the mycelial

side onto the exposed wood. The agar plugs were covered with the

removed piece of bark and cotton moistened with sterile distilled

water and sealed with Parafilm and aluminum foil.

In total, 12 six-months-old plants per Phytophthora species and

CO2 level were inoculated, including six plants originating from

populations 1 and 2, respectively (Table 1). The control treatment

also had 12 plants, but they were mock-inoculated with sterile

V8A plugs and sealed in the same way. After the inoculation the

plants were moved back to their growth chambers. The plants were

inspected every 2 weeks for the appearance of symptoms, such as

seedling mortality, vertical length of stem lesions and extent of

girdling (Table 3). Girdling was visually evaluated on a five-point

scoring system, according to Zamora-Ballesteros et al. (2017).

Thirteen weeks after inoculation, when 50% of plants in

one treatment died, the experiment was finished and evaluated.

Necrosis lengths weremeasured using a precise ruler, while necrosis

widths were measured using a flexible measurement tape. Re-

isolations were made from all inoculated and control plants by

plating small pieces from the upper and lower margins of necrotic

lesions or, in the absence of necroses, from the margins of the

inoculation points onto PARPNH selective agar medium (Jung

et al., 1996). Pathogen identification was confirmed by comparing

the colony morphologies on V8A with those of the original isolates.

Biomass of above- and below-ground plant tissues was weighed

and expressed as the above/below-ground dry biomass ratio. The

aerial tissues of each seedling were divided into stems and leaves

and dried in the oven at 65◦C for 48 hr. Roots were dried after

thoroughly washing to remove adhering soil.

Physiological and chemical analysis

Physiological analysis
Six plants from each treatment (Phytophthora species/CO2

level) were randomly selected for the physiological measurements.

These were performed six times during the experiment in 2-week

intervals, always using the same plants: one measurement prior

to the inoculation and five measurements after the inoculation.

Physiological measurements included chlorophyll a fluorescence

and gas exchange measurements.

Chlorophyll a fluorescence was measured using FluorPen

FP 110 (Photon Systems Instruments, Brno, Czech Republic).
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TABLE 1 Origin of the Alnus glutinosa seeds used in this study.

No Location River Coordinates Altitude
(m a.s.l.)

Age of alder
trees (years)

Health status of
alder trees

1 Vltava River basin Litavka 49.8235244N

13.9740708E

49.8729619N

13.9963381E

260–340 70 Dieback, collar rots,

mortality;

P.×alni isolated

2 Beskydy Mountains Morávka 49.6372400N

18.4426000E

49.6020831N

18.5187214E

380–440 30 No symptoms of

Phytophthora infection

TABLE 2 Origin of the Phytophthora isolates used in this study and GenBank accessions of their ITS (a) and β-tubulin (b) sequences.

Phytophthora
species

Isolate code Year of
isolation

Host/origin Locality (CZ) GenBank
accession no.

P.×alni MM123 2020 Alnus glutinosa/bark sample Příbram, Litavka river OQ703915a

P. uniformis MM078 2020 A. glutinosa/bark sample Příbram, Litavka river OQ703916a

PP210887b

P. plurivora MM033 2020 A. glutinosa /rhizosphere soil Kožlany (Plaská pahorkatina),

Javornice river

OQ703917a

TABLE 3 Girdling evaluation scoring system.

Score Explanation

0 No necrosis

1 One-quarter of stem girdled

2 Two-quarters of stem girdled

3 Three-quarters of stem girdled

4 Totally girdled

Measurements were performed on adaxial surfaces of 3–4 leaves

per plant. Before the fluorescence measurement, dark acclimation

of the three selected leaves was assured by special leaf clips

with a retractable metal plate. After 20min of dark adaptation,

the instrument was mounted to the clip and the actinic light

(3,000 µmol m−2 s−1) was applied to the leaves. For statistical

analysis, the following indexes were selected to estimate plant

health and performance (according to Živčák et al., 2008):

(a) maximum quantum yield of primary PSII photochemistry

(1) and (b) performance index expressing energy conservation

from absorption of light by an antenna (2). Its expressions are

detailed below:

ΦPSII =
FV

FM
(1)

ΦPSII – maximum quantum yield of primary

PSII photochemistry

FV – variable fluorescence

FM – maximum fluorescence

PIABS = 1−

F0
FM
M0
Vj

∗
FM − F0

F0
∗
1− Vj

Vj
(2)

F0 – fluorescence intensity at 50 µs

Fj – fluorescence intensity at the J step (at 2 ms)

FM – maximal fluorescence intensity

Vj – relative variable fluorescence at 2 ms

M0 – initial slope of fluorescence kinetics.

An open portable photosynthesis system with infrared gas

analyser LI-6400 XT (LICOR, Lincoln, NE, USA) was used for

in situ gas exchange measurements. Net photosynthetic rate

(PN), transpiration (E), stomatal conductance (Gs), and internal-

to-ambient CO2 concentration ratio (Ci/Ca) were measured at

photosynthetic photon flux density of 1,500 ± 1 µmol m−2 s−1

and an ambient CO2 concentration of 415/830 ± 1 µmol mol−1

(ambient/elevated CO2 treatments) which was above the saturation

point measured in advance (350–400 µmol m−2 s−1). A standard

leaf chamber with a red/blue LED light source was used. The

samples were taken between 9 am and 5 pm. Measurements were

performed on 2 leaves per plant.

Chemical analysis
Three root samples per treatment (Phytophthora species/CO2

level) were taken for chemical analysis during the final assessment.

Selected plants were gently removed from the planting pots, and

the root systems washed in distilled water to remove all substrate

particles. Immediately after cleaning the samples were frozen and

kept at −32◦C until further processing. After freeze-drying and

homogenization, approximately 0.03 g per sample were used for the

extraction of selected sugars and phenolic compounds. The detailed

method is given in Supplementary Table 1.
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Data analysis

Lesion development and mortality, plant biomass
The assessment of normality within each group was conducted

using the Shapiro-Wilk test. Given the observed deviation from

the assumptions of normal data distribution, differences in

various parameters, including lesion length and width, lesion

area, above-/below-ground biomass ratio, percentage of lesion

length from plant height, final plant height, and collar diameter,

were subsequently analyzed using the paired samples Wilcoxon

test. Significances of pairwise differences were computed by the

pairwise Wilcoxon test implemented in “pairwise.wilcox.test” base

R statistical software (R development CORE team, 2021) with p-

value adjustment set as BH—i.e., false discovery rate adjustment

(Benjamini and Hochberg, 1995). Differences between groups were

investigated at the significance level α = 0.05. Hedge’s g effect sizes

were computed using “cohens.d” function from “effsize” package

with “hedges.correction” parameter set to TRUE.

For girdling analysis, the Area Under Disease Progress Curve

(AUDPC) was used for the disease assessment. The AUDPC was

measured using the trapezoidal integration method, according to

Madden et al. (2007), using the expression:

AUDPC =

n−1
∑

i=1

(

yi + yi+1

2

)

(ti+1 − ti)

where: yi: initial score of girdling; yi+1: final score of girdling;

ti+1: final time; ti: initial time.

AUDPC values were analyzed using ANOVA and Fisher’s LSD

test performed in STATISTICA 13.0 software.

Survival curves describing the relationship between the

mortality rate and time after the infection were generated using

the Kaplan–Meier Estimates method in STATISTICA 13.0 software.

Statistical significance of survival differences among groups was

assessed employing the Chi-Square Test. Pairwise comparisons

were conducted using the Log Rank test with a significance

threshold set at α = 0.05.

Mortality rate was evaluated using the Chi-Square Test.

Correlations between mortality and selected parameters (lesion

area, percentage of lesion length from plant height, final plant

height, and above-/below-ground biomass ratio) were analyzed

using Spearman Rank Order Correlations because of the inherent

characteristics of the data. Relationships between stem girth and

girdling/mortality were analyzed using either linear regression

models or Welsh test, employing the R software. The data used

for the analysis of the correlation between stem girth and lesion

girdling are originated from an equally spaced five-point scoring

system of lesion girdling, hence suitable for any kind of analysis

including linear regression models.

Physiological and chemical analyses
For physiological parameters, the R software was used. Since the

measurements were conducted six times, a repeated measurements

approach was adopted with each plant serving as the measurement

unit. The experimental design encompassed treatment groups with

four levels (control, PAA, PAU, and PLU), CO2 concentration at

two levels (415/830 ppm). The evaluation of physiological traits

involved the application of a mixed linear model, accounting for

the repeated measurements.

PAA- and PAU-inoculated plants showed gradual mortality,

leading to a decrease in the number of measured plants;

therefore, the measurements performed at 6, 8, and 10 weeks post

inoculation (p.i.) were unsuitable for statistical analyses of gas

exchange measurements.

The model was structured to assess the influence of time-

varying factors and their interactions on the response variable y.

The fixed effects in our model encompassed Time, Treatment, and

CO2, as well as their interactions with Time, formulated as:

y∼ Time+ Treatment+ CO2 + Time :Treatment

+Time :CO2 + Time :Box

To adequately capture the within-subject variation typical

in repeated measures designs, the model controlled variation

among replicated boxes by including random effect formulated as

Time:Box. Furthermore, to address the autocorrelation typically

present in repeated measures data, the residual structure of the

model was specified as: id(ID):cor(Time), allowing for correlations

between time of the same experimental unit.

All mixed models were fitted with ASReml-R v4.1 (Butler

et al., 2017), which uses restricted maximum likelihood methods

to estimate variance components. In all cases, diagnostic plots were

reviewed for normality and to detect potential outliers.

In the statistical analysis of chemical parameters (sugars and

phenolic compounds), the Kruskal-Wallis ANOVA was used to

examine intergroup differences. Prior to analysis, the normality

of the data distribution was assessed, revealing a deviation from

the assumption of normality. To further test significant variations

among groups, a post hoc Dunn’s test was conducted (significance

level α = 0.05).

Results

Lesion development and survival analysis

Representative symptoms 13 weeks post inoculation (p.i.) are

shown in Figure 1 and explained below. Lesions started to appear

within the first 2 weeks p.i.. The lesion size varied between

the Phytophthora species and among the plants within the same

treatment. Lesions developed rapidly in plants inoculated with PAU

and PAA. In most plants the lesions reached their final length

within 4 weeks p.i. with mean lesion lengths ranging from 7.8 to

8.7 cm in PAA, 7.7 to 11.4 cm in PAU and 1.8 to 1.9 cm in PLU

(Table 4, Figure 2). For PAU a statistically non-significant trend

of higher average lesion lengths was recorded in the ambient as

compared to the elevated CO2 level (11.43 ± 7.33 cm vs. 7.66

± 6.87 cm, p = 0.249; Table 4, Supplementary Figure S1). For

PAA a similar trend was observed (8.68 ± 7.11 cm vs. 7.76 ±

5.91 cm, p = 0.951; Table 4, Supplementary Figure S1). On the

contrary, plants inoculated with PLU had only very small lesions

that were not significantly different from the control (Table 4,

Frontiers in Forests andGlobal Change 05 frontiersin.org104

https://doi.org/10.3389/ffgc.2024.1379791
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
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FIGURE 1

Representative symptoms of Alnus glutinosa seedlings caused by Phytophthora species 13 weeks after underbark inoculation at ambient (aCO2) and
elevated (eCO2) levels; (A) control plants at aCO2; (B) P. uniformis–inoculated plants at eCO2; (C) P. plurivora–inoculated plants at aCO2; (D) control
at eCO2; (E) P. ×alni at aCO2; (F) P. uniformis at eCO2; (G) control; (H, I) P. ×alni lesions at eCO2 and eCO2; (J–L) P. uniformis lesions at aCO2 (J, L)

and at eCO2 (K); (M, N) small constrained lesions caused by P. plurivora at eCO2 and aCO2.
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TABLE 4 Pathogenicity of three Phytophthora species to Alnus glutinosa seedlings in the underbark inoculation test after 13 weeks.

CO2
conc.
[ppm]

Phytophthora
species

No. of
plants
with

lesions

Lesion length
x± SD [cm]1

Lesion width
[cm] x± SD1

Lesion area
x± SD [cm2]1

No. of plants
with dieback/

mortality

Reisolation
frequency [%]

415 Control 0 0.92± 0.15a 0.95± 0.12a 0.69± 0.19a 0/0 0

P.×alni 12 8.68± 7.11b 1.70± 0.58b 13.69± 13.59b 5/3 100

P. uniformis 12 11.43± 7.33b 1.94± 0.52b 18.23± 12.19b 8/6 100

P. plurivora 12 1.84± 0.50c 1.10± 0.31a 1.63± 0.72c 0/0 100

830 Control 0 0.98± 0.14a 0.94± 0.16a 0.73± 0.21a 0/0 0

P.×alni 12 7.76± 5.91b 1.38± 0.45b 9.74± 9.64b 6/5 100

P. uniformis 12 7.66± 6.87b 1.22± 0.35b 8.13± 7.92b 7/5 100

P. plurivora 12 1.95± 0.39c 0.85± 0.24a 1.30± 0.48c 0/0 100

Twelve plants were inoculated in each treatment (CO2/Phytophthora species). 1Different letters indicate significant differences between values within each CO2 level. For significance of

differences between CO2 levels see Figure 2 and Supplementary Figures S1, S2.

FIGURE 2

Comparison of lesion area in the stems of Alnus glutinosa seedlings caused by three Phytophthora species at two CO2 levels (ambient 415 ppm,
elevated 830 ppm). PAA, P. ×alni; PAU, P. uniformis; PLU, P. plurivora. The statistical significance of CO2 pairs comparisons is indicated by N.S.
(non-significant) or an asterisk (p ≤ 0.05). The tables on the right contain all pairwise comparisons; the upper triangle represents the p-value of
pairwise comparisons, the lower triangle represents the e�ect size of Hedges’g.

Figure 2, Supplementary Figure S1). The re-isolations confirmed

the pathogen presence in all inoculated plants (Table 4).

The lesion area, calculated as the ellipse area (A=πab), showed

differences between the Phytophthora species and CO2 levels which

were partly statistically significant (Table 4, Figure 2). At both CO2

levels, PAA and PAU caused lesions with significantly different

lesion areas compared to both the control and PLU-inoculated

plants (p ≤ 0.05; Table 4). In contrast to PAA-inoculated plants, in

PAU-inoculated plants the effect of CO2 was statistically significant

(p= 0.049) with bigger lesions found at the ambient as compared to

the elevated level (18.23 ± 12.19 cm vs. 8.13 ± 7.92 cm) (Figure 2).

PLU differed significantly from the control at both CO2 levels, but
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the variability was much lower and no significant difference existed

between different CO2 levels (Table 4).

PAA and PAU had significantly different lesion width compared

to both the control and PLU, whereas PLU did not differ from

the control at both CO2 levels (ambient: p = 0.276, elevated: p =

0.572) (Table 4). However, the effect of CO2 was significant only in

PAU (p = 0.007) with bigger lesion width at ambient compared to

the elevated level (1.94 ± 0.52 cm vs. 1.22 ± 0.35 cm, respectively)

(Supplementary Figure S2).

For both PAA and PAU-inoculated plants a statistically

significant positive correlation was found between lesion area and

mortality. A larger lesion area was consistently associated with

a higher mortality rate (PAA r = 0.72; PAU r = 0.78) (data

not shown).

The statistical analyses revealed significant differences in

girdling caused by PAA and PAU compared to the control

regardless of the CO2 level (Figure 3). The first dying plants

developed lesions very quickly and complete girdling of the collar

occurred within the first weeks p.i. On the contrary, PLU girdled

in all plants <25% of collar circumference. Complete girdling

was significantly correlated with smaller stem circumference (stem

girth) in both PAA (R2 = 0.272, p = 0.0052) and PAU-inoculated

plants (R2 = 0.368, p = 0.001; Figure 4). Complete girdling also

induced the swelling of sleeping buds above the girdling lesions a

strong reaction in several plants (Figures 1I, J).

Seedling mortality
The first symptoms of severe dieback and mortality appeared

in PAU-inoculated plants 2 weeks p.i., followed by PAA-inoculated

plants 6 weeks p.i. All control and PLU-inoculated plants survived

until the end of the experiment (Figure 1, Table 4). Overall, PAA

caused mortality in 33.3% (8/24 plants) and PAU in 45.8% (11/24)

of the inoculated plants (Table 4). However, there was no significant

effect of the CO2 level on the mortality rates of either PAA or

PAU (p > 0.05).

Log-rank test of equality from survival analysis revealed

significant differences in survival probability among experimental

groups (χ2 = 29.38, p < 0.001). At ambient CO2 level, survival

probabilities in PAA and PAU-inoculated plants were 70% and 45%,

respectively. At elevated CO2 level, both isolates had survival rates

lower than 60%. First mortality associated with PAU was recorded

3 and 5 weeks after inoculation at elevated and ambient CO2 levels,

respectively. The seedlings inoculated with PAA started to die 8 and

9 p.i. at elevated and ambient CO2 levels, respectively. There were

no differences in seedling survival probability between PAA and

PAU isolates at both ambient and elevated CO2 level. Compared to

the control groups, PAU showed significant differences at ambient

(χ2 = 8.67, p = 0.003) and elevated CO2 level (χ2 = 6.07, p =

0.014). Also, PAA showed a significant difference from the control

groups at ambient (χ2 = 4.02, p = 0.045) and elevated (χ2 = 6.07,

p= 0.014) CO2 level (Figure 5).

At the beginning of the experiment, plant height and collar

diameter were variable with a mean height of 47.6 ± 15.6 cm

and a mean collar diameter of 0.8 ± 0.2 cm (Table 5). Wilcoxon

test revealed no significant differences in plant height or collar

diameter between Phytophthora species at any CO2 level (p >

0.05). The majority of plants reached their final height by the time

of inoculation, with minimal height increases observed until the

end of the experiment. In contrast, surviving plants exhibited a

noteworthy increase in collar diameter (16–70% after 13 weeks).

Conversely, plants that died first showed a decrease in collar

diameter as the tissue shrunk due to water loss.

A statistically significant negative correlation betweenmortality

and stem girth was found for both PAA and PAU (Welsh t-test, p

< 0.05), i.e., higher mortality was associated with plants of smaller

stem girth (Figure 6).

The percentage of lesion length from total plant height ranged

in dead plants approximately from 30% to 80%. In surviving

plants, the lesions extended approximately over 1% to 31% of the

total plant height. This percentage correlated significantly with

the mortality in both PAA and PAU (r = 0.804 and r = 0.851,

respectively) (data not shown). Moreover, plant height showed

a significant negative correlation with mortality for PAA (r =

−0.389), PAU (r = −0.357) and PAA-PAU combined (r = −0.27)

(Figure 7), i.e., higher plants died later or survived until the end of

the experiment. The first plants to die were those with the shortest

height and lesion lengths exceeding 60 % of the total plant height.

Plant biomass
The above-ground biomass at the end of the experiment was

affected by various plant reactions to the pathogen infection.

In many plants, successive leaf loss occurred over the whole

experiment. Symptoms, such as wilting, leaf drying, chlorosis,

sudden leaf dropping, and subsequent regeneration leaf flush,

caused variations in plant biomass across all treatments (Figure 1).

No significant differences were observed in dry biomass between

above-ground plant tissues and roots. The average values for above

and below-ground biomass for all plants were 8.89 ± 6.50 g and

6.96± 5.06 g, respectively (Table 5).

The effect of Phytophthora species on dry biomass did not

show statistical significances. However, when comparing the

ratio between above- and below-ground biomass, a statistically

significant negative effect of elevated CO2 was observed in

control (p = 0.0013) and PLU–inoculated plants (p = 0.0013)

(Supplementary Figure S3). In both cases, higher ratios were found

at the ambient level compared to the elevated level (control: 1.60±

0.24 vs. 1.14 ± 0.24, PLU: 1.64 ± 0.28 vs. 1.17 ± 0.24). In plants

inoculated with PAA or PAU the ratio between above- and below-

ground biomass showed neither a significant effect of the CO2 level

(p > 0.05; Supplementary Figure S3) nor a statistically significant

correlation with mortality (p > 0.05; data not shown).

Physiological measurements and chemical
analysis

Physiological responses of alder seedlings to the three

Phytophthora species showed significant variations in time

vs. CO2 levels, and their interplay across treatments for

net photosynthesis (Pn), stomatal conductance (Gs), and

intracellular CO2 concentration (Ci). The Ci/Ca ratio, denoting

the intra- and extracellular CO2 concentration ratio, displayed
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FIGURE 3

Comparison of area under the disease progress curve (AUDPC) in stems of Alnus glutinosa seedlings inoculated with Phytophthora ×alni (PAA), P.
uniformis (PAU) and P. plurivora (PLU) at two CO2 levels (415 ppm and 830 ppm). Error bars show the standard deviation. Di�erent letters indicate
significant di�erences (Fisher’s LSD Test, p < 0.05).

FIGURE 4

Relationship between the stem girth of Alnus glutinosa seedlings and girdling (PAA, P. ×alni; PAU, P. uniformis; PLU, P. plurivora): Linear regression
model (PAA: R2 = 0.272, p = 0.0052; PAU: R2 = 0.368, p = 0.001).

differences between measurements and CO2 concentrations.

Net photosynthesis (Pn) exhibited a declining trend throughout

the measurement period, with no significant differences between

Phytophthora species and the control, excluding CO2 concentration

and week interaction. However, significant differences were found

between the first and second measurements after the inoculation
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FIGURE 5

Survival probabilities of Alnus glutinosa seedlings 13 weeks after the inoculation: Kaplan–Meier test at ambient CO2 level (aCO2 = 415 ppm) and
elevated CO2 level (eCO2 = 830 ppm). PAA, Phytophthora ×alni; PAU, P. uniformis; PLU, P. plurivora.

TABLE 5 Results from the underbark inoculation test on Alnus glutinosa seedlings with three Phytophthora species after 13 weeks.

CO2
conc.
[ppm]

Phytophthora
species

No. of
inoculated

plants

Collar
diameter
[cm]a

Plant height
[cm]a

Dry weight of
above-
ground

biomass [g]a

Dry weight of
below-
ground

biomass [g]a

Above-
/below-
ground
biomass
ratiob

415 Control 12 0.83± 0.22 49.79± 14.16 9.86± 7.22 6.05± 3.96 1.60± 0.24∗

P.×alni 12 0.81± 0.22 46.30± 19.71 7.63± 6.33 5.75± 3.95 1.36± 0.86

P. uniformis 12 0.82± 0.29 51.95± 21.03 9.80± 8.83 8.29± 6.62 1.40± 0.65

P. plurivora 12 0.80± 0.30 49.33± 16.41 9.59± 7.10 6.10± 4.67 1.64± 0.28∗∗

830 Control 12 0.83± 0.22 44.13± 12.17 8.25± 5.45 7.68± 5.30 1.14± 0.24∗

P.×alni 12 0.81± 0.25 42.50± 12.26 8.97± 7.01 7.80± 6.16 1.20± 0.45

P. uniformis 12 0.78± 0.31 49.39± 15.73 8.99± 7.14 7.25± 5.63 1.23± 0.25

P. plurivora 12 0.86± 0.21 47.33± 13.02 8.75± 5.02 7.88± 5.01 1.17± 0.24∗∗

aNo significant differences were found between treatments. b∗Control (p= 0.0013) and ∗∗PLU (p= 0.0013) values differ significantly between CO2 levels.

(two and 4 weeks p.i., respectively) in all inoculated plants at each

CO2 level (p < 0.05) (Figure 8). A non-significant decrease in Pn,

observed between the first and second measurements in control

plants at ambient CO2 level, was induced by competition for light

and space. Elevated CO2 notably increased Pn, particularly in the

pre-inoculation stage, but the values in inoculated plants were

gradually decreasing over the experimental period.

Stomatal conductance (Gs) remained stable throughout the

experiment, with the control having the lowest average values

(0.27 ± 0.14mol H2O m−2 s−1) and PLU exhibiting the highest

values (0.32 ± 0.18mol H2O m−2 s−1). Elevated CO2 led to a

7% Gs reduction throughout the experimental period. Intriguingly,

Ci responded to higher CO2 levels, gradually reaching its peak

during the third measurement (4 weeks p.i.), while Ci/Ca ratio

increased in elevated CO2. Transpiration (Tr) showed decreasing

trend in all inoculated plants till 4 weeks p.i. with no significant

differences among Phytophthora species within each CO2 level (p

> 0.05) (Figure 8). Water use efficiency (WUE) ranged from 5.7 to

9.4 µmol CO2 per mmol H2O, with higher values at the elevated

CO2 level. Fast kinetics of fluorescence indexes, quantum efficiency

of PSII (Fv/Fm) and performance index (PI) exhibited common

values for healthy plants. Similarly, the course of the OJIP curve

did not reveal any significant differences in any step of the graph

(Supplementary Figure S4).
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FIGURE 6

Relationship between the stem girth of Alnus glutinosa seedlings and mortality (PAA, Phytophthora ×alni; PAU, P. uniformis; PLU, P. plurivora): Welsh
t-test (PAA: p = 0.0018; PAU: p < 0.001).

In root samples, five sugars and eight phenolic compounds

were identified, with no significant differences between treatments

(Phytophthora species/CO2 level) (Supplementary Table 2). Total

sugar content was lower in infected alders, but no statistical

significance was found between treatments. A higher content of

mannitol was recorded in both PAA- and PAU-inoculated plants

which were considered dead or dying compared to living plants.

In PLU-inoculated plants approximately ten times lower values of

mannitol were measured at elevated as compared to ambient CO2

level. In contrast, the content of total sugars (mannitol excluded)

was higher at ambient CO2 level, and glucose and fructose showed

approximately double concentrations compared to the elevated

CO2 level. Phenole concentrations in roots of infected and non-

infected plants displayed extensive variation without significant

differences (Supplementary Table 2). However, for several phenolic

compounds an effect of CO2 level was recorded in both control

and PLU-inoculated plants. Higher mean values of catechin,

epicatechin, gallic acid, and taxifolin were found at elevated CO2

level compared to the ambient level.

Discussion

The devastating alder dieback epidemic, caused by the three

species from the “Phytophthora alni complex,” was first noticed in

the mid 1990s in the UK (Brasier et al., 1999; Gibbs et al., 1999)

and is currently widespread along rivers and in alder plantings of

most European countries (Jung et al., 2016, 2018). Phytophthora

×alni (PAA) has been identified as the main causal agent of the

disease in most affected regions with temperate climatic conditions

but P.×multiformis (PAM) and P. uniformis (PAU) also cause bark

lesions and mortality in the field (Brasier et al., 1999; Nagy et al.,

2003; Jung and Blaschke, 2004; Thoirain et al., 2007; Solla et al.,

2010; Aguayo et al., 2013; Jung et al., 2013, 2018; Štěpánková et al.,

2013; Redondo et al., 2015; Corcobado et al., 2023). Only two of

the three species, i.e., PAA and PAU, have been recorded in the

Czech Republic yet, with PAA strongly prevailing in declining alder

stands (88% of 59 declining alder stands studied; Štěpánková et al.,

2013). In one riparian forest in the Czech Republic, PAA and PAU

were isolated from the same decliningA. glutinosa tree (Macháčová,

unpublished). A range of other Phytophthora species can contribute

to the decline of riparian alder stands, most important P. plurivora

(PLU) a widespread forest pathogen in Europe with a broad host

range that includes A. glutinosa, A. incana and A. viridis (Jung and

Blaschke, 2004; Jung and Burgess, 2009; Jung et al., 2013, 2016,

2018; Mrázková et al., 2013; Haque et al., 2014; Corcobado et al.,

2023; Tkaczyk et al., 2023).

The pathogenicity of species from the “Phytophthora alni

complex” to all European alder species was demonstrated in several

studies with aggressiveness of the different Phytophthora species

varying between different studies (Brasier and Kirk, 2001; Santini

et al., 2003; Jung and Blaschke, 2006; Černý and Strnadová, 2010;
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FIGURE 7

Correlations between plant height of Alnus glutinosa seedlings and mortality (PAA, Phytophthora ×alni; PAU, P. uniformis; PLU, P. plurivora):
Spearman Rank Order Correlations (PAA: r = −0.389, PAU: r = −0.357, PAA and PAU: r = −0.27).

FIGURE 8

Physiological parameters of Alnus glutinosa seedlings inoculated with Phytophthora ×alni (PAA), P. uniformis (PAU), and P. plurivora (PLU) measured 2
and 4 weeks after underbark inoculation (p.i.). Rates of net photosynthesis (Pn) measured at (A) ambient (415 ppm) and (B) elevated CO2 level (830
ppm). Transpiration rate measured at (C) ambient and (D) elevated CO2 level.
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Haque and Diez, 2012; Haque et al., 2015; Bjelke et al., 2016;

Chandelier et al., 2016; Romportl et al., 2016; Zamora-Ballesteros

et al., 2017). Extensive bark inoculation trials with mature logs ofA.

glutinosa revealed high aggressiveness of multiple PAA strains and

of Dutch PAM strains whereas German PAM strains and Swedish

PAU strains were only moderately pathogenic (Brasier and Kirk,

2001). Pathogenicity tests from other studies indicate, however, that

PAU can be quite aggressive to A. glutinosa (Corcobado et al., 2017;

Zamora-Ballesteros et al., 2017) and also to the North American red

alder (A. rubra; Navarro et al., 2015). In this study, both PAA and

PAU caused large bark lesions and high mortality in A. glutinosa

seedlings, whereas PLU produced only small lesions not leading

to mortality. The lesions caused by PAA and PAU did not differ

significantly from each other. However, PAU lesions led to a higher

mortality rate (45.8%) compared to PAA (33.3%), although this

difference was not statistically significant. In a similar underbark

inoculation study by Zamora-Ballesteros et al. (2017), PAA and

PAU showed similar aggressiveness to A. glutinosa with lesion

lengths of ca. 35–40mm. In their study, the survival probability

at 37 weeks p.i. was 50–70% for PAA (depending on the isolate

used) and 50% for PAU. Similar mortality rates were found in our

study at 13 weeks p.i., but in contrast, the lesions were considerably

longer reaching on average 110mm in PAA and 117.8mm in PAU.

Lesions extended rapidly in some plants during the first 2 weeks

p.i. and sometimes reached their maximum length within this time.

A similar scenario was observed in other underbark inoculation

studies (Zamora-Ballesteros et al., 2017; Marques Gomes et al.,

2019). Gibbs (2003) reported on 15-months old A. glutinosa

seedlings inoculated with species from the “Phytophthora alni

complex” 3 weeks p.i. mean lesion lengths ranging from 28 to

68mm. Comparison to results from other studies suggests a higher

aggressiveness of the PAA and PAU isolates or higher susceptibility

of the A. glutinosa genotypes used in our study. Isolate genotype

seems to be an important factor affecting lesion development

and mortality, as demonstrated by various experiments with PAA

(Haque and Diez, 2012; Chandelier et al., 2016; Štochlová et al.,

2016; Zamora-Ballesteros et al., 2017). The host plant susceptibility

or resistance depends on many variables. Significant differences

in susceptibility/tolerance of individual A. glutinosa trees to PAA

were demonstrated in Belgium, Germany and the Czech Republic

(Jung and Blaschke, 2006; Chandelier et al., 2016; Štochlová

et al., 2016). In an extensive study including 90 genotypes of

A. glutinosa sampled across the Czech Republic Štochlová et al.

(2016) found that differences in susceptibility to PAA were also

depending on the geographic origin and altitude of the alder

genotypes. Geographic patterns of resistance could be related to

past exposures to invasive Phytophthora pathogens (Frampton

et al., 2013), as trees in river corridors, including alders, are

particularly exposed to many alien pathogenic oomycetes (Černý

et al., 2011; Milenković et al., 2018; Jung et al., 2019; Corcobado

et al., 2023).

The age of a host plant is another important factor for the

susceptibility to a pathogen. The thinner bark of young A. glutinosa

shoots with smaller diameter may be more vulnerable to tissue

colonization than mature bark tissues of older thicker shoots

(Haque et al., 2015). This is consistent with the results of our

study where we observed the first dying plants being those with the

smallest collar diameter (ca. 4–6mm). On the contrary, plants with

thicker collars (>9mm) survived until the end of the experiment.

Phytophthora plurivora produced lesion lengths of ca. 10–

30mm but induced no mortality. All inoculated seedlings healed

the wounds with the callus tissue and did not show wilting or

dieback symptoms. However, as a widely distributed pathogen, PLU

was found quite aggressive to different host plants in numerous

pathogenicity tests (Jung et al., 2003; Rytkönen et al., 2012;

Henricot et al., 2014; Milenković et al., 2018; Oszako et al., 2018;

Milanović et al., 2020; Ďurkovič et al., 2021). Several studies proved

PLU to be pathogenic to alder seedlings, which is inconsistent

with our results. Zamora-Ballesteros et al. (2017) reported in an

underbark inoculation test on 1-year old A. glutinosa seedlings

lesion lengths of 35–40mm and a seedling survival probability of

approximately 50% at 37 weeks p.i. (90% after 13 weeks). Similarly,

Mrázková et al. (2013) observed 35–40mm lesion length on 2-

years old alder seedlings after 6 weeks p.i. In another underbark

trial, Haque et al. (2014) found all inoculated plants wilted and

died 3 months p.i.. In a zoospore inoculation test with excised A.

glutinosa shoots, Jung and Nechwatal (2008) found PLU (under

its former name P. citricola) causing within 3 weeks significantly

longer lesions than PAA (123 vs. 72mm). These contrasting

results indicate that different genotypes of PLU show considerable

differences in aggressiveness to A. glutinosa. In our study, despite

having been constrained early by the formation of callus tissue

the pathogen was successfully reisolated from all inoculated plants.

Apparently, this PLU genotype has low virulence on A. glutinosa

but has the ability to survive in dead tissue for quite a long time

(13 weeks) which is probably related to the formation of oospores

(Jung and Burgess, 2009). However, the pathogen would probably

lose its viability and die after a certain time. This was demonstrated

by Ďurkovič et al. (2021), who inoculated stems of 10-years old

poplar trees under field conditions with P. cactorum (Lebert and

Cohn) Schröt. and P. plurivora and found the wounds after 4 years

completely healed with no presence of the pathogens.

Studies on Phytophthora-host interaction at elevated CO2 levels

are limited and showed contrasting results. Oszako et al. (2016)

did not find any effect of elevated CO2 concentration (800 ppm)

on the root and shoot development of oak seedlings growing

in non-infested soil or in soil infested with the oak-specific fine

root pathogen P. quercina. In this study, a statistically significant

negative correlation between the elevated CO2 level and the above-

/below-ground biomass ratio of A. glutinosa seedlings was found

for the control and for plants inoculated with the moderately

aggressive PLU strain but not for plants inoculated with the

aggressive PAA and PAU strains. Although the mortality rate did

not differ significantly between ambient and elevated (830 ppm)

CO2 levels, there was an effect of the CO2 levels on the extent of

the lesions for PAU-inoculated plants. Thus, at the elevated CO2

level PAU caused a significantly smaller lesion area and width as

well as a tendentially lower lesion length. Similarly, in a tomato

trial, a tendency of increased tolerance to P. nicotianae Breda de

Haan (referred to as P. parasitica) was found under elevated CO2

(Jwa and Walling, 2001). However, in other studies, Phytophthora

pathogens generally displayed higher aggressiveness to host plants

at elevated CO2. Tkaczyk et al. (2014) reported P. cactorum and

P. plurivora causing more extensive fine root destructions of beech
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seedlings at elevated CO2 level compared to the ambient condition.

Similar results with increased susceptibility of beech seedlings to

P. plurivora (referred to as P. citricola) at elevated CO2 level were

recorded by Fleischmann et al. (2010).

As the pathogen gradually colonizes the conductive tissues, the

girdling extends, and the plant’s response can be observed in both

lesion development and physiological parameters. Many studies

have shown that the common reactions after Phytophthora-induced

bark infection are a gradual reduction in water uptake, the fast

closure of stomata and in consequence a decrease in photosynthesis

(Osswald et al., 2014). In our study, the lesions length reached their

maximum in most of the inoculated plants 4 weeks p.i. Therefore,

the most profound reactions were measured within this period

−2 and 4 weeks post inoculation (p.i.). The biggest decrease of

transpiration (Tr) was recorded in PAU 4 weeks p.i. when the

amount of transpired water dropped to the half value (49%) of

the control values (1.2 mmol m−2 s−1) at elevated CO2 level,

and to 68% (1.0 mmol m−2 s−1) at ambient level. Similarly, net

photosynthesis (Pn) reached significantly lower values in PAA- and

PAU-inoculated plants 4 weeks p.i. compared to 2 weeks p.i. at

regardless the CO2 levels. Generally, it would have been expected

that Pn increases under elevated CO2 conditions as it occurred

for control plants and also in many studies (e.g., Pritchard et al.,

1999; Badiani et al., 2023). It seems that the influence of the

CO2 conditions on Pn disappears under acute infections caused

by aggressive pathogens. Surprisingly, no significant differences in

Pn were recorded between control and inoculated plants at both

CO2 levels. At ambient CO2 level, these results are consistent with

Clemenz et al. (2008), who found no significant differences between

control and inoculated plants in a trial with 3-years-old alders stem-

inoculated with Phytophthora ×alni during the 1st month after

the inoculation. Only after 3 months were differences recorded,

indicating the late effect of the pathogen on plant physiology.

The decrease of stomatal conductance (Gs) as a common

physiological trait was observed across various Phytophthora and

tree species (Gallego et al., 1999; Robin et al., 2001). In contrast, Gs

remained relatively stable in our experiment, but PAA- and PAU-

inoculated plants decreased their Gs by approx. 30% 4 weeks p.i.

in comparison to 2 weeks p.i.. This trend was not observed in

PLU-inoculated plants, as these plants showed very small lesion

sizes and no mortality. Moreover, no effect of elevated CO2 on

Gs was observed in any treatment. Our comparison of Pn and

Gs trend 2 and 4 weeks p.i. revealed that Pn decreased with Gs

simultaneously at ambient CO2 level. A similar observation was

made by Fleischmann et al. (2005) who performed soil inoculation

of beech seedlings with P. plurivora (referred to as P. citricola). As

reported inmany studies, plants close their stomata at elevated CO2

level due to surplus of CO2 in the atmosphere (e.g., Kupper et al.,

2006). Nevertheless, in our study, elevated CO2 caused disbalance

between Pn and Gs in PLU and PAA with lower Pn value and the

same value of Gs.

Elevated CO2 also resulted in higher WUEinst values in all

treatments 2 weeks p.i. as expected according to general trends

(Running and Nemani, 1991). However, the positive influence of

CO2 diminished over time and the later values were comparable

between treatments. Similarly, Clemenz et al. (2008) reported that

WUE of leaf gas exchange hardly differed between inoculation

treatments and controls. On the contrary, another study with

1-year-old beech plants infected with P. plurivora showed that

WUE data indicated that infected plants suffered from severe

drought, even though a significant decrease in net assimilation and

transpiration was not observed (Fleischmann et al., 2002).

Chlorophyll a fluorescence is a useful tool for evaluating the

plant health status (Oxborough, 2004). Pfanz et al. (2015) measured

bark chlorophyll fluorescence in alders 10 weeks after basal stem

inoculation with Phytophthora ×alni and revealed that Fv/Fm and

DF/Fm
′

of the cortex chlorenchyma decreased to almost zero,

indicating tissue necrosis. Similarly, in other studies at ambient

CO2 level, when Phytophthora soil inoculation was performed,

differences were recorded in leaf chlorophyll fluorescence between

control and inoculated plants (Angay et al., 2014; Dalio et al.,

2017; Corcobado et al., 2022). Furthermore, Corcobado et al.

(2022) observed differences in chlorophyl fluorescence of beech

seedlings only 2 weeks p.i. but 3 weeks p.i. these differences

disappeared. Similarly, at elevated CO2 level, Fleischmann et al.

(2010) found electron quantum yield of PSII decreased only

shortly before the first wilting symptoms occurred in inoculated

dying plants. In contrast, our results did not reveal any difference

between treatments regardless of the CO2 level. The discrepancy

between our findings and those of Fleischmann et al. (2010) and

Corcobado et al. (2022) might be influenced by the different type

of applied inoculation methods. In soil infestation experiments

with Phytophthora pathogens, root damage can be rapidly reflected

in decreased foliage vitality, including decreasing performance

of chlorophyll a. On the contrary, underbark inoculation leads

primarily to necrosis of cortex and phloem tissue, resulting in

limited assimilate transport (Osswald et al., 2014) that is minimally

shown in chlorophyll fluorescence. Therefore, only when the

pathogen starts to move deep into phloem and xylem tissue and the

stem becomes completely girdled, chlorophyll a fluorescence would

be possibly affected.

Plant responses to pathogen infection can be observed in

changing levels of secondary metabolites. Levels of sugars may

decrease notably, as reported by Corcobado et al. (2022) who

found sugar pool decrease in beech roots in a soil infestation trial

with different Phytophthora species, suggesting reduced phloem

transport. Levels of mannitol may rise dramatically during plant

infection by biotrophic or necrotrophic fungi, as mannitol has

a multitude of functions in fungal metabolism (Calmes et al.,

2013). In our study, at ambient CO2 level, total sugar content was

lower in infected alders, but statistical significance was only found

for mannitol, which showed increased levels in PAA and PAU-

inoculated plants compared to the control. Similarly, Camisón et al.

(2019) reported a temporary increase of sugar alcohols in chestnut

clones resistant to P. cinnamomi during disease progression. In

our study, plants with an advanced stage of dieback exhibited

particularly high values of mannitol, which can be explained

by the role of mannitol as an antioxidant agent in fungi and

oomycetes that can suppress host defense responses by quenching

the reactive oxygen species (Meena et al., 2015; Puig et al., 2018).

Interestingly, in our study, an effect of elevated CO2 level on

the concentrations of several sugars and phenolic compounds in

the roots was found, although the differences to ambient CO2

were not statistically significant. The elevated CO2 level showed
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an inhibiting effect on the total sugars content, with glucose and

fructose reaching only half of the concentrations measured at

the ambient CO2 level. High variability in phenolic levels was

recorded in all root samples tested in this study, regardless of

the treatment. Generally, phenolic compounds level tends to rise

in leaves in response to tissue damage, as demonstrated by other

studies (e.g., Brown et al., 2018). In our study, PAA and PAU-

inoculated plants showed a high variability of phenolic compounds

in roots. Regarding elevated CO2 levels, a positive effect was

recorded for several phenolic compounds in control and PLU-

inoculated plants. Similar results have been shown at elevated

CO2 by Roth et al. (1998). In general, the lack of differences in

secondary metabolites between treatments was probably due to

the low number of sampled plants which exhibited significantly

different health status ranging from severe dieback to healthy-

looking plants.

In conclusion, this study demonstrated that PAU can show

similar aggressiveness to A. glutinosa as PAA. The results

indicate that inoculation experiments should be performed over

longer periods to observe for different Phytophthora species

statistically significant differences in disease incidences and

defense responses of inoculated plants. Statistically significant

effects of elevated CO2 concentration on the disease symptoms

of underbark-inoculated A. glutinosa plants, such as mortality,

lesion development, plant biomass or chemical and physiological

parameters were not recorded. On the contrary, PAU caused

significantly larger lesions at ambient CO2 and, although not

significant, a trend of smaller lesion area at elevated CO2

was also observed for PAA. Further experiments using soil

infestation methods which simulate the natural infection process

(Jung et al., 1996, 1999, 2003, 2018) and longer exposition

to various CO2 levels to enable a significant effect on growth

and above-ground biomass production of plants exposed to

elevated CO2 level (Ainsworth and Long, 2005) and a potentially

more pronounced effect of Phytophthora infections on above-

ground plant growth are needed to clarify the effect of

elevated CO2 on the Phytophthora root and collar rot disease

of A. glutinosa.
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(2022). Extensive morphological and behavioural diversity among fourteen new and
seven described species in Phytophthora Clade 10 and its evolutionary implications.
Persoonia 49, 1–57. doi: 10.3767/persoonia.2022.49.01

Jung, T., and Nechwatal, J. (2008). Phytophthora gallica sp. nov., a new species from
rhizosphere soil of declining oak and reed stands in France and Germany. Mycol. Res.
112, 1195–1205. doi: 10.1016/j.mycres.2008.04.007

Jung, T., Nechwatal, J., Cooke, D. E. L., Hartmann, G., Blaschke, M., Oßwald,
W. F., et al. (2003). Phytophthora pseudosyringae sp. nov., a new species causing
root and collar rot of deciduous tree species in Europe. Mycol. Res. 107, 772–789.
doi: 10.1017/S0953756203008074

Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., Aguín Casal,
O., et al. (2016). Widespread Phytophthora infestations in European nurseries put
forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases.
Forest Pathol. 46, 134–163. doi: 10.1111/efp.12239

Jung, T., Pérez-Sierra, A., Durán, A., Jung, M. H., Balci, Y., and Scanu, B. (2018).
Canker and decline diseases caused by soil- and airborne Phytophthora species in
forests and woodlands. Persoonia 40, 182–220. doi: 10.3767/persoonia.2018.40.08

Jung, T., Vettraino, A. M., Cech, T. L., and Vannini, A. (2013). “The
impact of invasive Phytophthora species on European forests,” in Phytophthora:
A global perspective, ed. K. Lamour (Wallingford, UK: CABI), 146–158.
doi: 10.1079/9781780640938.0146

Jwa, N. S., and Walling, L. L. (2001). Influence of elevated CO2

concentration on disease development in tomato. New Phytol. 149, 509–518.
doi: 10.1046/j.1469-8137.2001.00063.x

Kanoun-Boulé, M., Vasconcelos, T., Gaspar, J., Vieira, S., Dias-Ferreira,
C., and Husson, C. (2016). Phytophthora ×alni and Phytophthora lacustris
associated with common alder decline in Central Portugal. For. Path. 46, 174–176.
doi: 10.1111/efp.12273

Kazan, K. (2018). Plant-biotic interactions under elevated CO2 : a molecular
perspective. EEB 153, 249–261. doi: 10.1016/j.envexpbot.2018.06.005

Kroon, L. P. N. M., Bakker, F. T., Van Den Bosch, G. B. M., Bonants, P. J.
M., and Flier, W. G. (2004). Phylogenetic analysis of Phytophthora species based
on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 41, 766–782.
doi: 10.1016/j.fgb.2004.03.007

Kupper, P., Sellin, A., Klimánková, Z., Pokorný, R., and Puértolas, J. (2006). Water
relations in Norway spruce trees growing at ambient and elevated CO2 concentrations.
Biol. Plant. 50, 603–609. doi: 10.1007/s10535-006-0095-0

Madden, L. V., Hughes, G., and van den Bosch, F. (2007). The Study of Plant Disease
Epidemics. St. Paul, MN: APS Press.

