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Editorial on the Research Topic

Seafloor processes: geomorphology, sediment-ocean interaction and
natural resources

Seafloor processes refer to the oceanic processes that take place near the seafloor,
including physical, chemical, biological, and geological processes, which are related to
submarine geomorphology, fluid dynamics, resources exploitation, and geotechnics, and
are hard to fully describe due to the limitations of submarine detection technology and
their interdisciplinary nature. Indeed, seafloor processes involve several scientific
disciplines and fields, and require multi-level and multi-scale research. Moreover, the
seafloor is interpreted as an essential interface between the lithosphere and hydrosphere,
where substance circulation and energy exchange occur. The collection of works compiled
in this Research Topic contributes to a deeper understanding, from multiple perspectives,
of the study of seafloor processes.

In this Research Topic, Huang et al. indicate that approximately 98.9% of gold supplied
in modern seafloor hydrothermal systems is transported into the depths of the global
ocean, which is three to five orders of magnitude higher than what typically exists in deep
ocean water.

Cold seeps are seafloor manifestations of methane-rich fluid migration from the
sedimentary subsurface to the seabed and into the water column, accompanied by a
series of biogeochemical reactions. Cen et al. infer that foraminiferal tests are extremely
sensitive to alteration by methane-bearing fluids based on the elemental and stable carbon-
oxygen isotopic compositions, and the elemental ratios of diagenetically altered tests are
potentially reliable proxies for paleo-methane release events. Simultaneously, cold seeps are
crucial for reconstructing the paleo-marine environment and tracing the origin of life and
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the occurrence of minerals. The study of cold seeps in the southern
South China Sea has demonstrated that cold seeps vary in time and
space, and that fluid fluxes and tectonic settings have a significant
impact on the sedimentary environment and geochemistry,
resulting in obvious regional differences in the properties and
activities of cold seeps (Chen et al.).

Seabed fluid flow is a constantly evolving dynamic process
whose products can help complete a systematic understanding of
seafloor evolution. For example, authigenic carbonates are direct
records of past fluid flow near the seafloor. Feng et al. identify that
the components of carbonates have a common trend among
different seepage stages. Furthermore, this work infers that the
temporal evolution of local fluid sources may play an essential role
in determining carbonate isotope geochemistry. The small-scale
event layers in the continental margin also contain abundant
dynamic environmental information, and it is found that the
changes in the ocean environment of the Late Quaternary,
especially sea level and bottom water temperature, played a
leading role in the occurrence of regional small-scale event layers
(Li et al.).

The seafloor is rich in marine mineral resources with substantial
economic and scientific research value. Ren et al. analyze the
submarine ferromanganese (Fe-Mn) oxide precipitates from the
South China Sea to form Fe-Mn polymetallic crusts and nodules.
Moreover, they infer that it was formed in a short period of a sub-
oxic environment and diagenetic process and would affect the
enrichment of metals, such as Ni, during the growth process.
Climate change and ocean evolution significantly impact the
sedimentary processes in seamount regions. Tian et al. analyze
the clay minerals, grain size, and '*C ages of core SCS18-1 collected
from the Beipo seamount in the northern South China Sea, and find
that the relative content of EM1+EM?2 and the illite chemical index,
and the relative content of EM3 effectively indicate the changes in
the intensity of East Asia summer monsoon winter
monsoon, respectively.

Fresh submarine groundwater is a potentially untapped
resource whose discharge impacts submarine morphology.
However, the locations and extent of fresh submarine
groundwater discharge and its impact on submarine morphology
still need to be better understood. Hoffmann et al. use single and
multibeam hydroacoustics and towfish (i.e., temperature, salinity,
and turbidity) transects combined with remotely operated vehicle
dives and sediment cores to better characterize submarine
geomorphology. It is observed that there are a large number of
seafloor depressions (pockmarks) caused by continuous seabed
fluid flow.

The interaction between seawater and submarine topography
caused by internal solitary waves will drive the disturbance of the
benthic environment, but its impact on benthic organisms is less
studied. Feng et al. perform in-situ observation in the Shenhu
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Canyon to determine the physical characteristics of internal
solitary waves and the changes in benthic organisms. It is
revealed that the abundance and density of benthic organisms
were positively correlated with the time and intensity of interval
solitary waves.

Seafloor processes still need to be wholly understood due to
limitations in submarine detection technology and its spatial
resolution. Because of the advantage of high spatial resolution, seismic
reflection data has become a preferable tool to study and image seafloor
processes. Han et al. combine fluid dynamics numerical simulation with
seismic oceanography to discuss the formation mechanisms of the hair-
like reflection configuration. As a consequence, it is deduced that the
difference in seawater temperature and salinity can form a hair-like
reflection configuration.

In this Research Topic, a comprehensive understanding of the
patterns, mechanisms, and evolution of seafloor processes has been
gained through multiple research methodologies. It has
implications for submarine geomorphology, fluid dynamics, and
natural resources, promoting the understanding of submarine
biology and ecology, and marine geological activity and
chemistry. Additionally, this Research Topic aims to demonstrate
that multidisciplinary theories and approaches are required to
address the interactions between the various seafloor processes, as
well as the impact of natural and anthropogenic processes on
the seafloor.
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Provenance and
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seamount of the northern
South China Sea during the

last deglaciation
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The sedimentary processes of seamount regions are closely related to climate
change and ocean evolution. The clay minerals, grain size and **C ages of core
SCS18-1, which was collected from the Beipo seamount in the northern South China
Sea (SCS) were analyzed to discuss the provenance and paleoenvironmental
conditions during the last deglaciation. The sediments of core SCS18-1 are
dominated by clayey silt, which is mainly composed of illite (55.2~62.1%) and
chlorite (17.1~22.5%), with subordinate kaolinite (9.5~12.6%) and smectite
(7.3~15.1%). The illite chemical index and illite crystallinity indicate strong physical
weathering conditions. The results of the end-member modeling algorithm (EMMA)
suggest that the sediments of core SCS18-1 consist of three end-members
containing EM1 (0.98 um), EM2 (9.29 um) and EM3 (44.19 um), with average
contents of 3%, 66% and 31%, respectively. The finest endmember represents
fluvial mud, the middle and coarsest endmembers are considered fluvial fine silt
and eolian dust, respectively. The mean grain size is mainly controlled by the coarser
fraction EM3. Based on the clay minerals, grain size and SEM analysis, we can
conclude that since the onset of the last deglaciation (16.1 ka BP), the sediments of
core SCS18-1 mainly originate from fluvial input, and eolian material also
contributed to the sediments. The clay mineral assemblages of core SCS18-1 are
stable and originate mainly from Taiwan. Additionally, the Pearl River appears to be a
secondary contributor of clay minerals. Further, the Luzon Islands only account for a
small proportion. Major kaolinite and moderate illite and chlorite are thought to
originate from the Pearl River, predominant illite and chlorite from Taiwan, and
principal smectite from the Luzon Islands. Both the relative content of EM1+ EM2
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and the illite chemical index effectively represent the variation of East Asia summer
monsoon (EASM) strength. Meanwhile, the relative content of EM3 effectively
represents the East Asian winter monsoon (EAWM) change. The material supply of
core SCS18-1 is mainly controlled by solar radiation in the Northern Hemisphere.

KEYWORDS

grain size, clay minerals, provenance, the last deglaciation, South China Sea

1 Introduction

As part of the South China Sea (SCS), the largest marginal sea in
the western Pacific, the northern SCS receives sediment derived from
the Pearl River in South China, small mountainous rivers in
southwestern Taiwan, and some rivers in Luzon (Boulay et al,
2005; Clift et al., 2014; Liu et al,, 2016; Wan et al., 2017; Kissel
etal., 2020), and its deposition processes are highly impacted by land-
sea interactions, sea-level changes, East Asian monsoon (EAM), El
Nifo Southern Oscillation (ENSO), and other processes (Hu et al.,
2012; Clift et al., 2014; Liu et al., 2016; Wan et al., 2017; Kissel et al.,
2020). Currently, there are disagreements regarding the provenance
of the sediments in the northern SCS. Most previous studies in the
northern SCS have considered the Pearl River to be the main
sediment (Clift et al, 2002; Boulay et al, 2003; Li et al., 2003).
Growing evidence indicates that, due to the tectonic activity and
monsoon/typhoon rainfall of Taiwan Island, the small mountainous
rivers draining Taiwan Island supply 230-400 Mt/yr (Liu et al., 2008;
Xu et al.,, 2021). Thus Taiwan is thought to be one of the highest
sediment suppliers in the world. As a result, the Taiwan sediment
provenance has become more important to the northern SCS, with
only minor amounts transported from the Pearl River and Luzon
rivers (Clift et al., 2014; Huang et al., 2016). However, our
understanding of the sediment provenance of the continental slope
in the northern SCS remains limited.

Seamounts are the most ubiquitous landforms on Earth but are
unevenly distributed among ocean basins, and there are approximately
2500 seamounts with a height of more than 100 m in the world (Wessel
et al., 2010). Seamount sediments are ideal recorders of ocean
circulation, sediment deposition, sediment transportation and
weathering of adjacent lands, so they are important for many
disciplines, including such as geology, oceanography, biology,
ecology, and possibly economics (considering future exploitation of
mineral resources) (Staudigel and Clague, 2010; Staudigel and
Koppers, 2015). Because the ocean is vast, research vessels have
visited only a few thousand of these seamounts, with less than 0.1%
of them being previously investigated (Zhou et al., 2020). In addition,
due to the limitations of the marine survey equipment resolution, we
know very little about seamounts; thus, the identification of seamounts
may be arguably the last major frontier in geographic, geological, and
ecological exploration on Earth (Staudigel and Koppers, 2015; Zhao
et al,, 2022). Growing evidence shown that seamounts not only affect
the distribution of sediment and the path of sediment transport, but
also influence the intensity and propagation path of deep-water

Frontiers in Marine Science

dynamics, especially deep-water gravity and bottom currents (Zhang
and Boyer, 1991; Chen et al., 2019). Thus, the source-to-sink
mechanisms should be different between seamounts and other
oceanic geomorphic units. However, most past studies have focused
on the mineral resources (polymetallic nodules or Co-rich crusts)
found in the seamounts in the northern SCS (Zhong et al., 2017). Work
has seldom been done in relation to the provenance and
paleoenvironment of seamounts; moreover, no research on the
provenance and paleoenvironmental history of the sediments in the
Beipo seamount of the northern SCS has been conducted.

Based on the accelerator mass spectrometry (AMS) '*C ages,
grain size compositions, and clay minerals of the core SCS18-1
sediments taken from the Beipo seamount on the continental slope
of the northern SCS, the sediment provenances and
paleoenvironmental of these marine sediments over the last
deglaciation are discussed in this study.

2 Geological and oceanographic
setting

The Beipo seamount is located on the continental slope of the
northern SCS, southwest of Taiwan Island. According to the near-
bottom observations of Jiaolong Dive 141 on the Dayang 38th voyage
and Qianlong III on the 2018 Dayang Yihao comprehensive ocean
expedition, large, irregular-shaped nodules with a hard substrate, low
water content, and strong adhesion develop on the Beipo seamount
and nearby areas (Dayang 38" voyage field report; 2018 Dayang
Yihao comprehensive ocean expedition field report). A complex
current system has developed in the northern SCS, including deep-
water currents, Kuroshio and surface currents influenced by the EAM
and the South China Offshore Current (Shaw and Chao, 1994; Huang
et al., 2016; Liu et al., 2016; Liu et al., 2017). The summer and winter
surface currents do not completely reverse with the shift of the
monsoon direction; the surface currents only shift between the
southwestward SCS Warm Current and the northeastward
Guangdong Coastal Current on the northern shelf and upper land
slope regions; the SCS branch of the Kuroshio current intruding from
the Luzon Strait transforms northward into the SCS Warm Current
and transforms southward into the northwest Luzon Cyclonic Eddy;
the South China Offshore Current, Luzon Coastal Current and
deepwater current do not show seasonal variations (Liu et al., 2010a).

