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Diagnostic value of
anti-Kaiso autoantibody
In axial spondyloarthritis

Xinzhe Feng', Wenwen Tong', Jia Li', Yihong Xu,
Shanbang Zhu and Weidong Xu*

Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University,
Shanghai, China

Objective: Axial spondyloarthritis (axSpA) is a chronic rheumatic disease
predominantly characterized by inflammation and progressive structural
damage. Patients are often diagnosed very late, which delays the optimal
treatment period. Early diagnosis of axSpA, especially non-radiographic axSpA
(nr-axSpA), remains a major challenge. This study aimed to investigate the
diagnostic value of anti-Kaiso autoantibodies in axSpA and their correlation
with clinical disease indicators.

Methods: Two pooled serum samples (seven patients with nr-axSpA and seven
healthy controls) were profiled using HuProt arrays to investigate the diagnostic
value of autoantibodies in nr-axSpA. Levels of anti-Kaiso autoantibodies in
patients with axSpA and controls were determined using the Meso Scale
Discovery assay system. Receiver operating characteristic curve analysis was
performed to evaluate the diagnostic performance of anti-Kaiso autoantibodies
in axSpA. Pearson’s correlation was used to assess the correlation between anti-
Kaiso autoantibodies and clinical parameters.

Results: Seven candidate autoantibodies were present in the serum of patients
with nr-axSpA. The levels of anti-Kaiso autoantibodies were significantly higher in
the nr-axSpA group than in the other groups. It can differentiate nr-axSpA from
ankylosing spondylitis (AS), healthy controls, and rheumatoid arthritis. The level
of early-stage AS among patients with nr-axSpA decreased when they
progressed to the late stage. Of all patients with axSpA, serum anti-Kaiso
autoantibody levels were positively correlated with the C-reactive protein level
and the Bath Ankylosing Spondylitis Disease Activity Index score and negatively
correlated with disease duration.

Conclusion: Anti-Kaiso autoantibody may be a valuable diagnostic biomarker for
early-stage AS in the nr-axSpA period and may be a potential therapeutic target.

KEYWORDS

axial spondyloarthritis, biomarker, autoantibody, Kaiso, diagnosis
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1 Introduction

Axial spondyloarthritis (axSpA) is widely considered a chronic,
debilitating, inflammatory disease characterized by clinical signs, such
as progressive spinal ankylosis, sacroiliitis, uveitis, and enthesitis (1).
Owing to the lack of biomarkers and typical early symptoms, it can take
8-10 years after the onset of the first clinical symptoms to reach a
definitive diagnosis (2). Inflammatory back pain and sacroiliitis are the
characteristic manifestations of axSpA. As the disease progresses,
structural damage becomes more severe, and the spine and
peripheral joints become involved. Progressive spinal ankylosis
eventually results in significant impairments in physical function,
working ability, and quality of life (1). Early diagnosis of axSpA is of
the utmost importance for early therapeutic intervention, which is
essential for improving the long-term outcome of the disease (3).

AxSpA is commonly viewed as a seronegative disease due to the
absence of rheumatoid factors (4). B cells and autoantibodies play
important roles in the pathogenesis of axSpA (5). Several studies
have revealed the prognostic value of serum autoantibodies, and
various antigens have been identified as the sources of these
autoantibodies, including microbes, inflammatory targets, and the
skeletal/connective tissues (5-7). These antigens play a vital role
during axSpA. Microbes and inflammatory targets may be related to
the inflammatory process, and autoantibodies against the skeletal/
connective tissue can lead to local inflammation, bone destruction,
and even new bone formation in axSpA (7).

Structural damage in axSpA incorporates aspects of bone
destruction and new bone formation, which are often the result of
early inflammation. The current evidence implies that when the
structural damage appears to be of a mild extent that often cannot
be captured using radiology, clinical intervention could achieve the
optimal effect. However, the pathogenesis involved in the structural
damage of axSpA is complex and not fully understood (1, 8). Bone
morphogenetic proteins (BMPs) and wingless proteins (Wnt) are key
pathways driving structural damage in ankylosing spondylitis (AS) (8).
Recently, the possible roles of autoantibodies and their corresponding
antigens in new bone formation have been explored (9). Thus, the
diagnostic value of autoantibodies in non-radiographic axSpA (nr-
axSpA) and their possible roles in early inflammation and structural
damage require further investigation.

In this study, we extensively profiled autoantibodies in the serum of
patients with nr-axSpA and healthy controls using human proteome
microarrays. We then validated that anti-Kaiso autoantibodies were
higher in patients with nr-axSpA than in other controls (AS, rheumatoid

Abbreviations: axSpA, axial spondyloarthritis; nr-axSpA, non-radiographic
axSpA; AS, ankylosing spondylitis; BMPs, Bone morphogenetic proteins; Wnt,
wingless proteins; RA, rheumatoid arthritis; BASDAI, Bath Ankylosing
Spondylitis Disease Activity Index; BASFI, Bath Ankylosing Spondylitis
Functional Index; m-SASSS, modified Stoke Ankylosing Spondylitis Spinal
Score; HuProt, human proteome arrays; MSD, Meso Scale Discovery; ECL,
enhanced chemiluminescence; THC, Immunohistochemistry; DAB,
diaminobenzidine; ROC, Receiver operating characteristic; PPV, Positive
predictive value; NPV, negative predictive value; ITGA10, Integrin subunit
alpha 10; POZ, poxvirus and zinc finger; KBS, Kaiso binding site; ZBTB16,

zinc finger and BTB domain containing 16.
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arthritis [RA], and healthy controls). Furthermore, we found no
significant difference in the expression of the Kaiso protein in the
synovial and ligament tissues of patients with AS and RA. In addition,
we investigated the prognostic value of anti-Kaiso autoantibodies in
patients with axSpA and nr-axSpA. The relationship between anti-Kaiso
autoantibodies and clinical characteristics was also evaluated.

2 Materials and methods
2.1 Biological samples

Serum samples were obtained from patients recruited from the
outpatient clinic of Changhai Hospital (Shanghai, China). Synovial and
ligament tissues were obtained from patients with AS and RA who
underwent surgical treatment (spinal osteotomies or hip replacements)
at the late stage of the disease. Puncture biopsy samples were obtained
from the sacroiliac joints of the nr-axSpA patients. The study was
approved by the Medical Ethics Committee of Changhai Hospital, and
informed consent was obtained from all patients. The patients were
classified according to the Assessment of SpondyloArthritis
International Society criteria (10). Patients with AxSpA were divided
into two subgroups (AS and nr-axSpA), and patients with AS were
classified according to the modified New York criteria (11). All patients
with nr-axSpA were followed up. Patients with RA fulfilled the
American College of Rheumatology’s revised criteria (12). Healthy
controls and patients with RA should not have any disease involving
the axial joint. Disease activity and functional capacity were determined
based on the Bath Ankylosing Spondylitis Disease Activity Index
(BASDAI) and the Bath Ankylosing Spondylitis Functional Index
(BASFI), respectively. Syndesmophytes in AS with axial involvement
were assessed according to the modified Stoke Ankylosing Spondylitis
Spinal Score (m-SASSS) by two experienced radiologists who were
blinded to the patients’ clinical data (13). The final score is the average
score. The erythrocyte sedimentation rate (ESR) (mm/h), C-reactive
protein (CRP) (mg/L), and serum alkaline phosphatase (ALP) (U/L)
levels were measured at the time of the assessment.

2.2 Serum profiling with human
proteome arrays

The HuProt microarrays used in this study were provided by
CDI Laboratories Inc. (Mayaguez, USA). The array contains
duplicate spots of approximately 20,000 individually purified
human proteins with an N-terminal glutathione S-transferase
(GST) tag and is widely used to screen autoantibodies in various
diseases (14, 15). Autoantibodies in nr-axSpA were profiled using
HuProt arrays of two pooled serum samples (seven nr-axSpA vs.
seven healthy controls) according to the manufacturer’s protocol.

2.3 Measurement of anti-Kaiso
autoantibody using the meso scale
discovery assay system

Levels of anti-Kaiso autoantibody in all included patients with
axSpA (nr-axSpA and AS) and controls (RA and healthy controls)
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were determined using the MSD assay system, which is based on the
detection of the light emitted by an electrochemiluminescent Sulfo-tag
label following electrochemical stimulation (16, 17). The concentration
of coated recombinant protein, dilution of serum and standard
antibody, and amount of Sulfo-tag-labeled IgG used in the
experiment were all optimized in a series of preliminary experiments.
A mouse monoclonal anti-Kaiso antibody (Abcam, Cambridge, UK)
was used as the internal standard positive control in the assay, and a
standard curve was generated using serial dilutions (2,500, 625, 156.25,
39.06, 9.77, 2.4, 0.61, and 0 ng/ml) of the Kaiso antibody. The 96-well
plates (MSD, Rockville, Maryland, USA) were then coated with 40 pl (5
pg/ml) of recombinant human Kaiso protein (Abcam) and incubated
overnight at 4°C. The plates were washed three times with PBST (PBS
+ 0.05% Tween 20) and blocked with Blocker A (MSD) at room
temperature (RT) for 2 h. After washing with PBST, 50 pl plasma
(diluted 1:250 in PBS) was added to the coated plates and incubated for
2 h at RT. After washing the plates three times with PBST, 50 ul (1 pg/
ml) of Sulfo-tag goat anti-human IgG secondary antibody (MSD) was
added to each well and incubated for 2 h at RT on a shaker. After three
more washes, 150 pl MSD read buffer (MSD) was added to each well,
and the plates were read using an MSD Sector Imager S600. The serum
antibody concentrations were determined by referencing the enhanced
chemiluminescence (ECL) responses against the standard curve.

2.4 Immunohistochemistry

Synovial and ligament tissues were fixed in 4% paraformaldehyde,
embedded in paraffin, and sliced into sections. The sections were then
de-waxed, hydrated, and washed. After antigen retrieval using
microwaves, endogenous peroxidase activity was blocked in a 3%
H202 solution. The sections were subsequently incubated overnight
with anti-Kaiso antibodies or control IgG (Proteintech, Rosemont,
USA). They were then washed and incubated with horseradish
peroxidase-conjugated secondary antibodies, followed by treatment
with diaminobenzidine (DAB) to visualize the signal. Sections were
examined and photographed using an Olympus BX51 microscope
(Olympus Corporation, Tokyo, Japan).

2.5 Statistical analysis

Statistical analyses were performed using SPSS Statistics software
version 19.0. All data were analyzed using a normal distribution test. A
comparison of measurement data with a normal distribution was
performed using the Student’s t test. A comparison of measurement
data with non-normal data was performed using the Mann-Whitney
U test. A receiver operating characteristic (ROC) curve analysis was
performed to evaluate the diagnostic performance of anti-Kaiso
antibodies in AS. The optimal cut-off values in the ROC curves were
defined as the points at which sensitivity and specificity were
maximized. The positive predictive value (PPV) and negative
predictive value (NPV) were calculated. Pearson’s correlation was
used to assess the correlation between anti-Kaiso autoantibodies and
other clinical parameters. Logistic regression was used to analyze the
anti-Kaiso antibody level and its associated clinical indicators in
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patients with axSpA. Differences were considered statistically
significant at *P <0.05 and **P <0.01.

3 Results

3.1 Detection of autoantibodies in
nr-axSpA serum with human
proteome microarrays

We used the HuProt microarray to identify autoantibodies in
two pools of samples collected from patients with nr-axSpA (n = 7)
and healthy controls (n = 7). Data analysis revealed that 47
autoantibodies were detected in the serum of healthy controls and
42 autoantibodies were found in the serum of patients with nr-
axSpA. Further analysis showed that seven candidate
autoantibodies were specifically present in the serum of patients
with nr-axSpA but not in healthy controls (Figure 1A).
Representative images of the autoantibodies detected on HuProt
microarrays are shown in Figure 1B. High-magnification images of
the seven specific autoantibodies (ASAP, BCL7A, EIF2Cl, IGHGI,
MYLK, SUGT1, and KAISO) are presented in Figure 1C.

3.2 Validation of novel autoantibodies
using the MSD assay system

As inflammation and progressive new bone formation are
hallmarks of axSpA, especially in AS, we focused on Kaiso-specific
autoantibodies, which have been shown to affect inflammation and
Wnt signaling (18, 19). We measured the amount of anti-Kaiso
antibodies in serum samples using MSD in a large cohort
comprising 50 patients with nr-axSpA, 40 with AS (20), 40 with RA,
and 45 healthy controls. The clinical characteristics of patients and
healthy controls are shown in Table S1. The results revealed that levels
of anti-Kaiso antibodies were significantly higher in the nr-axSpA
group than in the other groups (Figure 2A). We then sought to explore
the differential expression of Kaiso proteins in tissues. Synovial and
ligament tissues were collected from patients with transcervical fracture
(healthy control, HC), AS, RA, and nr-axSpA patients who had ever
undergone puncture biopsy of the sacroiliac joint and then sent for
IHC analysis. IHC analysis revealed higher expression of Kaiso in
synovial and ligament tissues from nr-axSpA patients compared with
HC, AS, and RA (Figure 2B). Integrin subunit alpha 10 (ITGA10), as a
key downstream molecule of Kaiso regulating osteogenic differentiation
(21), was found to make no significant difference in the synovial and
ligament tissues of patients with AS, RA, nr-axSpA, and HC
(Figure S3).

3.3 Validation of the diagnostic value of the
serum anti-Kaiso autoantibody level in
axSpA and nr-axSpA

The results presented suggest a possible role for anti-Kaiso
autoantibodies as diagnostic biomarkers to discriminate nr-axSpA
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Identification of autoantibodies in the serum of patients with nr-axSpA using human proteome (HuProt) microarrays. (A) The Venn diagram shows
the number of autoantibodies identified in the serum of patients with nr-axSpA and healthy controls. (B) Representative images of the autoantibody
detected in the HuProt microarrays. The arrows indicate the duplicate spots of the antigen protein. (C) High magnification images of the seven
specific autoantibodies, including ASAP, BCL7A, EIF2C1, IGHGL, MYLK, SUGT1, and KAISO, identified in patients with nr-axSpA.

from AS and controls. We further analyzed the ROC curve of serum
anti-Kaiso autoantibody levels to assess their diagnostic value
(Figure 3). We found that serum anti-Kaiso autoantibody levels
could differentiate patients with axSpA (nr-axSpA and AS) from
healthy controls with an AUC (area under the curve) of 0.74 (cut-off
value 4,065.49 ng/ml, sensitivity 61.1%, specificity 84.4%), and
differentiate patients with axSpA from those with RA with an AUC
of 0.72 (cut-off value 4,426.73 ng/ml, sensitivity 55.6%, specificity 80%).
Using 4,574.98 ng/ml as the cut-off value, the AUC of anti-Kaiso
autoantibody to discriminate nr-axSpA from AS was 0.86 (95% CI
0.78-0.94, sensitivity 76%, specificity 87.5%). Moreover, the diagnostic
performance of serum anti-Kaiso autoantibodies in differentiating nr-
axSpA from other groups (RA and healthy controls) was also assessed.
The AUC value for differentiating nr-axSpA from healthy controls was
0.88 (with a cut-off value of 4,263.57 ng/ml, and a sensitivity of 80%,
and a specificity, of 87%). The AUC value for differentiating nr-axSpA
and RA was 0.87 (cut-off value: 4,574.98 ng/ml, sensitivity 74%;
specificity 87.5%). The results of the ROC analysis are shown in
Table S2.

3.4 Association between anti-Kaiso
autoantibody and clinical characteristics

Next, we sought to analyze the associations between anti-Kaiso
autoantibodies and clinical indicators (Figure 4, Supplementary
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Figures 1, 2). Of all patients with axSpA (nr-axSpA and AS), the
serum level of anti-Kaiso autoantibody was positively correlated
with CRP (r = 0.681, p <0.01) and BASDAI (r = 0.47, p <0.01)
(Figure 4). However, it was not significantly correlated with other
activity measures such as ESR (r = 0.131, p >0.05) and BASFI (r =
-0.178, p >0.05) (Supplementary Figure 1). When further analysis
was performed, the results showed that the anti-Kaiso autoantibody
level was negatively correlated with disease duration (r = —0.485, p
<0.01). Among nr-axSpA patients, the serum level of anti-Kaiso
0456, p
<0.01) (Supplementary Figure 2). Moreover, logistic regression

autoantibody was positively correlated with ALP (r =

analysis showed that anti-Kaiso antibodies (p <0.05), disease
duration (p <0.05), CRP (p <0.05), and the BASDAI score (p
<0.05) could discriminate “nr-axSpA” from “AS.”

3.5 Follow-up results of patients with
nr-axSpA

Twenty-two of all the 50 patients with nr-axSpA progressed to
AS over an 8-year period. According to Figure 5A, it was found that
the anti-Kaiso autoantibodies of patients with nr-axSpA (7,233 +
252.4 ng/ml) who progressed to AS (5,069 *
reduced to varying degrees overall. The AUC value for

178 ng/ml) were

differentiating early and late stages of AS was 0.9 (cut-off value
5891.89 ng/ml, sensitivity 86.4%, specificity 86.4%) (Figure 5).
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Validation levels of anti-Kaiso autoantibodies in the serum using the Meso Scale Discovery (MSD) assay system and the expression of Kaiso in the
tissues detected using immunohistochemistry (IHC). (A) MSD analysis of anti-Kaiso autoantibodies in the serum of patients with nr-axSpA (n = 50),
AS (n = 40), and RA (n = 40) and healthy controls (HC, n = 45). (B) Synovial and ligament tissues of HC, AS, RA, and nr-axSpA were stained with the
anti-Kaiso antibody. Data are presented as mean + SEM. **P <0.01 compared to patients with nr-axSpA. All IHC images are shown at x100
magnification and are representative of images from three independent experiments.

4 Discussion

The identification of biomarkers for early axSpA diagnosis and
therapy is the current focus of research. By screening the serum of
patients with nr-axSpA and controls using human proteome
microarrays, we identified seven candidate autoantibodies that were
present specifically in the serum of those with nr-axSpA. Considering
the potential role of Kaiso protein in the inflammation and new bone
formation processes of AS, an anti-Kaiso autoantibody was selected for
further validation studies. The results demonstrated that serum levels of
anti-Kaiso autoantibodies were higher in patients with nr-axSpA than
in controls. We also found that anti-Kaiso autoantibodies were highly
accurate in diagnosing nr-axSpA. Moreover, serum levels of anti-Kaiso
autoantibodies were positively correlated with CRP, BASDAI and ALP
levels and negatively correlated with disease duration.

Autoantibodies are immunological hallmarks of several
autoimmune diseases and can be used as diagnostic biomarkers (22,
23). AxSpA was long assumed to be a seronegative disease, and
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antibodies were not considered a hallmark of this disease. Recently,
an increasing number of autoantibodies have been recognized as
potential diagnostic biomarkers for AS (5). In this study, we
demonstrated that Kaiso-specific autoantibodies are present in the
serum of healthy individuals but at higher levels in the nr-axSpA.
Interestingly, autoantibody levels returned to normal in AS. This
phenomenon implies that the serum anti-Kaiso level may be
correlated with the bone deformation stage in AS. We also found a
positive correlation between the concentration of serum anti-Kaiso
autoantibody and ALP among nr-axSpA in our study, which is
supported by previous reports showing its relationship with
structural damage (24). Moreover, Kaiso, an antigen of the anti-
Kaiso autoantibody in tissues, may participate in the regulation of
osteoblast differentiation. Therefore, both in vivo and in vitro
experiments were designed to investigate the role of Kaiso in
osteogenesis. The experiments indicated that Kaiso could inhibit
osteoblast differentiation via the Itgal0/PI3K/AKT signaling pathway.
In addition, we discovered that the expression of Kaiso decreased the
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ROC curves of anti-Kaiso autoantibody for the discrimination of patients with axSpA from controls. (A) Patients with AxSpA (nr-axSpA and AS) versus
healthy controls. (B) Patients with AxSpA versus RA. (C) Patients with nr-axSpA versus healthy controls. (D) Patients with nr-axSpA versus those with

RA. (E) Patients with nr-axSpA versus those with AS.

osteogenic differentiation of MC3T3-E1 cells and BMSCs through
downregulating Itgal0 (21). The higher expression of Kaiso in nr-
axSpA patients also indicates its potential function. The likely reason is
that, in the later stage of this disease, the previously normal target joints
and surrounding tissues were gradually replaced by ossified tissue,
which was associated with reduced expression of Kaiso. We also
discovered that some other diseases are characterized by the
disappearance of autoantigens during disease progression. For
instance, Guillain-Barre syndrome (25), Hashimoto’s thyroiditis (26),
and type 1 diabetes (27) are all autoimmune-related. As the disease
progresses, its pathology is characterized by atrophy and necrosis of the
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target organs and tissues attacked by the immune system, which is
accompanied by a reduction of some special autoantigens existing in
them. These results may help to explain why anti-Kaiso autoantibodies
were reduced in the AS stage. The following analysis revealed that
serum anti-Kaiso autoantibody could be a potential diagnostic
biomarker for differentiating nr-axSpA from other groups (AS, RA,
and healthy controls). We further explored the diagnostic value of
serum anti-Kaiso autoantibodies in the early stages of AS. We selected
22 patients with nr-axSpa who progressed to AS over 8 years and
analyzed their change and clinical diagnosis value of anti-Kaiso
autoantibodies. The results showed that the serum anti-Kaiso
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autoantibody level significantly decreased among patients with nr-
axSpa with radiographic progression, which is suggested to be related
to the progression of AS disease. However, most patients with AS have
used biological agents, while those with nr-axSpA have not. Owing to
different drug use in different groups, biological agents may have an
impact on the immune process. Therefore, it is not known whether
biological agents affect antibody production. However, this requires
further experimental validation.

Several autoantibodies have been reported to be involved in
osteoblast mineralization and bone formation in AS (9, 28). Kaiso
(also known as zinc finger and BTB domain containing 33), a unique
member of the poxvirus and zinc finger (POZ) family, exhibits dual-
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1

specificity DNA binding to methylated CpG dinucleotides or a non-
methylated sequence known as the Kaiso binding site (KBS) (29, 30).
Kaiso regulates inflammation and cell proliferation in various diseases
(31-33). In addition, several studies have revealed that Kaiso affects
Wnt signaling, which is essential for the regulation of bone homeostasis
(34). Moreover, the zinc finger and BTB domain containing gene 16
(ZBTBI16), which is also a member of the POZ-zinc finger family,
regulates osteoblast differentiation (35, 36). Thus, we hypothesized that
Kaiso plays an important role in axSpA structural damage. Bone
destruction occurs prior to new bone formation in the pathological
process of axSpA (8); therefore, it is possible that bone destruction in
the focal axial joint during the early stage of axSpA is associated with
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increased Kaiso protein expression in the skeletal and connective
tissues, and that the resulting increase in exposure to the immune
system leads to increased levels of anti-Kaiso autoantibodies. The
relative reduction in Kaiso expression in AS may contribute to the
limited bone destruction and progressive new bone formation observed
in these patients. Furthermore, immunohistochemical analysis revealed
that the expression of Kaiso in synovial and ligament tissues of nr-
axSpA patients were higher than that of AS, RA, and controls.
However, no different expression of Itgal0 was found between them.
The possible reason was that anti-Kaiso autoantibodies interacted with
Kaiso and interfered with its regulation of ItgalO expression. Thus,
anti-Kaiso autoantibodies may represent a biomarker of nr-axSpA,
although these findings have yet to be validated in more patients.

In addition to the anti-Kaiso autoantibody tested in this study,
additional novel autoantibodies, including MYLK, EIF2Cl, and
SUGT], are also potential biomarkers for nr-axSpA. MYLK gene
activity can be induced by TNF-0, an essential inflammatory factor
in AS (37). Additionally, EIF2C1 participates in angiogenesis (38,
39), whereas SUGT]1 regulates inflammatory activity (40). Thus, all
processes regulated by these genes appear to engage in distinct
aspects of axSpA pathogenesis. Additional experiments are required
to verify the role of these autoantibodies in axSpA.

In summary, the anti-Kaiso autoantibody can be a biomarker
for nr-axSpA (especially in the early AS stage) and a potential
therapeutic target. Further studies with larger sample sizes are
required to validate our findings.
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healing as a prognostic
biomarker of good

long-term outcomes
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SDepartment of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China, “Department of
Surgery, Faculty of Kinesiology and the McCaig Institute for Bone & Joint Health, University of
Calgary, Calgary, AB, Canada, *Department of Physiology, University of Helsinki, Helsinki, Finland

The suboptimal or protracted regeneration of injured connective tissues often
results in significant dysfunction, pain, and functional disability. Despite the
prevalence of the condition, few studies have been conducted which focused
on biomarkers or key molecules involved in processes governing healing
outcomes. To gain insight into injured connective tissue repair, and using the
Achilles tendon as a model system, we utilized quantitative proteomic and
weighted co-expression network analysis of tissues acquired from Achilles
tendon rupture (ATR) patients with different outcomes at 1l-year
postoperatively. Two modules were detected to be associated with prognosis.
The initial analysis identified inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) as
a biomarker or hub protein positively associated with better healing outcomes.
Additional analysis identified the beneficial role of ITIH4 in inflammation, cell
viability, apoptosis, proliferation, wound healing, and for the synthesis of type |
collagen in cultured fibroblasts. Functionally, the effects of ITIH4 were found to
be mediated by peroxisome proliferator-activated receptor gamma (PPARY)
signaling pathways. Taken together, these findings suggest that ITIH4 plays an
important role in processes of connective tissue repair and advocate for the
potential of ITIH4 as a therapeutic target for injured connective tissue repair.

Trial registration: http://clinicaltrials.gov, identifiers NCT02318472,
NCT01317160.
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Introduction

Connective tissues such as tendon and ligament play a wide
variety of functions in the joint (1). Moreover, mature connective
tissues display impaired capability of regeneration, predisposing
joints to degenerative diseases (2). The limited regenerative
capability is mainly attributed to a paucity of cells and the
relatively avascular or aneuronal nature of the adult tissues,
leading to variable and often poor prognosis (3). While the above
general perspective of connective tissue healing applies, some
patients appear to heal with better outcomes than others (3).
Despite such recent advancements, details regarding the pathways
and biomarkers governing optimal healing after connective tissue
injuries, are mostly unknown and remain to be elucidated.

The healing of connective tissue generally involves the
contribution of a variety of cells infiltrating into the site of injury
such as macrophages, fibroblasts, as well mesenchymal stem cells
(4). Among these, fibroblasts play a crucial role from the early
inflammatory to late regenerative healing phase by regulating
inflammatory responses, extracellular matrix (ECM) deposition
and remodeling as well as specific collagen (Coll) synthesis (5, 6).
Collagens are the main component of the ECM and higher collagen
type I (Coll) levels at the site of injury are reported as an indicator
of better healing after connective tissue injuries (7).

Although connective tissue injuries can occur anywhere in the
body, acute Achilles tendon rupture (ATR) is a frequent injury.
ATR injuries are becoming more common and with a considerable
long associated sick-leave and low frequency of players returning to
their previous level of sports activity (8).

In recent years, significant progress has been made in exploring
the underlying mechanisms of injured connective tissue healing (9).
By using mass spectrometry (MS) based advanced proteomic
techniques, our research group has recently identified elongation
factor-2 (eEF2) at the early inflammatory healing phase and
complement factor D (CFD) at the proliferative healing phase, as
potential healing biomarkers predictive of patient outcomes with
ATR (3). These biomarkers exhibited differential expression
patterns among good and poor outcome patient subgroups. These
studies are continuous, using diverse bioinformatic approaches for
analysis of the proteomic data.

In the present study, we used a weighted co-expression network
analytical approach with the MS proteomic data collected from
tissue samples taken at the time of surgery to further characterize
the basis for the differences in outcomes between patient subsets.
The network-based co-expression analysis of proteomic data
approach identifies modules specifically related to the prognosis
and subsequently detected prognostic biomarkers or hub proteins.
Identified biomarkers/hub proteins were further subjected to Gene
ontology (GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis to ascertain their biological
functions and specific signaling pathways leading to tissue repair.
Thus, employing the network proteomic approach may provide
new insights regarding specific molecules that may be contributing
to more optimal outcomes after endogenous healing of the
Achilles tendon.
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Materials and methods

This study was conducted after approval from the Regional Ethical
Review Committee in Sweden (Reference no. 2009/2079-31/2: 2013/
1791-31/3) and followed all guidelines according to the Declaration of
Helsinki. The written informed consent was acquired from all patients.

Subjects and sampling

Following the inclusion and exclusion criteria as described
previously (10), 40 patients with acute ATR who underwent
reconstruction surgery with the same surgical protocol were
consecutively included in the present study. During the surgery,
tendon biopsies were taken from the ruptured area and stored at
minus 80° C until proteomic analysis was performed. All the samples
were collected within 2-7 days of the ATR injury. Postoperatively, all
patients received the same rehabilitation program.

Patient reported outcomes

Patient-reported outcomes were evaluated 1-year postoperatively
using validated questionnaires: Achilles Tendon Total Rupture Score
(ATRS). The ATRS consists of 10 sub-scales such as strength in
tendon, tiredness in the tendon, stiffness in tendon, pain in tendon,
limitations in activity of daily life (ADL) assessing limitations on
uneven surface, stairs, running, jumping and loss in physical work
(11). Each sub scale ranges from 0 to 10 where 0 = worst and 10 = best
outcome with no limitation. The maximum ATRS is 100, and a score
higher than 80 was regarded as indication of a good outcome (10).

Functional outcomes

The functional outcomes were measured using the Heel-rise Test
(HRT) at 1-year post-surgery. HRT is a validated test, indicating the
outcome of strength and endurance of the affected gastrocnemius-
soleus complex (12, 13). The HRT was performed on one leg with the
patient standing on a box with a 10° incline. Patients were instructed
to perform as many maximal height heel-rises as possible and as many
heel-rise repetitions as possible. All the results, including the number
of heel-rises, the height of every single heel-rise, the total work in joules
(total distance x body weight), the time and the power (work/time)
were recorded for analysis. The Limb Symmetry Index (LSI) was used
to show the ratio between the injured and contralateral uninjured leg
and results are presented in a percentage (injured/contralateral x 100).

Mass spectrometry
Protein extraction and digestion of
tissue samples

The methods used were the same as reported previously (3).
Frozen samples were powdered by Mikro-dismembrator (B. Braun

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1191536
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

Biotech International, Germany) on dry ice. Powdered tissue samples
were solubilized in 8M urea and 100 mM NaCl with 1% ProteaseMAX
(Promega) in 100 mM ammonium bicarbonate (AmBic) and mixed
vigorously. Low binding silica beads (400 um, Ops Diagnostics,
Lebanon NJ) were added to each sample and vortexed at high
speed. Subsequently, samples were subjected twice to disruption on
a Vortex Genie disruptor for 2 min before addition of AmBic, urea
and NaCl. Following centrifugation, the 50 mM AmBic was added and
vortexed vigorously. Proteins were then reduced with 100 mM
dithiothreitol in 50 mM AmBic, incubated at 37°C and alkylated
with 100 mM iodoacetamide in 50 mM AmBic. The reaction was
stopped with formic acid and the samples were then cleaned on a C18
Hypersep plate (bed volume of 40 pL, Thermo Scientific) and dried in
a vacuum concentrator (miVac, Thermo Scientific).

Reversed phase liquid chromatographic-
MS/MS analysis

Briefly, RPLC of peptides were performed on a C18 EASY-spray
and C18 trap columns connected to an Ultimate 3000 UPLC system
(ThermoFisher). Mass spectra were acquired on an Q Exactive HF
mass spectrometer (ThermoFisher), targeting 5 x 10° ions with
maximum injection time of 100 ms, followed by data-dependent
higher-energy collisional dissociation (HCD) fragmentations from
precursor ions with a charge state.

Proteomic data analysis, protein identification
and quantification

Raw files were imported to Proteome Discoverer v2.3
(ThermoFisher) and analyzed using the SwissProt protein
database with the Mascot v 2.5.1 (MatrixScience Ltd., UK) search
engine. MS/MS spectra were matched with The Human Uniport
database (last modified: 3 September 2020; ID: UP000005640;
75,777 proteins) using the MSFragger database engine. Protein
abundance was calculated based on normalized spectrum
intensity (LFQ intensity), and an intensity-based absolute
quantification (iBAQ) algorithm was used for normalization.

Weighed co—expression network analysis

Following previously described procedures of WGCNA (14), a
weighted protein co-expression network was generated using the
protein abundance network of unique proteins. The soft power
applied for gene modules identification was selected to 7.
Correlation coefficients between the modules and traits were
calculated using Pearson’s method. Prognosis-related protein
modules were defined as those with a P value less than 0.05. All
proteins from the selected modules were then visualized into a
protein-protein interaction (PPI) network using the Cytoscape
software (http://cytoscape.org/).

Functional enrichment analysis

Enrichment analysis of proteins was performed by the
‘clusterProfiler’ package (15). Gene ontology (GO) term analysis
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consists of biological processes (BP), cellular components (CC),
molecular function (MF). Pathway enrichment analysis was
conducted based on Kyoto Encyclopedia of Genes and Genomes
(KEGG). P < 0.05 was considered statistically significant.

Identification of hub proteins

The hub proteins of a selected module were determined through
an absolute value of the Module Membership (MM) > 0.8 and a
Gene Significance (GS) > 0.1. Moreover, the hub proteins in selected
modules were calculated and identified using the CytoHubba plugin
in the Cytoscape software (16). The common hub proteins
identified by the use of three different methods, WGCNA, MCC,
and Degree, were investigated further.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed by the
‘clusterProfiler’ package (15) to identify enriched hub protein-
related signaling pathways and ‘c2.cp.kegg.v7.0.symbols.gmt’ was
selected as the reference gene set. A false discovery rate (FDR) <
0.25 and p < 0.05 was considered as significant enrichment.

Antibodies and reagents

The antibodies used in the present study were as follows: anti-
COL1A1 (72026) and anti-PPARy (C26H12) from Cell Signaling
Technologies (Boston, USA); and anti-ITIH4 (ab180139) from
Abcam (Cambridge, UK). Secondary antibodies were either goat
Alexa 488 (A-11008) or 594 (A-11012) obtained from
ThermoFisher (Oxford, UK). Lipopolysaccharide (LPS, 12630)
was purchased from Sigma (Steinheim, Germany).

Cell culture and treatment

The cells of the human dermal fibroblast cell line (fHDF/
TERT166) were purchased from Evercyte (Vienna, Austria) and
were cultured in Dulbecco’s Modified Eagle Medium/Nutrient
Mixture F-12 (DMEM/F-12, 10565018, Gibco) supplemented
with 10% fetal bovine serum (FBS) and 1% antibiotics (penicillin-
streptomycin) at 37 °CC in a 5% CO, humidified incubator.
Different concentrations of LPS diluted in sterilized deionized
water, varied from 0.01 pg/ml to 50 pg/ml, were used for cell
activation experiments. Experiments were performed in triplicates
and repeated at least three times independently.

Enzyme-linked immunosorbent assay
Enzyme-linked immunosorbent assays (ELISA) were used to

investigate the synthesis of ITIH4 and interleukin-6 (IL-6).
According to the instructions of the manufacturers, cell culture
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supernatant levels for ITIH4 (DY8157-05, R&D) and IL-6
(BMS213-2, ThermoFisher) were assessed, respectively. The
absorbance was measured at 450 nm using a microplate reader
(SpectraMax iD3, Molecular Devices).

Cell viability assay

The PrestoBlue' ™ Cell Viability Reagent (A13261,
ThermoFisher) was utilized to estimate cell viability at 24hr, 48hr,
and 72 hr of culture. PrestoBlue' " solution (10 uL) was added to the
cells in each well and incubated at 37 °C for 1 hr. The fluorescence
of each well was subsequently evaluated at 560/590 nm using a
microplate reader (SpectraMax iD3, Molecular Devices).

Cell proliferation assay

To confirm the changes in the proliferation rates, the EdU-488
Cell Proliferation Kit (C10337, ThermoFisher) was used according
to the manufacturer’s instructions. The results were assessed by
fluorescence microscopy (ZOE Cell Imager, Bio-Rad). Image]
software (NIH, Bethesda, MD, USA) was then used to analyze the
cell proliferation rate.

Apoptosis and caspase activity assay

To determine whether cells were live (green) or dead (red), cells
were stained with the LIVE/DEAD Cell Imaging kit (R37601,
ThermoFisher) according to the manufacturer’s instructions.
Caspase activation was investigated using CellEvent™ Caspase3/7
detection reagent (C10423, ThermoFisher) per the manufacturer’s
instructions. Both assays were imaged using fluorescence
microscopy (ZOE Cell Imager, Bio-Rad) and analyzed by Image]
software (NIH, Bethesda, MD, USA).

In vitro model of wound healing

To observe the migration of the fibroblasts, the in vitro wound
healing scratch assay was utilized (17). A scratch was created on a
cell monolayer by using a 10 UL pipette tip. At 0 h and 24 h, the
width of the scratch was assessed, and the rate of scratch recovery
was determined. Migration activity was imaged under an optical
microscope (ZOE Cell Imager, Bio-Rad) and analyzed by Image]
software (NIH, Bethesda, MD, USA).

Immunofluorescence analysis

Briefly, for the immunofluorescence analysis, cells were fixed in
4% paraformaldehyde for 15 min. After permeabilization with 0.1%
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Triton X-100 for 15 min, the cells were then blocked with 3% bovine
serum albumin for 1 hr and were subsequently, incubated with a
primary antibody to COL1A1 or PPARY overnight at 4 °C followed
by incubation with fluorescent-conjugated secondary antibodies for
1 hr. The cell nuclei were stained by Hoechst 33342 (ThermoFisher)
for 30 min. Images were captured under a fluorescence microscopy
(ZOE Cell Imager, Bio-Rad) and analyzed by Image] software (NTH,
Bethesda, MD, USA).

Cell transfection

The ITIH4 siRNA and negative controls were obtained from
ThermoFisher (AM16708). LipofectamineTM RNAIMAX
Transfection Reagent (13778030, ThermoFisher) was used to
introduce siRNA into fibroblasts according to the manufacturer’s
protocol. After transfection with ITTH4 siRNA, or scramble control
siRNA, fibroblasts were stimulated with LPS.

Statistical analysis

All statistical analyses were performed using R software (version
4.04; R Core Team 2020, Vienna, Austria) or GraphPad Prism
software (version 8.0; GraphPad Software Inc., La Jolla, CA, USA).
Continuous variables were expressed as the mean + SD values and
compared with the Student’s t-test or one-way analysis of variance.
Categorical variables were expressed as frequencies and proportions
and compared with the chi-square and Fisher exact tests. Univariate
analysis of hub proteins was performed using Logistic regression
models to determine the hub proteins associated with prognosis.
Receiver Operating Characteristics (ROC) curve analysis and area
under the ROC Curve (AUC) was performed and calculated.
Meanwhile, the optimal cutoffs were identified by maximizing
Youden’s ] index. Data with a P value < 0.05 was considered significant.

Results
Clinical parameters

The study included a total of 40 patients with ATR undergoing
tendon reconstruction surgery. At one-year post-surgery during the
follow-up, all patients were assessed for healing outcomes based on
their ATRS. To explore the underlying mechanism of connective
tissue repair, patients were divided into groups of good (ATRS > 80;
n = 20) and poor healing outcomes (ATRS < 80; n = 20). No
statistically significant differences were noted between the good and
poor outcome groups regarding age, sex, and body mass index.
However, the ATRS for the good outcome group (95.3+4.0) was
significantly higher than the ATRS for the poor outcome group
(61.5£9.67). The clinical parameters for all patients are presented in
Table S1 and the study design is presented in Figure 1.
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Schematic overview of experimental design. Quantitative proteomic analysis of the tendon tissues from ATR patients with different outcomes was
performed based on RPLC-MS/MS, followed by network analysis and related in vitro studies on fibroblasts

Proteomics and co—expression protein
analysis

The use of RPLC-MS/MS analysis enabled the identification of a
total of 855 unique proteins in all studied patients. These included
769 shared proteins across the good and poor outcome groups. A
weighted co-expression network analysis was performed to identify
the relationship between the protein abundance and clinical
outcome. Using sample clustering to detect outliers, a B value of 7
as the first value that gave an R2 of 20.8, was selected as the soft-
threshold to fulfill the scale-free approximation criterion
(Figures 2A, B). A total of 14 strongly co-expressed modules were
identified through the dynamic tree cutting method (Figures 2C, D).
Among these, the brown and red modules were observed to be
significantly related to prognosis (Figures 2E, F) and were highly
expressed in good outcome patients (Figure 2G).

GO enrichment analysis and KEGG
pathway analysis

In the next step, the brown and red modules were subjected to
further bioinformatic analysis. The functional enrichment analysis
revealed that most annotations in the brown module were involved
in numerous biological and cellular processes such as inflammation,
metabolism, regulation of protein activation, ECM metabolism as
well in collagen-containing extracellular matrix and regulation of
catalytic activity (Figure 3A). Further analysis by KEGG identified
enriched signaling pathways which included the complement and
coagulation cascades, peroxisome proliferator-activated receptors
(PPAR) and cholesterol metabolism (Figure 3B).

The enrichment analysis of the red module revealed ECM
organization and collagen-containing ECM as the most significant
biological and cellular processes. The biological pathways highly

Frontiers in Immunology 19

enriched in the red module included ECM receptor interaction and
focal adhesion. (Figures 3C, D).

Identification of relevant hub proteins and
related pathways

Based on an absolute value of the module membership (MM) >
0.8 and gene significance (GS) > 0.1, 24 hub proteins from the
brown and 23 from the red module were selected for further
evaluation (Figures 4A, B). In the next step, the network was
imported into the Cytoscape software and CytoHubba plugin was
employed. By using the MCC and Degree methods, the top 10 hub
proteins from the brown and red modules were detected along with
their interaction as shown in Figures 4C, D. Subsequently, three
common proteins, inter-alpha-trypsin inhibitor heavy chain 4
(ITIH4), Serpin family F member 1 (SERPINFI), and
immunoglobulin lambda variable 1-47 (IGLV1-47), were detected
(Figure 4E). Among these, the ITIH4 synthesis was found to be
elevated in the good- compared to the poor outcome groups
(Figure 4F). ITTH4, SERPINF1 and IGLV1-47 were further
subjected to logistic regression analysis, which also identified a
low odds-ratio 0.22 (0.04-0.92) of risk of poor prognosis with ITTH4
(Figure 4G). Moreover, the prognostic reliability of ITIH4,
SERPINF1 and IGLV1-47 was studied by the ROC curve analysis
which demonstrated ITIH4 with the highest area under the curve
(AUC) value of 0.71 as a strong predictor of good clinical
outcome (Figure 4H).

Through maximizing Youden’s ] index, the optimal cutoff was
identified, and the patients were divided into two groups based on
risk levels of poor prognosis (Figure 4I). As Coll is the main
collagen subtype of tissue repair, the relationship between ITTH4
and collagen type 1 Al (COL1AIl) was explored further. Our
bioinformatic analysis showed elevated COL1A1l levels in the
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brown

Identification of outcome-related modules and functional enrichment. (A) Scale-free topology index and the mean connectivity for each power
value between 1 and 30. (B) Clustering dendrogram and clinical traits based the expression data between patients with different outcomes. (C)
Eigengene adjacency heatmap of each module, representing the correlation between the modules. (D) Cluster dendrogram of the identified co-
expression modules. (E) Heatmap of the correlation between modules and clinical traits. Each cell contains the corresponding correlation coefficient
and p value. (F) Network of brown and red modules. (G) The module expressions between patients with different outcomes.

group with low compared to high-risk, indicating the positive effects
of ITIH4 levels on collagen synthesis (Figure 4I).

To identify the potential pathways for connective tissue repair,
GSEA was performed which selected PPAR as the highest ranked
signaling pathway with an enrichment score of 0.84 (Figure 4]).
Taken together, these analyses selected ITTH4 as the best predictive
biomarker and PPAR as an associated signaling pathway, findings
which were then subjected to further targeted investigations.

ITIH4 regulates inflammatory responses in
human fibroblasts

The bioinformatic analysis identified inflammation as one of the
crucial biological processes for connective tissue repair especially for
annotations from the brown module. To study the role of ITTH4 in
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intracellular inflammatory processes, ITIH4 synthesis was knocked
down by siRNA-ITIH4 in the human fibroblast cell line, fHDF/
TERT166 (Supplementary Figures 1A, B). The effects of LPS on
ITTH4 were then studied and it was observed that LPS treatment
elevated ITTH4 levels in a dose-dependent manner (Figure 5A and
Supplementary Figures 2 A-C). Notably, there was a decrease in
ITTH4 after simulations of LPS at concentrations of 10 and 20pg/ml
after 48 and 72h. This may be attributed to high concentrations of
LPS treatment leading to an increase of cell death, which, in turn,
decreased the secretion of ITIH4 after 48 and 72 h. In the next step,
si-ITTH4 treated fibroblasts were stimulated with LPS and the
synthesis of a classical marker of inflammation; IL-6 was assessed.
Interestingly, dual effects were observed for both LPS and ITIH4
(Figure 5B, Supplementary Figures 3A, B) on IL-6 synthesis,
highlighting a potential role of this biomarker during the early
inflammatory stage of Achilles tendon repair.
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ITIH4 can regulate human fibroblast
viability

Metabolic processes are crucial for cell survival as emphasized
by the bioinformatic analysis. To determine the potential role of
ITIH4 on metabolic activity, cell viability was assessed during LPS-
induced inflammatory conditions on the human fibroblasts in vitro.
The analysis revealed that acute inflammatory responses negatively
impact cell viability, while relatively long-term (72 hr)
inflammatory responses at lower doses (0.01-0.1 pg/ml) promote
cell viability (Supplementary Figures 4A-C). Furthermore, the
effects of ITIH4 on cell survival were investigated, and the results
indicated that knockdown of ITIH4 alone significantly led to
decreased cell viability of fibroblasts at 48 and 72 h (10-50 nM)
(Supplementary Figures 4D-F). Additional analysis revealed that
LPS-stimulated fibroblasts with ITIH4 knocked down led to further
decreases in cell viability, highlighting a possible protective role for
ITIH4 on cell survival and metabolism (Figure 5C).

ITIH4 may regulate connective tissue
repair by influencing cell death and
apoptosis

To explore a role for ITIH4 in apoptosis, the effect of si-ITTH4
treatment on LPS-induced apoptosis in human fibroblasts was
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evaluated. The analysis of activated Caspase-3/7 staining
demonstrated that LPS alone or knockdown of ITTH4 promoted
the activation of Caspase-3/7 in fibroblasts (Supplementary
Figures 5A-D). During LPS treatments, knockdown of ITIH4 led
to higher increases in activation of Caspase-3/7 in the treated
fibroblasts than were observed in the LPS group with intact
fibroblasts (Figures 5D, E). The results were confirmed further by
live/dead assays, which showed that treating cells with LPS alone or
following knockdown of ITIH4 leads to a decrease in the cell
survival rate (Supplementary Figures 6A-D). Consistently,
following LPS treatments, knockdown of ITIH4 resulted in a
higher apoptosis rate (Figures 5F, G). Collectively, these results
suggest that ITIH4 has a cytoprotective role in LPS-
treated fibroblasts.

ITIH4 may influence inflammatory healing
processes via modulation of cell
proliferation

To assess the effect of ITTH4 on human fibroblast proliferative
activity, the proliferation rate after ITIH4 knockdown and/or LPS
treatment via EAU assays was investigated. The results suggested
that LPS alone has a pro-proliferative effect in the long term
(Supplementary Figures 7A, B). Conversely, knockdown of ITTH4
alone leads to reduction in the proliferation rate of the fibroblasts
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(Supplementary Figures 7C, D). Following LPS treatment at a
relatively low concentration (0.1ug/ml), knockdown of ITIH4

inhibited the proliferative activity of the cells (Figures 6A, B).

However, knockdown of ITIH4 enhanced cell proliferative
activity when LPS was applied at relatively high concentrations
(10-20 pg/ml) (Figures 6A, B). In general, the effect of ITIH4 on
fibroblasts proliferation appears to dependent on the level of

inflammation induced by LPS in this in vitro model.