Májek, T., Schwanda, K., and Cech, T. L. (2019). Decline of alpine green alder
(Alnus viridis) and relation to Phytophthora species, preliminary results. 9th Meeting
of IUFRO Working Party 7.02.09 (Phytophthora in Forests and Natural Ecosystems),
La Maddalena, Sardinia, Italy.

Marques Gomes, I., Neno, J., Jansson, R., Corcobado, T., Cech, T., Laurent, Y.,
et al. (2019). Responses of Alnus glutinosa populations to different inoculation methods
of Phytophthora × alni. 9th Meeting of IUFRO Working Party 7.02.09 (Phytophthora
in Forests and Natural Ecosystems), La Maddalena, Sardinia, Italy.

McElrone, A. J., Reid, C. D., Hoye, K. A., Hart, E., and Jackson, R. B. (2005).
Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen
via changes in host physiology and leaf chemistry. Glob. Chang. Biol. 11, 1828–1836.
doi: 10.1111/j.1365-2486.2005.001015.x

Meena, M., Prasad, V., Zehra, A., Gupta, V. K., and Upadhyay, R. S. (2015).
Mannitol metabolism during pathogenic fungal–host interactions under stressed
conditions. Front. Microbiol. 6:1019. doi: 10.3389/fmicb.2015.01019
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Identification of Phytophthora alni subspecies in riparian stands in the Czech Republic.
Plant Prot. Sci. 49, S3–S10. doi: 10.17221/41/2013-PPS
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Schwanda, Stojnić, Westergren and Orlović.
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errabunda causing leaf spot and
anthracnose of Quercus robur in
the Mura-Drava-Danube
Biosphere Reserve
Milica Zlatković1*, Markus Sallmannshofer2, Silvio Schueler2,
Thomas L. Cech2, Milutin Djilas1, Gernot Hoch2,
Katharina Lapin2, Nikica Ogris3, Barbara Piškur3,
Katharina Schwanda2, Srd̄an Stojnić1, Marjana Westergren3 and
Saša Orlović1

1Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia,
2Austrian Research Centre for Forests (BFW), Vienna, Austria, 3Slovenian Forestry Institute, Ljubljana,
Slovenia

The Mura-Drava-Danube transboundary UNESCO Biosphere Reserve represents

one of the best-preserved wetlands in Europe. The Reserve’s riparian forests

play a significant role in ecosystem functioning and pedunculate oak (Quercus

robur) is one of the keystone species of these forests. In recent years,

pedunculate oak trees in the Reserve displayed symptoms of necrotic

lesions on their leaves. The lesions varied in size, from small, circular

to irregular reddish brown to grayish spots to larger necrotic areas that

resembled leaf anthracnose and extended along the leaf nerves. In 2021,

symptomatic leaves were collected in three countries of the Reserve, i.e. Austria,

Slovenia, and Serbia to identify the causative agents of these diseases. Fungal

cultures were obtained from symptoms and identified using morphology and

multilocus phylogenetic analyses of the ITS rDNA, partial LSU rDNA, tef 1-

α, BT2, CAL, ACT, and RPB2 genes. The fungi were identified as Tubakia

dryina, Tubakia sp. (Tubakia dryinoides sensu lato), Didymella macrostoma,

and Apiognomonia errabunda. Pathogenicity tests done by inoculating the

leaves of one-year old pedunculate oak plants revealed that the isolated

fungi caused symptoms as those seen in the forest. To our knowledge,

this study represents the first report of D. macrostoma as the cause of

pedunculate oak leaf spot disease in Serbia and worldwide. It is also the

first finding of Tubakia leaf spot disease of pedunculate oak caused by

T. dryina in Austria and Serbia. Moreover, Tubakia sp. was proven to be another

causative agent of Tubakia leaf spot disease. Additionally, oak anthracnose

caused by A. errabunda was found for the first time on pedunculate oak

leaves in Austria and Slovenia. During the past decade, pedunculate oak

trees have been facing increasing threats from multiple abiotic and biotic

factors which has resulted in decline and absence of natural regeneration

of these trees. The results of this study add to the understanding of the
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contributing factors to the decline of pedunculate oak in riparian forests and

are important for the development of management strategies to counteract

this decline.

KEYWORDS

Mura-Drava-Danube Biosphere Reserve, riparian forests, leaf spot diseases, Tubakia leaf
spot, Didymella macrostoma, oak anthracnose, pedunculate oak

1 Introduction

The transboundary UNESCO Mura-Drava-Danube Biosphere
Reserve represents one of the best-preserved European wetlands
in the border area between Austria, Slovenia, Hungary, Croatia,
and Serbia. An almost 700 km long “green belt” formed by the
Danube, Mura and Drava is the world’s first biosphere reserve
spanning five countries, and the largest riverine protected area in
Europe; hence it was named the “Amazon of Europe” (UNESCO,
2023). The Reserve consists of four wetland habitats protected
by the Ramsar (2023) convention and fulfills many ecosystem
services that contribute to environmental and human well-being
(Oettel et al., 2022; Ramsar, 2023). It is a major carbon storage and
drinking water reservoir and acts as a natural buffer by providing
bank protection and climate regulation (Dybala et al., 2019; Riis
et al., 2020). Moreover, its unique river landscape offers a range
of recreational and nature-based tourism opportunities, and it
represents a biodiversity hotspot that provides food and water
resources for many rare and endangered plant, fish, insect, and
animal species possibly acting as a future refugia against impacts of
climate warming (Köck et al., 2022; Trišić et al., 2022; Zhang et al.,
2023).

Despite their breathtaking natural features, in the past decades,
floodplain ecosystems have faced numerous challenges that have
resulted in their degradation (Xu et al., 2019; Tadić et al., 2022).
The riverine area of the Reserve has suffered joint impacts from
climate change and human intervention such as river regulation,
water abstraction and dam constructions for the extension of
agricultural land, protection of settlements from floods and
industry needs. These impacts have resulted in changing of the
hydrological regime and overall ecological conditions which have
had a negative impact on the unique floodplain biotopes including
the riparian forests (Skiadaresis et al., 2019; Tadić et al., 2022).
Riparian forests of the Reserve are dominated by forest tree species,
such as Quercus robur L., Alnus glutinosa L. (Gaertn.), Fraxinus
angustifolia Vahl., Fraxinus excelsior L., Populus nigra L., Ulmus
laevis Pall., and Ulmus minor Mill. Which depend on appropriate
soil moisture content and water table level, as well as periodical
floodings (Galić et al., 2019; Kostić et al., 2021). Therefore, the
latest tree species distribution models predict a possible loss of these
habitats and because of the above-mentioned perturbations, loss of
biodiversity and ecosystem function (Sallmannshofer et al., 2021).

Pedunculate oak (Q.robur) is a long-lived deciduous tree
species native to most of Europe and western Asia with major
cultural, ecological, and economic importance (Eaton et al., 2016;
Mölder et al., 2019). It is widespread in lowlands and often found
close to rivers as it prefers moist soils with higher belowground
water (gleysols: hydromorphic soils) and intermittent floodings

(Eaton et al., 2016; Kostić et al., 2021, 2022; Kesić et al.,
2023). It is a keystone species in many countries, and a major
feature of internationally important habitats such as floodplain
riparian forests of the Mura-Drava-Danube Biosphere Reserve
(Sallmannshofer et al., 2021). Across Europe, pedunculate oak is
experiencing decline of health, growth, and regeneration due to
the synergistic stressors which include frequent and long-lasting
droughts, lowering of the water table coupled with the absence of
occasional flooding, or water table rise caused by river regulations
like damming, as well as pests and diseases (Csóka et al., 2020;
Stojanović et al., 2021; Kesić et al., 2023). Among the pests, the oak
lace bug Corythucha arcuata (Say, 1832), spongy moth Lymantria
dispar (Linnaeus, 1758), gall wasps (Cynipidae), leaf miners like
Tischeria ekebladella (Bjerkander, 1795) and early spring defoliators
(e.g. winter, tortrix and owlet moths, Lepidoptera: Geometridae,
Tortricidae, Noctuidae) are the most notable (Csóka et al., 2020;
Rad̄ević et al., 2020; Hoch et al., 2023). Moreover, stem and root
diseases caused by fungi, such as Diplodia seriata De Not., Fusarium
sporotrichioides Sherb.; bacteria, such as Brenneria spp., Gibbsiella
quercinecans Brady et al., 2010; Rahnella victoriana Brady et al.,
2017, and pseudo fungi such as Phytophthora spp. are becoming
increasingly problematic in European pedunculate oak forests
(Zlatković et al., 2018; Milanović et al., 2020; Ruffner et al., 2020;
Jankowiak et al., 2022).

Leaf diseases of pedunculate oak are numerous and some, for
example powdery mildew can be symptom-specific (Demeter et al.,
2021). Oak powdery mildew is caused by several cryptic species
among which Erysiphe alphitoides (Griffon & Maubl.) U. Braun &
S. Takam most commonly occurs on pedunculate oak (Bradshaw
et al., 2022; Kebert et al., 2022). The disease symptoms are white
powdery patches on the leaf surface with round, closed fruit
bodies named chasmothecia (Demeter et al., 2021; Bradshaw et al.,
2022). Other diseases, like Tubakia leaf spot and Apiognomonia
anthracnose can be distinguished if fungal reproductive structures
(i.e., fruiting bodies) are present on the leaf lesions (Kowalski,
2006; Boroń and Grad, 2017). Leaf spot disease caused by Tubakia
dryina (Sacc.) Sutton (1973) is characterized by necrotic spots on
the leaves and sometimes on the petioles. The spots can enlarge
and merge to form leaf blotch, whereas petiole necrosis can cause
premature defoliation (Kowalski, 2006). Tubakia species produce
unique umbrella-like pycnothyrial conidiomata that consist of
convex scutella made from pigmented setae-like cells fixed to the
leaf surface by a central columnella. Underneath scutella mostly
globose to elliptical, hyaline, subhyaline to pigmented conidia
and sometimes microconidia are born on conidiogenous cells
(Braun et al., 2018). Oak leaf anthracnose caused by Apiognomonia
errabunda (Roberge ex Desm.) causes necrosis that develops
along leaf veins with apothecia formed on the necrotic lesions
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(Kowalski, 2006). On the other hand, Taphrina caerulescens (Desm.
& Mont.) Tul. produces small yellowish round spots on the
leaves that swell upwards resembling blisters (Kowalski, 2006).
However, there are leaf diseases with nonspecific symptoms such
as small leaf spots of varying shape and color caused by e.g.,
Septoria spp., Mycosphaerella spp. or members of the Didymelaceae
including Phoma-like species like Ascochyta spp., Phoma spp. and
Didymella spp. (Butin, 1996; Kowalski, 2006) which challenges
identification. The taxonomy of the species rich Didymellaceae has
been demanding as the species identification relied on morphology
and host association, but with the application of molecular
phylogenetics substantial progress in species delimitation has been
made (Chen et al., 2015, 2017; Hou et al., 2020a).

The synergistic effect of abiotic and biotic threats of
pedunculate oak relates to “acute oak decline”, a phenomenon that
has been known to occur throughout Europe, including the Mura-
Drava-Danube Biosphere Reserve (Denman et al., 2014; Zlatković
et al., 2018). In the Reserve, the pedunculate oak is threatened by
the abiotic challenges, insect pests as well as fungal and pseudo
fungal stem and root pathogens, namely D. seriata and Phytopthora
spp., respectively (Zlatković et al., 2018; Milanović et al., 2020;
Kostić et al., 2021). However, until 2019 nothing was known
about the leaf diseases of this tree species in the Reserve. Thus,
in the summer of 2019, disease symptoms such as small necrotic
spots and larger necrotic areas along the leaf veins resembling leaf
anthracnose were observed on the leaves of pedunculate oak in the
Mura-Drava-Danube Biosphere Reserve. The presence of necrotic
lesions was roughly assessed using binoculars or a branch was cut
off and leaves were examined for the presence of fungal fruit bodies
using hand lenses in the forest (de Groot et al., 2022). Symptoms
and signs (lesions that extended along the leaf nerve and brownish
cushion-like fruit bodies) resembled those of an Apiognomonia
leaf anthracnose. On the other hand, certain lesions had blackish,
round fungal fruit bodies resembling pycnidia/perithecia and were
non-specific. Thus, these lesions were of unknown etiology and
suspected to be caused by either Tubakia spp., Phoma species
complex, Septoria spp., Mycosphaerella spp. and/or other leaf
pathogens. Nonetheless, the true identity of the pathogens causing
disease symptoms remained unknown. Therefore, in 2021 we
collected leaves of pedunculate oak with symptoms such as leaf
spots and anthracnose in three countries of the Reserve, i.e. Austria,
Slovenia, and Serbia intending to identify the causal agents of these
symptoms. We approached the diagnosis by conducting isolations
from symptomatic leaves, followed by multigene phylogenetic and
morphological analyses of the isolated fungi. Finally, we performed
the pathogenicity tests to fulfil Koch’s postulates and determine
whether the isolated fungi were the causative agents of the leaf spot
and anthracnose observed in the forest.

2 Materials and methods

2.1 Sample collection and fungal
isolations

In total, 33 randomly selected mature trees (average diameter
at breast height 100 cm, average tree heigh 35 m) were sampled in
11 previously designed transects in Austria, Slovenia, and Serbia

in the Mura-Drava-Danube Biosphere Reserve (Supplementary
Table 1, three trees per transect, de Groot et al., 2022). Three
leaves per tree displaying necrotic lesions were collected in paper
envelopes and transferred to the laboratory for examination.
Within the same day leaf spots were examined for the presence
of fungal fruit bodies using Olympus SZX10 stereo microscope
(Olympus Co., Tokyo, Japan). When found, fruit bodies were
sectioned by hand, mounted in distilled water, and examined using
Olympus BX53F light microscope with differential interference
contrast (DIC) illumination equipped with Olympus SC50 digital
camera and accompanying software. Leaves with symptoms were
then separated into groups according to lesion dimensions,
lesion position in relation to the leaf nerve, type of fungal
fruit bodies found within lesions (i.e., pycnidia, pycnothyria
or apothecia), color and dimensions of spores (Supplementary
Table 2). Thereafter, two leaves per group per country were chosen
for fungal isolation. Isolations were done immediately after leaf
examinations.

To isolate fungi from the leaf spots small pieces (approximately
1 × 1mm) were cut at the margin of diseased and apparently
healthy tissue of symptomatic leaves. The leaf pieces were shortly
washed in tap water, then surface sterilized using 70% ethanol
(1 min.), followed by 10% bleach (1 min.), washed in sterile
distilled water, and blotted dry with sterile paper towels before
they were put on AMEA (MEA Neogen, UK supplemented with
lactic acid) to suppress bacterial growth. Fungi were also isolated
from fruit bodies. Lesions were surface sterilized by spraying with
70% ethanol followed by spraying with sterile water and a fruit
body was removed from the leaf using a sterile hypodermic needle
and plated on AMEA. Petri dishes were kept in the dark in a
cooled microbiological incubator (VWR international, Darmstadt,
Germany) at 21◦C for 1 week and checked daily. The mycelium
was then hyphal tipped to obtain pure cultures. Isolates were
separated into morphologically similar groups and depending
on the number of available isolates, at least one representative
isolate per country from each morphological group was chosen for
further molecular phylogenetic identification and morphological
characterization (Supplementary Table 2). Isolates used in the
phylogenetic analyses (Supplementary Table 2) were stored in
water or under mineral oil on +4◦C and in 40% (v/v) glycerol
on −80◦C in Culture collection of the Laboratory of Forest
Protection at the Slovenian Forestry Institute (ZLVG) as well
as Collection of microorganisms of the Institute of Lowland
Forestry and Environment (ILFE). The exception was four isolates
with the morphology of Penicillium spp., Biscogniauxia sp., and
Aureobasidium sp., respectively, which are well recognized as
endophytes and biocontrol agents in the leaves of forest tree species
(Terhonen et al., 2018). These isolates were therefore not used for
further analyses.

2.2 DNA extractions, PCR, and
sequencing

Since the oak leaves were collected in different countries,
fungal isolations, DNA extractions, and PCR reactions of different
fungal isolates were done in the country where the leaf was
collected to avoid the transfer of potentially pathogenic isolates
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across international borders. The only exception was Phoma-like
isolates (symptom group 2) which were solely obtained from
leaves collected in Serbia and thus all the molecular work for
these isolates was done at the Institute of Lowland Forestry
and Environment (ILFE). At ILFE, to extract the DNA, fungal
cultures were grown for 2 weeks on 2% MEA overlaid with sterile
polypropylene discs with micro perforation (Macropack, Ledinci)
to allow the fungus to reach MEA. The mycelium was then
scraped from the disk surface using sterile scalpel or inoculation
loop. The genomic DNA was extracted using Prepman Ultra
Sample Preparation Reagent (Applied Biosystems, Foster City,
USA) following manufacturer’s instructions with the following
modifications: instead of vortexing, the mycelium was grinded
using sterile micro pestles (Carl Roth, Germany) and spinning
for two minutes was replaced with up to three ten minutes long
centrifugation steps. Alternatively, at Austrian Research Center
for Forests (BFW) and Slovenian Forestry Institute (SFI) the
DNA was extracted using a NucleoSpin Plant II (Macherey Nagel,
Düren, Germany) according to the manufacturer’s instructions,
after homogenizing the fungal material with a Lysing Matrix A tube
(MP Biomedicals, Solon, USA) using a Precellys Evolution device
(Bertin Technologies, Montigny-le-Bretonneux, France). At ILFE,
the DNA quality and concentrations were assessed using BioSpec-
nano spectrophotometer (Shimadzu-Biotech, Japan), whereas at
BFW and SFI the DNA was checked using biophotometer plus
(Eppendorf, Germany). The isolates were initially screened and
identified up to the genus level using universal barcode marker
for fungi, i.e., ITS rDNA and primers ITS1F/ITS4 (White et al.,
1990; Gardes and Bruns, 1993). Thereafter, the combination of
other genes and primer sets used for amplification depended on
the fungal genus. Thus, tef 1-α and BT2 genes were additionally
amplified for Tubakia spp. isolates; LSU, RPB2 and BT2 were
amplified for Didymella sp., whereas ACT and CAL genes were
amplified for Apiognomonia sp. isolates (e.g., Sogonov et al., 2007;
Braun et al., 2018; Boroń et al., 2019). The tef 1-α, BT2, LSU rDNA,
RPB2, ACT, and CAL gene were amplified using the EF1/EF2
(O’Donnell et al., 1998), Bt-2a/Bt-2b (Glass and Donaldson, 1995),
LR0R/LR6 (Vilgalys and Hester, 1990), RPB2-5F2/7CR (Liu et al.,
1999; Sung et al., 2007), ACT-512-F/783-R (Carbone and Kohn,
1999; Udayanga et al., 2014), and CAL-228F/737R (Carbone and
Kohn, 1999) primer sets, respectively.

PCR reactions for Phoma-like isolates (symptom group 2) were
done at ILFE in a total volume of 25 µl, with the following
components: 2 µl of previously diluted DNA template (20 ng/µl),
2.5 µl of 10 × Taq buffer with KCl (Thermo Scientific, Vilnius
Lithuania), 3.5–5.5 µl of 25 mM MgCl2 (3.5 µl: BT2; 4.5 µl: ITS,
LSU; 5.5 µl: RPB2), Thermo Scientific, Vilnius, Lithuania), 1µl of
100 mM of each dNTPs (Thermo Scientific, Vilnius, Lithuania),
0.5 µl of 100 mM of each primer (Invitrogen, Thermo Fisher
Scientific, Paisley, UK), 0.3 µl of 5 U/µl Taq DNA polymerase
(recombinant, Thermo Scientific, Vilnius, Lithuania) and sterile
deionized filtered ultra-pure water. The PCR conditions were
as described in Kovač et al., 2021 with annealing temperatures
55◦C (ITS, BT2) and 60◦C (LSU). The exception was the
RPB2 gene which was amplified using a touchdown protocol
at annealing temperatures of 65–55◦C (Kovač et al., 2021). The
PCR amplifications were done in MiniAmp Plus thermal cycler
(Applied Biosystems, Thermo Fisher Scientific, Waltham, USA).
The size of the amplified PCR products was estimated visually using

O’RangeRuler 100bp DNA ladder (Thermo Scientific, Vilnius,
Lithuania) after electrophoresis on 1.75% agarose gels stained with
GelRed (Biotium, Hayward, USA). PCR products were cleaned
using QIAquick PCR Purification Kit (Qiagen, Hilden, Germany)
and sent to Macrogen Europe laboratories in the Netherlands
for sequencing. While PCR reactions for Tubakia-like isolates
(symptom group 1) were conducted at BFW, SFI and ILFE, PCR
reactions for Apiognomonia-like isolates (symptom group 3) were
done at BFW and SFI. Since chemicals and equipment differed
in the three laboratories, the PCR mixtures and amplification
conditions for these fungi are presented in Supplementary Table 3.
The strands of all isolated fungi were sequenced in both directions
with the primers as in PCR reactions.

2.3 Phylogenetic analyses

Consensus sequences were made using CLC Main Workbench
23 (Quiagen, Hilden, Germany), aligned using MAFFT v.7 online
service with G-INS-1 strategy (Katoh et al., 2019), and manually
improved where necessary in MEGA 11 (Tamura et al., 2021).
Sequences were compared to those present in NCBI GenBank
using BLASTn search, and sequences from this study were
aligned with closely related reference sequences obtained from
GenBank. Phylogenetic analyses including Maximum Likelihood
(ML), Maximum Parsimony (MP) and Bayesian Inference (BI)
were done first for the single gene sequence datasets and then
also for the combined datasets (ITS-tef 1-α-BT2 for Tubakia; ITS-
LSU-RPB2-BT2 for Didymella; ITS-ACT-CAL for Apiognomonia).
ML analyses were done using PhyML online v.3.0 (Guindon et al.,
2010) by employing an automatically selected substitution model
and AKAIKE information criterion. The aligned sequences were
analyzed for MP with PAUP v.40b10 and a partition homogeneity
test (PHT) was performed to determine if the different gene datasets
could be combined (Swafford, 2002). Posterior probability (BI)
estimates were determined using Mrbayes v.3.2.7a and using the
substitution model previously selected in ML analyses (Ronquist
et al., 2012). MP and BI analyses were done as explained in
Zlatković et al., 2016. Bootstrap analyses were conducted with 1000
bootstrap replications. Phylogenetic trees were viewed with Mega
v.11 (Tamura et al., 2021) and further processed by Corel Photo
Paint 2018, Microsoft Paint and Microsoft Paint3D. Nucleotide
sequences from this study were deposited in GenBank, and the
GenBank accession numbers of all sequences used in the analyses
are provided in Supplementary Tables 4–6.

2.4 Morphological characterization

For the descriptions of colony morphology fungi were grown
on 2% MEA for 2 weeks at 21◦C in the dark. Colony colors
were determined using the color charts of Rayner (1970). To
promote fruit body production Tubakia-like isolates (symptom
group 1) and Apiognomonia-like isolates (symptom group 3) were
inoculated onto 2% MEA overlaid with triple autoclaved Pinus
nigra J.F. Arnold needles and kept under room temperature (20 ± 2
◦C) for up to two months under near UVA light (12h dark/12h
light regime). Morphological characteristics of the fruit bodies and
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spores were checked by means of light microscopy using stereo
and light microscopes described above and measurements of up to
20 conidia, microconidia and fruit bodies were made. Sections of
pycnidia were made using rotary microtome cryostat MEV (SLEE
medical GmbH, Mainz, Germany). Morphological characteristics
of the isolated fungi were compared to those described in recent
literature, e.g., Braun et al., 2018; Zhang et al., 2021; Zhu et al., 2022
(Tubakia); de Gruyter et al., 2002; Chen et al., 2015; (Didymella),
Sogonov et al., 2007; Bensaci et al., 2021 (Apognomonia).

2.5 Pathogenicity test

To confirm that the isolated fungi were the cause of the
disease symptoms observed in the forest, a pathogenicity test was
conducted using one-year old pedunculate oak plants grown from
acorns. Acorns were collected in pure pedunculate oak stand on
alluvial soil (fluvisol, hydromorphic soil) in Apatin district (Serbian
part of the Mura-Drava-Danube Biosphere Reserve; 45.62162◦N
18.94562◦E) in October 2021. To ensure that just one genotype
of pedunculate oak was selected for the experiment, acorns were
collected within a meter of the stem beneath the crown of a
single, mature, dominant tree. The other mature dominant trees
that produced acorns were spaced 23, 26, and 19 meters away
in the east, south-west, and north, respectively, so their crowns
did not overlap or touch the selected tree. Also, there were no
acorns on the nearby codominant, smaller trees. Soil was taken
from the same location, mixed with peat moss (3:1, Pešterski
treset Production, Tutin), sterilized (by autoclaving at 121◦C for
35 min.) and used to saw acorns in 3l pots. To remove damaged
acorns before sowing, the acorns were soaked in tap water for
24 h and all floating acorns were discarded. Pots were kept in
the greenhouse (20 ± 2◦C day temperature, 17 ± 2◦C night
temperature, 70 ± 3% relative humidity, photoperiod of 16 h
light/day) and watered as needed until the pathogenicity test was
performed in April 2022.

One representative isolate of each of the previously identified
T. dryina, Tubakia sp. (Tubakia dryinoides C. Nakash. sensu
lato), Didymella macrostoma (Mont.) Qian Chen & L. Cai
and A. errabunda was used to complete Koch’s postulates and
confirm pathogenicity of these fungi on pedunculate oak leaves
(Supplementary Table 2). This is because, aside from isolates
of A. errabunda, the isolates of T. dryina, Tubakia sp. and
D. macrostoma represented single haplotypes. For inoculation
isolates were grown for 2 weeks at 21◦C on MEA in a
microbiological incubator (INCU-Line, VWR International, USA)
in the dark. Leaves were first sterilized using 70% ethanol and then
ruptured between major veins using a sterile needle and mycelial
discs of 6 mm diameter, taken from the edges of fungal cultures
were placed on the upper leaf surface, with the mycelium faced
downwards. Mycelial plugs were used for inoculation instead of
spore suspension since it was a more convenient method to test
pathogenicity of fungi from three different genera with varying
sporulation ease and times (Bhunjun et al., 2021). A total of ten
plants per isolate was used for inoculations and on each plant
two fully expanded leaves were inoculated giving a total of 20
leaves per isolate. Twenty leaves on ten plants served as mock-
inoculated controls and these plants were inoculated using sterile

MEA plugs. For the next 48h, to ensure sufficient humidity, plants
were covered with transparent polyethylene bags that had tiny
needle-punched ventilation holes. The plants were grown in the
greenhouse with temperature ranging from 19 ± 2 ◦C (night) to
21 ± 2 ◦C (day), air humidity 80 ± 2%, and photoperiod of 16 h
light/day. The plants were arranged in a completely randomized
design and watered twice a week to field capacity. Leaves were
monitored for disease symptoms every day until lesions emerged,
then once a week. The experiment lasted for 4 weeks as by that time
all the inoculated fungi developed lesions and produced fruit bodies
on the leaves.

3 Results

3.1 Disease symptoms and isolations

Based on disease symptoms and signs, collected leaves were
separated into three groups. The first group represented leaves
with leaf spots ranging from 1 to 2.5 cm in diameter. Lesions
were purplish brown, reddish brown to brown with indefinite
margin or darker border. The older lesions were often with cracks,
and superficial fungal fruit bodies resembling pycnothyria with
scutella of radiating, pigmented cells and ellipsoid, hyaline to brown
Tubakia-like spores (Figures 1, 2; Braun et al., 2018). Based on
the presence of pycnothyria on necrotic areas, leaf lesions of this
group were classified as Tubakia-like leaf spots. This type of lesions
was found on leaves from each sampled country. Apart from three
isolates of Biscogniauxia sp., Aureobasidium sp. and Penicillium
sp., twelve isolates resembling Tubakia-like morphology (cultures
initially white, fluffy and with rosette-like appearance turning dark
with age) were obtained from these symptoms (eight from Austria,
one from Slovenia, and two from Serbia). The Tubakia-like isolates
were further separated into two subgroups with cultures that turned
gray with age belonging to the first subgroup (seven from Austria
and one from Serbia) and isolates turning blackish with age as
the second subgroup (one from Austria, one from Slovenia, one
from Serbia). Six representative isolates (three isolates from each
subgroup with representatives from each country) were chosen for
further molecular phylogenetic identification and morphological
characterization (Supplementary Table 2).

The lesions of the second group were reddish brown to grayish
brown, ranging from 0.2 to 0.7 cm in diameter containing pycnidial
fruit bodies with conidia like those of the Phoma-like species
(Figure 3), thus lesions of this group were classified as Phoma-like
lesions. This type of lesions was present only on leaves collected
in Serbia. One isolate with Penicillium-like and two isolates with
Phoma-like morphology were obtained from these lesions, and
Phoma-like isolates were used in subsequent phylogenetic and
morphological analyses (Supplementary Table 2).

The lesions of the third group were reddish brown to grayish
extending along leaf veins, measuring 1.5–3 cm in diameter.
These lesions contained brownish, cushion-shaped acervuli with
conidia like those of the Apiognomonia species and they were
characterized as Apiognomonia-like lesions. Four Apiognomonia-
like isolates were isolated from these lesions (two from Austria and
two from Slovenia) and these were further used in the analyses
(Supplementary Table 2).
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FIGURE 1

Tubakia dryina (ILFE 6). (A): Leaf lesion with conidiomata (pycnothyria, arrows) on leaves of Q. robur in Serbian part of the Mura-Drava-Danube
Biosphere Reserve. (B, D): Conidia from pycnothyria on leaf lesions in the field. (C): Colony morphology of ILFE 6 on MEA after 2 weeks at 21◦C in
the dark. (E): Pycnidia formed on needles. (F): Sporodochial conidiomata formed on needles with blackish conidial masses. (G): Cross section of
pycnidium formed on pine needles. (H): Conidiogenous cells giving rise to conidia. (I): Microconidia. (J): Pycnothyria with scutella. (K): Conidia.
(L–N): Lesions formed during pathogenicity test with superficial pycnothyria (arrows). Scale bars: (A), (N) = 1 mm; (B), (D) = 30 µm; (E,F) = 0.5 mm;
(G–I), (K) = 10µm; (J) = 20µm.

3.2 Molecular phylogenetic identification

A combined dataset (ITS-tef 1-α-BT2) of Tubakia species
contained 42 sequences including two outgroup sequences of
Paratubakia subglobosa (T. Yokoyama & Tubaki) U. Braun &
C. Nakash. (CBS 193.71, CBS 124733). The matrix consisted of
1736 characters (ITS: 609, tef 1-α: 603, BT2: 524) of which 451
were parsimony-informative. The TN93 substitution model was
automatically selected in the ML analyses and used in the BI
analysis. There were 16 most parsimonious trees with TL = 726,
CI = 0.78, RI = 0.94. The PHT value indicated that the three datasets
could be combined (PHT = 0.01). The topologies of MP, BI and
ML trees were substantially congruent, and the best ML tree is
presented (Figure 4).

The multigene phylogenetic tree grouped isolates from the first
subgroup of Tubakia-like leaf spots (symptom group 1, subgroup
1) in a highly supported single clade with T. dryina (99/100/1,
ML, MP, BI bootstrap/posterior probability support) (Figure 4). In
individual gene trees, these isolates also resided within T. dryina
(Supplementary Figure 1).

The multigene phylogenetic analyses grouped isolates from
the second subgroup of Tubakia-like leaf spots in a highly
supported clade with the ex-type strain of T. dryinoides (T.
dryinoides sensu stricto) and strains of T. dryinoides sensu lato
(100/98/1, ML, MP, BI bootstrap/posterior probability support,

Figure 4). Within this clade, our isolates clustered with isolates
of T. dryinoides sensu lato (s.l.) in a highly supported sub clade
(99/99/1 bootstrap/posterior probability support, Figure 4). In the
ITS phylogeny isolates from this study clustered with T. dryinoides
s.l., T. dryinoides sensu stricto (s.s.), Tubakia koreana H.Y.Yun
and Tubakia paradryinoides C. Nakash. In the tef 1-α and BT2
phylogenies these isolates resided in a clade with T. dryinoides
s.s. and T. dryinoides s.l. and within this clade in a subclade with
strains of T. dryinoides s.l. (Supplementary Figure 1). Shared
polymorphisms between Tubakia sp. isolates from this study,
T. dryinoides s.s and T. dryinoides s.l. are shown in Supplementary
Table 7. Molecular phylogenetic analyses identified Tubakia-
like isolates as T. dryina and Tubakia sp. (T. dryinoides s.l.)
(Figure 4).

A combined dataset (ITS-LSU-RPB2-BT2) of Didymella species
contained 27 sequences including an outgroup sequence of
Epicoccum nigrum Link (CBS 173.73). The matrix consisted of 2386
characters (ITS: 493; LSU: 964; RPB2: 596; BT2: 333) of which 295
were parsimony informative. The TN93+G+I substitution model
was automatically selected in the ML analyses and used in the BI
analysis. There were two most parsimonious trees with TL = 730,
CI = 0.56, RI = 0.79. The PHT value was low but still acceptable and
indicated that the datasets could be combined (PHT = 0.01). The
topology of MP and BI trees was like that of the ML tree, and the
best ML tree is presented (Figure 5).
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FIGURE 2

Tubakia dryinoides (ZLVG 972). (A): Leaf lesion with conidiomata (pycnothyria, arrows) on leaves of Q. robur in Slovenian part of the
Mura-Drava-Danube Biosphere Reserve. (B): Colony morphology of ZLVG 972 on MEA after 2 weeks at 21◦C in the dark. (C): A pycnidium formed on
needles. (D–F): Conidiogenous cells giving rise to conidia (arrows indicate annelations). (G): Cross section of pycnidium formed on needles. (H,I):
Underdeveloped pycnothyrium. (J): Microcycle conidiation (arrow). (K,M,N): Conidia. (L,O): Conidia and microconidia (arrows). (P–S): Lesions
formed on inoculated leaves (pycnidia are denoted by arrows). Scale bar: (A,S) = 1 mm; (C) = 0.5 mm; (G) = 50 µm; (E,F,H,J,O) = 10 µm; (K,
M,D) = 20µm.

The multigene phylogenetic analyses grouped isolates from
the second group of Phoma-like leaf spots in a clade strongly
supported in ML and BI analyses with D. macrostoma (100/1,
ML, BI bootstrap/posterior probability support) (Figure 5). In
the single gene analyses of RPB2 and BT2 isolates from the
Phoma-like leaf spots grouped with isolates of D. macrostoma.
In the ITS analyses isolates from this study are grouped with
D. macrostoma, Didymella subrosea L.W. Hou, L. Cai & Crous,
Didymella finnmarkica Crous & Rämä and Didymella pteridis
L.W. Hou, Crous & L. Cai, whereas in the LSU analyses isolates
from this study grouped with D. macrostoma, D. subrosea,
Didymella aquatica Q. Chen, Crous & L. Cai, Didymella rumicicola
(Boerema & Loerakker) Qian Chen & L. Cai, and D. finnmarkica
(Supplementary Figure 2). Fixed polymorphisms unique for
isolates of D. macrostoma from this study are shown in
Supplementary Table 8. Molecular phylogenetic analyses identified
Phoma-like isolates as D. macrostoma (Figure 5).

A combined dataset (ITS-ACT-CAL) of Apiognomonia species
(third group of symptoms), had 14 taxa including an outgroup
sequence of Plagiostoma aesculi (Fuckel) Sogonov (AR 3640). The
matrix contained 1223 characters (ITS: 525, ACT: 260, CAL: 438)
of which 64 were parsimony informative. The model GTR+I was
selected in the ML analyses and used in the following BI analyses.
The MP analyses gave 14 most parsimonious trees with TL = 72,
CI = 1, RI = 1 and the PHT test showed that the three datasets
could be combined (PHT = 1). The topologies of MP, BI and

ML trees were concordant, and the best ML tree is presented
(Figure 6).

In the multigene phylogenetic analyses, isolates from this
study grouped with isolates of A. errabunda forming a fully
supported clade (100/100/1, ML, MP, BI bootstrap/posterior
probability support) (Figure 6). In the single gene phylogenies
isolates from this study grouped with A. errabunda in the
ACT and CAL analyses, whereas in the ITS analyses they
clustered with A. errabunda and Apiognomonia platani (Lév.)
L. Lombard (Supplementary Figure 3). Molecular phylogenetic
analyses identified Apiognomonia-like isolates as A. errabunda
(Figure 6).

3.3 Morphological characterization

Based on phylogenetic analyses and morphology, this study
identified three known species, i.e. T. dryina (symptom group 1,
subgroup 1), D. macrostoma (symptom group 2) and A. errabunda
(symptom group 3), while Tubakia sp. (T. dryinoides s.l., symptom
group 1, subgroup 2) represented an undescribed cryptic species
that is closely related to T. dryinoides. This species has been
tentatively maintained in T. dryinoides by Braun et al., 2018.
who preferred not to describe it as a new species due to
the insufficient sampling. In this study, we also prefer not to
name it for the same reason as Braun et al., 2018. However,
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FIGURE 3

Didymella macrostoma (ILFE 8). (A): Colony morphology of ILFE 8 on MEA after 2 weeks of growth at 21◦C in the dark. (B): Leaf lesion with
conidiomata (pycnidia, arrows) on leaves of Q. robur in the Serbian part of the Mura-Drava-Danube Biosphere Reserve. (C,D): Pycnidia formed on
MEA extruding spores in creamy colored spore masses. (E,G). Cross section of pycnidia. (H–K). Spores. (L–N). Lesions formed on inoculated leaves
(pycnidia are denoted by arrows). (O): Control plant without disease symptoms showing only a small discoloration as a result of wounding (arrow).
Scale bar: (B–D,L) = 1 mm; (F) = 50 µm; (E) = 25 µm; (H–J) = 20 µm; (K) = 10 µm.

to facilitate future studies, we have provided and illustrated its
unique morphological characteristics. Moreover, since there are
not many recent collections of T. dryina, D. macrotoma and
A. errabunda from Europe, this section also contains morphological
characteristics of these fungi, especially those that differ from what
has been described in other studies.

3.3.1 Taxonomy
Tubakia dryina (Sacc.) Sutton (1973), Trans. Brit. Mycol. Soc.

60 (1): 165 (1973), Figures 1, 4, Supplementary Figure 1 and
Supplementary Tables 1–4.

Colonies of T. dryina (symptom group 1, subgroup 1) initially
white, fluffy and with a rosette-like appearance turning grayish with
age, reverse grayish. Conidiomata (pycnothyria) on leaves black,
scutellate, up to 200 µm diameter; conidiomata on previously
autoclaved pine needles black, pycnidial, up to 500 µm diameter,
often sporodochial extruding whitish or blackish conidial masses.
Conidiophores reduced to hyaline to pale brown conidiogenous
cells that proliferate percurrently to form periclinal thickenings or
rarely annelations. Conidia 1-celled, broadly ellipsoidal, ellipsoidal
or obovoid, pyriform with round or rarely truncate base,
rarely globose, initially hyaline, turning pale brown with age,
with rough outer wall, rarely smooth, often thick-walled, 9.82–
15.20 µm × 5.26–7.93 µm (av. 11.32 × 6.25 µm, length/width
ratio: 1.8, conidia in pycnothyria on leaves, n = 20); 12.76–
15.66 µm × 8.01–8.46 µm (av. 13.9 × 8.46 µm, length/width
ratio: 1.6, conidia in pycnidia on autoclaved pine needles, n = 20).

Microconidia in pycnothyria on leaves 1-celled, fusiform, hyaline,
smooth, 6.05–8.13 µm × 1.32–2.21 µm (av. 7.1 × 1.7 µm,
length/width ratio: 0.6, n = 20).

Isolates examined: Serbia, Mura-Drava-Danube Biosphere
Reserve, on necrotic lesion of a leaf of Q. robur, June 2021, M.
Zlatković/M. Sallmannshofer (living isolate ILFE 6).

Notes: The morphology of an isolate of T. dryina from this
study was in accordance with that described by Braun et al., 2018,
with an exception that conidia were mostly with rough outer
wall, and conidiogenous cells were hyaline, but also pale brown
similarly to what was observed by Lee et al., 2018. Moreover, in
this study, the fungus formed pycnidia and sporodochia instead
of scutelloid pycnothyria on autoclaved pine needles. Similarly,
in the work of Holdenrieder and Kowalski, 1989 pycnidia instead
of pycnothyria had formed on previously autoclaved pedunculate
oak twigs. Thus, it appears that pycnothyria may serve as a useful
diagnostic character for T. dryina only when the fungus is found in
nature on a necrotic lesion of a living plant that serves as its host.

Tubakia sp. (Tubakia dryinoides Nakash (2018). sensu lato),
Fungal Systematics and Evolution 1: 80 (2018), Figures 2, 4,
Supplementary Figure 1 and Supplementary Tables 1–7.

Colonies of Tubakia sp. (symptom group 1, subgroup 2)
initially white and with rosette-like appearance, becoming blackish
with time, reverse blackish. Conidiomata (pycnothyria) on leaves
black, scutelloid, up to 200 µm diameter; conidiomata on
previously autoclaved pine needles pycnothyrial or pycnidial
covered with whitish or grayish hairs, up to 700 µm diameter.
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FIGURE 4

Phylogram of Tubakia species based on combined dataset of ITS, tef
1-α and BT2. Maximum likelihood (ML), maximum parsimony (MP)
bootstrap support values (ML, MP > 70%), and Bayesian Posterior
Probabilities (BPP ≥ 0.9) are shown at the tree nodes. The tree is
rooted with Paratubakia subglobosa (CBS 193.71, CBS 124733).
Ex-type strains are marked with an asterix, whereas strains from this
study are indicated in bold type. The scale bar represents the
number of changes per site. Species identified in this study are
indicated with color blocks.

Conidiophores reduced to hyaline to pale brown conidiogenous
cells, forming indistinct periclinal thickenings or annelations.
Rarely, conidia produced by macrocycle conidiation. Conidia
1-celled, broadly ellipsoidal, ellipsoidal or obovoid, sometimes
spindle shaped with one round and one tapered end, initially
hyaline, turning pale brown with age, with rough outer wall,
rarely smooth, sometimes thick-walled, 8–13.10 µm × 5.56–
7.93 µm (av. 9.22 × 6.62 µm, length/width ratio: 1.4, conidia in
pycnothyria on leaves, n = 20); 7.16–12.39 µm × 5.63–7.71 µm
(av. 9.39 × 6.52 µm, length/width ratio: 1.4, conidia in pycnidia on
autoclaved needles, n = 20); 8.10–13 µm × 5.6–8 µm (av. 9.10 × 6,
length/width ratio: 1.5, conidia in pycnothyria on autoclaved
needles, n = 20). Microconidia in pycnidia on autoclaved needles,
1-celled, hyaline, smooth, fusiform, 6–7.9 µm × 1.46–2 µm (av.

FIGURE 5

Phylogram of Didymellaceae based on combined ITS, BT2, RPB2
and LSU dataset. Maximum likelihood (ML), maximum parsimony
(MP) bootstrap support values (ML, MP > 70%), and Bayesian
Posterior Probabilities (BPP ≥ 0.9) are shown at the tree nodes. The
tree is rooted with Epicoccum nigrum (CBS 173.73). Ex-type strains
are marked with an asterix, whereas strains from this study are
indicated in bold type. The scale bar represents the number of
changes per site. Species identified in this study are indicated with
color blocks.

7 × 1.8 µm, n = 10) or pyriform to ellipsoid, 2.5–3.3 × 1.7–2.3 (av.
2.9 × 2.6 µ m, n = 20).