The island of Taiwan is located at the tectonic collision boundary
between the Philippine Sea Plate and the Eurasian. Given its steep
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topographic gradients, less weather-resistant rocks (mainly composed
of Tertiary metamorphic and sedimentary rocks), high tectonic
activity, periodic typhoons and heavy rainfall, Taiwan is generally
known to have one of the highest sediment yields in the world (Li
et al,, 2012). It is assumed that rivers in southwestern Taiwan
contribute 187 x 10° t of suspended matter to the SCS annually
(Liu et al., 2009). As the second largest river in our country, the Pearl
River was formed by the uplift of the Tibetan Plateau in
approximately 34 Ma. The basin covers an area of 453690 km” with
a total annual runoff of 326 billion m>. The Pearl River is an
oligotrophic river that delivers 69 x 10° t of suspended sediment to
the sea annually (Milliman and Syvitski, 1992). Luzon is dominated
by basalt and andesite, with very developed volcanic activity. The

tectonic movement and monsoon rainfall have a significant impact on

106°E

108° 110° 112° 114°
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the transport of terrigenous clastic sediments. The sediment transport
of the Luzon rivers reached 16x10° t (Liu et al., 2009).

3 Materials and methods

Core SCS18-1 (118.06.22°E, 21.10.66°N, water depth 1750 m,
total length 141 cm; Figure 1) was collected from the Beipo seamount
in the northern SCS by gravity sampler in 2018. The core was
described and subsampled at 1-cm intervals. The sediment of core
SCS18-1 is mainly gray clay silt and contains numerous foraminifers.

The samples used for grain-size analysis were collected at 1-cm
intervals. As to the pretreatment for grain size analysis, calcium
carbonate and organic matter were carefully removed with excess 1

118° 120° 122° 124°

26°N

(a)

116°
: NS - 26°N
monsoon winds -

7 s

110°E

112° 114° 116° 118° 120°

FIGURE 1

Map showing (A) the location of core SCS18-1 and the monsoon winds and current systems (modified from Liu et al., 2010b), (B) the submarine contour in
the northern SCS, (C) the topography of the Beipo seamount. The location of cores ODP1144 (Liu et al., 2010b; Liu et al,, 2013), ODP1146 (Wan et al.,
2007b) and STD235 (Liu et al., 2018) are also shown. Southwesterly winds prevailing in summer (pink three-dimensional arrow) and northeasterly winds
prevailing in winter (blue three-dimensional arrow); summer and winter surface currents (red dotted line arrow and black solid arrow, respectively); deep
current (yellow dashed arrow); longshore current (blue solid arrow); Kuroshio current (KC); Taiwan current (TWC). Numbers for winter and summer surface
currents: 1. SCS Branch of Kuroshio; 2. NW Luzon Coastal Current; 3. NW Luzon Cyclonic Eddy; 4. SCS Warm Current; 5. Guangdong Coastal Current.
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mol/L HCl and 10% H,O, for 24 h, respectively. After rinsing and
centrifuging 3 times using deionized water, the residues were
dispersed and homogenized using ultrasound and then analyzed
using a Malvern Mastersizer 2000 instrument in Qingdao Sparta
Analysis & Testing Co., Ltd. The analyses of each sample, which were
repeated three times, show that the relative error is less than 2%, and
the measurement range of this laser particle size analyzer is 0.02 to
2000 pum. According to the sediment sample characteristics and the
instrument user manual, the grain size distributions (GSDs) were
calculated using the Mie Theory, where the absorption coefficient and
refractive index are 0.1 and 1.52, respectively. The grain size of the
samples was divided into clay (< 4 um), silt (4-63 pm) and sand (63-
2000 um) (Wentworth, 1922). The grain size data were simulated by
the end-member model algorithm (EMMA), and the process of the
simulation was generated by the software AnalySize embedded in
MATLAB (Paterson and Heslop, 2015).

71 samples were used for clay mineral analyses. Samples were
treated with 15% H,0, and 1 mol/L HCI to remove organic matter
and calcium carbonate and then centrifuged with deionized water
three times. Clay mineral analyses were performed on the < 2 ym
fraction, which was separated based on conventional Stokes’ settling
velocity principles. Each sample was transferred to two slides by wet
smearing. Samples were then air-dried before X-ray diffraction (XRD)
analysis (Liu et al., 2003; Wan et al., 2007a). The instrument is an
X’Pert MPD Pro XRD diffractometer with CuKo radiation (40 kV
and 100 mA) produced by Panako Company in the Netherlands.
Natural and ethylene-glycol solvation samples were measured, and
the scanning was completed done from 3° to 30° with a step size of
0.02°. Identification of clay minerals was made mainly according to
the position of the (001) series of basal reflections on the two XRD
spectra. Semi-quantitative estimation of clay mineral abundances is
based on the peak areas of smectite (17A), illite (10A), and kaolinite/
chlorite (7A) on the glycolate curve using the Topas2p software.
Relative proportions of kaolinite and chlorite were determined based
on the ratio of the 3.57/3.54 A peak areas. Relative clay mineral
abundances are given in percentages. Biscaye weighting factors are
used when calculating relative percentages of each clay mineral
(Biscaye, 1965). In addition, the illite chemistry index (the ratio of
illite 5A and 10A peak areas) and illite crystallinity (the full width at
half maximum height (FWHM) of the illite 10 A peak) were
determined on the glycolate curve.

Five AMS'*C dating samples of the planktonic foraminifer
Globigerinoides ruber (G. ruber) were analyzed by Beta Analytic
Inc., USA for this core. The raw *C dates were converted into
calendar years (yr BP) using CALIB 8.2.0 software and applying the
Marine 20 program (http://calib.org/calib/calib.html), and the

TABLE 1 AMSC dates for core SCS18-1.

10.3389/fmars.2023.1110188

reservoir age correction values were -58 + 43 a (Yoneda et al,
2007). Then, the downcore age uncertainty was modeled using the
R-based statistical program Bacon 2.2, which is based on the
calibrated '*C dates and a Bayesian approach (Blaauw and
Christen, 2011).

Micro-morphological examinations of two sediment samples
(40 cm and 80 cm) from core SCS18-1 were performed using a
Hitachi JSM-7610F scanning electronmicroscope (SEM) equipped
with an energy dispersive X-ray spectrometer (EDS) at Qingdao
marine equipment inspection & testing group Co., LTD. Organic
matter and calcium carbonate were removed using 10% H,O, and
15% HCI, respectively. The pretreated terrigenous grains were
dispersed in ethanol by an ultrasonic cleaner and then carefully
dropped on a cover glass slide. These grains were placed on a stub
and coated in gold before examination under SEM. The chemical
composition of selected grains was determined by EDS.

4 Results
4.1 Age model

The age model of core SCS18-1 is based on a total of 5 AMS '*C
dates. The sedimentation of core SCS18-1 is relatively continuous
without age inversion, and the age at the bottom (141 cm) is
approximately 16.1 ka BP (Table 1 and Figure 2).

4.2 Grain size characteristics and
endmember analysis

The presence of trends in grain size composition changes
significantly at 42 cm and 103 cm. The core can be divided into
stages I, II, and III (Figure 3). For stage I (142-103 cm, 16.1-10.6 ka
BP), the average contents of clay, silt, and sand are 19.0%, 72.4%, and
9.6%, respectively; for stage IT (103-42 cm, 10.6-6.8 ka BP), the
average contents of clay, silt, and sand are 19.8%, 74.7%, and 5.5%,
respectively, and the average grain size gradually increases from
bottom to top; for stage IIT (42-0 cm, 6.8-0 ka BP), the average
contents of clay, silt, and sand are 17.1%, 74.1%, and 8.8%,
respectively, and the average grain size changes slightly.

The coefficient of determination (R*) and mean angular deviation
(0) were calculated to identify the minimal numbers of EMs necessary
for a good statistical explanation of the grain size data. A relatively
high R* and low © indicate a better statistical fit (Paterson and
Heslop, 2015).

Laboratory number Depth (cm) Material '4C age (a BP) 8'3C (%o) 8'80 (%0)  Calendar age (yr BP, 20)
Beta-526297 2425 G. ruber 432030 124 14 4330 (4225-4429)
Beta-516707 4445 G. ruber 675030 +14 27 7119 (7029-7219)
Beta-521161 7677 G. ruber 9090+30 +22 17 9690 (9553-9777)
Beta-516708 109-110 G. ruber 9380+30 +18 13 10108 (10016-10211)
Beta-516709 140-141 G. ruber 1395040 +12 16 16095 (15968-16225)
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FIGURE 3
Lithology, mean grain size, clay mineral assemblages, crystallinity index, and chemical index of core SCS18-1.
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The results show that EM number = 2 seems to be a turning point,
where the value of R* becomes greater than 0.95 (Figure 4A),
indicating that the fitting results reach the 95% confidence level; at
higher numbers of EMs, R* is not significantly changed, indicating
that the final EM number should be at least 2. To avoid overfitting, the
correlation between the EMs should be as low as possible, and the EM
correlation increases significantly when the EM number is > 3
(Figure 4A); thus, the final EM number should be 2-3. The angle
deviation () is an index for evaluating the reliability of the EM
model, where low 0 value indicates a better statistical fit. To make the
angle deviation (0) as small as possible, the average angle deviation
should be below 5°. When the EM number is 2, 6 > 5° (Figure 4B);
when the EM number is 3, 6 < 5°. Therefore, when the final EM
number is 3, a good fitting effect can be achieved, and the
requirements of minimum EM number and maximum
reproducibility are satisfied (Paterson and Heslop, 2015;
Tanghe, 2016).

The grain size distribution curves of the simulated EMs (EM1,
EM2, and EM3) exhibit an obvious single peak, which has a good
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corresponding relationship with the grain size distribution of the
samples; the mode of the grain size is 0.98 wm, 9.29 wm, and 44.19
pm, respectively (Figure 4C). Figure 4D shows the relative contents of
EM3 in core SCS18-1, and the contents of EM1, EM2, and EM3 vary
from 1% to 5%, 53% to 83%, and 12% to 45%, with mean values of 3%,
66%, and 31%, respectively. The contents of EM1 and EM2 in the fine
EMs follow the same trend, which is opposite to that of EM3. In the
range of 103-141 cm, the contents of EM1 and EM2 increase
significantly from bottom to top; in the range of 42-103 cm, they
decrease; and above 42 cm, they increase. The trends of EM3 in these
three stages are opposite.