Frontiers in Immunology

ITIH4 may affect inflammatory healing
processes via influencing cellular migration

Fibroblast migration at the site of injury is an essential process
associated with wound healing (18). With the aim to assess the
potential involvement of ITTH4 in this process, an inflammatory in
vitro model of wound healing was used by creating a scratch in the

LPS-stimulated monolayer cultures of the fibroblast cell line treated
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FIGURE 5

Influence of knockdown of ITIH4 on inflammation, cell viability, and apoptosis of fibroblasts treated with LPS. (A) Relative synthesis of ITIH4
investigated through ELISA analysis (n=3). Fibroblasts were transfected with 50 nM ITIH4 siRNA. At 24 h after transfection, fibroblasts were subjected
to 24 h of LPS treatment with different concentrations. (B) Relative synthesis of IL-6 via ELISA analysis (n=3). (C) Cell viability assessed by the
PrestoBlue™ Cell Viability Reagent (n= 4). (D, E) Representative images and quantitative analysis of Caspase-3/7 activation. (n=3). (F, G)

Representative images and quantitative analysis of cell death assessed by live/dead assay. (n=3). Scale bar = 100 um. ns, not significant; * P < 0.05; **

P <0.01; *** P < 0.001; **** P < 0.0001

with and without si-ITIH4. It was observed that LPS-stimulation
can promote cell migration even at relatively low concentrations
(0.1-10 pg/ml), whereas knockdown of ITIH4 inhibits the rate of
cell migration (Supplementary Figures 8A-D). The experimental
observations highlighted a reduced rate of cell migration in LPS-
stimulated fibroblasts when treated with si-ITTH4 in comparison to
untreated cells (Figures 6C, D). These findings further support a
potential beneficial role for ITIH4 in wound healing during the
inflammatory phase of healing.
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ITIH4 can regulate collagen synthesis by
human fibroblasts

Coll is the main constituent of the connective tissue matrix and
an essential component of the ECM organization. The
bioinformatic analysis highlighted the process of collagen
containing matrix production as one of the most enriched
biological processes leading to a good healing outcome
(Figures 3A, C). Additionally, patients with higher ITIH4
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Influence of knockdown of ITIH4 on proliferation and migration of fibroblasts treated with LPS. Fibroblasts were transfected with 50 nM ITIH4 siRNA
At 8 h after transfection, fibroblasts were subjected to 72 h of LPS treatment with different concentrations. (A, B) Representative images and
quantitative analysis of proliferation rate assessed by EdU assay. (n=6). At 24 h after transfection, a scratch was created, and fibroblasts were
subjected to 24 h of LPS treatment with different concentrations. (C, D) Representative images and quantitative analysis of cell migration rate

assessed via a wound healing assay. (n=5). Scale bar

synthesis exhibited elevated COLIA1 levels in surgical biopsies
(Figure 41I). To further evaluate the effect of ITIH4 on Coll synthesis
during the inflammatory stage of healing, analysis of anti-Coll
staining using immunofluorescence was performed. The results
indicated that relatively, low grade inflammation induced by LPS
(0.1-20 pg/ml) can lead to an upregulation of COL1A1 synthesis
whereas higher LPS concentrations (50 pg/ml) has a negative
impact on COL1Al synthesis (Supplementary Figures 9A, B).
Interestingly, ITTH4 knockdown by si-ITIH4 alone was observed
to reduce COL1A1 synthesis (Supplementary Figures 9C, D).
Following LPS treatments, knockdown of ITIH4 suppressed the
beneficial effects of LPS, leading to a downregulation of COL1A1
synthesis (Figures 7A, B). Thus, ITIH4 synthesis is positively
correlated with Col1A1 synthesis in these cells.
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Association between ITIH4 and the PPAR
signaling pathway

The bioinformatic analysis identified PPAR as the most highly
ranked signaling pathway associated with good healing outcomes
after ATR. To confirm a potential association between PPAR and
ITIH4 synthesis, immunofluorescence analysis with anti-ITTH4 and
anti-PPAR-gamma was used with LPS-stimulated fibroblasts in the
presence or absence of ITIH4. The results showed that LPS
treatment alone downregulated the synthesis of PPARY at
relatively low concentrations (1-10 pg/ml), while at a relatively
high concentration (50 pg/ml) it upregulated PPARY synthesis.
However, the knockdown of ITIH4 by si-ITIH4 significantly
increased PPARY synthesis in LPS-stimulated fibroblasts

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1191536
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.
A Hoechst COL1A1 Merged
- ---
o ---
LPS 1 ug/ml
+si
o ---
LPS 10 ug/ml
+si
o ---
LPS 20 ug/ml
+si
o ---
LPS 50 ug/ml
+si
B
3 dolok kKKK ok NS
e Control
Ips 1 ug/mi
2 o lIps1ugmi+si
® Ips 10 ug/ml
1 Ips 10 ug/ml + si
g Ips 20 ug/ml
ﬁ Ips 20 ug/ml + si
o éq@‘xéléé;;éé,a\léé.‘; Ips 50 ug/ml
& \ooé@ \“:Q(& ’1?:&@@:&@\ © Ips 50 ug/ml +si
NS E P
¢ ¢
FIGURE 7

10.3389/fimmu.2023.1191536

Control

NC

LPS 1 ug/ml

LPS 1 ug/ml
+si

LPS 10 ug/ml

LPS 10 ug/ml
+si

LPS 50 ug/ml

LPS 50 ug/ml
+si

o

y

ns * *k ns
4
e Control
3 NC
® Ips 1ug/ml
2 e Ips 1 ug/ml + si
Ips 10 ug/mi
g1 ﬁ Ips 10 ug/ml + si
A lmllmlll] b -+
& €SO S S
o F QP& P&
S NI )
& P P
WN &
8 & &

Effect of knockdown of ITIH4 on levels of collagen | and PPARY in fibroblasts treated with LPS. Fibroblasts were transfected with 50 nM ITIH4 siRNA
At 8 h after transfection, fibroblasts were subjected to 48 h of LPS treatment with different concentrations. (A, B) Representative images and
quantitative analysis of synthesis of COL1A1 via immunofluorescence analysis. (n=3). (C, D) Representative images and quantitative analysis of
synthesis of PPARy via immunofluorescence analysis. (n=3). Scale bar = 100 um. ns, not significant; *,# P < 0.05; ** P < 0.01; *** P < 0.001; **** P <

0.0001

(Figures 7C, D). Thus, the presence or absence of ITTH4 can impact
synthesis of components of the PPAR pathway.

Discussion

In the present studies, we have identified prognostic biomarkers
and pathways of connective tissue repair by using in-depth
proteomic and co—expression network analysis of MS data
acquired from ruptured human Achilles tendon tissues early after
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injury. A total 14 modules were identified from which 2 were
determined to be significantly related to healing prognosis after
ATR. Further analysis of elements in these prognostic modules
identified ITIH4 as a prominent biomarker associated with better
patient-reported outcomes. Functionally, the beneficial effect of
ITIH4 on Coll synthesis were observed to be potentially
mediated by the PPARY signaling pathway.

The first major finding was that ITIH4, a 120 KDa glycoprotein
that is a component of the inter-alpha trypsin inhibitor, is a
potential biomarker and hub protein prognostic of long-term
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Achilles tendon healing. Previously, prognostic roles for elevated
ITIH4 synthesis have been identified in inflammatory and
infectious diseases with an elevated ITIH4 synthesis (19). In
addition, higher synthesis of ITIH4 in patients with chronic
hepatitis B-virus or HBV-related hepatocellular carcinoma
patients was reported to be related to good prognostic outcomes
in these diseases (20, 21). Here, by using advanced MS techniques
along with deep bioinformatics, a prognostic role for ITIH4 in
human Achilles tendon healing with good sensitivity and specificity
was identified.

Functionally, a role for ITIH4 has previously been reported in
liver metabolic processes, as well in inflammatory processes and
neutrophil migration in arthritic joints (19, 22-24). As well, ITTH4
has also been reported to be a serologic biomarker in rheumatoid
arthritis (25). In these disorders, the role of ITIH4 as an acute phase
protein has been highlighted. Recently, the function of ITIH4 as a
protease inhibitor has been reported, leading to inhibition of a lectin
pathway of complement (26). Interestingly, these biological
functions were also found to be highly enriched in the identified
red and brown modules of the current studies, two
modules identified as prognosis-related from the present
bioinformatic analysis.

The process of connective tissue repair is often divided into
overlapping phases of inflammation, proliferation, provisional
matrix deposition, and remodeling. Notably, in the present study,
connective tissues from ATR patients could only be collected from
the early inflammatory phase at the time of surgery due to ethical
considerations. During this stage, higher synthesis levels for ITIH4
in injured tissues were indicative of better recovery outcomes.
Interestingly, previous studies have shown that ITTH4 also has a
close association with IL-6 and LPS (19, 22). Consistent with those
studies, we have demonstrated that in LPS-stimulated fibroblasts,
ITIH4 synthesis was increased in a dose-dependent manner.
Meanwhile, the secretion of IL-6, was promoted by ITIH4
deficiency. These findings are also consistent with previous
observations that higher IL-6 levels delay the healing processes
and negatively impact tissue regeneration (27, 28). It was further
demonstrated that knockdown of ITIH4 aggravated LPS-induced
inflammation, reducing cell viability and apoptosis. Taken together,
these findings support a beneficial role for ITIH4 in healing, in part,
by regulating IL-6 synthesis during the acute inflammatory phase of
connective tissue repair after injury.

A role for ITIH4 in cell growth and regeneration has also been
demonstrated in recent publications (29, 30). Consistent with such
roles, our bioinformatic analysis identified various proteins that
were enriched with metabolism-related annotations. To confirm the
bioinformatic analysis, EAU assays were utilized to investigate the
effect of ITTH4 on cell proliferation. Moreover, the experimental
findings indicated that LPS alone can promote cell proliferation in
accordance with previous publications (31, 32). Interestingly, in
fibroblasts treated with different concentrations of LPS, knockdown
of ITIH4 showed opposing roles on cell proliferation. The results of
our studies may potentially be attributed to the presence of different
isoforms of ITIH4 which we could not identify from the current
methodologic approach. A previous study demonstrated that two
isoforms of ITIH4 possess different functions on cell proliferation
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(22). The authors revealed that the long isoform of ITIH4
significantly inhibits cell proliferation, whereas the short isoform
had the opposite effect (22). Taken together, the eftect of ITTH4 on
cell proliferation may depend on the level of inflammation as well as
the isoform of ITTH4 that is present at the site. However, this
conclusion is still in need of further confirmation with regards to
Achilles tendon healing.

To mimic the inflammatory phase of healing, an inflammatory
in vitro wound healing model was used. In accordance with
previous publications (33, 34), the results obtained also showed
that LPS may promote wound healing in a dose-dependent manner.
It has been demonstrated that LPS treatment can potentially affect
the healing processes by accelerating the resolution of
inflammation, increasing immune infiltration, and altering the
secretion of a number of mediators (35, 36). However, the
beneficial effects of relatively low concentrations of LPS could be
reduced via knockdown of ITTH4. Thus, the present results revealed
that ITIH4 can potentially have positive effects on early
wound healing.

In patients with a connective tissue injury such as an ATR, there
is an initial reduction of type I collagen, a molecule responsible in
part for the reduced tensile strength of the new deposited scar
tissues due to lack of molecular cross links (37) as well as the
organization of the collagen (38). In the present studies, ECM and
collagen-related annotations were highly enriched. In addition, the
synthesis of COL1A1 was higher in patients with low risk compared
to high risk regarding outcomes. In cultured fibroblasts treated with
LPS, the synthesis of COL1A1 was regulated in a dose dependent
manner. These results are consistent with previous studies (31).
However, in the present studies, the beneficial effects induced by
relatively low LPS-concentrations were weakened by knockdown of
ITIH4. Interestingly, we found that ITTH4 knockdown did not only
result in low synthesis but also different distributions of COL1A1.
However, this should be explained with caution. Col I is both
located in cytoplasm and extracellular compartments. This may be
attributed to various time periods, which still need further research.

According to previous studies, ITIH4 also plays a crucial role in
ECM stabilization (39, 40). Hence, the present findings confirm the
potential effect of ITIH4 on ECM following exposure to
inflammatory environments. These findings also highlight ITTH4
as an integral part of the network of proteins and pathways essential
of good healing outcomes.

From the present proteomic studies, the PPAR signaling
pathway is highly involved in prognosis for patients with different
outcomes. The PPAR pathway is known to be involved in lipid
catabolism, inflammation, survival, proliferation, as well as
regeneration of the skin, bone and liver (41-43). It has been
demonstrated to be an emerging target to promote wound healing
and regeneration. PPARs consist of ligand-activated transcription
factors belonging to the nuclear hormone receptor super-family
(44). As an important member of the super-family, it has been
reported that the synthesis of PPAR-gamma is increased following
exposure to inflammation, and it significantly suppresses collagen
production (45). Relevant to the present discussion, PPAR pathway
regulating drugs have been reported to influence wound healing in
preclinical models (46). In addition, PPAR-gamma agonists have

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1191536
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

also recently been documented to regulate ECM production in
human fibroblasts (47). In the present studies, the synthesis of
PPAR-gamma was regulated by LPS in a dose-dependent manner.
Moreover, the synthesis of ITIH4 was negatively correlated with
PPAR-gamma in cultured fibroblasts. In the context of LPS-induced
inflammation, ITIH4 may act as a negative regulator of PPAR.
While moderate or low inflammation upregulate ITIH4 and
collagen by downregulating PPAR signaling pathway. Taken
together, these results suggest that ITIH4 could regulate type I
collagen production via regulating the synthesis of PPAR-gamma in
inflammatory environments. However, further studies are
needed to clarify the association among ITIH4 and PPAR
signaling pathway.

In summary, the findings presented provide several molecular
and functional insights into the healing mechanisms after
connective tissue injuries, and the long-term quality of specific
molecules and pathways. Specifically, they provide substantial
evidence that ITIH4 can participate in the regulation of
inflammatory and proliferating healing processes most probably
through PPAR as a signaling pathway. As such, ITTH4 may
represent a prognostic biomarker and therapeutic target for
effective connective tissue repair and regeneration. ITTH4 may be
one of several biomarkers of good versus poor outcomes of healing
as the processes are quite complex and application of different
methodological approaches may identify different biomarkers. In
the future, integration of the knowledge gained from the
identification of multiple biomarkers of good outcomes will not
only lead to better understanding of the healing processes, but will
also enhance opportunities to intervene with those patients destined
for a poor outcome to convert the healing process to yield an
improved outcome, particularly since the basis for a poor outcome
may be due to multiple variables.

Study limitations

The present study has several limitations. Firstly, due to the
technic problem and relatively low expressions of unique proteins,
only the common proteins between the two groups were
investigated. Further research would be needed to identify and
validate certain proteins solely synthesized in good or poor healers.
Secondly, due to a relatively small sample size, only univariate
analysis of hub proteins was performed using logistic regression
models. Future studies with larger sample sizes cohorts should be
performed to confirm the role of specific hub proteins and the
biomarker identified in our present studies. Secondly, although the
in vitro studies supported the bioinformatic findings, more
advanced in vivo experiments based on animal models, or the
primary cells extracted from patients with connective injuries,
specifically human primary tenocytes, should be used to assess
the potential roles of ITIH4 in the healing process. Thirdly, the
opposing roles of ITIH4 on proliferation at different inflammatory
levels are quite interesting and needs further exploration to
elucidate the molecular mechanisms involved. In addition, several
signaling pathways are involved in connective tissue healing,
however, the PPAR signaling pathway was selected for further
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investigation due to its high enrichment score. Nevertheless, other
pathways likely should also be further investigated for their
contributions, investigation that may also provide new insights
into connective tissue regenerative processes leading to
better outcomes.
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Osteoarthritis (OA) is a common degenerative disease in mammals. However, its
pathogenesis remains unclear. Studies indicate that OA is not only an aging
process that but also an inflammation-related disease. Synouvitis is closely related
to the progression of OA, and synovial macrophages are crucial participants in
synovitis. Instead of being a homogeneous population, macrophages are
polarized into M1 or M2 subtypes in OA synovial tissues. Polarization is highly
associated with OA severity. However, the M1/M2 ratio cannot be the only factor
in OA prognosis because intermediate stages of macrophages also exist. To
better understand the mechanism of this heterogeneous disease, OA subtypes of
synovial macrophages classified by gene expression were examined. Synovial
macrophages do not act alone; they interact with surrounding cells such as
synovial fibroblasts, osteoclasts, chondrocytes, lymphocytes and even adipose
cells through a paracrine approach to exacerbate OA. Treatments targeting
synovial macrophages and their polarization are effective in relieving pain and
protecting cartilage during OA development. In this review, we describe how
synovial macrophages and their different polarization states influence the
progression of OA. We summarize the current knowledge of the interactions
between macrophages and other joint cells and examine the current research on
new medications targeting synovial macrophages.

KEYWORDS

osteoarthritis, macrophages, synovial, polarization, treatment, review

1 Introduction

Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation in
cartilage, subchondral bone and synovium. In osteoarthritic joints, major pathological
changes include damage to articular cartilage, sclerosis and cystic degeneration of
subchondral bone, and hyperplasia of the synovial membrane and articular capsule. As
the most common joint disease, OA causes pain and disability and creates a substantial
burden on individuals and society (1). Despite the major public burden posed by OA,
effective medicine for its treatment remains insufficient. Current clinical drugs for OA,
including local glucocorticoids and nonsteroidal anti-inflammatory drugs (NSAIDs), can
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suppress the pain caused by OA but cannot stop its progression.
Therefore, clarifying the mechanism of OA initiation and
discovering useful treatments have become urgent tasks for
scientists and researchers.

Osteoarthritis was used to be thought as a degenerative disease
mostly caused by cartilage defects before accumulating research
reveals the significant contribution of synovial inflammation in
the progression of OA. Imaging studies coupled with
histopathologic analyses have demonstrated that synovitis could
facilitate the pathogenesis of OA (2). The normal synovium has
two layers (Figure 1). The inner layer, which is also called the
lining layer, is mainly composed of synovial macrophages and
synovial fibroblasts and plays an important role in maintaining
joint homeostasis. The outer layer of the synovium consists of
different types of connective tissue that assist various joint
functions. However, in the OA synovium, the number of lining
layer cells, especially the number of synovial macrophages, is
increased (3). Microscopically, the appearance of OA can be
indistinguishable from that observed in RA. They both involve
neovascularization and infiltration by fibroblasts and
macrophages. However, their histological changes are different.
In contrast to the synovial inflammation observed in rheumatoid
arthritis (RA), synovial inflammation in OA is not a diffuse
process: its distribution is patchy and confined to areas adjacent
to sites of chondropathy (2). The accumulation of macrophages in
OA is not caused by a single factor but arises from complicated
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interactions between joint cells such as chondrocytes, fibroblasts,
and lymphocytes. Molecules such as soluble matrix degradation
products (SMDPs) from cartilage, fibronectin, adipokines and
some alarmins act as danger-associated molecular patterns
(DAMPs), which activate macrophages to produce inflammatory
cytokines and chemokines through surface pattern recognition
receptors (PRRs), such as Toll-like receptors (TLRs), which are
expressed on the surface of macrophages. Additionally, cytokines
and chemokines such as interleukins (ILs), growth factors and
monocyte chemotactic protein (MCP) produced by various cells in
the joint also play a role in macrophage activation and
accumulation by binding to the corresponding receptors and
further activating the JAK-STAT pathway (4). Macrophages play
a crucial role in OA synovitis, and their polarization correlates
with the progression of OA. Macrophages can be divided into
three phenotypes according to their function: unstimulated
macrophages (MO0), proinflammatory macrophages (M1) and
anti-inflammatory macrophages (M2). MO cells are resting and
preactivated macrophages, which can transform into M1 or M2
macrophages under certain microenvironments. M1 macrophages,
as an anti-pathogene soldier, can be induced by bacterial
lipopolysaccharide (LPS) or Thl cytokines such as interferon-y
(IFN-y), TNF-o both in vitro and in vivo. Activated Ml
macrophages could secrete proinflammatory cytokines such as
TNF-o and IL-1. In contrast, M2 macrophages are polarized by
IL-4 and IL-13 and exert anti-inflammatory effects and tissue

Osteoarthritis
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Hyperplasia of synovial membrane
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The comparison between normal joint and osteoarthritic joint Normal joint composed of joint cartilage, joint capsule, synovial membrane and
articular cavity. Generally, synovial membrane has two layers. The inner layer, also called lining layer is mainly composed of synovial macrophage
and synovial fibroblasts. The outer layer of synovial membrane also called sublining layer is connective tissue composed of blood vessels, collagens,
interstitial macrophages, fibroblasts, adipocytes and a small number of lymphocytes. In osteoarthritic joint, the articular cartilage is damaged and the
fragments of cartilage drift into articular cavity, forming loose bodies. The loss of cartilage leads to unevenly distributed loads on subchondral bones
which can further cause osteoproliferation and sclerosis in the friction part as well as bone resorption and cystic degeneration in the periphery part.
Moreover, both synovial membrane and articular capsule thicken in osteoarthritic joint due to inflammation. In hyperplastic synovial membrane, the
most prominent changes are the hyperplasia of synovial and interstitial macrophages, the infiltration of T lymphocytes in sublining layer and the

proliferation of blood vessels
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repair and remodeling functions (5). These macrophage inductors
are still frequently used in in vitro experiments to induce M1/M2
and explore their effects in specific diseases, as well as in the main
topic of our thesis -osteoarthritis. Despite all the knowledge about
macrophage accumulation and polarization, the specific
mechanism by which this occurs in OA joints has not been
elucidated. Here, we aimed to share the current evidence of the
role of synovial macrophages and their subsets in OA progression.
We also summarized the current knowledge of interactions
between macrophages and other joint cells, such as
chondrocytes and fibroblasts. In this review, possible treatments
for OA targeting polarized synovial macrophages are
also summarized.

2 Synovial macrophages are activated
and proliferate in OA

2.1 In vitro experiments

In 1991, the antigen-antibody technique was used to show that
normal synovial lining cells expressed many macrophage-associated
antigens, such as CD11b, CD16, CD14 and CD68 (6). Haywood L
et al. collected synovial tissue samples from 104 OA patients in 2003
and found that angiogenesis and synovial lining thickness increased
with increasing macrophage fractional areas (7). Afterward, Benito
MJ showed significantly greater CD14" and CD68" cell infiltration,
blood vessel formation and intercellular adhesion molecule-1
expression were detected in synovial tissue from OA patients than
in normal individuals (3). In 2006, Bondeson | found that fewer
proinflammatory cytokines, such as IL-1 and TNF-co, were
produced in digested osteoarthritis synovium cultures after
depleting CD14" cells (CD14 is expressed by classic mononuclear
macrophages) using anti-CD14-conjugated magnetic beads. These
results suggested that the number of macrophages was increased in
the synovium of OA patients and that these proliferated synovial
macrophages could exacerbate OA by producing proinflammatory
cytokines such as TNF-o and IL-1. However, in vitro studies could
not dynamically observe the activation of synovial macrophages in
the body. Tracing the changes in synovial macrophages in the body
was impossible until the discovery of the radionuclide labeling
technique (8).

2.2 In vivo studies based on radionuclide-
labeled folate

According to their distinct molecular phenotypes, monocytes
can be divided into two subgroups: the CD14"CD16  subgroup and
the CD14'CD16" subgroup. The first subgroup, which are called
classic monocytes, has classic proinflammatory functions such as
infiltration and macrophage transformation. The second subgroup
is considered to have increased cytokine expression and antigen-
presenting abilities (9, 10). It is frequently reported that folate
receptor-f3 (FR-B) is specifically expressed on the surface of the
classic CD14"CD16” monocyte subgroup and derived macrophages.
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Therefore, radionuclide-labeled folate is frequently used to detect
the quantity and distribution of activated macrophages in vivo (11).

In 2016, Kraus VB provided direct in vivo evidence for the
connection between synovial macrophages and OA for the first
time. Kraus VB injected radionuclide-labeled folate called 99mTc-
EC20 (etarfolatide) into twenty-five individuals with symptomatic
OA, after which SPECT-CT imaging of both knees and planar
imaging of the whole body were used to detect activated
macrophages in vivo. The results showed that activated
macrophages were present in 76% of OA knees, and etarfolatide
uptake was mainly detected in the synovium and joint capsule.
Radiographic knee OA severity and joint symptoms significantly
correlated with synovial and capsular etarfolatide uptake. In
addition, whole-body planar imaging suggested that activated
macrophages were localized to joints that were susceptible to OA,
including hand finger joints, thumb bases, shoulders, great toes and
ankles. Pain in these joints was also positively associated with the
quantity of activated macrophages (12). These findings indicate that
activated macrophages are increased in OA joints and that most of
them accumulate in the synovium.

2.3 Modulating the quantity of synovial
macrophages affects OA

After learning that synovial macrophages are increased in OA
patients, researchers have tried to manipulate the quantity of
synovial macrophages in animal models to further verify the
connection between synovial macrophages and OA.

Clodronate-laden liposomes are toxic to all phenotypes of
macrophages, and so they are commonly used to deplete
macrophages. In 2004, van Lent PL injected clodronate-laden
liposomes into mouse knee joints to selectively deplete synovial
lining macrophages. Then, TGF-B was injected into knee joints to
induce osteophyte formation. Van Lent PL found that osteophyte
formation and the production of bone morphogenetic protein
(BMP)-2 and BMP-4 were dramatically reduced after the
depletion of synovial lining macrophages (13). Additionally,
Takano S discovered that the expression of IL-1B, TNF-o. and
nerve growth factor (NGF, a cytokine associated with pain) in the
synovium was reduced after depleting synovial macrophages in
OA mice (14). Using a similar method, many other studies
showed that the production of proinflammatory cytokines (IL-
1B, TNF-a), the formation of osteophytes, and cartilage
destruction were alleviated after selectively depleting synovial
macrophages (15, 16). Despite these positive results, Wu CL’s
study showed conflicting findings. He found that OA was
exacerbated after depleting synovial macrophages from
transgenic obese mice with Fas-induced macrophage apoptosis
using the small molecule AP20187. The author explained that it
was possible that macrophages repopulated after AP20187
administration and that the repopulated macrophages
contributed to the progression of OA. Another explanation was
that synovial macrophages could protect against ox-LDL-induced
inflammation, and so after macrophage depletion, this protection
was no longer present (17).
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3 Macrophage polarization in the
OA synovium

3.1 Discovery of M1/M2 macrophages in
the OA synovium

Macrophages can be divided into multiple phenotypes. Among
these phenotypes, the two most important subtypes are “classically
activated macrophages” (M1 polarization) and “alternatively activated
macrophages” (M2 polarization). M1 macrophages can be induced by
IFN-yand TNF-o.in vitro. Characterized by CD80, CD86, and MHCII
expression, these cells are known as proinflammatory macrophages
due to their ability to produce proinflammatory cytokines such as
TNE-o and IL-1. Moreover, they can release crucial inflammatory
chemokines such as monocyte chemotactic protein-1 (MCP-1, also
known as CCL2). Additionally, the high expression of the surface
molecule MHCII contributes to their strong antigen presentation
ability. M2 macrophages are induced by IL-4 or IL-10. Unlike M1
macrophages, these cells play a role in tissue repair and inflammation
suppression by producing anti-inflammatory cytokines such as IL-10
and IL-1Ra. M2 macrophages express the scavenger receptor CD163
and mannose receptor CD206 and have higher levels of CD14 than
M1 macrophages (5). The distribution and transformation of M1 and
M2 macrophages play a vital role in the precise regulation of
inflammation (Figure 2). The detailed characteristics of M1 and M2
polarization are shown in Table 1 (5, 18, 19).

10.3389/fimmu.2023.1164137

TABLE 1 Characteristics of M1 and M2 macrophages.

M1 macrophage M2 macrophage

iNOS + -
expression
MHCII 1 4
expression
CD14 I 1
CD16/32 1 4
CD80 + -
CD86 + -
CDl1c + -
CD163 - +
CD206 - +
CD209 - +
TLR TLR-2, TLR-4 TLRI1, TLR-8
Stimulus IFN-y, LPS 1L-4, IL-13
Cytokines IL-1, IL-6, IL-12, TNF-0o, IL-4, IL-10, IL-13, IL-1Ra, TGF-
production CXCL9, CXCL10, CCL2 B1, CCL17, CCL18, CXCL13,
VEGF
“+” present. “-” absent. Thigh expression. |low expression.

IL, Interleukin; TLR, Toll-like receptors; TNF, Tumor Necrosis Factor; TGF, Transforming
growth factor; LPS, Lipopolysaccharide; IFN, Interferon; CCL, Chemokine (C-C motif) ligand;
VEGF, Vascular endothelial growth factor; CXCL, Chemokine (C-X-C motif) ligand.

Pro-inflammatory process

MO macrophage IL-4

IL-10

M1 macrophage

cps
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2
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Anti-inflammatory process

FIGURE 2

M1 and M2 polarization of synovial macrophages. M1 macrophages can be induced by Interferon-y (IFN-y) and tumor necrosis factor-o. (TNF-0) and secret
pro-inflammatory cytokines like interleukin (IL)-6, IL-1, R-spondin-2 (Rspo2), matrix metalloproteinase-13(MMP13), TNF-o. M2 macrophages can be induced
by IL-4 and IL-10 and secret anti-inflammatory cytokines like IL-10, IL-1 receptor antagonist, suppressor of cytokine signaling 1 (SOCS1).
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To investigate how macrophage polarization affects the
progression of OA, van den Bosch MH used microarray analysis
and immunohistochemistry (immunostaining for CD68 and
CD163) and showed that compared to the normal synovium, the
OA synovium overexpressed M1-like macrophage markers such as
CD86 and M2-like macrophage markers such as CD206, IL-10, and
IL-1Ra. Daghestani HN analyzed the concentrations of the M2
markers CD163 and CDI14 in the synovial fluid (SF) of 25 OA
patients and found that the concentrations of these markers were
higher in OA patients. These findings indicated that M1 and M2
macrophages proliferated in the OA synovium, which might be
caused by the increase in the total number of macrophages in the
OA synovium. Interestingly, some studies have noted that
compared with the total number of activated macrophages, the
failure to transform from the M1 to M2 subtype may play a larger
role in the progression of OA (4). Yarnall BW collected synovial
samples from OA dogs and found that the ratio of M1-polarized
cells to M2-polarized cells was higher in the OA synovium, which
indicated that disordered macrophage polarization might
contribute to OA initiation and progression (20). In 2018, Zhang
H found that activated synovial macrophages in OA patients were
mainly M1 macrophages rather than M2 macrophages. This finding
suggests that the increase in M1 synovial macrophages caused by
macrophage proliferation and abnormal polarization may be a
crucial reason for OA exacerbation (21).

3.2 Modulating the M1/M2 ratio affects OA

Although two phenotypes of macrophages (M1 and M2) have
been found in the OA synovium, the specific functions of these two
subtypes remain unclear. Therefore, many scientists have tried to
manipulate the M1/M2 ratio and determine how this change in the
M1/M2 ratio affects OA and directly show the influence of
macrophage polarization on OA.

In 2016, Utomo L described the direct influence of M1 and M2
macrophages on OA for the first time. Utomo L cultured OA
cartilage tissue with M1 macrophages (induced by IFN-y and TNF-
o) or M2 macrophages (induced by IL-4/IL10) in vitro. Then, she
found that M1 macrophages exacerbated cartilage inflammation by
upregulating the expression of the proinflammatory factors IL1p,
IL6, MMP13 and a disintegrin and metalloproteinase with
thrombospondin motif-5 (ADAMTS5). M1 macrophages also
suppressed the release of aggrecan (ACAN) and collagen type II
(COL2A1) and stimulated cartilage cells to produce the
inflammatory mediators nitric oxide (NO) and glycosaminoglycan
(GAG). On the other hand, M2 macrophages (induced by IL-10)
promoted the expression of IL-1f and suppressor of cytokine
signaling-1 (SOCS1) (22).

Several reports have shown that mammalian target of
rapamycin (mTORCI1) can promote M1 polarization and reduce
M2 polarization. Deleting the tuberous sclerosis complex 1 (TSC1)
gene can constitutively activate mTORCI. In contrast, deleting the
Ras homolog enriched in brain 1 (Rheb1) gene inhibits the function
of mMTORCI. Based on these findings, Zhang H used mice with Tscl
or Rhebl deletion to generate collagenase-induced OA and
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examined the role of macrophages and their polarization in OA.
He found that TSCl-knockout mice had upregulated M1-like
macrophage markers and exacerbated cartilage degeneration and
osteophyte formation in experimental OA. Conversely, Rhebl-
knockout mice exhibited downregulated M1-like macrophage
markers, upregulated M2-like macrophage markers and
attenuated experimental OA. This result proves that Ml
macrophages promote synovial hyperplasia, synovial
inflammation and OA progression, while M2 macrophages
alleviate OA progression (21). As for the specific mechanism of
how M1 or M2 macrophages affect OA, scientists found M1
macrophage play its pro-inflammatory role mainly through secret
cytokines like IL-1 and TNF-o,, which will be explained in detail in
the following passage. However, studies concerning the
corresponding pathways of M2 macrophage in OA remains
insufficient. Some articles reported M2 may exert protective
effects through its exosomes which mainly mediated by the PI3K/
AKT/mTOR signal pathway (23).

3.3 Various factors activate M1/M2
polarization through JAK/STAT, NFxB/
MAPK, STAT6 and ROS/NLRP3 pathways
in OA

Because of the importance of macrophage polarization in OA
progression, scientists have tried to determine the intrinsic factors
that lead to the abnormal polarization of macrophages in OA
patients. Studies showed that IFN-y and TNF-o. activate the JAK/
STAT pathway, whereas LPS activates the NFkB and MAPK
pathways in M1 polarization. IL4/IL13 activate STAT6 and
regulate transcription factors, including IRF4, PPARYy, and KLF4
in M2 polarization. Other pathways including that from JNK, PI3K/
Akt, Notch, TGF-B, and hypoxia-dependent intracellular pathways
have been shown to be involved in the balance of M1/M2
polarization (4). In the pathogenesis and progression of OA,
several regulatory mechanisms of macrophage polarization were
also discovered. Wei Z et al. found that anti-citrullinated protein
antibodies (ACPAs, an autoimmune antibody) could induce M1
polarization by upregulating the expression of interferon regulatory
factor 5 (IRF5) in macrophages. However, this effect was more
obvious in rheumatoid arthritis (RA) than in OA because
autoimmune factors are a major cause of RA but not OA (24).
Another possible factor resulting in M1 polarization in OA is
soluble collagens. Under disease conditions, soluble degraded
forms of collagens can be detected in synovial fluids. These
soluble collagens act as self-antigens and can increase M1
polarization during OA pathogenesis. Fortunately, Pal S et al.
showed that sulforaphane could block M1 macrophage
polarization induced by soluble collagen and convert Ml
macrophages into the M2 subtype (25). Recently, some new
articles reported more pathways related to M1/M2 polarization in
OA patients. It was found that inhibition of TRPV4 (transient
receptor potential channel subfamily V member 4), an ion channel
related to oxidative stress and inflammation, delays OA progression
by inhibiting M1 synovial macrophage polarization through the
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ROS/NLRP3 pathway (26). Another research found that MAGL
(Monoacylglycerol lipase) could regulates synovial macrophage
polarization vis inhibition of mitophagy. MAGL inhibition
enhanced the mitophagy levels of M1 macrophages (27).
However, the mechanism involved in regulating macrophage
polarization by MAGL requires further study. Collectively, those
studies showed the possible intrinsic factors that cause an imbalance
in macrophage polarization in OA. Further studies are needed to
clarify the detailed mechanisms of abnormal polarization states.

4 Synovial macrophages help
distinguish the two OA subgroups

Although the discovery of M1 and M2 polarization in synovial
macrophages was a huge breakthrough in understanding the
pathogenesis of OA, this is not the only factor in the initiation and
progression of this disease because many intermediate stage
macrophages are present in the OA synovium despite these two
extreme subtypes (18). To better understand the heterogeneity of this
disease, scientists further classified OA based on the gene expression of
total synovial macrophages. It was recently reported that knee OA can
be divided into 2 subgroups based on the properties of activated
synovial macrophages. After RNA sequencing of OA and
inflammatory-arthritis (IA) synovial tissue macrophages, Wood MJ
identified 2 distinct OA subgroups based on the hierarchical heatmap
of the top 500 most variable genes. One OA group was distinct, and
another OA group was more similar to IA. The distinct OA group was
termed classical OA (cOA), and the TA-like OA group was termed
inflammatory-like OA (iOA). Subsequently, synovial macrophage gene
expression analysis and gene set enrichment analysis were performed
to determine whether the two OA subtypes had different disease
mechanisms. The results demonstrated that the iOA group
overexpressed cell cycle-related genes such as MKI67 (the
proliferation marker Ki67-encoding gene) compared to the cOA
group. Consistent with this finding, flow cytometry proved that the
synovial tissue of the iOA group contained a higher ratio of
macrophages than that of the cOA group. In general, the
heterogeneous gene expression signatures of OA synovial
macrophages may represent different cellular disease mechanisms
and be an important consideration in OA classification (18).

5 Synovial macrophages exacerbate
OA by producing proinflammatory
cytokines, affecting synovial
fibroblasts and interacting

with chondrocytes

5.1 OA synovial macrophages stimulate
proinflammatory cytokines

Takano S found that synovial macrophages highly expressed

TNF-o and IL-1 (14). Consistent with this finding, Bondeson J
collected the supernatant of macrophage-depleted OA synovial
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tissue culture and found that the concentrations of IL1 and TNF-o
declined (8). Zhang H performed mRNA sequencing on cultured
macrophages from TSC1-knockout mice and found that the cytokines
IL-1, IL-6 and TNF-o. were upregulated. In addition to the two most
well-known macrophage-derived cytokines (TNF-o. and IL-1), many
other cytokines and chemokines are directly or indirectly involved in
macrophage-mediated OA progression. Zhang H found that R-
spondin-2 (Rspo2) played an important role in OA. Interarticular
injection of Rspo2 exacerbates OA, and the injection of Rspo2
antibodies reversed the exacerbation (21). Synovial macrophages
can directly or indirectly induce the production of matrix-
degrading enzymes such as MMPs by chondrocytes and synovial
fibroblasts (28). Moreover, Takano S discovered that synoviocytes
could produce NGF and cause pain in OA (14). Haywood L found
that synovial macrophages secreted VEGF to exacerbate synovial
angiogenesis (7). Another interesting cytokine is TGF-B. Synovial
macrophages can induce osteophyte formation in OA via the
production of TGF-B, BMP-2, and BMP-4 (13). Chemokines that
can mediate macrophage accumulation are also crucial participants in
synovitis. Synovial macrophages not only produce chemokines such
as CCL2 but also stimulate other tissue cells to secrete chemokines
that further enhance macrophage accumulation (5, 29).

5.2 OA synovial macrophages interact with
synovial fibroblasts

After Bondeson ] removed macrophages from OA synovial
cultures, the macrophage-derived cytokines IL1 and TNF-o
decreased, and the fibroblast-derived cytokines IL-6, IL-8, and
MMPs were also reduced (8). In addition, after stimulating
synovial fibroblasts with TNF-o. and IL1, Takano S observed a
strong increase in NGF (related to OA pain) (14). In vitro coculture
experiments indicated that macrophages triggered the emergence of
proinflammatory fibroblasts that expressed not only the typical
fibroblast-derived proinflammatory mediator IL-6 but also
mediators of cartilage degradation, such as MMPs. These cells
could also produce collagens that exacerbate synovial fibrosis. The
activation of functional synovial fibroblasts also impacts the
function and phenotype of macrophages. Synovial fibroblasts
send attraction signals to macrophages through the mechanical
movement of ECM fibers caused by the contraction of fibroblasts.
Moreover, fibroblasts have also been shown to produce macrophage
colony stimulating factor (M-CSF) and granulocyte-macrophage
colony stimulating factor (GM-CSF), two conventional mediators
that stimulate the mononuclear phagocyte system (30) (Figure 3A).

5.3 OA synovial macrophages interact
with chondrocytes

Aberrant hyperplasia and differentiation of chondrocytes are
crucial for OA initiation and progression. It has been reported that
the severity of synovitis is closely related to the severity of joint
dysfunction due to the interaction between cartilage and the synovium
(3). MMPs are a group of matrix-degrading enzymes that mediate
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Interaction between synovial macrophages and other cells (A) Synovial macrophages and synovial fibroblasts: Synovial macrophages release
interleukin (IL)-1, tumor necrosis factor-o. (TNF-o) to increase the expression of IL-6, IL-8, matrix metalloproteinases (MMPs), nerve growth factor
(NGF) in synovial fibroblasts. Fibroblasts stimulate macrophage proliferation by producing macrophage colony stimulating factor (M-CSF) and
granulocyte-macrophage colony stimulating factor (GM-CSF) (B) Synovial macrophages and osteoclast: Macrophages can transform into osteoclast
when stimulated by IL-1, TNF-a, and especially receptor activator of nuclear factor kB ligand (RANKL). It is found synovial macrophages indirectly
elevate RANKL level through CD4+ T cells and synovial fibroblast cells. Macrophages secret TNF-o and IL-1 to stimulate the differentiation of Th17
cells, which subsequently release IL-17 to induce the RANKL production of synovial fibroblasts. (C) Synovial macrophage and adipocytes: Fat tissues
outside the joint secret adipokines like leptin, adiponectin and visfatin into blood circulation. Then adipokines get into synovial membrane and
activate macrophage TLR to increase TNF-q, IL-1 expression. These macrophage-derived cytokines, in turn, lead to destruction and remodeling of
local joint adipose tissue, which is a protective factor of osteoarthrosis. (D) Synovial macrophages and chondrocytes: Synovial macrophages release
IL1, TNF-a to upregulate the expression of MMPs, A Disintegrin and Metalloproteinase with Thrombospondin-4 (ADAMTS-4) while downregulate
Aggrecan and collagen II. In turn, injured cartilage produces soluble matrix degradation products (SMDP) and monocyte chemotactic protein-1
(MCP-1). It also leads to increased levels of two autocrine proteins SI00A8 and S1I00A9 in macrophages. Both SMDP and S100A8/S100A9 function
through activating Toll-like receptor (TLR) expressed on macrophages. MCP-1 functions by promoting macrophage aggregation. (E) Synovial
macrophages and CD4+T cells: Synovial macrophages secret B cell Activating Factor (BAFF) to promote pro-inflammatory Thl cells and Th17 cells
while suppress anti-inflammatory Th2 response. Meanwhile, CD4+T cells also contribute to macrophage activation through CD40/CD40L co-

stimulatory pathways.

cartilage erosion, and several of them have been suggested to
participate in OA. VDIPEN, an MMP-generated neoepitope, is
positively associated with cartilage breakdown. In 2007, synovial
macrophages were removed using clodronate-laden liposomes prior
to the creation of a mouse OA model, and Blom AB proved that
synovial macrophages affected cartilage function through MMPs. He
found that the expression of MMP-3 and MMP-9 in synovial tissue
but not cartilage tissue was significantly decreased in macrophage-
depleted mice, indicating that synovial macrophages could directly
affect cartilage by producing MMPs. A dramatic decrease in the
expression of VDIPEN was also noticed (28). In 2018, Zhang H
found that the expression of the chondrogenesis regulator gene sry-
box transcription factor 9 (Sox9) and the chondrocyte marker genes
Col2al and Acan was decreased, while the expression of Coll0al and
runt-related transcription factor 2 (Runx2), which are associated with
chondrocyte differentiation, was enhanced in OA mice with increased
M1 polarization. A high level of cartilage matrix mineralization was
also observed, indicating that activated synovial macrophages could
promote abnormal chondrocyte maturation and differentiation
through cytokines/enzymes (21). It was later discovered that
activated synovial macrophages could secrete TNF-o. and IL-1 to
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increase cartilage expression of proinflammatory cytokines such as
MMPs and ADAMTS-4 and decrease protein levels of ACAN and
collagen II (31-33). Another newly-discovered mediator of this
macrophage-cartilage communication was extracellular vehicles
(EVs). EVs are cell-derived membrane vesicles containing numerous
types of bioactive molecules, including proteins, lipids, mRNAs,
microRNAs and DNA. In an in vitro study, scientists found when
EVs secreted by M1 reached chondrocytes, they transferred their
cargos into chondrocytes and caused significant increase in the
expression of IL-6, MMP13, and ADAMTS5 which further led to
cartilage degeneration (34). The stimulation effect between cells is
mutual. Synovial macrophages also expressed increased IL-1B and
VEGF when cultured with abnormal cartilage cells from OA joints
(33). Further study showed that the underlying mechanism of the
proinflammatory effect of injured cartilage may be associated with
SMDPs and MCP-1 (also known as CCL2). When articular cartilage is
injured, molecular fragments of cartilage, such as SMDPs, irritate the
synovium and bind with TLRs expressed on synovial macrophages to
increase the expression of multiple proinflammatory cytokines that
further exacerbate cartilage injury (35-37). MCP-1 is an important
leukocyte chemotactic factor that is expressed by injured cartilage cells
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and can promote macrophage accumulation (29, 38). Damage to the
cartilage could also lead to increased levels of the alarmins SI00A8 and
S100A9, two autocrine proteins produced by synovial macrophages
that act on themselves to induce proinflammatory cytokines such as IL
and TNF through TLRs (39). These results indicated the mutual effects
of activated synovial macrophages and OA cartilage (Figure 3D).

5.4 OA synovial macrophages interact
with T cells

As mentioned before, another important change in the OA
synovium is the increase in CD4+ T cells. Instead of acting alone,
these lymphocytes interact with synovial macrophages in multiple
ways. For instance, the level of B-cell activating factor (BAFF), which is
a cytokine produced mainly by macrophages, is elevated in OA
synovial fluid (40). As a member of the TNF family, BAFF can not
only support the survival and proliferation of B cells but also play a role
in T-cell activation. BAFF can promote proinflammatory Th1 cells and
Th17 cells while suppressing the anti-inflammatory Th2 response,
which may serve as evidence of the interplay between macrophages and
T cells (41). When macrophages trigger a specific immune response, T
cells also contribute to macrophage activation through the CD40/
CD40L costimulatory pathways. CD40 is a member of the TNF
receptor family that is mainly expressed on the surface of antigen-
presenting cells such as macrophages, and its ligand CD40L is almost
exclusively expressed by activated CD4" T cells. When CD40 and
CDA40L interact, it leads to macrophage activation and B-cell
differentiation (42, 43). In turn, activated macrophages further
enhance cellular and humoral immune responses, which result in
proinflammatory positive feedback. CD40L mRNA levels are elevated
in the synovium during the early onset of OA (40) (Figure 3E).

5.5 OA synovial macrophages cause bone
destruction through osteoclastogenesis

As specialized phagocytes, osteoclasts play an important role in
the metabolic balance of bone tissue. An equivalent level of
osteoclasts and osteoblasts is a key factor in healthy bone
remodeling. However, in OA joints, osteoclasts are aberrantly
activated, which leads to typical subchondral bone destruction
and absorption (44). Notably, this activation of osteoclasts may
involve synovial macrophages. CD14+ macrophages extracted from
the synovial fluid of OA patients can transform into functional
osteoclasts when stimulated by receptor activator of nuclear factor
«B ligand (RANKL, an osteoclast differentiation factor), IL-1at and
TNEF-o. (44). In addition to direct transformation, macrophages can
also indirectly promote osteoclast activation through CD4+ T cells
and synovial fibroblasts. In rheumatoid arthritis (RA), cytokines
such as TNF-o. and IL-1 secreted by macrophages stimulate the
differentiation of Th17 cells, which subsequently release IL-17 to
induce RANKL production in synovial fibroblasts (45). In OA,
osteoclastogenesis induced by CD4+ T cells has also been
discovered; however, whether the mechanism of this change is
identical to that in RA has not yet been clarified (46) (Figure 3B).
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5.6 OA synovial macrophages interact
with adipocytes

Obesity is not only a risk factor for OA occurrence but also an
exacerbating factor in OA development. Animal experiments have
shown that a high-fat diet (HFD) can exacerbate synovitis in OA
mice, which is characterized by increased infiltration of synovial
macrophages and partial loss of joint adipose tissue (47). It is
assumed that fat tissues outside the joint rather than those inside the
joint are responsible for the exacerbation of synovitis. Fat tissues
outside the joint may secrete adipokines such as leptin, adiponectin
and visfatin to remotely control the number and function of
macrophages in the synovium via blood circulation. Markedly
elevated blood adipokines and an increased number of synovial
macrophages and TNF-o and IL-1 expression were found in HFD-
fed OA mice (47). Among adipokines, visfatin was recently shown
to be capable of inducing inflammatory responses by activating
Toll-like receptor 4 (TLR4) expressed on monocytes and
macrophages and subsequently inducing the secretion of TNF
and IL1 (48, 49). Leptin and adiponectin are also closely related
to the nonspecific immune response (50). Local fat tissue in OA
joints, on the other hand, is thought to protect against OA
progression. A study of OA synoviocytes cultured with
microfragmented adipose tissue (MF) showed that MF reduced
the release of CCL2 and MMPs, downregulated TLR4 and increased
tissue inhibitor of metalloproteinases (TIMP-1, an MMP-9
inhibitor) in synoviocytes (51). Another clinical study of 977 OA
patients showed that the infrapatellar fat pad (a part of local fat
tissue) is beneficially associated with radiographic OA, MRI
structural pathology and knee pain (52). It is worth mentioning
that the relationship between macrophages and adipocytes is
mutual. Macrophage-derived proinflammatory cytokines
contribute to the destruction and remodeling of local joint
adipose tissue (47) (Figure 3C).