Isolates examined: Serbia, Mura-Drava-Danube Biosphere
Reserve, necrotic lesion on the leaf of Q. robur, June 2021, M.
Zlatković/M. Sallmannshofer (living isolate ILFE 7); Slovenia,
necrotic lesion on the leaf of Q. robur, June 2021, N. Ogris/B. Piškur
(living isolate ZLVG 972).

Notes: Braun et al., 2018 noticed that the ex-type strain of
T. dryinoides MUCC 2292, isolated from Quercus phillyreoides
A. Grey in Japan, differs from the European collections of
T. dryinoides. However, the authors decided to maintain European
isolates in T. dryinoides due to the lack of morphological and
ecological data and the insufficient number of isolates. Phylogenetic
analyses from this study showed that isolates from this study AUS3,
ZLVG 972 and ILFE 7, other European isolates of T. dryinoides
(T. dryinoides s.l.) CBS 329.75 and CBS 335.86 and an isolate
SAUCC 1924 from China represent cryptic species closely related
to T. dryinoides. Nonetheless, since there are only two living
isolates of Tubakia sp. available from this study, we prefer not
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FIGURE 6

Phylogram of Apiognomoniaceae based on concatenated ITS, CAL
and ACT sequence alignment. The maximum likelihood (ML) and
maximum parsimony (MP) bootstrap support values (> 70%) as well
as Bayesian Posterior Probabilities (BPP ≥ 0.9) are shown at the tree
nodes. The tree is rooted to Plagiostoma aesculi AR 3640. Strains
from the current study are in bold, whereas ex-type strains are
marked with an asterix. The scale bar represents the number of
changes per site. Species identified in this study are indicated with
color blocks.

to name the species. Future studies should morphologically and
phylogenetically analyze all available living isolates of this cryptic
taxon.

Isolates of Tubakia sp. from this study were morphologically
similar to the type strain of T. dryinoides described by Braun
et al., 2018 (T. dryinoides s.s.), but conidia of Tubakia sp. from
this study were hyaline and dark like those of T. dryina and apart
from a study of Zhu et al., 2022 differed from Asian collections
of T. dryinoides. Moreover, our isolates were characterized by
microcycle conidiation and conidiogenous cells were often pale
brown, similar to isolates of T. dryina from this work. Furthermore,
T. dryinoides has been reported to produce pycnothyrhia and
sporodochial conidiomata (Braun et al., 2018; Zhang et al., 2021;
Zhu et al., 2022), but Tubakia sp. from this study also produced
pycnidia covered with whitish or grayish hairs.

Didymella macrostoma (Mont.) Chen and Cai (2015), Stud.
Mycol. 82: 177 (2015). Figures 3, 5, Supplementary Figure 2 and
Supplementary Tables 1, 2, 5, 8.

Colonies of D. macrostoma (symptom group 2) initially
white, becoming dark reddish gray with age, reverse dark gray.
Conidiomata pycnidial, up to 180 µm diameter, ostiolate, single or
often aggregated. Conidia aseptate, variable in shape, ellipsoidal to
oblong or allantoid, eguttulate or with one or two polar guttules,

hyaline, smooth walled, extruding from pycnidia in buff colored
spore masses, 3–9.6 µm × 2.5–4.3 µm (av. 6.6 × 3.4 µm,
length/width ratio: 1.9, conidia in pycnidia on leaves, n = 20), 3.13–
10.50 µm × 2.68–4.54 µm (av. 7.05 × 3.41 µm, length/width ratio:
2.1, conidia in pycnidia on MEA, n = 20).

Isolates examined: Serbia, Mura-Drava-Danube Biosphere
Reserve, necrotic lesion on the leaf of Q. robur, June 2021, M.
Zlatković/M. Sallmannshofer (living isolates ILFE 8, ILFE 9).

Notes: The D. macrostoma isolates obtained in this study
exhibited similar morphological features as those reported by de
Gruyter et al., 2002 and Jayasiri et al., 2017, with the difference
that conidia were aseptate and pycnidia were frequently aggregated.
Moreover, conidia were often eguttulate and some pycnidia
contained only this type of conidia. Thus, it is important to look
at multiple pycnidia because guttulate conidia may not always be
the best diagnostic trait. Moreover, it appears that D. macrostoma
is uncommon in Europe, or at the very least, the current sampling
is poor. This is likely the cause of the name’s lack of stabilization
through epitypification, which is crucial for the taxonomic and
phylogenetic analysis of the taxon.

Apiognomonia errabunda (Roberge (1918) ex Desm.) Höhn.,
Ann. Mycol. 16 (1–2): 51 (1918). Figures 6, 7, Supplementary
Figure 3 and Supplementary Tables 2, 3, 6.

Colonies of A. errabunda (symptom group 3) white becoming
whitish gray at the center with age, with dense aerial hyphae, reverse
grayish. Conidiomata on leaves brownish, cushion-like, mostly
ellipsoid acervuli, up to 0.8 mm in length. Conidiomata on MEA
with pine needles pycnidial, multilocular, aggregated in the black
stroma, mostly ellipsoidal, up to 1mm in length, extruding spores
in whitish or grayish spore masses or amber colored, sporodochial,
gregarious, up to 2 mm in length. Conidiomata on autoclaved pine
needles black with white to gray hairs, extruding spores in white,
buff, pink or purple spore masses, up to 0.8 mm in diameter.
Conidiophores hyaline, septate. Conidiogenous cells proliferating
percurrently to form annelations or periclinal thickenings. Conidia
variable in shape, broadly fusiform, oval to obovoid, ellipsoidal,
occasionally obpyriform or oblong, usually tapered at one end,
often slightly curved, with rough outer wall, often with 1–5 guttules,
aseptate, older conidia prior to germination rarely 1-septate, 7.29–
14.10 µm (av. 10.58 × 4.8 µm, length/width ratio: 2.2, n = 20).
Microconidia oval, oblong to cylindrical, sometimes obpyriform,
hyaline, occasionally with 1–2 guttules, in pycnidia on autoclaved
pine needles and sporodochia on MEA with pine needles 3.85–7.08
µm (av. 5.39 × 2.74 µm, length/width ratio: 1.97, n = 20).

Isolates examined: Slovenia, Mura-Drava-Danube Biosphere
Reserve, necrotic lesion on the leaf of Q. robur, June 2021, N.
Ogris/B. Piškur (living isolates ZLVG 973, ZLVG 974).

Notes: The morphology of A. errabunda isolates from this study
was similar to that reported by Sogonov et al., 2007 and Li et al.,
2020. However, pycnidia from this study were also amber colored,
sporodochial and conidia were variable in shape, with rough outer
wall, sometimes 1-septate.

3.4 Pathogenicity test

One week after inoculation, small lesions started to appear on
plants inoculated with each fungal isolate used in the pathogenicity
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FIGURE 7

Apiognomonia errabunda (ZLVG 973). (A): Colony morphology of ZLVG 973 on MEA after 2 weeks at 21◦C in the dark. (B–D): Pycnidial conidiomata
formed on pine needles extruding spores in creamy white, greyish, pink or purpule spore masses. (F,G): Amber colored sporodochia formed on MEA
with pine needles. (H,I): Pycnidium formed on MEA. (J,K,M): Conidia. (L); Conidia and conidiogenous cells. (N,O): Conidia formed on conidiogenous
cells (annelations and periclinal thickenings are denoted by arrows). (P–R): Lesions formed on inoculated leaves (cushion-shaped brown acervulae
are denoted by arrows). Scale bar: (B,C) = 200 µm; (D–F,H,I) = 0.5 mm; (G) = 1 mm, (J–O) = 20 µm; (Q,R) = 2mm.

test and 4 weeks later fungal fruit bodieswere found on leaves
of the inoculated plants. Small reddish-brown lesions were
observed on each leaf inoculated with T. dryina and on leaves
inoculated with T. dryinoides. The lesions gradually enlarged in
size; 4 weeks after inoculation the lesions were irregular in shape
and all inoculated leaves were with pycnothyrial conidiomata
containing Tubakia-like spores. The lesions of plants inoculated
with T. dryina resembled leaf blight, covered large portions of
the leaf and measured 1.5–2 × 1.7–2.2 cm. Lesions caused by
Tubakia sp. were with a distinctive margin and measured 0.5–
0.7 × 0.6–0.9 cm. Pycnothyria formed on ten leaves inoculated
with T. dryinoides. Small grayish lesions were observed on plants
inoculated with D. macrostoma. These remained grayish and small
and measured 0.4–0.6 × 0.3–0.5 cm. Pycnidial conidiomata with
Phoma-like spores formed on one leaf. Reddish-brown irregular
lesions that measured 1.5–2 × 1.4–2.6 cm were present on the
leaves of plants infected with A. errabunda. Brownish apothecia
with Apiognomonia-like spores formed along and across leaf
veins of two leaves.

On the control plants that were mock-inoculated no disease
symptoms were observed. Inoculated leaves with necrotic lesions
were collected and the fungi were re-isolated as described
previously. Re-isolations resulted in cultures with morphology
and ITS sequences of fungi used for inoculations, thus fulfilling
Koch’s postulates.

4 Discussion

The current study represents the first attempt to identify the
causative agents of the leaf spot and anthracnose diseases of
pedunculate oak in the Mura-Drava-Danube Biosphere Reserve.
Using the molecular phylogeny of multiple genes (ITS rDNA,
partial LSU rDNA, tef 1-α, BT2, CAL, ACT and RPB2) the isolated
fungi were identified as T. dryina, Tubakia sp. (T. dryinoides
s.l.), D. macrostoma and A. errabunda. The pathogenicity of the
fungi was confirmed by inoculating pedunculate oak leaves, which
resulted in symptoms similar to those found in the forest. The study
has identified T. dryina for the first time in Austria and Serbia;
A. errabunda in Austria and Slovenia, D. macrostoma in Serbia, and
an undescribed species of Tubakia in all three countries. Didymella
macrostoma and Tubakia sp. (T. dryinoides s.l.) have been described
for the first time as causes of a leaf spot disease in pedunculate oak.

The well-known pathogen of oaks, T. dryina (Holdenrieder
and Kowalski, 1989; Kowalski, 2006) was isolated from lesions
on pedunculate oak leaves collected in this study. Tubakia dryina
is a causative agent of Tubakia leaf spot disease (Holdenrieder
and Kowalski, 1989; Munkvold and Neely, 1990; Kowalski, 2006;
Lee et al., 2018). The species is widespread in Europe (Germany,
Italy, Poland, Romania, Russia, UK, Netherlands), and it has been
speculated that T. dryina has been introduced in other parts of
the world like New Zealand and USA with pedunculate oak which
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is its main host (Kowalski, 2006; Braun et al., 2018; Jankowiak
et al., 2022). In this work, T. dryina was isolated for the first time
from pedunculate oak in Austria and Serbia and this work adds
to the knowledge on its global distribution. The pathogenicity test
conducted in this study confirmed that T. dryina is a causative agent
of Tubakia leaf spot disease of pedunculate oak in the Mura-Drava-
Danube Biosphere Reserve.

A cryptic Tubakia species, Tubakia sp. (T. dryinoides s.l.) was
isolated for the first time from lesions found on pedunculate oak
leaves collected in Austria, Slovenia, and Serbia. The Tubakia
leaf spot was initially described from pedunculate oak in Poland
in 2006, but molecular phylogenetic analyses later revealed that
T. dryina represents species complex comprising several cryptic
species, including T. dryinoides s.s. (Kowalski, 2006; Braun
et al., 2018; Zhang et al., 2021; Zhu et al., 2022). However,
T. dryinoides s.s. was described based on Japanese isolate from
Q. phillyraeoides and phylogenetic analyses of Braun et al., 2018
showed that European isolates of T. dryinoides (T. dryinoides
s.l.) might represent another cryptic species closely related to
T. dryinoides. This study confirmed this suggestion as our isolates
were morphologically and phylogenetically different from what
has been described as T. dryinoides in Braun et al., 2018; Zhang
et al., 2021; Zhu et al., 2022. Host range and distribution of
T. dryinoides s.l. are still largely unraveled and most reports of
the Tubakia leaf spot disease were based on collections of leaf
spots with pycnothyria and without living cultures and molecular
phylogenetic identification which is necessary to identify cryptic
species of T. dryina and T. dryinoides species complexes (Braun
et al., 2018). Therefore, further sampling and re-examination of
all isolates of T. dryinoides s.l. are urgently needed to unravel the
identity, distribution, and ecology of members of the T. dryinoides
species complex.

By conducting pathogenicity tests in this study and fulfilling
Koch’s postulates, Tubakia sp. (T. dryinoides s.l.) was shown to
represent a pathogen of pedunculate oak. Since its discovery,
T. dryinoides s.s. has been known to live as an endophyte in its
host leaves (Braun et al., 2018). However, Zhang et al., 2021 isolated
T. dryinoides from lesions on Q. palustris leaves in China, but
a test of pathogenicity was not done. Moreover, the fungus was
isolated from the margins between apparently healthy and diseased
tissues and thus could also represent an endophyte or saprophyte
feeding on leaves already killed by another pathogen as has been
shown by Taylor and Clark, 1996 for T. dryina s.l. Furthermore, it
may be possible that T. dryina s.l. isolates used for pathogenicity
tests done before molecular taxonomy in the past on pedunculate
oak leaves (e.g., Holdenrieder and Kowalski, 1989; Munkvold and
Neely, 1990; Kowalski, 2006) represented T. dryinoides s.s. or s.l.
but this can only remain a matter of speculation. The current
study confirmed that Tubakia sp. (T. dryinoides s.l.) represents
an additional causative agent of Tubakia leaf spot disease of
pedunculate oak.

Interestingly, D. macrostoma was found to cause a leaf spot
disease of pedunculate oak in this study. The fungus was isolated
from spots found on leaves in the Serbian part of the Mura-Drava-
Danube Biosphere Reserve. To our knowledge, this is the first
report of D. macrostoma causing leaf spot disease of pedunculate
oak in Serbia, and anywhere worldwide. Didymella macrostoma is
known as an endophyte, saprophyte and weak parasite commonly
found on woody members of the Rosaceae, Ailanthus altissima

(Mill.) Swingle, Larix decidua Mill., Acer pseudoplatanus L., P. nigra
J.F. Arnold and F. excelsior (de Gruyter et al., 2002; Chen et al.,
2015; Jayasiri et al., 2017; Barta et al., 2022). It is often found in
lesions caused by other pathogens, in soil, and it has also been
described as human pathogen causing onychomycosis (de Gruyter
et al., 2002; Chen et al., 2015; Hou et al., 2020b; Kukhar et al.,
2020). However, in this work we showed that D. macrostoma is a
pathogen of pedunculate oak, capable of causing leaf spot disease.
Inoculated leaves from this study were previously wounded, which
is in accordance with the description of the fungus provided by de
Gruyter et al., 2002 who considered it to be a wound pathogen.

Apiognomonia errabunda was isolated from lesions formed
on pedunculate oak leaves in Austria and Slovenia in this work.
Apiognomonia errabunda has been known as a leaf parasite,
endophyte, and saprophyte of various broadleaved trees including
those from Fagaceae, Salicaceae and Tiliaceae as well as herbaceous
plants (Sogonov et al., 2007; Vainio et al., 2017; Li et al., 2020;
Bensaci et al., 2021). For example, in Austria, A. errabunda has
been isolated as an endophyte from sessile oak leaves as well as
from necrotic lesions of European beech leaves (Halmschlager et al.,
1993; Cech, 2010). Moreover, A. errabunda was described as the
cause of the Tilia cordata Mill. leaf petiole necrosis that has led
to defoliation of T. cordata trees in urban areas of Finland in
2016 (Vainio et al., 2017). In addition, it is a well-known cause of
oak anthracnose disease in temperate regions of Europe, Russia,
USA, and Canada (Hepting, 1971; Sinclair et al., 1987; Bensaci
et al., 2021). Apiognomonia errabunda has been isolated from
pedunculate oak in Switzerland, Germany, Poland, and Russia
(Sogonov et al., 2007; Boroń et al., 2019). However, numerous
isolates identified using morphology only and before molecular
phylogenetics were found to represent closely related A. platani
which causes anthracnose of plane trees or Apiognomonia hystrix
(Tode) Sogonov which causes necrosis of leaf petioles of sycamore
maple, whereas some isolates were characterized as intraspecific
hybrids between A. errabunda and A. hystrix (Sogonov et al., 2007;
Boroń et al., 2019; Kowalski et al., 2021). In this study A. errabunda
was described for the first time as a pathogen of pedunculate oak in
Slovenia, Austria, and the Mura-Drava-Danube Biosphere Reserve.

This research identified new leaf diseases (Tubakia and
Didymella leaf spot, Apiognomonia anthracnose) of pedunculate
oak in riparian forests of the Mura-Drava-Danube Biosphere
Reserve. As recently demonstrated for the T. koreana infection
of Quercus acutissima Carruth., leaf diseases can reduce
photosynthetic capacity even if they usually do not kill the
trees (Park et al., 2021). The Tubakia leaf spot disease is especially
important as the fungus can cause stem necrosis of pedunculate
oak seedlings (Jankowiak et al., 2022). Moreover, lesions of Tubakia
leaf spot disease can coalesce in large necrotic areas leading to
leaf blotch and if petioles are necrotized the tree may experience
premature defoliation (Taylor and Clark, 1996; Kowalski, 2006).
Similarly, T. dryina produced extensive lesions that covered a
significant section of the leaves in our inoculation experiments
and resembled leaf blight. Reduced photosynthetic activity caused
by leaf pathogens can be particularly harmful to young seedlings
and can change the host’s biochemical defenses against subsequent
biotic attack from different pathogens and pests (Oliva et al.,
2014; Pap et al., 2014; Hossain et al., 2019; Amaral et al., 2022).
Moreover, T. dryina caused larger lesions in this study than did
Tubakia sp. (T. dryinoides s.l.), D. macrostoma and A. errabunda.
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Given that this is the first study to look at the pathogenic potential
of D. macrostoma and Tubakia sp. (T. dryinoides s.l.) it seems
likely that these pathogens have less of an impact on the oak
decline phenomenon than T. dryina. Furthermore, during our
4-week experiment, lesions caused by A. errabunda developed
apothecia that followed a leaf nerve, like what has previously
been reported for this pathogen (Kowalski, 2006). However,
these lesions did not proceed towards leaf petioles. Therefore,
the pedunculate oak genotype from this study may have been
less susceptible to the disease since acorns originated from the
Serbian portion of the Reserve, where A. errabunda has not yet
been detected. Nevertheless, the pedunculate oak seedlings were
not genotyped using molecular markers and other factors, such
as temperature, might not have been optimal for A. errabunda
infection and growth. However, since the isolates from this study
were not examined for their temperature requirements, this may
only be speculated. Forest management options in the Mura-
Drava-Danube Biosphere Reserve are rather limited (Vastag et al.,
2020; Zlatković et al., 2021). Therefore, ecological requirements of
the fungi isolated in this study as well as susceptibility of different
genotypes of pedunculate oak towards Tubakia, Didymella and
Apiognomonia diseases should be a matter of further research.

Pedunculate oak trees sampled in this study might have been
under stress. In the past decade, health, and growth of pedunculate
oak in the Reserve has been affected by various abiotic and biotic
stress factors (Rad̄ević et al., 2020; Kostić et al., 2021). The most
significant stress is related to changes in the hydrological regime
due to climate change and human-generated river alterations
(Kostić et al., 2021; Stojanović et al., 2021; Tadić et al., 2022). This
has been negatively affecting pedunculate oak because due to its
ecological traits, like deep root system and preference to moist soils
with occasional flooding, pedunculate oak is much more sensitive
to soil moisture fluctuations compared to other oak species (Eaton
et al., 2016; Kostić et al., 2022). Moreover, pedunculate oak trees
suffer from continuous infestations by oak lace bug, gall wasps,
spongy moth, early oak defoliators, leaf miners and leaf aphids
(Nikolić et al., 2019; Csóka et al., 2020; Rad̄ević et al., 2020;
Hoch et al., 2023). However, we can only speculate that various
abiotic and biotic stresses to which pedunculate oak trees have been
exposed in the Reserve might have increased susceptibility of oak
trees to pathogens, including those that feed and grow in the leaves.
In our pathogenicity test all the fungi isolated in this study induced
disease symptoms. During the experiment plants were watered
regularly and kept in controlled conditions because the aim of the
study was not to subject the plants to water stress. However, since it
is well known that stress conditions can enhance fungal diseases of
plants (Desprez-Loustau et al., 2006; Hossain et al., 2019; Zolfaghari
et al., 2022) the possible influence of predisposing stress to the
diseases found in this study should be further investigated in the
future.

Because of competing ground vegetation (mostly invasive
plants), we were unable to find any seedlings beneath the crowns
of pedunculate oak trees during sample collection for this study. As
a result, we were unable to determine the occurrence and severity
of leaf spot and anthracnose diseases on seedlings. However,
we successfully completed Koch’s postulates and demonstrated
the susceptibility of seedlings to the disease by conducting
pathogenicity tests on the leaves of pedunculate oak seedlings.
This is important since, in the Mura-Drava-Danube Biosphere

Reserve, pedunculate oak regeneration is seriously endangered
(Rad̄ević et al., 2020). As was previously mentioned, several stresses
that mature trees experience result in physiological weakening of
the trees which in turn reduces the number of acorns produced
(Nikolić et al., 2019; Pilipović et al., 2020). Moreover, the
development of acorns is inhibited by the galls produced on female
catkins by the gall wasp Andricus querquscalicis (Burgsdorf, 1783;
Rad̄ević et al., 2020). Also, the feeding habits of acorn weevils
Curculio spp. cause acorns to drop off early, whereas the fungus
Ciboria pseudotuberosa (Cooke) Rehm infects ripe acorns after
they fall to the ground and cause serious problems during acorn
storage (Drekić, 2006; Rad̄ević et al., 2020). Furthermore, there
isn’t enough periodic flooding which damages Curculio spp. and
provides pedunculate oak trees root system with water (Rad̄ević
et al., 2020; Kostić et al., 2022; Kesić et al., 2023). In addition,
extreme high temperatures, competition from ground vegetation
(i.e., Rubus spp.), invasive alien species (i.e., Amorpha fruticosa L.
and Ambrosia artemisiifolia L.) and woody species (i.e., F. excelsior,
Carpinus betulus L.), game browsing, E. alphitoides and D. seriata
infections and C. arcuata infestation are some of the additional
stressors that these seedlings face (Pap et al., 2014; Zlatković et al.,
2018; Rad̄ević et al., 2020; Drekić et al., 2023). Therefore, leaf spot
and anthracnose diseases from this work may pose a further risk to
the regeneration of pedunculate oak. This is especially important
in the core zones of the Mura-Drava-Danube Biosphere Reserve,
where it is prohibited to use common human assistance techniques
including sawing acorns from local seed sources and removing
competitive vegetation, to assist in regeneration of pedunculate
oaks. Pedunculate oak is one of the keystone species of the Reserve
(SUPERB, 2023). Therefore, follow up studies are urgently needed
to investigate the occurrence, severity and distribution of leaf spot
and anthracnose diseases from this study on pedunculate oak
seedlings in riparian forests of the Mura-Drava-Danube Biosphere
Reserve.

Located along rivers, riparian forests are of major importance to
overall biodiversity and floodplain ecosystem functioning (Dybala
et al., 2019; Riis et al., 2020; Zhang et al., 2023). However,
riparian forests of the Mura-Drava-Danube Biosphere Reserve are
threatened by multiple abiotic and biotic stressors (Lapin et al.,
2021; Zlatković et al., 2021; de Groot et al., 2022), including
Tubakia, Didymella and Apiognomonia leaf diseases of pedunculate
oak identified in this study. Future directions for studying leaf
diseases in the Reserve should include sampling of other valuable
riparian tree species like poplars and willows, and more thorough
surveys with greater number of examined leaves and fungal isolates.
Moreover, Penicillium spp., Biscogniauxia sp., and Aureobasidium
sp. isolated in this research should be tested for biological
control potential against Tubakia, Didymella and Apiognomonia
leaf diseases of pedunculate oak.
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Boroń, P., Grad, B., Nawrot-Chorabik, K., and Kowalski, T. (2019). The genetic
relationships within Apiognomonia errabunda and related species. Mycologia 111,
541–550. doi: 10.1080/00275514.2019.1631063

Bradshaw, M., Braun, U., and Pfister, D. H. (2022). Powdery mildews on Quercus: A
worldwide distribution and rediscovered holotype provide insights into the spread of
these ecologically important pathogens. For. Pathol. 52:e12742. doi: 10.1111/efp.12742

Brady, C., Arnold, D., McDonald, J., and Denman, S. (2017). Taxonomy and
identification of bacteria associated with acute oak decline. World J. Microbiol.
Biotechnol. 33, 1–11.

Brady, C., Denman, S., Kirk, S., Venter, S., Rodríguez-Palenzuela, P., Coutinho,
T. (2010). Description of Gibbsiella quercinecans gen. nov., sp. nov., associated with
Acute Oak Decline. Syst. Appl. Microbiol. 33, 444–450. doi: 10.1016/j.syapm.2010.
08.006

Braun, U., Nakashima, C., Crous, P. W., Groenewald, J. Z., Moreno-
Rico, O., Rooney-Latham, S., et al. (2018). Phylogeny and taxonomy of
the genus Tubakia s. lat. Fungal Syst. Evol. 1, 41–99. doi: 10.3114/fuse.
2018.01.04

Burgsdorf (1783) in Raper C (2023) Andricus quercuscalicis f. agamic. United
Kingdom Species Inventory (UKSI). Version 37.9. Natural History Museum. Checklist
dataset https://doi.org/10.15468/rm6pm4 accessed via GBIF.org on 2024-03-29.

Butin, H. (1996). Krankheiten der wald– und parkbäume. Stuttgart: Georg Thieme
Verlag.

Carbone, I., and Kohn, L. (1999). A method for designing primer sets for speciation
studies in filamentous ascomycetes. Mycologia 91, 553–556.

Cech, T. L. (2010). Fungal diseases in Austrian trees 2010. For. Aktuell 50,
7–10.

Chen, Q., and Cai, L. (2015). Didymella macrostoma (Mont.). Stud. Mycol. 82:177.

Chen, Q., Hou, L. W., Duan, W. J., Crous, P. W., and Cai, L. (2017). Didymellaceae
revisited. Stud. Mycol. 87, 105–159.

Frontiers in Forests and Global Change 14 frontiersin.org131

https://doi.org/10.3389/ffgc.2024.1363141
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1363141/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1363141/full#supplementary-material
https://doi.org/10.3389/fpls.2022.916138
https://doi.org/10.3390/f13071098
https://doi.org/10.2478/ffp-2021-0002
https://doi.org/10.2478/ffp-2021-0002
https://doi.org/10.3390/pathogens10091096
https://doi.org/10.3390/pathogens10091096
https://doi.org/10.1111/efp.12294
https://doi.org/10.1080/00275514.2019.1631063
https://doi.org/10.1111/efp.12742
https://doi.org/10.1016/j.syapm.2010.08.006
https://doi.org/10.1016/j.syapm.2010.08.006
https://doi.org/10.3114/fuse.2018.01.04
https://doi.org/10.3114/fuse.2018.01.04
https://doi.org/10.15468/rm6pm4
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-07-1363141 April 13, 2024 Time: 14:44 # 15
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Early detection of bark beetle 
infestation using UAV-borne 
multispectral imagery: a case 
study on the spruce forest in the 
Czech Republic
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Marlena Kycko 4 and Jan Komárek 1*†
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Cybernetics, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 
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Geography and Regional Studies, University of Warsaw, Warsaw, Poland

Over the last decade, biotic disturbances caused by bark beetles have represented 
a serious environmental and economic issue in Central Europe. Great efforts are 
expended on the early detection and management of bark beetle infestation. 
Our study analyses a time series of UAV-borne multispectral imagery of a 250-
ha forest in the Vysočina region in the Czech Republic. The study site represents 
a typical European spruce forest with routine silvicultural management. UAV-
borne data was acquired three times during the vegetation period, specifically 
(a) before swarming, (b) at the early stage of infestation, and (c) in the post-
abandon phase, i.e., after most bark beetle offspring left the trees. The spectral 
reflectance values and vegetation indices calculated from orthorectified and 
radiometrically calibrated imageries were statistically analyzed by quadratic 
discriminant analysis (QDA). The study shows that healthy and infested trees 
could be distinguished at the early stage of infestation, especially using NIR-
related vegetation indices (NDVI and BNDVI in our case). Detecting infested 
trees is more significant by vegetation indices than spectral bands and increases 
with the increasing time after infestation. The study verified the usability of UAV-
borne multispectral imageries for early detection of bark beetle infestation at 
the level of individual trees. Thus, these methods can contribute to precise and 
effective forest management on a local level.

KEYWORDS

bark beetle detection, green-attack stage, unmanned aerial vehicles (UAVs), 
multispectral sensors, spectral change, vegetation indices, time-series analysis

1 Introduction

In the last decades, we are witnessing the destruction of the central European Norway 
spruce Picea abies (L.) H. Karst. forests by unprecedented bark beetle outbreaks. These are 
augmented by climatic drivers (hot weather and periods of lower precipitation causing 
drought) and the increasing frequency and severity of wind disturbances (Schelhaas et al., 
2003; Modlinger and Novotný, 2015; Hlásny et al., 2021c; Patacca et al., 2023) associated with 
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climate change globally affecting forest ecosystems (Seidl et al., 2017; 
Hlásny et al., 2021a). Since 2015 to the present, spruce forests have 
been demonstrably threatened in the Czech Republic, mainly by the 
European spruce bark beetle Ips typographus (L.) (Hais et al., 2016; 
Minařík and Langhammer, 2016; Fernandez-Carrillo et  al., 2020; 
Minařík et al., 2020; Bárta et al., 2022); this situation is similar in other 
Central European countries (Gdulová et al., 2021) such as Germany 
(Zimmermann and Hoffmann, 2020), Austria (Immitzer and 
Atzberger, 2014), Slovakia (Havašová et  al., 2015), and Poland 
(Stereńczak et al., 2020). The Czech Republic has become Europe’s 
epicenter of the bark beetle outbreak, and a short time prognosis 
(Hlásny et  al., 2021b) does not promise early improvement of 
the situation.

A detailed field survey with an emphasis on the early detection of 
newly infested spruce trees in the so-called “green-attack” stage 
(Wulder et al., 2006) just after bark beetle swarming (Hlásny et al., 
2019) is one of the most effective tools of forest management; it is, 
however, often difficult to achieve at the time of outbreaks (Vošvrdová 
et  al., 2023). Moreover, it is often costly and time-consuming 
(Abdullah et al., 2018, 2019b). Therefore, solutions are searched for to 
replace or supplement and simplify field surveys. The information 
about infested trees is crucial not only for the minimization of 
economic losses (allowing the stoppage or at least slowing down of 
bark beetle outbreaks) but also from the environmental point of view 
(Zimmermann and Hoffmann, 2020) as it can help understand the 
spatial spreading of bark beetle infestation and help predict its future 
development (Hlásny et al., 2021b,c).

Remote sensing (RS) is the approach with the highest potential to 
overcome the limitations of field surveys, and its importance in bark 
beetle detection is gradually growing. The RS applicability relies on 
significant differences in spectral reflectance of healthy and infested 
trees, which can be recorded by sensors placed on various platforms. 
This theoretical assumption was confirmed by Foster et al. (2017) and 
Abdullah et al. (2018) using in situ spectroscopy measurements. The 
use of RS methods for the detection of trees infested by bark beetle has 
been the subject of many studies [see, e.g., reviews published by 
Wulder et al. (2006), Senf et al. (2017), Abd El-Ghany et al. (2020), 
Zabihi et al. (2021), and Kautz et al. (2024)]. However, most of these 
studies are on coarse (national) scales, typically using data from high-
resolution multispectral satellites (Latifi et al., 2014; Havašová et al., 
2015; Senf et al., 2015; Hais et al., 2016; Stych et al., 2019). At present, 
the applicability of the data from the Copernicus program (Sentinel1 
and Sentinel-2) has been extensively studied (Abdullah et al., 2019b; 
Zimmermann and Hoffmann, 2020; Bárta et al., 2021; Huo et al., 
2021). For fine-scale (local) analysis, methods using Unmanned Aerial 
Vehicle (UAV) based technology are potentially valuable, especially in 
forests with high conservation or economic value. In such areas, very 
detailed and repeated field surveys are needed, which well fits the 
advantages of UAVs (Näsi et al., 2015; Minařík and Langhammer, 
2016; Dash et al., 2017; Brovkina et al., 2018; Stoyanova et al., 2018; 
Klouček et al., 2019; Minařík et al., 2020, 2021; Slavík et al., 2020; Huo 
et al., 2023). The regional scale analysis, a “compromise” between the 
above-mentioned RS approaches, uses airborne RS with, in particular, 
hyperspectral sensors for bark beetle detection (Lausch et al., 2013; 
Fassnacht et al., 2014; Näsi et al., 2018; Bárta et al., 2022). As discussed 
by Bárta et al. (2021) and Abdullah et al. (2019b) existing studies are 
mainly focusing on the mapping of later stages, tree mortality, or forest 
disturbances in general. However, these approaches are not suitable 

for effective stoppage or slowing down of the bark beetle outbreaks 
(Immitzer and Atzberger, 2014). UAVs bring many benefits to forest 
management from the perspective of bark beetle detection issues. For 
instance, their spatial resolution allows the detection at the level of the 
individual tree (Dash et al., 2017). The current fixed-wing UAVs can 
cover areas of square kilometers (Li et al., 2020). Thanks to available 
cloud processing platforms (Moeyersons et  al., 2021) and the 
necessary knowledge of UAV-borne image processing, even the 
analysis is getting more user-friendly.

The presented study aims to answer the question of whether 
multispectral imagery acquired by fixed-wing UAVs is able to detect 
the early stage of bark beetle infestation at the level of individual trees. 
The investigation is evaluated using three partial hypotheses, namely: 
(a) the reflectances in the individual bands differ between infested and 
healthy spruces at a stage when the bark beetles have not yet left the 
trees, (b) the same can be said for the selected vegetation indices, (c) 
these differences are more pronounced for the vegetation indices than 
for the reflectances in the individual bands, and their use sufficiently 
distinguishes between healthy and early infested spruces.

2 Materials and methods

2.1 Study site

The study area is situated in the Vysočina region, in the center of 
the Czech  Republic, near the town of Nové Město na Moravě 
(Figure 1). The study area occupies 250 ha and is covered mainly by a 
Norway spruce forest (Picea abies), growing at elevations between 610 
and 780  m a.s.l. The site is a representation of a typical central 
European coniferous production forest. 10% of trees in the study area 
were under 18 m in height, 47% of trees were within the height range 
of 19–24 m, 25% in the range of 25–30 m, and 18% were over 31 m. 
21% of trees were younger than 40 years, 41% were 41–80 years old, 
32% 81–120 years old, and 6% were over 120 years old, respectively. 
The canopy was 100% closed in 39% of the area, 90% closed in 32% of 
the study area, and 80% closed in 28% of the area (FMI, 2024).

Besides silviculture, however, these forests also have an important 
recreation function (the center of many sports activities). Thanks to 
this, the forest management in this part of Vysočina area is particularly 
meticulous (field surveys, early felling, and removal of infested trees, 
etc.) and although the entire region counts among the areas most 
affected by the bark beetle infestation in the Czech Republic (Hlásny 
et al., 2021c), but locally in the area of study the damage to this area 
remains minimal.

2.2 Bark beetle season and development

Compared to several previous vegetation seasons, the year 2020 
was colder and higher in precipitation (see Table A1). The bark beetle 
activity depends on air temperatures; the swarming can start when the 
minimum air temperature reaches 16.5°C (Wermelinger, 2004). In the 
study area, swarming typically occurs in late May (Matějka and 
Modlinger, 2023) but in 2020, the cold and wet spring/early summer 
period delayed the peak of the first swarming and mass attack of 
standing trees to the 25th week of the year (15–21 June 2020). 
We applied the phenological model PHENIPS (Baier et al., 2007) to 
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project the development of the bark beetle offspring under the bark of 
infested trees. For the calculation of degree days (dd), data from the 
nearest meteorological stations of the Czech Hydrometeorological 
Institute (CHMI) Vatín (558 m a.s.l.) and Bystřice pod Pernštejnem 
(553 m a.s.l.) were used. Specifically, the mean daily temperature [°C], 
the maximum daily temperature [°C], and the daily sum of solar 
radiation in Wh.m−2 were included in the calculation. The mean 
values from both stations were always used and interpolated to the 
target altitude of 650 m a.s.l. At the time of the second acquisition, a 
value of 474 dd was achieved, which corresponds to the pupal stage. 
The adult phase development of the bark beetle was completed on 06 
August. Field observations confirmed the predicted values based on 
calculation of degree days (dd).

2.3 Acquisition and processing of UAV 
imagery

The UAV-based imagery acquisition periods represent phases of 
bark beetle development with visible symptoms in the tree crown (for 
conditions in the Czech Republic) (a) before swarming on 09 June, (b) 
the early stage of infestation (green-stage) on 29 July, and (c) the phase 

of abandonment of trees by most of the bark beetle offspring (yellow/
red-stage) on 13 August (Huo et al., 2021). The period of flights was 
planned with respect to the current conditions (temperature, 
precipitations) and the probability of bark beetle swarming based on 
the knowledge of local foresters. The acquisition of UAV images was 
performed using the fixed-wing eBee X (senseFly, Cheseaux-sur-
Lausanne, Switzerland) equipped with the RedEdge-MX (MicaSense, 
Seattle, United States) multispectral camera (see Table 1 for sensor 
details). Flight missions predefined using the eMotion ground control 
software, version 3.20 (senseFly, Cheseaux-sur-Lausanne, 
Switzerland), were performed at approximately 150 m above ground 
level with regular 80% side and frontal overlaps; each mission consists 
of two flights taking approx. 60 min each. All flights were performed 
approximately at solar noon (±2 h). The weather was sunny, with 
occasional clouds, for all flights.

UAV-borne imagery was processed using the image-matching 
software Metashape version 1.7.3 (Agisoft LLC, Saint Petersburg, 
Russia). The workflow included standard Structure from Motion 
(SfM) and Multi-View Stereo processing steps [see Klouček et  al. 
(2019) for details], yielding orthomosaics with a 0.16 m pixel size 
calibrated using high-reflectance targets and irradiance values. 
Subsequently, digital surface (DSMs) and digital terrain models 

FIGURE 1

The location of the study area (red dot on the Czech Republic map) and the study site’s extent. The background image represents the true color 
composite for the first sensing period (09 June). Identified infested hotspots (orange circles) and the detail of one particular bark beetle hotspot (red 
square) in the study area shows UAV-borne imagery acquired: before bark beetle activity (09 June), after the swarming on 29 July, and in the phase of 
tree abandonment by most of the new generation bark beetles on 13 August.
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(DTMs) with 0.32 m pixel size were created. The calculation of 
accurate spectral reflectance values using radiometric calibration is a 
crucial step in UAV-borne data processing. This procedure is necessary 
when time-series images are analyzed or vegetation indices are 
calculated (Song et  al., 2001). We  used the processing workflow 
recommended by the RedEdge-MX sensor manufacturer using the 
Metashape software and calibration target with laboratory-measured 
calibration parameters to guarantee the acquisition of reliable 
reflectance data throughout the bark beetle season.

2.4 Field survey and creation of tree 
database

An individual tree detection method was applied using the local 
maxima filtering approach (Panagiotidis et al., 2017; Surový et al., 
2018; Klouček et al., 2022; Komárek et al., 2022) to facilitate database 
creation. In this way, we created a tree database including all Norway 
spruce trees (almost 55,000 individuals, 441 were newly infested). As 
reference data, we used field data provided by the foresters based on 
their regular field inspections and the database provided by the 
national Forest Management Institute (FMI, 2022).

Based on the observation of local forest managers, the peak of 
swarming in the study area was on 15 June. The field survey of newly 
infested trees was performed by local forest managers on 06 August. 
The studied period corresponds to the dates of acquisition of 
UAV-borne images (a) before bark beetle activity (09 June), (b) during 
the time of offspring development (29 July), and (c) on 13 August, 
after the offspring left the trees.

Our study aimed to evaluate healthy and infested trees across 
sensing periods. For this reason, only infested trees determined by the 
forest manager that remained standing until the last flight served as 
reference ground truth data for subsequent analyses (i.e., we excluded 
from analysis trees that were felled to prevent bark beetle spread 
before the last flight). Finally, seven active bark beetle hotspots were 
identified (see Figure 1), with 84 Norway spruce trees newly infested 
during the first bark beetle generation in 2020.

2.5 Image analysis

Pixels representing shadows were masked by thresholding of near-
infrared bands. The unique thresholds for orthomosaics were set 
manually (by trial-and-error approach to visually achieve masking of 
all shadows; one threshold for the entire orthomosaic acquired during 
one flight), and the results were visually inspected as in our previous 

work (Klouček et al., 2019). For every tree, we extracted the (a) mean 
spectral reflectance value in a 0.5 m buffer around the tree top for 
spectral bands of masking orthomosaics and (b) height information 
from the normalized digital surface model (nDSM) calculated by 
subtracting the DTM from DSM (acquired 09 June). ArcGIS Pro 
version 2.9.3 (ESRI, Redlands, CA, United  States) was used for 
this process.

2.6 Vegetation indices calculation

From the list of available spectral indices (Bannari et al., 1995; 
Henrich et al., 2009), we selected typical representatives of broadband 
normalized vegetation indices (VIs) for further bark beetle detection 
analysis. Specifically, we  calculated Green Leaf Index (GLI), 
Normalized Difference Green/Red Index (NDGRI), Normalized 
Difference Red Edge Index (NDRE), Normalized Difference 
Vegetation Index (NDVI), Green Normalized Difference Vegetation 
Index (GNDVI), and Blue Normalized Difference Vegetation Index 
(BNDVI), see formulas in Table 2. We considered only indices that, 
according to our previous study (Klouček et  al., 2018), are very 
unlikely to mutually correlate. ArcGIS Pro was used for the calculation 
of vegetation indices.

2.7 Statistical analysis

The statistical evaluation aimed to detect appropriate spectral 
bands and spectral indices for distinguishing healthy and infested 
trees. I. typographus prefers mature, weakened trees (Wermelinger, 
2004; Hais et al., 2016) and newly infested trees that are most likely to 
occur near the previous year’s bark beetle infestation locations (Kautz 
et al., 2011). We used seven located bark beetle hotspots with a total 
of 84 infested trees. Consequently, we selected all healthy trees taller 
than 20 m in 50 m buffers around the hotspots, not covered by 
shadows on orthomosaics. In this way, we  selected a total of 960 
healthy spruce trees.

An individual regression model was created for each spectral band 
and vegetation index. Due to the experimental design, a mixed-effect 
model approach was used (Zuur et al., 2009). The random part of the 
model was, in all cases, two-way nested by the hotspot and by the 
individual tree. The fixed part was made up of two factors: the health 
condition of the tree (Infested, Healthy) and the time of UAV images 
acquisition; their interaction was also included. During model 
building and validation, an appropriate distribution function was 
selected (for most spectral bands and vegetation indices, the Gamma 
distribution function with log link was the best fit). The Gaussian 
distribution function was used for several indices with minimal values 
below zero. Model formulation and prediction were performed in the 
R package glmmTMB following the procedures described by Brooks 
et al. (2017).

The quadratic discriminant analysis (QDA) (Rencher, 2002) was 
used to distinguish the groups of healthy and infested trees based on 
the spectral bands and vegetation indices. Due to a large difference 
between the size of both groups of trees, the bootstrap resampling 
technique with 60 iterations was used for sampling the group of 
healthy trees used in the QDA analysis (McRoberts et al., 2023). To 
avoid overfitting caused by the fact that the vast majority of trees were 

TABLE 1  Brief description of spectral properties of the RedEdge-MX 
(MicaSense, Seattle, United States) multispectral camera.

Spectral bands Wavelength 
centre (nm)

Bandwidth (nm)

Blue 475 32

Green 560 27

Red 668 14

Red edge 717 12

Near-infrared 842 57
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healthy (i.e., the prevalence of infested trees was minimal – approx. 
1,000 healthy vs. 80 infested trees, which would influence the QDA 
discriminant function and resulting accuracy characteristics), an 
infested to healthy ratio of 1:3 was used for bootstrapping. The set of 
trees was divided into the training and testing group. The training set 
contained around 60% of the trees. The goodness of the discrimination 
was measured by the confusion matrix detailing the sensitivity (i.e., 
the percentage of infested trees accurately detected as infested) and 
specificity (i.e., the percentage of healthy trees detected as healthy), 
and overall accuracy (i.e., the total proportion of accurately classified 
trees). For the QDA method was used the function qda() in the R 
package MASS (Venables and Ripley, 2002). Analyses were performed 
in the R 4.0.2 environment (R Core Team, 2020).