The SEM results show that the coarse-grained components (30-
100 um) are quartz and feldspar, and the fine-grained components
(less than 10 um) are clay minerals (CMs) (Figure 5), which suggests
that EM3 (mode of grain size: 44.19 um) of core SCS18-1 corresponds
to the coarse-grained quartz and feldspar, while EM1 (mode of grain
size: 0.98 um) and EM2 (mode of grain size: 9.29 um) correspond to
the CMs. These results agree well with the grain size analysis results at
the adjacent ODP1146 site (Wan et al., 2007b).
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(A) Endmember analysis results of the sediment grain size data from core SCS18-1. Coefficients of determination (R?) plotted against grain size for
different endmember solutions, (B) mean angular deviation (6) in the function of the number of endmembers for a lognormal endmember model,
(C) grain size frequency distributions for the endmembers of the three-endmember solution, (D) variation in endmember contributions.
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FIGURE 5

SEM and EDS images of sediments from core SCS18-1. (A, B) The SEM and EDS images sediments from core SCS18-1 at 40 cm depth. (C, D) SEM and

EDS images of sediments from core SCS18-1 at 80 cm depth.
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4.3 Clay minerals

The X-ray diffraction (XRD) analysis results show that the clay
minerals of core SCS18-1 (< 2 um) mainly comprise illite, chlorite,
kaolinite, and smectite. The illite content is 55.2-62.1%, averaging
58.1%; the chlorite content is 17.1-22.5%, averaging 20.3%; the
kaolinite content is 9.5-12.6%, averaging 11.2%; and the smectite
content is 7.3-15.1%, averaging 10.5%. The illite chemistry index
ranges from 0.29 to 0.57 (mean value: 0.43) and is usually less than
0.50, indicating that illite is rich in Fe-Mg (such as biotite and mica)
and that it predominantly originated from physical erosion. The illite
crystallinity ranges from 0.23 to 0.31°A26, averaging 0.26°A26, and
the crystallinity is excellent, indicating strong physical weathering in
the source area. As shown in Figure 3, smectite and illite exhibit
opposite trends, however the trends of kaolinite and chlorite are not
significantly correlated with the trends of other clay minerals.

5 Discussion

5.1 Material source and transport
mechanism

Among the terrigenous clastic particles in oceans, clay minerals are
the most important because they are widely distributed in almost all
oceanic environments and record climate and environmental
evolution information; therefore, they have been applied successfully
to study sediment sources, oceanic current transport and paleoclimate
evolution (Liu et al,, 2010; Wan et al., 2012a). The clay minerals in core
SCS18-1 are all terrigenous clastic sediments, and the influence of

Frontiers in Marine Science

diagenesis can be ignored. Numerous studies have shown that the
Pearl River, Taiwan, and Luzon are the main sources of terrigenous
clastic sediments in the northern SCS (Liu et al., 2010b). The Mekong
River materials and central Vietnamese river materials have difficulty
reaching the northern continental shelf and continental slope area of
the SCS (Liu et al., 2010c), and due to blocking by the island of Hainan,
the detrital materials imported by the Red River are mainly deposited
in the Beibu Gulf Basin, Yinggehai Basin, and Qiongdongnan Basin in
the northwestern part of the SCS (Shao et al., 2013). In summary, the
provenance regions of CMs in core SCS18-1 mainly include Taiwan,
the Pearl River, and the Luzon rivers.

In the Taiwan sediments, the clay mineral assemblage consists
mainly of illite (71%) and chlorite (26%) with very little kaolinite (3%)
and almost no smectite. In the Pearl River sediment, the clay mineral
assemblages have a high kaolinite content (35.7% on average) with
illite, chlorite, and smectite contents of 41.6%, 21.0%, and 1.7%,
respectively (Liu et al., 2007), while in the Luzon sediments, the clay
mineral assemblage are mainly composed of smectite (75%) with a
small amount of kaolinite (15%) and chlorite (7%) and almost no illite
(3%) (Liu et al., 2010c¢).

The smectite-(illite+chlorite)-kaolinite triangle diagram
(Figure 6) shows that the composition and contents of CMs in core
SCS18-1 are essentially the same. Every sample from core SCS18-1 is
distributed in the area between three potential sources (Taiwan, the
Pearl River, and Luzon), suggesting a possible mix of the above three
sources (Figure 6).

5.1.1 Smectite

The smectite content in core SCS18-1 is 7.3-15.1%, averaging
10.4% (Figure 3). For the provenance areas, the Pearl River and
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Ternary diagram of the major clay mineral groups illite+ chlorite, kaolinite, and smectite. Data of the Pearl River are from Liu et al. (2007); data of the Luzon
rivers are from Liu et al. (2009); data of the Taiwan River are from Li et al. (2012); the referenced data have been converted according to Biscaye (1965)

Taiwan contain almost no or very low smectite (Liu et al., 2007; Li
et al., 2012; Hu et al., 2014), while the smectite content in the Luzon
river sediments is as high as 75% (Liu et al., 2009). The smectite of
Luzon can be transported from south to north by the surface ocean
current of the Kuroshio branch current in the SCS after the Kuroshio
intrusion (Liu et al., 2010b), and concentrated subsidence occurs on
the land slope and outer shelf in the northern part of the SCS due to
topographic blockage (Liu and Li, 2011), thus providing smectite for
core SCS18-1.

5.1.2 Kaolinite

The kaolinite content in core SCS18-1 is 9.5-12.6%, averaging
11.2%. Considering that the kaolinite content gradually decreases
because of flocculation and sedimentation during the process of
kaolinite entering the sea and transportation (Liu et al.,, 2007), the
kaolinite content must be much higher in the provenance areas than
in core SCS18-1. Among the three potential provenance areas, only
the Pearl River has high kaolinite content. Therefore, the Pearl River
may be the main provenance area of kaolinite in core SCS18-1, since
the average kaolinite content in the Pearl River Basin is 35.7%, but
additions from the Luzon river source cannot be excluded. Assuming
that all kaolinite of the study area is from the Pearl River, then only
the contribution of Pearl River contributes more than 31.4% to this
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area. The kaolinite of core SCS18-1 is 11.2%. The calculation is as
follows: 31.4% (contribution percentage of Pearl River)x35.7% (the
content of kaolinite in Pearl River) =11.2% (the content of kaolinite in
SCS18-1).

The Pearl River material, after entering the sea, is mainly
transported westward by the influence of the Guangdong coastal
current and the SCS nearshore current and deposited within the
coastal shelf between the mouth of the Pearl River and the northeast
side of Hainan (water depth of less than 50 m) (Ge et al., 2014).

5.1.3 Illite+chlorite

The illite+chlorite in the northern part of the SCS is affected by
the coastal current of Guangdong, the Kuroshio branch current in the
SCS, and the deep current in winter and is transported southwestward
at water depths of 100 m and 2000-2500 m. The spatial distribution of
illite+chlorite content in the northern SCS displays a double tongue-
shaped pattern extending from offshore Taiwan to the southwest (Liu
et al,, 2010c), indicating that Taiwan might be the main provenance
area of illite and chlorite in the northern SCS. The illite+chlorite
content in core SCS18-1 is as high as 78.3%, and only Taiwan (with an
average illite+chlorite content of 96%) could provide such a high
content of illite and chlorite, indicating that the illite and chlorite in
core SCS18-1 sediments are mainly from Taiwan, which is consistent
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with the results of Cao et al. (2018) and Liu et al. (2010b). In addition,
after conversion using the method in Biscaye (1965), the content of
illite and chlorite in the Pearl River is approximately 62.6%, so the
possibility that the Pearl River could provide illite and chlorite to the
study area cannot be excluded.

The illite crystallinity and illite chemistry index have also been
widely used to indicate weathering intensity and trace sources (Wan
et al,, 2012b; Wang and Yang, 2013). An illite chemistry index of less
than 0.5 represents Fe-Mg-rich illite, which results from physical
erosion, and an illite chemistry index greater than 0.5 represents Al-
rich illite, which represents strong hydrolysis. Low illite crystallinity
indicates high crystallinity, indicating weak hydrolysis of the
terrestrial provenance area in a dry and cold climate, and vice versa
(Hu et al.,, 2014). The Pearl River illite has a high illite chemistry index
from 0.43 to 0.8, averaging 0.59, due to long exposure to warm, humid
climatic conditions and strong chemical weathering (Liu et al., 2007).
The physical weathering or mechanical denudation of Taiwan is very
strong because of tectonic activity and monsoon/typhoon rainfall;
thus, the illite of Taiwan has a low chemistry index that ranges from
0.4 to 0.63 (the average is 0.5) (Li et al., 2012). To further clarify the
material source of illite in core SCS18-1, the illite crystallinity and
chemical index of core SCS18-1 are compared with those of two
potential provenance areas in Taiwan and the Pearl River, and the
results show that the most likely source is Taiwan (Figure 7A),
followed by the Pearl River. Since illite and chlorite in the northern
SCS have the same material source (Chen, 1978; Liu et al., 2003; Liu
et al., 2016), it can be inferred that the illite and chlorite in the CMs of
core SCS18-1 are mainly from Taiwan, followed by the Pearl River.

Kaolinite is generally formed through chemical weathering, while
illite and chlorite are mainly formed by the physical weathering of the
parent rock. Therefore, the ratio of kaolinite/(illite+chlorite) can be
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FIGURE 7

Correlation of illite crystallinity with the (A) illite chemical index and (B) kaolinite/illite+chlorite ratio in argillaceous sediments from core SCS18-1. River
sediments from Taiwan rivers (Li et al., 2012), the Pearl River (Liu et al., 2007), and Luzon (Liu et al,, 2009); the referenced data have been converted

according to Biscaye (1965).
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used to indicate the type of weathering, the higher the ratio is, the
stronger the chemical weathering and the weaker the physical
weathering, and vice versa (Huang et al., 2011; Alizai et al., 2012;
Hu et al, 2014). Illite+chlorite and kaolinite are characteristic
minerals of the rivers in southwestern Taiwan and the Pearl River,
respectively (Liu et al., 2008). Therefore, the ratio of kaolinite/(illite
+chlorite) can be used to determine the main contributions of these
two source EMs to the CMs at the research station (Wan et al., 2010).
Comparing illite crystallinity and kaolinite/(illite+chlorite)
(Figure 7B) shows that core SCS18-1 is located between the
Taiwanese rivers and the Pearl River and is closer to Taiwan,
indicating that the CMs of the sediments in core SCS18-1 are
mainly from Taiwan: however, a Pearl River contribution cannot be
dismissed. The results of studies on the material sources of the
adjacent ODP1144 (Liu et al., 2010b; Liu et al., 2013) and STD235
stations (Liu et al., 2018) also suggest that the Pear] River material has
a relatively small impact in the northeastern region of the SCS.

According to the data and figure illustrations, the vertical
variations(Figure 3) of illite crystallinity and chemical index values
(and the clay mineral assemblages) might indicate temporal changes
in contributions from different source terranes. Which may be caused
by sea-level changes, climate changes, and other factors. While the
vertical variations of clay mineral assemblages are inapparent, the
distribution of core SCS18-1 in the ternary diagram is relatively
concentrated (Figure 6), indicating that the provenance regions of
the core sediments were relatively stable and experienced no major
changes since the last deglaciation.

In summary, since the last deglaciation, the sources of sediments
in core SCS18-1 have remained relatively stable; the sediments are
mainly from Taiwan, followed by the Pearl River, and the
contribution of Luzon is low. Among them, kaolinite mainly comes
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from the Pearl River, illite and chlorite mainly come from Taiwan,
and smectite mainly originated from Luzon, with a possible certain
contribution from the Pearl River.

5.2 Relevance of grain size EM components

Many studies on clay minerals, Nd isotopes, and grain size have
shown that the river sediments near the SCS are the primary material
source (Boulay et al., 2005; Wan et al., 2007a; Boulay et al., 2007; Shao
et al., 2009; Liu et al., 2010b). The contribution of aeolian dust is small
but often mentioned by some researchers (Wehausen and Brumsack,
2002; Boulay et al., 2003; Wan et al., 2007b). Numerical simulations
have shown that the average contribution of aeolian dust in the
northern SCS to the total terrigenous matter can reach 20% (Wan
et al, 2007a). Notably, the content of quartz and feldspar in aeolian
dust can reach 60-80%, which is far higher than the value of 30% in a
river suspension (Li, 1997). Based on the grain size EM and SEM
analysis, we conclude that aeolian dust and river sediments contribute
to the quartz and feldspar in this study area, and the CMs are mainly
related to fluvial input.