6 Drugs targeting macrophages
and macrophage-associated
inflammatory pathways

6.1 Drugs targeting macrophage-
associated inflammatory cytokines
(TNF-o, IL-1)

Recent studies have shown that the IL-1 receptor antagonist (IL-
1Ra) anakinra exerts positive effects on articular inflammatory
diseases such as rheumatoid arthritis and systemic juvenile
idiopathic arthritis (53). In some animal experiments, it has been
proven that IL-1Ra can prevent the progression of experimental OA
by inhibiting the generation and activity of IL-1 (54, 55). However,
different conclusions were drawn by two RCTs in which no significant
clinical improvements in OA were detected after interarticular
injection of the IL-1Ra anakinra or the IL-1 receptor antibody
AMGI108 (56, 57) (Table 2). Overall, the mechanism and clinical
application of IL-1Ra in OA treatment require further research.
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TNF-o is a crucial proinflammatory mediator in the initiation
of OA. Therefore, anti-TNF therapy has become a hot spot of
research in recent years. In 2006, Grunk M reported that a 68-year-
old male patient with bilateral OA of the knees gained remarkable
pain relief after subcutaneous injection of the TNF antibody
adalimumab. This case report indicated exciting medical efficacy
of TNF antibody on OA human beings rather than animals for the
first time (58). Subsequently, Magnano MD carried out a pilot study
in which 12 patients with hand OA were treated with adalimumab
(40 mg/2 w) for 12 weeks. The treatment group had statistically

10.3389/fimmu.2023.1164137

significant improvements in the number of swollen joints and
improvements in the number of tender joints, grip strength,
disability and pain (59). In another pilot study, 10 women with
bilateral OA of the hand were enrolled. The participants were
treated with interarticular injections of the TNF antibody
infliximab in one hand and an equal amount of saline in the
other hand. After 12 months of treatment, the hands treated with
infliximab exhibited more significant pain relief and radiographic
alleviation than those treated with saline (60). Although these case
reports and pilot studies demonstrated that TNF antibodies could

TABLE 2 Characteristics of studies researching macrophage-targeting drugs for OA treatment.

First Author, Year

Study Type

Country Population

Experimental Interference

environment

Drugs targeting macrophage-derived inflammatory cytokines

IL-1 antagonist

Pelletier JP, 1997 Animal study Canada 17 dogs In vivo + in vitro Surgery induced knee OA + intra-articular injection
of autologous cells transduced with the IL-1Ra gene
Caron JP, 1996 Animal study Canada 16 dogs In vivo Surgery induced knee OA + intra-articular injection
of recombinant human IL-1Ra
Chevalier X, 2009°° RCT USA 170 knee OA patients In vivo Anakinra (an IL-1Ra) intra-articular injection
Cohen SB, 2011%7 RCT USA 228 knee OA patients In vivo AMG 108 (a fully human monoclonal antibody to
IL-1R) subcutaneously or intravenously injection
TNF blockade
Grunke M, 2006°° Case report Germany a 68 year old male knee OA In vivo Adalimumab (human TNF antibody)
patient subcutaneously injection
Magnano MD, 2007°°  Pilot trial USA 12 hands OA patients In vivo Adalimumab intra-articular injection
Fioravanti A, 2009%° Pilot trial Ttaly 10 hands OA patients In vivo Infliximab (TNF-o antagonist) intra-articular
injections
Chevalier X, 2015°' RCT France 99 hands OA patients In vivo Adalimumab subcutaneous injections
Aitken D, 2018 RCT Australia 51 hands OA patients In vivo Adalimumab subcutaneous injections every other
week
Drugs inducing M2 polarization
Dai M, 2018 Animal study China Rats In vivo + in vitro Surgery-induced knee OA+ SCII intra-articular
injections
Shu CC, 2020%* Animal study | Australia Mice In vivo Surgery induced knee OA+ intra-articular injection
of Hymovis (a hyaluronan hexadecylamide
derivative)
Manferdini C, 2017%° In vitro test Ttaly 12 human OA synovial tissues In vitro M1 macrophages from OA tissues were co-cultured
with ASC
Cherian JJ, 2015%° RCT USA 102 knee OA patients In vivo GEC-TGF-1 intra-articular injection
Ha CW, 2015% RCT South 27 knee OA patients In vivo GEC-TGF-P1 intra-articular injection (high dose)
Korea
Cho JJ, 2017°® RCT South 27 knee OA patients In vivo GEC-TGF-1 intra-articular injection (high dose)
Korea
Cho J, 2016% RCT South 156 knee OA patients In vivo Invossa ™ intra-articular injection
Korea
Lee H; 2018 Animal study South Rats In vivo Surgery-induced knee OA+ Invossa™ intra-articular
Korea injection
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TABLE 2 Continued

First Author, Year Interference

Study Type

Country Population Experimental

Drugs inhibiting M1 polarization

Wang H, 2021"' Animal study In vivo Collagenase-induced OA+ Frugoside intra-articular

injection

Drug Name

Outcome

Drugs targeting macrophage-derived inflammatory cytokines

Result

Mechanism

IL-1 antagonist

Pelletier JP, ~ Autologous cells

Macroscopic and

IL-1Ra suppressed early experimental osteoarthritis

Block IL-1 receptor

MRI

1997 transduced with the microscopic changes
IL-1Ra gene
Caron JP, Recombinant human Macroscopic and IL-1Ra suppressed experimental osteoarthritis Block IL-1 receptor
1996 IL-1Ra microscopic changes;
RNA expression
Chevalier Anakinra WOMAC score; Adverse Anakinra didn’t improve joint pain and function Block IL-1 receptor
X, 2009°° events
Cohen SB, AMG 108 WOMAC score; Adverse AMG 108 didn’t improve joint pain and function Block IL-1 receptor
201177 events
TNF blockade
Grunke M, Adalimumab Self-reported joint Adalimumab improved joint function and pain Bind with TNF
2006 function and pain; MRI
Magnano Adalimumab ACR response; Adverse Adalimumab leaded to pain relief and radiographic Bind with TNF
MD, 2007°° events alleviation
Fioravanti Infliximab Radiographs changes; Infliximab leaded to pain relief and radiographic Bind with TNF
A, 2009 VAS pain score alleviation
Chevalier Adalimumab Number of people with Adalimumab didn’t improve joint pain and function Bind with TNF
X, 2015°' 50% of VAS
improvement;
Aitken D, Adalimumab VAS pain score; Adalimumab didn’t improve joint pain and function Bind with TNF
2018 AUSCAN pain score;

Drugs inducing M2 polarization

RNA expression

Dai M, Neis Macroscopic and SCII significantly improved the structural integrity of SCII increases M2-polariation of
2018 microscopic changes; the cartilage tissue in OA rats macrophages; SCII inhibites

RNA expression chondrocyte apoptosis
Shu CC, Hymovis Macroscopic and Hymovis reduces allodynia at an early but not late Hymovis increased M2- macrophages.
2020%* microscopic changes; stage of OA

Manferdini ASC

Microscopic changes;

M1-like macrophage markers downregulated while

ASC activates M2-macrophages while

G, 2017° RNA expression M2-like macrophage markers upregulated when inhibits M1-macrophages
cultured with ASC
Cherian JJ, GEC-TGF-B1 IKDC score; VAS pain; GEC-TGF-P1 patients had improved scores TGF-P induces osteogenesis and
2015°° Adverse events chondrogenesis; TGF-} increase M2
polarization

Ha CW, GEC-TGF-f1 IKDC score; GEC-TGF-1 patients had improved scores TGF-P induces osteogenesis and
2015% WOMAC score; VAS chondrogenesis; TGF-} increase M2

pain; polarization
Cho JJ, GEC-TGF-B1 MRI GEC-TGF-B1 patients had improved MRI assessment TGF-P induces osteogenesis and
2017 parameters chondrogenesis; TGF-p increase M2

polarization
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TABLE 2 Continued
First Outcome

Author,

Year

Drug Name

Cho J, Invossa™ IKDC score;

2016 WOMAC score; VAS
pain; KOOS score

Lee H; Invossa™ Pain behavior;

2018”° Histological staining;

RNA expression
Drugs inhibiting M1 polarization

Wang H,
20217

Frugoside Histological staining;
RNA expression; Protein

level;

Invossa™ patients had improved scores

Invossa™ rats showed pain relief, cartilage
regeneration. It encouraged M2 polarization and
inhibit M1 polarization

Frugoside attenuates synovial inflammation and delays
the development of OA

10.3389/fimmu.2023.1164137

Result Mechanism

TGF-P induces osteogenesis and
chondrogenesis; TGF-} increase M2
polarization

TGF-P induces osteogenesis and
chondrogenesis; TGF-} increase M2
polarization

Frugoside inhibits macrophage M1
polarization

RCT, randomized control trial; OA, osteoarthrosis; IL-1Ra, Interleukin-1 receptor antagonis; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index; ACR, American
College of Rheumatology; VAS, Visual Analogue Scale; AUSCAN, Australian/Canadian Hand OA Index; SCII, squid type II collagen; ASC, adipose mesenchymal stromal cell; GEC-TGF-B1,
genetically engineered chondrocytes virally transduced with TGF-B1; IKDC, International Knee Documentation Committee; KOOS, Knee Injury and Osteoarthritis Outcome Score.

prevent the progression of OA, several RCTs yielded opposite
conclusions. A randomized controlled crossover trial enrolled 43
patients with erosive hand OA and treated them with adalimumab
or saline. Another RCT enrolled 85 hand OA participants and
treated them with adalimumab or saline. Both RCT's showed similar
pain scores and radiographic scores between the groups (61, 62).

6.2 Drugs that induce M2 polarization

Since M2 synovial macrophages play an anti-inflammatory role
in OA, drugs that induce M2 polarization might be a promising
strategy for the treatment of OA. In this section, we will summarize
several drugs that increase M2 macrophages.

Dai M found that squid type II collagen (SCII) could increase the
production of collagen type II and GAG and promote cartilage repair
in vitro by increasing the ratio of M2 macrophages and the levels of
chondrogenic cytokines (TGF-B1 and TGF-B3) in synovial fluid.
Additionally, the glycine in SCII could activate the glycine receptor
on chondrocytes to decrease intracellular calcium concentrations,
resulting in the inhibition of chondrocyte apoptosis. In vivo
experiments using a rat model of OA also proved that SCII could
induce M2 polarization, increase chondrogenic cytokines and inhibit
chondrocyte apoptosis and MMP13 production (63).

Shu CC found that OA mice treated with Hymovis® (a
hyaluronan derivative) showed significantly higher ratios of M2
macrophages. This may explain the longer-term effect of Hymovis®
on pain relief and the decrease in joint cystic fibrosis (64).

Manferdini C found that adipose mesenchymal stromal cells
(ASCs) could transform M1 macrophages into M2 macrophages
through PGE2. In cocultures containing ASCs and M1
macrophages, the M1 macrophage factors IL1J3, TNFa, IL6,
MIP10/CCL3, S100A8 and S100A9 were downregulated, while
the M2 markers IL10, CD163 and CD206 were upregulated. This
change could be blocked by a PGE2 receptor antagonist. This result
indicates that ASCs can be a promising OA treatment (65).

Frontiers in Immunology

TGF-B may have anti-inflammatory and immunosuppressive
properties. The cytokine TGF-B can induce osteogenesis and
chondrogenesis and plays a role in cell growth, differentiation
and extracellular matrix protein synthesis. In addition, TGF-3 can
promote proteoglycan synthesis and chondrocyte proliferation.
Multiple clinical trials have proven that interarticular injection
of genetically engineered allogeneic human chondrocytes
expressing TGF-B1 (GEC-TGF-B1) can alleviate pain and
articular deterioration in OA patients (66-68). Based on the
efficacy of TGF-B, INVOSSA-K was discovered. As a novel cell
and gene therapy for OA, INVOSSA-K contains nontransformed
human chondrocytes and GEC-TGF-B1. In a phase III clinical
trial, the pain scores and function scores of OA patients
significantly improved at the 1-year follow-up after a single
injection of Invossa (69). To investigate how Invossa
alleviates OA, Lee H injected Invossa " into a rat OA model.
Using RT-PCR and histological staining, he found that INVOSSA-
K increased the number of M2 macrophages and decreased the
number of M1 macrophages, indicating that INVOSSA-K might
play an anti-inflammatory role by manipulating macrophage
polarization (70). Though from a scientific point of view, the
principals of INVOSSA-K treatment is interesting, it is still need
to note that this treatment is not available to most western
countries yet because the manufacture mislabeled the ingredients
used (Table 2).

6.3 Drugs that inhibit M1 polarization

Frugoside (FGS) is isolated from Calotropis gigantea and
possesses a special cardenolide structure. It was recently
discovered that cardiac glycosides are beneficial for the
cardiovascular system and can alleviate inflammatory symptoms.
In 2021, Wang H found that FGS could delay the development of
OA by inhibiting the M1 polarization of synovial macrophages. The
expression of iNOS, F4/80, Col20.l, MMP13 and M1 macrophage
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factors was analyzed by RT-PCR, WB, flow cytometry and
immunofluorescence staining after injecting FGS into the
damaged joints of collagenase-induced OA (CIOA) mice. The
results demonstrated that FGS inhibited M1 macrophage
polarization, which subsequently decreased the secretion of IL-6
and TNF-o. Further results showed that FGS could inhibit M1
macrophage polarization by partially downregulating the
expression of miR-155 (71) (Table 2).

7 Conclusions

Our review summarizes the role of synovial macrophages in
the onset and progression of OA. Current evidence indicates that
OA synovitis mainly arises from the proliferation and activation of
synovial macrophages. The accumulation of M1 macrophages and
imbalanced M1/M2 ratio promote OA development. M1
macrophages exacerbate inflammation by secreting multiple
proinflammatory cytokines and activate surrounding tissue cells.
The crosstalk between macrophages and these surrounding cells is
summarized in this review. Drugs targeting macrophages and
macrophage-associated inflammatory pathways are also
summerized in this review. IL-1 receptor antagonists and TNF-
o receptor antagonists might be able to ameliorate OA. New
therapies such as SCII, Hymovis®, ASC, INVOSSA and Frugoside
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Wear debris-induced osteolysis, especially titanium (Ti) particles-induced
osteolysis, is the most common cause of arthroplasty failure with no effective
therapy. Previous studies have suggested that inflammation and impaired
osteogenesis are associated with Ti particles -induced osteolysis. Selenium (Se)
is an essential trace element in the human body, which forms selenomethionine
(Se-Met) in nature, and selenoproteins has strong anti-inflammatory and
antioxidant stress effects. In this study, the effects of Se-Met on Ti particles-
induced osteolysis were observed and the potential mechanism was explored.
We found that exogenous Se-Met relieved osteolysis induced by Ti particles in
two animal models and MC3T3-E1 cells. We found that the addition of Se-Met
effectively inhibited Ti particle-induced inflammation by regulating reactive
oxygen species-dependent (ROS-dependent) NOD-like receptor protein 3
(NLRP3) inflammasome activation. These therapeutic effects were abrogated in
MC3T3-E1 cells that had received a 3-catenin antagonist, suggesting that Se-Met
alleviates inflammatory osteolysis via the B-catenin signaling pathway.
Collectively, these findings indicated that Se-Met may serve as a potential
therapeutic agent for treating Ti particle-induced osteolysis.

KEYWORDS

selenomethionine, titanium particle-induced osteolysis, B-catenin, inflammatory
osteolysis, NLRP3
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1 Introduction

Total joint arthroplasty (TJA) is one of the most effective
surgical procedures for treating terminal rheumatic arthritis and
severe osteoarthritis, providing pain relief and improving the
patients’ quality of life. As the aging population is growing
worldwide and the number of patients undergoing this surgery is
increasing each year, the demand for TJAs is predicted to increase
substantially (1). Therefore, the side effects of TJAs during long-
term follow-up are a major concern, especially wear debris-induced
osteolysis, which is considered to trigger implant loosening and
affect the longevity of the implant (2, 3). It is mainly caused by a
chronic inflammation reaction triggered by debris, including Ti
particles (4), and disrupts bone homeostasis by stimulating various
cell types, such as osteoblasts, osteoclasts, macrophages, and
fibroblasts, to secrete proinflammatory cytokines, including IL-6,
IL-1B, and tumor necrosis factor alpha (TNF-a) (5). Bone
homeostasis is based on the balance between osteogenesis and
bone resorption, and previous studies have focused on increased
osteoclastic bone resorption (6), which has been mainly related to
osteoclasts and macrophages (7), but the effect of osteoblasts is of
great importance.

Se is an essential trace element in the human body and has been
proven to exert biological functions in various systems (8), and Se-
Met is one of the main natural forms of Se in living organisms (9).
Selenoproteins is considered of great importance in inflammation
and immunity, adequate levels of Se are necessary for initiating
immunity (10), and previous studies have shown that Se treatment
enhances the osteoblastic differentiation of bone marrow stromal cells
(BMSCs) and inhibits the differentiation and formation of mature
osteoclasts (11), facilitating osteogenic differentiation and bone
healing. Selenium nanoparticles were recently found to suppress
NLRP3 inflammasome activation in acute kidney injury mouse
model (12), while a Se-deficient diet can suppress the expression of
selenoprotein, which has an anti-oxidant function, and causes
mitochondrial dysfunction and apoptosis of chondrocytes (13).
Considering the physiological role of Se and selenoproteins in anti-
oxidation and the detrimental effects of oxidative stress and
inflammation in wear debris-induced osteolysis, whether Se can
play a role in wear debris-induced inflammatory reactions and
osteogenic inhibition remains unknown.

The NLRP3 inflammasome is a critical component of the innate
immune system (14), and several studies have revealed that the
NLRP3 inflammasome contributes to the pathogenesis of wear
debris mediated inflammatory osteolysis (15) and is related to the
induction of inflammatory mediators such as prostaglandin E2
(PGE2), TNF-0, and IL-1B (16), and Ti particle-induced reactive
oxygen species production and structural changes in the
mitochondria have been verified (17), thus providing proof of
concept that pharmacological inhibition of the NLRP3
inflammasome is a viable therapeutic strategy. It has been
reported that inflammation and osteogenesis inhibition are
attenuated through activation of the B-catenin signaling pathway
in Ti particle-induced osteolysis (18), and Se-Met has been shown
to alleviate many inflammatory reactions (19-21).
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This study aimed to investigate the role of Se-Met in Ti particle-
induced osteolysis. In this study, we plan to determine the function
of Se-Met in Ti particle-induced osteolysis in animals models and
MC3T3-E1 cells, and we will explore the potential involvement and
underlying mechanisms of NLRP3 inflammasome in the Ti
particle-induced osteolysis following Se-Met treatment.

2 Methods
2.1 Preparation of Ti particles

Ti particles (catalog #IRMMS531A) were purchased from Sigma
Corporation (Sigma, St. Louis, MO, USA) and scanned using a
scanning electron microscope, as shown in Figure 1E. The sizes and
distributions of the Ti particles have been previously measured and
reported. The average size of the Ti particle was 3.31 + 2.38 um. Ti
particles were soaked in 75% alcohol for 24 h and then rinsed thrice
with sterile water, heated at 180° for 8 h. Then, the Ti particles were
immersed in sterile PBS. The imulus assay (LAL, Biowhittaker,
USA) was used to detect the liquid in which the particles were
soaked to ensure that the endotoxin levels were under 0.3 EU/ml.
Titanium rods, 10 mm in length and 1 mm in diameter, were
purchased from Sigma (St. Louis, MO, USA). After cleaning the
rods thrice with 75% alcohol, the rods were sterilized by autoclaving
and subsequently placed under sterile conditions until use.

2.2 Animals and Ti particles—induced
osteolysis model

The experimental procedures were approved by the
institutional Animal Care and Use Committee of Shandong
University, and met the guidelines for the Care and Use of
Laboratory Animals. Ten-week-old C57BL/6 wild-type (WT)
mice were provided by the Experimental Animal Center of
Shandong University. Twelve-week-old male Sprague-Dawley
(SD) rats were provided by Vital River (Beijing, China). In
summary, we constructed two animal models.

2.2.1 Cranial osteolysis models

The method used to establish cranial osteolysis models in mice has
been described in our previous study. WT mice were divided into
three groups (n = 7 per group): sham control group (CTL group), Ti
particle only group (Ti group), and Ti particles + SE-MET treatment
group (SE-MET group). All mice received an intraperitoneal (IL.P.)
injection of 1% pentobarbital sodium anesthesia at a dose of 50 mg/kg
before surgery. Subsequently, each mouse underwent a 0.5-cm sagittal
incision, and the periosteum remained intact. To simulate Ti particle-
induced osteolysis, 100 pl of 0.1 mg/ml titanium particle suspension
was injected directly into the skull and periosteum using a sterile
technique in the Ti group and Se-Met treatment group. In contrast, in
the sham group, no other intervention was performed, and the full-
thickness skin was then sutured. Se-Met (Cat: HY-B1000) was
purchased from MCE (Monmouth Junction, NJ, USA), and it was
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Se-Met attenuated Ti-particle-induced osteolysis. (A) Representative images of 3D reconstruction of mouse cranial bones; (B-D) quantitative analysis
of BV, BV/TV (%), BMD (mg/cc); (E) Representative images of rat femurs, identified with red arrows showing osteolysis area. *P < 0.05, **P < 0.01,

***p < 0.001

dissolved in sterilized treated drinking water to make an aqueous
solution of 1mg/L. The SE-MET group (both rats and mice) was
treated with 1 mg/L SE-MET solution instead of normal drinking
water, and the mice in the CTL and Ti groups were treated with
normal drinking water. The duration of Ti particle-induced osteolysis

induction was 4 weeks (22).

2.2.2 Intramedullary nail osteolysis models

Fourteen SD rats with an average weight of 300 + 30 g were
randomly divided into two groups (n = 7 per group): the Ti particle only
group (Ti group) and the Ti particles + SE-MET treatment group (SE-
MET group). Before surgery, all rats were anesthetized by LP. injection of
1% sodium pentobarbital at a dose of 40 mg/kg. The knee joint was
disinfected and the knee capsule was dissected until the articular surface
was exposed. A hole was punched in the intercondylar fossa. Before the
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Ti rod was implanted, 100 UL of 0.1 mg/ml Ti particle suspension was
injected into the bone marrow cavity, and then the rod was inserted into
the hole. Residual Ti particles in the joint cavity were cleaned with sterile
saline and then closed (23).

2.3 Micro-CT Assessment

Femurs with Ti rods and calvarial tissues were initially fixed in
formalin and subsequently examined by micro-CT with a Sky-
scanll76 scanner and associated analysis software (SkyScan,
Aartselaar, Belgium). The scanning parameters were set as
follows: 18 um per layer, under a voltage of 50 kV and a current
of 500 HA. Cone Beam Reconstruction software (SkyScan) was used
for the reconstruction of three-dimensional (3D) images and to
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evaluate different histomorphometric measurements: BMD (mg/
mm?2), BV (mm3), and BV/TV (%).

2.4 Histological and
immunohistochemical analysis

Paraffin-embedded sections were prepared. Morphological
characteristics of the rat femurs were observed using hematoxylin
and eosin (H&E) staining. Masson staining (Salorbio, China) was
used to stain new immature collagen in the blue zone by tissue
coloration. Immunohistochemical staining for osteocalcin (OCN)
(ab93876, Abcam, USA), COX2 (ab179800, Abcam, USA), and
NLRP3 (ab263899, Abcam, USA) was also performed. Images were
obtained using a light microscope.

2.5 Cell culture

MC3T3-El cells were obtained from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). MC3T3-E1 cells
were maintained in o-MEM (Gibco, Brooklyn, NY) containing 10%
FBS, 100 pg/ml streptomycin, and 100 U/ml penicillin in a 5% CO2
humidified atmosphere at 37°C, adherent cells were cultured until
the cells reached approximately 90% confluence. The osteogenic
medium was o-MEM supplemented with 10% FBS, 10 mM (-
glycerophosphate, 0.5 mM vitamin C, and 0.1 uM dexamethasone.
The induction time of Osteogenesis was induced for 14 d. Osteolysis
was induced by adding 10 pg/cm? Ti particles. Cells were cultured
in 6-well plates at a density of 1 x 10 cells/well in an incomplete
medium and stimulated with 10 pg/cm® Ti particles solution, with
or without Se-Met (5 uM) for 24 h. The culture medium and cells
were collected for further experiments.

2.6 CCK-8 assay

To perform the Cell Counting Kit-8 (CCK-8) assay, MC3T3-E1
cells were seeded in 96-well plates at a density of 5000 cells per well.
After allowing the cells to adhere for 12 h, different concentrations
of the experimental drug were added to the wells and incubated for
24 h. Following this, 10uL of CCK-8 reagent was added to each well
and incubated for another 15 min. The absorbance was measured at
450nm using a microplate reader. The data obtained was then used
to calculate cell viability and compare the effects of the experimental
drug on cellular proliferation.

2.7 Red S staining

After being cultured in osteogenic medium for 2 weeks, MC3T3-
El cells were washed with PBS, fixed in 4% paraformaldehyde for
20 min, and stained for 30 min with 1% Alizarin Red Staining Solution
(Servicebio. Nanjing. China). After the staining, the remaining dye
solution was rinsed with distilled water. Stained calcified nodules were
observed and photographed under a light microscope.
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2.8 ALP staining

To assess Alkaline phosphatase (ALP) activity, MC3T3-E1 cells
were cultured in osteogenic medium for a week and then fixed in 4%
paraformaldehyde for 15 minutes. Following this, the cells were
rinsed three times with PBS and stained with BCIP/NBT working
solution in the dark for 60 minutes. Microscopic analysis was
performed to examine the staining results.

2.9 Protein isolation and Western
blotting analysis

Total protein was isolated from MC3T3-E1 with RIPA Lysis Buffer
(Servicebio Corporation, Nanjing. China). Then the total protein was
centrifuged at 12000 RPM for 6 min at 4°, and protein concentrations
were measured using the BCA Protein Assay Kit (Beyotime
Biotechnology Corporation). Equal amounts of the extracted proteins
were electrophoresed on SDS-PAGE gels and transferred onto
polyvinylidene difluoride membrane. Subsequently, 5% BSA was used
to block the membranes for 1 h at room temperature and membranes
were then washed thrice in TBST and incubated with primary
antibodies overnight at 4°C, including anti-NLRP3 (1:1000 dilution,
SC06-23, ThermoFisher Corporation, USA), anti-iNOS (1:1000
dilution, ab15323, Abcam Corporation, USA), anti-COX2 (1:2000
dilution, 12375-1-AP, Proteintech Corporation, USA), anti-COL1
(1:1000 dilution, 14695-1-AP, Proteintech Corporation, USA), anti-
Osteopontin (OPN) (1:1000 dilution, ab214050, Abcam Corporation,
USA), anti-RUNX2 (1:1000 dilution, #12556S, Cellsignal Corporation,
USA), anti-B-Catenin (1:1000 dilution, 17565-1-AP, Proteintech
Corporation, USA), anti-B-tubulin (1:2000 dilution, 10094-1-lg,
Proteintech Corporation, USA), and anti-GADPH (1:2500 dilution,
ab9485, Abcam Corporation, USA). After washing thrice with TBST
buffer, the membranes were incubated with HRP-conjugated anti-goat
IgG, anti-mouse IgG, or anti-rabbit IgG as secondary antibodies. The
DNR Bio-Imaging System was used to detect protein levels on
the membrane.

2.10 Real-time quantitative PCR

Total mRNA was isolated from MC3T3-El cells using the
TRIzol reagent. Complementary DNA was synthesized from total
mRNA using the PrimeScript RT Reagent Kit. RNA PCR kit
(Servicebio. Nanjing. China) was used for the real-time PCR
analysis. All procedures were performed per the manufacturer’s
instructions. Table 1 lists the PCR primer sequences.

2.11 Immunofluorescence
MC3T3-E1 cells were seeded on coverslips containing osteogenic
medium in 24-well plates. The cells were then fixed with 4%

paraformaldehyde and permeabilized with 0.2% Triton X-100
(Servicebio. Nanjing. China) for 15 min. They were then blocked
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TABLE 1 Primers used for quantitative real-time PCR.

10.3389/fimmu.2023.1171150

Source Forward primer, 5’-3' Reverse primer, 3’-5’

Mouse COX-2 GGAACTTTCTGGTCCCTTCAG TGTGTTTGGAGTGGGTTTCA
iNOS GCCAAGCTGAAATTGAATGAGGA TTCTGTGCCGGCAGCTTTAAC
RUNX-2 TTGACCTTTGTCCCAATGC AGGTTGGAGGCACACATAGG
Caspase-3 CTCGCTCTGGTACGGATGTG TCCCATAAATGACCCCTTCATCA
B-Catenin ACGGTGCCGCGCCGCTTATA TAGCCATTGTCCACGCAGCGG
GADPH AGCAGTCCCGTACACTGGCAAAC TCTGTGGTGATGTAAATGTCCTCT

with a blocking buffer for 60 min. Next, primary antibodies, including
anti-NLRP3 (1:50), anti-COX2 (1:150), anti-OCN (1:200), and anti-
[3-catenin (1:400), were added to each well and incubated at 4°C for
12 h. Subsequently, the cells were rinsed and incubated for 60 min in
the dark with the corresponding secondary fluorescent antibodies
(Alexa Fluor®488 or 647 (Abcam). Fluorescently stained cells were
counterstained with DAPT for 15 min. Cover slides were placed on
microscope slides with a fluorescent anti-fade solution (Beyotime)
and observed under a fluorescence microscope (Zeiss). Fluorescence
intensity was measured using Image]J software.

2.12 Flow cytometry

Briefly, Mc3t3-el cells from each group were analyzed using
flow cytometry. Cells were stained with annexin V-FITC and
propidium iodide for 20 min at room temperature in the dark,
according to the manufacturer’s protocol. Apoptosis was detected
by CytoFLEX S flow cytometry (Beckman Coulter, Indianapolis, IN,
USA). The measured data were analyzed using FlowJo software. The
measured data were analyzed using FlowJo software.

2.13 ROS assay

To detect intracellular ROS, we used a ROS assay kit. All
procedures were performed per the manufacturer’s instructions.
Briefly, after washing twice with sterile PBS, MC3T3-E1 cells were
stained with 10 uM DCFDA at 37°C for 20 min in the dark and mixed
every 4 min. The MC3T3-E1 cells were then washed with serum-free
culture medium thrice to reduce interference from excess DCFDA.
DCEFDA fluorescence intensity in each group was measured using an
LSM780 laser scanning confocal microscope (ZEISS, Germany).

2.14 Transmission electron microscopy

MC3T3-El cells were collected by trypsinization, transferred
into 2 mL centrifuge tubes, and fixed with fixative solution
(Servicebio, G1102) for 2 h at 4°C. Cells were post-fixed in 1%
osmium tetroxide in 0.1 M phosphate buffer (pH 7.4) for 2 h at
room temperature (20°C). MC3T3-El cells were dehydrated in a
graded ethanol series (50%, 70%, 80%, 90%, 95%, 100%, and 100%)
for 15 min, and then infiltrated into the embedding solution with
propylene oxide overnight. Ultrathin sections (50 nm) were
obtained using an EM UC7 ultramicrotome, post-stained with
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uranyl acetate and lead citrate, and visualized using transmission
electron microscopy (24).

2.15 Enzyme-linked immunosorbent assay

After culturing MC3T3-E1l cells with different interventions,
the medium was collected for enzyme-linked immunosorbent
assay (ELISA). IL-1f levels were assayed by ELISA using a
commercial kit (Elabscience, Wuhan, China) according to the
manufacturer’s instructions.

2.16 RNA-seq

The total RNA of MC3T3-E1 cells was obtained using TRIzol
Reagent. The extracts were screened, amplified by PCR, and
sequenced using an MGI T7 instrument. For bioinformatics
analysis, raw reads that contained the adapter or had low quality
(Q-value <20) were deleted and then located in the mouse-related
genome using HISAT2 (version 2.1.0). Samtools was used to
sequence the resulting files, and HTSeq (version 0.9.0) analysis
was performed to determine the count of each gene. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were performed.

2.17 Statistical analysis

The data are presented as the mean + standard deviation and
were analyzed using GraphPad Prism (GraphPad Software Inc.,
USA). The software was used for the statistical analyses. Student’s
t-test or one-way analysis of variance (ANOVA) was used to
determine the statistical significance of differences. Statistical
significance was set at P < 0.05

3 Results

3.1 Se-Met suppresses the severity of Ti
particle-induced osteolysis in vivo

Ti particle-induced osteolysis has been widely reported in the
literature. To investigate the role of Se-Met in Ti particle-induced
osteolysis, we established a cranial osteolysis model in mice and an
intramedullary nail osteolysis model in rats. We then performed CT
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scans on both models and analyzed the 3D reconstruction images of
the mouse cranial bone lysis model, which showed that the
periprosthetic bone mass was significantly damaged in the
titanium group, the cranial thickness was thinner than that in the
sham control group, and the bone mass was significantly destroyed
(Figure 1A). However, after the intervention with Se-Met, the bone
loss was alleviated significantly, and the quantitative analysis of
bone parameters (Figures 1B-D) showed that BV/TV, BMD, and
BV were significantly higher than those in the Ti group. In the 2D
reconstructed images of the rat intramedullary nail osteolysis
model, osteolysis around the Ti rod was evident. Compared to
the Ti group, osteolysis was significantly reduced in the Se-Met
treatment group (Figure 1E).

Consistently, H&E and Masson staining and immunohistochemistry
confirmed the suppression of periprosthetic osteolysis by treatment with
Se-Met in Ti particle-induced osteolysis in mouse and rat models. H&E
staining of rat femurs showed absorption of bone structure in the Ti
group, and inflammatory infiltration was found in the bone absorption
area, while the bone destruction areain the Se-Met group was
significantly decreased, and the number of inflammatory cells was also
reduced (Figure 2A). To further explore the components of
inflammatory infiltration, Masson staining of rat femurs showed a
large amount of disordered fibrous tissue in the inflammatory
infiltration area of osteolysis (Figure 2B), which was restored by

H& E Staining

Ti+Se-Met

Masson

FIGURE 2

Se-Met rescued Ti-particle-induced osteolysis. (A) HGE staining of rat femurs; (B, C) Masson staining of rat femurs and mouse cranial bones, the

areas marked by black dashed lines are inflammatory fibrous layers.

10.3389/fimmu.2023.1171150

adding Se-Met. Masson’s trichrome staining was performed using
the mouse osteolysis model. It was confirmed that Se-Met
alleviated inflammatory fibrous tissue infiltration induced by Ti
particles (Figure 2C).

3.2 Effects of Se-Met on inhibition of
inflammatory osteolysis in vivo

To test the hypothesis that Se-Met may have an inhibitory role
in periprosthetic osteolysis, immunohistochemical staining was
performed for each group in the mouse skulls. The results
showed that the expression of OCN in the Ti particle group was
reduced, which could be completely reversed after treatment
with Se-Met (Figure 3A). The same result was observed in the
OCN staining of rat femurs (Figures 3B, C). According to previous
studies, inflammatory responses play a critical role in Ti
particle-induced osteolysis, and inhibition of inflammation in
osteoblasts can exert a positive effect on osteolysis. We performed
immunohistochemical staining of COX2 and found that the
expression of COX2 in the Ti group of mouse skulls was
significantly increased compared with the CTL group, while it
was reduced in the Se-Met treatment group (Figure 3D), and
similarly in the COX2 staining of rat femurs (Figures 3E, F).
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3.3 Se-Met attenuates inflammatory
osteolysis induced by Ti particles in vitro

As mentioned above, we found that Se-Met rescued
osteogenesis inhibition and reduced local inflammation caused by
Ti particles in vivo, to further verify the conclusion we conducted in
vitro experiments, osteoblast-related factors, including RUNX-2,
OPN, and COL 1, were examined through western blotting, the
results showed that osteogenic markers were significantly

>

Osteocalcin
(Mouse)

CTL

Osteocalcin
(Rat)

CTL

cox2
(Rat)

FIGURE 3

Ti

10.3389/fimmu.2023.1171150

upregulated in the Se-Met treated group compared with the Ti
group, indicating that Se-Met treatment alleviated the Ti particle-
induced osteogenesis reduction (Figures 4A-D). In addition, the
real-time PCR results were consistent with those of western blotting
(Figure 4E). Immunofluorescence detection showed that OCN
expression in the Ti group was significantly lower than that in the
CTL group, whereas OCN expression in the Se-Met group was
higher than that in the Ti group, which was consistent with the
above results (Figures 4F, G). We induced osteogenic differentiation
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Se-Met rescued Ti-particle-induced osteolysis in Immunohistochemistry. (A-C) Immunohistochemical results showed that Se-Met rescued the
decreased secretion of OCN induced by Ti particle stimulation; (D-F) The results of immunohistochemistry showed that Se-Met inhibited the

increase of COX2 expression induced by Ti particles ***P < 0.001
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of MC3T3-E1 cells stimulated with Ti particles. ALP staining was
performed after 7 days, and the results showed that Ti particles
could reduce the ALP activity in vitro, and Se-Met could restore it
(Figure 4H). Alizarin red staining was performed after 14 d, and the
results showed that Se-Met alleviated the reduction in the
mineralization rate caused by Ti stimulation (Figure 4I).

It is well known that inhibiting the inflammation extent in
osteoblasts can exert a positive effect on osteolysis treatment. To
further determine whether Se-Met exerts an effect on osteoblasts in
inflammatory osteolysis, MC3T3El cells were stimulated with Ti
particles and cultured in the presence or absence of Se-Met, proteins
were collected for western Blotting assay and the results showed that
Ti particles stimulation significantly elevated INOS COX2
expression, especially NLRP3, while the additional application of
Se-Met substantially recovered their secretion, indicating a lower

o

10.3389/fimmu.2023.1171150

severity of inflammatory osteolysis (Figures 5A-D), COX2
expression was also detected by Immunofluorescence, and the
results showed that the increased COX2 expression caused by Ti
particles stimulation could be suppressed by Se-Met treatment
(Figures 5E, F). mRNA was extracted for qPCR to validate the
above results (Figures 5G, H).

3.4 Se-Met antagonizes mitochondrial
ROS-dependent NLRP3 inflammasome
activation in vitro

Given the fact that inflammatory reactions have detrimental
effects on wear debris-induced osteolysis and that the NLRP3
inflammasome plays a critical role in inflammatory responses,
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Se-Met has a protective effect on osteoblast dysfunction induced by Ti particles. (A-D) Western blot results showed that Se-Met significantly rescued
the decreased expression of osteoblast-related factors Col 1, RUNX-2, and OPN caused by Ti particles stimulation; (E) Real-time PCR results showed
that Se-Met effectively relieves the RUNX2 expression decreased caused Ti particles; (F, G) Se-Met treatment rescued Ti particle-induced OCN
expression in MC3T3-E1 cells, as assayed by cell immunostaining; (H) Representative images of ALP staining at 7 d; (I) Representative images of ARS

staining at 21d. * P < 0.05, **P < 0.01, ***P < 0.001.
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we sought to determine whether Se-Met exerts an inhibitory
effect on NLRP3 inflammasome activation in inflammatory
osteolysis. We evaluated the NLRP3 inflammasome expression
in mouse cranial bone through immunohistochemical staining,
which showed a significant increase in NLRP3 inflammasome
expression in the Ti-stimulated group and a decrease with Se-
Met treatment (Figure 6A). The rat femur samples also
demonstrated that Se-Met reduced the NLRP3 inflammasome
expression in vivo (Figure 6B). The NLRP3 inflammasome
expression level in vitro was also examined by western
blotting, which indicated that NLRP3 inflammasome
expression enhancement by stimulation of Ti particles was
suppressed by adding Se-Met (Figure 6C). We also extracted
protein from cells and assayed it by western blotting, which
showed that Se-Met treatment reduced the Ti particle-induced
elevation in NLRP3 expression (Figure 6D). ROS levels were
detected using the DCFDA assay (Figures 6E, F), which showed
that Ti particles enhanced ROS levels, whereas adding Se-Met
largely attenuated this effect. Flow cytometry was performed to
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determine the proportion of apoptotic cells. As shown in
(Figures 6G, H), the ratio of apoptotic MC3T3-El cells
increased after stimulation with Ti particles, whereas the
addition of Se-Met prevented this effect. Real-time PCR also
demonstrated that caspase-3, an apoptosis indicator, was
significantly increased by Ti particle stimulation, and se-met
treatment alleviated this effect (Figure 6I). It is well known that
increased ROS generation is closely associated with impaired
mitochondrial function. To verify the potential interaction
between Se-Met and mitochondrial function, we performed
transmission electron microscopy (TEM), high-field images of
swollen mitochondria in the MC3T3E1 cells with Ti stimulated
showed that the mitochondria surrounded the nucleus,
indicating accelerated mitochondrial damage, and these
changes were reduced in MC3T3E1l cells with Se-Met
treatment (Figure 6]). Furthermore, ELISA to detect IL-1B
indicated that the enhanced NLRP3 inflammasome production
and function induced by Ti particles was alleviated by Se-Met
treatment (Figure 6K).
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Se-Met has an inhibitory effect on the inflammatory response induced by Ti particles. (A-D) Se-Met inhibited the expression of inflammatory
cytokines, such as iNOS, COX-2, and NLRP3, which were enhanced with Ti particle stimulation, as indicated by western blot. (E, F) Se-Met treatment
inhibited Ti particle-induced COX2 expression in MC3T3-E1 cells, as assayed by cell immunostaining. (G, H) Se-Met significantly inhibits the
upregulation of COX2 and INOS induced by Ti particle stimulation, as shown by real-time fluorescent PCR results. *P < 0.05, **P < 0.01, ***P <

0.001
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Se-Met antagonizes mitochondrial ROS-dependent NLRP3 inflammasome activation in vitro. (A, B) Representative images of IHC staining, which
showed Se-Met inhibited the up-regulation of NLRP3 expression stimulated by Ti particles in vivo; (C) Representative images of immunofluorescence
staining, which showed treatment of Se-Met inhibited the up-regulation of NLRP3 expression in MC3T3-E1 cells; (D) Western blot showed that Se-Met
inhibited the rise of NLRP3; (E, F) Se-Met antagonized the Ti particle-mediated production of ROS, as detected by the DCFDA assay; (G, H) The effect
of Ti particles on apoptosis rate of MC3T3-E1 cells was tested by flow cytometry; (I) The mRNA were collected from each group, followed by real-
time PCR to measure caspase-3 levels; (J) Representative TEM images of mitochondria in MC3T3-E1 cells of each group; (K) The expression of IL-1B
in the culture media of groups of MC3T3-E1, as detected by ELISA. *P < 0.05, **P < 0.01, ***P < 0.001
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3.5 Se-Met exerts an effect in inflammatory
osteolysis induced by Ti particles through
the B-catenin signaling pathway

T7 platform to generate mRNA profiles. A heat map was plotted, and
cluster analyses were performed (Figure 7A). The differentially
expressed genes (DEGs) were annotated using GO categories
(Figure 7B) and KEGG pathway analysis (Figure 7C). Heat map
To gain additional insights into the mechanism responsible for  and cluster analysis of inflammatory osteolysis-related genes showed
the regulation of inflammation and bone formation by Se-Met, we
isolated the total mRNA of MC3T3-E1 osteoblasts after stimulation

with Ti particles for 24 h, and RNA-seq was analyzed using the MGI

significant differences between the control group and the Ti particle-
stimulated group. The results indicated a decrease in osteogenesis
biomarkers in the Ti particle-stimulated group, while the addition of
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Se-Met prevented this effect, and we noticed increased B-catenin
levels in the Se-Met treatment group, which is consistent with the
results of real-time PCR and western blotting (Figures 7D, 8A-C).
Moreover, the statistics of the number of differential new genes
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detected are shown in Figure 7E. We further performed
Immunofluorescence in MC3T3E1l cells, which showed that the
inhibition of B-catenin expression by stimulation with Ti particles
was relieved by adding Se-Met (Figures 8D, E). These data illustrate
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Se-Met antagonizes Ti-particle-induced osteolysis by activating the B-catenin signaling pathway. (A-C) The mRNA and total protein were collected
from each group, followed by real-time PCR and immunoblotting to measure B-Catenin levels; (D, E) Immunofluorescence results showed that Ti
decreased the expression of B-Catenin, which was alleviated by Se-Met; (F) The total proteins of each group were extracted and detected by
Western blot; (G) The protective effect of Se-Met against the decrease in B-Catenin induced by Ti stimulation was inhibited by ICG-001;

(H, 1) Immunofluorescence results showed that the addition of SE-met alleviated the decrease of B-Catenin induced by Ti particles, while ICG-001
inhibited this effect; (J) WB results showed that the expression of RUNX2 decreased by ICG-001 stimulation; (K) Representative images of ARS
staining at 21 d, show that ICG-001 inhibited the mineralization rate of MC3T3-E1 cells; (L, M) ICG-001 attenuated the ROS inhibitory effect of Se-
Met, as detected by the DCFDA assay; (N) Western blot results showed that ICG-001 attenuated the down-regulation effect of Se-Met on NLRP3

inflammasome. *P < 0.05, **P < 0.01, ***P < 0.001
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that B-catenin signaling may be involved in the protective effects of
Se-Met on Ti particle-induced osteogenic inhibition.

Bearing in mind that indocyanine green-001 (ICG-001) is
a targeted P-catenin signaling inhibitor, we used it to
pretreat MC3T3El cells. Western blotting showed that ICG-001
eliminated the effect of Se-Met in upregulating PB-catenin
(Figures 8F, G). Immunofluorescence results showed that the
addition of SE-met alleviated the decrease in PB-catenin induced
by Ti particles, while ICG-001 inhibited this effect (Figures 8H, I).
The results showed that the application of Se-Met substantially
enhanced RUNX2 secretion, an osteoblast-related factor, whereas
adding ICGO001 substantially inhibited this effect (Figures 8F, ]).
Alizarin red staining showed that ICG-001 significantly reduced the
mineralization rate of MC3T3El cells after 21 d of osteogenic
induction (Figure 8K). Analysis of ROS levels in each group by
the DCFDA assay also showed that ICG-001 eliminated the
therapeutic effect of Se-Met (Figures 8L, M). Western blotting
showed that the inhibitory effect of Se-Met on NLRP3 expression
was attenuated by ICG-001 (Figures 8F, N). These collective results
suggest that ICG-001 blocks the beneficial effects of Se-Met in Ti
particle-induced osteogenic reduction through the NLRP3
inflammasome-regulated [3-catenin signaling pathway.

4 Discussion

Wear debris-induced osteolysis is due to an imbalance in
bone homeostasis between bone resorption and formation (25),
which involves many cells including macrophages, lymphocytes,
fibroblasts, osteoclasts, and osteoblasts (26), Previous research
has claimed that bone regeneration inhibition is fundamental
in osteolysis initiation (27), and the inflammation response
in osteoblasts is demonstrated to be related to attenuated
osteogenesis (28), Therefore, treatment of inflammation and
promotion of osteogenic differentiation can be an effective
method for the prevention and curation of wear debris-induced
bone loss after TJA.

Se is an essential trace element in animals and humans and is
generally taken up from the diet through food or other forms of
external supplementation (29). Plants mainly convert Se into Se-
Met and incorporate it into proteins instead of methionine (Met)
(9). Selenoproteins are anti-oxidants and can regulat redox balance
(10, 30), suggesting that Se-Met might be a candidate for treating
wear debris-induced osteolysis. However, whether Se-Met is
involved in wear debris-induced osteolysis is poorly understood.
This study aimed to demonstrate whether Se-Met represents a
promising treatment for alleviating wear debris-induced osteolysis
in vivo. We found that Ti particle-induced osteolysis was
significantly reduced by treatment with Se-Met, which also
increased the expression of OCN in femoral slices. We aimed to
further explore whether Se-Met mediates its pharmacological effect
via suppressing inflammation and osteogenic inhibition in
MC3T3E1 cells cocultured with Ti particles. We discovered an
enhancement of inflammatory cytokines including INOS COX-2
and NLRP3 inflammasome and downregulation of osteogenic
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biomarkers including RUNX2 COL-1 and OPN with the addition
of Ti particles, the application of Se-Met has been found to exert
positive effects in both inhibiting inflammatory cytokines and
promoting osteogenesis in MC3T3E1 cells.

The NLRP3 inflammasome plays a detrimental role in
inflammation and apoptosis in osteoblasts and contributes to
wear debris-induced osteolysis (23), and promoting NLRP3
inflammasome in BMSCs can suppress osteogenic differentiation
(31). McCall et al. reported that the functional expression of NLRP3
in osteoblasts is possibly related to apoptotic cell death (32), and
previous research has verified the ability of Se-Met to decrease the
ROS levels and apoptosis rate in the N2A-SW cell model (33), and
mitochondria of cells contribute to the NLRP3 inflammasome
activation through several mechanisms. In this study, Se-Met
treatment suppressed Ti particle-induced ROS and elevated
NLRP3 inflammasome expression in osteoblasts, while
inflammatory cytokines and apoptosis were downregulated upon
Se-Met treatment. Collectively, these findings strongly suggest that
Se-Met inhibits Ti particle-induced apoptosis and inflammation by
suppressing the NLRP3 inflammasome.