3 Results

3.1 The potential of spectral bands and 
vegetation indices

The trends of spectral reflectance of individual bands (blue, green, 
red, red edge, and NIR) in healthy and infested spruce trees analyzed 
across the entire area changed depending on the time from bark beetle 
infestation in 2020, with the highest difference observed in the red 
band (Figure  2E). Over time, the green (Figure  2C), red edge 
(Figure  2G), and NIR (Figure  2I) bands’ spectral reflectances 
decreased in both healthy and infested trees. The red band reflectance 
grew during the last acquisition (13 August). However, the differences 
between the healthy and infested trees in the first (09 June) and second 
(29 July) acquisition periods are negligible and does not allow reliable 
detection of infested trees. Therefore, it is evident that using individual 
spectral bands makes early detection of infested trees difficult.

For this reason, we  went on to evaluate individual vegetation 
indices. A significant increase in the differences between healthy and 
infested trees with the later acquisition time was observed, similar to 

the visual evaluation based on the spectral bands (Figure  2). All 
analyzed vegetation indices with the exception of NDRE and GNDVI 
(which grew between the first two periods in healthy trees) constantly 
decreased over time for both healthy and infested trees. Before 
swarming (09 June), almost no difference between healthy and 
(future) infested trees was observed. However, at the following stages 
of the bark beetle development (29 July and 13 August), significant 
differences in fitted (Figures  3A,C,E,G,I,K) and image-based 
(Figures 3B,D,F,H,J,L) values between infested and healthy trees could 
be found in all tested vegetation indices (see Figure 3 for details). The 
use of vegetation indices, therefore, allowed healthy and infested trees 
to be distinguished at the time of early infestation.

3.2 Statistical analysis of early-stage 
detection

In addition to the visual assessment presented in Figures 2, 3, 
QDA was also performed. This analysis, took into account the 
calculated indices and the background differences between hotspots, 
showed a possibility of distinguishing between healthy and infested 
trees even while the bark beetle is still in the tree, in particular when 
using vegetation indices. Therefore, we  specifically focused on 
evaluating vegetation indices calculated only from the UAV imageries 
acquired at the stage of early infestation (29 July), which is essential 
for effective forestry intervention (e.g., cutting down infested trees). 
The best overall accuracy was acquired using NDRE (81%), NDVI 
(80%), and GNDVI (81%; Table 3). However, the accuracy differed 
among individual indices as well as between healthy and infested trees. 
The best success rate for infested trees was achieved using NDVI 
(90%) and BNDVI (89%). The success of classification of healthy trees 
was generally lower, and the most promising results were achieved 
using NDRE (83%) and GNDVI (81%). The most balanced results for 
both tree groups (approx. 80%) were acquired using GNDVI 
(combination of green and NIR bands). In addition, relatively low 

TABLE 2  Calculated broadband normalized vegetation indices with formulas and examples of use (Henrich et al., 2009).

Vegetation index Formula References

Green leaf index
GLI

GREEN RED BLUE

GREEN RED BLUE
=

∗ − −( )
∗ + +( )
2

2 Hunt et al. (2012)

Normalized difference green/red index
NDGRI

GREEN RED

GREEN RED
=

−( )
+( ) Hunt et al. (2011) and Abdullah et al. (2019c)

Normalized difference red edge index
NDRE

NIR RedEdge

NIR RedEdge
=

−( )
+( ) Abdullah et al. (2019c)

Normalized difference vegetation index
NDVI

NIR RED

NIR RED
=

−( )
+( )

Rouse et al. (1974), Gitelson and Merzlyak (1997), Dash 

et al. (2017), and Brovkina et al. (2018)

Green normalized difference vegetation index
GNDVI

NIR GREEN

NIR GREEN
=

−( )
+( ) Gitelson and Merzlyak (1997) and Dash et al. (2017, 2018)

Blue normalized difference vegetation index
BNDVI

NIR BLUE

NIR BLUE
=

−( )
+( ) Yang et al. (2004)
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FIGURE 2

(A,C,E,G,I) Surface reflectance (Y-axis) of individual spectral bands (X-axis) at different time points showing healthy (green) and newly infested (red) 
trees. The color dots are fitted values resulting from the mixed-effect model, whiskers represent 95% confidence interval. (B,D,F,H,J) Histograms 
presenting the frequencies of surface reflectances of healthy (green) and infested (red) trees (B,D,F,H,J).
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FIGURE 3

(A,C,E,G,I,K) Vegetation indices values (Y-axis) at different stages of the bark beetle infestation (X-axis), indicating healthy (green) and newly infested 
(red) trees. The color dots are fitted values resulting from the mixed-effect model, whiskers represent 95% confidence intervals; (B,D,F,H,J,L): 
histograms showing frequencies of individual values.
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standard deviation values indicate the stability of calculated success 
rates based on the bootstrap resampling technique (60 iterations) in 
the QDA analysis (see Table 3).

The QDA results based on spectral bands are summarized in 
Table 4. The early-stage classification based on spectral bands might 
seem more accurate at first (87% overall accuracy using all available 
spectral bands) than using vegetation indices. However, the detection 
success of infested trees was lower (70%). Of the individual bands, the 
best results were obtained using the red band (which is consistent with 
the visual interpretation, see Figure 2E), although the sensitivity was 
still substantially inferior to that yielded by the indices (38%). The 
worst results, failing to identify any of the infested trees, was observed 
for the blue band. Therefore, we can consider vegetation indices as 
more appropriate inputs for the early detection of bark beetle 
infestation than individual spectral bands.

3.3 Detection of the infestation using 
vegetation indices at different time points

Since the use of vegetation indices leads to significantly better 
conclusions than detection using spectral bands (see Sections 3.1 and 
3.2), we have focused in this section on the detection of infected trees 
using only vegetation indices. The overall accuracy, sensitivity and 
specificity using vegetation indices increase with time after infestation 
(Table 5). The lowest overall accuracy (63%) was obtained before bark 

beetle swarming (09 June), when only 37% of newly infested and 72% 
of healthy trees were correctly classified. In the early-stage of 
infestation (29 July), the overall classification accuracy was 84%, with 
sensitivity of 80% and specificity of 86%. The combination of before-
swarming (09 June) and early-stage (29 July) vegetation indices did 
not improve the classification results compared to those from 29 July. 
The highest detection accuracy was achieved in the phase of 
abandonment of trees, when bark beetles probably left the trees (13 
August). In this phase, overall detection accuracy was 94% (90% for 
infested, and 94% for healthy trees). The results of QDA are in detail 
summarized in Table 5.

4 Discussion

Our findings confirm that the use of vegetation indices allows 
detection of bark beetle-infested trees while the bark beetle offspring 
are still inside the infested tree. The accuracies of QDA increase with 
time after infestation (see Table 5). The high success rate of detecting 
infested trees during the second flight, when most of the bark beetle 
population was in the pupal stage, represents an important prerequisite 
for successful bark beetle management in forest stands (Wermelinger, 
2004; Hlásny et al., 2019). Detection of bark beetle-infested trees was 
also evaluated by Bárta et al. (2022) at the canopy level or Abdullah 
et al. (2018) at the individual leaf/needle level using hyperspectral 
measurements. In the latter study, Abdullah et al. (2018) confirmed 
the potential usability of visible bands for early bark beetle detection.

The sensitivity of detecting infested trees using individual spectral 
bands was poor (Table 4). Even for the red band, which showed the 
best sensitivity during the second flight (6 weeks after infestation), the 
sensitivity was a mere 38%. The fact that the red band performed best 
in our study was not expected as other studies attributed greater 
importance to other bands. For example, Huo et al. (2023) reported 
the red edge band to perform best. They achieved 15% sensitivity 
5 eeks after infestation and 90% sensitivity 10 weeks after infestation. 
In our study, we achieved better results with the bands alone (38% 
sensitivity with the red band and 70% in multifactorial analysis using 
all the bands, Table 4). When using indices, the results were much 
better – using NDVI, we detected as much as 90% of infested trees 
6 weeks after infestation. We must, however, consider the fact that the 

TABLE 4  The results of the quadratic discriminant analysis (QDA) using individual spectral bands and their combination for the early-stage bark beetle 
detection period (29 July).

Blue Green Red Red Edge NIR All

Overall accuracy 0.77 ± 0.03 0.64 ± 0.03 0.72 ± 0.03 0.59 ± 0.04 0.62 ± 0.03 0.87 ± 0.05

Sensitivity 0.00 ± 0.00 0.30 ± 0.05 0.38 ± 0.07 0.28 ± 0.05 0.34 ± 0.05 0.70 ± 0.10

Specificity 0.77 ± 0.03 0.81 ± 0.04 0.82 ± 0.03 0.81 ± 0.05 0.87 ± 0.03 0.93 ± 0.06

The accuracies of GDA are supplemented with standard deviations.

TABLE 5  The results of the QDA using a combination of all vegetation 
indices throughout the bark beetle season.

09 June 29 July 09 June 
and 29 

July

13 
August

Overall 

accuracy
0.63 ± 0.04 0.84 ± 0.03 0.84 ± 0.03 0.94 ± 0.05

Sensitivity 0.37 ± 0.09 0.80 ± 0.08 0.77 ± 0.08 0.90 ± 0.10

Specificity 0.72 ± 0.05 0.86 ± 0.03 0.86 ± 0.03 0.94 ± 0.06

The parameters are supplemented with a standard deviation. The column “09 June and 29 
July” represents a combination of vegetation indices calculated for both dates.

TABLE 3  The results of the quadratic discriminant analysis (QDA) using individual vegetation indices for the early-stage bark beetle detection period (29 
July).

GLI NDGRI NDRE NDVI GNDVI BNDVI

Overall accuracy 0.78 ± 0.03 0.78 ± 0.03 0.81 ± 0.03 0.80 ± 0.03 0.81 ± 0.03 0.78 ± 0.03

Sensitivity 0.86 ± 0.09 0.86 ± 0.09 0.75 ± 0.07 0.90 ± 0.08 0.80 ± 0.07 0.89 ± 0.08

Specificity 0.77 ± 0.04 0.77 ± 0.04 0.83 ± 0.04 0.79 ± 0.03 0.81 ± 0.04 0.77 ± 0.04

The accuracies of QDA are supplemented with standard deviations.
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study by Huo et  al. (2023) took place in Scandinavia where the 
development of the bark beetle is slower than in the Central Europe 
(Baier et al., 2002). In effect, the acquisition 6 weeks after infestation 
in the Czech Republic may correspond to 10 weeks after infestation in 
Scandinavia. However, accurate information about the stage of 
I. typographus development for individual acquisitions is missing in 
their paper. In addition, their research was designed differently from 
ours – while our research is based on natural infestation of the bark 
beetle, Huo et al. (2023) used pheromone baited trees. Minařík and 
Langhammer (2016) found red edge and NIR UAV bands to 
be promising in detecting infested trees. Abdullah et al. (2019b,c) and 
Hellwig et al. (2021) reported the potential of red edge bands for early 
detection of Ips typographus infestations. Bárta et al. (2021) highlighted 
the importance of Sentinel-2 SWIR bands to perform best in early 
detection of infested trees by bark beetle. Trubin et al. (2023) indicated 
that the NIR band could be more reliable than other visible bands in 
detecting susceptible trees in the early detection stage of infestation.

On the other hand, the WorldView-2 study (Immitzer and 
Atzberger, 2014) using satellite imagery for detecting infestation in 
mountain regions of Central Europe, yielded results similar to our 
research, associating the red band with the highest detection accuracy. 
They called for more research focusing on early-stage detection in 
association with the change in the spectral signatures of infested trees 
and their difference from the surrounding environment. Also Huo 
et al. (2021) found the red band to be promising in detecting infested 
trees. The importance of the red band was also found in the case of 
UAVs by Klouček et al. (2019) and Minařík et al. (2021).

Vegetation indices performed better than individual spectral 
bands, with the differences between infested and healthy trees were 
obvious in the graphs (Figure 3) as early as the second flight (i.e., 
during the green attack stage, while the bark beetle offspring were still 
in the trees). The statistical evaluation using QDA confirmed this 
visual observation. In particular, the BNDVI (sensitivity of 89%) and 
NDVI (90%) indices were able to distinguish between healthy and 
infested trees with sufficient accuracy (Table 3). NDVI returned the 
overall best results and, therefore, appears to be the most promising 
of all tested indices. However, vegetation indices are highly correlated 
(Klouček et al., 2018) and the results provided by many of them are 
similar. This can also explain the fact that a combination of all indices 
(Table 5) did not improve the overall detection success compared to 
individual indices. Combining vegetation indices from different 
periods did not improve the detection capability, either – likely 
because the natural seasonal changes alter the natural reflectance of 
the needles, which confounds the changes associated with early 
infestation stages. The detailed summary of all 26 recent remote 
sensing studies focused on early bark beetle detection using individual 
spectral bands or vegetation indices is available in Appendix Table A1 
of the recent review published by Kautz et al. (2024).

Based on our findings, the NIR band (although not providing 
usable results when detecting solely based on the bands) plays a key 
role in detecting trees infested by bark beetle using vegetation indices. 
This corroborates the findings published by Abdullah et al. (2019c), 
who concluded that the red edge and NIR bands (and, in particular, 
the indices derived from these bands) are crucial for successful 
distinguishing between healthy and infested trees. On the other hand, 
the results disagree with our previous study (Klouček et al., 2019). In 
that study, visible bands brought more valuable information for 
differentiation between healthy and infested trees than the NIR band. 

However, it may be due to the use of a home-made low-cost UAV 
sensors, instead of the NIR sensor that was used in the present study.

From the practical point of view, the maximum period from 
infestation that still allows implementation of forestry measures to 
prevent bark beetles from spreading is approximately 6 weeks in the 
conditions of the Czech Republic (Bárta et al., 2022). This corresponds 
to the second image acquisition (29 July), when all vegetation indices 
discriminated well between the healthy and infested trees (see 
Table 5). It should be, however, noted, that in countries with a colder 
climate (i.e., Scandinavia), this period might be longer, allowing more 
effective measures than is possible in the Czech Republic.

The possibility of finding vulnerable trees before the infestation 
could be a considerable advantage of RS approaches in bark beetle 
detection. Other methods react to chemical cues (Vošvrdová et al., 
2023) or visual signs of infestation (Kautz et al., 2022) that develop 
only after the tree is successfully colonized by the bark beetle. Using 
the vegetation indices, we were able to classify 37% of trees that were 
later infested as early as the first flight carried out before swarming. A 
significant difference between healthy and infested trees before the 
attack was found also by Abdullah et al. (2019c), who, however, did 
not analyze the classification accuracy. The predisposition of Norway 
spruce to bark beetle infestation was also identified by Kozhoridze 
et  al. (2023) using thermal satellite imagery. Identifying trees 
predisposed toward being infested depends, among other things, also 
on the resistance of the forest stand and on the bark beetle population 
density: as long as the bark beetle population density is low, 
I. typographus is able to establish offspring only in weakened trees, 
while once the infestation enters the epidemic phase, it is able to 
colonize healthy trees as well (Kausrud et al., 2012). The amounts of 
weakened (although apparently healthy) trees in forest stands increase 
with the length of the period between the bark beetle outbreaks 
(Økland and Bjørnstad, 2006). The study area has been well-managed 
against bark beetles for a long time, and only relatively small numbers 
of infested trees have been felled. Even so, the site is in a region with 
massive outbreaks (Hlásny et al., 2021a), and the supply of immigrant 
beetles is, therefore, considerable, which facilitates the infestation of 
healthy trees.

Studies analyzing such an extent of forest (250 ha) using time 
series of UAV-borne spectral reflectance data focusing primarily on 
early-stage bark beetle detection, such as that by Huo et al. (2023) are 
extremely rare (Kautz et al., 2024). This is, among other things, caused 
by the solar noon conditions allowing only a limited time for 
acquisition within a day. Considering this and fixed-wing UAV 
capabilities, the system used in this study can cover approximately 
400 ha in 4 h. Of course, it could be possible to use simultaneously 
multiple UAVs, which would multiply the covered area. For this 
reason, it might be useful to use detailed airborne (Bárta et al., 2022) 
or satellite (Abdullah et al., 2019a,b,c; Abdollahnejad et al., 2021; Bárta 
et al., 2021) data to cover larger extents. The use of UAVs, on the other 
hand, has advantages over satellite and airborne data, such as high 
spatial resolution and possibility of optimal timing of the flights, thus 
allowing more accurate early detection at the individual tree level. 
Fixed-wings enabling vertical take-off and landing (so-called VTOL), 
capable of application in inaccessible terrain (Cromwell et al., 2021), 
are also available on the market. In addition, advanced sensors that 
combine RGB with multispectral or/and thermal cameras are already 
available, which reduces the number of necessary flights. In addition, 
the demands for the expertise required for UAV-borne image 
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processing and analysis are decreasing thanks to the available cloud 
processing solutions [for example, the Forest Guard application in the 
Czech Republic, that has, unfortunately, been recently discontinued 
(Unicorn, 2024)].

As a partial limitation of our study, we can mention that even 
though all flights were performed approximately at the same time of 
the day, the sun position differed due to the seasonal changes. 
However, these differences were accounted for by the use of calibration 
targets and the imagery was radiometrically calibrated, so this is 
unlikely to cause any issues with the validity of results.

Early detection of bark beetle infestation is a complex issue 
influenced by many spatial variables (bark beetle life cycles, 
temperature, precipitation, the actual health status of trees, weather 
conditions during imagery acquisition etc.). The use of all RS 
possibilities and their combination with traditional forestry 
approaches, such as field surveys (Kautz et al., 2022; Kautz et al., 2024), 
trap installation, etc., could be a way to more effective prevention of 
bark beetle calamities.

5 Conclusion

Our study evaluated the effectiveness of UAV-borne multispectral 
imagery for detecting the early stages of bark beetle infestation. Input 
data were acquired during the bark beetle season (a) before swarming, 
(b) at the early stage of infestation, and (c) in the post-abandon phase. 
Results indicate that multispectral imagery allows good discrimination 
of healthy and early-infested Norway spruce trees at the so-called 
green attack stage using quadratic discriminant analysis (QDA). In 
particular, vegetation indices NDVI and BNDVI performed very well 
in identifying infested trees, with sensitivities up to 90%, which was 
much better than when using individual bands. The overall detection 
sensitivity increased with the increasing time from infestation. The 
discrimination success rate by QDA was similar for the combination 
of vegetation indices as for individual well-performing indices. The 
study shows that the use of professional multispectral UAV-borne 
sensors allows early bark beetle detection and can contribute to precise 
and effective forest management on a local level.
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Appendix

TABLE A1  Precipitation (mm) and mean temperature (°C) values in the studied region in 1999–2022.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Precipitation 620 674 773 834 527 682 727 723 718 577 791 843

Temperature 7.8 8.7 7.3 8.3 7.9 7.3 7.3 7.8 8.6 8.5 8.0 6.8

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Precipitation 578 646 692 660 552 551 652 517 645 834 653 620

Temperature 8.2 8.0 7.7 9.0 9.1 8.3 8.3 9.3 9.1 7.4 7.7 8.9

Long-term air temperature normal (1981–2010) is 7.4°C; long-term precipitation normal (1981–2010) is 673 mm. Year 2020 is in bold (CHMI, 2024).
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Transportation of firewood can be a vector for invasive insect spread resulting 
in damage to surrounding areas. In 2016 and 2021, surveys were conducted at 
campgrounds around Michigan to understand where campers were sourcing 
their firewood, awareness of the ‘Do not move firewood’ campaign, knowledge 
of invasive insects and pests, reactions to a potential ban on bringing firewood 
to campgrounds, and perspective on kiln-dried firewood – all potential policy 
levers to reduce the spread of invasive insects. Results indicated that campaign 
awareness slightly decreased between the survey years, personal firewood 
transport has decreased, and knowledge of invasives remains low. There is an 
opportunity for intensifying invasive species and firewood outreach efforts, 
however, regulation (and enforcement) may be  more effective among those 
who would not comply or support a ban.

KEYWORDS

invasive (exotic non-native) species, recreation, behavior, outreach, campground

1 Introduction

Firewood has been documented as a vector for invasive insect spread in the United States 
(Solano et al., 2021), and camping has been identified as the main recreational driver for 
firewood transport (Solano et al., 2021). Although most campers visit federal campgrounds 
within 100 km miles of their home, at least 10% travel over 500 km to camp (Koch et al., 2012). 
Invasive pests often originate in metropolitan or suburban areas from infested nursery stock, 
pallets, or other shipping materials (Lovett et al., 2016); residents in these more densely 
populated areas may bring infested materials into more rural and forested areas, thereby 
spreading pests to vulnerable tree species. Emerald ash borer, for example, originated in lower 
Michigan, but was found in the Upper Peninsula of Michigan in 2005. Haack and Petrice 
(2021) reported that 581 vehicles were stopped from 2005 to 2011 on their way from the Lower 
Peninsula of Michigan to the Upper Peninsula, yielding 479 interviews (11 commercial drivers 
and 468 private vehicles) pertaining to transportation of firewood. Over 80% of interviewees 
reported that they were transporting firewood for camping and cottages and of the 59 vehicles 
transporting ash firewood, 15 had signs of emerald ash borer.

When invasive insects are introduced into forests it can lead to many different 
complications. Direct changes to tree species composition can be seen, with the most extreme 
cases resulting in whole tree mortality that removes entire species from forest stands. These 
changes to forest structure have cascading effects on the wildlife that rely on the forests for 
food and habitat, as well as the economic loss from the inability to harvest certain tree species 
for timber (Lovett et al., 2016). There is also a perceived decrease in aesthetic quality in forests 
that have been infested by these invasive species due to tree mortality, which reduces property 
values and reported enjoyment of public lands (Lovett et al., 2016). These aesthetic concerns 
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are often also tree hazard concerns, when mortality occurs in areas 
used for recreation. Standing dead trees are much more susceptible to 
falling during wind, snow, or ice events and are fuel for wildfires.

Recreational users, in addition to being affected by tree mortality, 
may contribute to the spread of invasive insects if they bring woody 
material with them for camping and vacationing instead of purchasing 
at or near the campground. Campground users typically have three 
choices for sourcing firewood. They can bring it from home, purchase 
it at the campground, or purchase it locally outside the campground 
area (Borchert et al., 2010). In 2018, a camper survey was completed 
in three northeastern U.S. states found that 25% of campers brought 
their own wood (Daigle et  al., 2019). The risk of personal wood 
transport can be mitigated by only transporting heat-treated or kiln-
dried firewood.

2 Policy options and implications

Heat-treated firewood is firewood that has been sterilized by being 
heated for various amounts of time to at least 133°F (Wang et al., 
2009). Kiln-dried firewood is heat-treated firewood that has been 
treated in a United States Department of Agriculture (USDA) certified 
kiln, with the wood reaching an internal temperature of 160°F for 
75 min, to properly ensure that the produced wood is USDA Animal 
and Plant Health Inspection Service (APHIS) approved and pest free 
(Wang et al., 2009, 2014). While heat-treated and kiln-dried firewood 
use the same basic thermal treatment strategies, only APHIS approved 
kiln-dried firewood is approved for transport across state lines. 
However, since emerald ash borer (the target threat in Michigan) is no 
longer federally-regulated, this may limit the implementation of 
federal regulation unless a state decides to implement their own 
regulation. There are also several cost concerns with both treatment 
strategies for consumers and producers alike. Both strategies come 
with high time, energy, and equipment cost that leads to more 
expensive products for the consumers (Wang et al., 2009). Mandating 
heat-treatment and kiln-drying, or subsidizing the cost of heat-treated 
and kiln-dried firewood may be the only way to overcome the cost 
barrier that producers and consumers perceive.

Additional policy levers to address the issues caused by spreading 
invasive insects include outreach campaigns, incentives (e.g., free 
firewood at destinations), and regulations (e.g., firewood quarantines 
and park gate bans). While some studies have documented use and 
preferences for transporting firewood in recreational settings, little 
research has documented the habits of campground users in states 
severely impacted by invasive species or sought to understand if the 
“Do not Move Firewood” campaign, led by The Nature Conservancy 
and other partners, has led to an increased knowledge of the risks of 
moving firewood long distances, and what the effect of additional 
regulation might be on behavior. Solano et al. (2020, 2022) are two 
exceptions. Solano et al. (2020) analyzed 4,840 survey responses to 
firewood awareness campaigns over 15 years (2005–2016). As 
awareness increases they found a greater willingness to take action. 
Moreover, small increases in education resulted in greater public 
concern about firewood movement and invasive species. Solano et al. 
(2022) also reported that participants would be most likely to pay 
attention to an on-site flyer in a campground, that state forestry 
agencies were the most believable sources of information, and that 
older and more educated people were more aware of campaigns.

This Policy Brief reports data from multiple campground surveys 
in Michigan, U.S.A, to understand firewood/invasive insect knowledge, 
firewood purchase and transport behavior, and perception of firewood/
invasive insect risk 5 years after the Solano dataset. Given the increased 
number of state, regional, and national awareness campaigns like “Do 
not Move Firewood,” it is important to continue measuring camper 
awareness and behavior to determine if more outreach is needed, or if 
different policy approaches are warranted to change behavior.

3 Methods

We used data from a 2005 to 2010 inspection report, a 2016 
survey and a 2021 survey. The inspection report includes data from 
11 to 67 campgrounds (varied by year) in Michigan in emerald ash 
borer quarantine areas. DNR park staff checked all incoming 
campers for firewood from 2005 to 2010, tallying whether the 
visitor had (1) brought firewood, (2) where the camper originated, 
and (3) where the firewood originated. Those that arrived from 
EAB-infested areas were given information about the pest and were 
not allowed to bring their firewood into the park. In 2016, DNR 
interns were dedicated to surveying park users at campsites for 
three state parks: Sleepy Hollow, P. J. Hoffmaster, and Holland. At 
the gate when checking in visitors during the summer months, 
people were surveyed if there was firewood visible at check-in. 
They were informed it was voluntary, but that ash firewood was not 
allowed in the park. The questions asked about the origin of the 
firewood they had with them, knowledge of invasive species, 
knowledge of the do not move firewood campaign, and perceptions 
of a firewood ban. Most park users for all three sites came from the 
metro Detroit area [Department of Natural Resources (DNR), 
2023]. Sleepy Hollow is a park most often used by in-state residents 
and offers roadside stands for firewood purchase. Holland is a 
more urban park with no rustic camping, often used as a stopping 
point on the way to Sleeping Bear National Dunes. While there is 
an RV park, there is not much access to roadside firewood. 
P. J. Hoffmaster has more out-of-state clientele, but also some local 
interest some rustic tent camping, along with roadside stands for 
firewood purchase (Department of Natural Resources 
(DNR), 2023).

In the summer of 2021, we randomly sampled 4 campgrounds in 
lower Michigan, and 1 in the Upper Peninsula. Campgrounds were 
located in Luzerne (private), Porcupine Mountains (state), Algonac 
(state), Metamora-Hadley (state), and Muskegon (state). At each site, 
surveys were administered at entrances (stationary), by walking through 
the campground (roving) and at other points of interest (e.g., hiking 
trails, common spaces). Refusals were noted, in addition to responses. 
At least 3 h were spent administering surveys at each location over a 
2–3 day period, during varying times of day and early evening. Each of 
these sites offer firewood for purchase either at the campground store 
or from roadside stands. Surveys could be completed verbally or on 
paper. All survey questions asked in 2016 were repeated in 2021, but a 
few additional detailed questions were asked in 2021, such as intended 
source of firewood, nuanced level of concern/knowledge of invasive 
species, perspectives on cost for heat-treated or kiln-dried wood, and 
specific responses to a hypothetical firewood ban. Across both surveys, 
questions covered knowledge of invasive species, firewood consumption 
behaviors, and distance traveled to campground. After survey 
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completion, participants were offered handouts and stickers (Do not 
Move Firewood campaign) on invasive insects. Data was double entered 
and R software (CRAN, R Core Team, 2022) was used for data analysis. 
For open-response questions (e.g., “what would you  do if outside 
firewood was banned”) two researchers categorized responses into 
thematic groups and compared coding. Adjustments were made until 
at least 90% agreement was reached with different data subsets. Human 
Subjects approval was granted by the Michigan State University 
Institutional Review Board.

4 Results

Data from the 2005–2010 inspection report revealed that 20,988 
out of 84,753 campers inspected (25%) brought firewood with them, 
of which 17,979 (21%) came from EAB quarantine areas.

In 2016, there were 116 surveys collected at P. J. Hoffmaster, 86 at 
Holland and 31 at Sleepy Hollow for a total of 233 responses. In 2021, 
44 responses were collected across all state parks (Table 1), out of 115 
people asked (38% response rate).

Awareness of the Do not Move Firewood (DMF) Campaign was 
slightly higher in 2016, but the percentage of individuals bringing 
their own firewood was about half as much in 2021 (Figure 1).

When asked about their perceptions of a potential firewood ban 
(meaning campers could not bring outside firewood into the park), 
survey respondents in 2021 were generally more supportive (Table 2), 
despite less awareness of the DMF campaign.

To better understand how campers would respond behaviorally to 
a ban, the 2016 survey asked respondents to explain what they would 
do if a ban was to be put in place; responses were thematically grouped 
into 6 themes (Figure 2). Most responded they would buy locally for 
their firewood needs, while others would either not return to the park 
or find other items to burn.

The 2016 survey found that for those who brought their own 
firewood, the wood traveled an average of 98.5 km. In 2021, average 
travel distance was 142 km, but sample size was smaller, so a statistical 
comparison would not be meaningful. This firewood was brought 
instead of purchased because it was free and readily available. When 
asked if they were concerned about invasive insects, 76% of those 
surveyed in 2016 stated they were concerned, compared with 58% in 

TABLE 1  Sample size from two surveys done in 2016 and 2021 at 8 campgrounds across Michigan.

Campground 2016 2021

P.J. Hoffmaster 116 –

Holland 86 –

Sleepy Hollow 31 –

Luzerne – 12

Metamora – 4

Muskegon – 11

Porcupine Mountains – 11

Algonac – 6

Total 233 44

FIGURE 1

Awareness of do not move firewood campaign and percentage of campers bringing their own firewood compared across two surveys (2016 and 
2021).
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FIGURE 2

Campers’ behavioral response to a ban on bringing firewood into parks.

2021. In 2021, 41% of campers purchased their firewood from the 
camp store, 2.3% from local vendors, and 20% from other sources 
(comparable data not collected in 2016). Most campers, 68%, felt they 
knew a little about the threat of invasive insects, 7% felt they knew 
nothing, 9% a moderate amount, 12% a lot, and 2% said they knew 
everything (comparable data not collected in 2016).

In 2021, campers were asked if they knew of kiln-dried firewood 
and if they would be willing to spend more for this certified pest free 
firewood that is permitted to travel across state lines and has no risk 
of spreading invasive insects. Just over half, 57%, of respondents have 
heard of kiln-dried firewood, but 75% of respondents are unwilling to 
pay extra for this pest free wood.

5 Actionable recommendations

There are two major policy instruments that would address 
firewood movement as a vector for invasive insect spread: outreach/
education and regulation/enforcement. Outreach could include both 
the general awareness of the problem and suggest that campers buy 
locally or bring/use kiln-dried or heat-treated firewood. We found that 
interest in using kiln-dried firewood as an alternative to reduce the risk 
of spreading insects and pests when moving firewood is low, likely due 
to cost, and consistent with Daigle et  al., 2019. The overwhelming 
majority of respondents are not willing to pay a higher price for this 
product, as Wang et al. (2009) identified as a possible limitation. If 
outreach campaigns do not clearly articulate the avoided cost of invasive 
insect damage for a consumer to compare with the increased price of 
kiln-dried firewood, there may be  limited support. If kiln-dried/

heat-treatment is a preferred option, subsidies or mandates may be the 
only viable way to change consumer behavior. If firewood prices were 
reduced (through subsidies to producers for technology), outreach 
campaigns have been shown to be effective (Solano et al., 2020, 2022).

There may also be an opportunity to scale up outreach efforts 
about both the threat of invasive insects and pests and how the use of 
kiln-dried firewood could reduce these threats, building on the 
success of the Do not Move Firewood Campaign (Solano et al., 2020). 
However, we found that a segment of those surveyed in 2021 (25–50%) 
are still opposed to these restrictions and some are willing to violate 
them; thus a regulatory approach paired with real enforcement may 
be the only option to influence visitor behavior. Conversely, nearly half 
of respondents supported a firewood ban measure. Although 
regulatory approaches can be costly, it is likely that the cost of doing 
nothing will be  higher, due to expensive hazard tree removal 
(following insect-caused mortality) and decreased visitor satisfaction 
if widespread tree mortality changes the aesthetics, shade, and other 
tree-derived benefits from parks and campgrounds.

6 Conclusion and limitations

Awareness of the ‘Do not Move Firewood’ campaign from 2016 to 
2021 decreased. We also found that fewer people are bringing their 
own firewood from home in 2021 when going camping. Campers are 
opting instead to either buy firewood from the camp store located 
within the campground or from local vendors in the surrounding 
areas. Similarly, most respondents stated they have concerns with 
invasive insects and pests in general, yet few feel they have any actual 

TABLE 2  Campers’ perceptions of a firewood ban across two surveys (2016 and 2021).

Year Do not support (%) Neutral (%) Support (%)

2016 30 30 40

2021 25 13.6 59.1
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knowledge about them, in keeping with other findings (Solano et al., 
2022). While fewer people are bringing their own firewood from 
home while camping, this may be due to convenience or coincidence, 
rather than any actual worry about the damage that could be done by 
pests and insects in firewood. The 2016 surveys were conducted at 
parks closer to the quarantine area, where visitors may have had 
higher awareness than those from the 2021 surveys. Between 2016 and 
2021, the emerald ash borer invasion shifted from intense outbreaks 
to post-invasion urban and suburban forest (Ward et al., 2021), thus 
outreach efforts likely decreased during this time as well. These could 
be potentially confounding factors that limit the comparability of 
survey results, thus the focus should be on general perspectives and 
concern for invasive insects and support for policy mechanisms overall.

While support for firewood-restricted behaviors may 
be increasing as outreach campaigns percolate to the public, at least 
25–50% of respondents are still opposed to these restrictions and 
some are willing to violate them, in keeping with other findings 
(Robertson and Andow, 2010). Our results include data from two 
surveys conducted at different campsites across Michigan. They may 
not be directly comparable in terms of camper demographics, thus 
impacting generalizability of the results. To move beyond descriptive 
statistics and enable statistically comparable trends over time, future 
research could investigate experimental work that compares a site with 
regulation and enforcement vs. outreach and voluntary compliance to 
determine which is most effective in reducing firewood transport. 
Future research should also provide a full economic cost–benefit 
analysis to compare the cost of a regulatory approach versus the cost 
of ‘doing nothing’ and instead experiencing insect-induced tree 
mortality for critical and high-value parks and campgrounds.
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This study investigates the e�cacy of combined treatment strategy,
incorporating pheromones for bark beetle I. typographus (IT) and attractant of its
natural enemy T. formicarius (TF), along with anti-attractants for IT (containing
1-hexanol, 1-octen-3-ol, 3-octanol, eucalyptol, trans-thujanol, and trans-
conophthorin), to enhance protection methods for Picea abies against biotic
disturbances. Two field experiments—trapping experiment and tree protection
experiment—were conducted in June 2023 in managed spruce-dominated
beetle-a�ected stands in Czechia. We anticipated higher catches of IT in traps
baited with IT pheromone (containing s-ipsdienol, s-cis-verbenol, and 2-
methyl-3-buten-2-ol) and TF attractant compared to traps using IT pheromone
alone, since compounds intrinsic to IT pheromone, namely 2-methyl-3-buten-
2-ol, ipsenol, and ipsdienol, are integral components of the attractant designed
for TF. We hypothesized that application of TF attractant and IT anti-attractant
would enhance the treatment’s protective properties, assuming that attracted
TF would function as a predator, reducing bark beetle population and increasing
tree survival rates. Semiochemical composition declared by the producers was
verified using gas chromatography-mass spectrometry analysis. In the trapping
experiment, EcoTrap-type traps were baited with six combinations of lures and
anti-attractant. In the tree protection experiment, 28 mature Norway spruce
trees situated at newly created forest edges underwent four treatment types:
TF attractant, IT anti-attractant, their combination, and no treatment (“control”).
Traps baited solely with TF attractant did not capture either beetle, whereas
traps lured with IT pheromone, TF attractant and anti-attractant showed no
captures of IT but recorded the highest numbers of TF, suggesting significant
potential for combined treatment e�cacy. Surprisingly, tree mortality was
observed exclusively among trees treated only with TF attractant and in their
vicinity, suggesting unique bark beetles’ response to the mixture of predator’s
attractant and host tree kairomones, a phenomenon that was not previously
reported. Application of anti-attractant and TF treatment e�ectively prevented
tree mortality, demonstrating the repellent potential of IT anti-attractant against
bark beetles. However, mortality rates showed no significant di�erences among
control trees, those treated with anti-attractants, or those treated with the
combination of anti-attractants and TF attractant, underscoring necessity for
further research to optimize treatment e�cacy.

KEYWORDS

bark beetle, Picea abies, natural enemy, ipsdienol, ipsenol, drought, climate change,

semiochemicals

Frontiers in Forests andGlobal Change 01 frontiersin.org152

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2024.1383672
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2024.1383672&domain=pdf&date_stamp=2024-05-16
mailto:korolyova.n@czechglobe.cz
https://doi.org/10.3389/ffgc.2024.1383672
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1383672/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Korolyova et al. 10.3389/�gc.2024.1383672

1 Introduction

The escalating frequency and severity of drought waves and

windstorms have induced widespread bark beetle disturbances,

significantly impacting vast forested regions (Millar and

Stephenson, 2015). In Europe, the preeminent economic pest, the

bark beetle Ips typographus (L., 1758), has inflicted damage on tens

of millions of Norway spruce trees in recent decades, resulting in

pronounced ecological, economic, and social consequences (Senf

and Seidl, 2018). Forest owners employ a spectrum of measures

to protect their stands and mitigate the bark beetle outbreaks.

These strategies encompass the timely removal of infested trees,

the implementation of pheromone traps, and the application of

anti-attractants (Fettig and Hilszczański, 2015). Nevertheless,

the limited cost-effectiveness of such measures over extensive

areas during severe outbreaks necessitates a continued search

for efficient, economically viable, and environmentally friendly

methods to control I. typographus population densities.

In the population control strategy of bark beetles, their natural

enemies play a significant role (Wermelinger, 2004; Wegensteiner

et al., 2015). One of the key predators of the critical forest pest I.

typographus is the clerid beetle Thanasimus formicarius (L., 1758).

T. formicarius has been observed in association with numerous

species of bark beetles inhabiting both coniferous and deciduous

trees (Wehnert and Müller, 2012). The species demonstrates

an affinity for bark beetle pheromone components and host

tree volatiles (Rudinský et al., 1971; Bakke and Kvamme, 1981;

Schroeder and Lindelöw, 1989; Hulcr et al., 2006). Adult predators

target adult bark beetles before they bore into host trees and lay

their eggs in bark crevices of recently infested trees (Schroeder,

1999). The flight season of T. formicarius usually begins inMarch or

April and lasts for several months (Schroeder, 2003). T. formicarius

exhibits flight patterns similar to those of I. typographus, except

in early spring. During this period, T. formicarius preys on other

bark beetle species whose flight periods begin earlier than the I.

typographus one (Schroeder, 1996; Wehnert and Müller, 2012).

Adult individuals predominantly feed on adult bark beetles and

their larvae, while the larvae of T. formicarius move within the

galleries of bark beetles, hunting for bark beetle larvae (Koçoglu

and Özcan, 2018). The density of the T. formicarius population

positively correlates with the population density of bark beetles.

Concurrently, elevated levels of bark beetle population density

result in elevated larval mortality due to predation by T. formicarius

(Weslien, 1994). Meshkova et al. (2021) demonstrated that the

experimental realize of T. formicarius into pine stands resulted

in a faster decline of Ips sexdentatus outbreaks compared to the

control stands.

The field of chemical ecology pertaining to the interactions

between T. formicarius and I. typographus witnessed significant

progress since the mid-1980s (Bakke and Kvamme, 1981; Hansen,

1983), with the predominant focus of further research directed

toward the examination of pheromone compounds produced by

I. typographus, that elicit attraction in T. formicarius (Hulcr et al.,

2006; Etxebeste et al., 2012). The chemical composition of I.

typographus pheromone encompasses several compounds. The

primary examples among them are 2-methyl-3-buten-2-ol (MB)

and cis-verbenol (cV), which collectively serve as the principal

aggregation pheromones for I. typographus (Vité et al., 1972; Bakke,

1977; Bakke and Kvamme, 1981; Birgersson et al., 1984, 1988).

MB specifically influences the orientation of I. typographus at

short distances, and has been observed to enhance the likelihood

of their landing (Schlyter et al., 1987). Ipsdienol (Id), present

in modest quantities in males prior to mating, augments the

overall attractiveness of the I. typographus pheromone (Vité

et al., 1972; Bakke, 1977; Bakke and Kvamme, 1981; Schlyter

et al., 1992). Scientists supposed that 2-phenylethanol could

be a minor component of the aggregation pheromone of I.

typographus (Birgersson et al., 1984; Sun et al., 2006; Xie and Lv,

2013). Following copulation, males produce ipsenol (Ie), an anti-

aggregation pheromone which, in conjunction with verbenone,

assumes a pivotal role in regulating the density of bark beetle

galleries under the bark. Additionally, at elevated concentrations,

these two substances can redirect bark beetle attacks toward

neighboring trees (Bakke and Kvamme, 1981; Hansen, 1983;

Birgersson et al., 1984, 1988; Sun et al., 2006).

Previous studies have shown that T. formicarius, attracted by

the aggregation pheromone of I. typographus, is specifically drawn

to cV. MB, the second component of the aggregation pheromone,

neither attracts T. formicarius nor enhances the attractiveness

of cV when added to the mixture. In contrast, Id is highly

attractive for T. formicarius, even more so than the aggregation

pheromone of I. typographus (Hulcr et al., 2006). Etxebeste et al.

(2012) found that Ie is also a highly attractive semiochemical

for T. formicarius. The combination of Id and Ie was reported

to be the most attractive mixture for T. formicarius (Bakke and

Kvamme, 1981; Hulcr et al., 2006). Hansen (1983) concluded that

T. formicarius has olfactory receptors for all four compounds

(cV, MB, Ie, Id). Considering that MB has no attractive effect,

the kairomonal response of T. formicarius to the mixture of I.

typographus pheromonal compounds, cV, Id, and Ie is evident

(Hansen, 1983). Tømmerås (1985) found that T. formicarius has

highly specialized olfactory receptors on its antennae, specifically

tuned to bark beetle pheromones. That author describes receptors

that are capable of detecting (+)-ipsdienol, (–)-ipsdienol, (S)-cis-

verbenol, (–)-ipsenol, (+)-lineatin, and (–)-verbenon, suggesting

that the predator T. formicarius can distinguish among various

species of bark beetles. However, it remains unclear how the

commercial attractant developed for T. formicarius influences

the trap catches of I. typographus and, more specifically, how it

modifies the host colonization behavior of I. typographus in natural

forest settings.

Numerous compounds that have been proven to deter I.

typographus have been previously identified. Verbenone, the first

compound, is synthesized either from the host compound α-

pinene or by converting cis-verbenol, the primary pheromone

component for I. typographus (Birgersson and Leufvén, 1988).

Another category encompasses non-host volatiles, such as trans-

conophthorin and green leaf alcohols, e.g., 1-hexanol and (Z)-

3-hexen-1-ol, commonly found in species like birch and aspen

(Zhang et al., 1999). Additionally, C8 alcohols emitted from the

barks of these trees act as deterrents. Eucalyptol, a relatively new

compound, has demonstrated field effectiveness, exhibiting better

precision than verbenone by inhibiting cis-verbenol at the single-

sensillum level (Andersson et al., 2010; Binyameen et al., 2014).
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Recently, oxygenated monoterpenes derived from host trees, such

as trans-thujan-4-ol, have been reported to possess anti-attractant

properties (Kalinová et al., 2014; Blažytė-Čereškienė et al., 2016;

Schiebe et al., 2019; Jirošová et al., 2022). These compounds have

been incorporated into dispensers for tree protection, yielding

various degrees of success (Jakuš et al., 2003, 2022, 2024; Schiebe

et al., 2011; Deganutti et al., 2023). A novel dispenser, developed

by Jakuš et al. (2024) and devoid of beetle-derived compounds,

has exhibited promising efficiency. However, anti-attractants are

still not widely used in practical forest protection measures

due to their limited effectiveness and relatively high costs in

tree protection.

Zuhlke and Mueller (2008) proposed a method for

controlling bark beetle population density by attracting

their predators, such as T. formicarius, to their habitats.

The authors explored the concept of selective attraction

using attractants that contain only some components of

the bark beetle’s attractant bouquet. They found that even

with only one, two or three components, these attractants

effectively lured predators of the target bark beetle species.

However, if certain specific components are missing, these

attractants fail to attract or only minimally attract the target

beetles, even in areas where they are abundant (Zuhlke

and Mueller, 2008). The potential of using the combined

treatment comprising the attractant for T. formicarius and anti-

attractant for I. typographus in Norway spruce protection

against biotic disturbances has not been experimentally

studied in field conditions. Investigating these questions

could contribute to the improvement of tree protection

measures and strategies involved in forest management

pest control.