Previous studies have found that the “coarse eolian dust” can be
transported over long distances from the land to the ocean; the
coarsest component is interpreted as aeolian dust, and the finest
component is interpreted as mud input by the rivers (Betzer et al,
1988; Stuut et al., 2002; Weltje and Prins, 2003; Stuut et al., 2005).
Moreover, for the adjacent station ODP1146, Wan et al. (2007b)
interpreted the coarse-grained EMs (mainly quartz and feldspar) as
aeolian dust and the fine- and medium-grained EMs (mainly CMs) as
fluvial mud and fluvial fines. The modes of the finest and medium-
grained EMs are 7.5 um and 2 um, respectively, which agree well with
the modes for EM2 (mode: 9.29 um) and EM1 (mode: 0.98 um) in
this paper. Therefore, for core SCS18-1, the coarse-grained EM, i.e.,
EM3 with quartz and feldspar as the main components, is from the
aeolian dust, while the fine-grained and medium-grained EMs, i.e.,
EM1 and EM2 with CMs as the main component, are from muddy
and fine silt sediments of fluvial input, respectively.

5.3 Relevance of environmental indicators

It is generally believed that the CMs in the sediments of the
northern SCS mainly come from the river input, and the river input
intensity can to some extent indicate the EASM intensity (Liu et al.,
2003; Wan et al, 2007b). The illite chemistry index in the CMs
indicates chemical weathering in the provenance areas; therefore, the
EASM also has a certain influence. On the other hand, a stronger
EASM can bring more coarse-grained aeolian dust from the Asian
inland or the bare, shallow sea shelf area during a low sea-level period,
which could increase the contribution of coarse-grained EMs.
Therefore, in this paper, the simulated coarse-grained EM3,
characterizes the intensity change in the winter monsoon, and EM1
+EM2, which represents the terrigenous river material, indicates the
intensity change in the summer monsoon.

In core SCS18-1, the changes in the relative content of EM1+EM?2
and the illite chemistry index are identical. The relative content of
EM1+EM?2 and the illite chemistry index increased rapidly after 16.1
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ka BP, reached a maximum value at 10.6 ka BP, and then rapidly
decreased. From 6.8 ka BP to the present, the two slightly increase,
and the relative content of EM3 has the opposite trend.

In stage I (16.1-10.6 ka BP), the sea level gradually increased by
nearly 100 m (Figure 8F), and the estuary of the Pearl River left the
study area, precluding the transport of Pear]l River material to the
study site. However, during stage I, EM1+EM2, which represents
fluvial material, increases (Figure 8A), and the sedimentation rate of
core SCS18-1 significantly increase, indicating an increase in fluvial
material input, which in turn indicates that the Pearl River is not the
main provenance area at this study location. Because of the narrow
Taiwan shelf, a 100 m sea-level rise cannot significantly affect the
location of the estuary (Figure 1B); therefore, the sea-level change
since 16.1 ka BP has a slight effect on the distance between the river
estuary in Taiwan and core SCS18-1, which indicates that the material
from core SCS18-1 is mainly from Taiwan, not from the Pearl River.
Since the last deglaciation, the EASM (Figures 8C, D) and the solar
radiation in the Northern Hemisphere have gradually become
stronger (Figure 8H). By the early Holocene, the East Asian
monsoon reached its peak (Dykoski et al., 2005), and the strong
summer monsoon inevitably brought heavy rainfall and enhanced
river supply capacity, which, together with the increased typhoon
events during this period, led to increased soil erosion in Taiwan
(Huang et al.,, 2015). As a result, for core SCS18-1, the total amount of
terrigenous detrital material from Taiwan increased, i.e., the relative
content of EMI+EM2, representing fluvial material, increased
(Figure 8A), and the sedimentation rate reached a maximum near
10.6 ka BP (Figure 8I). At the same time, because of the sea-level rise,
many shallow marine areas from the west of Taiwan to the Zhongsha
Islands were submerged, resulting in the transport of land-derived
clastic sediments over longer distances. Thus, although the terrestrial
material increased, the sediment particles became finer (Figure 8G).
In addition, the global warming at the beginning of the Holocene and
the strengthening of the EASM (Figures 8C, D) correspond well to the
enhanced illite chemistry index of core SCS18-1 (Figure 8B). Notably,
the winter monsoon index was augmented (Figure 8E), and in
general, the EM3 content, which represents the contribution of
aeolian dust, should also increase, but the relative EM3 content
tended to decrease at this stage (Figure 4D). By combining this
result with the increase in sedimentation rate at this stage
(Figure 8I), we speculate that the decrease in EM3 content is caused
far more by the increase in the amount of river input than by the
increase in the amount of aeolian dust input.

In stage II (10.6-6.8 ka BP), during the Holocene, the global
climate changed to warm, hot, and humid; vegetation was extensively
developed; the range of weathering and denudation decreased, and
the amount of terrigenous material suddenly decreased; the sea level
rose (Figure 8F); the shoreline was pushed landward; and the
sediment supply was drastically reduced (Huang et al., 2013). As a
result, the sedimentation rate of core SCS18-1 decreased (Figure 8I),
and the contribution of EM1+EM2, representing the river material,
decreased (Figure 8A). Overall, the illite chemistry index of core
SCS18-1 also decreased during this stage, which corresponds well to
the gradual weakening of the EASM (Figures 8C, D).

In stage III (6.8-0 ka BP), since the Holocene (6.8 ka BP), the sea
level has been stable at its highest level, and the outcropping area of
the continental shelf is small; meanwhile, because of the weakening of
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Temporal variations in (A) EM1+EM2 in core SCS18-1, (B) illite chemistry index in core SCS18-1, (C) 820 values of Dongge Cave stalagmites (Yuan et al.,
2004), (D) EASM wind indices in TRACE21 (Wen et al.,, 2016), (E) EAWM wind indices in TRACE21 (Wen et al., 2016), (F) sea level (Liu et al., 2004; Zong,
2004), (G) mean grain size in core SCS18-1, (H) 30°N insolation (Berger and Loutre, 1991), and (l) linear sedimentation rate (LSR) of core SCS18-1. The

thick solid lines are several points of the moving average curve.

the summer and winter monsoons (Figures 8D, E), the transport
capacity of rivers and winds is reduced; therefore, the sedimentation
rate of core SCS18-1 is low and has slightly decreased since 6.8 ka BP.
Notably, the relative contribution of EM1+EM2 at core SCS18-1,
representing riverine material, has weakly increased since 6.8 ka BP,
but this trend may be caused by a relatively large reduction in the
contribution of the aeolian dust (EM3).

In summary, the sedimentation process of core SCS18-1 is
relatively continuous, and information on the material source and
environmental evolution in the north slope of the SCS since the last
deglaciation is well recorded. The relative content of EM1+EM2 and
the illite chemistry index, representing riverine material, can
effectively reflect the change of the EASM, and the relative content
of EM3, representing aeolian dust, can effectively reflect the change of
the EAWM. Thus, this study reconstructed the intensity changes of
EASM and EAWM since the last deglaciation. During stage I (16.1-
10.6 ka BP), the EASM and EAWM grew stronger, while since 10.6 ka
BP, the EASM and EAWM have exhibited a weakening trend.
Furthermore, these proxies could also reflect the variations in ocean
currents. On the orbital scale, the change in East Asian summer and

Frontiers in Marine Science

17

winter monsoon intensities is closely related to the solar radiation in
the Northern Hemisphere (Figure 8H) (Wang et al., 2008; Wen et al.,
2016). Therefore, the amount of supplied material in core SCS18-1
may be closely related to changing solar radiation in the
Northern Hemisphere.

6 Conclusions

The grain size information of core SCS18-1 was analyzed by
endmember modeling analysis, and combined with clay mineralogical
methods, the provenances of the sediment in the Beipo seamount of
the SCS since the last deglaciation and its paleoenvironmental
conditions were explored. The following conclusions were drawn:

1. The grain size of core SCS18-1 can be divided into three
endmembers, EM1, EM2, and EM3, among which fine-
grained EM1 and medium-coarse-grained EM2 are mainly
fluvial mud and fluvial fine silt, and the coarse-grained EM3
is mainly aeolian dust. The average grain size of core SCS18-1
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is predominantly controlled by the coarse-grained EM3 with
quartz and feldspar as the major components.

. Since the last deglaciation, the sediments of core SCS18-1
have been mainly derived from fluvial input, with some
contributions from aeolian input. Its clay minerals mainly
originate from Taiwan, followed by the Pearl River, and
Luzon Island contributes less. Among these minerals,
kaolinite is mainly from the Pearl River; illite and chlorite
are mainly from Taiwan, with some contribution from the
Pear] River; and smectite is mainly from Luzon Island.

. The sediments of core SCS18-1 provide a complete record of
the provenance and paleoenvironmental evolution of the
Beipo seamount since the last glaciation. The fluvial
materials, represented by the relative content of EM1+EM2,
and the illite chemical index can effectively reflect the changes
in the East Asian summer monsoon. The aeolian materials,
represented by the relative content of EM3, can effectively
reflect the changes in the EAWM. The material supply of core
SCS18-1 is mainly controlled by the amount of solar
radiation in the Northern Hemisphere.
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Fe-Mn polymetallic crusts and nodules from the South China Sea (SCS) consist of
submarine ferromanganese (Fe-Mn) oxide precipitates, and represent important
marine mineral resource with substantial economic and scientific research value.
Previous studies on the SCS polymetallic crusts and nodules were mainly focused
on their bulk mineralogy and geochemistry, whilst research on their
nanomineralogy is still lacking. In this study, transmission electron microscopy
(TEM), Raman spectroscopic mapping, and in-situ micro X-ray diffraction (XRD)
analysis were conducted on the nano-mineralogy of the SCS polymetallic crusts
and nodules. It is found that the SCS polymetallic crusts and nodules consist
mainly of layered/columnar/mottled nano-phase Fe-Mn minerals and detritus
such as quartz, feldspar, and clays. Also, an independent Ti mineral phase has
been documented, and the mineralogical analysis reveals the transformation
from vernadite to birnessite and todorokite. Titanium forms colloidal minerals in
seawater and precipitates into the crusts and nodules with other colloids, such as
FeOOH and Si-Al. Vernadite and birnessite can be transformed to todorokite with
stable structure under sub-oxic conditions. Therefore, the SCS polymetallic
crusts and nodules were formed in a short period of sub-oxic environment
and diagenetic process, and the transformation can influence the enrichment of
Ni and other metals during the crust/nodule growth.

KEYWORDS

nano-mineralogy, high resolution transmission electron microscope (HRTEM) analysis,
growth environment, polymetallic crusts and nodules, South China Sea
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1 Introduction

Marine Fe-Mn ferromanganese (Fe-Mn) oxide precipitates are
mainly formed by direct precipitation from the ambient cold
seawater (hydrogenetic-type), sediment pore water (diagenetic-
type), or seafloor hydrothermal fluids (hydrothermal-type) (Hein
et al., 1997; Hein et al,, 2013; Bau et al., 2014). According to the
deposition environments, marine Fe-Mn precipitates are classified
into crusts, nodules, and hydrothermal Fe-Mn deposits. Fe-Mn (or
Co-rich) polymetallic crusts are commonly deposited on substrates
without sediment cover, e.g., on the outer margin of seamount
summits and marine platforms or saddle structures (Halbach et al.,
2017; Usui et al, 2017), whilst Fe-Mn polymetallic nodules are
deposited on intermountain basins or abyssal plains with more
sediment cover, and tend to grow around a core. All the Fe-Mn
polymetallic crusts, nodules, and hydrothermal deposits are
important marine mineral resource and host critical metals such
as Co, Ni, Cu, Tl, Te, Nb, and rare earth elements plus yttrium
(REY) (Hein et al., 2013), and have received much research and
exploration interest.