The B-catenin signaling pathway is closely implicated in
osteoblastic differentiation and mineralization (34, 35). Previous
research has shown that the B-catenin signaling pathway has a
crucial effect on inflammatory osteolysis pathogenesis (36), while Se
has been reported to promote the migration and osteogenic
differentiation of BMSCs (11), and the ability of Se-Met to reduce
oxidative stress has been demonstrated (13). In our study, B-catenin
levels decreased after stimulation with Ti particles, which could be
upregulated by Se-Met treatment. Intriguingly, Se-Met was shown to
elevate the expression of osteogenic biomarkers, including OPN,
RUNX2, and COL1, and downregulate the NLRP3 inflammasome
and ROS expression. To further explore whether Se-Met exerts the
function of promoting osteogenesis by regulating the ROS-dependent
NLRP3 inflammasome activation via the B-catenin signaling
pathway, ICG-001, a targeted P-catenin signaling pathway
inhibitor, was applied to coculture with MC3T3E1 cells. Our study
showed that osteoblastic differentiation and bone formation were
reduced, and the expression of ROS and NLRP3 inflammasome was
elevated, indicating that the rescue effect of Se-Met was alleviated by
ICG-001 administration. These results suggest that Se-Met
antagonizes the inhibitory effect of Ti particles on bone
regeneration with the help of B-catenin signaling pathway
activation. The NLRP3 inflammasome is a critical component of
the innate immune system that mediates caspase-1 activation and the
secretion of proinflammatory cytokines IL-1B/IL-18 in response to
cellular damage (14), and Se-Met could regulate the activation of the
NLRP3 inflammasome, which suggests the great potential of Se-Met
in anti-inflammation treatment. Study has demonstrated that
biological macromolecules displayed protective effects against
intestinal barrier dysfunction (37), which offer important insights
on Se-Met in nonimmunogenicity and safety compared with
bioactive molecular mimics.

However, there are some limitations exist in our current study.
First of all, metal implants may release metal ions into the
surroundings and blood in vivo, and their side effects need to be
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considered (38). However, ultra-high molecular weight
polyethylene (UHMWPE) wear particles do not have this effect,
and UHMWPE wear particles can be used to establish osteolysis
models in subsequent studies (39). Second, we constructed two
small animal models and lack of biomechanical analysis.
Subsequent studies could be performed in a large animal model
to verify the protective effect of Se-Met on osteolysis. Finally, the
safety assessment of Se-Met supplementation is lacking, and the
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safety of ingestion of large amounts of Se-Met for the treatment of
osteolysis needs to be further investigated (40).

5 Conclusion

Collectively, it appears that Se-Met plays a protective role in Ti
particle-induced disorganization of osteoblasts and impairment of
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bone formation during osteolysis by suppressing inflammatory
cytokine secretion, reducing apoptosis, and promoting bone
formation, which might be associated with the activation of the
ROS-dependent NLRP3 inflammasome via the B-catenin signaling
pathway in osteoblasts (Figure 9). In conclusion, the present study
sheds light on the prevention and treatment of wear debris-induced
prosthetic loosening in the clinic.

Data availability statement

The data presented in the study are deposited in the GEO
repository, accession number GSE236911.

Ethics statement

The animal study was reviewed and approved by Institutional
Animal Care and Use Committee of Shandong University.

Author contributions

RY, YY, ZL, and LL contributed equally to this work as first
authors. They designed and performed experiments, analyzed data,
and wrote the manuscript. ZX, YZ, CJ, PZ, HLi, YuhL, YW, WL and
LN provided technical assistance in experiments and data analysis.
YuhL and BL supervised the project and provided guidance
throughout the study. HLiu contributed to the manuscript
revision and final approval. All authors discussed the results and
contributed to the final manuscript.

References

1. Sharkey PF, Lichstein PM, Shen C, Tokarski AT, Parvizi J. Why are total knee
arthroplasties failing today-has anything changed after 10 years? J Arthroplasty (2014)
29(9):1774-8. doi: 10.1016/j.arth.2013.07.024

2. Wang Z, Deng Z, Gan ], Zhou G, Shi T, Wang Z, et al. TiAl6V4 particles promote
osteoclast formation via autophagy-mediated downregulation of interferon-beta in
osteocytes. Acta Biomater. (2017) 48:489-98. doi: 10.1016/j.actbio.2016.11.020

3. Dyskova T, Gallo J, Kriegova E. The role of the chemokine system in tissue
response to prosthetic by-products leading to periprosthetic osteolysis and aseptic
loosening. Front In Immunol (2017) 8:1026. doi: 10.3389/fimmu.2017.01026

4. Wang Y, Yan Y, Su Y, Qiao L. Release of metal ions from nano CoCrMo wear
debris generated from tribo-corrosion processes in artificial hip implants. ] Mech Behav
BioMed Mater (2017) 68:124-33. doi: 10.1016/j.jmbbm.2017.01.041

5. Zhang L, Haddouti EM, Welle K, Burger C, Wirtz DC, Schildberg FA, et al. The
effects of biomaterial implant Wear debris on osteoblasts. Front Cell Dev Biol (2020)
8:352. doi: 10.3389/fcell.2020.00352

6. LiN, Li X, Zheng K, Bai ], Zhang W, Sun H, et al. Inhibition of sirtuin 3 prevents
titanium particle-induced bone resorption and osteoclastsogenesis via suppressing ERK
and JNK signaling. Int J Biol Sci (2021) 17(5):1382-94. doi: 10.7150/ijbs.53992

7. Tian B, Jiang T, Shao Z, Zhai Z, Li H, Fan Q, et al. The prevention of titanium-
particle-induced osteolysis by OA-14 through the suppression of the p38 signaling
pathway and inhibition of osteoclastogenesis. Biomaterials (2014) 35(32):8937-50. doi:
10.1016/j.biomaterials.2014.06.055

8. Ying H, Zhang Y. Systems biology of selenium and complex disease. Biol Trace
Elem Res (2019) 192(1):38-50. doi: 10.1007/s12011-019-01781-9

Frontiers in Immunology

10.3389/fimmu.2023.1171150

Funding

National Natural Science Foundation of China (grant No.
82072478 to Yunpeng Zhao, grant No. 82073437 to Weiwei Li),
Shandong Provincial Natural Science Foundation (grant No.
ZR2020YQ54 to Yunpeng Zhao).

Acknowledgments

The authors thank the Translational Medicine Core Facility of
Shandong University and Laboratory of Basic Medical Sciences of
Qilu Hospital of Shandong University for the consultation and
instrument availability that supported this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

9. Tapiero H, Townsend DM, Tew KD. The antioxidant role of selenium and
seleno-compounds. Biomed Pharmacother (2003) 57(3-4):134-44. doi: 10.1016/S0753-
3322(03)00035-0

10. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and
immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox
Signal (2012) 16(7):705-43. doi: 10.1089/ars.2011.4145

11. Li C, Wang Q, Gu X, Kang Y, Zhang Y, Hu Y, et al. Porous Se@SiO2
nanocomposite promotes migration and osteogenic differentiation of rat bone
marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model.
Int ] Nanomed (2019) 14:3845-60. doi: 10.2147/IJN.S202741

12. Wang S, Chen Y, Han S, Liu Y, Gao J, Huang Y, et al. Selenium nanoparticles
alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-
1/NLRP3/Caspase-1 pathway. Theranostics (2022) 12(8):3882-95. doi: 10.7150/
thno.70830

13. Chi Q, Luan Y, Zhang Y, Hu X, Li S. The regulatory effects of miR-138-5p on
selenium deficiency-induced chondrocyte apoptosis are mediated by targeting SelM.
Metallomics: Integrated Biometal Science. (2019) 11(4):845-57. doi: 10.1039/
c9mt00006b

14. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of
mechanisms of activation and regulation. Int J Mol Sci (2019) 20(13). doi: 10.3390/
1jms20133328

15. Wu Y, Teng Y, Zhang C, Pan Y, Zhang Q, Zhu X, et al. The ketone body beta-
hydroxybutyrate alleviates CoCrMo alloy particles induced osteolysis by regulating NLRP3
inflammasome and osteoclast differentiation. J Nanobiotechnol (2022) 20(1):120.
doi: 10.1186/s12951-022-01320-0

frontiersin.org


https://doi.org/10.1016/j.arth.2013.07.024
https://doi.org/10.1016/j.actbio.2016.11.020
https://doi.org/10.3389/fimmu.2017.01026
https://doi.org/10.1016/j.jmbbm.2017.01.041
https://doi.org/10.3389/fcell.2020.00352
https://doi.org/10.7150/ijbs.53992
https://doi.org/10.1016/j.biomaterials.2014.06.055
https://doi.org/10.1007/s12011-019-01781-9
https://doi.org/10.1016/S0753-3322(03)00035-0
https://doi.org/10.1016/S0753-3322(03)00035-0
https://doi.org/10.1089/ars.2011.4145
https://doi.org/10.2147/IJN.S202741
https://doi.org/10.7150/thno.70830
https://doi.org/10.7150/thno.70830
https://doi.org/10.1039/c9mt00006b
https://doi.org/10.1039/c9mt00006b
https://doi.org/10.3390/ijms20133328
https://doi.org/10.3390/ijms20133328
https://doi.org/10.1186/s12951-022-01320-0
https://doi.org/10.3389/fimmu.2023.1171150
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yu et al.

16. Burton L, Paget D, Binder NB, Bohnert K, Nestor BJ, Sculco TP, et al. Orthopedic
wear debris mediated inflammatory osteolysis is mediated in part by NALP3
inflammasome activation. J Orthop Res (2013) 31(1):73-80. doi: 10.1002/jor.22190

17. Wang N, Maskomani S, Meenashisundaram GK, Fuh JYH, Dheen ST,
Anantharajan SK. A study of titanium and magnesium particle-induced oxidative
stress and toxicity to human osteoblasts. Mater Sci Eng C Mater Biol Appl (2020)
117:111285. doi: 10.1016/j.msec.2020.111285

18. Ping Z, Hu X, Wang L, Shi ], Tao Y, Wu X, et al. Melatonin attenuates titanium
particle-induced osteolysis via activation of wnt/beta-catenin signaling pathway. Acta
Biomater. (2017) 51:513-25. doi: 10.1016/j.actbio.2017.01.034

19. Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink
I, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer
metastasis. Nature (2019) 572(7770):538-42. doi: 10.1038/s41586-019-1450-6

20. George SJ. Wnt pathway: a new role in regulation of inflammation. Arterioscler
Thromb Vasc Biol (2008) 28(3):400-2. doi: 10.1161/ATVBAHA.107.160952

21. Li X, Xiang Y, Li F, Yin C, Li B, Ke X. WNT/beta-catenin signaling pathway
regulating T cell-inflammation in the tumor microenvironment. Front Immunol (2019)
10:2293. doi: 10.3389/fimmu.2019.02293

22. CaoJ,MaX, Liu L, Zhang G, Wu Y, Fu Y, et al. Cortistatin attenuates titanium
particle-induced osteolysis through regulation of TNFR1-ROS-caspase-3 signaling in
osteoblasts. Ann New York Acad Sci (2022) 1513(1):140-52. doi: 10.1111/nyas.14774

23. Zheng K, Bai J, Li N, Li M, Sun H, Zhang W, et al. Protective effects of sirtuin 3
on titanium particle-induced osteogenic inhibition by regulating the NLRP3
inflammasome via the GSK-3beta/beta-catenin signalling pathway. Bioact Mater
(2021) 6(10):3343-57. doi: 10.1016/j.bioactmat.2021.02.039

24. Zhao Y, Qiu C, Wang W, Peng J, Cheng X, Shangguan Y, et al. Cortistatin
protects against intervertebral disc degeneration through targeting mitochondrial ROS-
dependent NLRP3 inflammasome activation. Theranostics (2020) 10(15):7015-33. doi:
10.7150/thno.45359

25. Alhasan H, Terkawi MA, Matsumae G, Ebata T, Tian Y, Shimizu T, et al.
Inhibitory role of annexin Al in pathological bone resorption and therapeutic
implications in periprosthetic osteolysis. Nat Commun (2022) 13(1):3919. doi:
10.1038/s41467-022-31646-0

26. Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP. The cellular and
molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res (2007) 454:251—
61. doi: 10.1097/01.b10.0000238813.95035.1b

27. Goodman SB, Ma T, Chiu R, Ramachandran R, Smith RL. Effects of orthopaedic
wear particles on osteoprogenitor cells. Biomaterials (2006) 27(36):6096-101. doi:
10.1016/j.biomaterials.2006.08.023

28. Tsai C-F, Chen J-H, Wu C-T, Chang P-C, Wang S-L, Yeh W-L. Induction of
osteoclast-like cell formation by leptin-induced soluble intercellular adhesion molecule
secreted from cancer cells. Ther Adv Med Oncol (2019) 11:1758835919846806. doi:
10.1177/1758835919846806

Frontiers in Immunology

59

10.3389/fimmu.2023.1171150

29. Rayman MP. Selenium and human health. Lancet (2012) 379(9822):1256-68.
doi: 10.1016/S0140-6736(11)61452-9

30. Xie Y, Liu Q, Zheng L, Wang B, Qu X, Ni J, et al. Se-Methylselenocysteine
ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and
metal dyshomeostasis in Alzheimer model mice. Mol Nutr Food Res (2018) 62(12):
€1800107. doi: 10.1002/mnfr.201870070

31. Wang L, Chen K, Wan X, Wang F, Guo Z, Mo Z. NLRP3 inflammasome
activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances
adipogenic differentiation. Biochem Biophys Res Commun (2017) 484(4):871-7. doi:
10.1016/j.bbrc.2017.02.007

32. McCall SH, Sahraei M, Young AB, Worley CS, Duncan JA, Ting JP-Y, et al.
Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat
region containing receptor implicated in bacterially induced cell death. ] Bone Miner
Res (2008) 23(1):30-40. doi: 10.1359/jbmr.071002

33. Chen C, ChenY, Zhang ZH, Jia SZ, Chen YB, Huang SL, et al. Selenomethionine
improves mitochondrial function by upregulating mitochondrial selenoprotein in a
model of alzheimer’s disease. Front Aging Neurosci (2021) 13:750921. doi: 10.3389/
fnagi.2021.750921

34. Jian J, Sun L, Cheng X, Hu X, Liang J, Chen Y. Calycosin-7-O-B-d-
glucopyranoside stimulates osteoblast differentiation through regulating the BMP/
WNT signaling pathways. Acta Pharm Sin B (2015) 5(5):454-60. doi: 10.1016/
j.apsb.2015.06.005

35. Yun HM, Park KR, Quang TH, Oh H, Hong JT, Kim YC, et al. 2,4,5-
trimethoxyldalbergiquinol promotes osteoblastic differentiation and mineralization
via the BMP and wnt/B-catenin pathway. Cell Death Disease. (2015) 6:e1819. doi:
10.1038/cddis.2015.185

36. Qu R, Chen X, Yuan Y, Wang W, Qiu C, Liu L, et al. Ghrelin fights against
titanium particle-induced inflammatory osteolysis through activation of beta-catenin
signaling pathway. Inflammation (2019) 42(5):1652-65. doi: 10.1007/s10753-019-
01026-w

37. Kai L, Zong X, Jiang Q, Lu Z, Wang F, Wang Y, et al. Protective effects of
polysaccharides from atractylodes macrocephalae koidz. against dextran sulfate sodium
induced intestinal mucosal injury on mice. Int ] Biol Macromolecules. (2022) 195:142—-
51. doi: 10.1016/j.ijbiomac.2021.12.042

38. Savarino L, Granchi D, Ciapetti G, Cenni E, Nardi Pantoli A, Rotini R, et al. Ion
release in patients with metal-on-metal hip bearings in total joint replacement: a
comparison with metal-on-polyethylene bearings. ] BioMed Mater Res (2002) 63
(5):467-74. doi: 10.1002/jbm.10299

39. Sobieraj M, Marwin S. Ultra-High-Molecular-Weight polyethylene
(UHMWPE) in total joint arthroplasty. Bull Hosp Jt Dis (2013). (2018) 76(1):38-46.

40. Vinceti M, Filippini T, Jablonska E, Saito Y, Wise LA. Safety of selenium
exposure and limitations of selenoprotein maximization: molecular and epidemiologic
perspectives. Environ Res (2022) 211:113092. doi: 10.1016/j.envres.2022.113092

frontiersin.org


https://doi.org/10.1002/jor.22190
https://doi.org/10.1016/j.msec.2020.111285
https://doi.org/10.1016/j.actbio.2017.01.034
https://doi.org/10.1038/s41586-019-1450-6
https://doi.org/10.1161/ATVBAHA.107.160952
https://doi.org/10.3389/fimmu.2019.02293
https://doi.org/10.1111/nyas.14774
https://doi.org/10.1016/j.bioactmat.2021.02.039
https://doi.org/10.7150/thno.45359
https://doi.org/10.1038/s41467-022-31646-0
https://doi.org/10.1097/01.blo.0000238813.95035.1b
https://doi.org/10.1016/j.biomaterials.2006.08.023
https://doi.org/10.1177/1758835919846806
https://doi.org/10.1016/S0140-6736(11)61452-9
https://doi.org/10.1002/mnfr.201870070
https://doi.org/10.1016/j.bbrc.2017.02.007
https://doi.org/10.1359/jbmr.071002
https://doi.org/10.3389/fnagi.2021.750921
https://doi.org/10.3389/fnagi.2021.750921
https://doi.org/10.1016/j.apsb.2015.06.005
https://doi.org/10.1016/j.apsb.2015.06.005
https://doi.org/10.1038/cddis.2015.185
https://doi.org/10.1007/s10753-019-01026-w
https://doi.org/10.1007/s10753-019-01026-w
https://doi.org/10.1016/j.ijbiomac.2021.12.042
https://doi.org/10.1002/jbm.10299
https://doi.org/10.1016/j.envres.2022.113092
https://doi.org/10.3389/fimmu.2023.1171150
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

:' frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Chuan-ju Liu,
New York University, United States

REVIEWED BY
Renpeng Zhou,

New York University, United States
Guiwu Huang,

New York University, United States
Debasis Sahu,

Ubioquitos Inc, Canada

*CORRESPONDENCE

Yang Cao
yang9yue8ri@163.com

Meng Liu
13764723430@163.com

These authors have contributed
equally to this work and share
first authorship

RECEIVED 22 January 2023
ACCEPTED 26 June 2023
PUBLISHED 21 July 2023

CITATION

Yang L, Yu X, Liu M and Cao Y (2023) A
comprehensive analysis of biomarkers
associated with synovitis and chondrocyte
apoptosis in osteoarthritis.

Front. Immunol. 14:1149686.

doi: 10.3389/fimmu.2023.1149686

COPYRIGHT

© 2023 Yang, Yu, Liu and Cao. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Immunology

TvpPE Original Research
PUBLISHED 21 July 2023
Dol 10.3389/fimmu.2023.1149686

A comprehensive analysis of
biomarkers associated with
synovitis and chondrocyte
apoptosis in osteoarthritis

Ling Yang™*, Xueyuan Yu*!, Meng Liu™ and Yang Cao™

‘Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of
Soochow University, Changzhou, China, 2Department of Traditional Chinese Medicine, Xinhua
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,
3Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi‘an Jiao
Tong University, Xi'an, China, *Department of Clinical Laboratory, The First Affiliated Hospital of Xi‘an
Jiao Tong University, Xi‘an, China

Introduction: Osteoarthritis (OA) is a chronic disease with high morbidity and
disability rates whose molecular mechanism remains unclear. This study sought
to identify OA markers associated with synovitis and cartilage apoptosis by
bioinformatics analysis.

Methods: A total of five gene-expression profiles were selected from the Gene
Expression Omnibus database. We combined the GEO with the GeneCards
database and performed Gene Ontology and Kyoto Encyclopedia of Genes
and Genome analyses; then, the least absolute shrinkage and selection
operator (LASSO) algorithm was used to identify the characteristic genes, and a
predictive risk score was established. We used the uniform manifold
approximation and projection (UMAP) method to identify subtypes of OA
patients, while the CytoHubba algorithm and GOSemSim R package were used
to screen out hub genes. Next, an immunological assessment was performed
using single-sample gene set enrichment analysis and CIBERSORTXx.

Results: A total of 560A-related differential genes were selected, and 10
characteristic genes were identified by the LASSO algorithm. OA samples were
classified into cluster 1 and cluster 2 subtypes byUMAP, and the clustering results
showed that the characteristic genes were significantly different between these
groups. MYOC, CYP4B1, P2RY14, ADIPOQ, PLIN1, MFAPS5, and LYVE1 were highly
expressed in cluster 2, and ANKHLRC15, CEMIP, GPR88, CSN1S1, TAC1, and SPP1
were highly expressed in cluster 1. Protein—protein interaction network analysis
showed that MMP9, COLI1A, and IGF1 were high nodes, and the differential genes
affected the IL-17 pathway and tumor necrosis factor pathway. The GOSemSim R
package showed that ADIPOQ, COLI1A, and SPP1 are closely related to the
function of 31 hub genes. In addition, it was determined that mmp9 and Fos
interact with multiple transcription factors, and the ssGSEA and CIBERSORTx
algorithms revealed significant differences in immune infiltration between the
two OA subtypes. Finally, a qPCR experiment was performed to explore the
important genes in rat cartilage and synovium tissues; the qPCR results showed
that COL1A and IL-17A were both highly expressed in synovitis tissues and
cartilage tissues of OA rats, which is consistent with the predicted results.
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Discussion: In the future, common therapeutic targets might be found
forsimultaneous remissions of both phenotypes of OA.

KEYWORDS

osteoarthritis, synovitis, cartilage apoptosis, immune infiltration, bioinformatics analysis

1 Introduction

Osteoarthritis (OA), the most common form of arthritis, is
characterized by chronic pain and high incidence (1) and disability
(2) rates. OA arises from a complex process involving the cartilage,
bone, synovium, ligaments, infrapatellar fat pads, meniscus, and
muscles (3). Among them, the representatives that are most often
studied are two significantly altered hallmarks, cartilage apoptosis
and synovitis, whose discovery has often been considered a
breakthrough in research on optimal treatment strategies for OA.
Synovial inflammation usually occurs in the early stage of OA.
Synovial inflammation can lead to the infiltration of inflammatory
cells and the release of inflammatory factors, which can lead to
cartilage destruction and joint dysfunction (4). However,
unambiguous therapeutic targets and the correlation between the
two phenotypes remain to be discovered, and we hoped in this
research to identify genes or pathways significantly related to both
synovitis and cartilage apoptosis to further interrogate the
mechanism and effective therapeutic targets.

Clinical basic and systems biology studies have been performed
to detect the pathogenesis of OA (5). Many OA-related protein
markers or pathways play a role in the development and
progression of OA, including endoplasmic reticulum, stress
marker glucose-regulated protein 78 (GRP78), and Bcl2-
associated athanogene 1 (bagl) (6). Transient receptor potential
vanilloid 1 (TRPVI) is closely related to pain perception by OA
patients (7). What is more? The roles of disintegrin and
metalloproteinase with thrombospondin motif 5 (ADAMTS5) and
follistatin-like protein 1 (FSTLI) in OA diagnosis and prognosis (8)
have been reported. As for pathways, the Ca®*/CaMKII/Nrf2
signaling pathway could inhibit M1 macrophage polarization to
attenuate synovium in OA (7), and a promotional effect of the
JUNB/FBXO21/ERK axis on cartilage degeneration in osteoarthritis
by autophagy inhibition (9) was also reported. However, the studies
above only explored the mechanism or potential target from the
perspective of a single phenotype, and their sample numbers were
limited. A systematic high-throughput analysis of targets and
pathways associated with two or more phenotypes of OA is needed.

Some systematic bioinformatic analyses have partly improved
on the defects above. The FoxO and IL-17 signaling pathways are
likely to regulate OA progression according to Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment, and ubiquitylation
was found to be a key bioactive reaction in OA after analyzing the
molecular function and protein-protein interaction (PPI) results
(9). Abnormally methylated differentially expressed genes (DEGs)
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in OA such as COL3A1, LUM, and MMP?2 are potential methylation
biomarkers of OA, and THBS2 might play a role in the end stage of the
disease (10). However, these studies all have defects as they lack multi-
omics analyses and are pending multi-dimensional validation.
Recently, a bioinformatics-led investigation used the Gene Ontology
(GO) and KEGG databases, the CIBERSORTx method, and the
ConsensusClusterPlus R package to perform enrichment and
immune infiltration analyses before ultimately differentiating
immunity patterns into two clusters and validating the expressions
of TCAI, TLR7, MMP9, CXCL10, CXCL13, HLA-DRA, ADIPOQ, and
SPPI using qPCR in chondrocytes (5). However, a synovitis analysis
was not performed in this comprehensive and systematic research.
Therefore, a systematic, multi-dimensional analysis covering multiple
phenotypes should be performed.

In this study, we combined genes from the Gene Expression
Omnibus and GeneCards databases to find OA-related genes, then
constructed a risk model and used the receiver operating characteristic
(ROC) curve to screen out and evaluate 10 characteristic genes.
Network analysis and functional analysis of two subtypes were
performed to estimate the degrees of immune infiltration, and the
results were finally validated by qRT-PCR in rats’ tissues.

2 Methods
2.1 Data download

We first downloaded the following five datasets associated with
osteoarthritis from the Gene Expression Omnibus (GEO) database:
GSE55457 (11), GSE12021 (GPL96) (12), GSE55235 (11),
GSE12021 (GPL97) (12), and GSE82107 (13). Among these,
the GSE55457, GSE12021 (GPL96), and GSE55235 datasets were
used as osteoarthritis diagnostic model training sets, whereas the
GSE12021 (GPL97) and GSE82107 datasets were used as
osteoarthritis diagnostic model validation sets.

The osteoarthritis diagnostic model training sets were created
by extracting and merging a common expression profile from
GSE55457, GSE12021 (GPL96), and GSE55235, which contain 10
osteoarthritic synovial tissue samples and 10 control synovial tissue
samples, 10 osteoarthritic synovial tissue samples and 9 control
synovial tissue samples, and 10 osteoarthritic synovial tissue
samples and 10 control synovial tissue samples, respectively. We
used the “Combat” function in the sva R package (14) to correct a
batch effect of merged data of 30 osteoarthritic synovial tissue
samples and 29 control synovial tissue samples. The distribution of
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target gene-expression levels before and after the correction was
visualized by box plot.

GSE12021 contains 10 osteoarthritic synovial tissue samples
and 4 control synovial tissue samples, whereas GSE82107 contains
10 and 7 samples, respectively. All the samples are of human origin,
and all the datasets are from the GPL97 platform (Table 1).

2.2 ldentification of OA DEGs

We input the keywords “synovitis” and “chondrocyte
apoptosis” into the GeneCards database to obtain synovitis-
related and chondrocyte apoptosis-related genes (15)
(Supplementary Table 1). Then, we defined osteoarthritis-related
genes by taking the intersection of synovitis-related genes,
chondrocyte apoptosis-related genes, and osteoarthritis diagnostic
model training sets. The results are shown using Venn diagrams.

To estimate the impact of osteoarthritis-related gene-expression
levels on the severity of osteoarthritis, differential gene-expression
analysis of OA and control samples of integrated datasets was
performed using the limma R package (16). A differential gene was
defined by a threshold of |fold change (FC)| > 1.5 and p< 0.05; genes
with FC > 1.5 and p< 0.05 were considered up-regulated genes and
those with FC< -1.5 and p< 0.05 were considered down-regulated
genes. We took the intersection of differential genes and x1-related
genes and obtained differentially expressed osteoarthritis-
related genes. The results are visualized using volcano plots.

2.3 Constructing a forest model and
nomogram model

We used the least absolute shrinkage and selection operator
(LASSO) analysis method to perform dimension reduction analysis
and obtained the characteristic genes from differentially expressed
osteoarthritis-related genes. For normalized gene-expression values
of weighted coefficients penalty of the characteristic genes, we
established a risk score formula and visualized them by forest maps.

riskScore = > Coefficient (gene;)»mRNA Expression (gene;)
i
A nomogram was constructed according to selected characteristic

genes to forecast the prevalence of OA. Then, the model’s accuracy
was tested using an independent validation dataset.

TABLE 1 The datasets are from the GEO database.

10.3389/fimmu.2023.1149686

2.4 The molecular subtype of OA

Uniform manifold approximation and projection (UMAP), a
non-linear dimensionality-reduction algorithm, was used to
partition and compress a group of patients into clusters based on
the given feature. Then, the characteristic genes provided the basis
to identify these patients” subtypes using the umap R package (17).

2.5 The assessment of biological
characteristics among subtypes
of OA patients

Gene function enrichment could be performed by GO enrichment
analysis from different dimensions and levels, i.e., biological process,
molecular function, and cellular component categories (18). The KEGG
database extensively includes related genomes, biological pathways,
drugs and diseases, and so on (19). We used the clusterProfiler R
package (20, 21) to perform GO functional annotation and KEGG
pathway enrichment to identify the significantly enriched biological
processes of DEGs of different subtypes in OA patients, with the
significance threshold of enrichment analysis set at p< 0.05.

Gene set enrichment analysis (GSEA) could confirm whether a
group of pre-defined genes was statistically different between two
biological states; this approach is commonly used to estimate a
sample’s pathway and biological process activity (22). To analyze
the differences in biological processes of different subtypes of
OA patients, we downloaded “c5.go.v7.4.entrez.gmt” and
“c2.cp.kegg.v7 4.entrez.gmt” based on gene-expression profile data
(23). Then, GSEA was performed with the clusterProfiler R package
to analyze enrichment and visualize the dataset.

Gene set variation analysis (GSVA) is a non-parametric
unsupervised analysis method able to convert a gene’s expression
matrix to a gene set’s expression matrix between different samples to
estimate gene set enrichment in order to assess metabolic pathway
enrichment among samples (24). To study the variation in biological
processes among different subtypes, we used the GSVA R package
(24) on account of the gene-expression profile of different samples of
OA subtypes. The reference dataset “h.all.v7.4.symbols.gmt” was
downloaded from the MSigDB database (23) to calculate a single
sample’s enrichment score for each hallmark.

2.6 PPI analysis

There are universal inter-relationships between genes, especially
between those able to regulate the same biological process. To reveal

GSE GPL Species Tissue Source OA sample number Control sample number
GSE55457 GPL96 Homo sapiens Synovium 10 10
GSE12021 GPL96 Homo sapiens Synovium 10 9
GSE55235 GPL96 Homo sapiens Synovium 10 10
GSE12021 GPL97 Homo sapiens Synovium 10 4
GSE82107 GPL570 Homo sapiens Synovium 10 7
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the connection between patients with different subtypes of OA, we
constructed PPI networks on account of their DEGs. We obtained
PPI data from STRING (25), using a score of 700 points as the
threshold. After exporting PPI data, we conducted a further analysis
using Cytoscape (Institute for Systems Biology, Seattle, WA, USA)
(26), which contains the following 12 algorithms (27): Betweenness,
BottleNeck, Closeness, ClusteringCoefficien, Degre, DMN,
EcCentricity, EPC, MCC, MNC, Radiality, and Stress. We
calculated the top 30 nodes in each algorithm and defined the
“hub node” as the gene that appeared in at least five algorithms.
Hub nodes have a greater level of connection with others and are
extremely important in regulating all biological processes.

MicroRNA (miRNA) is a type of non-coding single-stranded
RNA molecule coded by endogenous genes that measure 19-25 nt in
length and play important roles in regulating biological evolution.
MiRNA can influence the expression of target genes by post-
transcriptional regulation during the processes of tumor incidence
and development, biological development, organogenesis,
epigenetic regulation, virus resistance, and so on. MiRNA and
target genes usually exist in a one-to-many or many-to-one
“regulate or be regulated” relationship (28). To analyze the
connection between hub genes and miRNAs, we obtained hub
gene-related miRNAs from Starbase (http://starbase.sysu.edu.cn/),
which can provide predictions from a total of seven prediction
procedures (TargetScan, microT, miRmap, picTar, RNA22, PITA,
and miRanda), and we chose the relationships between miRNAs
and messenger RNAs (mRNAs) that could be found in at least two
of the procedures. We then constructed mRNA-miRNA regulatory
networks and visualized them using Cytoscape.

Transcription factors (TFs) can control gene expression by
interacting with target genes. We examined the relationships between
TFs and hub genes from the MIRNet network to contrast hub gene-TF
networks and analyze hub genes’ regulatory reactions. The hub gene-
TF networks were then visualized by Cytoscape.

2.7 ldentification and correlation analysis
of immune cell infiltration among different
subtypes in OA patients

The immune microenvironment is an integrated system that
encompasses immune cells, inflammatory cells, fibroblasts, the
mesenchyme, and various cytokines and chemokines. The
analysis of immune cell infiltration in samples could play an
important role in disease research and treatment prognosis.
Single-sample GSEA (ssGSEA) is an extension of the GSEA
method. In this research, we used ssGSEA to calculate the
concentrations of 28 kinds of immune cells (29), then visualized
the immune cell composition by box plot. Differences in immune
cell proportions were estimated by the Wilcoxon test, and p< 0.05
was seen as statistically significant. CIBERSORx is based on
machine learning and could extend this algorithm framework to
analyze gene-expression profiles specific to certain cell types
without the cells’ physical dissociation. RNA sequencing data
were used to estimate the immune cell abundance (30). We
estimated the abundance of 22 kinds of immune cells in OA
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patients of different subtypes from the dataset with the
CIBERSORTx algorithm and drew a heatmap of immune cell
infiltration correlation using the Corrplot R package (31).

The quantification of immune activity levels in tumor samples
and the reflection of stromal and immune gene signatures by
ESTIMATE analysis is a gene expression-based algorithm. The
difference in immune scores of patients was estimated using the
“estimate” R package (32) to calculate the hub genes’ correlations
with immune scores.

2.8 Animal experiments

We bought three-month-old male-specific pathogen-free
Sprague-Dawley rats from the Shanghai Institute of Planned
Parenthood Research-BK Laboratory Animals Co., Ltd.
(Shanghai, China) and divided them into two groups (n = 6
each). All procedures and protocols used in this study were
approved by the ethical committee of Xin Hua Hospital, which is
affiliated with the Shanghai Jiao Tong University School of
Medicine (approval no. XHEC-F-2022-014). The rats were treated
according to the 3R principles and housed at a temperature of 22 +
2°C, under a 12-h light/dark cycle and humidity of 40-70%. All rats
were intraperitoneally injected with 3% sodium pentobarbital (0.1
mL/100 g; Sigma-Aldrich, USA). Additionally, in the OA group, we
injected 0.1ml of MIA (30 mg/mL; Aladdin Biochemical
Technology Co., Shanghai, China) in the right knee joint space,
whereas the control group received an equivalent volume of normal
saline 0.9%. Each rat was reared for 4 weeks; then, we extracted
cartilage tissues and synovial tissues after euthanasia. Next, the
genes in the tissues were detected by qRT-PCR. As stated in the
above results, MMP9, COL1A, and IGF1 were identified as high
nodes interacting with 53, 47, and 4 genes, respectively. While
MMP9 and FOS as hub genes interacted with 33 and 32 TFs,
respectively. What is more? The PPI results showed that the
differential genes may be enriched in the IL-17 pathway and
other pathways. So, we chose MMP9, COL1A, IGFl, and IL-17
pathway-related proteins (IL-17A, Jak 2, JNK, MAPK 1, and STAT
3) to verify the expression of them. The primer sequences of each
gene are shown in Table 2.

2.9 Statistical analysis

Data processing and analysis were completed in the R statistical
language (version 4.1.1; R Foundation for Statistical Computing,
Vienna, Austria). Continuous variables were compared between two
groups by independent ¢-test to estimate normally distributed variables’
statistical significance, while two separate sets of variables were
compared by Wilcoxon rank-sum test to estimate non-normally
distributed variables™ statistical significance. Pearson correlation was
used to calculate different genes’ correlation coefficients. The partial
ROC (pROC) R package (33) was used for ROC curve analysis, and the
area under the ROC curve (AUC) calculation was performed to
evaluate the diagnostic model’s accuracy. All two-sided p values<
0.05 were considered statistically significant.
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TABLE 2 The primer sequences.

10.3389/fimmu.2023.1149686

Gene Forward primer sequence Reverse primer sequence
Gapdh TCACTGCCACTCAGAAGACT ACATTGGGGGTAGGAACACG
mmp9 GGTCCCCCTACTGCTGGTCCT CGAGAACTTCCAATACCGACC
FOS GGAGGACCTTATCTGTGCGT TGCGGTTGCTTTTGATTTTT
COL1A TATGTATCACCAGACGCAGAAGT GCAAAGTTTCCTCCAAGACC
IGF1 ACGGGCATTGTGGATGAGTG TGTGTCGATAGGGGCTGGGA
JNK GGAGGAGCGAACTAAGAATGG ACTGCTGTCTGTATCCGAGGC
JAK2 CCCTGGCTGTCTATAACTCC TCTGTACCTTATCCGCTTCC
stat3 TTAACATTCTGGGCACGAAC TCAGTGACAATCAAGGAGGC
IL-17A CTACCTCAACCGTTCCACTT ACTTCTCAGGCTCCCTCTTC
MAPK1 GGGCAGTTCTGGTCGTAGTGG GGAAGGATTCAGGGCAGGGA
3 Results consolidated data set then removed significant batch effects

3.1 Expression of OA-related genes

in OA patients

As shown in the flow chart (Figure 1), we first merged three
datasets—GSE55457, GSE12021 (GPL96), and GSE55235—into a

FIGURE 1
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(Figures 2A, C) between two groups of data to obtain gene-
expression profiling data with consistent expression levels
(Figures 2B, D). The consolidated data included 30 OA samples
and 29 control samples. To screen OA-related genes, we searched
keywords “synovitis” and “chondrocyte apoptosis” and found 795
synovitis-related genes and 3,353 chondrocyte apoptosis-related
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genes in GeneCards (14) then took the intersection with the
consolidated gene-expression profiling data and obtained 401
OA-related genes (Figure 2E).

The variance analysis between OA samples and control samples
obtained 577 differential genes, which included 338 up-regulated
genes and 239 down-regulated genes (Figure 3A). To analyze the
two groups’ functional differences, we assessed the impacts of DEGs
on the related biological functions of patients. For functional
annotation of DEGs, GO enrichment analysis showed highly
significant enrichment in the “myeloid leukocyte migration”,
“leukocyte chemotaxis”, and “extracellular matrix” biological
processes (Figure 3B); in the “collagen-containing extracellular
matrix” and “endoplasmic reticulum lumen MHC protein
complex” cellular components (Figure 3C); and in the
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functions (Figure 3D). These genes were also enriched in
“rheumatoid arthritis”, “tumor necrosis factor (TNF) signaling
pathway”, “IL-17 signaling pathway,” and “osteoclast
differentiation” pathways in KEGG (Figure 3E). Taking the
intersection of DEGs and OA-related genes, they yielded 56
differentially expressed OA-related genes (Figure 3F), including
27 up-regulated genes and 29 down-regulated genes. The RCircos
R package was used to annotate up- or down-regulated genes on
chromosomes (34) and showed that these genes appeared in a
similar position (Figures 3G, H).

3.2 Risk model construction

At this point, we performed ssGSEA to measure per-sample
immune cell infiltration levels of control and OA groups, and the
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results showed that multiple immune cells’ infiltration levels were
different between these two groups (p< 0.05) (Figure 4A).
Specifically, the concentrations of gamma delta T-cells, immature
B-cells, immature dendritic cells, and macrophages of OA samples

were higher than those of the control samples.

We then analyzed the correlation in expression levels of 27

up-regulated genes and 29 down-regulated genes among the

Frontiers in Immunology

OA group and control group. The results showed that in the

normal group, the expression levels of up-regulated

(Figure 4B) and down-regulated (Figure 4D) genes were
mostly positively correlated (p<0.05). In the OA sample

group, the expression levels of up-regulated (Figure 4C) and

down-regulated (Figure 4E) genes were mostly negatively

correlated (p<0.05).
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The correlation analysis. (A) The different enrichment levels of immune cells between OA samples and control samples; the horizontal axis is the
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and ***means the p-value was less than 0.001. (B—C) Correlation analysis of gene expression levels of up-regulated differentially expressed OA-
related genes in both the control group and OA group; blue means positive correlation and red means negative correlation. (D—E) Correlation
analysis of gene expression levels of down-regulated differentially expressed OA-related genes in both the control group and OA group; blue means
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To estimate differentially expressed OA-related genes’ impact
on OA patients, we used the LASSO algorithm to identify the
following 10 characteristic genes with a great impact on OA among
56 differentially expressed OA-related genes: CX3CRI1, GADD45B,
PTGS1, EFEMP2, PGF, MFAP4, CLU, CDH11, VEGFC, and ANPEP
(Figures 5A, B). An OA predictive risk score was estimated by
multiplying and adding the 10 characteristic genes’ coefficients and
gene-expression values. Each normalized expression value of the
weighted penalty coefficient of characteristic genes was expressed by
forest mapping (Figure 5C), and the predicted risk score of each
sample was calculated to draw the ROC curve. The results included
an AUC of 0.965 in the training set (Figure 5D). We then performed
model validation involving the independent test data sets GSE12021
(GPL97) and GSE82107, and the AUCs were 0.95 and 0.736
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(Figures 5E, F), which indicated that the model prediction is good
for OA patients. Similarly, the 10 characteristic genes were analyzed
to predict OA ROC curves separately, and the results showed that
all these genes had good predictive efficacy (Figure 5G).
Considering patients’ predicted risk scores and the 10
characteristic genes, we built a nomogram model to predict OA
patients’ prevalence rates and correct the nomogram model
(Figures 6A, B). To assess the predictive model’s accuracy and
predict the net benefits of patients who received intervention
according to the model, we divided both OA samples and control
samples into two groups, where the first group contained 15 OA
samples and 15 control samples and the second group contained 15
OA samples and 14 control samples. The ggDCA R package (35)
was used for decision curve analysis, and the predicted lines lying
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FIGURE 5

Construction of the osteoarthritis model. (A, B) The LASSO analysis was used to identify the characteristic genes. (C) The characteristic genes’ forest
map of OA patients. (D) The ROC curve of predicted risk scores was used on the OA training set. (E) The ROC curve of predicted risk scores was
used on the OA test set GSE12021(GPL97). (F) The ROC curve of predicted risk scores was used on the OA test set GSE82107. (G) The ROC curve of

the 10 characteristic genes in OA diagnosis.

above the standard line indicate that the decision of the nomogram
model might be beneficial for OA diagnosis (Figures 6C-F).

3.3 Identifying different OA subtypes
according to characteristic genes

Considering the 10 OA-related genes, a pair of OA subtypes,
cluster 1 and cluster 2, were identified by the UMAP algorithm
(Figure 7A), with 24 samples in cluster 1 and 6 samples in cluster 2.
The clustering results showed significant differences in
characteristic genes between the two groups (Figure 7B). The
expression levels of differentially expressed OA-related genes of
both subtypes in the control and OA groups were measured, and the
results showed that most differentially expressed OA-related genes
in the two groups were also differentially expressed in both
subtypes (Figure 7C).
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3.4 Enrichment analysis and
network analysis

To detect the biological differences between patients with the
two different OA subtypes, we first obtained 355 DEGs by analyzing
both groups of patients’ gene-expression profiles. We performed
GO annotation of these DEGs and found these genes are involved in
many biological processes (Figure 8A; Supplementary Table 2-go).
Specifically, the results showed that these genes were mainly
enriched in biological processes such as extracellular matrix
organization, extracellular structure organization, extracellular
encapsulating structure organization, and ossification (Figure 8B);
cellular components such as collagen-containing extracellular
matrix, endoplasmic reticulum lumen, platelet alpha granule, and
fibrillar collagen trimer (Figure 8C); and molecular functions such
as extracellular matrix structural constituent, glycosaminoglycan
binding, integrin binding, and amide binding (Figure 8D).
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Enrichment in KEGG pathways such as rheumatoid arthritis, PPAR
signaling pathway, protein digestion and absorption, and osteoclast
differentiation was also noted (Figure 8E; Supplementary
Table 2-kegg).

We then performed GSEA considering both subtypes of OA
patients and found that biological processes such as GO structural
constituents of ribosomes, GO oxidoreductase activity acting on
NAD pH quinone or a similar component as an acceptor, GO
mitochondrial respiratory chain complex assembly, GO ribosomal
subunit, and GO ATP synthesis-coupled electron transport could be
inhibited in patients from cluster 1 (Figure 9A), while biological
processes such as GO endoplasmic reticulum lumen, GO collagen
fibril organization, GO endoderm formation, and GO
neuroinflammatory response were promoted (Figures 9B, C;
Supplementary Table 3-gsea-go). The pathway activity of patients
from the two subtype groups was analyzed, and the results showed
that pathways such as the ribosome, Parkinson’s disease, drug
metabolism cytochrome p450, and metabolism of xenobiotics by
cytochrome p450 were inhibited in cluster 1 patients (Figure 9D),
while pathways such as ECM receptor interaction, lysosome, focal
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adhesion, and Leishmania infection were promoted (Figures 9E, F;
Supplementary Table 3-gsea-kegg).

To further explore the functional differences between the two
subtypes, we used GSVA and found that biological processes such
as hallmark hypoxia, hallmark interleukin-2 STAT5 signaling,
hallmark interleukin-6 JAK/STAT3 signaling, and hallmark
inflammatory response were significantly activated in cluster 1
patients (Figure 10A). Concurrently, most of the other biological
processes, such as hallmark notch signaling, hallmark oxidative
phosphorylation, hallmark p53 pathway, and hallmark pancreas
beta cells, showed significant differences between the two groups of
patients (Figure 10A). We also analyzed the correlation between
patients’ characteristic genes and hallmark biological processes, and
the results showed that MFAP4 and hallmark TGF beta signaling,
hallmark epithelial-mesenchymal transition, or hallmark
angiogenesis were significantly positively correlated (p< 0.05),
while EFEMP2 and hallmark heme metabolism, PGF and
hallmark spermatogenesis, hallmark UV response dn, and
hallmark pancreas beta cells were significantly negatively
correlated (p< 0.05) (Figure 10B).
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FIGURE 7

Clustering OA patients by the characteristic genes. (A) The UMAP clustering results; pink means cluster 1 and blue means cluster 2. (B) The
expression heatmap of characteristic genes in two clusters; pink means cluster 1 and blue means cluster 2. (C) The expression differences of
differentially expressed OA-related genes between cluster 1 and cluster 2; the horizontal axis is the characteristic gene, and the vertical axis is the
gene expression level. ns means P>0.05 with no statistical significance; * means P<0.05; ** means P<0.01; *** means P<0.001.

3.5 Network analysis between two
subtypes of patients

To analyze the impact of the two subtypes of patients’ DEGs on
osteoarthritis patients’ biological functions, we first built subtypes of
patients’ DEGs-related PPI networks and visualized the results
using Cytoscape. The PPI networks contained 451 interaction
pairs and 349 DEGs, with an average node degree of 2.58, an
average local clustering coefficient of 0.404, and a PPI enrichment p-
value< 1.0 (15). Among them, mmp9, COL1A, and IGF1 were high-
degree nodes that interacted with 53, 47, and 4 genes, respectively
(Figure 11A). To analyze the effects of genes in the PPI network on
osteoarthritis, we performed enrichment analysis involving genes
from the network and determined that these genes mainly affected
biological processes like ossification, collagen metabolic process,
and extracellular matrix organization (Figure 11B); cellular
components like collagen-containing extracellular matrix,
endoplasmic reticulum lumen, and fibrillar collagen trimer
(Figure 11C); cell functions like extracellular matrix structural
constituent, platelet-derived growth factor binding, and receptor-
ligand activity (Figure 11D); and signaling pathways like
rheumatoid arthritis, lipid and atherosclerosis, the A signaling
pathway, and the TNF signaling pathway (Figure 11E).

We used 12 algorithms of CytoHubba to calculate the top 30
nodes in each algorithm and extracted 31 genes we called hub nodes

Frontiers in Immunology

70

from at least five algorithms (Figure 11F). Then, the GOSemSim R
package was used to analyze the hub genes’ GO semantic similarity
(36), and the results showed that RPL19, RPS11, and RPL10A had
greater functional correlations with multiple genes (Figure 11G).