The aim of this study is to assess the efficacy of the

attractant that has been developed for T. formicarius in capturing

T. formicarius and I. typographus in pheromone traps and

mitigating spruce tree mortality. Additionally, the paper examines

the feasibility of using a combined treatment, that consists

of the attractant for T. formicarius and anti-attractant for I.

typographus, to protect trees against I. typographus attacks.

We also aim to develop a basis for further reinforcing the

effectiveness of our tree protection method based on the use

of anti-attractants (Jakuš et al., 2024). We anticipated observing

the highest I. typographus catches in traps baited with the

pheromone of I. typographus and attractant developed for T.

formicarius. As compounds that are intrinsic to the I. typographus

pheromone constitute components of the attractant that was

designed for T. formicarius (MB, Ie, Id), we hypothesized that

the traps baited with I. typographus pheromone and attractant

of T. formicarius would exhibit the highest catches of I.

typographus. We also hypothesized that application of both

an attractant for T. formicarius and an anti-attractant for I.

typographus on spruce trees would enhance the treatment’s

protective properties, assuming that attracted T. formicarius would

prey on potential pioneer bark beetles. We anticipated that the

attractant of T. formicarius would not attract I. typographus.

If any I. typographus lands on a tree, it would be killed by

elevated numbers of T. formicarius, which function as predators,

consequently mitigating tree mortality by reducing the bark beetle

population density.

2 Materials and methods

2.1 Study areas

2.1.1 Kostelec nad Černými lesy
Field trapping experiments were established in a forest near

the town of Kostelec nad Černými Lesy in Central Bohemia

(coordinates 49.9146136◦ N, 14.8780744◦ E, altitude 460m above

sea level). The 90-year old forest stand predominantly consisted

of P. abies (70%) with a mixture of L. decidua (20%) and P.

sylvestris (10%). A recent bark beetle calamity led to the clearing

of a gap in the middle of the stand, where a trapping experiment

was conducted. The study plot is situated within the area managed

by the School Forest Enterprise (SLP) near the town of Kostelec

nad Černými Lesy in the Central Bohemian Region of the Czech

Republic. The SLP spans approximately 5,700 ha of forest land and

is administrated by the Czech University of Life Sciences Prague

(CZU). The region experiences mild winters, with average annual

temperatures ranging from 7.0 to 7.5◦C. Annual precipitation

averages 650mm, and the vegetation season typically lasts from 150

to 160 days (Tolasz et al., 2007). Currently, the area is affected by

an I. typographus outbreak, which began after the drought in 2018

(Pirtskhalava-Karpova et al., 2024).

2.1.2 VU Libavá
The tree protection experiment was conducted in 40-year old

Norway spruce-dominated stands, with spruce comprising 90%

of stand composition, situated in the Potštát Forest district, near

Vojenský Újezd Libavá1 (VU Libavá) in the Olomouc District,

in the north-eastern sector of the Czech Republic (coordinates

49.670319◦ N, 17.545289◦ E). The area encompasses the Libavá

administrative district, which is designated for military forestry

and agricultural activities, and has functioned as the training

grounds for the Czech army since 1946. The topography of the

region is undulating, with elevations ranging between 500 and

650m. The average annual air temperature is in the range of

5–6◦C, with the average daily temperature during the growing

season (April–September) not surpassing 12◦C in VU Libavá.

Annual precipitation averages between 700 and 800 mm/year

(Tolasz et al., 2007). The prevalent monoculture of spruce trees,

characterized by a low static stability, renders them susceptible to

frequent wind-induced damage. The windstorm of 1991 provoked

a sequence of enduring bark beetle infestations. Exacerbated by the

impacts of climate change, this infestation induced a significant

decline in the forested area. The region’s military training activities

impose constraints on the implementation of conventional forest

management and pest control practices in the Potštát Forest

district. In 2018, bark beetles proliferated over extensive spruce

stand areas. Simultaneously, a severe drought, affecting the entire

Central European region (Buras et al., 2020), induced large-

scale forest dieback that persisted into 2019. Preceding the

commencement of the experiment, a sanitary felling initiative was

undertaken, involving the removal of deceased and infested trees

within the stands that were designated for this study.

1 Available online at: https://www.vojujezd-libava.cz/vismo/dokumenty2.

asp?u=9342&id_org=9342&id=3381 (accessed January 20, 2024).
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2.2 Semiochemicals

A commercial pheromone lure, Pheroprax A (BASF GmbH,

Germany), was used as attractant for I. typographus. According

to the material safety data sheet (MSDS), the dispenser contains

s-ipsdienol, s-cis-verbenol, and 2-methyl-3-buten-2-ol. The

second attractant dispenser used in our study was ThanasiWit
R©

(Witasek PflanzenSchutz GmbH, Feldkirchen in Kärnten, Austria),

that was designed for T. formicarius, which contains 2-methyl-

3-buten-2-ol, ipsenol, ipsdienol, and phenylethanol. As an

anti-attractant for I. typographus, a pouch dispenser containing

green leaf and non-host volatiles 1-hexanol, 1-octen-3-ol, 3-

octanol, eucalyptol, trans-thujanol, and trans-conophthorin

was produced by Synergy Semiochemicals Corp. (British

Columbia, Canada), in accordance with the formula published in

Jakuš et al. (2024).

2.2.1 Gas chromatography-mass spectrometry
To check the composition of the dispensers, solid phase

microextraction (SPME) from the headspace over the dispenser

was used. Freshly opened specimen from the dispenser was placed

into a 5 L glass jar, which was then sealed using aluminum foil

and a lid. Volatile sampling was conducted at room temperature,

5min after a 5-min incubation. Compound separation was

performed using a two-dimensional gas chromatograph coupled

with a time-of-flight mass spectrometer (GC × GC-TOF–MS)

(Leco Pegasus 4D, LECO Corp., Michigan, USA). The hot

split/splitless injector (275◦C) was operated in a split mode (100:1

split ratio). Separation of the compounds was performed on

two chromatographic columns connected in a consumable-free

modulator. The HP-5MS UI column (0.25mm i.d., 0.25µm film

thickness) and the VF-17MS column (1.5m, 0.1mm i.d., 0.1µm

film thickness) were employed for the first- and second-dimension

separations, respectively. Both columns were manufactured by

Agilent Technologies (USA). The temperature programme for

separation started at 40◦C with a hold time of 2min, followed by

a gradient of 10◦C min−1 to 120◦C, and then at 20◦C min−1 to

300◦C with a hold time of 2min. The secondary oven and the

modulator had temperature offsets of 5 and 15◦C, respectively.

A 5-s modulation period was used. The separated compounds

underwent ionization in the ion source of MSD at 70 eV, and

full spectral (35–500 Da) information was acquired at 100Hz.

The compounds were identified using mass spectral similarity,

and confirmed via retention index comparison. For comparative

analyses, mass spectra and retention indexes were referenced

from the NIST Mass Spectral Libraries (Mass Spectrometry Data

Center, NIST, USA), except in the case of trans-conophthorin,

for which the mass spectrum was sourced from Zhao et al.

(2019).

2.3 Experimental design

2.3.1 Trapping experiment
Six EcoTrap-type traps were installed in a clearing of a stand

that had previously been affected by bark beetles. The traps were

situated along the edges of the spruce stand, which featured

TABLE 1 Experimental variants (treatment types) used in the trapping

experiment.

Dispenser
variant

Pheroprax A ThanasiWit
®

Anti-
attractant

PhI + – –

TA – + –

AI – – +

PhI+ TA + + –

AI+ TA – + +

PhI+ TA+ AI + + +

PhI, I. typographus pheromone; TA, T. formicarius attractant; AI, anti-attractant for

I. typographus.

larch and pine admixture, spaced 15m apart and positioned

20m from the forest edge. The traps were baited with the

pheromone lure for I. typographus Pheroprax (PhI), attraction

lure for T. formicarius Thanasiwit (TA), a lure with a customized

mixture of anti-attractants for I. typographus (AI), and their

combinations (PhI; TA; AI; PhI + TA; AI + TA; PhI + TA

+ AI, Table 1). The experiment took place in June 2023, with

traps being inspected at intervals of 2–3 days. Bait rotation was

implemented using the Latin Square method. After each beetle

collection, the count of T. formicarius was recorded, and the

estimation of I. typographus numbers was derived from the volume

of catches.

2.3.2 Tree protection experiment
On 2 June 2023, in the Libavá military forest study area,

we conducted a tree protection experiment on 28 mature

Norway spruce trees using T. formicarius attractant and I.

typographus attractant. We selected visually healthy spruces

that were upper-canopy or mid-canopy individuals. To achieve

homogeneous experimental conditions, our seven plots and

selected trees were situated alongside the extended recently

created southern-oriented forest edge, which resulted from

salvage cutting immediately preceding the experiment. The

average diameter at breast height of the experimental trees

was 17 cm, with an average height of 16m, as indicated in the

forest management plan. The goal of the experiment was to

investigate the efficiency of using T. formicarius attracatant

in protecting Norway spruce trees against I. typographus

colonization. We also aimed to test the viability of employing an

attractant for T. formicarius, coupled with an anti-attractant

for I. typographus, as a preventive measure against mass

attacks of I. typographus. In each plot, four trees were treated

with four different treatment variants: (A) anti-attractant

for I. typographus (AI); (B) attractant for T. formicarius

(TA); (C) anti-attractant for I. typographus and attractant

for T. formicarius (AI+TA; (D) control (no treatment). The

minimal inter-tree distance was 12m, in order to prevent the

potential transfusion of olfactory signals among the treated

trees that could potentially obfuscate the results (Schlyter et al.,

1987). The plots were spaced 50m apart. We monitored the
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statuses of the treated trees (beetle-killed vs. non-attacked) for

4 months.

2.4 Statistical methods used in the analysis
of the experiment results of trapping and
tree protection

To compare I. typographus and T. formicarius catches

among six different trap treatments (variants) in the Kostelec

nad Černými lesy part of the study area, and bark beetle-

caused tree mortality among four treatment types in the

Libavá military forest part of the study area, we used a one-

way ANOVA. The normality of the distribution of residuals

in the ANOVA model was checked using the Shapiro-Wilk

test from the stats package in R (R development Core Team

2023). The Levene test of the equality of variances from the

car package in R was also used. If assumptions regarding

the ANOVA model were not met, we used a non-parametric

Kruskal-Wallis rank sum test from the stats package in R

to compare I. typographus and T. formicarius catches and

tree mortality among different treatment types. Dunn’s test of

multiple comparisons (i.e., a post-hoc test) (FSA package in R)

was used to identify the pairs of treatments, for which the

catches of I. typographus and T. formicarius, and tree mortality

were significantly different. We used Holm’s method for the

adjustment of p-values regarding multiple comparisons (Holm,

1979). To visualize the results of pairwise comparisons, we

quantified a compact letter display at 0.05 significance level

using a cldList() function from the rcompanion package in R.

To compare the total trap catches between two bark beetle

species, we used a non-parametric Mann-Whitney U-test for two

independent non-normally distributed groups. All analyses were

performed in R.

3 Results

3.1 Compounds identified in the tested
dispensers

The results of GCMS analysis, performed for the pheromone

designed for I. typograpus, the attractant designed for T.

formicarius, and I. typographus anti-attractant revealed

11 compounds detected in the tested dispensers. The

identified compounds corresponded to the components

declared by the producers of semiochemicals. Particularly,

the attractant designed for T. formicarius (ThanasiWit
R©
)

incorporated 2-methyl-3-buten-2-ol, ipsenol, ipsdienol,

and phenylethanol. Apart from 2-methyl-3-buten-2-ol and

ipsdienol, a commercial pheromone lure developed for I.

typographus (Pheroprax A) contained verbenol. Anti-attractant

components comprised green leaf and non-host volatiles 1-

hexanol, 1-octen-3-ol, 3-octanol, eucalyptol, trans-thujanol,

and trans-conophthorin (Supplementary Table S1). Two-

dimensional chromatographs derived for I. typographus

pheromone, T. formicarius attractant, and I. typographus

anti-attractant are depicted in the form of contour plots

(Figure 1).

3.2 Trapping experiment

The total trap catches of I. typographus measured for all

treatments (19,340 beetles) were incomparably larger than the total

catches of T. formicarius (25 beetles) (p = 0.013). The number of

both I. typographus and T. formicarius catches significantly differed

among six treatment types (Supplementary Table S2). Traps baited

with I. typographus pheromone caught significantly more I.

typographus (PhI) than traps baited with T. formicarius attractant

(TA) (Figure 2A; Supplementary Table S3). Correspondingly, larger

numbers of I. typographus were caught when PhI was added to

TA than when traps were baited with only TA. Conversely, traps

baited with TA and PhI did not catch increased numbers of I.

typographus compared to traps baited with PhI alone. Similarly,

we did not observe significant differences in I. typographus catches

between traps baited with I. typographus anti-attractant (AI) and

AI + TA. However, the number of catches were significantly

higher in traps baited with PhI, TA and AI, compared to traps

baited with AI and TA+AI alone (Supplementary Table S3). Traps

baited with both species’ attractants did not catch significantly

larger numbers of I. typographus when AI was added to the

traps. We identified significantly smaller number of I. typographus

catches in traps baited with anti-attractant and anti-attractant

coupled with T. formicarius attractant than in traps lured with

the pheromone of I. typographus and attractant of T. formicarius.

However, there was no significant difference in I. typographus

catches observed in traps lured with the pheromone of I.

typographus and attractant for T. formicarius, and traps in which

both dispensers were coupled with anti-attractant (Figure 2A;

Supplementary Table S3).

T. formicarius catches did not vary significantly among the

treatments, except for the catches recorded in traps treated

with I. typographus anti-attractant vs. traps treated with I.

typographus pheromone, attractant for T. formicarius, and

anti-attractant (Figure 2B; Supplementary Table S3), for which

the highest number of T. formicarius catches was observed.

The count of beetles in traps treated with both I. typographus

pheromone, attractant for T. formicarius, and anti-attractant

exceeded the corresponding value in traps without anti-attractant,

yet the difference was statistically insignificant (Figure 2B;

Supplementary Table S3). Traps baited with the attractant for

T. formicarius (TA) failed to capture either T. formicarius or

I. typographus.

3.3 Tree protection experiment

The results of the tree protection experiment that was

conducted in the Libavá military forest part of the study area

indicate that the largest number of bark beetle-killed trees was

observed for individuals treated with TA (Figure 3). Actually,

all trees treated with the attractant developed for T. formicarius
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FIGURE 1

Two-dimensional chromatographs depicting the emissions from the tested dispensers. Panel (A) represents ThanasiWit
®
, Panel (B) showcases

Pheroprax A, and Panel (C) delineates the customized anti-attractant. A total ion chromatogram is utilized for the contour plot. When necessary,
di�erent colors are employed to highlight characteristic masses of co-eluting compounds. Specifically, trace amounts of trans-conophthorin are
marked with the mass spectra of m/z 84 in orange, 87 in green, 97 in blue, 112 in black, and 156 (molecular ion) in gold color. Additionally,
trans-thujanol is indicated with m/z 93 in orange, 121 in green, 136 in blue, and 154 in black. Major signals in the chromatograms were identified as
components of the dispenser, aligning with the formulae published in the respective MSDS, or in Jakuš et al. (2024).

were attacked and killed by I. typographus. The number of

these trees significantly differed from the mortality rates recorded

for the rest of the treatment types (Supplementary Table S4).

Bark beetles did not attack individuals treated with AI and

AI+TA, and also they did not colonize the untreated trees (i.e.,

control samples).
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FIGURE 2

Boxplots showing the numbers of I. typographus (A) and T. formicarius (B) catches in Kostelec nad Černými lesy study area among six treatment
types indicated by color. Definitions are PhI, I. typographus pheromone; TA, T. formicarius attractant; AI, I. typographus anti-attractant. The
di�erences in catches among treatment types were checked using the Kruskal-Wallis rank sum test. Pairwise comparisons were performed using
Dunn’s multiple comparison (post-hoc) test with Holm’s adjustment of p-values for multiple comparisons. Compact letter display (lowercase letters
“a”–“c” and their combinations) indicates (in)significance in catches between treatment pairs at 0.05 significance level. If any two given treatment
types within a panel share at least one common letter, the number of catches does not significantly di�er between them. Conversely, if any two
given treatment types within a panel do not share any common letters, the number of catches significantly varies between them. The horizontal lines
inside the boxplots correspond to the median catch values. The boxes display the interquartile range, which represents the middle 50% of the data.
The error bars are the 95% confidence intervals.

4 Discussion

4.1 T. formicarius attractant and I.

typographus trap catches

In total, we caught a significantly larger number of

I. typographus beetles than T. formicarius beetles, which

approximately corresponds to the balance between predators

and their prey existing in natural bark beetle communities (Reeve,

1997; Turchin et al., 1999). The T. formicarius/I. typographus ratio

observed by us (1/774) and based on the number of catches in

the baited traps is consistent with previously published empirical

evidence on the same species (Warzée et al., 2006). Previous

research (Warzée et al., 2006) has indicated that the proportion

of pines within a 500-m radius significantly influences these

ratios in traps. In this study, our objective was not to quantify the

effects of stand composition on the abundance of predator/prey

ratios. Given that our experimental plots were situated in a

spruce-monodominated forest, with P. abies comprising nearly

100% of the trees, we aimed to ensure homogeneous experimental

conditions, including consistent proportions of host trees, across

all plots. Consequently, drawing conclusions about the impact

of stand composition on predator/prey ratios and the number

of beetle catches would be hindered by the lack of available data

resulting from our experimental settings.

Contrasting our expectations, the results of the trapping

experiment conducted in the Norway spruce stands in the Kostelec

nad Černými lesy part of the study area indicate that traps treated

with the I. typographus pheromone and attractant for T. formicarius

caught smaller, though insignificantly, numbers of I. typographus

compared to the traps treated with I. typographus pheromone alone

(Figure 2A). Interestingly, the number of T. formicarius catches

also did not vary significantly between the traps treated with the

I. typographus pheromone and attractant for T. formicarius, and

traps baited with I. typographus pheromone alone (Figure 2B).

A larger sample size may be needed in order to detect a more

pronounced number of the clerid beetle caught in traps baited with

I. typographus pheromone and attractant for T. formicarius. The

number of I. typographus catches varied more often among the

treatments than the number of T. formicarius catches, presumably

due to an inherently smaller overall population density that is

commonly observed for T. formicarius, being a natural enemy of

I. typographus (Warzée et al., 2006).

Surprisingly, traps treated solely with the attractant designed

for T. formicarius failed to capture either T. formicarius or

I. typographus. However, in traps treated with both attractants

(I. typographus pheromone and T. formicarius attractant) and

anti-attractant, no I. typographus were caught, while the highest

numbers of T. formicarius were observed (Figure 2). The absence

of I. typographus catches in the combined treatment traps may

be attributed to the strong repellent effects of tree-based anti-

attractants comprising the anti-attractant dispenser (Jakuš et al.,

2024). The deterrent effect might have outweighed the luring

effect of the I. typographus attractant, despite the latter presumably

being enhanced by the presence of Ie, Id, and MB—compounds

constituting the T. formicarius attractant dispenser. While, to our

knowledge, there is no evidence in the literature in support of

T. formicarius attraction to the compounds comprising the anti-

attractant, previous studies have reported catches of Thanasimus

dubius in traps baited with eucalyptol (Munro et al., 2020),
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FIGURE 3

Boxplots showing tree mortality during the tree protection
experiment, conducted in the Libavá military forest part of the study
area, by treatment type. The y-axis represents the number of bark
beetle-killed Norway spruce trees. Definitions: AI is I. typographus
anti-attractant, TA is T. formicarius attractant, control designates the
absence of treatment. The di�erences in tree mortality among
treatment types were checked using the Kruskal-Wallis rank sum
test. Pairwise comparisons were performed using Dunn’s multiple
comparison (post-hoc) test with Holm’s adjustment of p-values for
multiple comparisons. Compact letter display (lowercase letters “a”,
“b”) indicates (in)significance in tree mortality between the treatment
pairs at 0.05 significance level. If any given two treatment types do
not share a common letter, the number of bark beetle killed trees
significantly di�ers between them. The horizontal lines inside the
boxplot correspond to the median tree mortality value. The box
displays the interquartile range, which represents the middle 50% of
the data. The error bars are the 95% confidence intervals.

a compound known to act as a repellent for I. typographus

(Andersson et al., 2010; Binyameen et al., 2014), and a key

component of our anti-attractant mixture. The results of our

trapping experiment demonstrate the considerable potential of

the combined use of an attractant for T. formicarius and anti-

attractants in tree protection.

4.2 T. formicarius attractant and I.

typographus caused spruce mortality

We recorded tree mortality only in trees baited with attractant

for T. formicarius and trees in their proximity, which contradicts

our expectations (Figure 3). The influence of T. formicarius on

the population dynamics of I. typographus was reported to

be substantial (Mills, 1985, 1986; Weslien, 1992; Weslien and

Regnander, 1992), primarily owing to its considerable reproductive

capacity (106–162 eggs per female) and its significant voracity both

in the adult stage (consuming 0.86 to 2–3 adult I. typographus

day−1) (Weslien and Regnander, 1992; Faccoli and Stergulc, 2004)

and during the larval stage (preying upon 44–57 larvae throughout

its entire larval life) (Mills, 1985; Hérard and Mercadier, 1996;

Dippel et al., 1997). Thus, we anticipated that the attractant of T.

formicarius will not attract I. typographus and if any I. typographus

lands on tree, it will be killed by the elevated numbers of T.

formicarius, functioning as a predator. The mortality of individuals

treated with attractant designed for T. formicarius was possibly

caused by a synergistic effect of spruce primary attractants and

the components of T. formicarius attractant (2-methyl-3-buten-2-

ol, ipsenol, ipsdienol) on I. typographus colonization behavior. To

the best of our knowledge, the previously published literature does

not provide evidence for a spruce mortality increase in response

to such a mixture of compounds. However, traps baited with T.

formicarius attractant did not catch either of the beetles, supposedly

due to the low population densities of the clerid beetle and

potentially higher comparative attractiveness of the traps baited

with both I. typographus pheromone and T. formicarius attractant.

The absence of tree mortality observed among the control trees

in our experiment may be attributed to the relatively low bark

beetle population in the study area, notwithstanding the fact that

it is sufficient to cause mortality among individuals treated with T.

formicarius attractant.

We observed that trees treated with a combination of anti-

attractant and T. formicarius attractant were not affected by the

bark beetles (Figure 3). This outcome suggests that the repelling

effect of the anti-attractant, composed of green leaf and non-

host volatiles (1-hexanol, 1-octen-3-ol, 3-octanol, eucalyptol, trans-

thujanol, and trans-conophthorin), could be strong enough to

overwhelm the attractiveness of the compounds that are present

in the T. formicarius attractant. The absence of variation in

tree mortality rates among the control trees, trees treated with

anti-attractants, or trees treated with a combination of anti-

attractant and T. formicarius attractant, hinders a comprehensive

understanding of the effects of the combined treatment. Results

from trapping experiments suggest that the combined treatment

could held the greatest potential for improving tree protection

methods. To unravel the mechanisms underlying the efficacy of the

combined treatment, further experiments employing pheromone

traps would be required that are aimed at identification of the

optimal composition of dispensers with compounds repelling I.

typographus and attracting T. formicarius.

4.3 Limitations of tree protection
experiment

The number of replications (7) in the tree protection

experiment was largely constrained by the availability of suitable

forest edges in the study area. We acknowledge that the number

of replications used in this study may be perceived as relatively

small. However, it is comparable to the number of replications used

in similar tree protection experiments conducted in spruce stands

in the field of chemical ecology of bark beetles, typically ranging

from 10 to 25 (Christiansen and Krokene, 1999; Graves et al., 2008;

Mageroy et al., 2020). Our results showed statistically significant

differences in the number of bark beetle-killed trees among

the treatment types, suggesting that the number of replications

implemented can be deemed adequate. Considering the observed

pattern of bark beetle attacks experienced exclusively by the

individuals treated with T. formicarius attractant, we assume that

increasing the number of replications would be unlikely to alter the

statistical significance of our findings.
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The second limitation of our tree protection experiment is the

absence of a variant involving the attachment of I. typographus

pheromone dispensers to the spruce trees. Application of this

treatment would likely result in augmented numbers of bark beetle

attacks on all treated trees, a pattern reported in previous studies,

especially in forest edge conditions exposed to relatively high bark

beetle pressure (Mulock and Christiansen, 1986; Weslien et al.,

1989; Hübertz et al., 1991). The potential outcomes of using I.

typographus pheromone dispensers are predictable and suggest

significant infestations, including the possibility of widespread I.

typographus proliferation throughout the entire stand, which could

disrupt the homogeneous experimental conditions established for

the rest of the treatments. Additionally, obtaining permission

from the local authorities to apply such treatment would be

challenging, if not impossible. Overall, implementing this variant

correctly would require significant alterations to the experimental

design, including a substantial increase in the spacing between

experimental trees, which was unfeasible due to constrained

availability of suitable forest edges in the study area.

We have made every effort to maintain homogeneous

experimental conditions, employing the maximum number of

replications feasible in our study area, and applying all permitted

treatment types that would not potentially bias the outcome. We

argue that the absence of tree mortality in all other groups, except

for the individuals treated with T. formicarius attractant, could

be explained by the luring effect of the T. formicarius attractant,

coupled with host tree volatiles, on bark beetle behavior. Contrary

to our expectations, this effect could overwhelm the anticipated

predatory activity of the increased numbers of T. formicarius

presumed to be lured by the attractant designed for this species.

Individuals treated with attractant for T. formicarius seem to be

more attractive for I. typographus than stressed untreated forest

edge trees that escaped infestation.

4.4 Forest management applications

Our experiments demonstrate the potential to enhance

the efficacy of anti-attractant treatments for tree protection

by combining I. typographus anti-attractant dispensers with

attractants designed for T. formicarius. Another implication of

our findings for enhancing forest management practices suggests

that attractant dispensers designed for T. formicarius should

not be employed to boost predator numbers in the absence of

simultaneously applied I. typographus anti-attractant, which repels

bark beetles. The green leaf and non-host volatiles emitted by

the anti-attractant act as deterrents for bark beetles (Zhang and

Schlyter, 2003, 2010; Unelius et al., 2014). The deterrent effect

could outweigh the attractive influence of the T. formicarius

attractant combined with host tree volatiles on I. typographus

aggregation behavior, as suggested this study. However, we contend

that additional development and field testing of semiochemical

mixtures are necessary to clarify the potential effects of the

attractants designed for both beetle species, I. typographus anti-

attractant, and host and non-host volatiles on the beetles’ behavior.

Specifically, for the enhancement of forest protection measures,

it would be advantageous to investigate how the behavior

of I. typographus and T. formicarius under field conditions

modifies, with different proportions of constitutive compounds in

admixtures, varying bark beetle population densities, and predator–

prey ratios.

The application of combined dispensers may prove particularly

effective in the later stages of bark beetle gradation, where higher

population densities of bark beetle predators are anticipated

(Weslien, 1994). This approach may be beneficial in localities

near unmanaged areas, where we expect a higher population of

bark beetle predators compared to managed stands (Weslien and

Schroeder, 1999). Additionally, ThanasiWit
R©
, a T. formicarius

dispenser employed in our experiment, can be used for attracting

the clerid beetles to localized areas of infestation and to wood stacks

in order to diminish bark beetle populations, as well as to prevent

the predator from being caught in pheromone traps. One possible

direction for further development of an improved dispenser could

involve using compounds that have not demonstrated any potential

attraction to I. typographus but are attractive to T. formicarius.

According to Zuhlke and Mueller (2008), chemical compounds

comprising the pheromones of various bark beetle species,

including those attacking broad-leaved trees, could potentially be

used to attract T. formicarius to its prey, I. typographus, without

simultaneously elevating the risk of bark beetle infestations in

host trees.

5 Conclusions

Our trapping experiment has shown that traps baited with a

combination of anti-attractant for I. typographus and attractant

for T. formicarius did not catch any I. typographus. Concurrently,

these traps caught the highest numbers of T. formicarius specimens.

This synergistic combination indicates promising potential for

enhancing tree protection measures. However, the observed

mortality of Norway spruce, exclusively in trees treated with

attractant dispensers designed for T. formicarius, highlights

potential risks associated with such applications. This suggests that

further investigation is necessary to optimize the composition and

compound proportions of the combined dispenser.
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Bark beetle detection method 
using electronic nose sensors. A 
possible improvement of early 
forest disturbance detection?
Tereza Hüttnerová * and Peter Surový 

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia

Forest ecosystems are long-term exposed to dry periods in Europe, which 
leads to a significant loss of vitality and higher mortality, especially in coniferous 
forests. Identifying stress in the early stages when measures can be  taken to 
protect the forest and living trees is crucial. Current detection methods are 
based on field surveys by forest workers or remote sensing methods to cover 
larger areas, which use changes in spectral reflectance of the forest canopy. In 
some cases, the attacked trees do not change their appearance, and based on 
calculations of vegetation indices from remote sensing data, the attack cannot 
be  mapped. We  present an innovative methodology based on non-optical 
analysis, namely identifying a group of volatile compounds and microclimate 
signs in forest stands that indicate stress factors in forest stands. An attacked 
tree by a bark beetle produces increased amounts of biogenic volatile organic 
compounds associated with defense, and the microclimate changes due to 
interrupted transpiration. In addition, the bark beetle uses the aggregation 
pheromone to attract more individuals and to attack the tree massively. In 
this study, we  tested three electronic noses (Miniature Bosch sensor device 
with 25,419 samples, Sensory device for environmental applications with 193 
samples, Handheld VOC Detector Tiger with 170 samples) in a freshly infested 
spruce stand. The measurement was conducted at ground level with the 
help of a human operator and was repeated six times to verify the detection 
capability of the electronic noses. To verify the capability of electronic noses to 
predict tree infestation, we used machine learning Random Forest. The results 
demonstrated that electronic noses can detect bark beetle infestation start 
(within 1 week of the first attack). The Miniature Bosch sensor device achieved 
the highest accuracy with a value of 95%, in distinguishing forest sections that 
are healthy and infested; the second most accurate electronic nose is the 
Sensory device for environmental applications, with an accuracy of 89%. Our 
proposed methodology could be used to detect bark beetle presence.

KEYWORDS

electronic noses, forest disturbances, odor mapping, stress detection, bark beetle, 
early detection

1 Introduction

Coniferous forest stands have been grappling with intense stress recently, including fires, 
drought, windstorms, and insect pests. The leading causes of damage are biotic disturbances, 
especially insect infestation. The resistance of the forest stand to stress is directly related to its 
vitality and the level of insect attack. Among the most significant pests are insects that feed on 
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the bast fibers of living trees, such as the Eurasian spruce bark beetle 
(Ips typographus (L.)) (Hais et al., 2016; Fernandez-Carrillo et al., 
2020; Bárta et  al., 2021). The emergence of bark beetles is often 
associated with increased temperature and drought, and the intensity 
of infestation depends on the complex interaction between the bark 
beetle, climatic conditions, forest conditions, and extreme natural 
events such as storms and fires (Schelhaas et al., 2003; Jönsson et al., 
2012; Marini et al., 2017; Hlásny et al., 2019; Patacca et al., 2023; 
Netherer et al., 2024).

Stressed trees under bark beetle attack secrete several times more 
biogenic volatile organic substances (mostly α-pinene, camphene, 
myrcene) than under resting conditions (Ghimire et al., 2016; Jaakkola 
et al., 2022; Hakola et al., 2023; Lehmanski et al., 2023; Netherer et al., 
2024). In the event of an attack by the Eurasian spruce bark beetle, as 
part of the chemical communication between these individuals, an 
aggregation pheromone is secreted, composed of 2-methyl-3-buten-
2-ol and cis-verbenol (Birgersson et al., 1984; Netherer et al., 2021; 
Moliterno et al., 2023). In addition to chemical changes, tree damage 
by bark beetles brings other non-optical symptoms, such as a change 
in the microclimate. Forest understories locally influence the 
microclimate, and compared to open areas, provide lower average 
temperatures and higher air humidity (Geiger et al., 1995; Morecroft 
et al., 1998; Aussenac, 2000; Kašpar et al., 2021). A healthy tree has 
transpiration 200–300 liters of water per day; in case of damage, the 
ability to transpire is impaired or completely stopped. In the case of 
reduced transpiration capacity of damaged trees, the temperature 
buffering decreases, and thus, leads to a higher temperature and lower 
air humidity (Kopáček et al., 2020).

Monitoring natural disturbances in a forest ecosystem is a key 
element for forest management and in forest-protected areas like 
national parks for taking precautionary measures (tourism safety, fire, 
etc.). Early identification of stress conditions of forest stands can 
prevent significant economic and ecological damage. A very accurate 
but time-consuming method is a field inspection by forest experts; 
during a field visit, each tree can be carefully mapped, and it is also 
possible to record the initial state of infestation based on observing 
the first beetle entrance holes, boring dust on the trunk, and resin 
flows (Birgersson et al., 1984; Abdullah et al., 2019a; Bárta et al., 2022; 
Bozzini et al., 2024). This technique cannot be used to check extensive 
forest stands or hard-to-reach locations and requires a very close 
visual examination of each tree to identify symptoms of infestation. 
For larger areas, remote sensing methods are used, and a suitable 
carrier (satellite, aircraft, drone) is chosen according to the required 
resolution and characteristics of the study area. Health status can 
be observed based on the different spectral reflectance of vegetation, 
for example, Piecewise index PI B(710 + 738–522), Greenness GI, 
NDVI GREEN/NIR, Normalized difference photochemical 
reflectance index PRI, and ANCB index (Gitelson and Merzlyak, 
1997; Zarco-Tejada et al., 2001; Le Maire et al., 2004; Zhang et al., 
2018; Bárta et  al., 2022). Canopy change methods monitoring 
deviations in spectral reflectance cannot identify early attacks; 
approximately only 40% of attacked trees change their spectral 
expression in the crown, and if a change occurs after 6–10 weeks, the 
red or gray attack is not timely enough (Kautz et al., 2023; Bozzini 
et al., 2024). True early methods deal with bark beetle pheromone 
detection based on a specially trained dog, which can upwind 
orientation to the pheromone plume from single trees under attack 
up to 150 m (Johansson et al., 2019) and, compared to visual human 

detection, achieves significantly better results in identifying an early 
attack (Vošvrdová et al., 2023).

Non-optical mapping, namely the monitoring of a group of 
volatile compounds and microclimate cues, appears to be a promising 
method. New sensors utilizing microchip architecture and electronic 
nose technology have recently emerged. These sensors can convert 
the concentration of chemical substances into electrical signals, 
which are then transformed into digital numbers. Over the past 
decade, there has been a significant increase of interest for using 
electronic sensors across various applications (food product quality 
control, air quality monitoring, disease diagnosis, and environmental 
monitoring). This trend reflects the growing awareness of the 
possibilities electronic sensors offer in ensuring accurate, reliable, and 
efficient data collection, which significantly benefits research, 
industry, and public health (Pobkrut et al., 2016; Cellini et al., 2017; 
Xing et  al., 2019; Tiele et  al., 2020; Fuentes et  al., 2021). Due to 
continuous technological advances, weight reduction, and better 
integration with other devices, electronic sensors are becoming 
capable of greater detection accuracy. Electronic sensors are evaluated 
based on sensitivity given in units of ppb (parts per billion). These 
criteria are key in assessing the ability of sensors to provide reliable 
and accurate measurements in various environments and applications 
(Deshmukh et al., 2015; Ye et al., 2021).

In this research, we followed up on our previous study (Hüttnerová 
et al., 2023), where we demonstrated the detectability of a substance 
indicating the presence or proximity of infested and dead trees with 
an electronic nose Sniffer4D. Data collection occurred on three 
different height levels (ground, 60 m, 80 m); the best results were 
achieved by a wide-range Hydrogen Chloride (HCL) Sensing Module 
at ground level. No correlation between stress compounds and 
distance from infested trees was recorded above the forest canopy, 
which can be caused by higher airflow divergence in the area above 
the forest canopy. The study by Vošvrdová et al. (2023), which focuses 
on identifying synthetic semiochemicals in the forest by a specially 
trained dog, confirms the possibility of ground detectability. In this 
study, we  focus on ground-taken data for benchmarking several 
sensor responses to the presence of attacked trees.

We hypothesized that specific chemical compounds present in the 
forest stand during a stress event (bark beetle attack) would 
be  detectable by electronic nose. We  assumed that trees that are 
infested by bark beetles would produce more volatile organic 
compounds, and the stress of trees would lead to a change in their 
temperature and humidity profile. At the same time, aggregation 
pheromones, which bark beetles use to communicate, will be present 
in the forest. In the case of the ability of electronic noses to detect an 
increased amount of volatile organic substances or the presence of an 
aggregation pheromone or changes in the temperature or humidity 
profile, we  will be  able to identify an attack in the early stage of 
infestation and thus prevent enormous economic and ecological 
losses. The main goals of this research were (1) to evaluate the ability 
of electronic sensors to detect bark beetle infestation (2) to determine 
which factors influenced the most often measured increased values 
near attacked trees. We assessed the measured values with electronic 
noses in a spruce stand attacked by the Eurasian spruce bark beetle 
and in a healthy stand using a machine learning algorithm.

Following our previous study and the ever-expanding insect pests 
destroying valuable forest ecosystems, we asked the following specific 
research questions:
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	 1	 Can the tested electronic sensors capture specific substances 
that identify stress in the forest ecosystem?

	 2	 Which electronic nose achieved the most accurate results based 
on the machine learning evaluation?

	 3	 What model variables were the most significant predictors for 
stress detection in the forest stand?

2 Materials and methods

2.1 Study area

The study area of 1.42 ha was located 35 km south-east of Prague; 
the forest stands to fall into category 32d – Forests with aiming 
forestry research and forestry education; the area was represented by 
monoculture Norway spruce [Picea abies (L.) Karst.] in age class 5 
(81–100 years). Data collection took place on September 4th, 2023 
(11:10 a.m. – 1:10 p.m.); the outside temperature was around 19°C, 
and humidity 46%. The mean annual temperature of the study area in 
2023 was 10.4°C; the long-term average temperatures in the Central 
Bohemian Region and Prague is 9.3°C. The maximum temperature, 
19.0°C, was recorded in July, and the minimum temperature, −0.6°C, 
was recorded in January. The mean annual precipitation in 2023 was 
607 mm, whereas the long-term average in the region is 583 mm 
(Czech Hydrometeorological Institute, 2023).

Data collection was performed six times, and the measurement 
trajectory was kept identical for a possible evaluation of the sensitivity 
of the sensors (Figure 1). The trajectory was chosen in the shape of 
figure eight to evaluate the sensors’ response to the occurrence of 
stress factors in the forest ecosystem. The research area was one with 
a size of 1.42 ha; the invaded area was approximately 80 × 50 m. Each 
collection took approximately 15–20 min (6 repetitions) when the 
operator slowly walked through the study area and simultaneously 
collected data by all electronic sensors at ground level. Our approach 
is not based on detecting individual trees but on detecting an area 
(area-based method).

2.2 Materials

Three electronic noses were used as part of data collection to 
verify their suitability for stress mapping in forest ecosystems. Two 
sensors are commercially available on the regular market, and one 
sensor was specifically designed for environmental measurements. 
Therefore, it is described in detail below.

2.2.1 Miniature Bosch sensor device © Bosch 
Sensortec GmbH 2023 (Bosch)

This sensor was the BME688 AI miniature environmental sensing 
device, which can detect volatile organic compounds, volatile sulfur 
compounds and other gases like carbon monoxide and hydrogen in 
the ppb resolution. The sensor includes a unit for measuring 
temperature in the range of −40-85°C with sensitivity ±1°C, a 
humidity sensor in the range of 0–100% with sensitivity ±3%, a unit 
for measuring pressure in the range of 300–1,100 hPa with sensitivity 
±1 hPa, and a Metal-Oxide Semiconductor (MOX) gas sensor. The 
manufacturer does not directly state the range and sensitivity of the 

MOX sensor unit but based on the general characteristics of MOX 
sensors and the focus on the Air Quality Index (AQI), which Bosch 
company describes in the datasheet, it can be estimated that the sensor 
can detect VOCs in the tens of ppb.

2.2.2 Sensory device for environmental 
applications (SDEA)

The next device for monitoring the bark beetle is designed as a 
mobile unit powered by an accumulator and containing two basic 
parts—a source part that is fixed in the lower part of the carrier and a 
sensor part located on a support rod at a height of about 60 cm above 
the head of the experimenter (Figure 2).

The source unit and the sensor part are connected to each other 
by a cable, enabling both power supply to the sensor part and 
communication between the two units. The source unit contains the 
accumulator, the circuits for charging the accumulator, and the 
circuits for monitoring the status of the source unit. The sensor unit is 
in a removable cover and contains sensors in a tunnel formed by an 
aluminum profile. Air enters the tunnel through a dust filter and is 
extracted by a fan on the opposite side of the aluminum profile. Holes 
are made in the profile, in which sensors for individual types of gas are 
stored, and their outputs are processed by the control unit located on 
the handle on the side of the profile.

Individual sensors include:

	•	 NO2 electrochemical sensor, range 20 ppm, sensitivity in the 
order of ppb

	•	 H2S electrochemical sensor, range 400 ppm, sensitivity in the 
order of ppb

	•	 VOC photoionization sensor, range 40 ppm, sensitivity in the 
order of ppb (isobutylene)

	•	 NO electrochemical sensor, range 20 ppm, sensitivity in the 
order of ppb

	•	 SO2 electrochemical sensor, range 50 ppm, sensitivity in the 
order of ppb

	•	 CO electrochemical sensor, range 500 ppm, sensitivity in the 
order of ppb

	•	 CO2 IR/thermopile sensor, range 5,000 ppm, sensitivity 1 ppm
	•	 O3 electrochemical sensor, range 20 ppm, sensitivity in the 

order of ppb

The sensors, together with the electronics, are placed on the 
sensor board and their measuring part extends into the space of the 
measuring tunnel. The exception is the temperature and humidity 
sensor, which is located on the side (against the control unit holder, 
not visible in the picture). The entire sensor unit is controlled by a 
Raspberry microcomputer, which takes analog values from individual 
sensors, converts them into numerical data, and converts these data 
according to set conversion coefficients and data in measurable units, 
namely ppb or ppm. At the same time, it controls the work of the 
sensors, because some sensors have time delays between individual 
measurements, or it is necessary to turn them on and off to 
save batteries.

The last part of the system is a regular notepad, which 
communicates with the Raspberry control unit using the Bluetooth 
interface and is used to control the sensor unit, display, and save the 
measured values. The statuses of the individual processes are displayed 
in the informative section at the top left. As long as the source is 

165

https://doi.org/10.3389/ffgc.2024.1445094
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Hüttnerová and Surový� 10.3389/ffgc.2024.1445094

Frontiers in Forests and Global Change 04 frontiersin.org

turned off or the measuring application is not running, which means 
that Bluetooth communication is not turned on, the status of the 
source is red and cannot be measured. After establishing a connection 
with the measuring device, the status wheel turns green, which means 
measuring is possible. The correct GPS function is indicated 
separately, as the location data is part of the recording.

Furthermore, the upper part contains environmental data on the 
state of the air in the measured location (temperature, humidity, and 
pressure) and the state of the measuring device, especially the 
temperature of the individual measuring modules. These are 
important for correcting the measured values of electrochemical 
sensors, as they are highly temperature dependent. Battery status and 
airflow rate in the measuring unit are on the far right of the display.

The last icon on the display is a green button that sets one of 
three values:

	•	 Measurement initialization (from the measurement status off),
	•	 Turn on the measurement (from the measurement 

initialization state),
	•	 Turn off the measurement (from the measurement status on).

Simultaneously with online measurement, a set of measured data 
is written at regular intervals, which has the following structure (in 
.csv format separated by semi-colons):

<Date and Time>; <GPS: number of satellites>; <GPS: accuracy 
[m]>; <Latitude [°]>; <Longitude [°]>; <Fan speed [%]>; <NO2 
[ppb]>; <H2S [ppb]>; <VOC [ppb]>; <NO [ppb]>; <SO2 [ppb]>; 

<CO [ppb]>; <CO2 [ppb]>; <O3 [ppb]>; <Temperature of module 
1 [°]>; <Temperature of module 2 [°]>; <Battery status [%]>; 
<Outside temperature [°]>; <Pressure [hPa]>; <Relative 
Humidity [%]>.

2.2.3 Handheld VOC Detector Tiger © 2024 Ion 
Science UK. Ion Science is registered trademark 
on Ion Science Ltd. (Tiger)

Detector Tiger has photoionization technology (PID) for 
detecting volatile organic compounds. The detector can display 
measured values very quickly and accurately. It is suitable for screening 
and locating, for example, leaking dangerous gases. The sensor system 
has a response time of 2 s and can detect up to 750 volatile organic 
substances. The range of the sensor is 0–20,000 ppm with sensitivity 
1 ppb. Figure  3 shows the Miniature Bosch sensor device and 
Handheld VOC Detector Tiger.