In recent years, the Fe-Mn polymetallic crusts and nodules in
marginal seas have received increasing attention, esp. those in the
Baltic Sea (Grigoriev et al., 2013; Yli-Hemminki et al., 2016) and the
California continental margin (Hein, 2005; Conrad et al., 2017).
Several mineralogical and geochemical studies on the Fe-Mn crusts
and nodules in the South China Sea (SCS) have also been carried
out (Li and Zhang, 1990; Bao and Li, 1993; Lin et al., 2003; Zhang
and Weng, 2005; Zhang et al., 2009; Wang and Zhang, 2011; Zhang
etal, 2013; Zhong et al., 2017; Guan et al., 2017a; Guan et al., 2017b;
Guan et al., 2017¢; Guan et al., 2019; Jiang et al., 2019; Zhou et al,,
2021; Konstantinova et al., 2022).

Polymetallic crusts and nodules are widely distributed on the
SCS seafloor (Li and Zhang, 1990; Zhong et al., 2017), including in
the northern continental slope (around the Dongsha (Pratas)
Islands), the northwestern continental margin (around the
Zhongjian (Trition) Island), the central sea basin [around the
Huangyan Island (Scarborough Shoal)], and around the Nansha
Islands (Spratly islands). The SCS polymetallic crusts and nodules
were developed mainly on the terraces and seamounts of
continental slope at 472 to 3570 m water depth. The Fe-Mn
encrustation is generally thin (few mm to cm). Previously, the
SCS polymetallic crusts and nodules are generally considered to
have a hydrogenetic origin (Zhang et al., 2013; Guan et al., 2017b),
but later studies also suggested major involvement from gas hydrate
release (Zhong et al., 2017) and biogenesis (Jiang et al., 2019).
Microzonal analysis revealed that the northern SCS nodules may
have had a mixed hydrogenetic-diagenetic genesis (Guan et al,
2019; Zhong et al., 2019).

Analyzing the growth structure and mineralogy of polymetallic
crusts and nodules is essential for studying this kind of marine
mineralization, and techniques such as XRD, in-situ XRD,
synchrotron XRD, and transmission electron microscopy (TEM)
are widely used, as minerals from polymetallic crusts and nodules
are generally poorly crystalline (Bai et al., 2002; Kashiwabara et al.,
2013; Manceau et al., 2014; Marcus et al., 2015; Atkins et al., 2016;

Frontiers in Marine Science

10.3389/fmars.2023.1141926

Lee et al, 2016; Lee and Xu, 2016a, b; Shiraishi et al., 2016;
Konstantinova et al., 2017). Mineralogical studies on the SCS
polymetallic crusts and nodules were focused mainly on whole-
rock mineral phase characterization, whereas in-depth studies on
in-situ mineralogical characterization and nano-minerals are still
inadequate (Zhong et al., 2017; Guan et al,, 2017b).

Previous studies have shown that micro-structures in the SCS
polymetallic crusts and nodules are mainly growth structures and
intermittent structures. Common growth structures include mottled,
stacked, laminated, columnar and palisade structures. These structures
are composed mainly of Fe-vernadite, todorokite (10 A manganite),
birnessite, amorphous Fe-oxides/hydroxides, quartz, and feldspars
(Guan et al,, 2017b; Guan et al, 2019). Zhong et al. (2017) found
that the northwestern SCS nodules contain large amount of pyrite,
asbolite and apatite. The SCS polymetallic crusts and nodules are
mainly composed of poorly-crystallized Fe-Mn hydroxides, and
manganese oxides. The poor crystallization often leads to complex
mineral identification, esp. for some Fe-phase minerals (often
amorphous), which cannot be determined with XRD. Therefore, the
TEM analyses would allow accurate identification of multiple mineral
phases in these polymetallic crusts and nodules.

As mentioned above, the SCS polymetallic crusts and nodules
contain kinds of minerals and metallic minerals have poor
crytallinity, which makes them ideal samples for nano-mineralogy
research. Furthermore, the nano Fe-Mn minerals have strong
surface chemical activity and selective adsorption capacity, which
is of great significance to the selective enrichment of ore-forming
elements in the polymetallic crusts and nodules (Guan et al., 2017b).
And the study of nano-minerals is beneficial in revealing the
mechanism of element enrichment and mineralization of the
polymetallic crusts and nodules.

2 Geological setting

The SCS lies at the intersection of the Eurasian, Indo-Australian,
and Philippine Sea plates. It is a marginal sea located south of South
China, with an area of ~3.50x10* km” (Figure 1). Regional surveys
suggested that the SCS slopes in a stepwise manner from the margin to
the center with increasing water depth (200-3800 m), with the
development of undulatory topography comprising continental shelf
and slope, island shelf and slope, and marginal sea basin (Yang et al,,
2015). Isobath of the northern continental shelf is relatively straight,
and the width decreases from west to east. Meanwhile, water depth of
the northern continental shelf increases gradually from northwest to
southeast, whilst the gradient first increases and then decreases.
Gradient of the western continental shelf is narrow and steep; the
water depth of the western continental shelf varies greatly, the
topography is undulating and complex, with the development of sea
platforms, terraces, ridges, and troughs. The eastern island slope is
located west of the Philippine Islands, with a maximum water depth of
4,000 m and an average gradient of 1.4°. The topography is obviously
undulating, with geographical entities such as ridges, troughs, slopes,
and deep-water terraces. The SCS basin is located in the central,
developing deep-sea plains, seamount chains, and seamount groups,
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Location and topographic map of the South China Sea (Wang and Li, 2009).
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etc. The water depth is between 4000-4500 m. The topography is
generally flat, but the elevation difference of seamounts is large
(> 3000 m). Therefore, the tectonic and geological background of the
SCS and the good water exchange capacity are both favorable for the
growth and mineralization of the polymetallic crusts and nodules.

3 Samples and analytical methods
3.1 Samples

Our samples of the SCS crusts and nodules were collected by
seafloor trawling on the Guangzhou Marine Geological Survey research
vessel “Haiyangsihao” during the 2011-2012 SCS survey. Detailed
information of the samples is given in Guan et al. (2017b).
Polymetallic crust samples (ST1, ZSQD251A, ZSQD253A, ZSQD42A,
and HYD66-2) have platy or crustal Fe-Mn encrustations and hard
substrate of altered basalt and carbonates (e.g., reef limestone). Most
samples have friable thin (0.1-1.9 cm) Fe-Mn encrustations and are
(dark) brown or black. Polymetallic nodule samples (STD275, ZJ86,
and HYD104) are spherical, ellipsoidal, elongate, conodont, or irregular.
They have Fe-Mn encrustations around the cores (iron oxides, clayey,
muddy, or altered basalt). The nodules grow on top or surrounded by
coarse sandy to clayey sediments (Table 1).

3.2 Petrographic analysis

The samples are cut along the growth profile to make polished
thick sections (thickness ~100 um), and then observed with a ZEISS
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Imager and an A2m optical microscope (reflected light).
Photographs were processed with the Axio Vision 4.8 software.

3.3 Laser Raman spectroscopy

The analysis was conducted at the School of Marine Science,
Sun Yat-sen University (SYSU), using a ThermoFisher DXR2xi
laser Raman micro-spectrometer equipped with a 532 nm argon ion
laser and edge filters. Both spot analysis and mapping were
performed. The map was formed by multiple line analyses. The
analysis conditions include 3 mW laser energy, 6 um beam size, 0.2
s exposure time, 10 scans, 600 x 600 um sweep range, and 8 um
mapping resolution. Data processing utilized the ThermoFisher’s
OMSNICxi and OMSNIC software.

3.4 XRD analysis

The analysis were conducted at the School of Marine Science,
SYSU, using a Rigaku D/max Rapid II micro-area X-ray
diffractometer (Japan). In the XRD analysis of bulk samples, the
crusts and nodules were washed with ultrapure water and dried in a
blower for 24 h (drying temperature set at 30°C), then ground to
200-mesh using an agate mortar. In the in-situ micro XRD analysis,
particle samples with a diameter of <3 mm were observed with an
optical microscope equipped on the X-ray diffractometer, and then
adjust the selected microarea to the center of the field of view.

The instrument parameters include Mo target and 0.1 mm
collimator, 50 kV voltage, 30 mA current, and XRD data
acquisition on a 2-D image plate detector. All samples were
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TABLE 1 Sample descriptions and bulk mineralogy of Fe-Mn crusts and nodules from the South China Sea.

Locations Water depth (m) Substrate/Nucleus Major minerals
117.9104°E
ST1 crust 1600 Altered basalt 8-MnO2, quartz and anorthite
20.4674°N
118.6061°E
ZSQD253A crust 1150 Carbonate 8-MnO2, quartz, anorthite and calcite
16.7664°N
114.8172°E
ZSQD42A crust — 1230 Carbonate 8-MnO2, quartz, anorthite and calcite
16.8493°N
115.2729°E
HYD66-2 crust 1378 Altered basalt 8-MnO2, todorokite, quartz and anorthite
13.6789°N
118.2791°E 8-MnO2, quartz and anorthite
STD275 nodule 1548 Iron nucleus
21.6915°N (with goethite and feroxyhyte in the nucleus)
112.5245°E
7]86 nodule 1945 Mud nucleus 8-MnO2, todorokite, quartz and anorthite
15.3421°N
116.1818°E
HYD104 nodule 815 Undiscernible or no nucleus 8-MnO2, todorokite, birnessite, quartz and clinochlore
15.5635°N

analyzed twice under the same conditions, and the signals were
combined to improve the signal-to-noise ratio. The 2-D data were
then converted to 1-D spectra using Rigaku’s 2DP software.
Identification of the major minerals was done with the
PDXL2 software.

3.5 TEM analysis

The high-resolution TEM (HRTEM) imaging and selected-area
electron diffraction (SAED) analyses were completed at the Analysis
Center of SYSU on a JEOL JEM-2010 transmission electron
microscope (Japan), and at the Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences, on a FEI Talos
F200S transmission electron microscope (USA).

(1) JEM-2010: The powder sample (200-mesh) was dispersed in
alcohol and dropped onto a Cu grid (with a carbon film microgrid),
using a disposable dropper and then allowed to dry naturally. The
TEM operating voltage is 200 kV, and the instrument is equipped
with an INCA energy spectrum. The analysis site was selected first
under microscope at low magnification, and observed with energy-
dispersive X-ray spectroscopy (EDS) at higher magnification, followed
by high resolution phase analysis at ultra-high magnification.

(2) Talos F200S: The samples were made by secondary
embedding-ultra-thin sectioning. Each sample was dispersed in
ultrapure water by ultrasound, which was then dropped onto the
pre-consolidated resin, dried with a blower, and re-embedded in
resin afterward. The resin was heated with a blower, solidified, and
cut with a Leica ultrathin microtome (USA), and then placed on a
Cu mesh (with carbon-coated film) and dried. The instrument
operates at 200 kV with maximum 1.5Mx magnification and < 0.25
nm resolution. The instrument is equipped with an EDAX energy
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spectrum with < 136 eV energy resolution. Fast Fourier transform
(FFT) and other TEM image processing were performed with the
TIA TEM Imaging and Analysis software (version 4.15).