We built a hub gene mRNA-miRNA network. The network
contained 97 interactions, which included 14 mRNAs and 68
miRNAs, in which COL1A1 and COL1A2 hub genes could both
interact with 14 miRNAs (Figure 11H). The hub genes’ mRNA-TF
network was also built and contained 29 miRNAs and 167 TFs;
among these, hub genes mmp9 and Fos could interact with 33 and
32 miRNAs, respectively (Figure 111).

3.6 Differences in immune characteristics
between RNA modification patterns

CIBERSORTX and ssGSEA were used to compare immune cell
infiltration levels between osteoarthritis patients of two subtypes.
ssGSEA showed that patients’ concentrations of central memory
CD4" T-cells, central memory CD8" T-cells, effector memory CD4*
T-cells, effector memory CD8" T-cells, natural killer cells, and
natural killer T-cells in cluster 1 were significantly higher than
those in cluster 2 (Figure 12A). We computed the correlation of
characteristic genes and immune cells between cluster 1 and cluster
2 patients, and the results indicated that activated CD8" T-cells and
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The functional analysis of DEGs. (A) GO functional enrichment analysis of DEGs; the horizontal axis is GO terms and the vertical axis is the
significance of enrichment results. (B—D) The results of the first five items of BP, CC, and MF analysis; the node size means the genes’ number which
was enriched under each term; different line colors mean different biological functions. (E) The KEGG enrichment analysis; different node colors
mean different gene expression levels and the quadrilateral color means the Z-score of KEGG pathways.

activated dendritic cells were significantly correlated with multiple
characteristic genes’ expression levels (p< 0.05) (Figure 12B) in
cluster 1, while in cluster2, activated B-cells were significantly
related to the characteristic genes’ expression levels (p< 0.05)
(Figure 12C). The correlations of hub genes and immune cells in
cluster 1 and cluster 2 were respectively calculated, and we found
that hub gene PPARG showed a stronger correlation with multiple
immune cells in cluster 1 (p< 0.05) (Figure 12D), while hub genes
MMPI and MMP3 were highly related to multiple immune cells in
cluster 2 (p< 0.05) (Figure 12E). We also estimated the correlation
among various immune cells of both groups of patients and found
that the correlations were weak in cluster 1 (Figure 12F), while in
cluster 2, type 1 T helper cells, activated CD8 " T-cells, macrophages,
immature B-cells, activated CD4" T-cells, MDSCs, regulatory T-
cells, activated dendritic cells, memory B-cells, central memory
CD8" T-cells, natural killer T-cells, natural killer cells, central
memory CD4" T-cells, type 17 T helper cells, and activated B-
cells were positively correlated; however, there were negative
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correlations among T follicular helper cells, type 2 T helper cells,
and most other immune cells (Figure 12G).

Next, CIBERSORTx was used to compare immune cell
infiltration levels between the two subtypes of patients, and the
results showed that the correlation of various immune cell
concentrations between cluster 1 and cluster 2 was significantly
different (p< 0.05) (Figures 13A, B). We then calculated the
correlations of 31 hub genes and immune cell contents separately
and found that M1 macrophages and dendritic cells were
significantly negatively correlated with multiple hub genes
(Figure 13C), while gamma delta T-cells and M0 macrophages
were significantly positively correlated with the same
genes (Figure 13D).

We compared immune scores between OA samples and control
samples and found that the OA samples’ scores were significantly
higher than those of the control samples (p< 0.05) (Figure 14A).
Then, the correlations of hub genes’ expression levels and immune
scores were calculated, and the results showed that hub genes such
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GSEA. (A, B) The GSEA-GO analysis; the biological process is inhibited (A) and the biological process is activated (B) in cluster 1; the horizontal axis is
the enrichment score, and the vertical axis is GO terms. The color means the p-value and the node size means the enriched genes’ number. (C) The
first four items of GO terms. (D, E) The GSEA-KEGG analysis; the biological process is inhibited (D) and the biological process is activated (E) in
cluster 1; the horizontal axis is the enrichment score, and the vertical axis is KEGG terms. The color means the p-value and the node size means the
enriched genes’ number. (F) The first four items of KEGG terms.

as FABP4, EGRI, ADIPOQ, PPARG, and LEP were negatively
correlated with immune scores, while hub genes such as COL1A2,
MMPI, TIMPI, BGN, and COL1A1 were positively correlated with
them (p< 0.05) (Figure 14B). To estimate the ability to distinguish
the two subtypes of OA according to hub genes, we computed the
AUC score using the ROC curve and found that genes such as
TNFSF11, VCAMI1, CCL3, CLU, FABP4, and THBS2 could
distinguish between the two subtypes very well (Figure 14C).
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3.7 RT-gPCR validation results

As mentioned above, we used 2-month-old SD rats for the
following studies. After KOA modeling, the same batch of rats were
randomly selected for knee joint staining to verify the success of
KOA model (Supplementary Figure 1). After KOA modeling,
cartilage tissue, and synovial tissue were collected from two
groups of rats for PCR verification. The expression levels of the
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COLIA, Fos, IGF1, mmp9, IL-17A, Jak2, JNK, MAPK1, and STAT3
nodes were verified in PCR rats’ tissues, and the results are shown in
Figure 15. All the genes tested were different in the OA group, but
this trend was not completely consistent. Only COL1A and IL-17A
were highly expressed in cartilage and synovium, which is
consistent with the bioinformatics prediction.

4 Discussion

Osteoarthritis (OA) is the most common joint disease and
shows an increased incidence with age (37). An imbalance in the
catabolism and anabolism of cartilage (38) and pain-related
synovitis (39) could affect the development of OA, and synovium
might induce an early response in OA by regulating cartilage
development and proteolysis (40). Thus, both synovium and
cartilage are important in OA progression and could underly the
therapeutic potential in OA. Synovial inflammation can induce
articular cartilage injury, while cartilage injury can further aggravate
synovial inflammation (41). To date, however, no well-defined
target or treatment mechanism exists for either phenotype, so we
performed a bioinformatics analysis on the results of microarray
and high-throughput technology, identified and validated in vivo
the DEGs associated with both synovitis and cartilage apoptosis,
then analyzed immune cell infiltration and subtype classification for
an in-depth understanding of the mechanisms of OA.

The present study considered 577 differently expressed genes
and 401 synovitis or chondrocyte apoptosis-related genes whose
intersection revealed 56 differential expressed OA-related genes.
Several biological processes, cellular components, and molecular
functions were enriched categories in the GO analysis of DEGs,
while KEGG analysis revealed the DEGs were involved in the TNF
signaling pathway, IL-17 signaling pathway, and other pathways.
TNF-o transmits signals through TNF receptor 1 (TNF1) and TNF
receptor 2 (TNF2) in the TNF pathway (42), and TNF-o. can also be
released by adipose tissue to negatively regulate by promoting
matrix metalloproteinase generation and inhibiting proteoglycans
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or type II collagen synthesis (43). Intra-articular injection of IL-17-
neutralizing antibodies could decrease the expression of joint-
degeneration markers (44), and a holistic study showed that hub
genes in OA were significantly enriched in the IL-17 signaling
pathway (45). These conclusions are consistent with the results of
our analysis and the fact that pathway protein interleukin-1A was
highly expressed in the synovium and cartilage of OA rats.

The levels of multiple immune cells in OA samples, such as
gamma delta T-cells, immune B-cells, immature dendritic cells, and
macrophages, were higher than those in the control group
according to ssGSEA, and 10 characteristic genes were identified
from 56 differential expressed OA-related genes by LASSO
algorithms, ie., CX3CR1, GADD45B, PTGSI, EFEMP2, PGF,
MFAP4, CLU, CDH11, VEGFC, and ANPEP. We then calculated
predictive risk scores and used ROC curves to obtain results
showing that these genes have good predictive abilities; moreover,
the nomogram model decisions, which were made based on the
predicting risk scores and 10 characteristic genes, might be
beneficial to OA diagnosis.

We then used UMAP methods to divide OA patients into
cluster 1 and cluster 2. Notably, most of the genes differentially
expressed between OA and control samples were also differentially
expressed between these two clusters, such as IGFI, MMP9, and
CX3CRI. Also, a PCR experiment in rats’ tissues showed that the
level of IGF1 in OA rats’ synovium was higher than that in control
rats, but the trend was exactly opposite in the cartilage, while the
trends of MMP9 were the same in both tissues with low expression
in OA samples and high expression in control samples, contrary to
the bioinformatic analysis results. Insulin-like growth factor 1 (IGF-
1) can promote longitudinal bone growth (46) and support
chondrocyte survival, proliferation, or cartilage matrix synthesis
via PI3K/AKT, MAPK, and NF-kB pathways (47, 48); however,
whether its expression level will change with OA progression and
tissue type and finally lead to the difference between rats and human
patients and between cartilage and synovium needs to be
elaborated. Still, the differentially expressed level of insulin-like
growth factor 1 in the synovium of OA was first mentioned in this
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FIGURE 11

The differentially expressed genes (DEGs)-associated networks. (A) DEGs' protein-protein interaction (PPI) network; the blue node represents DEG,
and the pink node means hub genes. (B—E) The BP, CC, MF, and KEGG analysis of genes’ GO terms in the PPI network; the node color means
genes’ expression level, and the different line color means different biological functions. (F) The genes frequency tables of 12 algorithms; the
horizontal axis is genes, and the vertical axis is frequency. (G) The GO semantic similarity scores of hub genes in DEGs’ PPl network; the horizontal
axis is the similarity level, and the vertical axis is the gene. (H) Hub genes” mRNA-miRNA network; the pink node means hub genes and the blue
node means miRNA. (I) Hub genes’ mMRNA-TF network; the pink node means hub genes and the blue node means TF.

study and might be a new therapeutic target in synovitis in early-
stage OA. Additionally, studies focusing on OA showed that it may
be a potential diagnostic marker of OA given the higher levels
recorded in OA cartilage tissue than in control cartilage tissue (49,
50) and with its leading role in the intima layer’s macrophages in
early-stage OA synovitis (51). Our analysis concerning MMP9 also
found an expression difference between OA and control samples,
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but the trends were totally different and remain to be further
investigated by different experimental or modeling methods.

A total of 355 DEGs were identified from the expression profiles
of the two OA subtypes and subsequently enriched using GO,
KEGG, and GSEA. Then, functional differences between the two
subtypes were analyzed using GSVA. Subsequently, we constructed
a PPI network of DEGs among OA subtypes and identified three
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The immune characteristics-ssGSEA between two subtypes of OA patients. (A) The content histogram of immune cells between cluster 1 and cluster 2
patients; the blue means cluster 2 sample while the pink one means cluster 1 sample; the horizontal axis is the immune cell, and the vertical axis is cell
content. (B, C) The correlation of characteristic genes and immune cells between cluster 1 and cluster 2; the node size means significance and the node
color means correlation; the horizontal axis is the immune cell and the vertical axis is characteristic genes. (D, E) The correlation of hub genes and
immune cells between cluster 1 and cluster 2; the node size means significance and the node color means correlation; the horizontal axis is the immune
cell, and the vertical axis is the hub gene. (F, G) The correlation analysis of immune cells in cluster 1 and cluster 2; red means negative correlation while
blue means positive correlation. ns means P>0.05, with no statistical significance; * means P<0.05; ** means P<0.01; *** means P<0.001.

highly connected nodes: MMP9, COL1A, and IGF1. The results of
the gene-enrichment analysis showed that these genes were mainly
enriched in the IL-17 pathway, TNF pathway, and other signaling
pathways. Both MMP9 and IGF1 have been discussed previously,
while COL1A is often considered a marker of osteoblast
differentiation (52), and the polymorphism of the transcription
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factor SP1 binding site is closely related to bone mass and fracture
(53). Simultaneously, as a fibrosis mark, COL1A could also promote
articular cartilage repair after injury (54). The PCR results in rat
tissues showed that the expression level of COL1A in the OA group
was higher than that in the control group both in cartilage tissues
and synovial tissues, which indicated that the repair mechanisms in
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the cartilage of OA rats might be activated, while synovium might
also undergo fibrosis. We also first looked at the effect of COL1A on
synovitis in OA.

A total of 31 hub genes were found and the GOSemSim R
package showed that ADIPOQ, COLIAI, and SPPI were closely
related to the function of several genes. Adiponectin (ADIPOQ) is
released from adipose tissue and plays an important role in bone
formation and resorption (55); it is involved in the inflammatory

response and triggers cartilage damage by up-regulating the
expression of cytokines, matrix-degrading enzymes, and
chemokines in chondrocytes and synovial fibroblasts (56).
Phosphoprotein 1 (SPPI) is an extracellular matrix adhesion
molecule that plays important roles in bone mineralization,
immune response, tumor metastasis, inflammation, and
angiogenesis (57), and it has also been identified to be a regulator
of the PI3K/AKT pathway and could influence chondrocyte status
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The immune score calculation. (A) The immune score of OA samples and control samples; red means OA samples while blue means control
samples; the vertical axis is the immune score. (B) The correlation of immune score and hub genes in all the OA samples; the horizontal axis is the
correlation, and the vertical axis is hub genes. (C) AUC and 95% AUC in the ROC curve of hub genes, the blue node means lower 95% AUC, yellow
means upper 95% AUC, pink means AUC, the horizontal axis is hub genes, and the vertical axis is AUC values.
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in OA (58). These findings are consistent with the results of our
analysis, but experimental verification of ADIPOQ and SPPI is
lacking in the present study.

We constructed mRNA-miRNA and mRNA-TF networks of hub
genes and found that COLIAI and COLIA2 interacted with 14
miRNAs, respectively, while MMP9 and Fos interacted with 33 and
32 TFs, respectively. During rat tissue’s PCR validation, the expression
of Fos was increased in synovium but decreased in cartilage from the
OA group compared to the control group. C-fos could form a
heterodimeric AP-1 complex with C-Jun (59). Previous studies have
shown that C-fos could promote osteoclast fusion and accelerate
osteoclastogenesis via the ERK/C-Fos/NFATcl pathway (60), and C-
Fos/AP-1 could also drive synovial mesenchymal stem cells to generate
pannus, invade the cartilage and bone, and release interleukin-1f3 (61),
which eventually activates downstream matrix metalloproteinase and
induces cartilage destruction via C-Fos/AP-1 (62). Therefore, the
synovium of our OA rats might be activated by C-Fos, while the
cartilage might be in the compensatory stage of repair after injury. The
conclusion needs to be further verified.

Finally, we used ssGSEA and CIBERSORTx algorithms to
compare the immune status between the two subtypes. The
results showed that there were differences in the concentrations of
immune cells, the correlation between characteristic genes and
immune cells, the correlation between hub genes and immune
cells, and the correlation between the content of immune cells
between cluster 1 and cluster 2 patients. What is more? The results
of ROC curve analysis and AUC scores showed that TNFSFI1,
VCAMI, CCL3, CLU, FABP4, and THBS2 could effectively
distinguish the two subtypes of OA. This analysis helps to further
the understanding of the immune status contrast between OA and
control samples and between the two subtypes of OA.

However, there were limitations in this study; for example, in
vivo verification experiments were only performed on synovium
and cartilage tissues of MIA-intervened OA rats, without the use of
different modeling methods or other species. In addition, only qRT-
PCR was used to verify the bioinformatics analysis results, and no
other experiments, such as western blotting, immunofluorescence,
or immunohistochemistry, were used to validate at the cell or tissues
level, so the validation results are limited, while further validation of
10 key genes could also provide more information for our research
on OA, which is also the shortcoming of the study.
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In summary, the present study screened several genes and
pathways closely related to synovitis and cartilage degradation in
OA through bioinformatics analysis. Notable genes include
CX3CRI1, GADD45B, PTGS1, EFEMP2, PGF, MFAP4, CLU,
CDH11, VEGFC, ANPEP, MMP9, COLIA, Fos, IGF1, ADIPOQ,
and SPPI. Key pathways include the IL-17 signaling pathway, TNF
signaling pathway, and p53 pathway. The expression levels of
MMP9, COLIA, Fos, IGFI, and IL-17 pathway-related proteins
IL-17A, ERKI, JAK2, JNK, MAPKI, and STAT3 were confirmed
by RT-PCR in rats’ tissues, with IL-17A highly expressed in both
synovium and cartilage of KOA rats and with lower expressions of
MMP?9 in both tissues; the former two findings are consistent with
the prediction, while the latter finding is the exact opposite. These
results suggest that chondrocyte repair or synovial fibrosis might
exist in OA rats, and the IL-17 pathway might also be activated in
OA rats. The IL-17A, COLIA, and MMP9 screening performed in
this study might yield therapeutic targets for synovitis and cartilage
apoptosis in OA.
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Introduction: Rheumatoid arthritis (RA) is a common autoimmune joint disease, the
pathogenesis of which is still unclear. Cartilage damage is one of the main
manifestations of the disease. Chondrocytes are the main functional component
of articular cartilage, which is relevant to disease progression. Mechanical loading
affects the structure and function of articular cartilage and chondrocytes, but the
effect of weight bearing on chondrocytes in rheumatoid arthritis is still unclear.

Methods: In this paper, single-cell RNA sequencing (scRNA-seq) was performed
on collected cartilage from the weight-bearing region (Fb group) and non-
weight-bearing region (Fnb group) of the femur, and the differences between the
Fb and Fnb groups were analyzed by cell type annotation, pseudotime analysis,
enrichment analysis, cell interactions, single-cell regulatory network inference
and clustering (SCENIC) for each cell type.

Results: A total of 87,542 cells were analyzed and divided into 9 clusters. Six
chondrocyte subpopulations were finally identified by cellular annotation, and
two new chondrocyte subtypes were annotated as immune-associated
chondrocytes. The presence of each chondrocyte subpopulation and its
distribution were verified using immunohistochemical staining (IHC). In this
study, the atlas of femoral cartilage in knee rheumatoid arthritis and 2 new
immune-related chondrocytes were validated using scRNA-seq and IHC, and
chondrocytes in the weight-bearing and non-weight-bearing regions of the
femur were compared. There might be a process of macrophage polarization
transition in MCs in response to mechanical loading, as in macrophages.

Conclusion: Two new immune-associated chondrocytes were identified. MCs
have contrasting functions in different regions, which might provide insight into
the role of immune and mechanical loading on chondrocytes in the
development of knee rheumatoid osteoarthritis.

KEYWORDS

Rheumatoid arthritis, chondrocyte, single-cell RNA sequencing, weight-bearing
region, immune
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1 Background

Rheumatoid arthritis (RA) is a common chronic progressive
autoimmune joint disease, the onset and progression of which are
closely related to immune cells, synoviocytes, and osteoclasts (1),
and the pathogenesis has not been fully investigated. Knee
rheumatoid arthritis is characterized by knee pain and limited
mobility, with the main pathological features including synovitis,
progressive bone erosion, and cartilage damage (2). It has been
shown that chondrocyte proliferation, apoptosis, and autophagy are
associated with the progression of RA disease (3), suggesting that a
deeper understanding of cartilage would facilitate a better
exploration of the pathogenesis of RA.

Articular cartilage is an important connective tissue on the joint
surface, with a smooth and elastic surface that reduces joint friction
and motion shock. Cartilage tissue is mainly composed of
chondrocytes and secreted extracellular matrix, but abnormal
mechanical loading can affect the metabolic balance of
chondrocytes and have an impact on the catabolism of the
cartilage extracellular matrix (4). It has also been demonstrated
that mechanical overload not only affects chondrocyte proliferation
but also induces chondrocyte apoptosis (5, 6). At the same time,
stress stimulation from joint motion is one of the important
external factors regulating cartilage growth and development, and
lack of stress stimulation increases chondrocyte IL-4 or IL-10 levels,
which in turn exacerbates cartilage breakdown (7). In this study,
cartilage damage was found to be more severe in the weight-bearing
region of the femur during knee replacement surgery in RA
patients, and it was hypothesized that assessment of chondrocytes
in both weight-bearing and non-weight-bearing regions might
provide further insight into the function of chondrocytes and
facilitate an in-depth exploration of the pathogenesis of RA.

Single-cell RNA sequencing (scRNA-seq) enables the analysis of
cells in tissues at single-cell resolution, filling the gap of high-
throughput transcriptome technologies that cannot be sequenced
precisely to cell type. This technique has been widely used in
autoimmune diseases to reveal cellular heterogeneity and identify
pathogenic cell subpopulations in a wide range of immune
inflammation-related tissues (8). A study found that the proportion
of helper T cells and activated T cells in the synovium of rheumatoid
arthritis is higher than that of osteoarthritis(OA) (9). Up to now,
single-cell studies in RA have mostly focused on tissues such as
peripheral blood and synovium (10, 11), and relatively few studies
have been conducted on chondrocytes. Tang et al. performed the first
single-cell sequencing of chondrocytes in OA and identified
subpopulations of chondrocytes such as fibrocartilage chondrocyte
(FC), effector chondrocyte (EC), homeostatic chondrocyte (HomC),
regulatory chondrocyte (RegC) and cartilage progenitor cells (CPC)
(12). Our team’s previous single-cell study of healthy cartilage in the
ankle joint also identified two new subpopulations of chondrocytes,
which were named metal ion related chondrocytes (MirCs) and
splicing chondrocytes (SpCs) (13).

Mehmet et al. proposed that analysis of differential genes between
damaged and undamaged cartilage could help determine the exact
cause of focal cartilage damage (14). Therefore, in this study, cartilage
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from the weight-bearing and non-weight-bearing regions of the
femur of RA patients was taken separately and sequenced with
scRNA-seq to explore the function of chondrocyte subpopulations
as well as to complement and validate the previously identified
chondrocyte subtypes. This study hopefully provides insight into
the effects of mechanical loading and immunological factors on
chondrocytes and offers a reference for further exploration of the
pathogenesis and genetic markers of RA.

2 Methods

2.1 Volunteers screening and
samples selection

The flow chart of the study is shown in Figure 1A. In this study,
the volunteers were taken from patients who had no history of knee
trauma and were diagnosed with RA, with proposed knee
replacement in our hospital. We took cartilage from the weight-
bearing and non-weight-bearing regions of the joint on the
discarded femur from the knee replacement surgery. The
locations of the obtained cartilage samples are shown as red
circles in Figure 1A (2), with region A being the weight-bearing
region and region B being the non-weight-bearing region. We
cumulatively obtained a total of 7 groups of surface cartilage from
the weight-bearing region of the femur (called the Fb group) and the
non-weight-bearing region (called the Fnb group) from 7 patients,
and performed scRNA-seq on 4 groups (8 samples) and
immunohistochemical staining (IHC) analysis on 3 groups (6
samples). The study was approved by the Institutional Ethics
Review Committee of the Affiliated Hospital of Qingdao
University(QYFY WZLL 27403), and all donor patients signed a
written informed consent.

2.2 Cartilage zoning, segmentation, and
single-cell suspension preparation

All cartilage tissue was isolated within 3 hours of the knee
replacement osteotomy, and two experienced clinicians evaluated
the cartilage and positioned the weight-bearing and non-weight-
bearing regions. The surgically discarded bone tissue was then
placed in sterile saline and transferred to an ultra-clean table to
segment the cartilage tissue, ensuring that the excised cartilage
tissue did not retain any subchondral bone. The cartilage tissue was
then transferred to sterile Petri dishes placed on ice in phosphate-
buffered saline (PBS). Each tissue sample was approximately 0.25 x
1 x 2 cm in size and weighed approximately 0.5 ~ 0.6 g. The
cartilage samples were cut into 0.5 mm? and rinsed twice with PBS.
The digestion solution (0.2% collagenase II and 0.25% EDTA-
trypsin) was preheated in a water bath at 37°C, into which the
tissue blocks were shaken at 100 rpm for 20 min at 37°C to obtain a
single cell suspension. Afterward, PBS containing 10% fetal bovine
serum was added to stop the digestion. The obtained cell suspension
was filtered through a 70 um cell strainer and centrifuged at 300 x g
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FIGURE 1

Single-cell RNA-seq of human RA cartilage chondrocytes. (A) Schematic workflow of the experimental strategy. The circles represented the location
of the cartilage samples taken, with region A being the weight-bearing region and region B being the non-weight-bearing region. (B) Quality control
conditions. (C) Clustering results. (D) Cell type annotation results. (E) Pseudotime analysis of each cell type using the Moncle function. Trajectory
analysis was performed for the entire development line, and the color of each point represented the order of cell growth and differentiation. (F) The
interaction strength of intercellular communication between cell types. The color of the rectangle represented the probability of the role. CPC,
cartilage progenitor cells; EC, effector chondrocyte; FC, fibrocartilage chondrocyte; IrC, inflammatory related chondrocyte; MC, macrophage
chondrocyte; RegC, regulatory chondrocyte; RA, rheumatoid arthritis; t-SNE, t-distributed stochastic neighbor embedding.

for 5 min at 4°C. Dead cells were removed using the Miltenyi® kit~ 2.3 10X Genomics scCRNA-seq library

(MACS 130-090-101). Finally, the cell suspension was resuspended preparation and cell clustering
by centrifugation at 300 x g for 3 min at 4°C 2 times. The overall cell

viability was confirmed over 85% using Tissue Blue and the cells in The prepared single-cell suspensions were added to 10x
the single-cell suspension were counted by an automated cell ~ chromium, and the single cells were extracted and amplified
counter at a density of 700 - 1200 cells/ul. according to the instructions of the 10X Genomics Chromium
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Single-Cell 3 kit (V3). The cDNA library was constructed following
standard procedures. The library was sequenced on an Illumina
NovaSeq 6000 sequencing system with a minimum of 20,000 reads
per cell by LC-Bio Technology Co.Ltd (Hangzhou, China).
Sequencing files were converted to a FASTQ format by Illumina
bcl2fastq software (version 2.20), and the sample data were
processed and counted using the Cell Ranger pipeline (version
4.0.3). The scRNA-seq data were decoded using the Ensembl
GRCh38/GRCm38 reference genome, and the output data were
then loaded into the SeuratR package (version 3.1.1) for
normalization, reduction, and clustering. Genes expressed in less
than 3 cells were not incorporated into the analysis. In this program,
the number of genes expressed in a single cell should be more than
500, and the proportion of genes of mitochondrial DNA origin
should be less than 25%. Since the presence of ribosomal genes
affects the results of cell clustering, we used the Rsubread, edgeR,
and scater packages to remove the sequences of ribosomal genes.
The samples were integrated using the RunHarmony in Seurat.
Perform dimensionality reduction and visualization analysis of the
data using the RunTSNE in Seurat. The FindMarkers in Seurat was
used to identify marker genes expressed in more than 10% of cells in
each cluster and to screen for differentially expressed genes (DEGs)
between the Fb and Fnb groups. Use the featureplot to visualize the
expression levels of marker genes in the t-SNE plot. The ggplot2 R
package was used to visualize the results of the DEG analysis.

2.4 Gene ontology and Kyoto encyclopedia
of genes and genomes pathway
enrichment analyses

GO enrichment analysis is a commonly used bioinformatics
tool to determine whether a set of genes is enriched in a biological
process or function, which is used to annotate genes and analyze
their biological processes. The KEGG analysis based on the KEGG
database is commonly used for functional annotation and
enrichment analysis of genes and metabolic pathways, which
helps to understand the interactions between biomolecules and
metabolic pathways. We performed GO and KEGG enrichment
analysis using Metascape (http://metascape.org/gp/#/main/stepl)
to gain insight into the biological function of each cluster, with a
P value < 0.05 indicating significant results.

2.5 Identification of different cell types

DEGs with high log2FC values and high specificity were
selected as marker genes for each cluster. The marker genes were
normalized for each cell type using the pheatmap package, after
which they were clustered and heatmaps were drawn. The analyzed
marker genes were compared with the list of already validated
marker genes to identify the cell types (12, 13). The results of GO
and KEGG pathway enrichment analysis were also taken into
account when annotating cell types. The results of the enrichment
analysis were visualized using the ggplot2 package.
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2.6 Protein-protein interaction network
construction and hub gene identification

Search Tool for the Retrieval of Interacting Genes (STRING;
http://string-db.org)(version 11.5) is an online tool for analyzing
gene coding protein interactions. Cytoscape (version 3.9.1) is an
open-source network analysis software that can be used for
biological network analysis and visualization of the results. We
used STRING to construct a PPI network of DEGs between the Fb
and Fnb groups. The information obtained from STRING was
imported into Cytoscape, and the top 10 hub genes were identified
by cytoHubba.

2.7 Pseudotime analysis

Seurat objects with annotations were converted to readable cds
objects. Cells were aligned along the simulated cell developmental
trajectory, and the orderCells function was used to show cells’
presumed position in the Monocle. Different colors represented
different cell subpopulations.

2.8 Cell-cell interactions

We use the CellChat R package to analyze cellular interaction
networks and to calculate probability values for cell-cell interactions
by combining single-cell expression profiles with known ligands and
receptors. Seurat objects with annotations need to be converted to
CellChat objects. Over-expressed ligands or receptors in one cell type
were identified using the IdentifyOverExpressedGenes function.
Then, gene-expression data are projected into the protein
interaction network using the projectData function in CellChat.
Use the function of IdentifyExpressedInteractionCellChat to screen
for ligand-receptor interactions when either the ligand or its receptor
was overexpressed.

2.9 Single-cell regulatory network
inference and clustering

SCENIC is a single-cell RNA sequencing analysis tool for
resolving transcriptome data from individual cells to
characterize transcription factor activity in individual cells.
Seurat objects with annotations were imported to run Scenic
(version 0.9.1). Use GENIE3 to extrapolate gene regulatory
networks from gene expression data. The TF targeting
relationship with the gene was verified with the help of
RcisTarget software. Then, cells with active gene regulatory
networks were identified using AUCell software, and regulons
were scored for their Area Under Curve (AUC) by binarizing
specific regulons. The RSS score of the TF was obtained by the
calcRSS and ranked by value to determine the Top TF for each
cell type. The differentially expressed transcription factors were
visualized using the pheatmap function.
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2.10 Statistical analysis

The Wilcoxon rank sum test and independent samples t-test
were selected for data analysis of the number of different cell
subpopulations between groups according to the characteristics of
the data format. R packages stats and car were used to compare the
differences in cell numbers between the Fb and Fnb groups, and the
data were visualized with the ggplot2 package. P values < 0.05 were
considered statistically significant.

2.11 IHC

Immunohistochemical staining(IHC) was performed as follows.
Distal femoral cartilage tissue was trimmed and then incubated in 4%
buffered paraformaldehyde fixative for 48h. The tissues were then
incubated in EDTA for 3 months for decalcification, and the
decalcification effect was detected using a needle. Afterward, the
tissues were embedded in paraffin, and the paraffin samples were
dewaxed and rehydrated with xylene and ethanol. Subsequently,
samples were incubated in 3% hydrogen peroxide for 10 minutes to
block endogenous peroxidase activity. Antigen repair was performed
by treatment with 3% bovine serum albumin at room temperature for
30 min and digestion with pepsin. Later, the samples were incubated
with primary antibodies (specific names of these primary antibodies
are mentioned in the results section) for 12 h at 4°C, followed by
secondary antibody administration for 50 min at room temperature.
Finally, the samples were counterstained with DAB and hematoxylin
nuclei for about 3 min. The stained sections were visualized and
imaged with a vertical microscope (Nikon Eclipse Ci) and an imaging
system (Nikon Digital Sight DS-FI2) with white light. IHC staining of
cartilage sections was scored blindly by experienced pathologists using
a light microscope. The widely accepted German semi-quantitative
scoring system was used, taking into account the range of staining
strength and staining area. Staining intensity: 0, no coloring; 1, light
yellow; 2, brown-yellow; 3, brown-brown. Stained area: 0, <5%; 1, 5%-
25%; 2, 25%-50%; 3, 51%-75%; 4, >75%. These two scores were
multiplied together as the final score. Comparative analysis of IHC
staining scores for each layer of cartilage tissue was performed using
the Kruskal-Wallis test for within-group differences and the Wilcoxon
rank sum test for between-group differences. R package ggplot2 was
used for data visualization.

3 Results

3.1 Single-cell profiling of human RA
cartilage chondrocytes

Ultimately, 87,542 cells were analyzed and divided into
cluster0-8. The basic quality control conditions were as shown in
Figure 1B. Figure 1C displayed the clustering results and summary
results of the cell type annotation. 9 cell clusters were combined and
annotated into 6 chondrocyte subpopulations, including CPC, EC,
FC, IrC(inflammatory related chondrocyte), MC(macrophage
chondrocyte), and RegC (Figure 1D). The results of the
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pseudotime analysis were shown in Figure 1E. EC was selected as
the initial stage according to its distribution. The results of cellular
interactions were shown in Figure 1F, indicating that there might be
strong interactions between CPC and FC, and RegC. The results of
cell interactions were provided in Supplementary Data
(Supplemental Data Table 1).

3.2 Identification of human RA cartilage
chondrocyte populations and TF regulation

We collated the Topl0 DEGs for different cell types
(Supplemental Data Table 2) and plotted the gene expression heat
map (Figure 2A). Gene expression clustering plots (Figure 2B) and
DotPlot plots (Figure 2C) showed the specific distribution of
marker genes. The cell interactions (Figure 2D) show the Top5
TF of each cell subpopulation, showing that KLF7 mainly affects
CPC, SOX9 mainly affects EC, NFATC4 has some specificity in FC,
MATF is more significant in MC, IRF3 is mainly associated with IrC
and DLX4 has a greater effect on RegC.

THC was performed to validate the gene markers in different
chondrocyte types (Figure 3). FCs were distributed throughout the
cartilage, slightly more in the middle layer and less in the weight-
bearing region. RegCs were visible in all layers of cartilage, but there
were relatively fewer in the weight-bearing region. ECs were similarly
distributed throughout the cartilage, with fewer in the weight-bearing
region, and the differences were mainly in the deep layer. CPCs were
primarily found in the middle layer of cartilage, with significantly less
in the middle and deep layers of the weight-bearing region. MCs were
present throughout the cartilage, and there were higher concentrations
in the middle layer. In the weight-bearing region, there were
significantly fewer MCs in the middle and deep layers compared to
the non-weight-bearing region. IrCs were more abundant in all layers
of cartilage, similar to the distribution of MCs, with significantly lower
numbers in the middle and deep layers of the weight-bearing region
compared to the non-weight-bearing region.

We performed GO/KEGG pathway enrichment analysis for each
cell subpopulation of DEGs, and the detailed results were shown in
Supplemental Data Tables 3, 4. The bubble plots showed the results of
GO and KEGG enrichment analysis (Figures 4A-F). CPC was mainly
associated with nuclear division, chromosomes, extracellular matrix
structural constituents, and cell cycle. EC-related genes were mostly
enriched in the collagen-containing extracellular matrix, ossification,
and focal adhesion. FC was mainly enriched in extracellular structure
organization and ECM-receptor interaction. RegC was mainly
associated with cartilage development, collagen-containing
extracellular matrix. Cluster4 was mainly associated with antigen
processing and presentation, MHC class II protein complex, immune
receptor activity, and KEGG suggesting a close relationship with
phagosome and Rheumatoid arthritis. Cluster8 was enriched to the
regulation of leukocyte cell-cell adhesion, immunological synapse,
cytokine activity, and cytokine-cytokine receptor interaction. Our
team combined the GO/KEGG enrichment results and marker gene
annotated by Wang et al. on immune cells (15). The macrophage
subpopulation(APOC1) was more matched with Cluster4
(Supplemental Data Figure 1). The function of cluster 8 was not
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FIGURE 2

Identification of chondrocyte subpopulations. (A) Heatmap revealing the scaled expression of differentially expressed genes for each cell type.
Specific representative genes in each chondrocyte subset were highlighted along the right margin. The color scheme is based on z-scores.

(B) Clustering plots of Marker genes in cell subpopulations. (C) DotPlot of cell Marker genes. (D) Differences in transcription factor expression
between different groups and cell types, with colors indicating transcription factor AUC values in different cells. Fb, femur weight-bearing region;
Fnb, femur non-weight-bearing region. CPC, cartilage progenitor cells; EC, effector chondrocyte; FC, fibrocartilage chondrocyte; IrC, inflammatory
related chondrocyte; MC, macrophage chondrocyte; RegC, regulatory chondrocyte; RA, rheumatoid arthritis; t-SNE, t-distributed stochastic

neighbor embedding.

clearly indicated, and we tentatively found that it was related to
inflammatory processes such as leukocyte adhesion and cytokine
receptors. Therefore, Cluster4 was named macrophage chondrocyte
(MC), and cluster8 was named inflammatory related chondrocyte(IrC).

We also calculated and compared the proportion of each cell
type and cluster in the Fb and Fnb groups (Figure 5A; Supplemental
Data Figure 2). We used the Wilcoxon rank sum test to compare the
number of each cell subpopulation between the two groups
(Figure 5B), and the characteristics of the data format were in
Supplemental Data Tables 5, 6. The Fnb group had more RegCs, but
this was not statistically significant. Based on the DEGs between the
two groups (Supplemental Data Table 7). The volcano plot of DEGs
between Fb and Fb was shown in Supplemental Data Figure 3. The
DEGs were imported into String, an online tool for PPI network
analysis (Figure 5C; Supplemental Data Table 8), after which the
data were imported into Cytoscape, and the Top 10 Hub genes were
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identified using the cytoHubba plugin (Figure 5D). DEGs of MC
between Fb and Fb were also analyzed (Supplemental Data Table 9).
Figure 5E showed a volcano plot of DEGs in MC between Fb and
Fb. GO and KEGG enrichment analyses were performed.
(Figures 5F, G; Supplemental Data Table 10). The results showed
that the MCs in the Fb group were mainly associated with antigen
processing and presentation and MHC class II protein complex
binding; while the MCs in the Fnb group were mainly enriched to
cartilage development and extracellular matrix organization.

3.3 Identification of chondrocyte
populations in MC and IrC

The two immune-related cell subpopulations, MC and IrC, were
reclustered and 5981 cells were retained to obtain a total of 4
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clusters. The expression clusters of marker genes and the results of
enrichment analysis of clusterl(SPP1) and cluster3(AREG) in
repopulation were similar(Supplemental Data Figures 4, 5;
Table 11), so cluster]l and cluster3 were combined to obtain three
subpopulations of chondrocytes, SELENOP+, SPP1+, and IL32+
(Figure 6A). The Dot Plot of the genes suggested that the marker
genes were selected with specificity (Figure 6B), with SELENOP+
and SPP1+ positive cells mainly originating from MC. IL32+ cells
were mainly derived from IrC (Figure 6C). Then we validated it by
matching cell IDs. We found that 95% (311/326) of the cells in the
IL32+ were from IrC (Figure 6E; Supplemental Data Table 12).
Expression clustering plots (Figure 6D) show the distribution of
each cell type by a specific marker, validated using IHC (Figure 6F).
The results suggest that SELENOP+(SELENOP) and SPP1+(SPP1)
were distributed in the whole cartilage layer, mainly in the middle
and deep layers, and less in the weight-bearing region.

The GO and KEGG enrichment analysis of the two cell
subpopulation marker genes (Supplemental Data Table 13)
suggested that SELENOP+ MCs were associated with immune
response, complement activation, and monocyte chemotaxis;
SPP1+ MCs were associated with ATP generation and focal
adhesion (Figure 7A). The proportion of each subpopulation of
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MC in the Fb and Fnb groups was calculated and compared
(Figure 7B). We used the independent samples t-test to compare
the number of each cell subpopulation between the two groups
(Figure 7C), and the characteristics of the data format were in
Supplemental Data Tables 14, 15. The proportion of SPP1+ cells in
the Fb group was relatively high, but the statistical significance was
not significant. Figure 7D showed the top5 TF of the 3 cell
subpopulations, showing that MAF mainly affected SELENOP+
cells, while TAGLN2 had some specificity in SPP1+ cells.

4 Discussion

Rheumatoid arthritis (RA) is an autoimmune disease
characterized by synovitis, bone erosion, and cartilage damage
(progressive joint destruction), and its pathogenesis is not yet
fully understood. Our team found heavy cartilage erosion in the
weight-bearing region during RA knee replacement surgery. In this
study, we investigated chondrocytes in the weight-bearing and non-
weight-bearing regions of femoral cartilage in RA patients using
single-cell sequencing technology and performed analysis and
experimental validation of chondrocyte subsets and marker genes.
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It is worth mentioning that we identified immune-related subtypes
of chondrocytes, new markers, and signaling pathways that may be
involved in the pathogenesis of RA based on scRNA-seq analysis,
hoping to provide some reference and help in the diagnosis and
treatment of human RA.

Our sequencing analysis of femoral cartilage from RA patients
screened for a total of six cell subsets, including two of our newly
defined immune-related chondrocyte subsets (MC and IrC). The
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finding by Tang et al. that some of the RegC cells with high
expression of CD74, CD86, and HLA-DPA1 might have immune
cell functions during OA progression corroborates with the findings
of MC and IrC in this study (12). The psuedotime analysis resulted
in a binary branching structure (Figure 1E), where the EC is located
at the beginning of cellular evolution on the graph, which is also
consistent with the study by Tang et al. (12). CPCs are less frequent
at the start of differentiation, accumulating mainly at the ends of
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branches and at the ends of trajectories. Notably, FC and RegC
subpopulations are present throughout the developmental
trajectory, with FC accumulating mainly at the end of branches
and RegC significantly less at the end of the trajectory. In contrast,
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MC and IrC accumulate mainly at the end of the differentiation
trajectory. We also performed an in-depth analysis of cellular
interactions (Supplemental Data Table 1), with CPC interacting
relatively closely with cellular subpopulations such as FC/RegC/MC
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(Figure 1F). CD74, a receptor-related molecule associated with the
antigen presentation process, has a high degree of activation
between MC and six cell types, including itself, where CD74-MIF
may play a role in regulating macrophage migration. It has been
suggested that sufficient ferritin can be loaded with large amounts of
iron ions and can lead to further oxygen radical damage (16). Our
study also found that the molecules SCARAS5 and FTL/FTH1, which
are associated with iron ion transport, have a greater impact on the
interaction species between MC/IrC and various other cell
subpopulations, and perhaps the iron ion and RA relationship
deserves further exploration. Molecular pairs of osteogenesis-
related genes such as FN1 and integrin (o4fB1) activate
communication between RegC/EC/CPC, suggesting that these cell
subpopulations may have a role in chondrocyte differentiation and
collagen synthesis (17).

During RA progression, autoantigens would activate a specific
immune response, with increased secretion of inflammatory
cytokines and infiltration of synovial joints, resulting in arthritic
symptoms (18). It was shown that joint disease with cartilage
damage was closely related to immunological elements and it was
recognized that the immune response was a key factor influencing
cartilage repair (19, 20). During cartilage repair, immune cells such
as macrophages could secrete anti-inflammatory factors which in
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turn promoted cartilage repair (21). However, the persistence of
pro-inflammatory factors could also lead to chondrocyte death and
accelerate the degradation of the cartilage (22). Therefore,
understanding the relationship between chondrocytes and the
immune response at the single-cell level could help to unravel the
mechanisms underlying RA disease progression.

In this study, we identified two new subpopulations of immune
chondrocytes. The MC subpopulation, located in the whole
cartilage layer and more in the middle layer, showed high
immunological activity and was mainly involved in
immunological processes such as antigen processing and
presentation, MHC class II protein complex, and immune
receptor activity. KEGG suggested a close relationship with
Rheumatoid arthritis. Our sequencing results revealed that HLA
family genes such as HLA-DRA and HLA-DRBI1 are highly
expressed in MC, and the enrichment results of these genes
showed an association with RA disease (Supplemental Data
Tables 3, 4). Human leukocyte antigens (HLA) have gained some
attention as antigen-presenting receptors, and many researchers
suggested that HLA-DRBI1 might be strongly associated with RA
and influence the severity of the disease (23, 24). The interaction
between macrophages and chondrocytes was also found in OA to
increase the secretion of inflammatory cytokines and growth
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factors, leading to cartilage degeneration and destruction (25). This
also suggests that the discovery of the MC subpopulation might
provide new direction and value to the exploration of arthritic
disease mechanisms (26). The IrC subpopulation was distributed in
the whole cartilage layer, considered to be chondrocytes with
inflammatory characteristics like immune cell adhesion, cytokine
activity, and receptor. Leukocyte chemotactic genes were highly
expressed in this subpopulation and these genes were enriched for
the regulation of leukocyte cell-cell adhesion, immunological
synapse, cytokine activity, and cytokine-cytokine receptor
interaction. The KEGG results suggested a relationship between
the NF-Kappa B signaling pathway and RA disease. It has been
proposed that NF-kB was associated with bone erosion and the
progression of RA disease, exhibiting high levels of inflammatory
cytokines such as IL-1, TNF-o, and IL-6, and was believed to be one
of the major inflammatory pathways in RA (27). Nuclear factor
kappa B ligand (RANKL) was associated with the activation of NF-
kB, which could lead to bone erosion and bone destruction, and the
use of RANKL inhibitors could inhibit bone loss in RA by
interfering with osteoclasts (28).

Based on the properties and functions of MC and IrC in the
immune response, the analysis comparing the two cell
subpopulations might improve our understanding of the role of
chondrocytes in the pathogenesis of RA from an immunological
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perspective and even provide clues for RA cartilage regeneration.
We performed a repopulation study of the two chondrocyte
subpopulations, MC and IrC, and classified them into a total of
three cell subpopulations, SELENOP+, IL32+, and SPP1+, based on
the Marker gene of each subpopulation. Our study found that
SELENOP+ cells and SPP1+ cells were mainly derived from MC,
and Wang et al. also identified two macrophage clusters in immune
cells, named SELENOP-M¢ and SPP1-Me¢ (15), which also
corroborated our definition of MC here. SELENOP protein is a
transport carrier for the essential trace element selenium, which is
mainly expressed in the liver and secreted into the plasma and has
been shown to be associated with autoimmune diseases (29).
SELENOP is also associated with oxidative stress, and the protein
acts as an extracellular antioxidant with anti-inflammatory effects
(30, 31). In addition, Wang et al. found that the SELENOP-M¢@
cluster was also highly expressed in genes such as IL32, which
participated in peptide metabolism, protein transport, and cytokine
secretion, closely related to lymphocyte-related functions (15).
SPP1, also known as OPN, has been shown to be involved in M@
polarization and osteoclast attachment to the mineralized bone
matrix, and also to promote chondrocyte proliferation through
HOTAIR overexpression (32, 33). Knockdown of OPN could
upregulate the expression of OA-related genes, and enhance
chondrocyte senescence and apoptosis, accelerating the
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progression of OA (34). Increased expression of IL32-encoded
cytokines in RA synovium induces pro-inflammatory cytokine
expression, which was highly correlated with the severity of
inflammation, suggesting it might be a potential therapeutic target
for RA (35). In addition, unlike the induction of TNF-q, IL-1pB and
IL-6 via p38-MAPK, IL-32 was able to induce monocytes to
differentiate into macrophage-like cells through a non-apoptotic,
caspase-3-dependent mechanism, suggesting that IL-32 not only
participated in the host response by inducing pro-inflammatory
cytokines, but also directly affected specific immunity by
differentiating monocytes into macrophage-like cells (36).

The presence of mechanical loading would affect the
inflammatory state and growth factor expression of chondrocytes
and interfere with chondrocyte proliferation and migration (37),
but the effects of mechanical loading on chondrocyte types remain
underresearched. This study revealed a significantly larger
proportion of RegCs in the non-weight-bearing region, and that
RegCs with high expression levels of chondroprotective genes might
deserve further in-depth study. Notably, the MCs in the Fb group
were mainly associated with antigen processing and presentation
and MHC class II protein complex binding, which was consistent
with more severe cartilage damage in the weight-bearing region of
RA patients. The MCs in the Fnb group were mainly enriched for
activities such as cartilage development and extracellular matrix
organization, suggesting that cartilage in non-weight-bearing
regions of RA patients might have more activated cartilage
growth and development. Considering that the mechanical
loading in OA could affect chondrocyte pyroptosis by influencing
macrophage polarization (38), it is strongly reasonable to speculate
that there is a process of macrophage polarization transition in MCs
in response to mechanical loading, as in macrophages. MCs in the
weight-bearing region are mainly involved in activities such as
initiation and maintenance of immune response, and promotion of
antigen processing and presentation, which are similar to the
function of pro-inflammatory macrophages(M1) (39). In contrast,
MCs in non-weight-bearing region are associated with activities
such as connective tissue and cartilage development, which may
have similar functions such as inflammation relieving and repairing
like anti-inflammatory macrophages(M2) (39). Intervening in this
regulation of immune homeostasis might be a good inspiration for
decelerating the progression of RA, which could provide a reference
for gene regulation or extraction of relatively high-quality cartilage
from non-weight-bearing regions for targeted transplantation to
reverse cartilage damage in weight-bearing regions of RA.