2.3 Data processing

First, we evaluated the health status of the trees in the study area; 
the trees were classified into three categories (dead, infested, and 
healthy). The assessment was carried out in two ways; first, based on 
a field investigation, the bark of the trees was inspected with a focus 
on locating the bark beetle entrance holes, boring dust on the trunk, 
and resin flows. Natural infestation (without chemical baiting) of 
coniferous trees was within a week of the first attack by the bark beetle, 

FIGURE 1

The study area 35  km away from Prague (Prague West district, Czechia) displays a forest stand, which was heavily infested by bark beetles (infested 
trees are marked red, healthy ones in green, and dead trees in white). Black arrows mark the trajectory of data collection.
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and the study area was selected based on consultation with Field 
technician, who performs regular checks of the status of trees. The 
second method for determining the state of health was based on 
optical data obtained from a UAV; the area was captured with a DJI 
Phantom4 Pro multirotor with an RGB camera at the height of 90 m, 
and the images were processed using the Structure from Motion 
method. We visually evaluated the spectral characteristics of the tree 
canopy from the orthophoto mosaic (Figure 4). Spruce trees in the 
study area were categorized [healthy, attacked, dead] and stored as a 
point layer.

The measurement results from the sensors were exported in .csv 
format, we used the R Studio and ArcGIS Pro software’s for all data 
analysis. Each electronic nose measurement dataset was annotated by 
two labels (infested forest, healthy forest). These labels were assigned 
based on the position of the measurement within the forest. Using the 
Select by Location functionality, measurement positions in the attacked 
stand were selected and assigned the “Infested” attribute. The 
procedure was repeated for measurement positions in the healthy part 
of the forest, and the “Healthy” attribute was assigned. Due to the low 
number of dead trees, they were not considered in the machine 
learning models.

We train machine learning algorithm Random Forest (Breiman, 
2001), which is widely used for classification tasks in environmental 
studies. The input data for the model does not have to 
be  standardized, which ensures a more straightforward 
interpretation of the results (Müller et al., 2022). We used the R 

package randomForest (Liaw and Wiener, 2002), caret (Kuhn, 
2008), kernlab (Karatzoglou et al., 2004), and boot (Davison and 
Hinkley, 1997) to create three binary classifications for each dataset 
measured by the electronic nose (Sensory device for environmental 
applications, Handheld VOC Detector Tiger, Miniature Bosch 
sensor device). The dataset was split 80:20 into training and 
validation sets. We used the resampling method repeatedcv., which 
is used to set K-fold cross-validation, and for the repeats argument, 
we chose the value three, and this argument controls the number 
of repetitions; the K parameter is regulated by the number 
argument, which we chose 20 (Kuhn, 2008). The goal was to find 
out which electronic nose has the most sensitive predictive ability 
and what variables affect the values of electronic nose sensors. 
We  selected the explanatory variables based on the technical 
equipment of the sensor. The machine learning model was based 
on 25,419 samples for the Miniature Bosch sensor device, 193 
samples for the Sensory device for environmental applications, and 
170 samples for the Handheld VOC Detector Tiger. The number of 
samples varied depending on the time resolution of the electronic 
nose for recording values; data collection was carried out 
simultaneously by all three electronic sensors along the 
same trajectory.

2.3.1 Miniature Bosch sensor device
We used input explanatory variables of outside temperature 

(Temperature), pressure (Pressure), relative humidity (Humidity), and 

FIGURE 2

Comprehensive overview of the Sensory device for environmental applications: (A) sensor unit assembly consisting of the ventilator, control unit 
holder, dust filter, and sensor board; (B) the main sensory part is located 60  cm above the operator’s head; (C) software part: layout of data on the 
notepad screen. The notepad screen is divided into four parts: an informative part at the top left (three items marked with status—source, 
measurement, and GPS), measured values at the top of the screen + fan speed, a part containing eight graphs for estimated quantities, and a status line 
at the bottom of the screen.
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data collection number (Data_col). The Bosch device provides one 
information about chemical measurement, and that is Resistance. 
Gassenzor (Gas), which we used for the dependent variable in the 
model. We used the following model formula: 	

rf classifier train
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2.3.2 Sensory device for environmental 
applications

For Sensory devices for environmental applications, we used input 
explanatory variables such as outside temperature (Outside_tem), 
temperature of module 1 (TEM_mod1), temperature of module 2 
(TEM_mod2), pressure (Pressure), relative humidity (Humidity), and 
data collection number (Data_col). This electronic nose is equipped 
with several cross-sensitive sensors which can record values for all 
sensors simultaneously, so the explanatory variables of the gases were 
NO2, H2S, VOC, NO, SO2, CO, CO2, O3. We  used the following 
model formula:
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2.3.3 Handheld VOC Detector Tiger
This sensor device is not equipped with a temperature, humidity, 

and pressure monitoring unit. The Tiger detector contains a gas 
library primarily focused on safety monitoring; within the software 
settings, measuring and recording information on one compound at 
a time is possible. We collected data for pinene in the first and second 

FIGURE 3

On the left side is Handheld VOC Detector Tiger, in the upper right in 
the red rectangle is Miniature Bosch sensor device.

FIGURE 4

An example of the health status of the trees on the orthomosaic: (A) dead trees, (B) infested trees, (C) healthy trees.
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measurements, methyl-butanol in the third, camphene in the fourth 
measurement, carene in the fifth, and pinene again in the sixth 
measurement. For evaluation we used explanatory variables of gas 
response (Gas), and data collection number (Data_col). We used the 
following model formula:

	
rf classifier train
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3 Results

First, the results achieved for individual electronic noses will 
be described from the highest predictive ability of the models to the 
lowest. Then, the importance of the variables will be presented.

3.1 Miniature Bosch sensor device

The best model is selected automatically by the random forest 
algorithm, based on the highest accuracy, the outputs also provide set 
of best solutions based on the amount of variables included in the 
model (mtry), and kappa accuracy which is another way of measuring 
the performance especially in imbalanced datasets (Cohen, 1960). The 
results show the same accuracy for all the combinations of variables, 
mean the simpler model (the one with two variables) might be easier 
for future practical applicability (Table 1).

The Confusion Matrix is used to evaluate the performance of the 
classification model; it shows how often the actual classes were 
confused with the predicted ones. In the prediction part of the testing, 
accuracy 0.95 was achieved with a Kappa value 0.89. The sensitivity 
(true positive rate) was 0.97, and the specificity (true negative rate) 
was 0.91. The Confusion Matrix is used to evaluate the performance 
of the classification model; it shows how often the actual classes were 
confused with the predicted ones (Table 2).

3.2 Sensory device for environmental 
applications

The best model is selected automatically by the random forest 
algorithm, based on the highest accuracy. The results in Table 3 show 
the highest accuracy (0.89) for the combination with eight 
variables (mtry).

In the prediction part of the testing, accuracy 0.93 was achieved 
with a Kappa value 0.84. The sensitivity (true positive rate) was 1.00, 
and the specificity (true negative rate) was 0.81. Detailed confusion 

matrix values for the Sensory device for environmental applications 
are shown in Table 4.

3.3 Handheld VOC Detector Tiger

The tuning parameter “mtry” was held constant at a value of 2 
(Table 5). The third of the sensors Handheld VOC Detector Tiger, 
received Kappa 0.16, and its predictive ability for forest stress detection 
was the lowest.

In the prediction part of the testing, accuracy 0.65 was achieved 
with a Kappa value 0.21. The sensitivity (true positive rate) was 0.85, 
and the specificity (true negative rate) was 0.35. Detailed confusion 
matrix values for the Handheld VOC Detector Tiger are shown in 
Table 6.

The importance of the variables for all tested electronic noses 
is shown in Figure 5. It was determined by the varImp function 
from the R software caret package, which provides information 
about the importance of variables for machine learning algorithms. 
The importance score of 100 indicates that the variable affects the 
model predictions most, while the variable with an importance 
score of 0 is irrelevant to the model’s predictive ability, i.e., 
the least.

For the Miniature Bosch sensor device, the relative humidity sensor 
(100.00) had the most important influence on the predictive ability to 
detect infestation or healthy forest, followed by the pressure sensor 
(98.12) and temperature sensor (57.97). In the case of infested trees, it 
reduces the transpiration flow in the tree; with less water capacity, the 
trees cannot regulate the temperature profile and thus can lead to 
overheats. The reduction of transpiration close to the tree affects the air 
humidity and the pressure in the environment (slight increase); dry air 
is denser than humid air. A sensor unit measuring gases had a moderate 
effect on the model, and by 22.86. The variable “Data collection” did not 
affect the model (0.00), which means that the model performed very 
well for all data collections. The SDEA, which also achieved a very high 
predictive ability, had the most significant variable, the pressure-
sensitive sensor (100.00), followed by the chemical sensor cross-
sensitive to NO2 gas (11.17). The cross-sensitive sensor to CO2 gas had 
an effect of 9.92 on the model, and the sensor sensitive to H2S (5.34). 
The outdoor temperature slightly affected the predictive ability, namely 
3.73 and the humidity sensor (1.75). Measurement time (Data 
Collection variable) also did not affect the model, and predictive ability 
was achieved for the entire measurement. The Handheld VOC Detector 

TABLE 1  Results for different amount of random variables for the 
Miniature Bosch sensor device.

mtry Accuracy Kappa

2 0.95 0.88

3 0.95 0.89

5 0.95 0.88

TABLE 2  Confusion matrix values for the Miniature Bosch sensor device.

Prediction Healthy Infested

Healthy 4,017 194

Infested 121 2034

TABLE 3  Results for different amount of random variables for the Sensory 
device for environmental applications.

mtry Accuracy Kappa

2 0.84 0.67

8 0.89 0.77

14 0.88 0.75
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Tiger did not achieve a good prediction ability for identifying stress in 
the forest ecosystem; based on the comparison of the importance of the 
variables, the gas sensor achieved 100.00, and the variable “Data 
collection” was also 0.00. The complete variable importance results for 
all three electronic noses are shown in Appendix.

4 Discussion

Based on our research findings, we  can answer the scientific 
questions posed. We conclude that electronic noses can detect changes 
in volatile compounds and microclimate cues after bark beetle 
infestation. The Miniature Bosch sensor device achieved the highest 
accuracy in distinguishing forest sections that are healthy and infested 
(more addressed in Section 4.2 Electronic noses), and a more 
significant indicator of infestation was relative humidity, temperature, 
and pressure sensors (more discussed in Section 4.3 Influence of 
variables from statistical evaluation).

The presented methodology is a potential solution for the early 
identification of stress in forest stands, focusing on fresh attacks till 
1 week old caused by bark beetle infestation. Early detection is 
essential for minimizing the spread of bark beetles to surrounding 
trees and thus reducing ecological and economic loss. In the case 
of late detection of the infestation, the bark beetle will spread to 
other trees, and from the point of view of safety and preventing 
further spread, the best solution is to cut down the trees and take 
them safely away from the forest stands. The financial costs must 
be allocated to the cutting and restoring forest stands. On small-
scale clearings created because of natural disturbances, it is 
possible to reforest by natural regeneration if there are mature 
forest stands in the surrounding stands; in the case of large-scale 
sites, the natural distribution of sowing may be insufficient, and it 
is necessary to use artificial afforestation.

4.1 Detection methods

Conventional methods of infestation detection are field visits by 
forest experts and marking infested trees based on visual inspection; 

this method is very time and physically demanding (Stadelmann et al., 
2013; Leverkus et  al., 2021; Bárta et  al., 2022). Remote Sensing 
methods can detect the deteriorated condition of the stand based on 
the change in the spectral reflectance of tree needles. Still, it is not 
possible to detect early infestation with this method. In the case of an 
attacked tree, the spectral reflectance of the canopy will be changed 
after 6–10 weeks, and only approximately 40% of the attacked trees 
show crown degradation; these findings do not confirm the potential 
of satellite or aerial detection systems (Kautz et  al., 2023). Stress 
detection based on the analysis of crowns from a remote sensing 
image is challenging; the most accurate results are achieved at the end 
of the growing season (Latifi et al., 2018; Bárta et al., 2021; Huo et al., 
2021). When using single spectral channels, the quality is insufficient; 
better results are achieved when using several spectral channels and 
calculating the vegetation index (Kautz et al., 2024). The authors of 
several studies argue about the importance of using the red-edge and 
NIR band (Abdullah et al., 2019a,b; Minařík et al., 2020; Hellwig et al., 
2021; Trubin et al., 2023).

The scientific community has been mainly concerned with 
mapping and analyzing the healthy status of forests in the optical and 
near-infrared bands in the last decade. Analysis of chemical 
substances can bring new information about natural disturbances 
and help with early detection. In the case of monitoring bark beetle 
infestation of spruce stands, it is possible to focus on odor mapping; 
on the one hand, the bark beetle uses an aggregation pheromone to 
communicate with its individuals; still, the presence of pheromones 
in the forest is below the mark of the sensitivity and selectivity of 
electronic sensors; on the other hand it is possible to map biogenic 
volatile organic substances, which are secreted from the bark of trees; 
in the case of stress events, these substances are secreted in several 
times larger quantities. Therefore, chemical mapping could provide a 
very effective source of information about the attack, even at an early 
stage. We proved the detection ability of early infestation by electronic 
noses up to 1 week from the first attack. Early attack can be detected 
using specially trained snifferdogs, which can detect synthetic 
semiochemicals (identical to the species-specific major pheromone 
components of Eurasian spruce bark beetle) (Johansson et al., 2019; 
Vošvrdová et al., 2023). Chemical mapping is already conventionally 
used in security and industry, e.g., for detecting the leakage of 
dangerous gases or mapping air quality in cities, and several studies 
have already appeared in agriculture that intend to detect crop pests 
(Zhou and Wang, 2011; Abdullah et al., 2018; Arroyo et al., 2020; 
Rahman et al., 2020; Fuentes et al., 2021; Sudama et al., 2022).

4.2 Electronic noses

Of the tested electronic noses, the Miniature Bosch sensor device 
achieved the best capabilities, followed by a Sensory device for 
environmental applications. The Miniature Bosch sensor device, with 
a very favorable price, could be used to create a more comprehensive 
network of stationary measurements in spruce stands for early 
identification of stress factors. So, it would perform a function like the 
detection sensors for triggering the smoke detection alarm. The 
sensors could send the values to the cloud in real-time and display 
them on the map portal. We  recommend and will further use a 
Sensory device for environmental applications to map local areas with 
a risk of a bark beetle outbreak due to its software equipment, which 

TABLE 6  Confusion matrix values for the Handheld VOC Detector Tiger.

Prediction Healthy Infested

Healthy 22 11

Infested 4 6

TABLE 4  Confusion matrix values for the Sensory device for 
environmental applications.

Prediction Healthy Infested

Healthy 27 3

Infested 0 13

TABLE 5  Results for the Handheld VOC Detector Tiger.

mtry Accuracy Kappa

2 0.60 0.16
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can show measurement results in real-time and has GPS. A possible 
interaction here for both mentioned electronic noses is with a drone 
platform, where a larger area of the forest ecosystem could be explored; 
the detection capability above the forest canopy has not yet been 
proven, and a potential solution appears to be collecting data under 
the forest canopy with manual flight mode.

Paczkowski et al. (2021) research focused on testing the applicability 
of sensors GGS1330, GGS2330, and GGS5330 to detect aggregation 
pheromone and biogenic volatile organic compounds; the results show 

the potential use of this device to verify the detectability of alpha-pinene, 
which is the main component of biogenic volatile organic compounds 
from spruce stands when their sensor was able to capture different 
concentrations. The detection capability of elevated concentrations has 
not been demonstrated by UAV data collection above canopies. Similar 
results were also obtained by Hüttnerová et al. (2023), where the electronic 
nose Sniffer4D with DJI Matrice 600 Pro was verified for early detection 
of bark beetles; the ability of the electronic nose to detect increased 
concentrations of chemical substances was also not confirmed, but the 

FIGURE 5

Overview of the importance of variables for sensor the Miniature Bosch sensor device, the Sensory device for environmental applications, the 
Handheld VOC Detector Tiger. The importance score of 100 indicates that the variable affects the model predictions most, while the variable with an 
importance score of 0 is irrelevant to the model’s predictive ability, i.e., the least.
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detection ability of the electronic nose was demonstrated under the 
crowns when they were data collected on the ground and the research 
find out that wide-range Hydrogen Chloride (HCL) sensor performed 
most reliably. The results of this study and the conclusions published by 
Paczkowski et al. (2021) and Hüttnerová et al. (2023) demonstrate the 
ability of electronic noses to detect specific substances present in forest 
stands when attacked by bark beetles.

4.3 Influence of variables from statistical 
evaluation

Our research proved the influence of variables that represented 
non-optical measurement. The relative humidity, temperature, and 
pressure sensors were a more significant indicator of infestation. Bark 
beetle is associated with symbiotic ophiostomatoid fungi that degrade 
spruce toxins, help to exhaust tree defenses, and thus lead to impaired 
conductive tissues and reduce transpiration (Netherer et al., 2021, 
2024). Transpiration has a cooling effect on trees and an effect on air 
humidity; reduced transpiration leads to changes in local humidity, 
and this can increase air pressure. Differences in humidity are logical, 
but identifying differences between infected and healthy forests on 
rainy or cold cloudy days will not work because healthy trees do not 
transpire under these conditions.

In the case of infested trees, the transpiration flow is reduced in 
the tree; with less water capacity, the trees cannot regulate the 
temperature profile and thus can lead to overheats. The reduction 
of transpiration close to the tree affects the air humidity and the 
pressure in the environment (slight increase); dry air is denser than 
humid air. Another factor that can cause an increase in air 
temperature is canopy loss due to bark degradation (Anderegg 
et al., 2013; Wehner and Stednick, 2017).

Long-term microclimate changes were demonstrated in study 
Kopáček et al. (2020), and the changes were attributed to reducing or 
stopping tree transpiration of trees; there was an increase in daily 
mean air temperature (2 m above ground) of 1.6 and 0.5°C per year, 
and relative humidity was on the disturbed plots of land on average 
4% lower. In our research, we  noted much faster changes in 
microclimate clues, which suggests that the changes will manifest 
themselves significantly faster.

4.4 Limitations and future challenges

The presented methodology offers the possibility of early 
detection of bark beetle infestation based on identifying volatile 
compounds and microclimate cues found in the forest environment 
during bark beetle attack. With this methodology, it is not 
necessary to rely only on the spectral changes of the tree canopy to 
identify infestations. The limitation of this methodology is 
currently the size range of the area we can analyze. A time-efficient 
innovative method is the use of snifferdogs, which are twice as fast 
in detecting bark beetle infestation as human experts; the searching 
abilities of a dog are four times higher than human experts in the 
case of randomized plots because the dog can smell the pheromone 
at a greater distance (Vošvrdová et al., 2023).

For the possibilities of a large-scale detection system, it would 
be advisable to use the UAV platform and first try to verify the 
detection above the tree canopy, which has not been confirmed for 

the time being, or to test the possibilities of flying under the tree 
canopy. The battery capacity limits the data collection by the drone; 
the average flight time is about 30 min, depending on its load. A 
potential solution would also be  creating a warning mapping 
system, where each electronic nose would be connected to a cloud 
system and send the currently measured values from the forest area 
in real-time. The system could serve as a suitable screening method 
of a preventive nature; for this purpose, the use of the Miniature 
Bosch sensor device would be  appropriate in terms of its 
dimensions and financial availability.

In the case of global use, it would be necessary to recalibrate our 
model to local conditions; for example, a different climate can 
be  predicted in Northern Europe than in the tested conditions in 
Czechia. However, we know from research which variables are significant 
for tested electronic noses and identify early bark beetle infestation.

5 Conclusion

In this study, we focused on evaluating three electronic noses for 
stress detection in forest stands, which were heavily attacked by bark 
beetles. This research aims at early detection of bark beetle infestation 
by novel technology of odor mapping as a more viable alternative to 
optical detection, which may be  unreliable if the trees do not 
demonstrate signs of beetle attack. The possibility of detecting beetles 
by odor signals was clearly proven to be  possible using dogs 
(Johansson et al., 2019; Vošvrdová et al., 2023). The predictive ability 
of electronic noses was evaluated based on machine learning model 
with two classes (“Healthy”, “Infested”), we  found that electronic 
noses can obtain sensitive information about stressors in forest 
ecosystems and thus help detect problematic areas for further analysis 
or action. The Miniature Bosch sensor device achieved the highest 
values for the ability to predict the infested trees, followed by Sensory 
devices for environmental applications. The presented methodology 
provides a very effective and fast solution for stress monitoring in 
forest stands, mainly for detecting bark beetle outbreaks. This 
monitoring could contribute to more effective mapping and 
prediction of the spread of infestations in forest ecosystems, thus 
radically minimizing the ecological and economic damages caused 
by insect pests.
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Appendix

TABLE A1  Output data from the Random Forest machine learning model used for evaluation of variables importance.

Variable importance Bosch SDEA Tiger

Relative humidity 100.00 1.75 X

Pressure 98.12 100 X

Temperature 57.97 3.73 X

Gas 22.86 X 100

Data collection 0.00 0.00 0.00

NO2 X 11.64 X

CO2 X 9.92 X

H2S X 5.34 X

O3 X 4.06 X

CO X 4.89 X

NO X 3.42 X

SO2 X 3.82 X

VOC X 2.62 X

Temperature module 1 X 5.11 X

Temperature module 2 X 5.05 X
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Forests are potential habitats for immense terrestrial ecosystems and aquatic 
biodiversity, performing an essential role in ecological preservation and 
regulation of climate. The anthropogenic pressures on the forests lead to 
forest loss, fragmentation and degradation. Requirements for sustainable 
methodologies for forest protection are of utmost priority under the climate 
change regime. Among forest trees, poplar trees (Populus L.) have attracted 
attention in global forestry as a promising material for improving the quality 
and quantity of urban landscapes. These plants provide wood, which can 
be utilized as raw resources for the paper industry and as a potential source 
of biofuel. However, several biotic stresses, such as attacks by pests and 
pathogens, severely affect poplar production and productivity. The improvement 
of Populus trees through conventional tree breeding methods is restricted 
due to their long-life cycles and the lack of suitable donors with resistance 
genes. Populus has been utilized as a model plant for studying gene functions 
due to its highly efficient genetic transformation capabilities. The present 
review will provide a comprehensive overview of pest and pathogen attacks 
on poplar, focusing on their infection mechanisms, transmission routes, and 
control strategies. Additionally, it will examine the most widely used genetic 
transformation methods (gene gun-mediated, Agrobacterium tumefaciens-
mediated, protoplast transformation, micro-RNA mediated and micro-RNA 
clustered regularly interspaced short palindromic repeats (CRISPR)-associated 
(CRISPR-Cas) systems methods and RNA interference) for improving tolerance 
in poplar trees against pest and pathogens attack. Furthermore, it will delve 
into prospects, challenges, and recent advances in molecular biology tools 
and their safe application for genetic transformation to improve insect and 
pest resistance in poplar trees. Finally, the regeneration of transgenic poplar 
trees with enhanced resistance, developed through various genetic engineering 
techniques, is discussed.
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forest protection, genetic transformation, protoplast transformation, Agrobacterium-
mediated transformation, salicylic acid (SA), methyl jasmonate (MeJA)
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1 Introduction

Forest trees have several pivotal roles, such as maintaining 
ecology, climate regulation, providing raw materials for the 
construction of buildings, greening roads, and being an energy source 
(Trumbore et al., 2015). Among these forest trees, poplar (Populus 
spp.) (known as ‘the people’s tree’) is one of the most widespread trees 
in the world (Xi et  al., 2021; Yevtushenko and Misra, 2019). The 
poplars are essential for maintaining the world’s ecological balance 
and socio-economic wellbeing (Häggman et al., 2013). The first use of 
the poplar cultivar started in 1700–1720 when Populus nigra ‘Italica’ 
(P. nigra, Lombardy nigra) was used in Italy, Europe and North 
America. There was a rapidly increased demand for poplar plants after 
World War II when Europe was devastated by the lack of readily 
available wood for construction and fuel. Consequently, the 
domestication and cultivation of the genus poplar started in Europe 
by introducing eastern cottonwood (Populous deltoides) and followed 
by hybrids black poplar (P. nigra) (a hybrid of P. ×canadensis) for 
fulfilling the increased demands for woods (Stanton et al., 2009).

Poplar trees (family Salicaceae) are tall, deciduous, dioecious, 
paleopolyploids, or ancient polyploids, naturally diverse, fast-growing 
and widely distributed globally (Lubrano, 1992), especially in 
temperate, sub-temperate and sub-tropical regions of Northern 
hemisphere and in tropical Africa also (Tuskan et al., 2006; Guleria 
et al., 2022). These poplars, except aspens and Asian mountain balsam 
poplars, grow widely in several regions like hot-arid and desert-like 
regions of central Asia and Africa, alpine forests in Europe and North 
America, as well as riparian zones like river banks and flood plains 
(Guleria et  al., 2022). Poplars are the dominant species in these 
habitats for tolerating and sustaining in the complete flood. China, 
Turkey, France, India and the Po River plain of Italy are the largest 
poplar farming areas for worldwide wood supply, whereas Italy, Spain, 
France and Hungary provide a landscape of 0.5 out of 0.61 million 
hectares for poplar farming only. Poplars shape global forests and 
woodlands in their natural habitats. Besides being domesticated as an 
agroforestry tree, they provide timber, fuel wood, plywood, industrial 
roundwood, sports materials, pallets, paper pulp for the paper 
industry and fodder (Kollert et al., 2014). In addition, Populus species 
are cultivated as energy crops/biofuel (ethanol) in Europe (England 
and Italy) for carbon sequestration and sustainable bioenergy 
production in USA because of its high biomass production in a 
relatively short time (Dou et  al., 2017). They are also used in the 
phytoremediation of toxins, e.g., heavy metals (Cd, Pb, As, and Hg) 
from contaminated soils, indicating ozone pollution as a bio-indicator, 
rehabilitation of fragile ecosystems and restoration of forest landscapes 
(Alahabadi et al., 2017).

Poplar (Genus: Populus) comprises 32–40 species based on 
taxonomic and morphological traits (Cronk, 2005; Douglas, 2017). 
There is a record of a total 582 Populus species, with more than 100 
species names recognized worldwide. The higher number of species is 
due to the presence of naturally occurring hybrids (The Plant List, 
2013). According to Eckenwalder (1996), the genus Populus is 
classified into six groups including the cottonwoods (Aigeiros), aspens 
(Populus), balsam poplars (Tacamahaca), large-leaf or swamp poplars 
(Leucoides) and (Abaso) and Afro-Asian poplars (Turanga), and but 
the Flora of China recognized 71 species from five sections (except 
Abaso) (Park et al., 2004; Table 1). Species boundaries among poplars 
are sometimes variable as intrasectional and intersectional 

hybridization occurs among them. However, this has not been 
supported by molecular evidence. Hence relationships between these 
sections are reported to be controversial (Wang et al., 2014; Liu et al., 
2017; Zhang et al., 2018). During 1950s, poplar was introduced in 
India from the United States of America. Since then, P. deltioides, have 
been cultivated in India and cover an area of 270,000 ha in India, 
according to the report of the Indian Council of Forestry Research and 
Education (ICFRE, 2016; Eqbal and Ansari, 2024). Several researches 
have proved that the genus populus is a rich source of active 
metabolites, like phenolic compounds, terpenoids, and flavonoids in 
different parts like stems, buds, leaves and bark (Guleria et al., 2022). 
These poplar trees have been used to cure various ailments and have 
several pharmacological properties such as antioxidants, 
antimicrobials, anticancer, and anti-inflammatory (Guleria 
et al., 2022).

Poplar was the first woody perennial tree used as a model/
experimental tree species among forest trees worldwide for 
understanding several aspects such as taxonomy, genetics, evolution 
and the genomics of wood formation for decades because of their 
small genome size, clonal propagation, fast growth, easy 
transformation, and long-life cycle (Taylor, 2002). In addition, poplar 
genome has been completely sequenced after Arabidopsis and rice. 
Moreover, it is the most advanced genomics resource of any forest 
tree, having reference genomes for several tree species. The black 
cottonwood (P. trichocarpa) was the first forest tree whose genome 
was sequenced entirely, and currently, there are massive genomic 
resources available for other poplar species. Interestingly, P. tomentosa 
and P. euphratica genomes have been extensively studied, while others 
have been ignored. All Populus species contain 19 haploid genomes 
(Shi et al., 2024). However, massive rearrangement and diploidization 
of the whole genome of poplar have been reported. The arabidopsis-
poplar genome comparative model approach has been used efficiently 
in many cases (Rottmann et al., 2000; Jansson and Douglas, 2007). 
The genus Populus is an excellent model for studying the molecular 
genetic mechanisms involved in pathogen defense responses in 
several forest trees. The availability of Populus genome sequences 
enhances the efficiency of the substantial molecular tool kit that 
already exists for Populus species, including expressed sequence tags 
(ESTs) collection and microarrays for transcriptome. In addition, 
these tools can be applied with valuable pedigrees and genetic maps 
developed for Populus breeding for decades (Sterky et  al., 1998; 
Frewen et  al., 2000; Hertzberg et  al., 2001; Cervera et  al., 2001; 
Bhalerao, 2003; Andersson Gunnerås et al., 2006). Such pedigrees 
have been proven useful and efficient in revealing Populus loci 
responsible for conferring resistance to fungal pathogens attacks 
(Goué-Mourier et al., 1996). Poplar cultivation is severely affected by 
several ranges of pest insects and pathogens such as fungi, bacteria, 
and viruses, resulting in reduced growth and quantity and quality of 
wood. These biotic stresses comprise the complex interactions 
between hosts, pests, pathogens, and environmental factors, negatively 
affecting the poplar population (Seserman, 2018). The efficiency of 
traditional methods for protecting poplar farming from attack of pests 
and pathogens is hindered by factors like climatic instability, global 
warming, flood, drought, high temperatures and humidity. 
Consequently, new biotechnological approaches like genetic 
transformation and genome editing are required to overcome these 
limitations of traditional breeding. These tools are utilized to increase 
the quality and yield of wood and improve pest and pathogen 
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resistance in forest trees, including poplar (Li P. et al., 2024; Li Y. et al., 
2024; Li Z. et al., 2024). This paper primarily summarized the details 
of pest and pathogen attacks that cause diseases in poplar trees. 
We also examined the mechanism of infection, transmission route, 
the role of lignin in protecting poplar against pests and pathogens and 
the mode of control of diseases in poplar. Here, we also emphasized 
conventional breeding and its limitation for poplar plantations on a 
large scale. The application of different tools of genetic transformation 
and genome editing for developing transgenic poplar resistant to pests 
and pathogens was discussed in detail. Finally, we summarize the 
regeneration of transgenic poplar trees that have been modified by 
incorporating defense genes, such as those conferring pest and 
pathogen resistance.

2 Poplar susceptibility to biotic 
stresses

Poplars are frequently impacted by infestations of insect pests 
such as mites, aphids, and caterpillars, as well as bacterial, viral, and 
fungal infections. These pests and pathogens target all parts of the tree, 
damaging buds and leaves, inducing gall formation, sucking sap, 
altering bark structure, and boring into shoots and roots, which 
facilitates the transmission of plant diseases. Over time, these attacks 
can lead to complete defoliation, reduced tree growth, and even tree 
death. As a result, affected poplars become unsuitable for various uses, 
including furniture production, biofuel generation, and veneering 
(Charles et al., 2018).

2.1 Pest attacks on poplar

Insect pests are a limiting factor affecting Populus productivity 
worldwide (Table 2). Globally, outbreaks of pests are boosted due to 

climate change (Fenning, 2013). Around 525 and 300 species of 
insects and mites feeding on Populus have been identified as serious 
threats for causing economic and ecological losses in poplar 
plantations in Europe and North America, respectively (Charles 
et al., 2018). Ahmad and Faisal (2012) documented that around 133 
insect species feed on poplar plantations in India. These pests hinder 
plant growth and increase tree mortality (Dickmann, 2001; Coyle 
et al., 2005). In North America, the cottonwood leaf beetle (CLB) 
(Chrysomela scripta) is reported as the most widespread and severe 
defoliator of young Populus cultivation (Coyle et al., 2005). In the 
Mediterranean, Saperda carcharias (large poplar borer) is reported 
to be one of the most damaging insects for young poplar plantations 
(Biselli et al., 2022). In China, major pest species destroying poplar 
plantations are trunk borers and defoliators such insects of the 
Lepidoptera (Hyphantria cunea Drury), Apocheima cinerarius 
Ershoff, Lymantria dispar Linnaeus, Malacosoma neustria 
Motschulsky, and other moth species belonging to the Notodontidae 
and Limacodidae and Coleoptera (Apriona germari Hope, 
Anoplophora glabripennis Motschulsky, and Plagiodera versicolora 
Laicharting). In addition, up to 40% loss of hybrid Populus 
plantations is reported due to poplar looper (Apochemia cinerarua) 
and the spongy moth (Lymantria dispar) (Hu et al., 2001; Wang 
et al., 2018) in China. Anaplophora glabripennis also causes massive 
destruction of hectares of Chinese poplar (P. simonii) plantations. 
Biselli et  al. (2022) observed that Phloemyzus passerinii [Wooly 
Poplar Aphid (WPA)] causes 10% of production losses of poplar, 
mainly in European and American countries. Other insects, for 
example, Cossus cossus, Agrilus suvorovi, Megaplatypus mutatus, 
Paranthrene tabaniformis, Melanophila picta, and Gypsonoma 
aceriana, also threaten poplar farming. Recently, transcriptomic and 
metabolomic analyses were conducted to investigate the species-
specific defense responses of Populus tremula against herbivores 
such as spongy moths (Lymantria dispar) and aphids (Chaitophorus 
populialbae). The insights gained from these studies could 

TABLE 1  Taxonomic categorization of different species of the genus Populus.

Divisions Names Occurrence References

Turanga Bunge Subtropical Asian poplars (P. lasiocarpa Oliv, Chinese 

necklace poplar), P. ilicifolia (Engl.) Rouleau (Kenyan poplar), 

P. euphratica Oliv (Euphrates poplar)

China, Northeast Africa, Southwest Asia, 

East Africa (subtropical and tropical)

Gai et al. (2021) and Du et al. (2024)

Populus or

Leuce Duby

True white poplars and aspens

P. adenopoda Maxim (Chinese aspen), P. monticola Brandegee 

(White poplar), P. alba L. (White poplar) P. tremuloides 

Michx (Quaking aspen) P. tremula (Japanese aspen)

China, Europe, North Africa, India, 

Mexico, North America, Northeast Asia

Chanda et al. (2010) and Du et al. 

(2024)

Aigeiros Duby Black poplars, P. trichocarpa Torr. (Black cottonwood poplar), 

P. fremontii S. Watson (Fremont’s cottonwood), P. deltoides 

Marshall (Eastern cottonwood)

Europe, Western Asia, Temperate region 

of North America, Central Asia

Gai et al. (2021) and Porth et al. (2024)

Abaso Eckenwalder Endemic Mexican poplars (P. pruinosa Schrenk, Desert 

poplar), P. Mexicana

Mexico Liu et al. (2017), Wang W. et al. 

(2022a), and Wang Y. et al. (2022b)

Leucoides Spach Big leaf poplars (P. heterophylla L., Swamp cottonwood 

poplar), P. jacquemontiana Dode (Sichuan poplar)

Eastern North America (USA), Eastern 

Asia China, India (warm and temperate)

Wang W. et al. (2022a), Wang Y. et al. 

(2022b), and Zhang et al. (2019)

Tacamahaca

Spach

Balsam poplars

P. ciliata Wall. ex-Royle (Himalayan poplar), P. angustifolia E. 

James (Narrow leaf cottonwood poplar), P. suaveolens Fisch. 

ex-Loudon (Asian poplar), P. trichocarpa Torr. (Black 

cottonwood poplar)

North America, Asia [India, Pakistan, 

Bhutan, Nepal, Myanmar (Cool 

temperate), Northeast China, Japan]

Chanda et al. (2010) and Gai et al. 

(2021)
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TABLE 2  List of pests/pathogens/bacteria/viruses affecting poplar plantations.

Plants Pest/pathogens Diseases Affected Countries References

Insects/pests

Populus

fremontii, P. tremula, P. nigra and 

P. angustifolia, P. alba

Aceria parapopuli Soap sucker, galls, 

irregular, warty, 

cauliflower-like growth

North America, Iran McIntyre and Whitham (2003) 

and Mehri et al. (2020)

P. tremula, P. deltoides, P. alba Agrilus suvorov Borer Germany, Greece, Guernsey, Hungary, 

Ireland, Israel, Italy

Cavalcaselle (1972)

P. tacamahaca, P. tremuloides Altica populi Defoliation North America De Tillesse et al. (2007) and 

Ostry et al. (2014)

P. deltoides, P. alba

P. nigra, P. x euramericana hybrids

Leucoma wiltshieri Defoliation Europe, Middle East, Japan, Iran, 

America, China

Sadeghi et al. (2009) and Charles 

et al. (2014)

P. × euroamericana, P. euphratica, 

P. alba, P. nigra L., P. deltoides 

Marsh.

Melanophila picta Wood borer Bulgaria, Southern France, Italy, Spain, 

Portugal, Turkey

Pakistan

Mazhar and Sadeghi (2024)

P. tremuloides, P. purpurea, P. nigra Phratora laticollis Defoliation North

America, Belzium, Germany

Nagaraju et al. (2023)

P. deltoides   × P. nigra 

[P. × euramericana (Dode) 

Guinier], P. alba

Sesia apiformis Borer, root sucker Europe, Canada, Asia Minor, Middle 

East, China, North America

Martín García et al. (2011) and 

Meert (2022)

P. deltoides, P. tremula Byctiscus populi Defoliation Europe Urban (2013) and Schroeder and 

Fladung (2018)

P. tremuloides, P. deltoides, P. 

gradidentata

Choristoneura conflictana Defoliation Canada, Northeastern and Central 

USA, Alaska,

De Tillesse et al. (2007) and 

Charles et al. (2014)

P. deltoides Dasineura salicis Galls Europe, North America De Tillesse et al. (2007) and 

Charles et al. (2014)

Fungus

P. davidiana × P. bollena, P. 

euphratica, P. deltoides.

Alternaria alternata Leaf blight India, China, Iran Osdaghi et al. (2014), Uniyal 

et al. (2018), and Huang et al. 

(2022)

Populus× canescens ‘Tower’ Apioplagiostoma populi Bronze lea North America Wijekoon et al. (2021)

P. deltoides × P. nigra Botrydiplodia populea Canker China, Poland Kwaśna et al. (2021b)

P. deltoides, P. tremuloides, P. 

maximowiczii × P. x. berolinensis, 

P. serotina

Ceratocystis fimbriata Black and target canker USA, North America, Alaska, Poland, 

Quebec, India, Poland

Johnson et al. (2017)

P. tremuloides Ciborinia whetzelii Ink-spot disease Northern USA, Canada Zegler et al. (2012) and Kowalski 

(2013)

P. ×euramericana, P. yunnanensis, 

P. deltoides

Corticium salmonicolor Pink disease India Saxena et al. (2017)

P. tremuloides, P. balsamifera, P. 

tremula

Diplodia tumefaciens Bark alterations, woody 

gall

Canada, Europe, Northern USA Kwaśna et al. (2021b)

P. trichocarpa ×P. deltoides, P. 

tremula,

P. alba, P. grandidentata, P. 

tremuloides

Linospora tetraspora Leaf blight USA, Canada Zobrist et al. (2023)

P. deltoides Melampsora medusae Leaf rust Europe, New Zealand, Australia, South

Africa, Argentina, North America, 

India, Canada, Japan

Zeng et al. (2023)

P. deltoides Septoria musiva Canker and leaf spot Europe, North America Feau et al. (2010) and Dunnell 

and LeBoldus (2017)

P. alba Venturia tremulae Spring leaf, shoot blight North America, China, Africa Martínez-Arias et al. (2019)

(Continued)
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be valuable for developing transgenic poplar varieties with enhanced 
resistance to pest attacks (Pastierovič et al., 2024).

2.2 Pathogen attacks on poplar

Poplar trees are also constantly challenged by various pathogens 
like fungi, bacteria and viruses (Table 2). These pathogens inhibit the 
growth of poplar, impacting the quality and quantity of wood biomass. 
The different poplar culture practices and the introduction of exotic 
pathogens promote the widespread distribution of some specific 
pathogens (Newcombe et al., 1996).

2.2.1 Fungal attack on poplar
Fungi are usually considered as “primary parasites.” They infect 

healthy plants, which can eventually affect poplar growth and hence 
decrease the quality and production of wood. The diseased poplars 
can exhibit reduced leaf photosynthetic areas. Leaf scars created allows 
entry of secondary pathogens. Repeated infections and premature 
poplar defoliation may weaken plants, making them susceptible to 
insect attack, high temperatures and drought (Kebert et al., 2022). 
Generally, plant pathogens are categorized into three groups: (a) 
biotrophs (feed on living plant tissue), (b) necrotrophs (feed on dead 
plant tissue), and (c) hemibiotrophs (first infect living plant tissue and 
make them dead and then feed on dead tissues) (McCombe et al., 
2023). Examples of biotrophs infecting poplar are powdery mildews 

by Phyllactinia spp. or Uncinula spp., leaf rust by fungus Melampsora 
spp., while necrotrophs including leaf blight by Septoria spp. and leaf 
spot by Coryneum spp. and Marssonina spp., canker (Septoria spp.) 
(Feau et  al., 2010; Zeng et  al., 2023). Among fungi, the genus 
Melamspora (biotrophic rust fungi), especially (Melamspora. larici-
populina) is reported as the most severe and widespread fungi in 
poplar plantations (Polle et al., 2013). Infection with this genus is 
characterized by premature defoliation and reduced photosynthetic 
ability, resulting in loss of wood production (Polle et  al., 2013). 
Moreover, M. larici-populina is also responsible for severe economic 
poplar losses in Europe and America (Duplessis et al., 2009), while 
Melamspora medusae caused leaf rust in P. deltoides in East-North 
America and the North-West USA (Newcombe et al., 1996). The other 
primary poplar diseases like stem canker and leaf spot in North 
America and Europe are caused by fungus Septoria musiva (also 
known as Sphaerulina musiva) (Zhao et al., 2023). Venturia spp. are 
found to cause shoot and leaf blight in poplar plantations in Asia, 
Europe and North America (Gennaro and Giorcelli, 2019). Other 
major fungal pathogens of Populus affecting leaf are Apioplagiostoma 
populi (causing bronze leaf disease) and Taphrina spp. (causing yellow 
blister of leaves), Entoleuca mammata (causing Hypoxylon canker), 
Cytospora chrysosperma, (causing canker) and Phellinus tremulae 
(causing aspen bracket) (Duplessis et al., 2009). The poplar blister 
canker disease develops upon infection with the Botryosphaeria 
pathogen during drought stress, commonly observed in southern 
China (Xing et al., 2022). Recently, black spot disease in poplar has 

TABLE 2  (Continued)

Plants Pest/pathogens Diseases Affected Countries References

Bacteria

P. alba, P. trichocarpa, P. deltoides Erwinia herbicola, 

Erwinia carotovora

Bacterial twig canker with 

gall like formations

Europe, North America Fabi et al. (2008)

P. tremula L. 70 × (Populus × 

canescens)

Phytophtora. cactorum 

and P. plurivora.

Root rot Asia, Europe, Africa, USA, Australia, 

New Zealand, Serbia

Cerny et al. (2022)

P. ×euramericana Lonsdalea populi Bark canker China, Europe Li and He (2019)

P. trichocarpa Pseudomonas syringae Bacterial blight Worldwide Saint-Vincent, et al. (2020)

P. tomentosa, P × euramericana Sphingomonas sanguinis Bark canker Worldwide Deng et al. (2023), Li P. et al. 

(2024), Li Y. et al., (2024), and Li 

Z. et al. (2024)

P. trichocarpa Xanthomonas populi Canker Europe and America Kwaśna et al. (2021b)

Virus

P. nigra, P. trichocarpa, P. deltoides, 

P. candicans, P. ×euramericana

Poplar mosaic virus Leaf mosaic Worldwide Smith and Campbell (2004)

P. tremuloides Tobacco necrosis virus Necrosis of leaf Worldwide Shen et al. (2015)

P. ×euramericana Arabis mosaic virus Leaf mosaic Japan, New Zealand, America, Europe von Bargen et al. (2020), Li P. 

et al. (2024), Li Y. et al., (2024), 

and Li Z. et al. (2024)

P. tremuloides Potato virus Y Mottling/yellowing of leaf, 

leaf drop leaf crinkling

Worldwide Lawrence and Novak (2006)

P. euphratica and P. × canescens Tobacco rattle virus Mottling, chlorotic or 

necrotic local lesion, 

ringspots or line patterns, 

necrosis

Worldwide Shen et al. (2015)

P. balsamifera Tomato black ring virus Mottling, deformation, 

leaf necrosis

Worldwide Li P. et al. (2024), Li Y. et al., 

(2024), and Li Z. et al. (2024)
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been reported to be one of the major diseases in China affected by 
fungi such as Marssonina castagnei, Marssonina populi, and 
Marssonina brunnea (Xiong et al., 2021).