4 Results
4.1 Microscopic structure characteristics

The encrustations of the SCS polymetallic crusts and nodules
contain light and dark Fe-Mn mineral layers, with medium-coarse
crystalline silicates and bioclasts being cemented or encapsulated by
Fe-Mn minerals (Figures 2, 3). Microstructural features of the
samples are very similar, with primary growth structures being
lamellar, columnar, or mottled, and secondary ones being
concentric or dendritic.

By comparing the Raman spectra (Mn-O peak signal) maps and
microscopic photographs, we find that the Mn-O peak intensity
correlates positively to the density of growth structure (Figure 4).
The Mn-O peak intensity is similar to the light and dark changes of
the growth layer, which indicates that the changes in the growth
structure and the growth layer of the crust (core) are the alternating
changes in the mineral composition.

4.2 Mineral compositions

Previous studies have shown that Fe-Mn crusts and nodules
consists mainly of Mn (Fe-vernadite and todorokite) and Fe
(goethite, lepidocrocite, amorphous ferrihydrite) phase minerals,
together with minor clay minerals, calcite, apatite and detrital
quartz and feldspars (Rajani et al., 2005; Pattan and Parthiban,
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FIGURE 2

Photos of main growth structure of the SCS polymetallic crusts and nodules (A, B) laminated structure, (C, D) columnar, structure, (E, F) taxitic structure).

2007; Xu, 2013; Zhou, 2016; Zhong et al., 2017). Characteristic XRD
peaks of different Mn minerals in our samples include (Figure 5):
0.239 and 0.140 nm (vernadite), 0.72, 0.35 and 0.24 nm (birnessite),
and 0.97, 0.48, 0.24 and 0.14 nm (todorokite and buserite). The
characteristic diffraction peaks of todorokite are at 9.56 A (100) and
4.78 A (covering (200) and (002)). Meanwhile, the 4.26 A (100)
quartzs 3:34 A (011)quaress 2:45 A (110)guares> and 1.37 A (203)guares
diffraction peaks represent the better-crystallized quartz, whilst the
3.84 A (104) carcite> 3.02 A (113) catcite 2.08 A (202) catcites 1.90 A (018)
calciter and 1.86 A (116)acie diffraction peaks represent Mg-calcite,
which is mainly derived from biological detritus (mainly
foraminifera). Most samples have an undulating background peak
with peaks centered at ca. 2.4 and 1.4 A. This background represents
the presence of amorphous ferrihydrite (Lee et al, 2016). Our
results show that the SCS polymetallic crusts and nodules
comprise mainly Fe-vernadite (8-MnQO,), quartz, feldspars, and
amorphous ferrihydrite. This is consistent with the findings by
Guan et al. (2017b), although some minerals (e.g., apatite) reported
by that study were not found here.

Under the microscope, the SCS polymetallic crusts and nodules
display black Fe-Mn encrustations with grape-like or massive
structure. In situ micro-XRD analysis results indicate that the
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Fe-Mn crusts are mainly composed of Fe-vernadite and todorokite,
with many light-colored minerals (mainly quartz and feldspars)
interspersed among the Fe-Mn minerals (Figure 6).

4.3 Nano-mineralogy

In the TEM dark field, there are numerous nano-particles in the
samples (Figure 7). Based on the XRD results, we further analyze
the SAED patterns and the TEM-EDS data, and the major minerals
in the samples are recognized. In particular, the form and
composition of birnessite and todorokite are very similar, so it
will be confirmed by SAED pattern after each EDS analysis
(Figures 7, 8). In samples ST1 and ZSQD253A (Figures 7A-C),
there are numerous nano-particles of quartz, thin clay mineral
layers, network of Fe-vernadite (8-MnO,), and amorphous flocs of
FeOOH. Sample ZJ86 contains birnessite and todorokite as well
(Figures 7F-H). The EDS results show that the birnessite is mainly
associated with Na, K, Ca, and Ni, while todorokite is mainly
associated with Ca and Ni.

We found that independent Ti minerals are common in the SCS
crusts and nodules (Figure 8). In the TEM dark field, Ti minerals exist
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FIGURE 3

10.3389/fmars.2023.1141926

Photos of secondary growth structures of the SCS polymetallic crusts and nodules (A) concentric circle micro-nodules and columnar structure;
(B) palmar-print structure; (C) dendritic structure; (D—F) biological debris and foraminifera in the encrustations).

in a flocculent form, which is very similar to the colloidal morphology
of amorphous FeOOH and Si-Al hydrate. Meanwhile, Ti minerals
occur in the form of nanofragments in the high-resolution bright field.
The EDS results show that the flocculent Ti minerals contain certain Fe
and Si. Its high-resolution photograph and the FFT results show
[_37_4] the crystallographic stripes in (_403), (111), and (51_2)
under the crystallographic band axis, and the measured
crystallographic spacing under the Z-axis is 3.58 A. Therefore, the Ti
minerals were determined as hydrated Ti oxide (e.g. H,Ti;0;, Kataoka
et al., 2013).

5 Discussion

5.1 Microstructure and
hydrodynamic environment

In this study, the growth profiles of the SCS polymetallic crusts and
nodules were found to contain different microstructure assemblages
(Figure 9). Xu (2013) summarized that the growth structures of the
crusts and nodules can be divided into primary and secondary ones,
while different structure assemblages representing different growth
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rates and bottom currents. The alternating growth of different Fe-Mn
layers implies fluctuations in the growing conditions, which may reflect
periodic changes of seawater environment in the South China Sea.
Based on the growth structure characteristics, we suggest that the
SCS polymetallic crusts and nodules may have formed in four growth
stages (Figure 9). Columnar, palisade, and dendritic structures are
predominant in the early growth stage. In this stage, the dendritic
structure indicates the inconsistent growth rates at various locations on
the same growth surface, while the formation of columnar structure
indicates a low hydrodynamic growth environment and a higher
formation growth rate (Xu, 2013). The second growth stage
developed mainly lamellar (and some mottled) structures, which
indicates that the bottom current and oxidation conditions are weak
(Xu, 2013). The third growth stage mainly developed mottled
structures, which reflects strong bottom current and turbulent
seawater environment (Xu, 2013; Guan et al., 2017b). Laminar and
mottled structures are mainly developed in the fourth growth stage,
indicating that the bottom current and oxidation environment in this
stage are more reduced than the previous stage (Guan et al., 2017b).
We also found that the SCS polymetallic crusts and nodules from
near the continental margin contain mainly mottled structures. This
indicates that they were grown in a more turbulent depositional

frontiersin.org


https://doi.org/10.3389/fmars.2023.1141926
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Ren et al. 10.3389/fmars.2023.1141926
Signal
strength
of M-O
peak
High
Low
Todorokite
626 cm’
2
> ‘®
= =
n [}
3 £
=
Area 1
0 300 600 gbq 1200 0 300 600 969 1200
Wave number (cm™) Wave number (cm™)
FIGURE 4

Raman mapping results of the selected area in the samples ZSQD42A and HYD66-2.

environment, and were strongly influenced by coastal currents and
terrestrial debris (Zhong et al., 2017). In contrast, polymetallic crusts
and nodules near the central basin (e.g., HYD66-2 and HYD104)
mostly develop laminae and columnar structures. This indicates that
they grew in a more stable bottom flow, and were less influenced by
terrestrial input (Zhong et al., 2017).

5.2 Mineral composition and
depositional environment

Mineralogical characteristics are important in determining the
genetic type of Fe-Mn crusts and nodules (Bau et al., 2014) and the
ore-metal enrichment mechanism. The XRD spectral peaks of Mn
minerals are all broad, indicating poor crystallization, and the
presence of todorokite suggests that the SCS polymetallic crusts
and nodules may have grown in a short period of sub-oxic seawater
environment (Conrad et al., 2017).

According to the intensity of XRD (Figure 5) and chemical
composition (Guan et al, 2017b), samples from the northern SCS
samples (e.g., ST1, STD275) have large amount of detrital quartz and
feldspar. This suggests that these SCS crusts and nodules obtain many
terrestrial materials. Samples ZSQD42A, and ZSQD253 from around
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the Zhongsha Island areas contain large amounts of calcite and
biological debris (Table 1), suggesting input from marine organisms
on the polymetallic crust/nodule mineralization. In contrast, samples
near the central basin (e.g, HYD66-2 and HYD104) contain significant
amounts of Mn minerals and less detrital minerals (quartz and
feldspar, Figure 5), consistent with their columnar and dendritic
growth structures that suggest a stable growth environment and
insignificant terrestrial input. Todorokite in crust samples HYD66-2
(Figure 5) and ST1 (Figure 6) indicates the prevalence of todorokite in
the SCS polymetallic crusts and nodules, yet its content is likely very
low (undetected by XRD). Todorokite in crusts and nodules usually
forms in suboxic condition (Conrad et al., 2017), the low content of
todorokite in the SCS polymetallic crusts and nodules suggested that
they have experienced suboxic environment. As mentioned above, the
SCS crusts and nodules are of hydrogenetic origin. Therefore, we
propose that the SCS crusts and nodules have been exposed a suboxic
environment (Guan et al,, 2019), but the process may have been of
short duration or not suboxic enough to affect their overall
hydrogenetic signatures. According to Figure 6, the SCS crusts
contain a low content of todorokite expect for HYD66-2. The reason
for more todorokite in HYD66-2 is that the location of this sample
grows near the central basin and more possible to be exposed to a
suboxic environment.
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FIGURE 5

XRD patterns of the SCS polymetallic crusts and nodules (Q, quartz; An, Anorthite; Cal, calcite; T, todorokite; G, goethite; B, birnessite;

Z, Chloro zeolite).

5.3 The existing phase of Si, Ti, Fe
hydroxides

Silicon can precipitate directly into the polymetallic crusts and
nodules as quartz and clay minerals, and occur in seawater in
colloidal precipitates or as anion complexes (Akagi, 2013; Treguer
and de la Rocha, 2013). EDS spectra of Si is present in all the
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samples (Figure 7), which indicates good supply of Si during the

crust/nodule growth and accompanied by the precipitation of Fe-

Mn oxides into the crusts and nodules, and the layered clay

minerals often coexist with the Mn minerals. This may be due to

the

similar layered structure of vernadite and birnessite (both clay

minerals). In addition, the mineral interlayers of birnessite are

negatively charged (Halbach et al, 2017) and can accommodate
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FIGURE 6

In-situ micro-XRD patterns of sample ST1. (A, B) Mn minerals including 8-MnO, and todorokite. (C, D) light-colored minerals including quartz and

feldspar. (E) XRD patterns of area a-d.

cations (e.g., K*, Ca") and even water molecules (Manceau et al.,
2014; Lee and Xu, 2016b). This shows strong adsorption properties
similar to those of clay minerals. In addition to the layered minerals,
many flocculent minerals can be seen in the TEM dark-field phase,
which are mostly colloidal minerals of Si, Al and FeOOH.

The hydrated oxide of Ti (H,Ti30;) was first reported by Izawa
et al. (1985), and its crystal structure determined by Kataoka et al.
(2013). H,Ti305 is a hydrate of TiO,, and occurs mainly in colloidal
form in aqueous solution. In this study, we first observed Ti
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minerals in the SCS polymetallic crusts and nodules, and the EDS
result shows that these Ti minerals mainly contained Ti and O.
However, the SAED pattern could not match any Ti-O minerals
data. Nevertheless, the evidences in this study were not enough to
support the proposal of a newfound Ti mineral. Because the nodules
and crusts grow in the seabed environment, and previous studies
have already suggested that Ti entered the nodules in a colloidal
chemical way (Koschinsky and Hein, 2003). We speculate that these
independent Ti minerals might be a kind of Ti hydroxide, which
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TEM photos and micro-in-situ EDS patterns of samples ST1 (A—C), ZSQD253A (D, E), and ZJ86 (F—H) in the TEM dark field.

was temporarily indicated by TiO,-xH,O in this study. These Ti
minerals perhaps indicated that Ti could form colloidal minerals in
seawater and enter directly into the crusts and nodules.