There are still some limitations to our study. First, single-cell
sequencing is expensive, the number of samples taken in this study
was limited, and there is still space for improvement in sampling
technique and sample quality. Secondly, the samples were taken
from both weight-bearing and non-weight-bearing areas of RA
cartilage, and the lack of controls with healthy groups might result
in less significant differences between the groups, and in-depth
analysis and validation with multiple samples of healthy cartilage
would make the results more reliable. Thirdly, we have not
conducted in-depth in vivo and in vitro experiments to validate
our findings and the practical clinical value of the results of this
study needs to be further explored.
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5 Conclusions

In conclusion, our study dissociated and characterized RA
chondrocytes at single-cell resolution and identified two new
immune activities related chondrocyte subpopulations, MC and
IrC, revealing the different functions of MCs under mechanical
loading and specific markers as well as the key transcription factors
involved in each cell subpopulation, providing new possibilities for
the development of diagnostic and therapeutic strategies for RA.
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Background: Intervertebral disc degeneration (IVDD) is a leading cause of low
back pain (LBP). The pathological process of IVDD is associated with
inflammatory reactions and extracellular matrix (ECM) disorders. Digoxin is
widely used for treating heart failure, and it has been reported to have anti-
inflammatory effects.

Objective: This study is to investigate the role of digoxin in the pathogenesis of
intervertebral disc degeneration as well as the involved molecular mechanism,
particularly the potential target protein.

Methods: We exploited a rat needle model to investigate digoxin’'s role in
intervertebral disc degeneration in vivo. Safranin O staining was used to
measure cartilaginous tissue in the intervertebral disc. The morphological
changes of intervertebral discs in animal models were determined by
Hematoxylin-Eosin (H&E) staining and the pathological score. Primary nucleus
pulposus cells (NP cells) from intervertebral discs of patients and murine were
used in the present study. Western-Blotting assay, Real-time PCR assay,
immunofluorescence staining, and immunochemistry were used to detect the
role of digoxin in anti-TNF-oa-induced inflammatory effects in vitro. Transfection
of siRNA was used to regulate low-density lipoprotein receptor-related protein 4
(LRP4) expression in NP cells to investigate the potential protein target of digoxin.

Results: Digoxin protected against intervertebral disc degeneration in rat needle
models. Digoxin was found to exert its disc-protective effects through at least
three different pathways by a) suppressing TNF-a-induced inflammation, b)
attenuating ECM destruction, c) significantly promoting ECM anabolism.
Additionally, LRP4 was found to be the downstream molecule of digoxin in NP
cells for anti-inflammation and regulation of ECM metabolism. The knockdown
of LRP4 downregulated the protective effect of digoxin in NP cells.
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Conclusion: These findings suggest that digoxin may be a potential therapeutic
agent for intervertebral disc degeneration through anti-catabolism and pro-
anabolism. Digoxin might also work as an alternative for other inflammation-

related diseases.

KEYWORDS

digoxin, intervertebral disc degeneration, TNF, LRP4, inflammation

1 Introduction

Low back pain (LBP) is a widespread global health problem, a
cause of long-term health problems for people across different
incomes levels and countries (1, 2). According to the Global
Burden of Disease Study of 2019 (GBD 2019), LBP was the
leading cause of years lived with disability (YLDs) worldwide,
accounting for about 7.4% (range: 6.2%-8.7%) of the total global
YLDs. This translates to a staggering figure of approximately 63.7
million YLDs attributable to LBP. In Europe, the aggregate costs
associated with LBP equate to about 0.1%-2% of the gross domestic
product. Intriguingly, more than 80% of the total expenditure
related to LBP is constituted by indirect costs, including
productivity losses and disability-related disbursements (3, 4).

Intervertebral disc degeneration (IVDD) is a complication of
LBP (2, 5). A healthy intervertebral disc is composed of a centrally
located nucleus pulposus (NP) surrounded by an annulus fibrosus
(AF) (6). As the degenerative process advances, particularly with the
degeneration of the NP, the intervertebral disc may exhibit a
marked reduction in height, decreased water content, rupture of
the AF, and herniation of the NP, leading to nerve impingement at
the corresponding spinal segment (7). The mechanism underlying
intervertebral disc degeneration has not yet been fully elucidated
(8). Nevertheless, inflammation is widely accepted as the main
cause of disc degeneration (2).

Among the inflammatory molecules, tumor necrosis factor-
alpha (TNF-0) is thought to be the key factor associated with
IVDD. The pathogenesis of IVDD involves an increase in TNF-o
levels (9), and a high TNF-a. level is associated with low back pain
(10). The nuclear factor kappa B (NF-xB) pathway is activated
when TNF-o. reaches its peak during inflammation, resulting in the
activation of genes related to inflammation, such as chemokines and
proinflammatory cytokines like IL-1B and IL-6 (11). Besides
participating in the inception and advancement of the
inflammatory response, TNF-o is involved in cellular processes
such as apoptosis (12). Consequently, it is possible to treat
inflammatory diseases by regulating TNF expression levels.
Furthermore, managing IVDD can be treated by targeting the
TNF signaling pathway, which has become a feasible therapeutic
choice (13).

Digoxin, a cardiac glycoside derived from foxglove, is a potent
inhibitor of Na/K*-ATPase and one of the oldest medications used

for treating heart disease (14-16). Generally, digoxin is widely used
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in managing various cardiac diseases, including congestive heart
failure and atrial fibrillation (17, 18). Several studies have shown the
beneficial effects of digoxin in various inflammatory diseases, such
as rheumatoid arthritis, inflammatory bowel disease, and
autoimmune arthritis (19, 20). Researchers also found that
digoxin treatment in mice with acute liver injury resulted in a
significant decrease in proinflammatory cytokine levels, including
IL-17A, IL-1B, TNF-0, and inhibited NF-kB activation (21). These
studies suggest that digoxin possesses anti-inflammatory effects.
Despite the anti-inflammatory effect, digoxin also demonstrated
anabolic promotion in recent studies (22). However, whether
digoxin suppresses TNF-o-mediated inflammation and whether
digoxin has a protective effect in IVDD is still unknown.

Inflammation plays an important role in IVDD (23). The anti-
inflammatory properties of digoxin have been demonstrated in
different diseases (24). However, it is unclear how digoxin affects
IVDD. This study explored the role of digoxin in IVDD and the
associated molecular mechanisms, including the downstream
proteins influenced by digoxin.

2 Materials and methods

2.1 Isolation and culture of nucleus
pulposus cells

Human intervertebral disc tissue samples were obtained from
spinal surgical procedures with written informed consent from the
donors in accordance with ethical guidelines. The intervertebral
discs were dissected, and under aseptic conditions, the NP tissue
from the central part of the disc was isolated to the best possible
extent. The isolated NP tissue was then minced into tissue
fragments smaller than 1 mm”® in size. The collected NP tissue
fragments were digested with 0.25% trypsin (Gibco, America) for 20
minutes, and the excess trypsin was discarded. Subsequently, the
tissue fragments were enzymatically digested using type II
collagenase (Solarbio, China) at a concentration of 0.2%. The
tissue fragments were incubated at 37°C with 5% CO, for 2-4
hours. After incubation, the digested tissue was filtered using a cell
filter with a pore size of 70 um to separate the released cells from the
undigested tissue fragments. The resulting cell pellet was obtained
by low-speed centrifugation (800 rpm) for five minutes. DMEM/
F12 medium (Gibco, America) was used to resuspend the pellet of
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cells, supplemented with 10% fetal bovine serum (Gibco, America)
and 1% penicillin-streptomycin (Solarbio, China). The isolated NP
cells were seeded in culture flasks or dishes and maintained in a
humidified incubator at 37°C with 5% CO,. The culture medium
was replaced every two days, and subculturing was performed when
the cells reached 80%-90% confluence.

Following euthanasia, mice used in the experiment were surface
disinfected with 75% ethanol. Under aseptic conditions, the skin
and subcutaneous tissue of the dorsal region were incised, and the
paraspinal muscles were dissected to isolate the entire spine.
Intervertebral disc tissue was collected, and the AF was separated
under a microscope. The NP tissue was gently washed with
Phosphate Buffered Saline (PBS) for five minutes. The remaining
procedures for processing were similar to the previously described
method for human NP cell isolation.

2.2 Isolation and culture of intervertebral
disc tissue

Endoscopic surgical methodologies in spinal orthopedics were used
to surgically extract human NP tissues from intervertebral discs. These
samples were subsequently processed in a sterilized environment,
which included the removal of extraneous AF and ligamentum
flavum. The isolated human NP tissues were then bathed in PBS for
five minutes and then transferred into a culture dish containing
complete medium (DMEM/F12 medium supplemented with 10%
fetal bovine serum and 1% penicillin-streptomycin), where they were
cultivated for further experimentation.

Following euthanasia, the spines of mice used in the experiment
were procured via previously outlined procedures. Subsequent
intervertebral disc tissue isolation encompassed portions of the
adjoining superior and inferior vertebral bodies, intact cartilaginous
endplates, and the intervertebral disc itself. The separated murine
intervertebral disc tissues were rinsed in PBS five-minute and
relocated to a culture dish with complete medium, where they
were cultivated for subsequent experimental use.

2.3 Rat needle puncture model
establishment

For this experiment, eight weeks old male rats were selected and
anesthetized using isoflurane inhalation. After achieving complete
sedation, the rats were positioned prone on the surgical table, with
their tails immobilized. The caudal vertebrae were designated as the
puncture site, and a 21-gauge needle was used to penetrate the AF of
the intervertebral disc. The needle was inserted parallel to the
vertebral body, maintaining a depth of 5 mm. Following
insertion, the needle was rotated 360° and held in situ for 30
seconds prior to a gradual withdrawal along the initial insertion
trajectory. Subsequent to model establishment, intraperitoneal
injections were administered twice weekly, containing either a low
concentration of DMSO (<0.1%) or digoxin at a 50 nM
concentration. Four weeks post-surgery, magnetic resonance
imaging (MRI) assessments were performed under anesthesia.
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Upon the anticipated conclusion of the treatment regimen, rats
were euthanized, and their caudal vertebrae were procured for
subsequent histological examinations to assess the degree of IVDD.

2.4 Histological staining and analysis

The harvested intervertebral disc tissue was immersed in a 4%
paraformaldehyde (Solarbio, China) fixative solution for 48 hours
to preserve tissue morphology. The tissue was decalcified using a
10% EDTA solution (pH 7.2-7.4) for two weeks, with daily solution
changes. Subsequently, the tissue was dehydrated through a series of
graded ethanol baths, cleared with an environmentally friendly
clearing agent (Solarbio, China), and embedded in paraffin wax.
The paraftin-embedded tissue was then sectioned into 5 pm-thick
slices using a microtome. Appropriate histological stains were then
applied based on the instructions provided in the respective staining
kits. Hematoxylin and eosin (H&E) staining (Solarbio, China) was
used to observe the histological morphology of the intervertebral
disc, while Safranin O staining (Solarbio, China) was used for
visualizing cartilaginous components within the disc. Histological
scoring of the H&E and Safranin O-stained samples was performed
using the methodologies outlined in prior literature. The stained
results were evaluated from five perspectives. Each category was
assigned a score ranging from 1-3, yielding a cumulative score
between 5 and 15. Higher scoring levels indicated greater degrees of
degeneration (25, 26).

2.5 Immunohistochemical staining
and analysis

Paraffin-embedded tissue sections were subjected to a thermal
regimen at 65°C for an hour to facilitate the subsequent
deparaffinization with an environmentally friendly clearing agent.
The sections were then hydrated via a graded series of ethanol
solutions. Then, sections were heated in a citrate buffer with a pH of
6.0 to retrieve antigens, after which they were allowed to cool slowly.
An opaque incubation with 3% hydrogen peroxide was then
conducted, followed by a 30-minute blockade with 5% Bovine
Serum Albumin (BSA). Primary antibodies were diluted
according to the manufacturer’s instructions, and the sections
were incubated with these antibodies: COX-2 (1:100, Proteintech,
China), IL-1B (1:100, Cell Signaling Technology, America), MMP-
13 (1:100, Affinity, China), ADAMTS-4 (1:100, Abcam, America),
Col-2 (1:100, Proteintech, China), Aggrecan (1:100, Proteintech,
China), and LRP4 (1:50, Abcam, America). The sections were
incubated overnight at 4°C. The following day, the sections were
washed and incubated with a secondary goat anti-rabbit/mouse
immunoglobulin G (IgG) antibody (ZSGB, China) at 37°C for an
hour. Visualization of the antibodies was facilitated by applying
3,3’-Diaminobenzidine (DAB), followed by a counterstain with 1%
hematoxylin. The images were captured and analyzed for the
percentage of positive cells using the Image] software. For details,
we measured the average gray value (staining intensity) and the
percentage of positive area (stained area) of positive cells. Thus, the
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mean gray value is computed to evaluate the staining intensity. The
procedure was taken by imageJ. The consistency of parameters is
ensured when analyzing the staining intensity of each group.

2.6 Total RNA extraction and reverse
transcription polymerase chain reaction

Total RNA from the cells was extracted using either the TRIzol
reagent (Takara Bio, Japan) or a general RNA extraction kit
(Fastagen, China), adhering to the manufacturer’s respective
protocol, and RNA concentration was recorded. The extracted
RNA was retro-transcribed into complementary DNA (cDNA)
using a reverse transcription kit (Toyobo, Japan), following the
specific instructions provided in the kit’s manual. This newly
synthesized cDNA was then used as the template for the
Polymerase Chain Reaction (PCR) to amplify specific gene

TABLE 1 Real-time PCR primers.

Forward Primers,5'-3’

10.3389/fimmu.2023.1251517

sequences. A PCR system is set up with the SYBR Green-PCR
Master Mix (Toyobo, Japan) serving as the dye, and the Real-time
PCR reaction is executed following the instructions provided by the
manufacturer. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as an internal reference gene to normalize
the target genes. The specificity of the PCR product was ascertained
through melt curve analysis. We computed the relative levels of
relative mRNA expression using the AACT method. As shown in
Table 1, the primer sequences to the Real-time PCR experiments are
listed in Table 1. Each experiment was replicated more than three
times to ensure data reliability.

2.7 Western blot

Human NP cells were cultivated ex vivo in six-well plates, with
protein extraction performed at the appropriate time points. During

Reverse Primers,5'-3’

Human

COX-2 TCCTTGGGTGTCAAAGGTAAA TGGCCCTCGTTATGATCTG

iNOS CGTGGAGACGGGAAAGAAGT GACCCCAGGCAAGATTTGGA
IL-18 CAACAAGTGGTGTTCTCCATGTC ACACGCAGGACAGGTACAGA
IL-6 AGACAGCCACTCACCTCTTCA GGCTTGTTCCTCACTACTCTC
MMP-13 ATTAAGGAGCATGGCGACTTCT GCCCAGGAGGAAAAGCATGA
ADAMTS-4 ATGGCTATGGGCACTGTCTC CTGGCGGTCAGCATCATAGT
Col-2 GATGGCTGCACGAAACATACC GCCCTATGTCCACACCGAAT
Aggrecan AAACCTGGCGTGAGAACTGT CCACTGACACACCTCGGAAG
Bax GAGGTCTTTTTCCGAGTGGCA GGCAAAGTAGAAAAGGGCGAC
Bcl-2 GGGTGAACTGGGGGAGGATT ATCTCCCGGTTGACGCTCTC
Casp3 GAGCACTGGAATGTCATCTCGCTCTG AGACCGAGATGTCATTCCAGTGCTT
GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA
LRP4 ACCTACCTGTTCCCCTCTTGA GTCCTGCTCATCCGAGTCATC
Mouse

COX-2 TGCTGGTGGAAAAACCTCGT AAAACCCACTTCGCCTCCAA
iNOS CCTGCTTTGTCGAAGTGTC GCCAAACACCAAGCTCATGC
IL-1B GTGTCTTTCCCGTGGACCTT AATGGGAACGTCACACACCA
1L-6 GCCTTCTTGGGACTGATGCT GCCATTGCACAACTCTTTTCTCA
MMP-13 TGATGATGAAACCTGGACAAGCA GGTCCTTGGAGTGATCCAGACCTA
Col-2 CCAGATTGAGAGCATCCGCA ACTTTCATGGCGTCCAAGGT
Aggrecan AAACCTGGCGTGAGAACTGT CCACTGACACACCTCGGAAG
Bax CTGAGCTGACCTTGGAGC GACTCCAGCCACAAAGATG
Bcl-2 TGTGGTCCATCTGACCCTCC ACATCTCCCTGTTGACGCTCT
Casp3 AGGAGGGACGAACACGTCT CAAAGAAGGTTGCCCCAATCT
GAPDH CTTCACCACCATGGAGAAGGC GACGGACACATTGGGGGTAG
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the extraction of total cellular proteins, the culture medium was
discarded from the six-well plates, followed by a gentle washing of
the cells thrice using PBS. Subsequently, the cells were lysed for 30
minutes using the RIPA buffer (Solarbio, China) containing Protease
Inhibitor Cocktail (NCM, China) and protein phosphatase inhibitors
(NCM, China) onice. The entire lysate was then drawn into Eppendorf
tubes and further processed with a non-contact ultrasonic
disintegrator (New Bioruptor Pro, Belgium). The EP tubes
containing lysate were placed in a high-speed centrifuge and spun at
12,000 rpm at 4°C for 15 minutes. The supernatant was carefully
aspirated into new Eppendorf tubes for storage. The nuclear protein
extraction kit (Solarbio, China) instructions were followed to extract
nuclear protein, allowing for the separation of nuclear and cytoplasmic
proteins. The extracted proteins were initially quantified using a BCA
assay kit (Solarbio, China), followed by mixing with loading buffer
(EpiZyme, China) and heat denaturation before gel electrophoresis.
SDS-PAGE gels were prepared based on the kDa of the proteins to be
analyzed. The concentrations used in this experiment were 7.5%,10%
and 12.5%. Proteins were separated in SDS-PAGE gels and transferred
to PVDF membranes in equal amounts, and PVDF membranes were
blocked using 5% BSA for an hour after transfer. The blocked PVDF
membranes were incubated at 4°C for 12-16 hours with primary
antibodies diluted according to the instructions, including COX-2
(1:1000, Proteintech, China), iNOS (1:1000, Abclonal, China), MMP-
13 (1:1000, Proteintech, China), ADATMS-5 (1:1000, Abcam,
America), Col-2 (1:1000, Proteintech, China), Aggrecan (1:1000,
Proteintech, China), Bax (1:1000, Affinity, China), Bcl-2 (1:1000,
Affinity, China), Cleaved-Caspase3 (1:1000, Affinity, China), LRP4
(1:500, Abcam, America), P-P65 (1:500, Cell Signaling Technology,
America), P65 (1:1000, Affinity, China), P-AKT (1:500, Cell Signaling
Technology, America), AKT (1:1000, Cell Signaling Technology,
America), P-ERK1/2 (1:500, Zenbio, China), ERK1/2 (1:1000,
Zenbio, China), P-IxBo (1:500, Cell Signaling Technology,
America), Lamin-B1 (1:1000, Abways, China), and GAPDH (1:3000,
Abways, China). The blocked PVDF membranes were washed with
TBST to remove excess primary antibodies and incubated with
secondary antibodies (Proteintech, China) for one hour, followed by
image acquisition using a chemiluminescence imaging analyzer
(Tanon5200, China). Image analysis was conducted using
Image]J software.

2.8 Immunofluorescence staining

Cultures of human NP cells were performed in 24-well plates to
achieve the desired density and fixed with 4% paraformaldehyde. After
fixation, the cells were permeabilized for 10 minutes with 0.2% Triton
X-100 and then blocked for 30 minutes with 1% BSA to impede
nonspecific antibody binding. Thereafter, the cells were incubated
overnight at 4°C with specifically diluted primary antibodies as per the
instructions provided. The primary antibodies involved in this
experiment included COX-2(1:200, Proteintech, China), MMP-13
(1:200, Affinity, China), and C-Caspase3(1:200, Affinity, China). On
the following day, the cells were rinsed three times for five minutes each
with PBS containing Tween-20 to remove excess primary antibodies.
Then, the cells were incubated for an hour at room temperature with a
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fluorescently labeled goat anti-rabbit secondary antibody (1:200
7ZSGB-BIO, China). The cells are then washed three times with PBS
and treated with an appropriate amount of DAPI-containing anti-
quenching agent (Solarbio, China) to ensure complete and uniform
coverage of the cell surface. Finally, fluorescence images were captured
using an inverted fluorescence microscope and measured using the
software. In order to compare the fluorescence intensity, we measured
the fluorescent area ImageJ and integrated the density of each image.
The mean fluorescence intensity of each image was then analyzed while
ensuring consistent parameters.

2.9 TUNEL staining

Human NP cells were inoculated into 24-well plates and
stimulated with TNF-o for 48 hours to induce apoptosis. The
treatment group was pre-treated with 50 nM of digoxin.
Following the manufacturer’s instructions, cells were stained
using the TUNEL assay kit (ELabScience Biotech, China), and

images were captured using an inverted fluorescence microscope.

2.10 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide
assay (MTT assay)

Human NP cells are cultivated in vitro in a 96-well plate, with
each well incubated with 100 uL of complete culture medium. After
24 hours, the cells were treated with digoxin at varying
concentrations of 10, 20, 30, 50, and 100 nM and concurrently
incubated for an additional 24 hours. Subsequently, MTT assays
were performed according to the instructions provided with the
MTT kit (Solarbio, China), culminating in the measurement of
absorbance at a wavelength of 570 nm. The cell viability was
represented as the percentage of the average cell survival rate in
the treatment groups relative to that in the control group.

2.11 Alcian Blue staining

Human NP cells, isolated from original tissue, were uniformly
distributed into a six-well plate, with each well containing 2 mL of
complete medium for optimal growth conditions. The experimental
group of cells was treated with 50 nM digoxin. Subsequently, on the 3™,
7th, and 14" days post-inoculation, these cells were stained with the
Alcian Blue Stain Kit For Cell (Solarbio, China) according to the
manufacturer’s detailed instructions. To compare the relative staining
level of Alcian Blue, we measured the fluorescent area and integrated the
density of each image using the Image] software. The relative staining
level of each image was analyzed while ensuring consistent parameters.

2.12 Transfection

The NP cells derived from humans were cultured in complete
media until they attained an approximate confluence of 40%-50%,
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after which the media was promptly discarded, and the cells were
rinsed with PBS. Subsequently, siRNA (Ribo, China) and transfection
reagent (Ribo, China) were meticulously combined in accordance with
the manufacturer’s guidelines. This synergistic mixture was then
incorporated into an antibiotic-free complete media environment to
facilitate cell cultivation. A series of downstream experiments were
performed after 48 hours. The effectiveness of the gene knockdown was
subsequently verified using Western blot analysis. The protocol for
transfection with overexpression plasmids was similar to the
previously detailed process.

2.13 Ethics statement

This research was approved by the Medical Ethics Committee at
Qilu Hospital of Shandong University. During the study, 31 patients
—17 women and 14 men, aged 18-65 years—voluntarily
participated and gave their informed consent. All participants
underwent lumbar disc excision surgery at Qilu Hospital of
Shandong University, and the collection of intervertebral disc
tissue adhered to medical standards. Prior to surgery, MRI scans
of the patients were obtained, and the collected human NP tissue
samples were graded according to the Pfirrmann classification
system based on the intensity of T2-weighted (T2WI) signals in
the intervertebral discs. These samples were then used for further
experimental study. The details of the patients of the sample
provided in Table 2. All animal experiments involved in this
study were conducted following the International Guiding
Principles for Animal research, were approved by the Animal
Experimentation Center of Shandong University and met the
welfare requirements for experimental animals.

2.14 Statistical analysis

The present investigation used a blind method to gather all
experimental data. Statistical analysis was performed in GraphPad
Prism 9. T-tests were used to compare the means of two groups,
while the analysis of variance (ANOVA) was used for comparisons
involving more than two groups. Depending on the specific
research context, ANOVA could be either one-way (one
independent variable) or two-way (two independent variables),
with Tukey’s HSD post hoc test conducted using SPSS 22.0
software following the variance analysis. A p-value of less than
0.05 was considered statistically significant. Each value was
expressed as the mean + Standard Error of the Mean (SEM).

3 Results

3.1 Digoxin inhibited TNF-o.-induced
inflammation in the disc

To determine whether digoxin has an anti-TNF-a-induced
inflammatory effect in IVDD, we isolated mouse intervertebral disc
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TABLE 2 Summary of clinical and demographic features of patients.

Subject Gender Age Level Pfirrmann
Number Grade
1 Female 29 L4/5 I
2 Male 18 L4/5 11
3 Female 31 L5/S1 I
4 Female 27 L4/5 I
5 Male 22 L5/S1 11
6 Female 28 L5/81 I
7 Male 34 L4/5 I
8 Female 37 L5/S1 I
9 Female 25 L5/S1 I
10 Male 51 L4/5 III
11 Female 47 L4/5 11T
12 Male 43 L5/S1 111
13 Female 36 L5/S1 11
14 Male 41 L5/S1 III
15 Female 40 L4/5 11T
16 Male 53 L5/S1 III
17 Female 55 L4/5 v
18 Female 58 L5/S1 v
19 Female 49 L4/5 v
20 Male 57 L5/S1 v
21 Male 63 L4/5 v
22 Male 60 L4/5 v
23 Female 55 L5/S1 v
24 Male 58 L5/S1 v
25 Female 49 L5/S1 \Y%
26 Male 65 L4/5 \Y%
27 Male 62 L5/S1 \'
28 Female 57 L4/5 \Y%
29 Male 60 L4/5 v
30 Female 62 L5/S1 A%
31 Female 59 L4/5 \%

tissue for ex-vivo culture and performed immunohistochemical
staining for cyclooxygenase-2 (COX-2). We found that digoxin
downregulated TNF-o-induced COX-2 expression compared to
the control group (Figures 1A, B). Furthermore,
immunohistochemical staining of cultured human NP tissue
indicated that digoxin inhibited IL-1B expression in vitro
(Figures 1C, D). Additionally, the immunofluorescence staining of
COX-2 demonstrated that digoxin significantly suppressed the TNF-
o-induced inflammatory response in primary human NP cells
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FIGURE 1

Digoxin inhibited TNF-a-induced inflammation in intervertebral disc. (A) Immunohistochemical staining of COX-2 in mouse disc tissues. The brown signal
indicates positive. Scale bar = 500 pm. (B) The mean density of brown signal based on panel A; six groups of mice intervertebral disc tissues were used for

observation. (C) Immunohistochemical staining of IL-1f in human disc tissues. The brown signal indicates positive. Scale bar = 250 ym. (D) The mean density
of the brown signal based on panel (C), six groups of human nucleus pulposus tissues were used for observation. (E) Immunofluorescence staining of COX
2 in human nucleus pulposus cells. Scale bar = 100 pm. (F) The mean density of green signal based on panel (E). (G) The impact of different concentrations
of digoxin on the protein expression of COX-2 and iNOS was assessed in human nucleus pulposus cells treated with 10 ng/mL TNF-o for 48 hours using
Western blot analysis. (H) Relative density of bands based on Western blot. (I, J) The effect of digoxin on the transcriptional levels of COX-2, INOS, IL-1B, and
IL-6 was evaluated in human/mouse nucleus pulposus cells treated with 10 ng/mL TNF-o for 24 hours using Real-time PCR assay. The statistical analysis
used ordinary one-way analysis of variance (ANOVA) to assess the differences between groups, followed by Tukey's multiple comparisons test as a post hoc
analysis. The values shown above represent the mean + standard error of the mean (SEM) * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 versus the

comparison group

(Figures 1E, F). To further confirm this finding at the protein level,
we isolated human nucleus NP for in vitro culture. As shown in
Figures 1G, H, Western blot results showed upregulation in the
protein expression of COX-2 and inducible nitric oxide synthase
(iNOS) in the presence of TNF-0,, while additional use of digoxin
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decreased their expression. Real-time PCR analysis on both human
and mouse NP cells was conducted to determine transcriptional
levels of proinflammatory cytokines. As Figures 11, ] indicate, digoxin
significantly reduced TNF-o-induced cytokines mRNA expression,
including COX-2, iNOS, IL-1f, and IL-6.
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3.2 Digoxin protects against intervertebral
disc from matrix destruction

We developed a rat puncture model to further investigate the
protective effects of digoxin on IVDD. T2-weighted Magnetic
Resonance Imaging (T2WI MRI) showed that the disc signal
intensity and intervertebral space height of the digoxin-treated
group rats were higher than those of the puncture group rats
(Figure 2A). Subsequently, tissue samples were collected for
histological staining and scoring. As shown in Figures 2B-E,
intervertebral discs treated with digoxin displayed better
histological morphology in H&E staining. Additionally, Safranin
O/Fast Green staining demonstrated a reduction in loss of
cartilaginous components in the intervertebral disc tissue after
treatment with digoxin compared to the puncture group, which is
considered a morphological manifestation of IVDD. Additionally,
we also performed histological staining and scoring on mouse
intervertebral discs cultured ex vivo. The results of H&E staining
analysis indicated a significant reduction in histological scores for
intervertebral discs treated with digoxin compared to the TNF-o
stimulated group (Figures 2F, G). Furthermore, Safranin O/Fast
Green staining showed that digoxin reduced the decrease in
cartilage content induced by TNF-o in mouse intervertebral discs
(Figures 2H, I).

The extracellular matrix (ECM) of the NP is mainly maintained by
type II collagen (Col-2) and Aggrecan in a healthy state, and ECM
degradation is crucial for disc degeneration. To explore the effect of
digoxin on the regulation of ECM degradation in intervertebral discs,
we performed ex vitro-cultured mouse intervertebral discs and human
NP tissues. As shown in Figures 3A, B, digoxin downregulated the
TNEF-0-induced increase of A Disintegrin And Metalloproteinase with
ThromboSpondin motif 5 (ADAMTS-5) in the mouse intervertebral
disc. Figures 3C, D demonstrated that digoxin inhibited the TNF-o-
mediated expression of matrix metallopeptidase 13 (MMP-13) in
human disc tissue. The cell immunofluorescence staining for MMP-
13 in primary HNPCs also showed that digoxin suppressed TNF-oi-
mediated acceleration of ECM degradation metalloproteinase MMP-
13 (Figures 3E, F). A Western blot assay was performed to investigate
the involved molecular mechanism further. As shown in Figures 3G, H,
TNE-o increased MMP-13 and ADAMTS-5 levels, and additional use
of digoxin showed decreased expression of metalloproteinases.
Figure 3I demonstrated that digoxin significantly reduced TNF-o-
induced the expression of ECM degradation metalloproteinases,
including MMP-13 and ADAMTS-4, in both mouse and human NP
cells. These findings suggest digoxin reduced TNF-o-mediated matrix
metalloproteinase expression, leading to decreased matrix destruction.

To confirm the defensive impact of digoxin on ECM
degradation mediated by TNF-o, we directly measured the
expression levels of Col-2 and Aggrecan. As illustrated in
Figures 4A, B, ex-vivo culture of murine discs revealed significant
inhibition of Col-2 loss by digoxin. Additionally, in human disc
tissue, TNF-ou dramatically caused Aggrecan loss, but the process
was effectively reversed by digoxin (Figures 4C, D). To address the
involved pathway, primary human NP cells were cultured.
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Figures 4E, F revealed that digoxin significantly reversed TNF-o-
mediated Col-2 and Aggrecan loss in vitro by Western blot assay.
Accordingly, Real-time PCR was performed in human and mouse
NP cells to determine the transcriptional level change. As revealed
in Figures 4G, H, digoxin effectively reversed the decreased
expression of Col-2 and Aggrecan after TNF-o stimulation.

Collectively, digoxin exerted its matrix protective effect by
inhibiting destructive metalloproteinase and rescuing TNEF-o.-
mediated matrix loss.

3.3 Digoxin inhibits TNF-a-induced
nucleus pulposus cell apoptosis

It is thought that NP cells apoptosis plays a key role in disc
degeneration. We hypothesized whether digoxin could counteract
TNF-o-induced apoptosis of NP cells. To address this issue, we
examined the apoptosis-related proteins in HNPCs with or without
digoxin in the presence or absence of TNF-c. As shown in Figures 5A,
B, digoxin rescued the TNF-o-mediated increased Bcl-2-associated X
protein (Bax) and Cleaved-Caspase3 (C-Caspase3) levels and restored
the expression of B-cell lymphoma 2 (Bcl-2) in the presence of TNF-o.
Real-time PCR results for human and mouse NP cells showed that Bcl-
2 mRNA levels increased with the additional use of digoxin compared
to the TNF-a-stimulated group. However, Bax and Caspase3
transcriptional levels decreased with digoxin treatment (Figures 5C,
D). Immunofluorescence staining for C-Caspase3 showed that HNPCs
treated with digoxin had lower fluorescence intensity compared to
those stimulated with TNF-o (Figures 5E, F). TUNEL (terminal
deoxynucleotidyl transferase nick end labeling) is a frequently used
method to detect DNA fragments, a hallmark of apoptotic cell death.
As shown in Figures 5G, H, TUNEL staining of HNPCs demonstrated
that digoxin reduced TNF-o-induced DNA fragmentation and
inhibited HNPCs apoptosis.

3.4 Digoxin suppressed TNF-o-mediated
inflammation via NF-xB signaling

NEF-B signaling plays a critical role in the pathogenesis of IVDD
by triggering inflammation, ECM degradation, and cell death. Owing
to the ability of digoxin to counteract TNF-o-induced disc
degeneration, we then sort to determine the underlying mechanism.
As shown in Figure 6A, TNF-o strongly activated the phosphorylation
of p65 and effectively reduced TNF-ci-induced p65 phosphorylation.
Furthermore, cytoplasmic and nuclear proteins were extracted from
HNPCs for Western blotting. The results showed that TNF-o
stimulation caused a time-dependent decrease in cytoplasmic p65
expression and an increase in nuclear p65 expression, while digoxin
treatment significantly attenuated this trend (Figure 6B).
Immunofluorescence staining showed that digoxin significantly
inhibited TNF-o-induced nuclear translocation of p65 in HNPCs,
further confirming the effect of digoxin on TNF-0-mediated activation
of the NF-xB pathway (Figure 6C).
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Digoxin alleviated intervertebral disc degeneration in the murine model. (A) T2WI MRI images of rat intervertebral discs after establishing the
puncture model—each group comprised six adult rats aged eight weeks old. (B) Hematoxylin and Eosin (H&E) staining of rat intervertebral discs
puncture model. Scale bar = 1 mm. (C) Histological score assessment based on H&E staining. (D) Safranin O and Fast Green staining of rat
intervertebral discs puncture model. Scale bar = 1 mm. (E) Histological score assessment based on Safranin O and Fast Green staining. (F, G) HGE
staining was conducted on mouse intervertebral disc tissue with or without TNF-a. ex vitro, and histological scoring was performed to assess the
tissue changes. Scale bar = 500 pm. (H, 1) Safranin O and Fast Green staining was performed on mouse intervertebral disc tissue with or without
TNF-a ex vitro, and histological scoring was conducted to evaluate the tissue changes. Scale bar = 500 um. The intervertebral disc tissues of six
groups of rats were used for observation. The statistical analysis employed ordinary one-way ANOVA to assess the differences between groups,
followed by Tukey's multiple comparisons test as a post hoc analysis. The values shown above represent the mean + SEM ***p < 0.001 and ****p <

0.001 versus the comparison group

3.5 Digoxin promotes anabolism via AKT
and ERK1/2 pathways

To determine whether digoxin can directly promote the
anabolism in discs, we used culture media containing different
concentrations of digoxin to culture primary HNPCs. As shown in
Figure 7A, treatment with 20 nM and 50 nM digoxin significantly
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upregulated the transcriptional levels of Col-2 and Aggrecan. The

MTT assay results demonstrated that the use of digoxin did not
affect the viability of NP cells. Subsequently, HNPCs were cultured
in a medium supplemented with 50 nM digoxin, and Alcian Blue

staining was performed on days 3, 7, and 14. Following the addition

of 50 nM digoxin, the expression levels of proteoglycans in NPCs

were significantly upregulated on the 3™, 7, and 14" days.

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1251517
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Meng et al.

10.3389/fimmu.2023.1251517

A B ADAMTS-5
CTL TNF-a TNF-a + Digoxin 0209
z
G o01s]
2
§
°
< o0.104 —
ADAMTS-5 §
H
005
LB A i 0001
TNF-a 0 10 10(ng/mL)
Digoxin 0 0 50(nM)
c . -a + Digoxi D ...
CTL TNF-a TNF-a + Digoxin 015 —
% o010
2
H
MMP-13 :
S o00s] _
H
Ll — 232 153 s0o]
TNF-a 0 10 10(ng/mL)
Digoxin 0 0 50(nM)
E F
MMP-13
P gl
H TNF-a 0 10 10  10(ng/mL)
2 2 2
o E Digoxin [] ] 20 50(nM)
8
a H
§
T™Fa 0 10 1longimL)
Digoxin o o 50(nM)
o
(72}
7 H ADAMTS-5
1] s e
L £, 2
z 2 2.
= 8 s o
u u.
£ i .
3 %
[=] o o
TNF-a 0 10 10 10(ng/mL)  TNF-a ] 10 10 10(ng/mL)
Digoxin 0 o 20 50(nM) Digoxin o o 20 50(nM)
|
MMP-13 (Mouse] ADAMTS-4 (Mouse)
MMP-13 (Human) 1. ADAMTS4 (Human) . P13 (Mgyse) . (Mouse)
. e M
e aans } .
E 2z E— s 4 ]
3 annn werx ﬂEC 8 a 38 [4
£ E . £ E
5, i 5 5 2 5
5 R g A 5, “ ]
7 ] a @
g4 g4 ¢ L} g
] 8 2 £, n H
i . ] £ By :
, r : r T T T T T
TNF-a 0 10 10(ng/mL) TNF-a 0 10 10(ng/mL) TNF-a 0 10 10(ng/mL)  TNF-a 0 10 10(ng/mL)
Digoxin 0 0 50(nM) Digoxin 0 0 50(nM) Digoxin 0 0 50(nM) Digoxin o 0 50(nM)

FIGURE 3

Digoxin inhibits TNF-o.-mediated metalloproteinase expression in intervertebral discs. (A) Immunohistochemical staining analysis of ADAMTS-5 was
conducted on ex-vitro mouse intervertebral disc tissues treated with 10 ng/mL TNF-o, with or without 50 nM digoxin. The brown signal indicates

positive. Scale bar = 500 pm. (B) The mean density of brown signal based on
observation. (C) Immunohistochemical staining analysis of MMP-13 in human

panel A; six groups of mice intervertebral disc tissues were utilized for
nucleus pulposus tissues cultured ex vitro under conditions of TNF-o

treatment, with or without 50 nM Digoxin. The brown signal indicates positive. Scale bar = 250 um. (D) The mean density of the brown signal based

on panel C, six groups of human nucleus pulposus tissues were used for observation. (E) Immunofluorescence staining of MMP-13 in human nucleus
pulposus cells in the presence or absence of 50 nM digoxin with or without TNF-o treatment. The green signal indicates positive. Scale bar = 100 ym
(F) The mean fluorescence intensity of green signal based on (E). (G) Western blot analysis was performed to examine the expression of MMP-13 and
ADAMTS-5 proteins in human nucleus pulposus cells treated with different concentrations of digoxin in the presence or absence of 10 ng/mL TNF-a.
(H) Relative density of bands based on Western blot. (I) Real-time PCR assay was employed to assess the changes in transcriptional levels of MMP-13

and ADAMTS-4 in human and mouse nucleus pulposus cells, with or without

10 ng/mL TNF-o, and in the presence or absence of 50 nM digoxin.

Ordinary one-way ANOVA was used to assess the differences between groups, followed by Tukey's multiple comparisons test as a post hoc analysis.
The values shown above represent the mean + SEM * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 versus the comparison group.

Furthermore, these expression levels were higher compared to the
control group, indicating a significant increase in proteoglycan
expression induced by digoxin treatment (Figures 7B, C). The ERK1/
2 and AKT pathways play crucial roles in regulating ECM synthesis
(27,28). To investigate whether the activation of the ERK1/2 and AKT
pathways is involved in digoxin-mediated anabolism, we stimulated
HNPCs with 50 nM digoxin and extracted total proteins at different
time points, followed by Western blot analysis. The results depicted in
Figure 7D demonstrated that AKT and ERK1/2 were phosphorylated
by the addition of digoxin. To further confirm this finding, specific
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pathway inhibitors (U0126, Wortmannin) were added. As illustrated
in Figure 7E, the phosphorylation of ERK1/2 and AKT decreased.
Moreover, to confirm whether the pro-anabolism of digoxin depends
on the activation of the ERK1/2 and AKT pathways, we pre-treated
HNPCs with U0126 or Wortmannin for one hour, followed by
treatment with 50 nM digoxin for 24 hours. The Real-time PCR
results showed a decreased expression of Col-2 and Aggrecan at
transcriptional levels, indicating that digoxin promotes ECM
anabolism in HNPCs through the ERK1/2 and AKT
pathways (Figure 7F).
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Digoxin attenuates TNF-a-mediated extracellular matrix loss in discs. (A) Immunohistochemical analysis of Col-2 in mouse disc tissue in the
presence or absence of 10 ng/mL TNF-a, with or without 50 nM digoxin. The brown signal indicates positive. Scale bar = 500 um. (B) The mean
density of brown signal based on panel A; six groups of mice intervertebral disc tissues were used for observation. (C) Immunohistochemical analysis
of Aggrecan in human disc tissue cultured in the presence or absence of 10 ng/mL TNF-a, with or without 50 nM digoxin. The brown signal
indicates positive. Scale bar = 250 um. (D) The mean density of the brown signal based on panel C, six groups of human nucleus pulposus tissues
were used for observation. (E) Human nucleus pulposus cells were cultured in vitro and treated with or without 10 ng/mL TNF-a, along with 20 nM
or 50 nM digoxin or without digoxin. Western blot analysis was employed to assess the protein levels of Col-2 and Aggrecan. (F) Relative density of
bands based on Western blot. (G, H) Human or mouse nucleus pulposus cells were cultured in vitro in the presence or absence of 10 ng/mL TNF-a.,
with or without 50 nM digoxin. Real-time PCR analysis was performed to analyze the relative transcriptional levels of Col-2 and Aggrecan. Ordinary
one-way ANOVA was used to assess the differences between groups, followed by Tukey’'s multiple comparisons test as a post hoc analysis. The
values shown above represent the mean + SEM * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 versus the comparison group.

3.6 Digoxin protects against intervertebral
disc degeneration target LRP4

Digoxin is a Na'/K'-ATPase inhibitor widely used in clinical
practice, and its inhibitory effect on Na‘/K'-ATPase is well-
recognized. However, surprisingly, we have found that the protective
effect exerted by digoxin seems to be unrelated to the inhibition of Na*/
K*-ATPase (Supplementary Figure 1A). Low-density lipoprotein
receptor-related protein 4 (LRP4) is a transmembrane protein
involved in various cellular processes, including cell adhesion,
migration, and signal transduction (29, 30). Recent studies have
indicated that LRP4 is a novel target involved in digoxin-mediated
regulation of cartilage metabolism (22). The results from Figure 8A and
Supplementary Figure 1B also demonstrate a decrease in LRP4
expression disc with increasing grades of IVDD. However, The
results of the Western blot analysis showed that digoxin attenuated
the degradation of LRP4 in the rat needle model (Supplementary
Figure 1C). To investigate whether the protective effect of digoxin
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against disc degeneration depended on LRP4 protein, we cultured
primary human NP and transfected siRNA to knock down LRP4. As
shown in Figure 8B, HNPCs exhibited a significant LRP4 expression
reduction. Then, the transfected cells were stimulated with TNF-o in
the absence or presence of 50 nM digoxin. After 48 hours, total proteins
were extracted for Western blot analysis. Figure 8C demonstrates that
in the presence of digoxin, the siLRP4 group showed elevated
expression of COX-2, iNOS, MMP-13, ADAMTS-5, and C-
Caspase3, while the protein expression of Bcl-2 decreased. However,
after restoring LRP4, this trend was reversed. Next, to determine
whether the anti-inflammatory and ECM synthesis-promoting eftects
of digoxin depended on LRP4 protein, we used Western blotting for the
signaling test. The Western blot results showed that LRP4 knockdown
increased the phosphorylation of IxBa, while restoration of LRP4
expression rescued this process (Figure 8D). Meanwhile, inhibition of
digoxin-mediated activation of ERK1/2 and AKT signaling was
observed in LRP4-knockdown HNPCs. However, this inhibitory
effect was attenuated when LRP4 was restored (Figure 8D). Next, we
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FIGURE 5

Digoxin inhibits TNF-o-induced apoptosis of nucleus pulposus cells. (A, B) The changes in Bax, Bcl-2, and Cleaved-Caspase3 proteins were assessed by
Western blot analysis in human nucleus pulposus cells cultured in vitro and treated with 10 ng/mL TNF-o, with various concentrations of Digoxin. (C, D)
Real-time PCR was performed to evaluate the relative mRNA levels of Bax, Bcl-2, and Caspase3 in human or mouse nucleus pulposus cells in the
presence or absence of 10 ng/mL TNF-a, with or without 50 nM Digoxin. (E, F) Immunofluorescence analysis was conducted to examine the protein
expression of Cleaved-Caspase3 in human nucleus pulposus cells stimulated with TNF-c, with or without 50 nM Digoxin. Scale bar = 100 pm. (G, H)
TUNEL staining was used to analyze the nuclear DNA fragmentation in human nucleus pulposus cells treated with 50 nM digoxin following stimulation
with 10 ng/mL TNF-o. Scale bar = 100 ym. Ordinary one-way ANOVA was used to assess the differences between groups, followed by Tukey's multiple
comparisons test as a post hoc analysis. The values shown above represent the mean + SEM * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001
versus the comparison group
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FIGURE 7

Digoxin promotes anabolism through AKT and ERK1/2 pathways. (A) Transcriptional levels of Col-2 and Aggrecan were assessed by Real-time PCR
assay after 24 hours of treatment with different concentrations of digoxin in human nucleus pulposus cells. The impact of different digoxin
concentrations on cell viability was analyzed using the MTT assay. (B) Alcian Blue staining was performed to analyze proteoglycan expression in
human discs after treatment with 50 nM digoxin at days 3, 7, and 14. Scale bar = 200 pm. (C) The mean density of the blue signal is based on Alcian
Blue staining. (D) Western blot analysis was conducted to evaluate the phosphorylation and total levels of AKT and ERK1/2 in human nucleus
pulposus cells in the presence of 50 nM digoxin at various time points. (E) Phosphorylation and total levels of AKT and ERK1/2 in human nucleus
pulposus cells at various time points in the presence of 50 nM digoxin with or without Wortmannin or U0126. (F) Transcriptional levels of Aggrecan
and Col-2 in human nucleus pulposus cells treated with 50 nM digoxin, with or without Wortmannin or U0126. Ordinary one-way ANOVA was used
to assess the differences between groups, followed by Tukey's multiple comparisons test as a post hoc analysis. The values shown above represent
the mean + SEM * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 versus the comparison group. ns, no significance.

assessed the mRNA levels of inflammation and ECM metabolism-
related genes in transfected HNPCs. Consistent with the protein level
analysis, the Real-time PCR results revealed that LRP4 knockdown
increased the mRNA levels of COX-2, iNOS, MMP-13, and ADAMTS-
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4, and a decrease in mRNA levels of Col-2 and Aggrecan in TNF-oi-
stimulated HNPCs. This trend was not reversed by prior treatment
with digoxin. However, upon restoration of LRP4 expression, the
digoxin-treated group exhibited a decrease in mRNA levels of COX-
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FIGURE 8

Digoxin protects against intervertebral disc degeneration via targeting LRP4. (A) Immunohistochemistry staining of LRP4 in human disc tissue. The first lane

was from a Pfirrmann grade Il disc, while the second lane was from a Pfirrmann grade IV disc. Scale bar = 200 um. (B) Western blot analysis was conducted
to examine the expression of LRP4 protein in primary human nucleus pulposus cells following siRNA transfection. (C) Western blot analysis was performed to
evaluate the protein levels of COX-2, INOS, MMP-13, ADAMTS-5, Bcl-2, and Cleaved Caspase-3 in human nucleus pulposus cells. LRP4 knockdown, KD,
Negative control, NC. (D) Western blot for phosphorylated and total IkBo, phosphorylated and total AKT, and phosphorylated and total ERK1/2 after LRP4
knockdown and backup. GAPDH was examined as an internal control. (E) Real-time PCR assay was used to detect transcriptional levels of Col-2, Aggrecan,
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FIGURE 9
Proposal for Digoxin in intervertebral disc degeneration.

2, iNOS, MMP-13, and ADAMTS-4 compared to the siLRP4 group,
while the mRNA levels of Col-2 and Aggrecan increased (Figure 8E).
Finally, we treated transfected HNPCs with different concentrations of
digoxin for 24 hours and measured the mRNA levels of Col-2 and
Aggrecan. As depicted in Figure 8F, after LRP4 knockdown, the
stimulatory effect of digoxin on the upregulation of Col-2 and
Aggrecan mRNA expression was significantly inhibited, but this
effect was reversed after restoring LRP4.