2.2.2 Bacterial diseases in poplar
A few bacteria also negatively affect the growth of poplar 

plantations. The attack of bacteria (Xanthomonas populi, Erwinia genus 
and Lonsdalea populi) causes canker, resulting in reduced wood 
biomass yield of poplar (Li et al., 2019). Xanthomonas populi (Ridé) 
Ridé and Ridé and Pseudomonas syringae Van Hall are responsible for 
necrosis, wilting, injury, cankers, rots and tumors in poplar vegetations 
(Kalinichenko et  al., 2017). The fluctuating temperatures cause 
P. syringae growth in poplar bark (Ramstedt et al., 1994). Lonsdalea 
quercina caused bark canker in Populus×euramericana (Tóth et al., 
2013). Recently, Pseudomonas aeruginosa (Schröter) Migula was 
reported to cause disease in poplar plants. It causes rot, resulting in fast 
wilting, with trees dying within 48 h. Agrobacterium radiobacter 
Beijerinck and van Delden and Agrobacterium tumefaciens cause 
crown gall disease upon transfer and integration of the bacterial 
transfer DNA (T-DNA) into the plant genome (Kwaśna et al., 2021a). 
Currently, the large population of the hybrid poplar 
Populus × euramericana in Hungary and China is severely affected by 
Lonsdalea populi (Zlatković et al., 2020). Bacterial wetwood of poplar 
(Populus alba L.) by Lelliottia nimipressuralis has been common in the 
territory of Ukraine since 1974. The poplar wetwood disease was also 
reported in Bulgaria, USA, and other countries. The primary bacterial 
pathogens of poplar are Xanthomonas populi, Pseudomonas syringae, 
Enterobacter cancerogenus in the coastal zone of Western Europe, 
Eastern Europe and Central Europe, respectively (Goychuk et al., 2023).

2.2.3 Viral attack in poplar
Viral pathogens such as the poplar mosaic virus, poplar decline 

virus, tobacco necrosis virus, tobacco mosaic virus, rhabdoviruses, 
cucumber mosaic virus, tobacco rattle virus, arabis mosaic virus and 
tomato black ring virus are also severe threats to the poplar 
population other than fungus and bacteria (Table 2; Wang P. et al., 
2023; Wang S. et al., 2023). Poplar mosaic virus (PopMV), with a 
single-stranded RNA, is the most common dangerous filamentous 
plant virus and is widespread worldwide (UK, “former Czechoslovakia 
and former Yugoslavia” Holland, France, Germany, Switzerland, 
Denmark, Italy, Bulgaria, USA and Canada) where poplar is grown 
at large scale. It attacks almost all the poplar plants in the Aigeiros 
section, including several clones of P. x euramericana. Members of 
the Tacamahaca section and crosses between these species and the 
Aigeiros section are also affected by viruses. The symptoms of a viral 
attack on poplar include stunted growth, leaf discoloration, necrosis, 
wilting and deformities in poplar. It causes severe losses in the 
quantity and quality of wood (Smith et al., 2004; Naylor et al., 2005; 
Smith et al., 2009). The virus is generally spread by cutting diseased 
parts (Berg, 1964).

3 Transmission route, infection, and 
defense mechanism in poplar attacked 
by pest and pathogens and their 
control

The vast diversity of insect pests and pathogens poses significant 
challenges to forest trees, severely impacting their health and 

productivity. These threats are particularly serious for poplar 
plantations worldwide. Climate change also plays a crucial role in 
altering the occurrence and spread of native and invasive insect 
outbreaks. Insects typically target susceptible trees for feeding or 
establishing habitats, further exacerbating the problem. These insects 
attack and affect all tree parts like shoot, xylem, phloem leaves, 
flowers, barks, and roots (Balla et al., 2021). In addition, most insects 
are generally introduced into a non-native area other than their native 
range and spread rapidly across the country. Imported alive plants and 
wood materials can act as carriers for introducing many pests (Dara 
et al., 2019). Fungi, the most common disease agent of poplar trees, 
have several invasion mechanisms and an array of virulent factors. In 
root rot disease, rhizomorphs (clusters of intertwining fungal hyphae) 
and secondary metabolites play a crucial role in infection. The 
rhizomorphs aggregate around the tree roots, feeding on the host 
tissues, and can persist in the dead tissues of infected plants for 
extended periods. This disease is marked by root decay, premature 
defoliation, wilting, and the production of dwarf fruits and leaves 
(Balla et  al., 2021). Warmer winters, due to climate change, have 
increased the frequency of sporulation and the rate of fungal 
infections. Notably, poplar’s defense mechanisms vary depending on 
the type of fungus involved. Rust diseases caused by the Melampsora 
spp. are the most common diseases in forest trees, such as poplar. 
Cankers are mainly caused by attacks of fungal pathogens which affect 
tree branches, shoots, and twigs. It has been noticed that canker-
related diseases occur because of functional failure of the cambium 
and phloem, carbon starvation, and hydraulic failure. For instance, the 
fungus inoculations Botryosphaeria disease in poplar (P. alba var. 
pyramidalis = Populus bolleana) arrested the regeneration of callus and 
phloem and decreased the rate of photosynthesis and transpiration, as 
well as arrested the opening of the stomatal aperture and disrupted 
electron transport (Xing et al., 2022). Bacteria affect plants by forming 
colonies on their surface or within their tissues. Unlike fungi, they 
cannot penetrate host cells directly. Instead, they typically enter 
through natural openings like stomata or through wounded areas. 
Once inside, these bacteria secrete extracellular enzymes that break 
down host cells, allowing them to colonize plant tissues. Additionally, 
they produce polysaccharides that clog the plant’s vascular system, 
reducing water transport through the xylem. Beetles and leafhoppers 
can also act as vectors, carrying pathogens and transmitting diseases 
to plants. Bacterial infections often manifest through symptoms such 
as spots, cankers, burns, tissue rot, and hormonal imbalances, which 
can lead to excessive root branching and leaf epinasty (Chatterjee 
et al., 2008). Certain bacteria, like Agrobacterium tumefaciens and 
Agrobacterium rhizogenes, inject their plasmids into plant host cells 
through wounded areas, integrating them into the host genome. This 
results in tumor gall diseases and the production of hairy roots, 
respectively (Sharan et al., 2019). Viral pathogens are widespread in 
plant ecosystems, serving two roles: as agents of plant diseases and as 
natural enemies of pests and tree pathogens, offering indirect 
protection to trees. Viral infections often cause significant tissue 
damage and can lead to symptoms like yellowing, chlorotic lesions, 
necrotic spots, and ring spots on plant parts. Some stable viruses, such 
as tobacco mosaic virus, do not require vectors to spread, while other 
viruses rely on vectors, such as aphids, mites, leafhoppers, fungi, 
beetles and nematodes, soil, water, other plants and debris for 
transmission (Balla et al., 2021). Smith and Campbell (2004) reported 
that the poplar mosaic virus (PopMV) infection and spread depend 
on the poplar genotypes.
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Insects are typically controlled by the release of toxic 
phytochemicals from plants, which either inhibit pest growth or kill 
the insects (Fernandez-Conradi et  al., 2021). To defend against 
pathogen attacks, poplars utilize two types of defense mechanisms: 
induced and constitutive defenses. Induced defenses are activated in 
response to external stimuli and involve complex processes, while 
constitutive defenses, the first line of defense, involve non-host 
resistance through physical barriers and the accumulation of 
phytochemicals in the plant (Alkan and Fortes, 2015; Zeng et  al., 
2023). Induced resistance can be further classified into locally induced 
resistance and systemic induced resistance (SIR). SIR provides broad-
spectrum, long-lasting protection against secondary infections. The 
exogenous application of signal molecules that trigger these defenses 
can enhance plant immunity and help manage pest populations (Balla 
et al., 2021). Some observations demonstrate that signal molecules 
such as salicylic acid (SA) and methyl jasmonate (MeJA) are involved 
in local and systemic defense responses. Recent research proved that 
both SA and MeJA pathways are induced in leaves of poplar upon 
infection with the fungus M. larici-populina proving that both 
hormone pathways are essential for defense response (Ullah et al., 
2019; Chen et al., 2021). Upon fungus attack, the poplar trees activates 
constitutive defenses involving several processes such as recognition 
of the fungus by receptor proteins and resistance (R) proteins (PR) 
resulting into pattern-triggered immunity (PTI) (receptors of plant 
membranes recognize molecular patterns (PAMPs) of pathogens) and 
effector-triggered immunity (ETI) (intracellular receptors, (a 
nucleotide-binding leucine-rich repeat (NLR) class recognize effectors 
released by pests and pathogens) as well as noncoding RNA (ncRNA)-
mediated defense (non-coding RNA having more than 200 nucleotides 
in length with having role in plant growth and development, and stress 
responses), initiation of hormone signaling network pathways 
(mitogen-activated protein kinase (MAPK) cascades and calcium-
dependent protein kinase (CDPK) involved in plant growth and 
development and stress response), activation of defense-related genes 
and transcription factors (TFs) involved in controlling gene expression 
by binding DNA elements at 5′ non-coding regions (promoters) of 
desired genes and modulating transcription rate) and accumulation 
of phytoconstituents (De Kesel et  al., 2021; Zeng et  al., 2023). In 
addition, the pathogen-associated protein 1 (PR1) gets activated as a 
plant response to abiotic and biotic stresses. Total 17 PtPR1 genes were 
found in Populus trichocarpa (Wang P. et al., 2023; Wang S. et al., 
2023). A total of 1888 lncRNAs and 52,810 mRNAs were recognized 
in poplar coma (Song et al., 2024). The 30 CDPK genes and 20 closely 
related kinase genes were identified in Populous spp. (Zuo et al., 2013), 
The 11 MAPKKs (PtMKKs) and 21 MAPKs (PtMPKs) were identified 
in the Populus trichocarpa (Hamel, 2006). A total of 104 WRKYs (TFs) 
have been identified in poplar (He et al., 2012). Recently, the integrated 
transcriptomic and transgenic analyses were applied to understand 
mechanisms of poplar resistance against Alternaria alternata attack 
(Wang W. et al., 2022; Wang Y. et al., 2022).

The most effective method for preventing leaf diseases caused by 
pests, fungi, bacteria, and viruses is selecting and planting pathogen-
resistant poplar clones. Another approach involves using fungicides, 
such as copper- and carbamide-based treatments, to prevent 
infections. Fungal diseases can also be  managed by maintaining 
proper spacing between poplars, reducing weed competition, and 
optimizing plant density, as high relative humidity contributes to 
disease development. Infected leaves, roots, stems, and branches 
should be  pruned, particularly during the dormant season, to 

minimize pest and pathogen attacks. Additionally, poplars should 
be planted in appropriate soil conditions within nurseries to promote 
healthy growth. Additionally, the soil from infected areas must not 
be used and moved with equipment (Kebert et al., 2022). Proteomic 
and genomic technologies offer valuable tools for precisely identifying 
and characterizing bacterial infections by analyzing their genetic and 
protein markers (Zubair et al., 2022). Recent studies have shown that 
lactic acid bacteria (LAB) can effectively combat plant pathogens due 
to their high biosecurity and ability to promote plant growth (Jaffar 
et al., 2023). Quorum sensing (QS) molecules, such as 3-OH PAME, 
regulate the virulence genes in bacteria and fungi, making the 
identification and development of QS-quenching genes and enzymes 
promising for disease control (Wang P. et al., 2023; Wang S. et al., 
2023). Additionally, eucalyptus oil, known for its antibacterial 
properties and ability to stimulate plant defense mechanisms, has been 
shown to reduce plant diseases and could be used to protect poplar in 
the future (Montesinos et al., 2023). A few genes have been reported 
whose expression can impart disease resistance in poplar trees. For 
example, the overexpression of PdbLOX2 was able to induce the 
resistance in P. davidiana × P. bollena against A. alternata attack, while 
silencing this gene increased the susceptibility of the poplar tree to 
A. alternata infection (Huang et al., 2022). Furthermore, the study 
reported that PtoMYB142 can regulate transcription of wax 
biosynthesis genes [fatty acid hydroxylase (CER4) and 3-ketoacyl CoA 
synthase (KCS6)] mediating adaption of poplars against drought 
conditions were highly expressed upon infection with fungal 
pathogens (Song et al., 2022). In addition, lignin has a vital role in 
protecting poplar from pest and pathogen attacks. It is a primary 
three-dimensional phenolic biopolymer of the secondary cell wall in 
vascular plants (Ma et  al., 2024). It imparts strength and 
imperviousness to cell walls, mediating long-distance water transport 
in vascular tissues. In addition, it acts as a barrier to the spread of 
invading pathogens as it is non-degradable to pathogens, thereby 
preventing their penetration into the plant cell wall and the supply of 
water and nutrients from plant cells to pathogens. It is noticed that the 
gene expression of lignin increased with higher lignin content upon 
pathogen infection. The genes (phenylalanine ammonia lyase (PAL), 
HCT4-Coumarate: coenzyme A ligase (4CL), cinnamate 
4-hydroxylase (C4H), cinnamoyl-CoA reductase (CCR), cinnamyl 
alcohol dehydrogenase (CAD) and hydroxycinnamoyl transferase) are 
involved in lignin biosynthesis and highly expressed during fungal 
infection leading to increase in lignin content (Lee et al., 2019; Zeng 
et al., 2023; Ma et al., 2024; Riseh et al., 2024). Hence, regulating the 
lignin biosynthesis pathway may be  critical for improving poplar 
resistance against pathogen attacks (Polle et al., 2013). It is reported 
that the higher expression of Pto4CL1 of P. tomentosa increased the 
lignin content from 33.11 to 46.65%, leading to the decreased 
formation of cellulose, hemicellulose, and pectin (Hu et al., 2019). 
RNAi technology was used to down-regulate the expression of 4CL 
gene to modify lignin biosynthesis in P. tremula (Kovalitskaya et al., 
2016). A significant 30% reduction in lignin content has been observed 
in poplars due to the downregulation of cinnamate 4-hydroxylase 
(C4H) genes (Bjurhager et al., 2010). Similarly, the downregulation of 
CAD genes in Populus tremula × Populus alba led to reduced lignin 
levels (Özparpucu et al., 2017). Dirigent (DIR) proteins have also been 
identified as crucial players in lignin biosynthesis. Li et al. (2022) 
reported that the overexpression of PtDIR11  in poplars enhanced 
lignin biosynthesis, thereby increasing the trees’ resistance to Septotis 
populiperda. Hence, gene editing can be  utilized to regulate the 
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expression of these genes to enhance lignin biosynthesis, which 
confers pest and pathogen resistance in poplar trees.

4 Conventional breeding in poplar

The recent global temperature, drought, humidity and climate 
instability render poplar plants vulnerable to pests and pathogens, 
severely affecting wood quality and quantity (Gullino et  al., 2022). 
Plants have physical and physiological barriers against microbial 
pathogens, preventing their access to plants (Kumudini et al., 2018). 
Plants produce antimicrobial peptides and other molecules that cause 
detoxification and the inhibition of virulence factors (Silva et al., 2016). 
Moreover, plants also apply RNA interference (RNAi), which detects 
invading viruses and cleaves the RNAs of viruses (Bocos-Asenjo et al., 
2022). However, these pathogens have evolved to cope with the defense 
systems of their plant cells by secreting cell-wall degrading enzymes, 
which gain access for molecules into plant cytoplasm, inhibiting host 
defenses and promoting susceptibility of plants toward pathogens (Kaur 
et al., 2022). Some viral pathogens are also reported to attack and silence 
the host RNAi system, promoting viral pathogenicity (Leonetti et al., 
2021). The increased demand for wood and its sustainability requires 
approaches to improve efficient production even under environmental 
constraints and minimize the threats due to pests affecting wood 
properties for industrial purposes (Polle et  al., 2013). However, 
controlling pests and pathogens with chemicals is increasingly 
considered unsafe due to their high toxicity, environmental 
accumulation, and harmful impacts on beneficial insects, non-target 
organisms, and humans (Ahmad et al., 2024). The commonly adopted 
traditional methods for the protection of plants from attack of poplar 
pests and pathogens are the use of resistant clones that have good 
adaptability to different soil (salinity, calcium level and pH), drought 
and climatic conditions coupled with the adoption of proper cultivation 
practices (i.e., fertilization, low plant density and irrigation) (Biselli 
et al., 2022). Enormous progress has been made in enhancing traits such 
as plant growth rate, pest and pathogen resistance, and environmental 
adaptations in poplar plantations by applying conventional breeding 
practices (Ye et al., 2011). However, these traditional methods are time-
consuming because of their long-life span, costly land demand, and 
high labor costs. In addition, because of the heterozygosity of most 
Populus genotypes and inbreeding depression, it is difficult to estimate 
the genetic control of particular traits (Ye et  al., 2011). Genetic 
engineering and molecular breeding methods for developing transgenic 
poplar plants can address the limitations of traditional breeding, such 
as the challenges of distant hybridisation, the complexity of cultivation, 
and issues with interspecific hybridisation (Begna, 2021).

These tools have enormous potential to improve two or more 
traits simultaneously by introducing desired exogenous genes of 
donor plant or non-plant origin into a particular plant genome, 
enabling the improvement of poplar against pests and pathogens, 
herbicide resistance, abiotic stress, wood properties, flowering 
regulation and phytoremediation (Thomas, 2022).

5 Genetic engineering and different 
transformation methods in poplar

Genetic transformation has been widely employed in research on 
various forest trees. This process involves introducing exogenous 

genes into tree cells, thereby altering their genetic traits (Li et al., 
2023). Poplar trees were among the first forest trees used successfully 
for genetic engineering for gene research (Ye et al., 2011). For more 
than 20 years, several progress has been made in Populus 
transformation. The most widely used transgenic tools involve 
vector-mediated transformation, such as Agrobacterium tumefaciens-
mediated and A. rhizogenes mediated and non-vector mediated 
transformation (Gene gun-mediated, pollen tube pathway, and 
protoplast transformation methods). The Genome editing method is 
an advanced approach for adding, deleting, or modifying genes 
within the specific genome (Li et al., 2023). Mobile genome editing 
techniques, such as clustered regularly interspaced short palindromic 
repeats (CRISPR)-associated (CRISPR-Cas) systems, RNA 
interference (RNAi), and nanoparticle-meditated gene 
transformation have been recently applied to improve poplar tree 
(Yin et al., 2021; Figure 1). Among these methods, Agrobacterium-
mediated and gene gun-mediated transformations are the most 
widely used techniques for forest trees (Lv et al., 2020).

5.1 Agrobacterium tumefaciens-mediated 
transformations: basic mechanisms

Agrobacterium tumefaciens-mediated transformation is the most 
preferred method for the genetic transformation of forest trees. 
A. tumefaciens (a gram-negative soil bacteria) infects the wounded sites 
in many dicotyledons, gymnosperms and a few angiosperms. It delivers 
its transfer DNA (T-DNA) molecules into plant cells and then 
integrates them into the plant genome (Chilton et al., 1980; Sekine and 
Shinmyo, 2020). The Agrobacterium-mediated transformation method 
involves removing oncogenes causing tumorigenesis, inserting 
exogenous genes in disarmed T-DNA, and delivering and integrating 
foreign genes into the plant genome (Pratiwi and Surya, 2020). The 
success of Agrobacterium-mediated transformation depends on 
different parameters such as the virulence of Agrobacterium cells, 
explant types and plant genotypes and regeneration of transgenic 
populations. Agrobacterium rhizogenes is also a relative of 
A. tumefaciens, which develops hairy root at the wounded site of plant 
cells (also known as “hairy root disease”) and can be used to transfer 
the T-DNA into a binary vector into developing root cells (Limpens 
et  al., 2004; Sharan et  al., 2019). Various wild-type strains of 
A. tumefaciens and A. rhizogenes have transformed various trees. 
A. tumefaciens-mediated genetic transformation system has been 
widely applied in various poplars, such as Populus alba × Populus 
glandulosa, Populus simonii × Populus nigra, and Populus tomentosa. 
Several attempts were made to improve A. tumefaciens-mediated 
transformation in poplar by optimizing several parameters such as 
types of explants, different strains of Agrobacterium and culture 
densities, incubation time and concentration of acetosyringone and 
sucrose (Movahedi et al., 2014, Sharan et al., 2019). Pest infestation and 
bacterial, fungal and viral diseases are limiting factors which affect the 
healthy growth of poplar trees (Li P. et al., 2024; Li Y. et al., 2024; Li 
Z. et al., 2024). By introducing insect and disease-resistance genes into 
poplar trees using A. tumefaciens, these trees can protect themselves 
from invading pests and diseases, enhancing their survival rate and 
disease-resistance capabilities. However, Agrobacterium-mediated 
transformation has been done in several poplars, but many other 
poplars remain recalcitrant to Agrobacterium-mediated transformation 
(Song et al., 2019).
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5.2 Agrobacterium-mediated 
transformation for pest resistance in poplar

Several transgenic poplars have been developed that overexpress 
genes encoding different serine proteinase inhibitor proteins (Heuchelin 
et al., 1997; Confalonieri et al., 1998) and Bacillus thuringiensis-derived 
genes (Cry/Bt genes) (McCown et  al., 1991; Wang et  al., 1996), 
Androctonus australis hector insect toxin, Kunitz trypsin inhibitor (KTI) 
and chitinase gene for conferring pests resistance (Clemente et al., 2019; 
Ren et al., 2021; Table 3). However, Bt gene is the most widely used for 
generating pest-resistant poplar trees. The first stable transfer of Bt was 
reported in Populus nigra (McCown et  al., 1991). Recently, the 
simultaneous introduction of two Bt genes into the trees’ genomes 
expanded the scope of insect resistance in transgenic forest trees (Dong 
et  al., 2015; Wang et  al., 2018). China has been the first nation to 
generate and commercialize two transgenic lepidopteran-resistant 
poplar lines since 2002 (Thakur et  al., 2021). The plant 
P. alba×P. glandulosa was transformed with a Bt Gene (CRY3A) using 
Agrobacterium-mediated transformation method, which resulted in the 
development of transgenic line BGA-5 and toxic to the larvae of 
Anoplophora glabripennis with a growth inhibition rate of 78.6% (Zhang 
et  al., 2006). P. × euramericana was transformed with Cry1AC and 
Cry3A genes to confer resistance to the poplar plants against H. cunea 
exhibiting mortality rate of 42.2–66.1 and 100% of Plagiodera versicolora 
larvae of L1 and L2 stages, respectively (Yang et al., 2016). Transgenic 

poplar lines ‘Shanxin’ (Populus davidiana×Populus bolleana) were 
developed through Agrobacterium-mediated transformation method 
carrying Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3, respectively against 
fall webworm (Hyphantria cunea) and gypsy moth (Lymantria dispar) 
as these genes Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 were toxic to the 
larvae of both insects (Ding et al., 2017). Two Bt toxin genes, Cry1Ac 
and Cry3A, were simultaneously integrated into the genome of Populus 
× euramericana ‘Neva’ with the help of Agrobacterium tumefaciens, to 
develop transgenic poplar, which was highly resistance to Lepidopteran 
and Coleopteran pests (Satish et al., 2021). Other than Bt, many other 
genes, such as cowpea trypsin inhibitor (CPTI), cysteine proteinase 
inhibitor (Atcys) gene, glycine max trypsin proteinase inhibitor (KTi3 
and PtdPP01 genes, etc.) were inserted into Populus species, which 
conferred some degree of resistance against insect pests (Table 3). La 
Mantia et al. (2018) observed that the overexpression of Arabidopsis 
AlgolS3 (AtGolS3) and Cucumber sativus Raffinose synthase (CsRFS) 
in Populus alba × P. grandidentata antagonizes leaf rust defense 
mechanism by inhibiting reactive oxygen species (ROS) and attenuating 
phosphatidic acid and calcium signaling pathways leading to salicylic 
acid (SA) defense. Lin et  al. (2006) generated transgenic 
P. simonii×P. nigra plants by inserting the spider neurotoxin gene along 
with C-terminal of CryIA(B) gene resistance against Lymantria dispar. 
Moreover, the scorpion neurotoxin AaIT expression in hybrid Populus 
was responsible for developing resistance against the spongy moth (Lin 
et al., 2006).

FIGURE 1

Summarizing forest protection using genetic engineering. Increasing biotic stressors (i.e., pests and pathogens) cause dramatic tree mortality in the 
forests worldwide. The conventional breeding method is time-consuming and fails to cope with the demands. Transgenic pest and disease resistance 
trees (i.e., Poplar) can potentially mitigate the challenges. Transgenic trees can be generated using various transformation techniques such as 
(A) agrobacterium-mediated transformation, (B) gene-gun mediated transformation, (C) protoplast-mediated transformation, (D) mi-RNA or RNAi-
mediated transformation, and (E) CRISPR-mediated transformation techniques. (The figure is prepared using biorender.com).
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5.3 Agrobacterium-mediated 
transformation for disease resistance in 
poplar

A diverse array of bacterial and fungal attacks and viral infestation 
causes significant losses in the poplar yield. Transgenic poplars have 

various antibacterial and antifungal genes encoding proteins capable 
of breaking down mycotoxins and inhibiting cell-wall-degrading 
enzymes such as rabbit defensin (NP-1), osmotin, glucanases, 
chitinases (CH5B), lysozyme and thaumatin were able to combat 
pathogens mentioned in Table  4 (Zhao et  al., 1999; Juge, 2006; 
Karlovsky, 2011; Thakur et al., 2021). Noël et al. (2005) generated 

TABLE 3  Agrobacterium-mediated transformation for imparting pest resistance in poplar species.

Poplar species Gene Targets Percentage of 
transformation

Percentage of 
tolerance

References

P. alba ×P. grandidentat Maize Ac transposable 

element and Bt

– 67–100% with Ac gene

67–75% with Bt gene

– Howe et al. (1994)

P. alba×P. 

grandidentata

Cry1A Spongy moth – 91.9% Kleiner et al. (1995)

P. deltoides × P. simonii Bt Lymantria dispar and 

Clostera anchoreta

17.8% 45% Rao et al. (2001)

P. tremula × P. 

tremuloides

Cry3Aa Chrysomela tremulae – 100% Génissel et al. (2003)

P. simonii × P. nigra Spider insecticidal 

peptide and Bt

Lymantria dispar – 92% Cao et al. (2010)

P. tomentosa Carr Cry1Ac; API L. dispar and C. 

anachoreta larvae

39.3% 80% Yang et al. (2006)

P. euramericana cry1AC-cry3A-NTHK1 Hyphantria cunea and 

Plagiodera versicolora

– 60% (Hyphantria cunea)

100% (Plagiodera 

versicolora)

Liu et al. (2016)

P. euramericana cry1Ac, cry3A, Hyphantria cunea and 

Plagiodera versicolora

– 42.2–66.7% (for 

Hyphantria cunea 100%) 

(for Plagiodera Versicolora)

Yang et al. (2016)

P. davidiana × P. 

bolleana

cry1Ac + SCK, cry1Ah3, 

cry9Aa3

Lymantria dispar and 

Hyphantria cunea

– 97% (for Lymantria dispar)

91% (for Hyphantria 

cunea)

Ding et al. (2017)

P. deltoides×P. 

euramericana

Cry1Ah1 Hyphantria cunea – 90% Xu et al. (2019)

Populus × 

euramericana ‘Neva’

Cry1Ac Cry3A Lepidopteran and 

Coleopteran pests

– 100% Ren et al. (2021)

P. nigra L. mtlD Cry3A, Cry1Ac Hyphantria cunea

larvae and Plagiodera 

versicolora larvae

– More than 80% (for 

Hyphantria cunea)

larvae

100% for Plagiodera 

versicolora

Zhou et al. (2020)

P. simonii × P. nigra spider neurotoxin gene 

fused with C-terminal 

of cryIA(B) gene

Lymantria dispar – 37 and 92% Lin et al. (2006)

P. alba ATCYS Chrysomela populi 11% 77–100% Delledonne et al. (2001)

P. alba × P. 

grandidentata

Arabidopsis AlgolS3 

(AtGolS3) and 

Cucumber sativus 

Raffinose synthase 

(CsRFS)

Leaf rust – 100% La Mantia et al. (2018)

P. tremula × P. alba PtdPPO1 Malacosoma disstria – 50-fold greater PPO 

activity relative to 

untransformed controls

Wang and Constabel 

(2004)

P. tomentosa × P. 

bolleana × P. tomentosa

CPTI Malacosoma disstria 

and Stilpnotia candida

– 40–55% Zhang et al. (2005)
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transgenic hybrid poplar plants harboring the ECH42 (Trichoderma 
harzianum endochitinase) gene responsible for imparting an 
enhanced level of resistance against Melampsora medusa, a leaf rust 
pathogen of poplar. Levée et al. (2009) functionally identified and 
characterized the transcription factor PtWRKY23 gene in P. tomentosa 
× P. alba whose silencing is responsible for enhanced susceptibility of 
transgenic poplars toward Melampsora infection. In addition, the 
overexpression of a transcription factor PtoWRKY60 in P. tomentosa 
clone 741 was noticed for conferring resistance to the fungal pathogen 
Dothiorella gregaria (Ye et al., 2014). Jiang et al. (2017) observed that 
over-expression of PtrWRKY18 and PtrWRKY35 transcription 
factors increased resistance in poplar transgenics against Melampsora 
rust. Hybrid Populus having over-expressed a wheat (Triticum 
aestivum) germin-like oxalate oxidase gene encoding enzyme 
responsible for metabolizing the oxalic acid molecules secreted by 
fungal pathogen Septoria musiva, showed delayed infection by the 
fungal pathogen (Liang et  al., 2001). Interestingly, developing 
genetically engineered transgenic poplar resistant to bacterial 
pathogens is less common as bacterial damage is rare in poplar 
plantations. However, severe infections by Xanthomonas spp. on 
poplar plantations are reported (Ye et al., 2011). Mentag et al. (2003) 
generated transgenic P. tremula × P. alba having a gene encoding a 
synthetic antimicrobial peptide D4E1 imparting resistance to several 
fungal and bacterial pathogens. The nucleotide MsrA2 [N-terminally 
modified amphibian host defense peptide (HDPs) from the skin 
secretion of arboreal frogs] was inserted into the hybrid poplar Populus 
nigra L. × P. maximowiczii A through Agrobacterium-mediated 

transformation method. The peptide was reported to inhibit S. musiva 
conidia germination but is non-toxic to poplar (Yevtushenko and 
Misra, 2019). Certain viruses, such as the poplar decline virus, poplar 
mosaic virus, and arabis mosaic virus, pose significant threats to the 
poplar population by stunting plant growth and severely impacting 
wood biomass and quality (Pinon and Frey, 2005). To date, there have 
been no reports of developing transgenic poplar plants with improved 
viral resistance using the Agrobacterium tumefaciens-mediated 
transformation method. Therefore, this method holds potential for 
future use in enhancing viral resistance in poplar.

5.4 Gene gun-mediated transformations

The gene gum method (biolistic particle delivery system) has 
excellent potential in forest tree research. This physical method is 
commonly applied for genetic transformations of several plants. This 
method was first developed by Sanford and colleagues in 1982. The 
process involves the transfer of gold or tungsten microparticles (or 
microcarriers) coated with exogenous donor genes into receptor cells 
or tissues or organs with the help of accelerators like pressurized 
helium (He) gas and integration of genes into receptor genome and 
expression of the genes (Zhang et al., 2014; Cunningham et al., 2018). 
The efficiency of gene gun-mediated transformation depends on the 
factors, for example, types of receptors, culture and transformation 
conditions (Wang et al., 2018). In addition, this method is independent 
of plant genotypes compared to A. tumefaciens-mediated 

TABLE 4  Agrobacterium-mediated transformation for imparting disease resistance in poplar species.

Plant Genes Target
Percentage 

transformation
Percentage 
resistance

References

P. trichocarpa×P. 

deltoides and P. 

trichocarpa×P. nigra

Bacterio-opsin 

resistance

Melampsora occidentalis 

and Septoria populicola

– Ineffective Mohamed et al. (2001)

P. euramericana × P. 

canadensis and P. 

nigra× P. maximowiczii

AcAMP1,2 and ESF12 Septoria musiva – 40% Liang et al. (2002)

P. tremula×P. alba 

against

D4E1 resistance Xanthomonas populi – 57% Mentag et al. (2003)

P. alba BS Melampsora 

pulcherrima

2.5% 40–63% Giorcelli et al. (2004)

P. nigra × P. 

maximowiczii

ECH42 Melampsora medusae – Noël et al. (2005)

P. tomentosa × P. alba Antisense and sense 

PtWRKY23

Melampsora species – Expression level was of 

10-fold after infection

Boyle et al. (2010)

P. tomentosa LJAMP2 Alternaria alternata and 

Colletotrichum 

gloeosporioides (Penz.)

– – Jia et al. (2010)

P. trichocarpa Torr. and 

P. tomentosa Carr

PtrWRKY18 and 

PtrWRKY35 

transcription factors

Melampsora rust – Enhanced expression level 

of these genes

Jiang et al. (2017)

P. nigra L. × P. 

maximowiczii A. Henry 

(NM6)

MsrA2, N-terminally 

modified amphibian 

host defense peptide 

(HDPs)

S. musiva – 95% Yevtushenko and Misra 

(2019)
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transformation. This method is commonly applied to generate 
transgenic poplars, as mentioned in Table 5 (Ozyigit and Yucebilgili 
Kurtoglu, 2020). The insect resistance Bt gene was co-transformed 
into P. nigra through gene gun mediated transformation protocol (Li 
et al., 2000). The Bt gene (cry3Bb) gene was successfully incorporated 
into the genome of poplar plastid through biolistic bombardment, 
generating transformed poplar with a mortality rate of 100% to 
Plagiodera versicolora (Xu et al., 2020). Wang et al. (2007) inserted 
three foreign Bacillus subtilis genes vitreoscilla hemoglobin (vgb), 
fructan sucrase (SacB), and bivalent stem borer resistance 
(BtCry3A + OC-I), and the regulatory gene (JERF3) into Populus × 
euramericacana ‘Guariento’ through particle bombardment method. 
No incorporation of pathogen and disease-resistant genes in poplar 
trees with the help of gene gun mediated transformation tools has 
been reported. The disadvantages of this gene gun-mediated 
transformation are low efficiency, silencing the transformed genes, 
inserting multiple gene copies and unstable expression of exogenous 
genes (Yin et al., 2021).

5.5 Protoplast transformation

The use of protoplasts for genetic transformation in plants has 
grown significantly in recent years. This technique involves 
introducing and incorporating exogenous genes into plant protoplasts, 
leading to the generation of transgenic plants with stable gene 
expression. The protoplast method has proven to be easy, fast, and 
efficient, with minimal or no interference from surrounding cells or 
the microenvironment (Yin et al., 2021; Adjei et al., 2023). Because of 
their versatility and efficiency, protoplast transformation systems have 
been optimized, established and applied to many recalcitrant 
non-model plants, along with the efficient delivery of several genes 
(Rehman et al., 2016; Naing et al., 2021; Ojuederie et al., 2022). This 
method is affected by several parameters such as explant types, tissue 
types, the composition of the digestion solutions, the pH of the 
digestion solution, the digestion time, the concentration of polyethene 
glycol (PEG) and the transformation time (Rezazadeh et al., 2011, 
Biswas et al., 2022). The protoplast transformation method is easy and 
efficient in annual herbaceous plants such as Oryza sativa, Arabidopsis 
thaliana and Nicotiana tabaccum (Jiang et al., 2013; Sun et al., 2018). 
The separation and transformation of protoplasts and regeneration 
from transformed protoplasts are difficult in forest trees. Advances 

have been made in PEG-mediated transformation method by applying 
liposome-mediated shock perforation and A. tumefaciens co-culture 
transformation method (Wu et al., 2014). The PEG-mediated method 
is the widely used protoplast transformation system in plants 
(Lenaghan and Neal Stewart, 2019). In addition, protoplasts can 
be  transformed directly by imbibing DNA followed by PEG 
pre-treatment, microinjection, and electroporation. However, 
protoplast isolation and its transformation are complex and 
challenging for woody trees like poplar and have not been fully 
optimized and developed. Xu et al. (2020) used the leaf protoplast of 
poplar (P. davidiana *P. bollaena) to introduce cry3Bb genes for 
developing insect-resistant transgenic poplar. This method has not yet 
been utilized to generate transgenic poplar with pathogen-
resistant genes.

5.6 Micro RNA mediated transformation

MicroRNAs (miRNAs) are endogenous, short, single-stranded, 
non-coding RNAs of 20–24 nucleotides, processed from hairpin RNA 
precursors by Dicer-like (DCL) enzymes. These are found in all 
eukaryotic cells and negatively regulate gene expression. After their 
discovery in plants, several miRNAs have been recognized with the 
help of high-throughput sequencing technology and bioinformatics 
and for there essential roles in regulating critical genes involved in 
plant-pathogen interactions at the transcriptional or post-
transcriptional levels (Islam et  al., 2022; Nizamani et  al., 2023). 
According to the host and the specific pathogen, miRNAs can be up- 
or down-regulated, thereby promoting plant disease resistance by 
participating in hormone signaling and regulating and moderating 
resistance (R) genes (Yang et  al., 2021). The first report of plant 
microRNAs was reported in Arabidopsis by Llave et al. (2002). Several 
studies established the pivotal roles of microRNAs in regulating biotic 
and abiotic stresses in several plants (Kar and Raichaudhuri, 2021). 
Transgenic poplar overexpressing miR159a (OX-159) showed 
enhanced resistance to necrotrophic fungi C. chrysosperma while 
enhanced susceptibility to infection by L. populi (bacterial canker) and 
hemi-biotrophic fungi C. gloeosporioides (Yang et  al., 2023). 
Furthermore, in transgenic poplar (P. trichocarpa), miR472a positively 
regulated resistance to Colletotrichum gloeosporioides by targeting 
nucleotide-binding site and leucine-rich repeat domains (largest R 
proteins, NBS-LRR) and regulated negatively resistance to Cytospora 

TABLE 5  Gene gun mediated transformation in poplar species.

Plant Gene Target
Percentage of 
transformation

Percentage of 
tolerance

References

P. alba× P. 

grandidentata and P. 

nigra× P. trichocarpa

Bt Malacosoma disstria 

and Lymantria dispar

– 60% (for Malacosoma 

disstria) 24% (for 

Lymantria dispar)

McCown et al. (1991)

P. nigra Chimaeric TA29-

barnase gene

Insect 16.1 – Li et al. (2000)

P. euramericana

‘Guariento

SacB/vgb/BtCry3A, 

OC-I/JERF36/NPT II

Coleopterus insect – – Wang et al. (2007)

P. davidiana ×P. 

bollaena

(Bt) cry3Bb Plagiodera versicolora – 100% Xu et al. (2020)

187

https://doi.org/10.3389/ffgc.2024.1490562
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Sharan et al.� 10.3389/ffgc.2024.1490562

Frontiers in Forests and Global Change 13 frontiersin.org

chrysosperma (Su et al., 2018). miR156a was found to be the most 
stable miRNA examined as a reference gene in P. tomentosa under 
canker pathogen stress (Zhang et al., 2021). Several evidences proved 
that miRNAs can regulate and mediate biological processes during 
plant-insect and plant-viral interactions, ultimately conferring pest/
viral resistance in plants (Zhang et al., 2022; Satish et al., 2021). To 
date, miRNA molecules have not yet been used to generate transgenic 
poplar with pest and viral resistance genes. We believe that with the 
growing recognition of miRNA molecules, as highlighted by the 2024 
Nobel Prize, artificial mi-RNA holds the potential to be  used for 
manipulating tree traits in the future.

5.7 RNA interference-mediated 
transformation

RNA interference (RNAi) is a naturally occurring cellular 
defense system in most eucaryotic cells. It is mediated by double-
stranded RNA (dsRNA) as either a source of virus infection or 
because of transposon activity, both seeking need to be suppressed 
(Obbard et  al., 2009). RNAi pathway involves the formation of 
several interfering molecules, i.e., small interfering RNAs (siRNAs) 
and microRNAs (miRNAs), generated through the activity of a dicer 
enzyme. These interfering molecules are then loaded on an 
RNA-induced silencing complex (RISC) containing argonaute 
protein (AGO). RISC directs the interfering molecules to their target 
gene, and homology-based cleavage of target mRNA occurs in the 
cells (Mamta and Rajam, 2017). RNAi has an important role in 
functional genomics research and is also a promising species-specific 
pest/pathogen management strategy in agroforestry (Mamta and 
Rajam, 2017; Joga et al., 2021; Mogilicherla et al., 2023; Sandal et al., 
2023; Sellamuthu et al., 2024). RNAi tool is a sequence-based method 
that suppresses target gene expression for pest growth, development, 
and reproduction without affecting non-targeting other pest species 
(Whyard et al., 2009; Christiaens et al., 2020). Transgenic poplar 
plants harboring dsRNA targeting CYP6B53 from Lymantria dispar 
via A. tumefaciens-mediated transformation exhibited inhibited 
larval feeding and delayed growth (Sun et al., 2022). Such studies 
endorse the potential for using trees expressing dsRNA against target 
forest pests. RNAi-mediated lignin modification has also been 
successfully applied in poplar. The overexpression of microRNA, 
such as miR6443 reduces S lignin biosynthesis during shoot 
development in Populus tomentosa, making the plant susceptible to 
pathogens (Fan et al., 2020). Thus, RNAi can be utilized to modulate 
gene expression miR6443 to produce more lignin in poplar to confer 
resistance against pathogens.

5.8 Microparticle-mediated CRISPR DNA 
delivery for genome editing in poplar

The clustered regularly interspaced palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) system is the most promising 
technique used for precise genetic engineering in plants, including 
poplar (Bewg et al., 2018; Anders et al., 2023; Sulis et al., 2023). This 
method is harnessed to improve sustainable production and introduce 
precise alterations at target sites, thereby altering plant architecture and 
floral development and developing biotic/abiotic resistance in trees 

(Borthakur et al., 2022). This method does not introduce foreign genes 
into the forest trees, making it safer than other genetic engineering 
methods. In this process, CRISPR gene-editing reagents, i.e., Cas9 
protein and the guide RNA (gRNA), are generally delivered through 
A. tumefaciens, resulting in the stable genome integration and expression 
of the transfer DNA (T-DNA) in the plant genome (Hoengenaert et al., 
2023). Alternative strategies other than Agrobacterium-mediated method 
for the delivery of gene-editing reagents into plant genomes are either 
through the expression of a gRNA- and Cas9-coding DNA/RNA or 
ribonucleoproteins (RNPs) into callus or protoplasts (Lin et al., 2018). 
However, this approach has drawbacks, such as inducing somaclonal 
variation and large genome rearrangements resulting in altered 
phenotype of plants (Serres et al., 1991; Fossi et al., 2019). Another 
commonly used method applies mechanical force like a gene gun to 
deliver gene-editing reagents coated with microparticles into plant tissue. 
Several researchers applied CRISPR-mediated gene editing for wood 
quality improvement and drought/pest/disease resistance in forest trees 
(Dort et al., 2020). In addition, microparticle-mediated DNA delivery 
technology has previously been used to deliver the CRISPR gene in 
poplar trees (Devantier et al., 1993; Nowak et al., 2004; Canto, 2016). Jang 
et al. (2021) and Huang et al. (2022) utilized this method for knocking 
out caffeoyl shikimate esterase (CSE) to improve lignocellulose biomass 
and root growth transcription factor PDNF-YB21 for repression of root 
and inducing drought resistance in transgenic poplar, respectively. 
However, it has not yet been applied to develop pest and pathogen 
resistance in poplar trees.

6 Regeneration methods used in 
Populus species

An efficient regeneration system is crucial for successful genetic 
transformation, as it enables the development of transgenic plants 
from a single cell carrying the desired genes. However, genetic 
transformation and regeneration remain significant challenges in 
many forest trees, including poplar. Various plant regeneration 
methods have been developed for poplars (Thakur et al., 2005; Li et al., 
2017), which can be  employed to produce transgenic trees with 
resistance to pests and diseases. In recent decades, significant research 
efforts have focused on creating transgenic poplars with enhanced 
resistance to abiotic stress and improved wood quantity and quality. 
There have been a few reports on regenerating transgenic poplar trees 
with biotic stress resistance. The established suspension cultures of 
P. alba x P. grandidentata cv. ‘Crandon’ were transformed with vectors 
A. tumefaciens carrying the maize Ac transposable element and an 
insect toxin gene isolated from Bacillus thuringiensis (Bt). These 
transgenic plants were regenerated by subculturing the transformed 
callus on the medium, supplemented with a growth regulator 
Thidiazuron (TDZ) of 0.11–27.0 μM (Howe et  al., 1994). 
A. tumefaciens mediated genetic transformation and regeneration of 
hybrid poplar (P. alba x P. grandidentata) and transgenic quaking 
aspen from cuttings from young leaves were also readily achieved 
(Tsai et al., 1994). A. tumefaciens-mediated transformation of leaf 
explants of P. nigra L. was done with a Kunitz trypsin proteinase 
inhibitor (KTi3) gene for pest resistance, and regeneration of this 
transgenic leaf explants was successfully achieved (Confalonieri et al., 
1998). The stems and petioles of transformed hybrid aspen (Populus 
tremula × P. alba) clones containing PtdPPO1 genes (conferring pest 
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and pathogens resistant in plants) of in vitro plantlets were used for 
regeneration (Wang and Constabel, 2004). Further research is needed 
to establish a protocol for regenerating transgenic poplars with 
enhanced resistance to pests and pathogens from modified cells.