The surface of hydrated FeOOH and Ti oxides is positively
charged in seawater, which facilitates selective adsorption of some
seawater anions or anion complexes (Koschinsky and Hein, 2003;
Jiang et al., 2011). In addition, colloids can aggregate (through
covalent bonds) and eventually co-precipitate (Bruland et al., 2014).
In this study, we inferred that these colloidal hydrated Ti and Fe
oxides were concentrated into the polymetallic crusts and nodules
(together with colloidal aggregates, incl. SiO,-xH,O or Al,0;-xH,0
in seawater), as evidenced by the widespread presence of colloidal
flocs of Fe, Ti, Si, and Al in the samples (Koschinsky and Halbach,
1995). Fluvial and aeolian input can carry substantial terrestrial
substance (incl. Si and Al) to the South China Sea, which dissolves
rapidly and forms colloids in the seawater, and then re-precipitates
in Fe-Mn oxides/hydroxides. Therefore, terrestrial influence on
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mineral composition of the SCS polymetallic crusts and nodules
includes not only the direct detrital input, but also the later re-
precipitation of dissolved materials or colloids.

5.4 Mn-phase minerals and their
intraconversion

Previous studies have shown that vernadite, birnessite, and
todorokite are the three major Mn-phase minerals in marine Fe-
Mn crusts and nodules (Usui et al., 1989; Bodei et al., 2007). In
general, vernadite (3-MnO,) is a good indicator mineral for
hydrogenetic origin, while todorokite and 10 A phyllomanganate
often occur in diagenetic and hydrothermal origins respectively
(Takahashi et al., 2007; Manceau et al., 2014; Pelleter et al., 2017).
For example, some Fe-Mn growth layers at the bottom of oceanic
polymetallic nodules (buried in sediments) were subjected to early
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TEM photos, SAED and EDS patterns of nano-minerals in samples ST1 and ZJ86. (A, B) under the TEM dark field. (C) under bright field. (D), high
resolution image of the yellow dotted-line frame. (E) the energy spectra of the area inside the yellow dotted-line frame.

diagenesis to form todorokite, as reported in the Pacific and Atlantic
Fe-Mn nodules and crusts (Marino et al., 2018). The Mn minerals in
the SCS crusts and nodules are mainly disordered vernadite (8-
MnO,) with minor birnessite and buserite. This result suggests that
the SCS polymetallic crusts and nodules are mainly of hydrogenetic
origin, with some Fe-Mn growth layers possibly affected by
diagenesis (Guan et al., 2019).

Under the TEM bright field, we found direct evidence for the
conversion of vernadite (8-MnO,) to birnessite and todorokite
(Figure 10). Vernadite (§-MnO,) is an amorphous
phyllomanganate that is randomly stacked in the c-axis. This
series of 3-MnO, minerals is mainly divided into three species
(Halbach et al., 2017): (1) 7 A vernadite with [001] and [002] crystal
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plane spacing of ca. 7 and 3.5 A, respectively; (2) 10 A vernadite
with [001] and [002] crystal plane spacing of ca. 10 and 5 A,
respectively; (3) Fe-vernadite (3-MnO,) without crystalline surface
spacing, which is most common in the SCS polymetallic crusts and
nodules (referred to as Fe-vernadite hereafter).

Birnessite are ordered, layered, well-crystallized §-MnO,
(Giovanoli, 1980). Since there are two species of 7 A and 10 A
vernadite, the ordered birnessite is divided into 7 A birnessite and
10 A buserite. Birnessite is structurally more stable and occurs
mostly in diagenetic (or mixed hydrogenetic-diagenetic) Fe-Mn
crusts and nodules, which are often used as precursors in
experiments on synthetic todorokite (Liu et al, 2005; Atkins
et al, 2016). 10 A buserite is more common in diagenetic Fe-Mn
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FIGURE 9
Microstructure growth of sample HYD66-1.

nodules, and can be used as a precursor (Bai et al., 2002) or
intermediate transition phase (Bodei et al., 2007) in experimental
synthesis of the structurally less-stable todorokite.

The ideal todorokite has a 3-D tunnel structure, consisting of three
M-O octahedra (arranged as tunnel) and three M-O octahedra
(arranged as tunnel bottom) at common angles, with the tunnel and
tunnel bottom oriented along the a-axis and c-axis, respectively (Yu,
1979; Cui et al., 2009; Qiao et al,, 2016). Its [001] and [002] crystal plane
spacing is ~9.7 A and ~4.8 A, respectively, and its diffraction pattern
has a strong peak at ~2.4 A and weak peaks at ~2.2 A and ~1.7 A.

As shown in Figure 10, Region 1 of the sample is a random stack of
Mn oxides, whose diffraction patterns show two broad rings at ca. 2.4
and 1.4 A, which indicates that 8-MnO, is weakly crystallized. In
contrast, the minerals in Region 2 have a bamboo-leaf shape, and their
diffraction patterns show four broad rings at ~4.9 A, ~24 A, ~2.1 A,
and ~14 A, indicating that the nano-minerals in this region are
relatively well crystallized. The HRTEM photos show clearer crystal
plane stripes (Figures 10C, D), with crystal plane spacing of ca. 6.2 and
7.4 A (birnessite) and 4.9 and 9.8 A (todorokite).

To elucidate the transformation processes between these
different Mn minerals, we combined our trace element data with
published ones (Golden et al., 1987; Cui et al., 2005; Cui et al., 2006;
Cui et al, 2010; Atkins et al., 2014; Lee and Xu, 2016b), and
proposed a phase transformation model for Mn minerals in the
SCS polymetallic crusts and nodules (Figure 11): the interlayer
space of 7 A birnessite contains single H,O molecules and/or
cations (e.g., Na*, K*, Mg2+, Ca®", Ni**) (Manceau et al., 2014;
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and dendritic

Lee and Xu, 2016b; Halbach et al., 2017). Some cations (e.g., Niz+)
can increase the layer spacing of birnessite after entering the layers
of birnessite, which eventually leads to the conversion of 7 A
birnessite to todorokite (Golden et al.,, 1987; Atkins et al., 2016).
This transformation process was also reported from Fe-Mn nodules
in freshwater lakes (Lee and Xu, 2016b). Previous studies have
shown that synthetic phyllomanganate mineral phases can be
converted to todorokite by atmospheric reflux, hydrothermal
treatment, or aging treatments (Cui et al., 2005; Cui et al., 2006;
Cui et al,, 2010; Atkins et al., 2016), and can be promoted by
neutral-alkaline and reducing conditions and the presence of clay
minerals. Since todorokite crystallization in the SCS polymetallic
crusts and nodules is poor, we suggested that the SCS crusts and
nodules were subjected to short period of suboxic conditions and
diagenetic process.

The TEM-EDS results show that both birnessite and todorokite
contain high Ni content, while vernadite (8-MnO,) contains only
low trace element contents, which can be explained by their crystal
structures. In the birnessite structure, some divalent cations (e.g.,
Co®", Ni*", Zn**, Fe**, Cu®") can replace Mn*" to enter the Mn
mineral interlayer (Halbach et al., 2017). In the todorokite, Mg2+,
Ca®", Co", or Ba>" are the main cations in the crystal lattice (Post,
1999; Manceau et al., 2014), while other cations are bound to the
lamellar sites of Mn (incl. co-hexagonal, co-bilateral, co-trilateral,
co-dual, and co-trigonal with Mn-O octahedra) (Cui et al., 2009;
Qiao et al,, 2016). In addition, vernadite has negative charge in
seawater (Koschinsky and Hein, 2003), which facilitate its
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SAED patterns (A), high resolution image (B—D), and EDS pattern (E) of nano-minerals of sample ZJ86.

adsorption of free cations and cation complexes (e.g., VO**) from
the seawater (Wehrli and Stumm, 1989).

6 Conclusions

(1) Growth structures of the SCS polymetallic crusts and
nodules are mainly laminar, columnar, and mottled. The minerals
include mainly vernadite (3-MnO,), quartz, feldspar, and
amorphous FeOOH, as well as minor birnessite, todorokite, and
clay minerals. Nano-minerals include mainly vernadite (3-MnO,),
clay minerals, amorphous FeOOH, H,Ti;O,, birnessite,
and todorokite.
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(2) Different mineral compositions and growth structures
represent different growth environments. The growth environment of
crusts and nodules from near the continental margin is relatively
turbulent with significant terrigenous source influence. Meanwhile, the
growth environment of crusts and nodules from near the central basin
is more stable and less affected by terrigenous source.

(3) Titanium can form colloidal minerals in the seawater, and
precipitate into the crusts and nodules with colloids such as FeFOOH
and Si-Al

(4) Vernadite (6-MnQO,) and birnessite can be transformed into
the structurally more stable todorokite in suboxic environment. The
SCS polymetallic crusts and nodules may have been in a short
period of suboxic growth environment and diagenetic process.
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The small-scale event layers in the continental margin contain abundant
dynamic environment information, and pose a challenge to the interpretation
of continuous sedimentary records, giving geological significance to their
accurate identify and possible genesis. Here, pulsed turbidite layers since the
last glacial maximum (LGM) in a gravity core in the northwestern South China Sea
(SCS) was analyzed to investigate the precisely identification, possible causes and
the role of marine environmental change during the late Quaternary in formation
of these small-scale event layers in the SCS. Eight potential pulsed turbidite
layers, according to the petrographic characteristics, grain size parameters and
element geochemistry, were identified. Meanwhile, indicators including total
sulfur (TS)/total organic carbon (TOC) ratio, CaCO3z content, and chromium-
reducible sulfur (CRS) revealed these horizons were mostly related to methane
seep events. Constrained by foraminifera shells AMS™C results, these events
were determined to have occurred from the LGM to early Holocene, Similar
records in the northern and southern slopes suggests the universal occurrence
of these small-scale layers in the SCS. The comprehensive analysis showed that
the development of these event layers over the past 25 ka can be divided into
three stages, 25-15.5 ka, 15.5-7 ka and 7 ka to present. Late Quaternary Ocean
environment changes, especially sea level and bottom water temperature,
controlled the occurrence of regional small-scale event layers in the SCS. The
regional scale mechanism is that the pressure and temperature change affect the
stability of hydrate and the methane seepage, and thus the strata stability.
Corresponding to the lowest, the rapid increase and the highest levels of the
sea level and bottom water temperature, the temporal evolution pattern of
small-scale event layers in the SCS showed a highest, decreased and lowest
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frequency, respectively. The linkage between the late Quaternary marine
environmental change and turbidite deposition through gas activities in this
study can act as a useful reference for further understanding the continental
margin sedimentary process.

KEYWORDS

turbidite deposition, methane seep, sea-level, bottom water temperature, South

China Sea

1 Introduction

The continental margin experiences active sedimentation and is
a transit station for the transportation of materials from land to
deep ocean. As a geomorphic unit connecting the shallow
continental shelf and deep ocean basin, the continental slope
contains various sedimentary types, e.g. hemipelagic, gravity-flow,
and contourite depositions. The turbidity current, a gravity flow
composed of sediment and water with a density greater than that of
the surrounding water, is a characteristic geological agent of
sediment transport and deposition in the slope Sedimentologists
have struggled to decipher the environmental signals contained in
the strata due to the unsteady environment resulting from frequent
turbidity currents. Therefore, extracting information for the
continuous evolution of the geological environment from
instantaneously triggered deep-sea turbidite deposition is an
challenge in deep-sea sedimentology (Zaragosi et al., 2006;
Toucanne et al., 2008; Pouderoux et al., 2012; Lombo Tombo
et al, 2015; Yu et al,, 2017; Li et al., 2021a). The occurrence of
deep-sea turbidity currents is closely related to strata collapse,
which presents hidden dangers to engineering safety. Large-scale
strata collapse can result in the formation of a tsunami (Nisbet and
Piper, 1998), thereby posing danger to residents. In addition, the
coarse-grained sedimentary strata formed under the turbidite
environment are good reservoirs of deep-sea oil and gas hydrate,
which is of great significance for the exploration of deep-sea
resources (Rothwell et al., 1998; Mienert et al., 2005; Liang et al.,
2017; Liu et al., 2020).