4 Discussion

IVDD is a significant contributor to back pain and disability
worldwide (2, 31). It involves an imbalance between anabolic and
catabolic processes (32). Progressive degradation of the ECM ensues
in the course of IVDD, accompanied by an augmentation of cellular
apoptosis and a concomitant exacerbation of inflammatory
responses (32, 33). This multifaceted pathological process
underscores the necessity of comprehensive therapeutic strategies
that address these pivotal aspects of IVDD (33).

Pharmacological approaches for IVDD have been extensively
investigated, but the development of effective therapeutics remains
challenging (7, 34) chiefly due to the complexity of the mechanisms
involved in IVDD. Moreover, most current pharmacological
treatments for disc degeneration mainly focus on managing
symptoms and reducing inflammation (35, 36). Consequently, the
discovery of drugs that can modify the disease course is of
paramount importance. Our study sheds light on the potential of
digoxin in addressing this unmet need.

Frontiers in Immunology

The pathophysiology of IVDD is significantly influenced by the
TNF-o. and NF-xB signaling pathways (36, 37). TNF-a, a potent
proinflammatory cytokine, is responsible for the initiation and
progression of disc degeneration by stimulating the NF-xB
pathway, which promotes inflammation, ECM degradation, and
apoptosis. TNF-a, upregulates key mediators of inflammation and
catabolic activities, such as COX-2, iNOS, and IL-1B (8, 13). The
results of our study indicate that digoxin may have anti-
inflammatory properties, as evidenced by its ability to inhibit the
upregulation of COX-2 and iNOS induced by TNF-o, as well as its
ability to reduce the expression of IL-1p in the intervertebral disc.
These findings suggest that digoxin has the potential to mitigate the
inflammatory response associated with IVDD.

Aggrecan and Col-2 are crucial components of the ECM in the
intervertebral disc, responsible for maintaining hydration,
compressive resistance, and structural integrity (38, 39).
Dysregulation of Aggrecan and Col-2 contributes to the
breakdown of the disc (40). The loss of these constituents is a
major feature of IVDD. The degradation of Col-2 and Aggrecan is
attributed to the upregulation of MMPs, specifically MMP-13, and
A Disintegrin and Metalloproteinase with Thrombospondin Motifs
(ADAMTS), specifically ADAMTS-4/5. Our findings revealed that
digoxin treatment inhibited the upregulation of MMP-13 and
ADAMTS4/5 induced by TNEF-q, leading to restoration of the
expression of Col-2 and Aggrecan, indicating its potential role in
inhibiting ECM degradation in disc degeneration. Besides matrix
degradation metalloproteinase, it is reported digoxin alone exerts
strong anabolic promotive effects in the cartilage repair process.
Given this importance, the present study found digoxin has a dual
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effect on IVDD by inhibiting catabolic destruction and
promoting anabolism.

Apoptosis, or programmed cell death, is a prominent feature of
disc degeneration. Increased apoptotic activity in NP cells
contributes to the loss of cellularity and ECM components in the
disc (41). When TNF-a. is present in excessive amounts, as is often
the case in pathological conditions like disc degeneration, it can lead
to an increase in Bax and a decrease in Bcl-2, tipping the balance
toward apoptosis. Caspase-3 operates as a pivotal executioner in the
apoptosis pathway, becoming activated in the aftermath of
apoptotic initiation (13). Our findings revealed that digoxin
treatment downregulated TNF-o-induced apoptosis in NP cells,
as evidenced by the reduced expression of the pro-apoptotic protein
Bax and decreased cleaved caspase-3 levels. This suggests a potential
role of digoxin in inhibiting apoptosis and preserving the viability of
NP cells in disc degeneration.

Throughout the course of IVDD, TNF-a. plays a crucial role in
regulating the inflammatory response and ECM metabolism by
activating the NF-xB pathway. As a transcription factor, NF-xB
modulates the expression of a wide range of genes associated with
inflammation, such as COX-2, iNOS, and MMPs. Upon TNF-o
stimulation, NF-xB is triggered and migrates into the cell nucleus,
where it associates with specific DNA sequences, consequently
promoting the synthesis and release of inflammatory mediators,
provoking ECM degradation, and ultimately accelerating IVDD.
Our investigation indicates that digoxin diminishes the
phosphorylation of p65 protein post TNF-o treatment and
significantly impedes the nuclear translocation of pé65,
highlighting the suppression of TNF-o. induced activation of the
NEF-xB pathway by digoxin.

The ERK1/2 and AKT signaling pathways play crucial roles in
regulating ECM synthesis and anabolism in NP cells (42).
Activation of these pathways promotes the expression of anabolic
factors, including Aggrecan and Col-2, and enhances ECM
deposition. Interestingly, our study demonstrated that digoxin
treatment activated the ERK1/2 and AKT pathways, leading to
increased mRNA expression of Aggrecan and Col-2, suggesting its
potential role in promoting ECM anabolism and counteracting the
catabolic processes in disc degeneration. Furthermore, the ERK1/2
and AKT signaling pathways can modulate apoptosis in NPCs
through diverse mechanisms. Digoxin, through its ability to activate
the ERK1/2 and AKT pathways, potentially counteracts cellular
apoptosis. Nevertheless, additional experiments are necessary to
explore the reciprocal relationship between digoxin’s demonstrated
anti-apoptotic capabilities and these two pathways.

LRP4 acts as a transmembrane protein implicated in myriad
cellular processes, demonstrated to engage in the Agrin-mediated
homeostasis of chondrocytes. Antecedent reports have depicted
LRP4 as a therapeutic target for digoxin in osteoarthritis treatment
(22), while our research reveals a correlation between its
dysregulation and IVDD. As the severity of IVDD intensifies, a
parallel decline in the expression of LRP4 in the NP tissues is
observed. When LRP4 is knockdown, the capacity of digoxin to
counteract the inflammation and ECM degradation mediated by the
TNF-0/NF-kB pathway weakens, and its ability to stimulate ECM
anabolism via the ERK1/2 and AKT pathways is obstructed.
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However, these effects were reversed after restoring LRP4
expression, suggesting that LRP4 could potentially serve as a
latent target for digoxin in protecting against IVDD.

In conclusion, our findings underscore the potential of digoxin
as a multifaceted therapeutic agent for IVDD (Figure 9). It appears
capable of modulating inflammation, promoting ECM anabolism,
and decreasing apoptosis. The suggested involvement of LRP4 in
these processes provides a new direction for further research into
the molecular mechanisms underlying IVDD and its treatment.
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SUPPLEMENTARY FIGURE 1

(A) Human nucleus pulposus cells were subjected to treatment with or
without 0.1 pM Istaroxime hydrochloride in the presence of 50 nM Digoxin
for a duration of 24 hours, following which, the mRNA levels related to COX-
2, INOS, MMP-13, ADAMTS-4, Aggrecan, and Col-2 were evaluated using
Real-time PCR. (B) Western blot and Real-time PCR analyses were employed
to investigate the expression levels of LRP4 in human nucleus pulposus cells
of varying Pfirrmann grades (n=6). (C) Following euthanasia, rat nucleus
pulposus cells were isolated for ex vivo cultivation in the control group,
needle surgery group, and the group receiving 50 nM Digoxin treatment
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Objective: IL-1B is a leaderless cytokine with poorly known secretory
mechanisms that is barely detectable in serum of patients, including those with
an IL-1B-mediated disease such as systemic juvenile idiopathic arthritis (sJIA).
Leukocyte microvesicles (MVs) may be a mechanism of IL-1B secretion. The first
objective of our study was to characterize IL-1B-positive MVs obtained from
macrophage cell culture supernatants and to investigate their biological
functions in vitro and in vivo. The second objective was to detect circulating
IL-1B-positive MVs in JIA patients.

Methods: MVs were purified by serial centrifugations from PBMCs, or THP-1
differentiated into macrophages, then stimulated with LPS + ATP. MV content
was analyzed for the presence of IL-1B, NLRP3 inflammasome, caspase-1, P2X7
receptor, and tissue factor (TF) using ELISA, Western blot, or flow cytometry. MV
biological properties were studied in vitro by measuring VCAM-1, ICAM-1, and E-
selectin expression after HUVEC co-culture and factor-Xa generation test was
realized. In vivo, MVs’ ability to recruit leukocytes in a murine model of peritonitis
was evaluated. Plasmatic IL-1B-positive MVs were studied ex vivo in 10 active JIA
patients using flow cytometry.

Results: THP-1-derived macrophages stimulated with LPS and ATP released
MVs, which contained NLRP3, caspase-1, and the 33-kDa precursor and 17-kDa
mature forms of IL-1B and bioactive TF. IL-1B-positive MVs expressed P2X7
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receptor and released soluble IL-1B in response to ATP stimulation in vitro. In
mice, MVs induced a leukocyte peritoneal infiltrate, which was reduced by
treatment with the IL-1 receptor antagonist. Finally, IL-1B-positive MVs were
detectable in plasma from 10 active JIA patients.

Conclusion: MVs shed from activated macrophages contain IL-1B, NLRP3
inflammasome components, and TF, and constitute thrombo-inflammatory
vectors that can be detected in the plasma from active JIA patients.

KEYWORDS

microvesicles, IL-1B, NLRP3-inflammasome, tissue factor, juvenile idiopathic arthritis

1 Introduction

IL-1P is a major cytokine in innate immunity, involved in the
pathogenesis of various rheumatic diseases, notably systemic
juvenile idiopathic arthritis (sJTA). Juvenile idiopathic arthritis
(JIA) is a generic term to define pediatric inflammatory arthritis
of unknown cause, which may occur with different clinical
presentations. JIA could present as oligoarthritis, polyarthritis
with or without circulating rheumatoid factor, psoriatic arthritis,
enthesitis-related arthritis, and sJIA. sJIA is a rare form of the
disease (10% of JIA) with systemic symptoms such as arthralgia,
fever, evanescent rash, and a major biological inflammatory
syndrome with neutrophilic polynuclear leukocytosis, elevated C-
reactive protein (CRP), and hyperferritinemia, reflecting
hypercytokinemia IL-1; notably, it has been shown to play an
important role in the pathogenesis of sJTA and at a lower degree
in other forms of JIA, since blocking IL-1 using the recombinant
form of the IL-1 receptor antagonist or anti-IL-1 monoclonal
antibody is an efficient strategy (1, 2). However, circulating IL-1 is
usually not detectable, in patients, using immunoassays.

IL-1P belongs to the IL-1 family of cytokines, which, except for the
IL-1 receptor antagonist, lack a leader sequence and do not follow the
classical Golgi apparatus secretory pathway. This may in part, explain
the low detectable circulating concentrations in the serum from
patients (3). After priming through TLR activation and gene
transcription, IL-1B is synthesized as a 33-kDa precursor. After a
second activation cell signal, such as P2X7 purinergic receptor
activation by ATP, an intra-cytoplasmic protein complex called
inflammasome is assembled by the association of a NOD-like-
receptor (NLR), mainly NLRP3, an adaptor-protein (ASC) and pro-
caspase-1 (4). NLRP3 assembly and activation lead to pro-caspase-1
auto-cleavage in active caspase-1, followed by the processing of the IL-
1B precursor in its 17-kDa mature form. The same mechanism is
involved in the processing of IL-18, another important IL-1 family
member (5). Following or concomitantly with this step, several
mechanisms of IL-1B secretion have been proposed (6, 7). One may
involve secretory lysosomes, which may be similar to autophagosomes
and are released by cells when cytoplasmic autophagy is inhibited (8-
11). Another mechanism may involve secretion of HLA class II-
positive exosomes (12). When cells are more strongly activated or for
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alonger period of time, caspase-1 may induce IL-1[3 processing and the
cleavage of gasdermin-D, which, in turn, induces a new type of cell
death called pyroptosis (13-16). In this case, the 17-kDa mature IL-1
is released out of the cells through membrane pores (17). In addition,
IL-1B may be released via another kind cell death independent of
caspase-1, called necroptosis (18).

A different way of IL-1f release, barely detectable by usual
assays, may be due to the shedding of membrane microvesicles
(MVs) (19-21). MVs are small membrane extracellular vesicles
(0.1-1 um) shed by various cells during activation or cell death (22).
Their role as a vector of bioactive molecules has been suggested,
since MVs bear cell-surface receptors, contain various cytosolic
proteins including cytokines, signaling molecules, or RNA,
depending on cell origin and the kind of stimulus that induces
their formation (23). Exposure of phosphatidylserine (PS) resulting
from loss of plasma membrane symmetry is essential for the
formation of MVs and enables their detection by flow cytometry,
using annexin-V labeling (24). MVs are thought to be involved in
many processes such as coagulation, inflammation, and
angiogenesis and have been identified as potential biomarkers of
diseases with high vascular risk (25). Many cellular types can release
MVs, among them myeloid cells (26). MVs issued from activated
monocytes or macrophages have been shown to contain bioactive
IL-1P in vitro; however, their pro-inflammatory functions in vivo as
well as their detection in human diseases have not been reported to
date. Here, we sought to evaluate IL-1B-positive MV pro-
inflammatory functions, using in vitro and in vivo models and
tried to detect them in patients with JIA, in a pilot study.

2 Materials and methods

2.1 Cell culture

The cells used were macrophages differentiated from THP-1
cells treated with phorbol myristate acetate (PMA, Sigma-Aldrich,
USA) for 24 h or from peripheral blood mononuclear cells
(PBMCs) treated with GM-CSF (Sargramostim, 50 ng/mL) for 7
days and human umbilical vein endothelial cells (HUVECs). All
culture conditions are described in Supplementary Methods.
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2.2 Generation, numeration, and
characterization of MV population

Cell culture media issued from the different conditions of
stimulation were collected and centrifuged at 300g for 10 min, to
eliminate cellular debris. Supernatants were centrifuged at 4,500g
for 10 min at 4°C to remove apoptotic bodies, then at 70,000¢ for 90
min to pellet MVs. MVs were washed with phosphate buffered
saline (PBS), resuspended in PBS, and stored at —80°C until being
used. MVs were analyzed using a Gallios flow cytometer (Beckman
Coulter, USA). Protocol settings and gates as forward scatter by side
scatter were adjusted by using 0.5-, 0.9-, and 3-um Megamix beads
(Biocytex, France), as previously described (27). Isolated MV's were
stained with 250 pg/mL FITC-labeled annexin A5 Kit (Tau
Technologies, the Netherlands) for 30 min at room temperature
in the dark, before adding 500 pL of annexin-V-binding buffer and
flow-counting beads (Biocytex, France) (28).

To detect the presence of IL-1B, MVs were permeabilized in
PBS containing 0.2% saponin, which, at this low concentration,
guaranteed preservation of the integrity of the MV phospholipid
bilayer, and then incubated at 4°C for 1 h with 25 pg/mL Alexa
Fluor 647 anti-human IL-1f antibody (BioLegend, clone JK-1B-1,
Cat# 508207, RRID: AB_604133, USA) or 25 pg/mL Alexa Fluor
647 mouse IgG1 control isotype (BioLegend Cat# 400155, RRID:
AB_2832978). After washing, permeabilized MV were stained with
annexin-V-FITC to separate MVs from background in flow
cytometry analysis. The same permeabilization procedure was
used for double labeling of IL-1 and P2X7R, with the further use
of an anti-P2X7R rabbit monoclonal antibody (Cell Signaling
Technology Cat# 13809, RRID: AB_2798319) or a control rabbit
IgG (Cell Signaling Technology Cat# 2729, RRID: AB_1031062),
followed by addition of Alexa 488-conjugated goat anti-rabbit IgG
(Thermo Fisher Scientific Cat# A78953, RRID: AB_2925776).

2.3 Western blot experiments

Cells and MVs were lysed in buffer containing 20 mM tris, pH
7.5,150 uM NaCl, 2 mM EDTA pH 8, 0.1% NP40, and a cocktail of
protease inhibitors (Thermo Fisher Scientific, USA). Protein
concentrations were measured using the BCA protein assay kit
(Thermo Fisher Scientific, USA). For Western blot analysis, equal
amounts of proteins (15 to 30 pg) were separated on a 4%-12%
gradient Novex gel (Thermo Fisher Scientific, Waltham, United
States), and then transferred on nitrocellulose membranes (GE
Healthcare, USA). Blots were blocked with TBST (150 mM NaCl,
50 mM Tris-HCl at pH 7.5, and 0.1% Tween 20) containing 5% BSA
for 1 h, then probed with the following primary antibodies: mouse
anti-human IL-1f 1:1,000 (3A6, Cell Signaling Technology Cat#
12242, RRID : AB_2715503), rabbit anti-caspase-1 p10 1:200 (Santa
Cruz Biotechnology Cat# sc-515, RRID : AB_630975), rabbit anti-
human caspase-1 1:200 (Santa Cruz Biotechnology Cat# sc-622,
RRID : AB_2069053), mouse anti-human NLRP3 1:1,000 (Enzo Life
Sciences Cat# ALX-804-819-C100, RRID : AB_2051972), rabbit
anti-human P2X7 1:200 (Sigma-Aldrich Cat# P9122, RRID :
AB_477418), rabbit anti-human tissue factor (TF) 1:1,000
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(Abcam Cat# ab151748, RRID : AB_2814773), rabbit anti-human
ICAM-1 1:1,000 (Cell Signaling Technology Cat# 4915, RRID :
AB_2280018), rabbit anti-E-selectin 1:200 (Santa Cruz
Biotechnology Cat# sc-14011, RRID : AB_2186684), and rabbit
anti-human VCAM-1 1:200 (Santa Cruz Biotechnology Cat# sc-
8304, RRID : AB_2214058). Membranes were then incubated with
horseradish peroxidase-conjugated secondary antibodies (Thermo
Fisher Scientific, USA), using ECL or ECL Plus substrates (Thermo
Fisher Scientific, USA) and chemiluminescence detection system
(G:Box, Synoptics, UK).

2.4 Cytokine assays

After the lysis of MVs by three freeze-thawing cycles, IL-1f
concentrations were measured using a highly sensitive ELISA assay
(IL-1 beta Human ELISA Kit, High Sensitivity, Life Technologies,
Cat # BMS224HS USA). The same ELISA kit was used for
measuring IL-1B concentration in blood samples.

2.5 Tissue factor activity

TF activity was measured using a Factor Xa generation assay, as
previously described (29). MVs were resuspended in HEPES
(Sigma, St Louis, United States), and then incubated in a 96-well
plate with anti-TF monoclonal antibody (clone 183 SBTEF-1,
BioCytex, Marseille, France) or control isotype (clone a-DNP
2H11-2H12, BioCytex, Marseille, France) antibodies for 30 min.
A reaction mix containing FVII, Factor X, and CaCl, (Sigma, St
Louis, United States) was then added to each well to trigger the
coagulation cascade and generate FXa. After 2 h of incubation, FXa
activity was monitored by the addition of a fluorogenic substrate
(factor Xa substrate, Stago 390/450nm, Biocytex, Marseille) (30)
and fluorescence was measured, using a fluorimeter (Fluoroskan,
Thermo Scientific, United States).

2.6 Transmission electronic microscopy

After thawing, MV's were centrifuged at 70,000¢ for 90 min at 4°
C, then fixed in a PBS solution containing 2% paraformaldehyde
and 0.2% glutaraldehyde. A 3-pL aliquot was applied on 100-mesh
nickel formvar-coated grids (Euromedex, France). After 15 min,
MV were permeabilized with 3 uL of PBS-5% BSA-0.1% saponin
for 1 h, then incubated for 1 h with anti-TF rabbit monoclonal
antibody (Sigma-Aldrich clone 2L10 ZooMAb®, Cat# ZRB1811,
RRID : AB_2938655) and anti-IL-1 mouse antibody (Cell
Signaling Technology Cat# 12242, RRID : AB_2715503) diluted
1:25 in PBS-0.3% BSA. After three washes in PBS, MVs were
labeled for 1 h with goat anti-rabbit IgG coupled with 10-nm gold
beads (Thermo Fisher Scientific Cat# N-24916, RRID :
AB_2539796) and goat anti-mouse IgG coupled with 5-nm gold
beads (Tebu-Bio, Cat# 220GA1003, RRID : AB_2938656).
Immunogold-labeled MVs were fixed for 5 min in cacodylate
buffer containing 2.5% glutaraldehyde, then grids were negatively
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stained with 0.3% phosphotungstic acid for 1 min, before
observation with a transmission electron microscope (JEM 1400
JEOL, United States).

2.7 Endothelial cell activation by MVs

MVs isolated from macrophages were incubated with HUVECs
for 4 h at 37°C. Cell pellets were labeled for 1 h with specific anti-
ICAM-1/CD54-PE (Beckman Coulter Cat# IM1239U, RRID :
AB_131186), anti-VCAM-1/CD106-PE (Beckman, A66085, RRID
: AB_2938658), anti-E-selectin/CD62E-PE (BioLegend, HCD62E
RRID : AB_2938659), or control isotype antibodies IgG1-PE
(Beckman Coulter Cat# A07796, RRID : AB_2832963) and
IgG2ak-PE (BioLegend Cat# 400213, RRID : AB_2800438) (5 uL/
reaction) for flow cytometry analysis. For Western blot
experiments, cells were washed and scraped in PBS, centrifuged,
and lysed in RIPA buffer.

2.8 Animal studies

Mice experiments were conducted according to the institutional
ethical committees for animal care from the local animal ethics
committee of Marseille. C57BL/6] mice received intraperitoneal
injections of PBS or IL-1 receptor antagonist IL-1Ra (30 mg/kg),
with or without subsequent one peritoneal injection of 25x10° MVs
in PBS. Peripheral blood and peritoneal fluids were collected. The
details of experimental conditions are described in
Supplementary Methods.

2.9 Patient cohort

Ten patients with JIA according to the International League of
Associations for Rheumatology (ILAR) definition were recruited
from the Department of Paediatrics at Marseille and Nimes
hospitals, during 2015-2016. Parents (or patient’s legal guardians)
and patients received information and consent of parents (or
patient’s legal guardians) was obtained for all individual
participants included in the study. Clinical presentations
consisted mainly in refractory polyarticular and systemic forms of
the disease, but all patients presented active disease defined as AJI
flare according to Juvenile Arthritis Disease Activity Score 10
(JADAS10). The main demographic, clinical, and biological
characteristics are shown in Table 1. Ten healthy adult donors
were also included.

2.10 Patient blood sampling and platelet-
poor plasma preparation

Sampling was justified by the flare of the disease. A fasting blood
sample was obtained by venipuncture in citrate-containing tubes,
which were centrifuged twice at 2,500¢ for 15 min at room
temperature in order to obtain platelet-poor plasma (PPP), within
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a maximum of 2 h after blood collection, as previously described
(31). The resulting plasma was divided into aliquots and stored at
—80°C until analysis.

2.11 Determination of patients’ MV profile
by flow cytometry

PPP aliquots were thawed at room temperature and centrifuged
at 20,000¢ for 90 min to pellet MVs. Resuspended MV (30 pL) were
transferred into different tubes for MV labeling. Annexin V-FITC
(Tau Technologies, the Netherlands) and conjugated antibodies
(Ab) were added to identify specific MV subsets: CD31-
Phycoerythrin (PE) Ab (Beckman Coulter Cat# IM2409, RRID :
AB_131205), CD41-PC7 Ab (Beckman Coulter Cat# 6607115,
RRID : AB_2800448), CD11b-APC Ab (Beckman Coulter
Cat#A87782, RRID : AB_2938661), CD235a-Alexa 750 Ab
(Beckman Coulter Cat# A89314, RRID : AB_2938662), CDI14-
APC Ab (Beckman Coulter Cat# IM2580, RRID : AB_2800451),
CD66b-APC Ab (Beckman Coulter Cat# B08756, RRID :
AB_2893284), and CD11b-PE Ab (Beckman Coulter Cat#
IM2581U, RRID : AB_131334). The numeration of total MVs
and MVs derived from specific cell subsets (absolute number/mL
plasma) were calculated according to the acquired counts of MVs
and microbeads and the dilution performed during
sample preparation.

2.12 Statistical analysis

Data represent the cumulative results of all experiments and
are expressed as median with interquartile range for the
indicated number (n) of experiments. Statistical analysis was
performed with Prism version 9 software. Significant differences
were determined by using nonparametric Mann-Whitney
and Wilcoxon test; p-values < 0.05 were considered
statistically significant.

3 Results

3.1 MVs from stimulated macrophages
contain NLRP3 inflammasome components
necessary for caspase-1-dependent

IL-1B processing

According to the Minimal Information for Studies of
Extracellular Vesicles (MISEV) 2018 guidelines (32), MVs issued
from THP-1 differentiated into macrophages by PMA treatment
were then purified by successive centrifugations and
ultracentrifugations (Figure 1A). MVs from unstimulated and
stimulated macrophages were characterized using several
methods. First, using flow cytometry, the classical gating strategy
was determined (Supplementary Figure S1). Then, the presence of
typical membranous and cytosolic MV-associated molecules was
confirmed by detecting CD18 (integrin subunit 32) and Annexin-V
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TABLE 1 Characteristics of patients with active juvenile idiopathic arthritis (JIA).

. Time of Evo- Clinical - Ocular Systemic  Biological Current .
Patients Age Sex Form . ANA HLAB27 Arthritis . : y 9 Previous Treatment
lution A. Manifestation A. A Treatment
Cs
CRP =3 L
hips . mg/ DMARDS
1 16 F polyA 16 - neg yes uveitis no ESR = 13 mm Abatacept + MTX
knees HG normal Etanercept
Adalimumab
Cs
DMARDS
hips CRP =2 mg/L Etanercept
2 9 F polyA 3 - neg yes knees no no ESR = 3 mm Tocilizumab K P
Adalimumab
ankles HG normal
Abatacept
Tocilizumab
Cs
, , fever CRP =3 mg/L N DMARDS
3 13 M oligoA 11 - neg yes hips no ESR =20 mm Tocilizumab
rash HG normal Etanercept
Anakinra
CRP = 74 mg/
cuffs fever ESR = 30 mm
4 10 M polyA 2 - neg yes hips no rash PNN: 12,000/ CS CS
mm’
Cs
RF + DMARDS
ANA ankles CRP =2 mg/L Adalimumab
5 16 F polyA 5 + neg yes cuffs no no ESR =5 mm Abatacept + MTX Etanercept
CcCp fingers HG normal Adalimumab + MTX
+ Abatacept + MTX
Tocilizumab
Cs
knees CRP = 3 mg/L DMARDS
6 7 F polyA 6 - neg yes cuffs uveitis no ESR = 8 mm Tocilizumab + MTX Etanercept
hips HG normal Adalimumab
Abatacept
elbows CS
cuffs P CRP = 3 mg/L DMARDS
ever
7 16 F polyA 14 - neg yes knees no ESR = 30 mm Abatacept + MTX Etanercept + MTX
rash .
ankles HG normal Adalimumab + MTX
fingers Abatacept
knees fever CRP =9 mg/L CS
Ve
8 5 M polyA 3 - neg yes cuffs no rash ESR =2 mm Tocilizumab Anakinra
hips HG normal Tocilizumab
(Continued)
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" 3 binding on purified MVs (Figure 1B). In addition, the presence of
5 %b integrin subunit B3 and CD81 was confirmed by Western blotting
% ) 5 E: (Figure 1C, upper panel), with no major contamination by soluble
E 4 2‘5 x 4 x é g,, pro.te%ns such as alb.umm (Figure 1C, lower panefl). Then, tLTna.ble
9 ;é’ = = 3 2 resistive pulse sensing assays showed that vesicles had similar
_g = E average sizes (respectively 299, 215, and 205 nm for conditions
o & CTRL, LPS, and LPS+ATP), which correspond to the range of large
= g MVs (Figure 1D). Taken together, molecular and size features of

i MV preparations were consistent with the definition of MV

= % § according to the MISEV 2018.

g E s , z To determine the biological activity of IL-1f conveyed by MVs,

o § = «EE we used MVs purified from supernatants of THP-1 cells

= g3 differentiated into macrophages by PMA treatment and
g ?% stimulated with LPS or LPS+ATP. MV numeration showed that

E R £ g g o £Eg g ;- ; the same number of MV's were issued from LPS-stimulated or non-

< ED 2 % % & "’E 5 B9 JEL %= ”é Z > stimulated macrophages (ns, Figure 1E). Further addition of ATP

i:% 5 é E E Ca 5 E E g_%" tended to increase the total number of MVs compared to non-

EE stimulated macrophages, despite heterogeneous results (58%
kS i g increase, p < 0.05, Figure 1E). Similar results were obtained using

g g % ég MVs from PBMC differentiated into macrophages (p < 0.005,
@ = - 2w Supplementary Figure S2).

ol % f; We then studied NLRP3 inflammasome components carried

5 Ei S by MVs from THP-1 treated with PMA and differentiated in

5 '5 E 2 macrophages. Using ELISA, we observed that IL-1f3 concentration
3 jlng 3 2 % g was significantly higher in MV lysates issued from LPS- and LPS

o 'g § g +ATP-stimulated macrophages compared to MV lysates from non-

= 592 stimulated macrophages (p < 0.05, Figure 2A). We used flow
" ;;; E cytometry to detect IL-1B in MVs after membrane
2 %ﬁ’o £ 8 ‘&é 5 5] % permeabilization by saponin, as previously reported (33)
£ E5E38 = é 2 : g (Figure 2B) and observed a significant increase of IL-1B-positive
= '§ % 8 MYV population shed from macrophages stimulated with LPS+ATP

7‘8 5 é E; as compared to non-stimulated ones [8.1 (2-13.9) vs. 0.115 (0.03-

£< g g g5t 0.475)%, p < 0.01, Figure 2C].

o :é é’ g Western blot experiments were performed only with MVs
~ = g e purified from the supernatant of PMA-treated THP-1 cells, as
a & @ :EE —é% large amounts of MVs were required for protein expression
% = = é‘ g Z analysis. MVs from non-stimulated macrophages contained small

5 g ‘; concentrations of the IL-1f precursor (33 kDa), likely resulting
<Z( | | ég glu from THP-1 cell activation by PMA. After LPS stimulation,
< E <Z<_§) increased levels of IL-1f precursor (pro-IL-1B) and very low
. 2 :; ¢ amounts of mature IL-1f (17 kDa) as well as intermediary IL-18

L% - %? % (28 kDa) form were observed, suggesting that priming with LPS

52 - - E ;éb g induced pro-IL-1P synthesis by macrophages. With the addition of
g = % % é exogenous ATP, IL-1p mature form increased in MVs, consistent

i= % 273 with ATP-induced pro-IL-1f maturation (Figure 2D).

g g We then investigated the presence of NLRP3 and caspase-1 in
£ z z _‘é % 3 MVs from THP-1 treated with PMA, differentiated in macrophages.
£ = = E jEE Using Western blot, NLRP3 (Figure 2E) and the 40-kDa
x - - Tg %f procaspase-1 and the 10-kDa mature and 20-kDa mature caspase-
%) < z g 1 forms (Figure 2F) were clearly detected in MVs secreted by

b & jf‘é £ ;‘* stimulated macrophages, indicating that MVs issued from
2 ¥ “ = § i g activated macrophages contained all the machinery necessary for
§ " —Sz ;é_;G the processing of IL-1f. In addition, when PMA-treated THP-1
. g . - 'Ee- P % cells were pre-treated by caspase-1-inhibitor YVAD then stimulated
- z - é‘”%g with LPS+ATP, MV content was modified showing less IL-1B
= = 823 mature form and increased concentrations of pro-IL-1f
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Macrophage MV purification and characterization process. (A) Schematization of the preparation and the purification of MVs. MVs were collected
from macrophage supernatants (purified THP-1 treated with PMA), either non-stimulated (CTRL) or stimulated with LPS or LPS+ATP. Then, they were
purified by serial centrifugations to remove dead cells and apoptotic bodies and ultracentrifugation. (B) Flow-cytometry-based quantification of MVs
collected from non-stimulated or LPS- or LPS+ATP-stimulated macrophage supernatants. MVs were characterized by annexin-V and CD18
expression. (C) After lysis, 17, 150, or 236 millions of MVs (CTRL, LPS, and LPS+ATP) were analyzed by Western blot to detect the presence of B3-
integrin and CD81 (upper panel). The same number of MVs and 10 ug of their corresponding cells were lysed and a Western blot of albumin was
realized to attest purification. GAPDH was used as charge control (lower panel). (D) Size distribution by tunable resistive pulse sensing (QNANO) with
p150 nanopores. (E) MVs isolated from THP-1 treated with PMA and differentiated into macrophages and non-stimulated (CTRL) or stimulated by
LPS or LPS+ATP were stained with annexin-V-FITC, and then quantified by flow cytometry, using counting beads. Results are expressed as mean
percentage of increase compared to control expressed in each experiment at 100% (ns, p > 0.05; *p < 0.05, n = 8).

(Figure 2G), demonstrating that IL-1B maturation in MVs was
caspase-1-dependent.

3.2 MVs from stimulated macrophages are
thrombo-inflammatory vectors

Next, we studied the pro-inflammatory and pro-coagulant
properties of IL-1B-positive MVs. Since MVs contain all the
molecules necessary to generate the 17-kDa mature IL-1f3, we asked
whether they could process and release IL-1f in vitro. First, using flow
cytometry analysis and gating on large permeabilized Annexin-V-
positive MV, in order to reduce exosome contamination, we observed
co-expression of IL-1B and P2X7 receptor in and on the same
MV. More than 80% of MVs issued from non-stimulated
macrophages expressed only P2X7R, whereas permeabilized MV's
issued from LPS+ATP-stimulated macrophages expressed both
P2X7R and IL-1f (Figure 3A). Western blot analysis confirmed the
presence of P2X7R in MV lysates (Figure 3B). MV's were purified from
LPS-stimulated macrophages before being incubated with PBS or ATP.
After ultracentrifugation to eliminate MVs, IL-1f3 concentration was
measured in MV-free supernatant and a threefold increase of IL-1f
concentrations was observed in the supernatant of MVs stimulated
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with ATP, compared to the supernatant of MVs stimulated with PBS
alone (p < 0.05, Figure 3C).

MVs issued from macrophages have been reported to carry TF
(34); we thus asked whether M Vs contained both IL-1p and TF. MV's
were isolated from supernatants of macrophages derived from THP-1
and MV lysates were subjected to Western blot analysis. Both IL-1f
and TF could be detected in the same MV issued from LPS+ATP-
stimulated macrophages (Figure 3D left and right panels,
respectively). Moreover, using transmission electronic microscopy
(TEM) on MV double-labeled for both IL-13 and TF, we observed
that some MV contained both IL-1f3 and TF (Figure 3E). To confirm
TF procoagulant activity on MVs, an in vitro Factor-Xa-generation-
assay was performed. TF activity was significantly increased with
MVs issued from LPS+ATP-stimulated macrophages, when
compared with MVs issued from LPS-stimulated macrophages and
non-stimulated macrophages (p < 0.05 respectively, Figure 3F).

3.3 MVs from stimulated macrophages
have pro-inflammatory effects in vitro and
in vivo

To determine whether IL-1B-positive MVs were biologically
active, we first studied the ability of MVs issued from LPS+ATP-
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& Cleaved-IL-1p

MVs shed from stimulated macrophages convey IL-1b and NLRP3 inflammasome components. (A) IL-1b was measured by ELISA in MV lysates
isolatedfrom PBMC differentiated into macrophages stimulated with either LPS or LPS+ATP or non-stimulated (CTRL). Results are expressed as
percentageof increase compared to control (*p < 0.05, n = 7). (B) Scatter dot plot after MV purification, permeabilization, and co-labeling with
annexin-V andIL-1b. (C) MVs were isolated from THP-1 differentiated into macrophages. Quantification of annexin-V and IL-1b-positive MVs (**p <
0.01, n = 10).Detection of (D) IL-1b, (E) NLRP3, and (F) pro-caspase-1 and mature caspase-1 (p10) and (p20) in MV lysates from THP-1 differentiated
intomacrophages, by Western blotting, (G) detection of IL-1b by Western blotting in MV lysates from THP-1 differentiated into macrophages
aftertreatment with the caspase-1 inhibitor YVAD. All Western blots were realized at least three times.

stimulated macrophages to activate endothelial cells in vitro. Using
Western blotting, we observed that MVs significantly increased
ICAM-1 and VCAM-1 expression (p < 0.01 and p < 0.001,
respectively, Figure 4A, upper panel a and middle panel b) but
not E-selectin expression on HUVECs (ns, Figure 4A, lower panel
c). Interestingly, MV pre-incubation with IL-1Ra did not reduce
either ICAM-1 or VCAM-1 expression on endothelial cells (ns,
Figure 4A). Endothelial cell activation was also confirmed by
cytometry analysis on HUVECs using the same conditions
(Supplementary Figure S3; Supplementary Table 1).

Then, we studied the ability of MVs issued from LPS+ATP-
stimulated macrophages to induce leukocyte recruitment in mice.
Fifteen hours after intra-peritoneal injection of MVs, leukocyte
recruitment (CD45+ cells) into peritoneal cavity was significantly
increased (p < 0.01, Figure 4B), a process that was significantly
reduced in the presence of IL-1 receptor antagonist (p <
0.05, Figure 4B).

3.4 Detection of IL-1B-positive MVs in
patients with juvenile idiopathic arthritis

To support the existence of these MVs in human disease, we
studied the presence of circulating MVs in the plasma of patients
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with JIA or from healthy donors. Ten patients (sex ratio = 1) with a
mean age of 11.1 years [5-16 years], were studied (Table 1). All
patients had active disease according to JADAS10, which motivate a
therapeutic increment. Among them, nine patients presented a
polyarticular form including three with systemic clinical and
biological symptoms consistent with a systemic form (sJIA:
patients #4, #9, and #10). No patient was treated with anakinra at
the time of the flare. The absolute number of total MVs and of
leukocyte-derived MV's were not significantly different in plasma of
JIA patients compared to healthy controls, possibly due to the
relatively low number of patients (data not shown). However, if the
concentration of CD11b"MVs derived from myeloid cells was not
significantly higher in JIA patients compared to healthy controls
(ns, Figure 5A), CD45"CD66 MV issued from myeloid cells after
exclusion of neutrophils were significantly increased in JIA patients
(p < 0.05, Figure 5B). Importantly, using flow cytometry analysis, we
could detect higher concentrations of circulating IL-1B3+Annexin-
V-positive MVs in JIA patients compared to healthy controls (p <
0.05, Figure 5C). Circulating IL-1B+Annexin-V-positive MVs
represented a small proportion of total MVs (Figure 5D) but were
detectable in all patients, especially in those with an active
polyarticular disease (patient#1: 0.47%, patient#2: 0.31%) and
with biological systemic inflammation (patient#9: 0.27%, and
patient #10: 1.06% respectively).
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FIGURE 3

MVs from stimulated macrophages are thrombo-inflammatory vectors. (A) Detection by flow cytometry of IL-1B and P2X7R in permeabilized
annexin-V-positive MVs isolated from PBMC differentiated into macrophages then stimulated with LPS+ATP or not stimulated (CTRL). Quadrant [F]
shows MVs positive for IL-1B and P2X7R among annexin-V-positive MVs. (B) P2X7 was detected by Western blot in MVs or cell lysates from PBMC
differentiated into macrophages then stimulated with LPS+ATP or not stimulated. (C) MVs purified from LPS-stimulated THP-1 differentiated into
macrophages were incubated with PBS or ATP (1 mM) for 1 h at 37°C. IL-1B concentration was determined in MV supernatant using ELISA (*p < 0.05,
n = 4). (D) Detection of IL-1p (left) and tissue factor (right) by Western blot in 10 pg of MV lysate purified from THP-1 treated with PMA and
differentiated into macrophages, then stimulated with LPS+ATP. (E) Immunogold labeling of IL-1B (white arrowhead, 5 nm beads) and tissue factor
(black arrows, 10 nm beads) captured by transmission electronic microscopy in MVs from THP-1-derived macrophages stimulated with LPS+ATP. (F)
Tissue factor activity (U/min) measured using a Factor Xa generation assay in MVs from THP-1-derived macrophages incubated with PBS (CTRL) or

stimulated with either LPS or LPS+ATP (*p < 0.05, n = 3).

4 Discussion

In this study, we observed that macrophages issued from either
PBMCs or the THP-1 cell line release pro-inflammatory and pro-
thrombotic MVs upon priming with LPS and activation with ATP.
MVs contained the precursor and mature forms of IL-13, NLRP3
inflammasome, pro-caspase-1, and activated capsase-1 and expressed
P2X7R on their membranes. Upon ATP stimulation, MVs were able
to release IL-1P in its mature form in vitro and increased ICAM-1
and VCAM-1 expression on HUVECs. In addition, MVs induced a
peritoneal leukocyte infiltrate in mice that was reduced by IL-1Ra
pre-treatment. After ATP stimulation, MVs also contained TF and
exhibited an increased TF-dependent pro-coagulant activity in vitro.
As a proof of concept of their existence and potential pathogenic roles
in human pathogenesis, using flow cytometry analysis, we could
detect IL-1B-positive MVs in the plasma of patients with active JIA, a
well-known IL-1B3-mediated disease.

As a leaderless protein, IL-1f secretion does not follow the
classical secretory pathway (3). Several alternative releasing
pathways have however been proposed, notably linked to inhibition
of autophagy and secretory lysosome exocytosis (8-11). Secretory
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lysosomes have been shown to contain pro- and mature IL-1f3,
NLRP3, ASC, and caspase-1 (8). Other secretion mechanisms may
occur after more prolonged macrophage activation through caspase-
1-dependent pyroptosis or cathepsin B-dependent necroptosis. In
these cases, free mature IL-1[3 is secreted (16, 18). Our results argue
for the release of mature IL-1f by MVs issued from activated
macrophages in a process associated with NLRP3 inflammasome
and caspase-1 activation. Extracellular vesicles contain several
different subpopulations such as, first, apoptotic bodies labeled by
annexin-V, containing DNA, and histones with a size range between
1 and 3 pm; second, annexin-V-positive membrane MVs containing
RNA and proteins, whose size is between 0.1 and 1 pmj; and third,
exosomes, which are annexin-V-negative but contain HLA class II
with a small size between 50 and 80 nm (35). Apoptotic bodies have
been reported to contain bioactive IL-1o. (33) and some exosomes
may contain IL-1f (12). In 2001, McKenzie et al. first reported the
evidence of pro- and mature IL-1[B-positive vesicles issued from LPS
+ATP-stimulated THP-1; however, no centrifugation procedure or
size criteria were clearly reported in this previous study (20). In 2007,
Pizzirani et al. showed the presence of both forms of IL-1, as well as
caspase-1 in 0.1-1 pm cathepsin B-positive microvesicles issued from
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leukocyte counts after peritoneal injection in mice (n = 5) of 25x10° MVs from THP-1-derived macrophages treated with LPS+ATP. Four mice
received intraperitoneal injections of PBS or IL-1Ra (30 mg/kg) 30 min before the MV injections (*p < 0.05, **p < 0.01).

ATP-stimulated dendritic cells, but in this work, no specific labeling
was used for purification; thus, this extracellular preparation was
likely to contain both MV and secretory lysosomes (21). In 2011,
Wang et al. reported the presence of IL-1f in annexin-V-positive
MVs issued from LPS-activated THP-1, without the addition of ATP
(19). MVs contained both forms of IL-1f3, NLRP3, ASC, and caspase-
1 and were shown to stimulate HUVECs in vitro, in an IL-1(3-
dependent manner. Our data confirm the pro-inflammatory nature
of IL-1B-positive MVs and extend the study of Wang et al. in several
ways. First, we could detect and characterize MV population and,
among them, IL-1B-positive MVs by flow cytometry analysis,
according to MISEV 2018 guidelines. Second, in agreement with
another report (21), we observed that these MVs co-express IL-1f
and P2X7R and are sensitive to ATP stimulation for the release of
soluble 17 kDa mature IL-1f. Third, since IL-1B-positive MV-
induced endothelial activation appeared partially IL-1-dependent in
vitro, we showed for the first time that IL-1B-positive MVs exert an
IL-1-mediated pro-inflammatory effect in vivo in a murine model of
sterile peritonitis.

Therefore, these MVs may be considered as complete pro-
inflammatory circulating entities protecting both IL-1f and NLRP3
inflammasome components from rapid degradation. The presence
of MVs containing various pro-inflammatory molecules has now
been well-established in various pathogenic models, notably
ischemic (36). However, MVs as well as apoptotic bodies expose
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phosphatidyl-serine on their membranes, which is an important
“eat-me signal” for macrophages leading to M2 anti-inflammatory
phenotype differentiation (37), raising the question of the real pro-
inflammatory properties of MVs in vivo. In fact, the role of MVs
may well depend on the balance between the MVs produced during
tissue injury and the phagocytosis capacities of macrophages. In
physiological, macrophages may phagocytose MVs, preventing
inflammation. During acute ischemic stress, necrotic cells have
been shown to liberate very large concentrations of MVs (38),
which may temporarily exceed macrophage phagocytosis.
Alternatively, in patients prone to develop auto-immune diseases,
such as systemic lupus erythematosus, the intrinsic phagocytic
abilities of macrophages have been shown to be altered and
circulating MVs have been reported (39, 40). Both situations may
lead to increased circulating MVs and localized or systemic
inflammation. MVs may deliver an IL-1B-mediated pro-
inflammatory signal in several ways. First, as shown in other
models, MVs may be endocytosed by target cells through
phosphatidyl serine/phosphatidyl serine receptor interactions
(41). Noteworthy is the fact that in this setting, NLRP3 may
remain active into the cell cytoplasm (42). Through their P2X7
receptor, MVs may also interact with ATP liberated by necrotic
cells, thus activating NLRP3 into the MV cytoplasm and MV IL-1
release, as suggested by our in vitro data. Third, MVs may
experience secondary necrosis and the release of IL-1f precursor,
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NLRP3, caspase-1, and other enzymes, leading to some IL-1§
processing in the target cell microenvironment and interaction
with the IL-1R1 on target cells (43).

MVs may be able to deliver bioactive IL-1f in inflammatory
sites (synovium, skin, bone marrow, and liver) distant from the
original cell source. Interestingly, IL-1B-positive MVs may also be
inflammatory through phagocytosis or membrane fusion by
targeting fibroblast-like-synoviocytes or macrophages and direct
intra-cytoplasmic delivery of both NLRP3 inflammasome
components and pro-IL-1B, as previously suggested (42). In
addition, Rothmeier et al. have shown that LPS+ATP-stimulated
murine macrophages release MVs over 500 nm, which carry a
bioactive form of TF, but do not contain IL-1f (34). Unlike data
from these authors, we were able to detect both IL-1f and bioactive
TF in MVs issued from LPS+ATP-stimulated macrophages using
Western blot and in vitro bioassay. However, we could not show co-
expression of IL-1f3 and TF on the same MV, using flow cytometry
analysis, since TF was not detectable on MVs using this method,
despite the use of different anti-TF antibodies. Therefore, we
performed TEM on IL-1 and TF-double-labeled MVs and
observed that a sub-population of MVs issued from LPS+ATP-
stimulated macrophages indeed contained both IL-1B and TF. The
relative differences with the previous report from Rothmeier et al.
may possibly be due to the different experimental conditions, since
we used lower concentrations of ATP (1 mM vs. 4 mM), possibly
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protecting macrophage MVs from pyroptosis and 17-kDa IL-
1P release.

By stimulating HUVECs with IL-1B-positive MV, we observed
that endothelial activation was not inhibited by IL-1Ra, indicating
that MVs may contain other pro-angiogenic and pro-inflammatory
components, such as mitochondria for example (44), or other IL-1
family cytokines such as IL-18 or IL-33, which could induce
endothelial activation in an IL-1B-independent manner (45).
Membrane interaction of MVs could also be involved in
endothelial activation. MVs expose phosphatidyl-serine on their
membrane, resulting in an interaction with their endothelial
phosphatidyl-serine receptor linked to ICAM-1 and VCAM-1
expression (46). In vivo, the pro-inflammatory properties induced
by IL-1B-positive MVs injected into the peritoneal cavity could
involve endothelial-leukocyte adhesion molecules (ICAM-1,
VCAM-1) but also other mechanisms induced by IL-1f, such as
regulation of chemokines, cytokine-induced neutrophil
chemoattractant-1 (CINC-1), or integrin-B6 expression by
epithelial cells (45). Thus, the permeability of the vasculature
could be increased by regulating the expression of cell-cell
junction components in an IL-1B-independent manner, and IL-
1B can also induce the activation of leukocytes, fibroblast-like-
synoviocytes, and endothelial cells, which could modify the
vasculature permeability (47). Thus, MVs from stimulated
macrophages are thrombo-inflammatory vectors and induce
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endothelial activation in vitro and leukocyte recruitment in vivo, in
an IL-1B-dependant manner.