7 Conclusion and future perspectives

Poplars play a crucial role in supporting global ecological and 
socioeconomic wellbeing. The growing demand for poplar products has 
driven genetic engineering efforts to enhance various traits, particularly 
pest and disease resistance, as these trees are highly susceptible to 
numerous pests, fungi, and viruses. Considering the long growth cycle 
with low transformation tendency in forest trees, including poplar trees, 
it is necessary to establish a stable and efficient transformation system. 
Adopting pest and disease-resistant transgenic poplar plants to minimize 
yield loss and pesticide consumption has been successful. Many 
researchers have employed genetic transformation methods, including 
Agrobacterium tumefaciens, protoplast, gene gun, RNA interference, and 
miRNA-mediated transformations, to improve poplar resistance to pests 
and pathogens. These techniques, along with genome editing to 
introduce pest resistance genes and modulate lignin biosynthesis, offer 
promising avenues for developing transgenic poplar trees capable of 
withstanding pest and disease attacks, thus improving their survival 
rates. However, no research has been conducted on the pollen tube 
method, A. rhizogenes mediated and nanoparticle-mediated 
transformation to enhance pest/pathogen or virus resistance in Populus 
species. Further efforts are required to establish transgenic poplars with 
single/multiple genes for increasing biotic stress tolerance limits (pest/
pathogens infestations) using nanoparticles, A. rhizogenes, and the pollen 
tube method. It will be optimal if the methods developed in poplar can 
be used in other forest trees to make them resistant to biotic and abiotic 
stresses. The use of omics technologies (i.e., genomics, transcriptomics, 
and proteomics), along with high-throughput screening and selection 
methods, accelerates the identification of successful transgenic poplar 
lines. Integrating big data, machine learning, and artificial intelligence 
(AI) into poplar breeding programs (i.e., data-driven breeding) can 
enhance the accuracy of predicting genetic alteration outcomes (Farooq 
et al., 2024), enabling more targeted and efficient transgenic strategies for 
trees. A key factor for success is the competence to regenerate transgenic 
plants from modified cells. Addressing the genotype dependency in 
poplar transformation is crucial for expanding the applicability of 
transgenic approaches. Developing “transgene-free” or non-GMO 

techniques, such as transient CRISPR expression, could alleviate 
regulatory and public concerns, facilitating the adoption of genetically 
improved poplar.
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Bark beetle outbreaks have become increasingly prevalent and intense, causing 
widespread tree mortality and altering forest ecosystems globally. In this study, 
we investigate the dynamics between tree root systems of the Norway spruce 
and ectomycorrhizal fungi in the aftermath of bark beetle-induced tree mortality, 
focusing on the changes in density of vital and non-vital mycorrhizal tips. The 
survey was carried out in the Bohemian Switzerland National Park, Czechia. The 
sampling sites were chosen based on polygon layers delineating individual years 
of mortality status, obtained by PlanetLab imagery for 2018–2022, classified by 
Support Vector Machine, a machine learning tool (SVM). Fieldwork involved the 
collection of soil and root samples. Mycorrhizal tips were examined and counted 
using a stereomicroscope. Soil pH and root dry weight were determined. Wood decay 
fungi were identified using a comprehensive approach, combining macroscopic 
examination with genetic analysis. Due to the favorable conditions, the density 
of vital mycorrhizal tips (VM) on living trees gradually increased, peaking in the 
2nd and 3rd years after the surrounding forest decay. VM on bark beetle snags 
was significantly lower compared to living trees, with minimal variation over 
time. The dry biomass of fine roots was significantly greater in living trees. Fine 
root abundance showed a slight decrease over time in living and dead trees; 
however, there was a lack of statistical significance. Most of the fine root biomass 
decomposes within the first half year after tree death. This might be influenced by 
wood decay fungi identified on dead trees, including genera Armillaria, Fomitopsis, 
and Pleurotus ostreatus. Overall, the study provides insights into the complex 
dynamics of mycorrhizal associations, root system biomass, and wood decay fungi 
in the aftermath of bark beetle-induced tree mortality. Our study demonstrates that 
mycorrhizal activity increases in trees surviving a bark beetle disturbance, and they 
probably become another ECM refugia. This research contributes valuable insights 
into the ecological consequences of bark beetle infestations on below-ground 
interactions, offering a deeper understanding of forest ecosystem responses to 
widespread tree mortality. Such knowledge is essential for developing effective 
strategies to manage and mitigate the ecological impacts of bark beetle outbreaks 
in forested environments.
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Norway spruce, Ips typographus, root, deadwood, disturbance, forest health, stability, 
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Introduction

Dead trees play a key role in natural forest ecosystems (Rondeux 
and Sanchez, 2010). Since they are associated with a wide range of 
microorganisms, animals, and fungi, dead trees contribute 
significantly to forest biodiversity (Stokland et al., 2012). Deadwood 
also binds carbon and other biogenic elements, allowing them to 
return gradually to forest soils (Russell et al., 2015). In general, the 
emergence and presence of dead trees strongly influence the dynamics 
of forest ecosystems in the temperate zone (Král et  al., 2018). 
Production-oriented silviculture, which has an over 300-year-long 
tradition in Central Europe, changed the composition of the forest to 
spruce-dominated stands and has practically ruled out the presence 
of dead trees (Dieler et al., 2017). The occurrence of dead trees was 
limited only to small and isolated forest reserves. This situation 
changed in the 1990s when non-intervention management began to 
be implemented in large Central European protected areas (Parviainen 
et al., 2000). This led to an increase in snag deadwood in relatively 
large areas, such as the Bavarian Forest (Müller et  al., 2008), the 
Bohemian Forest (Svoboda, 2005) or the Tatra Mountains (Potterf 
et al., 2019), due to the European spruce bark beetle Ips typographus 
(L.). The spruce bark beetle is a key species that maintains spatial, 
structural, and age heterogeneity of the spruce forests and provides 
higher resistance and resilience against most of disturbance agents 
(Hlásny et al., 2021a). Over the past 20 years, however, there has been 
a doubling in bark beetle-induced forest disturbances on a Europe-
wide level (Patacca et al., 2022), Central Europe’s epicenter. As a result 
of the ongoing bark beetle outbreak in the Czech Republic, there has 
been a dramatic increase in dead trees extending beyond protected 
areas into a large proportion of production forests (Hlásny et  al., 
2021b; Washaya et al., 2024). Despite the apparent positive impact on 
biodiversity and carbon storage (Vítková et al., 2018), the increased 
presence of dead trees raises several questions concerning their 
stability and, thus also, the safety of the public, forestry personnel, 
machinery, and infrastructure (Mortimer and Kane, 2004; 
Schmidlin, 2009).

Degradation processes in the spruce deadwood lead to a gradual 
change in the physical properties of snags (Löwe et al., 2022; Jelonek 
et al., 2020), eventually resulting in their collapse. Depending on the 
tree’s species and size, climatic conditions, and the management of its 
surroundings, the tree collapses usually within 3 to 20 years after its 
death (Oettel et al., 2023; Gärtner et al., 2023). Following death by fire, 
the average time for the spruce to fall is 32 years to collapse (Aakala, 
2010). However, trees killed by bark beetles collapse on average after 
only 13 years (Gärtner et al., 2023). With the Norway spruce, Picea 
abies (L.) Karst., in the boreal areas of Europe, an average time to fall 
of 12 to 27 years was determined (Aakala, 2010); however, the cause 
of death was not considered. In the case of the lodgepole pine, Pinus 
contorta Douglas ex Loudon, killed by Dendroctonus ponderosae 
Hopkins, half of the snags fell within 15 to 20 years (Rhoades et al., 
2020). According to Rhoades et  al. (2020), 53.2% of the dead 
lodgepole pines fell due to butt rot (i.e., breakage at or below ground 
level with visible signs of decay), 14.3% due to bole snap (i.e., breakage 
at 1 m above ground or higher) and 32.5% of trees were tipped up 
(i.e., trees remained attached to exposed roots and soil mound). 
Decaying root systems likely cause the decrease in stability of bark 
beetle snags and their resulting tip-up. However, the long persistence 
of dead trees, in the case of the spruce, even several decades (Přívětivý 

et al., 2018), suggests that root degradation takes longer than might 
be expected.

The spruce’s root system dynamics are mainly determined by soil 
conditions, such as pH or moisture (Puhe, 2003). Suboptimal soil 
conditions stimulate the formation of mycorrhizal associations, which 
facilitate tree nutrition (Cheng et al., 2016). Mycorrhizal fungi form 
symbiotic connections with most terrestrial plants (Read, 1998). The 
relationship between a mycorrhizal fungus and its plant symbiont is 
based on a mutually beneficial exchange of nutrients. The fungus 
provides minerals (especially nitrogen and phosphorus); in return, the 
plant provides photosynthetically produced carbon compounds 
(saccharides). Simultaneously, the hyphal threads of the mycorrhizal 
fungus provide the plant with a significantly increased surface area 
where nutrient ions can be absorbed (Maheshwari, 2008). Within a 
functional mycorrhizal symbiosis, the above-ground biomass and the 
root network of the host plant increase considerably compared to 
plants without mycorrhizal associations. This results from an adequate 
supply of nutrients and water through hyphal threads that are three to 
five times thinner than root hairs and thus have access to areas of the 
soil that remain inaccessible to root hairs (Graf et  al., 2018). For 
example, measurements of mycorrhizal hyphae associated with roots 
of Pinus sylvestris L. have yielded values of 10–80 m of hyphae per 
1 cm of root length (Read and Boyd, 1986). This results in a vastly 
increased surface area and, consequently, a much greater volume of 
soil that the host plant can exploit (Jansen, 1992). Thus, apart from 
their significant role in plant nutrition and their influence on species 
composition of plant communities, mycorrhizal fungi also affect soil 
aggregation and soil stability by weaving together free soil particles 
and binding them with sticky substances, such as saccharides and 
other extracellular metabolites (Rillig and Mummey, 2006; Enkhtuya 
and Vosátka, 2005). Based on these findings, it can be supposed that 
the presence of mycorrhizae in a tree’s root system influences its 
mechanical stability within the soil. The presence of mycorrhizae is, 
therefore, not only an indicator of a tree’s vitality but also of its 
mechanical stability.

Ectomycorrhizal fungi (ECM) encompass a great diversity of 
species. Tens of species can be  found even in small forest 
monocultures (Bruns, 1995). In coniferous forests, they represent 
roughly one-third of the microbial biomass (Högberg and Högberg, 
2002). It is supposed that the activity of an ECM species is directly 
proportional to the number of mycorrhizal tips (Landeweert et al., 
2003). The vitality of mycorrhizae on a given root system can 
be determined by comparing the numbers of vital and non-vital ECM 
tips (Pešková, 2007; Corcobado et al., 2014). The number of ECM tips 
per milligram of fine root biomass is constant. Trees increase nutrient 
uptake by increasing fine root production, hence the number of ECM 
tips (Helmisaari et al., 2009). Studies of fine roots and mycorrhizae 
of the Norway spruce were conducted by Blanck et al. (1995), Feil 
et  al. (1988), Majdi (2001), Palátová (2004), Gaul et  al. (2008), 
Eldhuset et al. (2012), and Konôpka et al., (2013). Morphological 
properties of ECM roots provide a good indication of a tree’s 
adaptation to local conditions. These include both absolute markers 
(e.g., root length, root surface area, root diameter, or number of ECM 
tips) and relative markers, usually related to dry root biomass (e.g., 
specific root length, surface area and diameter, and specific number 
of ECM tips) (Peterson et al., 2004; Ostonen et al., 2013). Specific root 
length (i.e., length divided by mass) is probably used most commonly. 
The most significant changes of specific length in reaction to changes 
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in the soil environment can be observed with fine roots. An increase 
in specific root length gives access to a greater volume of soil and is 
thus one possible adaptation of plants ensuring sufficient nutrient 
supply (Ostonen et al., 2007).

The changes that occur over time in a root system following a tree 
death by bark beetles have not been directly quantified. Bark beetle 
disturbances are known to lead to wide-ranging changes of forest 
ecosystems, both on the macroscopic and microscopic levels. 
I. typographus is the major disturbance agent in Norway spruce 
dominated forests, causing ecosystem changes in case of eruptive 
outbreaks. Ips typographus occurs almost the entire Palearctic region: 
from mountaineous regions in the south to the lowlands in the north. 
According to the climatic region and current condition, I. typographus 
can have one to three generations during vegetation season. The tree 
is colonized by a pheromone-mediated mass attack of beetles. If 
successful, the infested tree dies after a short period (Lieutier et al., 
2004; Wermelinger, 2004; Kausrud et al., 2012; Vega and Hofstetter, 
2015, Hlásny et al., 2021a). A gradual discoloration and shedding of 
needles occur when a tree is infested (Kautz et al., 2022). This results 
in a gradual decrease in the supply of photosynthetic products to the 
soil (Štursová et  al., 2014). On a macroscopic scale, a fungal 
community reacts to bark beetle-induced tree dieback by a significant 
decrease in overall fungal biomass and by changes in its species 
composition. While mycorrhizal species dominate at first, the relative 
abundance of saprotrophic species gradually increases. The overall 
species composition, however, remains constant. This suggests that 
mycorrhizal species can persist for a long time, even without symbiotic 
trees. Some species, such as Russulales, can switch from a mycorrhizal 
to a saprotrophic mode, thus persisting in the community and 
contributing to wood decomposition (Veselá et al., 2019).

Following the death of the above-ground part of a tree, the root 
system begins to disintegrate. At first, mycorrhizal community 
changes, followed by the decomposition of root hairs and fine roots. 
Later, more massive roots are also decomposed. This work compares 
the root systems of bark beetle snags at different stages after dying to 
the root systems of nearby living trees. The work aimed to determine 
the extent of root system degradation over 5 years from tree death 
using ECM tip counts as a degradation marker. Concomitantly, the 
rate at which mycorrhizal parameters change following tree death was 
investigated. We addressed these main research questions: (i) How 
long do VM and NVM persist on dead trees? We  suppose the 
immediate decline of the VM after tree death and the successive 
disappearance of the NVM. (ii) The second research question is 
connected to the stability of the dead trees through the root system. 
We  assume that roots smaller than 2 mm will degrade quickly 
following the tree’s dead. (iii) The last question is the species 
representation of wood fungi in the decomposition process in different 
years after a tree dead.

Materials and methods

The study was carried out in the Bohemian Switzerland National 
Park located in northwest Czechia on the eastern bank of the river 
Elbe, on the borders of Saxony (DE). This is a warm to temperate area 
with average yearly temperatures between 6 and 8°C and annual 
precipitation of 800 mm (Tolasz et al., 2007). The 79 km2 area has a 
high relief and is mostly forested. Relict pinewoods occupy sandstone 

platforms, while lower areas are populated by various cold-adapted 
plant communities.

However, most of the national park is covered with non-native 
pure and even-aged stands of Norway spruce  – Picea abies (L.) 
H. Karst. In 2018, an outbreak of the European spruce bark beetle, Ips 
typographus (L.), occurred in the area. The infestation began in the 
warmer western areas and gradually spread across the national park. 
During the first 2 years of the outbreak, partial sanitation harvests 
were undertaken. From 2019 onwards, however, all interventions 
aimed at containing the spread of the bark beetle were abandoned, due 
to possible massive clear-cuts resulting from a bark beetle intervention, 
which are unsuitable in a national park. By the end of 2022, 19,953 ha 
of spruce forest had been destroyed by the bark beetle in the national 
park and surroundings (Washaya et al., 2024). In 2022, a large wildfire 
broke out in the western regions of the park (Kudláčková et al., 2023). 
The area affected by fire was excluded when selecting sites for 
sample collection.

Due to the extensive large-scale changes in the national park 
forests, remote sensing techniques were used to monitor the 
development of bark beetle disturbance. The chronosequence of dead 
tree areas was provided from an inventory of the mortality dynamics. 
The data from PlanetScope satellites were used; they were obtained for 
years 2018–2022 (Figure 1) at the end of the thermal growing season 
(mainly September and the first half of October, depending on the 
cloud coverage), 1 pixel was referred to 3 × 3 meters. The rasters were 
processed by the Support Vector Machine (SVM) machine learning 
algorithm in ArcGIS Pro for every period dataset, and the spread and 
enlargement of attacked trees were delineated based on the color 
change in the given area. The training and validation samples were 
supported by visual verification corresponding to available aerial 
imagery in 2020 and 2021. A complete description of the methods, 
including the classification details, can be  found in Matějčíková 
et al. (2024).

These layers were then matched with data from the forest 
management plan and, using an attribute query, areas with the 
following parameters were selected: more than 90% spruce, 
80–100 years of age, in Abies  – Fagus vegetation zone, acidic, 
somewhat stony and meagre (5 K resp. 5 N by Viewegh et al., 2003). 
These parameters correspond to the most common spruce stands in 
Bohemian Switzerland. The classified stands were randomly visited, 
and if the surviving spruce was found, a dead tree with a similar 
dimension was chosen in the nearby surroundings (See Figure 2i). The 
selection continued until a balanced number of strata for each year of 
tree death was achieved.

In total, samples were collected on 17 sites corresponding to 
different years of tree dieback (Figure  1; for details of layers, see 
Supplementary material 1). Sample collection was performed using a 
soil sampling probe with a 6 cm inner diameter and 15 cm sample 
tube length (Pešková, 2007). On each site, two trees were selected - 
one snag and a nearby living tree of similar dimensions. Five soil 
samples were collected randomly up to 1 m from the bole of the living 
tree and snag (2 × 5 samples, see Figure 2). The bark beetle snag was 
subsequently felled, and samples were taken in places with visible 
wood decay. These were used for the macroscopic determination of 
wood-decaying fungi. Samples were also collected for DNA analysis, 
they were held in stored in 35% ethanol at −32°C.

In the laboratory, roots were manually extracted from the soil 
samples and separated according to diameter into <1 mm, 1–2 mm, 
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and 2–5 mm fractions. Roots smaller than 1 mm in diameter were 
stored in 2.5% glutaraldehyde for further analysis. Roots 1–2 mm and 
2–5 mm diameter were dried in a drying cabinet at 105°C for 24 h and 
weighed with 0.01 g precision. Numbers of mycorrhizal tips were 
determined on root segments with a diameter of <1 mm using a 
stereomicroscope with 40× magnification. Smooth, light-colored 
ECM tips with a well-developed hyphal sheath and high turgor were 
considered “vital mycorrhizae” (VM). In contrast, flaccid, dark-
colored ECM tips without a visible hyphal sheath were categorized as 
“non-vital mycorrhizae” (NVM) (Corcobado et al., 2014). From each 
soil sample, 20 root segments (5 cm in length) were evaluated this way. 
The density of mycorrhizal tips was calculated as the mean number of 
VM or NVM per 1 cm of root length (Pešková et al., 2015). Soil pH 
(H2O) was determined in each soil sample by suspending 10 g of soil 
in 100 mL of 0.1 M aqueous calcium chloride and measuring the pH 
using a pH 50 VioLab meter (Germany) with a glass electrode until a 
constant value was displayed. The measurements were carried out 
in triplicates.

Identification of fungal species from the trees where mycorrhizae 
were evaluated involved a multi-faceted approach: (i) observation of 
fruiting bodies on the bole and stump, (ii) search for rhizomorphs 
and/or mycelial fans beneath the bark, and (iii) assessment of wood 
rot. Fruiting bodies found on the boles or stumps of the trees were 
collected for further determination using the identification key for 
European polypores (Ryvarden and Melo, 2014). If wood rot was 

present, trees were inspected in more detail. Additionally, samples of 
rhizomorphs were collected from beneath the bark of stumps or root 
swellings. Samples of decaying wood were also collected from the 
felled trees. In the laboratory, wood samples were cut into smaller 
pieces (3–4 mm) with a sterilized scalpel, superficially sterilized in 
70% ethanol, and washed with distilled water. The sterilized pieces 
were placed onto a malt extract agar (MEA; 33.6 g/L of Malt Extract 
Agar, Carl Roth), with 4–5 pieces per Petri dish. The samples were 
incubated at 20°C in the dark, and after the appearance of the first 
hyphae, they were promptly subcultured onto a fresh MEA medium. 
Collected rhizomorphs were cut into smaller parts using a sterilized 
scalpel, superficially sterilized using 70% ethanol and sodium 
hypochlorite, and subsequently washed with distilled water. These 
samples were plated onto a MEA amended with 100 mg/L 
streptomycin (Carl Roth). Additionally, samples of rhizomorphs and 
mycelium growing beneath the bark were collected and stored in 35% 
ethanol at −32°C for further molecular analysis, employing the same 
procedures as the fungal cultures. All obtained isolates were 
morphologically studied and identified using fungal DNA barcoding. 
Mycelium taken from developed cultures was lyophilised and used for 
genetic identification. DNA from these samples was isolated using a 
modified CTAB-PVP method (Porebski et al., 1997; Schenk et al., 
2023). The primer combination ITS1/ITS4 for amplifying the ITS 
region of the ribosomal RNA gene and LR3/LR0R primers (nuclear 
large subunit rDNA) were used for PCR. The PCR products were 

FIGURE 1

Map of the national park Bohemian Switzerland with indicated mycorrhiza sampling locations and classified layer of the tree mortality in 2018–2022. 
Mycorrhiza sampling sites are labeled by the year of stand death (18–2018, etc.) and the serial number of the location.
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FIGURE 2

Field sampling: (a) dead standing trees 4 years after disturbance; (b) death standing trees 3 years after disturbance; (c) soil and root sample; (d) death 
standing trees 2 years after disturbance; (e) death standing trees 1 year after disturbance; (f) collection of soil and root samples using a sampling probe; 
(g) dead tree sampling; (h) living tree sampling; (i) a surviving tree surrounded by bark-beetle snags.
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sequenced using the Sanger sequencing method by SEQme s.r.o. 
(Dobříš, Czech  Republic). The nucleotide Basic Local Alignment 
Search Tool (BLAST) was used to compare the obtained sequences 
with those in the National Center for Biotechnology Information 
(NCBI) database (http://www.ncbi.nlm.nih.gov, accessed on 15 
October 2023).

The differences between snags and live trees, regarding densities 
of VM and NVM and dry root biomass, were assessed using 
independent regression models created according to Zuur et al. 
(2010). The independent variables were (i) Tree, a categorical 
variable with two levels – bark beetle snag and live tree; (ii) Year, 
an ordinal variable representing the time elapsed between tree 
death and sample collection with five levels  – 0.5 years; 1 year; 
2 years; 3 years; 4 years. Since the live and dead trees originated 
from the same site and multiple samples were taken from the same 
tree, a generalized mixed effect model (GLMM) with the two-time 
nested factor was applied. A suitable family of distributions was 
chosen according to the Akaike information criterion (AIC). The 
fit quality was evaluated visually by plotting the model’s residuals 
against the quantiles of a normal distribution. In all cases, the 
negative binomial family was most suitable. The significance of 
factors was subsequently determined by χ2 tests using the command 
drop1. Differences between the levels of Tree and Year were tested 
in the selected model using a contrast matrix (Pekár and Brabec, 
2016). The model formulation was performed in R version 4.3.1 (R 
Core Team, 2023) in the package glmmTMB following the 
procedures described by Brooks et  al., (2017). The connections 
between Tree mycorrhizal parameters (Roots12 – mean dry weight 

mass of roots with 1–2 mm; Roots25 – mean dry weight mass of 
roots with 2–5 mm; VM  – mean density of vital mycorrhizae; 
NVM – mean density of non-vital mycorrhizae) and environmental, 
respectively, specific factors (pH – mean pH of soil samples, decay – 
sum of trees with wood decaying, tree – categorical variable: Dead 
standing tree / Living tree) were determined using a principal 
component analysis (PCA) according to Meloun and Militký (2011) 
and visualized using the factoextra package (Kassambara and 
Mundt, 2020).

Results

Mycorrhizal density and dynamics

The density of vital mycorrhizae on bark beetle snags was 
significantly lower compared to living trees (χ2: df = 1; p < 0.001). The 
number of VM tips changed with different dynamics between living 
and dead trees (χ2: df = 4; p < 0.01). On living trees, a gradual increase 
of VM, peaking in the 2nd and 3rd year after the bark beetle 
disturbance of the surrounding forest stand, was observed (Figure 3). 
The difference between VM density on live trees in the 1st, 2nd, and 
3rd year after the bark beetle disturbance and VM density 0.5 years 
after the disturbance was statistically significant (Table 1). In the 4th 
year, however, a pronounced decrease in VM was observed (Figure 3). 
The density of VM on the root systems of dead trees was very low 
from the beginning and randomly fluctuated in later years (Figure 3, 
Table  1, and Supplementary Table S1). A statistically significant 

FIGURE 3

Density of vital mycorrhizae (VM) in dead and living trees over time. The black dot represents the fitted value and whiskers 95% confidence intervals of 
the GLMM model VM ~ Tree * Year + (1 | Locality | Individual), family = negative binomial. The smaller dots in the background are original values, red-
dead standing trees, and green-living trees. A comparison of the dead and living trees is grouped along the years from the disturbance of the 
surrounding forest stand, resp—the tree death.
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difference was observed in all periods when comparing VM density 
between live and dead trees (Table 1).

The density of non-vital mycorrhizal tips was significantly higher 
on snags compared to living trees (χ2: df = 1; p < 0.001) and did not 
change as markedly over time as the density of VM. Nevertheless, it 
was unstable (χ2: df = 4; p < 0.01). The dynamics of change in the 
density of NVM was also significantly different between live and dead 
trees (χ2: df = 4; p < 0.01). With dead trees, a significant increase in 
NVM was observed within the 1st year of tree death (Figure 4, Table 2, 
and Supplementary Table S2). This is likely due to a change of vital 
mycorrhizal tips to non-vital ones. After the 2nd and 3rd years, living 
trees had a low density of NVM but did not differ owing to the 
situation 0.5 years after the disturbance (Table  2). A significant 
difference between dead and surviving trees was observed in the 1st 

and 3rd year (contrast t-test; p < 0.01 and p < 0.05, respectively), 
where bark beetle snags had a higher density of NVM tips.

Root system biomass

The volume of the root system, as represented by the dry biomass 
of roots smaller than 2 mm in diameter, was significantly greater in 
living trees (χ2: df = 1; p < 0.01). The abundance of fine roots gradually 
decreased as the surrounding tree cover died (Supplementary Table S3). 
However, the change between individual periods was statistically 
insignificant (χ2: df = 4; p = 0.12). A higher ratio of non-vital 
mycorrhizae was associated with dead trees. The gradual decrease in 
root biomass in living and dead trees also occurred at a similar rate. 

TABLE 1  Result of the contrast comparison (p-values) for GLMM model VM ~ Tree * Year + (1 | Locality/TreeIndividual), family = negative binomial.

Years Relative density of VM Live vs. Dead Tree

After disturbance Dead trees Living trees

0.5 Reference level Reference level 0.017 *

1 0.075 0.020 * 0.014 *

2 0.233 0.002 ** 9.94E-05 ***

3 0.126 0.001683 *** 7.17E-05 ***

4 0.208 0.411 0.0416 *

The density of vital mycorrhizae (VM) was compared to the density determined by 0.5 years after stand disturbance. The last column represents a comparison of the two types of trees at a 
given point in time. Stars mark a significant difference (*p < 0.05; **p < 0.01; ***p < 0.001).

FIGURE 4

Relative density of non-vital mycorrhizae (NVM) in dead and living trees over time. The black dot represents the fitted value and whiskers 95% 
confidence intervals of the GLMM model NVM ~ Tree * Year + (1 | Locality | Individual), family = negative binomial. The smaller dots in the background 
are original values, red-dead standing trees, and green-living trees. A comparison of the dead and living trees is grouped along the years from the 
disturbance of the surrounding forest stand, resp—the tree death.
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FIGURE 5

Dry biomass of roots up to 2 mm in diameter. The black dot represents the fitted value and whiskers 95% confidence intervals of the GLMM model 
Roots < 2 mm ~ Tree * Year + (1 | Locality | Individual), family = negative binomial. The smaller dots in the background are original values, red-dead 
standing trees, and green-living trees. A comparison of the dead and living trees is grouped along the years from the disturbance of the surrounding 
forest stand, resp—the tree death.

The interaction between factors was statistically insignificant (χ2: 
df = 4; p = 0.92; Figure 5). The dry weight of roots <2 mm in size was 
negatively associated with an increasing pH value (Figure 6). The 
higher the soil pH, the fewer fine roots are present. The connection 
between the mass of larger roots and soil pH was rather indifferent 
(only a weak negative association was found).

Identification of fungal species

The most frequently identified fungal species belonged to the 
genus Armillaria (Armillaria ostoyae (Romagn.) Herink, Armillaria 
cepistipes Velen.) and Fomitopsis pinicola (Sw.) P. Karst. (Table 3 and 
Figure 7). Fungi from the genus Armillaria were detected and isolated 
on four snags between 2018 and 2021. The genus Fomitopsis was 

detected between 2018 and 2021 on seven snags. The white-rot fungus 
Pleurotus ostreatus (Jacq.) P. Kumm. was observed on one snag from 
2021. Results of PCA analysis (Figure 6) show the more complex view 
of the relationships between mycorrhizal parameters, root biomass, 
decaying processes and selected habitat characteristics. The first 
component (Dim1) is associated with habitat richness (characterized 
by pH), which is positively connected to the density of VM and 
negatively connected to NVM. The second component (Dim2) 
directly separated living and dead trees according to the presence and 
number of wood-decaying fungi. The third component (Dim3) is 
probably led by the wetness of the habitat, where sites more enriched 
with water had more VM and NVM, and the opposite, relatively dryer 
sites contained more roots with a 2–5 mm diameter. Projections of the 
three principal components explained 72% of the variability. The 
general trend across the dimensions was the following–density of VM 

TABLE 2  Result of the contrast comparison (p-value) for GLMM model NVM ~ Tree * Year + (1 | Locality/TreeIndividual), family = negative binomial.

Years Relative density of NVM Live vs dead tree

After disturbance Dead trees Living trees

0.5 Reference level Reference level 0.705

1 0.007 ** 0.889 0.005 **

2 0.228 0.028 * 0.147

3 0.649 0.069 . 0.019 *

4 0.686 0.624 0.218

The relative density of non-vital mycorrhizae (NVM) of dead trees and living trees was compared to the density determined 0.5 years after stand disturbance. The last column represents a 
comparison of the two types of trees at a given point in time. Stars mark a significant difference (*p < 0.05; **p < 0.01; ***p < 0.001).
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was positively associated with living trees. Conversely, decaying 
processes and the presence of saprotrophic fungi were associated with 
dead trees.

Discussion

The bark beetle outbreak of the I. typographus in the Bohemian 
Switzerland National Park has been intense since 2018, with vast areas 
being infested (Hlásny et  al., 2021c; Washaya et  al., 2024). It can 
be assumed that all standing snags in the area result from the bark 
beetle attack. The few surviving spruces were mostly of lower canopy, 
an example of classification by Pommerening et al. (2021), and thus 
somewhat smaller than the surrounding trees. Contrary to bark 
beetle-surviving trees in the Šumava National Park (cf. Korolyova 
et al., 2022), the surviving trees in Bohemian Switzerland did not show 
any regular spatial distribution pattern. The trees in Šumava, however, 
belonged to the natural spruce zone, often in waterlogged locations 
with a high abundance of natural forests. In contrast, the studied 
locations in Bohemian Switzerland consisted mostly of azonal, 
artificially planted growths.

During the first years after the disturbance, the surviving trees 
gradually increased VM tips. The mean values of VM density on live 

trees in the 2nd and 3rd years after the disturbance were more than 
double the values reported in previous studies (Pešková, 2007; 
Pešková et al., 2011; Lorenc et al., 2018). An increased access to 
sunlight, water, and nutrients will likely cause an increase in VM 
density in the surviving trees. Most of the current Central European 
spruce forests are overly dense. Thinning can improve tree vitality 
manifested, for example, by increases in transpiration rate (Özçelik 
et  al., 2022) and photosynthetic activity. A higher allocation of 
photosynthetic products to the soil can stimulate ECM species’ 
development (Štursová et  al., 2014; Corcobado et  al., 2014). In 
addition to improved tree conditions, fungal growth conditions are 
directly affected after stand decay. For example, an increase in soil 
temperature leads to the development of ECM fungi (Mohan et al., 
2014), which has also been observed in areas where trees were 
removed following a windstorm (Veselá et al., 2019). Temperature 
can directly affect mycorrhizae both positively and negatively. The 
higher temperatures above 35–40°C damage hyphae of ECM fungi 
(Smith and Read, 2008), but an increase in soil temperature usually 
leads to a rise in ECM fungi density (Mohan et al., 2014). However, 
the temperature optimum varies among species (Domisch et al., 
2002). Low temperatures can have a lethal effect, especially on fungi 
colonizing the upper soil horizons (Gryndler et al., 2004). Many 
species of ECM fungi can survive exposure to low temperatures, but 

FIGURE 6

BiPlots for PCA analysis, displayed are the first three principal components (first – Dim 1, second – Dim2, and third – Dim3 components); (a) Dim1 and 
Dim2; (b) Dim1 and Dim3; (c) Dim2 and Dim3. Dead and living trees are represented by blue and yellow dots, respectively. The size of the dots 
represents the importance of the observation. Loadings are color-coded according to their contribution to explaining the variability of the plotted 
principal components.
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the time required to resume active growth and their subsequent 
growth rates vary inter- and intraspecifically (France et al., 1979). 
It can be assumed that mycorrhizal tips formed gradually, in an 
immature form at first, and subsequent years transitioned to a 
mature vital form, as was the case during drought stress in spruce 
stands (Pešková et al., 2015).

The decline in vital mycorrhizae in the fourth year in living trees 
may be related to the overall decline of ECM fungal species in sites 
disturbed by bark beetle outbreaks (Štursová et al., 2014; Mayer et al., 
2022; Choma et  al., 2023) or to increased drought stress due to 
stronger exposition to sunlight. Similar results were reached by 

Sterkenburg et al. (2019), who investigated the effect of logging in pine 
stands on ECM’s abundance and species diversity. After 3 years, they 
observed a 95% decrease in ECM fungi in logged or partially logged 
forests compared to the unlogged area. This decline was due to the 
increased stress and stronger soil exposure to sunlight. Preserved were 
only a few common species of ECM fungi, while rarer species 
gradually disappeared. Thus, it can be agreed that trees surviving bark 
beetle disturbance are crucial for maintaining the community of ECM 
fungi (Mayer et al., 2022; Choma et al., 2023).

The number of VM tips on the roots of dead trees was very low 
in our study compared to live or drought-stressed trees (Pešková 

FIGURE 7

Selected wood decay fungi found on bark beetle snags: (a) culture of Armillaria cepistipes after 60 days on PDA agar medium; (b) Fomitopsis pinicola 
after 8 days on PDA agar medium; (c) Pleurotus ostreatus after 8 days on PDA agar medium; (d) syrrocium of Armillaria sp.; (e) fruiting body Fomitopsis 
pinicola; (f) fruiting bodies Pleurotus ostreatus; (g) massive fructification of Armillaria sp. in the autumn; (h) bole with fruiting bodies Fomitopsis 
pinicola; (i) bole with amounts of fruiting bodies P. ostreatus.

TABLE 3  Wood decay fungal species identified in bark beetle snags of different ages (number of identifications).

Fungal species Years after disturbance

0.5 1 2 3 4

Pleurotus ostreatus – 1 – – –

Fomitopsis subpinicola/pinicola – 1 1 2 3

Armillaria cepistipes – 1 – – –

Armillaria ostoyae – – – 1 1

Armillaria sp. – 1 – – –
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et al., 2015; Lorenc et al., 2018). Trees infested by the spruce bark 
beetle gradually change their physiological functions, i.e., they 
must invest available resources into various defense responses, thus 
stopping assimilate deposition and slowing down photosynthesis. 
Subsequently, the transpiration stream is interrupted, and the tree 
dies within about a month (Krokene, 2015). The lower rate of 
photosynthesis (or its gradual cessation) leads to a decrease in C 
deposition in the soil. Carbon balance and its allocation are closely 
linked to the vitality of the tree and its ability to respond to stress 
factors such as drought, nutrient deficiency or pest incidence. In 
healthy trees, carbon obtained through photosynthesis is primarily 
used for growth, with some of this carbon being transported to the 
roots, which also supports symbiosis with mycorrhizal fungi (Finzi 
et al., 2015; Brunner et al., 2015). However, environmental stress 
or pest infestation can significantly disrupt this process. After tree 
death, the ectomycorrhizal symbiosis can be  temporarily 
maintained due to previously stored carbon stocks, as studies from 
boreal forests suggest (Lindahl et al., 2007). These changes could 
lead to the subsequent alteration in the composition of the soil 
fungal community with the dominance of saprotrophic species and 
the gradual disappearance of ECM fungi (Yarwood et al., 2009, 
Štursová et  al., 2014, Mayer et  al., 2022, Choma et  al., 2023). 
Despite that, vital mycorrhizal tips were found even 4 years after 
tree death. It has been suggested that ECM fungi could temporarily 
switch to a saprotrophic mode of nutrition (Štursová et al., 2014). 
The presence of ECM fungi on dead roots was demonstrated 1 year 
after the tree was felled (Veselá et al., 2019). The number of NVM 
tips was statistically significantly higher in bark beetle snags 
compared to live trees in all surveyed years. Declines in mycorrhizal 
diversity due to insect damage to trees, pathogens, nutritional 
deficiency in the soil, drought, and other disturbances have been 
described in several studies (Jones et al., 2008; Blom et al., 2009; 
Corcobado et  al., 2014). In the case of dead trees, there was a 
significant increase in the number of NVM tips in the first year 
after tree death. This significant increase in the proportion of NVM 
tips probably occurred due to a change from the vital to the 
non-vital form and their gradual death in the following years 
(Scatollin et al., 2008).

Root volume, represented by the dry weight of roots <2 mm in 
diameter, was significantly larger in live trees than in bark beetle snags. 
The fact that the fine root biomass of bark beetle snags was so low 
compared to live trees and did not decline significantly over time 
suggests that most of the fine roots had already decomposed before 
sampling was initiated. This is in accordance with our initial 
supposition, based on Rhoades et al. (2020), that fine root decay will 
occur soon after tree mortality. In live trees, root dry weight was 
relatively high during the first year after stand dieback and gradually 
decreased in fine roots. The difference between periods, however, was 
not statistically significant. The development of fine roots in the first 
year after disturbance followed an improved supply of solar energy 
and water, as in the case of vital mycorrhizae. However, the increase 
in root volume can also be associated with the surviving tree’s need to 
improve its stability against the action of wind. While the surrounding 
dead trees may temporarily slow wind speeds, their eventual fall 
exposes the surviving trees to conditions they may not be adapted to 
Oberle et al. (2018). This situation is also well known in commercial 
forests, where individual trees left in clearings after clear-cutting are 

often subject to the forces of winds, as is also the case with newly 
exposed stand edges (Modlinger and Novotný, 2015). A higher risk of 
storm damage is also well-known after the thinning. However, the 
number of fine roots was relatively lower from the second year after 
the bark beetle disturbance. This may be  partly due to the same 
unfavorable climatic conditions of 2018 and 2019, which caused the 
large outbreak of bark beetles in the first place (Netherer et al., 2019; 
Hlásny et al., 2021c).

The extreme dry season of 2018 may have influenced biological 
processes for multiple years ahead (Bose et  al., 2022). Drought-
stressed trees typically experience a decline in mycorrhizae (Gehring 
et al., 1997; Kuikka et al., 2003; Ostonen et al., 2013) and an increase 
in the relative abundance of roots compared to above-ground parts. 
However, the total amount of root biomass, especially in fine roots, 
decreases during drought stress (Brunner et  al., 2015). A gradual 
decrease in root mass also occurred in dead trees. This corresponds 
with the gradual decrease in the dry weight of fine roots we observed. 
When tree mortality is high, there is an increase in wood-decaying 
fungi, at least in the short term. This may also have implications for 
ECM fungi diversity. Extremes in environmental conditions (e.g., 
drought, high temperatures, CO2, insect infestation) predispose 
stressed trees to subsequent infestation by wood decay fungi (Kim 
et al., 2021). These fungi represent a specific physiological-ecological 
group of heterotrophic organisms that initiate successional processes, 
leading to humification and, in some cases, mineralization of 
deadwood (Murray and Leslie, 2021).

Genetic analyses have identified several pathogens in our research, 
the most prominent of which belonged to the genus Armillaria. 
Armillaria causes root rot and a decline in dry root biomass in infected 
trees (Kubiak et al., 2017; Murray and Leslie, 2021). Armillaria species 
are primarily saprotrophic, with occasional opportunistic 
pathogenicity, causing primary infections of the root system (Coetzee 
et  al., 2018). Another identified fungal species was Fomitopsis, a 
pathogen typically infecting fresh bark-beetle snags (Vogel et  al., 
2017). As saprotrophs, Fomitopsis species can rapidly decompose their 
hosts, leading to a collapse within several years. Fungi of both genera, 
Armillaria and Fomitopsis, can significantly influence local conditions 
through the decomposition of newly emergent deadwood and 
influence nutrient cycles in the soil. Therefore, wood decay fungi can 
contribute to changes in vegetation composition that generally impact 
mycorrhizae, likely due to their obligately symbiotic relationships 
(Anderson et al., 2010).

Multivariate analysis of correlations between mycorrhizal 
abundance, root dry weight, and environmental factors, as well as 
detected fungal species, confirmed an association between VM 
density, live trees, and root abundance. In contrast, NVM tips’ density 
and wood-decaying fungi’s presence were associated with dead trees. 
Soil pH was not directly positively associated with any of the observed 
factors, but the analysis showed a relatively strong negative association 
with the number of fine roots. The range of measured pH values was 
not very large at the individual sites, ranging from 2.78 to 3.65, i.e., 
these were relatively acidic soils, which corresponds to the soil 
classification assigned by foresters (Viewegh et al., 2003). Mycorrhizal 
root formation is significantly affected by soil acidity in mature stands 
of Norway spruce (Nowotny et al., 1998), and even small changes in 
pH are sufficient to induce long-term changes in the composition of 
ECM communities, as demonstrated by Kjøller and Clemmensen, 
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(2009). However, these differences in our study were only small 
because of the relatedness of soil and habitat originating from 
variability within the same classification.

Our study demonstrates that mycorrhizal activity increases in 
trees surviving a bark beetle disturbance, and they probably become 
another ECM refugia. In active management of the spruce bark beetle, 
in addition to felling infested trees, living trees are usually also 
removed for easier mechanized restoration. With the current extensive 
deforestation that has occurred in Czechia as a result of the spruce 
bark beetle (see Washaya et  al., 2024), the chances of survival of 
symbiotic root organisms are considerably reduced (Sterkenburg et al., 
2019). The success of subsequent restoration of clearings is thus made 
even more complicated. The goal of forest management should, 
therefore, be  to preserve trees that have survived bark beetle 
disturbance and, previously, increase their chances of survival when 
the collapse of the surrounding forest stand comes. However, this can 
only be achieved through targeted stand tending at a young age (up to 
approximately 40 years), supporting the tree’s stability and resistance 
to bark beetle attacks. In the context of the increasing frequency and 
intensity of disturbances in forests, enhancing tree resistance also 
brings other benefits that will strengthen forest resilience due to 
higher ECM persistence.

Conclusion

The findings of this study underscore the complex relationships 
between tree mortality, mycorrhizal dynamics, and forest ecosystem 
processes in the aftermath of bark beetle-induced dieback. 
We confirmed that the density and dynamics of vital mycorrhizae 
(VM) differ markedly between living trees and bark beetle snags, with 
living trees exhibiting a temporal increase in VM density. In contrast, 
snags showed a higher prevalence of non-vital mycorrhizal (NVM) 
tips, reflecting a pronounced shift from vital to non-vital mycorrhizae 
within the first year following tree death. This transition highlights the 
immediate below-ground consequences of tree mortality.

The study further reveals that the biomass of fine roots, 
represented by the dry weight of roots smaller than 2 mm, is 
substantially greater in living trees compared to dead ones. The rapid 
decomposition of fine root biomass—primarily within 0.5 years of tree 
death—emphasizes the transient nature of below-ground structures. 
However, the differences in fine root biomass between living and dead 
trees 2, 3, and 4 years after mortality aren’t surprisingly so markable.

From an ecological perspective, the role of wood decay fungi is 
significant. Identifying fungi such as Armillaria, Fomitopsis, and 
Pleurotus ostreatus through macroscopic analysis and DNA barcoding 
underscores their contribution to the decomposition process. 
Additionally, environmental factors, particularly soil pH, influenced 
these below-ground dynamics, as evidenced by the negative 
correlation between fine root abundance and pH levels.

In conclusion, our findings highlight the intricate interplay 
between tree mortality, mycorrhizal dynamics, and forest ecosystems 
in the wake of bark beetle infestations. This research contributes 
valuable insights into the broader ecological consequences of such 
disturbances, offering another insight into below-ground processes 
and providing useful information for future strategies in managing 
and mitigating the impacts of bark beetle outbreaks on 
forest ecosystems.
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