Finally, to determine whether our in vitro and murine data had
some relevance in human diseases and as a proof of concept, we
tried to detect IL-B-positive MV in active JIA, a well-known IL-153-
mediated disease. In JIA patients, serum concentrations of IL-1f
remain poorly detectable despite the demonstration of an IL-1f
transcriptional signature in PBMCs and the well-established
therapeutic efficiency of IL-1B-blocking antibody canakinumab or
recombinant IL-1 receptor antagonist, anakinra (1, 48). We
succeeded in detecting circulating IL-1B-positive MVs in patient
plasma and observed a significantly higher count of myeloid IL-1§-
positive MVs in 10 active JIA patients, compared to healthy
controls. To our knowledge, this is the first time that IL-1[-
positive MVs are detected in plasma from JIA patients.

5 Conclusion

In this study, we characterized a population of LPS-primed
macrophage-derived MVs containing pro-IL-B, NLRP3, caspase-1,
and TF and releasing IL-1B upon P2X7R activation by ATP. We
showed their pro-inflammatory and pro-coagulant biological functions
in vitro and in vivo. Furthermore, IL-1B-positive MVs were detectable
in plasma from patients with active JIA; thus MVs may represent a
pathway of IL-1P release in IL-1B-dependent diseases.
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Glossary
IL interleukin
JIA juvenile idiopathic arthritis
sJIA systemic juvenile idiopathic arthritis
MVs microvesicles
PBMCs peripheral blood mononuclear cells
THP-1 Tohoku Hospital Pediatrics-1
PMA phorbol 12-myristate 13-acetate
NLRP3 nucleotide-binding domain
P2X7R P2X purinoceptor 7
TF tissue factor
ELISA enzyme-linked immunoassay
HUVECs human umbilical vein endothelial cells
LPS lipopolysaccharide
ATP adenosine triphosphate
kDa kilodaltons
TLR toll-like receptors
NLR nucleotide-binding oligomerization domain (NOD)-like receptors
ASC, apoptosis-associated speck-like protein containing a CARDS
CARD caspase recruitment domain
HLA human leukocyte antigen
RNA ribonucleic acid
ILAR International League of Associations for Rheumatology
JADAS10 Juvenile Arthritis Disease Activity Score 10
PPP platelet-poor plasma
FITC fluorescein isothiocyanate
CD cluster of differentiation
PC7 phycoerythrin cyanine 7
APC allophycocyanin
Ab antibody
PBS phosphate-buffered saline
IgG immunoglobulin G
ICAM-1 intercellular adhesion molecule 1/CD54
VCAM-1 vascular cell adhesion protein 1/CD106
HEPES hydroxyethylpiperazine ethane sulfonic acid
BSA bovine serum albumin
IL-1Ra IL-1 receptor antagonist
ANA antinuclear antibody
CRP C-reactive protein
ESR erythrocyte sedimentation rate

(Continued)
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Continued
MISEV Minimal Information for the Study of Extracellular Vesicles
CTRL control
YVAD acetyl-tyrosyl-valyl-alanyl-aspartyl
DNA deoxyribonucleic acid
Ca?* calcium
TEM transmission electron microscopy
CINC-1 cytokine-induced neutrophil chemoattractant-1
HC healthy control

GADPH glyceraldehyde-3-phosphate dehydrogenase

polyA polyarticular
oligoA oligoarticular
F feminine

M male

HG hemogram

Cs corticosteroids

DMARDS | disease-modifying antirheumatic drugs

RIPA radio-immunoprecipitation assay buffer
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Immune checkpoints
in rheumatoid arthritis:
progress and promise

Annabelle Small®, Katie Lowe® and Mihir D. Wechalekar*

‘Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide,
SA, Australia, 2Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia

Rheumatoid arthritis (RA) is one of the most prevalent autoimmune inflammatory
conditions, and while the mechanisms driving pathogenesis are yet to be
completely elucidated, self-reactive T cells and immune checkpoint pathways
have a clear role. In this review, we provide an overview of the importance of
checkpoint pathways in the T cell response and describe the involvement of
these in RA development and progression. We discuss the relationship between
immune checkpoint therapy in cancer and autoimmune adverse events, draw
parallels with the involvement of immune checkpoints in RA pathobiology,
summarise emerging research into some of the lesser-known pathways, and
the potential of targeting checkpoint-related pathways in future treatment
approaches to RA management.

KEYWORDS

rheumatoid arthritis, T cells, immune checkpoints, co-stimulatory pathways, CTLA-4, PD-1

1 Introduction

Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory autoimmune disease
that affects up to 1% of the population (1). Inflammation predominantly targets the
synovial tissue (ST; the joint lining), leading to pain, swelling and irreversible joint
deformities. Disease complications are not confined to joints, and include systemic
involvement (pulmonary, cardiac, haematological, amongst others). Despite treatment
advances, a majority of patients do not attain remission, and sustained remission occurs in
as few as 15% of patients (2). Although the eventual inflammatory milieu in the RA ST is
diverse, checkpoint, or co-stimulatory pathways controlling immune cell activation are
critical in engendering, maintaining, and perpetuating the inflammatory response, driven
by chronic autoimmune antigenic drive. In parallel with the rise of immune checkpoint
inhibitors (ICIs) that have transformed oncologic therapeutics, has been the greater
recognition of checkpoint pathways in RA pathogenesis.

In this review, we provide an overview of immune checkpoints at various stages of
immune cell development and describe the involvement of these in the development and
progression of RA. We discuss the involvement of immune checkpoints in RA
pathobiology, the relationship between immune checkpoint therapy in cancer and
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autoimmune adverse events, and the potential to manipulate these
pathways as a future treatment strategy.

2 Immune checkpoints: dictators of
the T cell response

T cell activation is a tightly regulated, intricate, and specific
process requiring multiple initiating signals. The first is provided
through the interaction between a peptide antigen presented by an
antigen presenting cell (APC), and a T cell expressing a cognate T
cell receptor (TCR). The T cell then requires a secondary signal,
referred to as co-stimulation, and the proteins that provide this are
called co-stimulatory, or checkpoint molecules. In helper T cells,
this is provided through the B7/CD28 co-stimulation axis (3). CD28
expressed on the T cell binds to either CD80 (B7.1) or CD86 (B7.2)
on the APC, and together with TCR signalling, provides survival
and activation signalling to initiate T cell proliferation (Figure 1).
The extent of co-stimulation controls the extent of the initial T cell
proliferative response (4), and further signalling provided through
specific cytokines dictates cell lineage (5).

Checkpoint molecule expression is largely controlled by the
tissue microenvironment, and is influenced by alterations in
homeostasis (6). These molecules can exert stimulatory or
inhibitory signals in either direction of the interaction (i.e., in the
APC and in the T cell) and cumulatively dictate the threshold of
T cell activation, allowing for finetuning of the immune response
(7, 8). Inhibitory checkpoints, including cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and programmed death protein 1
(PD-1) are upregulated during cell activation, and are important for
limiting the response duration, aiding resolution, and maintaining
self-tolerance (7). The importance of immune checkpoints in
restricting the immune response is exemplified by disturbances in

10.3389/fimmu.2023.1285554

these pathways. Patients with inherited CTLA-4 deficiencies present
with a range of clinical features including recurrent respiratory tract
infections and increased risk of autoimmunity (9), while inherited
PD-1 deficiency has been linked with early-onset autoimmunity
and severe tuberculosis (10). Mice deficient in CTLA-4 experience
lethal lymphoproliferative disorders (11), and those deficient in PD-
1 develop accelerated autoimmunity and lethal pathology in
response to acute infection (12-14).

3 The T cell response in RA

The importance of the T cell response in RA has long been
appreciated (15-18) and evidence suggests T cell-driven
autoimmunity may occur years prior to clinical onset (19, 20).
Distinct changes have been observed in the proportions of T
follicular helper (Tth) and CD19" B cells in the lymph nodes of
patients at risk of developing RA (individuals with rheumatoid
factor (RF) and anti-citrullinated protein antibodies (ACPA) but
asymptomatic for arthritis) (21), and altered proportions of naive T
cells and T regulatory cells (Treg) have been observed in the
peripheral blood (22). In lymph nodes, stromal cells from at-risk
patients had distinct hypomethylated sites in genes associated with
antigen processing and presentation compared to healthy controls,
suggesting altered antigen presentation pathways prior to clinically
identifiable disease (23), implicating stromal-lymphoid cell
interactions in early RA. Finally, it is well established that RF and
ACPA can often be detected in the serum for years in individuals
who progress to develop inflammatory arthritis (20, 24).

In clinically identifiable early and established RA, T cells
accumulate in the ST sublining layer, where theyre found in
association with activated macrophages and B cells (16), and
often cluster in aggregates consisting of T cells, B cells, and
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CD86, stimulatory (OX40, CD40L, ICOS, LIGHT) and inhibitory checkpoints are induced (CTLA-4, PD-1). In the resting state, BTLA and HVEM form a
cis- complex which exerts constitutive inhibitory signalling to the T cell. Following T cell activation, LIGHT is rapidly and transiently induced (1), and
LIGHT disrupts BTLA-HVEM complexes, sequestering HVEM from BTLA. This results in internalisation of HVEM (2), and leaves surface LIGHT and
BTLA available for trans- interactions with HVEM (3), capable of inducing stimulatory or inhibitory signals, respectively. Ag, antigen
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dendritic cells (DC) (17). While there is enormous variability in
synovitis in RA (17, 25), evidence suggests a T helper 1 (Th1) bias in
the ST (17), and the demonstration of T cell involvement across all
stages of disease suggests that T cell targeting may be efficacious
therapeutically broadly throughout disease progression.

Aligning with the importance of the T cell response in RA
progression, CTLA-4 fusion protein (CTLA-4-Ig; Abatacept), a
soluble protein that binds CD80/CD86 expressed by activated
APCs and outcompetes CD28 expressed by T cells at the
beginning of the immune response, was approved for use in RA
in 2005. Abatacept therefore inhibits circulating and synovial T cell
activation by inhibiting CTLA-4:CD28 interactions, and has shown
remarkable efficacy in disease management (26), reducing
progression of undifferentiated arthritis to RA, and reduction of
radiological progression and levels of anti-CCP antibodies (27).
Early outcomes from two ongoing trials further suggest Abatacept
may also prevent RA development in at-risk healthy individuals
(28-30).

4 Inflammatory arthritis as an adverse
event of checkpoint therapy in cancer

In cancer, tumour cells can exploit checkpoint pathways
controlling the adaptive immune response to neoantigens,
inducing tolerance and immune evasion (31, 32). ICIs targeting
co-inhibitory receptors in the tumour microenvironment have had
remarkable success by unleashing the anti-tumour function of T
cells. However, ICI usage is complicated by the occurrence of
immune-related adverse events (irAEs) which can present with
broad manifestations varying by ICI type (33). Additionally, while
combinations of ICIs have shown improved oncologic therapeutic
response compared to monotherapies (34), the proportion of
patients who developed treatment-related severe irAEs were
markedly higher with combination therapy (55%) compared with
those in the nivolumab- (16.3%) or ipilimumab-only groups
(27.3%), demonstrating that combination therapy may
dramatically increase irAE risk (34).

Rheumatological complications occur in ~5-10% of patients
treated with ICIs (35), and can manifest in the form of joint
inflammation indistinguishable from RA (36), which can persist
after therapy cessation (37) and exacerbate existing RA symptoms
(38). Additionally, inflammatory arthritis is the most common irAE
reported in trials of ICIs (39), an occurrence that has offered a
serendipitous window into RA pathogenesis.

5 The role of co-stimulatory pathways
in RA

5.1 CTLA-4/CD28/CD80/CD86 pathway
The most well-studied checkpoint pathway in RA is the CTLA-

4/CD28/CD80/CD86 pathway. CTLA-4 is the first co-inhibitory
molecule to be upregulated following lymphocyte activation
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(Figure 1) and is critical for controlling initial naive T cell
activation in lymph nodes (40, 41). CTLA-4 is important for Treg
function, and binds CD80 with approximately 20 times the affinity
of CD28 (42), enabling it to potently inhibit T cell activation.
Following binding to CD80/CD86, CTLA-4 can transendocytose its
ligands from the APC which are then degraded by the T cell, further
impairing co-stimulation through CD28 (43-45).

The most compelling evidence of the role of the CTLA-4/CD28
pathway in the pathogenesis of RA is demonstrated by the efficacy
of Abatacept in treating RA. Accordingly, polymorphisms in
CTLA4 have been associated with both the development and a
decreased risk of RA (46, 47). In RA, serum concentrations of
soluble CTLA-4 and CD28 were higher than in healthy controls and
serum CTLA-4 correlated positively with disease activity (DAS28)
(48), while CTLA-4 expression on RA Tregs was lower compared
with healthy controls (49). However, despite the clear role of the
CTLA-4/CD28 pathway in the RA immune response, many patients
do not respond adequately to Abatacept, indicating disease biology
driven by alternative inflammatory pathways (possibly including
other checkpoint mechanisms) and highlight the critical unmet
need for the development of individualised targeted therapy in RA.
Further research into the potential of targeting other co-stimulatory
pathways may provide these new approaches, and our knowledge of
the role of these pathways in RA is summarised below.

5.2 The PD-1 pathway

Inhibitory signalling through PD-1 regulates activated T cells in
later stages of activation (Figure 1) primarily in peripheral tissues,
and is associated with chronic antigen exposure (12, 40). PD-1
signalling results in immunoreceptor tyrosine-based switch motif
phosphorylation and recruits the tyrosine phosphatase SHP-2,
inhibiting cell proliferation and cytokine production (50). In the
chronically inflamed RA synovium, in line with the relationship
between PD-1/PD-L1 inhibitors and the development of irAEs,
expression of PD-1 correlated with synovial inflammation (51), and
PD-1 expressing T cells were enriched in the early and established
RA ST and periphery (52, 53). These were T peripheral helper (Tph)
cells, which contribute to pathogenesis by high production of
CXCL13 and interleukin (IL)-21, enabling them to provide B cell
help outside of germinal centres (53, 54). Tph cells express high
levels of MAF and BATF, and unlike Tth cells, low levels of BCL6
(53). Additionally, accumulation of PD-1" activated B cells
characterised by increased CD80, CD86, IL-1f3 and GM-CSF have
been demonstrated in the RA ST and SF (55).

Elevated soluble PD-1 (sPD-1) produced by alternative splicing
has been demonstrated in the RA periphery (56), and sPD-1 levels
positively correlated with RF titres (57) and levels of TNF in the
synovial fluid (58). Meanwhile, the PD-1 ligand PD-L1 was
conspicuously absent from the ST (56), and sPD-1 has been
demonstrated to bind PD-L1 and PD-L2 (59). Therefore, the
findings of elevated PD-1" T cells in the synovium along with
elevated sPD-1 and undetectable PD-L1 suggest that the PD-1
pathway is dysregulated in RA, and this lack of PD-1-mediated
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inhibitory signalling may result in chronic T cell activation, thus
contributing to pathogenesis (58, 60).

The evidence suggesting PD-1 pathway dysregulation in RA
and the identification of pathogenic PD-1-expressing cells,
particularly in early RA, suggests the therapeutic potential of
targeting this pathway. In a phase Ila trial, Peresolimab, an anti-
PD-1 agonistic antibody, induced a significant reduction in DAS28-
CRP by week 12 (61), while another PD-1 agonist Rosnilimab, is
awaiting entry into phase II trials in the near future (62). However,
given the success of PD-1 inhibition in cancer, longer phase III trials
will be required to fully assess the safety profiles of these therapies
with regards to oncologic risk.

Finally, recent studies have highlighted the interplay between the
PD-1 and CTLA-4/CD28 pathways. On APCs, PD-L1 can form a
complex in cis with CD80 (63). This duplex prevents PD-1:PD-L1
binding, inhibiting PD-1 function. Approaches to disrupt this
complex using anti-CD80 antibody alleviated autoimmune
symptoms (including experimental arthritis) in mice (64), and
therefore further study into how the interplay between these
pathways contributes to RA pathogenesis is warranted to determine
whether similar approaches may be of therapeutic benefit.

5.3 CD40-CD40L pathway

CD40 ligand (CD40L) is a stimulatory checkpoint upregulated
on T cells following activation. CD40-CD40L signalling promotes
antibody production and class-switching in B cells (65), induces
proinflammatory cytokines, chemokines, and adhesion molecules,
and can regulate other immune checkpoints (66). Disruption of
CD40-CD40L caused by inherited loss-of-function mutations in
CD40 or CD40L lead to the X-linked hyper-IgM syndrome, severely
compromising humoral immunity (67). Conversely, gain-of-
function mutations in CD40 are associated with RA risk and
patients homozygous for these alleles express increased B cell
CD40 (68). Additionally, in undifferentiated arthritis, and early
and established RA, expression of CD40 and CD40LG were
increased compared to osteoarthritis and healthy controls, while
expanded CD8"CD40L" ST T cells clones from RA patients
expressed CD40L (69), further suggesting a role for increased
local CD40- CD40L signalling in the RA ST (70). Finally,
supporting the association between increased CD40-CD40L
signalling and RA, a recent genome-wide protein quantitative
trait locus (pQTL) study demonstrated association with elevated
serum CD40 and RA risk (71).

While disruption of CD40-CD40L in patients with homozygous
mutations is associated with immunodeficiency, heterozygous
carriers are unaffected, indicating that therapeutic inhibition of
CD40-CD40L may be well-tolerated (68). Indeed, in a phase 1b
clinical trial assessing the therapeutic benefit of systemic CD40L
blockade in RA, a CD40L-binding protein VIB4920 significantly
decreased disease activity and demonstrated an acceptable safety
profile (72). At week 12, 41.7% of patients in the VIB4920 1500 mg
group achieved a DAS28-CRP score of <2.6, compared to 6.7% in
the placebo group (72). Subsequently, VIB4920 has entered phase II
trials alongside anti-TNF.
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5.4 1COS

The inducible T cell co-stimulator (ICOS) is expressed by T cells
following CD28-co-stimulation (Figure 1) and is structurally similar
to CD28, yet differs functionally by its ability to induce IL-10
following ligation, and inability to induce IL-2 (73). Interaction
with its ligand ICOSL induces phosphoinositide 3-kinase (PIK3)-
dependent signalling, promoting T cell differentiation and germinal
centre formation (74). ICOS signalling was shown to be required for
collagen induced arthritis (75, 76), and ICOS-ICOSL blockade
targeting ICOSL significantly ameliorated joint inflammation,
disease progression and severity (77). In RA, patients had
increased proportions of ICOS"™ synovial fluid T cells compared
to RA peripheral blood T cells (78).

Acaziocolcept, a dual ICOS/CD28 inhibitor trialed for
therapeutic efficacy in a murine model of systemic sclerosis (79),
inhibited collagen-induced arthritis more potently than Abatacept,
and inhibited human T cell function more effectively than
inhibition of either ICOS or CD28 alone, suggesting its potential
therapeutic use in human disease (80).

5.5 OX40L

0X40 (CD134), similarly to CTLA-4, PD-1 and ICOS, is
predominantly expressed by T cells after activation (81). Its
ligand OX40L can be induced on APC, Langerhans cells,
endothelial cells, mast cells, and NK cells, suggesting a range of
functions in lymphoid and non-lymphoid pathways (82). OX40
signalling on T cells provides synergistic signalling alongside CD80-
CD28 that prolongs T cell proliferation and enhances IL-2
production (83), while bidirectional signalling through OX40L
induces the production of proinflammatory mediators and
increased antibody production (84).

In early RA, soluble OX40L was increased and positively
correlated with ACPA and RF (85). In the joints, OX40L inhibited
osteoclastogenesis (84), and mice lacking OX40L showed decreased
bone integrity and enhanced osteoclastogenic capacity (84). Despite
this, OX40L blockade in collagen induced arthritis reduced
inflammation and inhibited inflammatory cytokine production by
OX40L-expressing macrophages (84). Interestingly, patients with RA
have been shown to have an abundance of OX40™ Tth cells capable of
producing IL-17 (86), and OX40 was enhanced on Tth cells within
the lymph nodes and demonstrated that severity of arthritis was
reduced by blockade using anti-OX40L in glucose-6-phosphate
isomerase-induced arthritis.

5.6 BTLA/HVEM/CD160/LIGHT
regulatory network

B- and T-lymphocyte attenuator (BTLA) is a member of the
CD28 immunoglobulin super family, and is expressed broadly by T
and B cells, NK cells, and DCs (87). BTLA forms an intricate
regulatory network together with CD160, and LIGHT (TNFSF14),
sharing the ligand HVEM (herpes virus entry mediator;
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TNFRSF14) (88, 89). This network can elicit inhibitory or
stimulatory signals depending on the cells expressing them and
whether their interactions occur in cis- or trans- (Figure 1) (88).
BTLA and HVEM were present in the established RA ST (90), while
in the peripheral blood, BTLA was increased on circulating CD3* T
cells while HVEM and LIGHT were decreased compared to healthy
controls (91). BTLA polymorphisms have also been associated with
RA risk (92). HVEM also binds glycoprotein D (gD) which
competes for binding with BTLA and CD160 (88, 93); efforts into
blocking the BTLA-HVEM interaction using gD fragments for
future cancer therapy are ongoing (94). Reciprocal approaches to
free HVEM for interaction with BTLA and CD160 may induce
inhibitory signalling and provide a future therapeutic approach
in RA.

6 Other pathways

Research into other inhibitory immune checkpoints including
TIGIT, TIM-3, and LAG-3 is currently underway in cancer (32, 95),
and are tantalising future targets in RA. Increased TIGIT expression
on CD4" RA T cells correlated with autoantibody levels and DAS28
(96), and an agonistic anti-TIGIT antibody, capable of inhibiting
Tth and Tph cells and enhancing Treg function, has recently been
described (97). Tregs expressing TIGIT supressed Thl and Th17
cell responses (98) and signalling through TIGIT on functionally
defective Tregs from patients with multiple sclerosis restored
suppressive function (99), highlighting the potential of TIGIT-
targeting. LAG-3 is constitutively expressed on Tregs; LAG-3
positive Tregs in peripheral blood were reduced in RA patients
with higher disease activity, and increased following abatacept
therapy (100). Additionally, soluble LAG-3 was increased in early
and established RA, correlated with ACPA/RF status and erosive
progression in early RA, and decreased inflammatory cytokine
release in chronic RA (101). Finally, T cell expression of TIM-3,
was increased in RA patients and correlated with decreased
DAS28 (102).

Leukocyte-associated immunoglobulin receptors 1 and 2 (LAIR-1
and LAIR-2, respectively) are inhibitory immune receptors for
collagens that are expressed broadly across the immune
compartment (103, 104). LAIR-1 engagement by collagen or the
complement component Clq induces inhibitory T cell signalling
(105), and in collagen-induced arthritis, administration of anti-LAIR-
1 antibodies significantly attenuated disease (106, 107). In RA, T cell
expression of LAIR-1 is reduced compared to healthy and
osteoarthritis controls and elevated on ST monocytes and
macrophages (108). LAIR-2 is a secreted homolog capable of
inhibiting LAIR-1-mediated inhibitory signalling, and is elevated in
the RA synovial fluid (109), suggesting dysregulated LAIR-1 action in
RA. Together, these suggest that manipulating inhibitory LAIR-1
signalling may offer a future therapeutic approach for RA.

VSIG4 (complement receptor immunoglobulin; CRIg) is a B7-
family related protein capable of modulating T cells through
interaction with a yet to be identified receptor and has additional
roles in immunosuppression (110, 111). VSIG4 binds the
complement fragment C3b, inhibiting the alternative complement
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pathway (112), and approaches utilising this function have shown
efficacy in rodent models of RA (113, 114). Administration of
soluble VSIG4 reduced disease severity and prevented bone
erosion in murine arthritis models (114), and administration of
the dual complement inhibitor CRIg-CD59 alleviated symptoms in
an adjuvant-induced arthritis rat model (113). In humans, VSIG4 is
expressed by tissue-resident regulatory macrophages in the healthy
and RA ST from patients in remission (115), and importantly,
polymorphisms in VSIG4 have been associated with RA
severity (116).

Finally, the signalling lymphocytic activation molecule (SLAM)
family has gained recent attention in RA. SLAMF6 was increased in
osteoarthritis and early RA ST (117), and in circulating early RA
PD-1"CD4" cells (54) and inhibition of SLAMF6 on CD4'PD-1"
peripheral cells from established RA patients decreased IgG
production and plasmablast differentiation (53).

7 Future directions

With their undeniable role in the RA autoimmune milieu, the
potential of targeting immune checkpoint pathways with novel
approaches is an area of immense interest in RA research. These
include modulation utilising small molecules including non-coding
microRNAs, and their use in downregulating inhibitory checkpoint
pathways are currently under investigation in cancer (118, 119).
These are attractive because of their ability to target not only a single
gene, but entire pathways (120). Similar strategies capable of
inducing these pathways may therefore be efficacious in
alleviating autoimmune inflammation. Indeed, MEG3, a long
non-coding RNA can modulate TIGIT expression on CD4" T
cells from aplastic anaemia patients (121).

The co-expression of checkpoint molecules on individual cells
suggests the approach of targeting multiple checkpoints
simultaneously, and there has been significant recent interest in
targeting dual targets by bi-specific antibodies. CTLA-4/0X40
(ATOR-1015) (122), and PD-L1/CTLA-4 (KN046) bi-specifics are
currently in trial for use in cancer (123). In RA, bi-specific approaches
have the potential advantage of targeting checkpoint molecules
specifically in the inflammatory niche. For instance, a bi-specific
targeting TNF and synovial-specific domain scFv-A7, shows
remarkable tissue and disease specificity for the microvascular
compartment of the human arthritic ST (124). Interestingly, fewer
irAEs appear to be observed following the use of bi-specific antibodies
in cancer therapy compared to combination therapy, likely as a result
of their site-specific nature (125).

Finally, while the adverse events associated with the use of ICIs
in cancer therapy are reasonably well documented, the current lack
of agonistic antibodies targeted to checkpoint pathways in human
trials makes it difficult to remark on the potential risks associated
with the use of checkpoint agonists for the treatment of chronic
diseases such as RA. In initial trials, severe adverse events were
documented while testing an anti-CD28 agonist in healthy control
patients (126), while early trials of Peresolimab in RA do not suggest
the development of severe adverse events (61), and in cancer,
agonistic antibodies targeting OX40 showed acceptable safety
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profiles (127). However longer, and larger trials are required to fully
assess safety profiles and effect on oncologic risk (61).

8 Concluding remarks

The role of immune checkpoint molecules in RA is a growing
area of research, and the elucidation of how these pathways
influence the breaching of self-tolerance and drive RA
pathogenesis will undoubtedly be critical for selecting the most
appropriate therapy for individual patients. However, much
remains to be explored, from deciphering the complex
interactions between immune cells to fine-tuning the delicate
equilibrium of immune activation and suppression. As this field
progresses, agonistic immune checkpoint-based therapies may
emerge as valuable therapeutic tools for treating RA and may
offer new avenues for improved patient care and quality of life.
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Semaphorin3B promotes an anti-
inflammatory and pro-resolving
phenotype in macrophages from
rheumatoid arthritis patients in a
MerTK-dependent manner

Sara Martinez-Ramos™?, Carlos Rafael-Vidal*?,

Beatriz Malvar-Fernandez"?, Nair Pérez*?, Coral Mourifio™?,
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de Reumatologia, Instituto de Investigacion Sanitaria de Santiago (IDIS), Hospital Clinico Universitario
de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de

Compostela, Spain

Previous works from our group show that Semaphorin3B (Sema3B) is reduced in
RA and plays a protective role in a mouse arthritis model. In turn, MerTK plays a
protective function in murine arthritis models, is expressed by synovial tissue
macrophages and is linked to remission in patients with RA. In this study, we
examined the role of Sema3B in the phenotypic characteristics of RA
macrophages and the implication of MerTK. Peripheral blood monocytes from
RA patients were differentiated into IFN-y (RA M@en-) or M-CSF (RA MOy _csf)
macrophages and stimulated with LPS, Sema3B or their combination.
Alternatively, RA fibroblast like synoviocytes (FLS) were stimulated with RA
M@en-y and RA MOy _csr supernatants. Gene expression was determined by
gPCR and protein expression and activation by flow cytometry, ELISA and
western blot. Sema3B down-regulated the expression of pro-inflammatory
mediators, in both RA M@y.y and RA MQOp_csp. We observed a similar
reduction in RA FLS stimulated with the supernatant of Sema3B-treated RA
M@en-y and RA MQ@y_csr. Sema3B also modulated cell surface markers in
macrophages towards an anti-inflammatory phenotype. Besides, MerTK
expression and activation was up-regulated by Sema3B, just as GAS6
expression, Resolvin D1 secretion and the phagocytic activity of macrophages.
Importantly, the inhibition of MerTK and neuropilins 1 and 2 abrogated the anti-
inflammatory effect of Sema3B. Our data demonstrate that Sema3B modulates
the macrophage characteristics in RA, inducing a skewing towards an anti-
inflammatory/pro-resolving phenotype in a MerTK-dependant manner.
Therefore, here we identify a new mechanism supporting the protective role of
Sema3B in RA pathogenesis.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune rheumatic
and musculoskeletal disease (RMD) characterized by articular
inflammation, bone erosion and cartilage destruction. Despite the
advances in the last decades, current therapies only reach persistent
responses in 30% of the patients (1).

Recent studies from our group have reported the relevance of
Semaphorin3B (Sema3B) in the pathogenesis of RA. On one hand,
Sema3B levels are reduced in the synovial tissue and serum of RA
patients compared to arthralgia and undifferentiated arthritis
patients, and these levels decrease during the progression of the
disease. On the other hand, Sema3B reduces migration, invasion
and the secretion of matrix metalloproteases (MMPs) in RA
fibroblast-like synoviocytes (FLS). More importantly, Sema3B
deficiency enhances the severity of serum-induced arthritis, while
Sema3B administration abrogates this effect. This protective role is
associated with a reduced mouse FLS migration and the expression
of inflammatory mediators in the affected joints. We also found a
reduced expression of the macrophage marker CD68, suggesting
that Sema3B may modulate this cell population (2-4).

Macrophages are key mediators in RA and are involved in
several pathogenic processes, including inflammation, angiogenesis
and bone and cartilage destruction (5, 6) importantly, the number
of synovial macrophages correlates with the clinical disease activity
(7). Historically, macrophages have been classified as pro-
inflammatory (M1) or wound healing/anti-inflammatory (M2)
macrophages, although these are the extremes of a broad
spectrum of intermediated states that depend on the
environmental factors and the surrounding cells (5). Recent
studies have reported the existence of several macrophage subsets
in the synovium of RA patients with different functional roles.
Notably, the frequency of these populations is also associated with
the clinical status of the patients (8, 9).

Since the effect of Sema3B on RA macrophages is unknown, in
the current study we examined the effect of Sema3B on the
functional and phenotypic characteristics of this cell population.

2 Materials and methods
2.1 Patients

Peripheral blood mononuclear cells (PBMCs) (n = 33) and FLS
(n = 4) were obtained from blood and inflamed joints of RA

patients, respectively. All subjects provided written informed
consent, and the protocols were approved by the Ethics
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Committee of Galicia prior to patient inclusion in this study
(studies numbers 2020/159 and 2021/03). RA patients fulfilled the
American College of Rheumatology/European Alliance of
Associations for Rheumatology 2010 classification criteria for RA
(10). Clinical characteristics of patients are detailed in
Supplementary Table SI.

2.2 Monocyte purification, macrophage
differentiation and stimulation

PBMCs were obtained by Ficoll gradient (STEMCELL
Technologies) and CD14" monocytes were isolated by using the
MagniSort Human pan-Monocyte isolation kit (Thermo Fisher
Scientific). Monocytes were differentiated into RA macrophages
(RA MQ) by culturing in Iscove’s Modified Dulbecco’s Medium
(IMDM) supplemented with 10% of heat-inactivated fetal bovine
serum (FBS, CorningTM) and 10000 LE penicillin-streptomycin
(LonzaTM BioWhittakerTM), in the presence of IFN-vy (10 ng/mL;
R&D Systems; RA MQgy._y) or M-CSF (25 ng/mL; PeproTech; RA
MOy csr) for 7 days. On one side, macrophages were differentiated
in the presence or the absence of recombinant human (rh)Sema3B
(200 ng/mL; R&D Systems) for 7 days. Conversely, RA M@pn._ and
RA M@,y csr were cultured for 7 days and stimulated for 24 h with
LPS (10 ng/mL; InvivoGen) in the presence or absence of rhSema3B
(200 ng/mL). RA M@pn.y and RA M@y.csp were pre-incubated
during 1 hour with neutralizing anti-Neuropilin-1 (o-NRP1)
antibody (5pg/mL; R&D Systems), neutralizing anti-Neuropilin-2
(a-NRP2) antibody (5pg/mL; R&D Systems) or their respective
isotype controls (sheep and goat IgG; 5ug/mL; R&D Systems), and
stimulated with LPS (10 ng/mL) in the presence or absence of
rhSema3B (200 ng/mL) for 24 h.

Alternatively, RA MQpy., and RA M@yy.csp were also pre-
incubated during 1 hour with DMSO or a specific MerTK inhibitor
(100nM; UNC2881, Cayman Chemical) (11, 12) and stimulated
with LPS in the presence or absence of rhSema3B for 24 h.

Cells were lysed for mRNA expression analysis or typsinized for
Flow Cytometry. Cell-free supernatants were harvested for
cytokine analysis.

2.3 RA FLS culture and stimulation
RA FLS were cultured in Dulbecco’s Modified Eagle Medium
(DMEM, Lonza " BioWhittaker ") containing 10% FBS, 200 mM

Glutamine (LonzaTM) and 10,000 U/mL penicillin-streptomycin
(Thermo Fisher Scientific) and used between passages 6 to 10.
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Prior to stimulation, RA FLS were cultured overnight in DMEM
containing 1% FBS. Afterwards, the cells were stimulated for 4 h
with the supernatants (20%, v/v) from RA M@y and RA
MOyi.csk.

2.4 RT-PCR and quantitative (q)PCR

RNA from RA M@ and RA FLS was isolated employing the
NucleoSpin RNA/Protein Mini kit (Macherey-Nagel). Total RNA
was reverse-transcribed using iScript (Biorad). cDNA was amplified
by qPCRs in duplicates using SYBR green (Biorad) and specific
primers (Integrated DNA Technologies (IDT); Supplementary
Table S2) with a CFX96 Touch Real-Time PCR Detection System
(Biorad). Relative levels of gene expression were normalized to the
expression of 2 housekeeping genes (GAPDH and B2M). The
relative quantity (RQ) of mRNA was calculated by using the
formula 2744,

2.5 ELISA

IL-12p70, IL-6, TNF (R&D Systems) and Resolvin D1 (Cayman
Chemical) protein levels were measured by ELISA in cell-free
supernatants, according to the manufacturing instructions.

2.6 Flow cytometry

Data were acquired on a CytoFLEX S analyser (Beckman
Coulter). 10% of Anti-Hu Fc Receptor (Thermo Fisher Scientific)
was used for avoiding non-specific binding. Macrophages were
stained with Fixable Viability Dye eFluor for dead cell exclusion
(e450; Thermo Fisher Scientific) and antibodies for CD14-
PerCPCy5.5, CD64-FITC, CD80-BV510, CD86-PECy7, CD163-
APC-Cy7, CD206-APC, HLA-DR-BV605 and MerTK-PE (all
Biolegend). In the case of MerTK, Fluorescence Minus One
(FMO) enabled the tagging of the positive population. After
excluding debris, doublets and dead cells, cell populations were
analyzed using CytExpert software and Cytobank platform
(Beckman Coulter). Results were expressed as the Median
Fluorescence Intensity (MFI).

2.7 Phagocytosis assay

Macrophage phagocytic activity was determined by the uptake
of the fluorogenic substrate DQ Red BSA (FITC; Thermo Fisher
Scientific). Stimulated RA M@py.y and RA MQy.csp were
typsinized and plated in conical well plates. DQ Red BSA (20 ng/
mL) was added for 0, 30 and 60 minutes. Uptake data were acquired
on a CytoFLEX S analyser (Beckman Coulter) and results were
expressed as percentage of DQ-BSA uptake versus 30 minutes
basal uptake.
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2.8 Immunoblotting

Protein from RA M@y csg was isolated by Laemmli buffer.
Equal quantities of total protein were submitted to electrophoresis
on Polyacrylamide gels and transferred to PVDF Transfer
membranes (Thermo Fisher Scientific). Membranes were
incubated (4°C, overnight) with primary antibodies for (p)
hosphoMerTK (FabGennix) and fB-actin (R&D Systems) in 4%
Milk-TBS/T, washed and incubated in 2% Milk-TBS/T containing
HRP-conjugated secondary antibody (anti-mouse IgG, Thermo
Fisher Scientific). Protein was developed with ECL Western
Blotting Substrate (Thermo Fisher Scientific) employing a
ChemiDocTM MP System (Biorad). Densitometry analysis was
performed by Image] software and relative protein expression was
normalized to the values for -actin.

2.9 Gene expression from profiling data

The gene expression of Sema3B receptors in bone marrow-
derived macrophages (BMDM) from wild type (WT) and MerTK
deficient (Mertk”") mice was retrieved from array profiling data
available at the Gene Expression Omnibus (GEO-NCBI;
GSE205070) (13).

2.10 Statistical analyses

Statistical analysis was performed by using Windows GraphPad
Prism 8 (GraphPad Software, Inc.). Normality was analysed by
Shapiro-Wilk and Kolmogorov-Smirnov tests. The potential
differences between experimental groups following normal
distribution were analysed by One-way ANOVA and Paired t
tests, as applicable. Data non-following normal distribution were
analysed by Friedman’s test. P values < 0.05 were considered
statistically significant.

3 Results

3.1 Sema3B modulates the inflammatory
characteristics of RA MO

We firstly analysed the effect of Sema3B in inflammatory
macrophages (RA MQpx.y). Sema3B alone did not affect the
expression of pro-inflammatory mediators, but significantly
reduced the LPS-induced expression of IL12B, IL23, CD86, TNF
and CCL2, while moderately IL1B, IL6 and CXCL10 (Figure 1A). In
the case of anti-inflammatory mediators, Sema3B induced the
expression of STABI, but did not modulate the expression of
IL10, IL13 and TGFB (Supplementary Figure S1A).

The influence of Sema3B was also determined on RA MQ
differentiated with M-CSF, which promotes an anti-inflammatory
phenotype (14). Similarly to RA MQgy.,, Sema3B alone did not
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(pg/mL), and analysed by One-way ANOVA tests. Means and SEM are shown. *P < 0.05 and **P < 0.01 and ***P < 0.001.

affect the expression of pro-inflammatory mediators in RA M@y
csk» but significantly down-regulated the LPS-induced expression of
IL12B, besides reducing CD86, TNF and CCL2 (Figure 1B). In
contrast, the anti-inflammatory mediators STABI and TGFB were
up-regulated by Sema3B, alone and in combination with LPS
(Supplementary Figure S1B).

We validated these findings at the protein level in both RA
M@y and RA M@ycsp in which Sema3B reduced the LPS-
induced secretion of IL12p70, TNF-0. and, in RA MOy
specifically, IL-6 (Figures 1C, D).

With the aim of determining whether the anti-inflammatory
effect of Sema3B could have functional consequences on effector
cells, RA FLS were stimulated with cell-free supernatants from RA
MQpny and RA M@y csg. Interestingly, supernatants of those
macrophages stimulated with LPS in combination with Sema3B
reduced the expression of ILIB, IL6, IL8, TNF, CCL2, CXCLI0,
MMPI1 and MMP3 compared to supernatants of LPS-stimulated
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macrophages, although differences were not significant for all
mediators (Figures 1E, F).

The effect of Sema3B on the modulation of M1 (CD80, CD86 and
HLA-DR) and M2 (CD163 and CD206) surface markers expressed
by RA synovial macrophages was also evaluated (6). In RA MQ@ypy.
Sema3B alone promoted CD64 and CD206 expression and, in LPS-
stimulated macrophages, reduced the expression of CD64, HLA-DR
and, significatively, CD86 (Figure 2A). In the case of RA MOy csp
we found that, in combination with LPS, Sema3B decreased the
expression of CD64 and a trend for CD80 (Figure 2B). We also
determined whether Sema3B was able to modulate the expression of
specific markers during the macrophage differentiation process.
Sema3B significantly down-regulated the expression of HLA-DR in
IFN-y-differentiated macrophages, but it did not modulate M2
markers. During the differentiation process with M-CSF, Sema3B
reduced the expression of HLA-DR and CD64, while it significantly
induced the expression of CD163 (Supplementary Figure S2).
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FIGURE 2

Sema3B promotes an anti-inflammatory phenotype in RA M@. (A, B) CD163, CD206, HLA-DR, CD64, CD80 and CD86 cell surface marker
expression in RA MQjen.y [n = 4] (A) and RA M@y _csr [n = 5] (B) stimulated with rhSema3B [200 ng/mL] in the presence or absence of LPS [10 ng/
mL] for 24 h. Data are shown as MFI (Median Fluorescence Intensity) of cells and analysed by Friedman (A) One-way ANOVA (B) tests. Means and

SEM are shown. *P < 0.05, ***P < 0.001

Altogether, these data demonstrate an anti-inflammatory effect
of Sema3B in RA M@, by reducing the expression of the
inflammatory phenotype and modulating the phenotypic
characteristics of RA MQ.

3.2 Sema3B promotes an anti-
inflammatory and pro-resolving
macrophage phenotype in a MerTK-
dependant manner

We next sought the mechanisms involved in the anti-
inflammatory effect of Sema3B. Sema3B did not modulate the
expression of its known receptors, PlexinAl and PlexinA2, and
co-receptors, Neuropilin-1 (NRP-1) and Neurolipin-2 (NRP-2) in
either RA M@pn., or RA MOy csp (15, 16) (Figures 3A, B).
However, the neutralization of both NRP-1 and NRP-2 abolished
the Sema3B-mediated decrease of IL12p70 in RA MQipn.y,
demonstrating that both Sema3B co-receptors are involved in the
anti-inflammatory role of Sema3B (Figure 3C).

Due to the crucial role of MerTK in resolving inflammation in
RA (9, 17, 18), the involvement of Sema3B on the expression of this
tyrosine kinase receptor was also evaluated. Sema3B alone, but not
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in combination with LPS, up-regulated the mRNA and protein
expression of MerTK, and the mRNA expression of the MerTK
ligand GAS6 (19-21) in both RA M@y (Figure 4A) and RA
MOy csk (Figure 4B), although differences were more pronounced
in the latter. Sema3B also increased MerTK expression during the
differentiation process into RA M@y csg (Supplementary Figure
S2B). Importantly, Sema3B induced the activation of MerTK in RA
M@, csr at different time points, being this effect significant at 4
hours (Figure 4C).

Since MerTK"™ RA M@ are involved in the resolution of
inflammation, we next analysed the effect of Sema3B in the
phagocytic activity of macrophages and the synthesis of Resolvin
D1, a lipid induced by macrophage MerTK signalling involved in
resolving joint inflammation (22). In RA M@pn., Sema3B
moderately increased Resolvin D1 secretion, although it did not
modulate the macrophage phagocytic activity (Figure 4D). On their
part, Sema3B-stimulated RA M@y csr significantly raised the
secretion of Resolvin D1, as well as their phagocytosis capacity,
although it resulted insufficient counteracting the effect of
LPS (Figure 4E).

Ultimately, we tested if these responses were mediated by
MerTK, using a specific MerTK (i)nhibitor. Sema3B reduced the
LPS-mediated secretion of IL12p70 in both RA Mgy, and RA
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MOy csk, and this effect was abrogated in the presence of the
MerTKi (Figures 4F, G). Also, MerTK inhibition reversed the
Sema3B-induced phagocytic activity of RA M@y csk (Figure 4G).

Therefore, these results suggest that the anti-inflammatory and
pro-resolving responses induced by Sema3B are, at least in part,
mediated by MerTK.

4 Discussion

In this manuscript we demonstrate that Sema3B modulates the
phenotypic characteristics of RA macrophages. More specifically,
Sema3B induces a skewing towards an anti-inflammatory/pro-
resolving phenotype in a MerTK-dependant manner. Through
this work we have found a new protective effect of Sema3B in the
pathogenesis of RA. This protective role is in line with previous
results from our group, in which we described a reduced expression
of inflammatory mediators in both joints and FLS of arthritic mice
treated with Sema3B and an impaired invasive phenotype in
Sema3B-stimulated RA FLS (2-4).

Firstly, Sema3B reduced the secretion of pro-inflammatory
cytokines in monocytes-derived macrophages from RA patients.
The expression of surface markers associated to M1 macrophages
(CD86, HLA-DR and CD64) was also decreased by Sema3B, while
the expression of M2 markers (Stabilin-1 and TGF-f) was raised.
Neutralization experiments showed that co-receptors NRP-1 and
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NRP-2 are involved in the protective signalling induced by Sema3B.
Since our previous findings identified NRP-2 and, in lower extent
NRP-1, as Sema3B co-receptors essential for reducing the invasive
ability of RA FLS (2), we demonstrate that Sema3B signals through
these co-receptors in both cell types. Sema3B also increased the
phagocytic activity in RA M@y csp, which is linked to the
resolution of tissue inflammation (6). However, we did not
observe this effect in RA Mgy, This might be due to the IFN-
v-induced M1-like phenotype, which could be modulated to a less
inflammatory phenotype by Sema3B, but without reaching pro-
resolving characteristics, as it would be the case for Sema3B-
modulated RA M@y csp. In this regard, the higher phagocytic
activity of RA M@y;_csp compared to RA MQygny (Supplementary
Figure S3), and the lack of effect of Sema3B on LPS-stimulated
macrophages, support this aim.

Secondly, we proved that the anti-inflammatory/resolving effect of
Sema3B in RA M@ was mediated by MerTK. Sema3B has a dual role
on MerTK activation. On one hand, Sema3B induced the expression
and activation of MerTK. On the other hand, Sema3B up-regulated the
macrophage expression of GAS6, which is a ligand that activates
MerTK signalling (19-21). MerTK is a crucial tyrosine kinase for the
macrophage differentiation towards an anti-inflammatory/resolving
phenotype (23, 24) and its deficiency exacerbates the severity of
collagen-induced arthritis, while MerTK signalling activation reduces
it in this arthritis model (17, 18). Importantly, MerTK" synovial
macrophages are associated with the disease status of RA patients. In
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*P < 0.05, **P < 0.01.

fact, the percentage of this macrophage population is reduced in
patients with active RA compared to patients in remission and
negatively correlates with the disease activity score-28 (DAS28). In
contrast, MerTK™ synovial M@ express inflammatory mediators,
induce the production of inflammatory mediators by RA FLS and
participate in both bone and cartilage destruction (9, 17). Therefore, the
modulation of MerTK" macrophages by Sema3B may be a useful
approach for the treatment of RA.

We cannot rule out the possibility that MertK modulates
Sema3B signalling, since MerTK regulates the expression of the
Sema3B receptor PlexinA1l (25). We analysed, using a public dataset
(GSE205070), the expression of Sema3B receptors in bone marrow-
derived macrophages (BMDM) from WT and Mertk”" mice.
Deficiency of MerTK significantly up-regulated the expression of
Plxnal and Nrpl (Supplementary Figure 4), suggesting that MerTK
signalling might modulate the Sema3B signalling. However, further
studies are needed for elucidating this effect.

Sema3B is not the only class 3 semaphorin member able to
modulate the macrophage phenotype characteristic. In fact,
Sema3A and Sema3E also induce a skewing towards a resolving/
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anti-inflammatory phenotype in this cell type (26-29). In addition,
Sema3A and Sema3F play protective roles in the pathogenesis of RA
(2, 4, 29, 30). However, these semaphorins did not modulate the
expression of MerTK (data non shown), suggesting that the MerTK
regulation is specific for Sema3B.

Lastly, Sema3B also enhanced the secretion of Resolvin D1, a
pro-resolving lipid triggered by the MerTK signalling activation,
with a protective function in inflammatory arthritis (9, 22).
Moreover, Resolvin D1 has been also involved in the modulation
of macrophage polarization and in the skewing towards the anti-
inflammatory/resolving phenotype (20, 31).

A limitation of this study is that we did not used liquid
chromatography-mass spectrometry, the gold standard for the
assessment of Resolvin D1 (32). Instead, we employed the well-
validated ELISA technique. We neither utilized synovial macrophages
from RA patients. We used instead in vitro M-CSF- and IFN-y-
differentiated macrophages from peripheral blood monocytes of RA
patients, which possess anti-inflammatory/pro-resolving and pro-
inflammatory characteristics, respectively (5, 14). Remarkably,
MerTK expression was higher in RA M@, csp than in RA MOy
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1 therefore these macrophage phenotypes partially mimic the
phenotypes of MerTK" and MerTK synovial macrophages.

Altogether, our work identifies a new anti-inflammatory
mechanism of Sema3B, confirming the protective role of Sema3B
in RA pathogenesis and pointing out this semaphorin as a
promising therapeutic target.
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