The area around the South China Sea (SCS) contains developed
river systems draining basins with active erosion. In the northern
SCS margin, currents include different layers of western boundary
currents (Wang et al,, 2011; Zhou et al, 2017; Zhu et al.,, 2019),
Guangdong Coastal Current and the SCS Warm Current (Guan and
Fang, 2006). Additionaly, frequent typhoons and strong internal
waves (Alford et al., 2015; Zhang et al., 2018a) combined with the
supply of a large number of terrigenous materials lead to frequent
turbidity currents on the northern slope of the SCS. Many turbidite
layers have been identified in the core samples of the SCS
continental slope area in recent decades using geophysics,
sedimentology, geochemistry, and mineralogy proxies (Zhao
et al,, 2011; Jiang et al.,, 2014; Yu et al, 2017; Li et al, 2019; Liu
et al., 2020). This revealed that turbidites with a water depth of
1,000-4,500 m from the slope to the basin have been widely
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distributed since the last glacial period. Most previous studies
focused on medium- to large-scale turbidity activities, with
discussion on large-scale collapse or enormous terrestrial
materials input. In contrast, there have been relatively few studies
on records of small -scale pulsed turbidite events contained in core
samples. On the other hand, the proposed complex and diverse
turbidity current triggering mechanisms have remained
controversial, and include typhoons, earthquakes, floods, etc
(Lombo Tombo et al., 2015; Zhang et al., 2018a; Maloney et al.,
2020). Proposed mechanisms regulating long term turbidity
currents include tectonic activity, sea-level fluctuation, and
climate related periodic high sediment supply pulse (Maslin et al.,
1998; Ducassou et al.,, 2009; Lombo Tombo et al,, 2015). The
hydrate dissociation is a characteristic geological agent in the
continental slope that has attracted extensive attention in recent
years. Methane leakage can induce collapse and disastrous turbidity
current over large scales (Paull et al., 1991; Nisbet and Piper, 1998).
For example, the extremely thick turbidite layer of the
Mediterranean is related to strata instability induced by methane
leakage generated by hydrate decomposition (Rothwell et al., 1998).
The enormous collapse of the Norwegian continental margin is also
related to the reduction of gas hydrate stability (Mienert et al., 2005;
Cremiere et al., 2016), and even triggered a tsunami (Bondevik et al.,
2005). The SCS is one of the most important gas hydrate reservoirs.
Bottom simulating reflectors, mud volcanoes, mud diapirs and gas
chimneys have all been found in ashes associated with natural gas
hydrates. In addition, due to the unstable state of hydrate, methane
seepage is common in the SCS slope. Recent studies showed
widespread methane leakage in the SCS slope. However, most
leaks are of a small scale and weak intensity. No catastrophic
collapse resulting from large-scale leakage is contained in
geological records. Therefore, various uncertainties remain,
including: (1) How could we identify the deep-sea turbidite layers
in the SCS precisely; (2) whether such the small-scale coarse-
grained event layers commonly existing in the SCS slope are
related to methane leakage activities; (3) the role of marine
environmental change during the late Quaternary in formation of
these small-scale event layers. The present study selected a gravity
core from the “Haima” seep area in the northwestern SCS,
comprehensively compared with the records of other cores taken
from the southern and northern slopes of the SCS to discuss the
possible relationship between turbidite records and methane
leakage and control mechanism in the SCS since the LGM.
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2 Materials and methods

2.1 Materials

The core Q6 (water depth: 1,400 m; length: 2.72 m) used in the
present study was collected by the Guangzhou Marine Geological
Survey using the Haiyang-6 vessel between April and May, 2019
(Figure 1). The core site is on the north western continental slope of
the SCS. In general, the core shows relatively homogeneous silty-
clay deposition, besides for three obviously coarsened sand layers
(Figure 2). The potential pulsed turbidite layers of the core were
identified using petrography, sedimentology, and geochemistry
proxies. The layers significantly affected by methane leakage were
identified using geochemistry proxies. Eight layers were chosen for
AMS'™C ages measurements (Figure 2) using planktonic
foraminifera Globorotilia menardii shells in BETA laboratory
(U.S.), and the results has been reported in our previous work
(Miao et al., 2021a).
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2.2 Grain-size analyses

Solutions of 15 mL 30% H,0, and 5 mL 3 mol/L HCI were
added to remove organic matter and carbonate. All samples were
fully desalted and dispersed before measurements. The samples
were analyzed using a Mastersizer 2000 instrument (range: 0.02-
2,000 wm; resolution: 0.01®P) at the Key Laboratory of Submarine
Geosciences and Prospecting, Ministry of Education, China. The
error based on repeated measurements was estimated to be less
than 3%.

2.3 Geochemical element analyses

Prior to the analyses, 0.05 g freeze-dried sample was dissolved
twice in HF-HNO; (1:1) and dried again at 190°C for 48 h.
Approximately ~50 g of the mixture was then prepared and
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Map showing the study area in the SCS. The red star indicates the sampling location of Q6 and the magenta cycles indicate referenced cores in this study.
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Photographs and lithological description of the core Q6.
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measured. Nearly 10% of these samples were analyzed in replicates
to determine the measurement error, and the elemental
compositions of a GSD-9 reference standard were measured to
confirm the accuracy of the analyses. The geochemical element
analysis, including the measurement of major and trace elements
was conducted by the Experiment-Testing Center of Marine
Geology, Ministry of Land and Resources. The major elements in
the sediments were analyzed using inductively coupled plasma
atomic emission spectroscopy (ICP-AES), and the standard
deviation of these measurements was < 1%. The trace elements in
the sediments were analyzed by ICP mass spectrometry (ICP-MS),
and the standard deviation of these measurements was < 5%.

Frontiers in Marine Science

2.4 Total organic carbon analyses

Accurately weigh about 1g of freeze-dried sediment and ground
to 200 mesh. Approximately 2 mL of 1 mol/L HCI was then added,
and the sample was soaked and submitted to ultrasound to remove
inorganic carbon. The sample was then placed on a low-
temperature electric heating plate for 12 h to volatilize HCL. After
drying, 50 mg of sediment was placed in an elemental analyzer
(Elementar Vario ELIII, Germany) and organic carbon (TOC) was
determined in the CN mode. The sediment was dried under low
temperature, after which 50 mg was extracted and placed directly on
the elemental analyzer for the determination of total carbon (TC). A
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standard sample GSD-9 and 10% parallel sample were analyzed
concurrently during the test. The standard deviations of TC and
TOC were 0.004% and 0.006%, respectively. The measurement was
completed in the Key Laboratory of Marine Geology and
Metallogeny, First Institute of Oceanography, Ministry of Natural
Resources. CaCOj; content was calculated as:

CaCO4(%) = (TC - TOC) x 8.33 (1)

2.5 Chromium reducible sulfur analyses

Chromium-reducible sulfur (CRS) was analyzed according to
the method described by Canfield et al. (1986). The bulk sediments
were dried and grounded to homogeneous powders of 200 mesh
size. Then, pyrite extraction was carried out by weighing 50-200 mg
samples. CRS was reduced using 1.0 M CrCl,-0.5 M HCI and 3N
HCI solutions under a continuous flow of nitrogen for 2 h at 200-
250°C. The liberated H,S was trapped in an AgNO;-NH,OH
solution and converted into Ag,S precipitates. The percentage of
pyrite could be calculated by the amount of Ag,S extracted.

3 Results and discussion
3.1 Identification of turbidite layers

The turbidite layer often produces obvious unconformity in
comparison with stable and continuous hemipelagic sediments.
This is due to the significant scouring of the underlying strata by
the high concentration of suspended sediment, resulting in
significant variation in grain size (including higher sand content,
coarser mean grain size or median grain size, and a finer positive
sequence from bottom to top), higher coarse-grained detrital
minerals, such as quartz and zircon, and higher Si/Al, Si/Fe, and
Zr/Rb ratios (Fournier et al., 2016; Fauquembergue et al., 2019; Di
etal, 2021; Liu et al., 2021; Li et al., 2021a). Core Q6 contains three
layers with obvious coarsening grain size at 88-96 cm, 116-128 cm,
and 254-260 cm, respectively. These layers are in obvious
unconforming contact with the underlying strata, of which the
sand particles in the 88-96 cm and 116-128 cm layers are clearly
visible by the naked eye (Figure 2). The characteristic grain size end-
members were extracted using the inversion model (Dobigeon et al.,
2009; Schmidt et al., 2010; Joussain et al., 2016) (Figure 3) to further
identify the possible small-scale pulsed turbidite layers not visible by
the naked eye and to limit the dynamic changes of the deposition
process. The first three fractions explained ~96.3% of all variations,
and covered almost all the core data. Therefore, three end-members
were chosen to explain data variation. End-member 1 (EM 1) varied
between 1 um-30 pum, with a peak of 5 um; End-member 2 (EM 2)
varied between 1 um-40 pum, with a peak of 6 um; End-member 3
(EM 3) showed the widest range of between 1 um-300 um, with a
peak of 30 um. EM 3 showed similar trends with sand fraction
content and median grain size (Figure 4). Therefore, this end
member was the key to regulating variations in grain size. EM 3
also showed several obvious pulse peaks, which were a good
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indication of the above three potential turbidite layers and in
good agreement with the local peak records of Si/Al, Si/Fe and
Zr/RD ratios. Based on the above evidence, eight possible turbidite
layers were identified: 88-96 cm, 116-128 c¢m, 140-148 cm, 160-
162 cm, 212-214 cm, 230 cm, 238-240 cm, and 254-260 cm.
Particle size distribution curves for these layers show obvious
bimodal distribution with an additional coarse-grained peak than
the hemipelagic layers (Figure 3). The C-M diagram based on the
sediment cumulative frequencies of 1% (coarsest component) and
50% (median grain size) contents were used to assess the dynamic
deposition environment through different sediment transport
dynamics (Passega, 1957; Passega, 1977). Here, turbidite
deposition was parallel to the C=M line. The C-M diagram of
these eight potential turbidite layers was used to determine that the
distributions of the 88-96 cm, 116-128 cm, and 254-260 cm layers
were roughly parallel to the C=M line (Figure 5A), which is a typical
turbidite deposition feature. In contrast, the distributions of the
140-148 cm, 160-162 c¢m, 212-214 cm, 230 cm, and 238-240 cm
layers were roughly parallel to the horizontal axis (Figure 5B). Since
these distributions were consistent with the distribution
characteristics of other hemipelagic layers (Figure 5C), the genesis
could not yet be determined. Some layers may contain coarser
particles in a limited range due to hydrodynamic factors such as
bottom current enhancement. Alternatively, some layers may show
small-scale turbidite deposition resulting from gas hydrate
dissociation environment (to be analyzed below). The samples did
not show typical turbidite characteristics due to their small number.
It should be noted that there was no clear positive grain sequence
structure of turbidite layers, which may be transformed by later
hydrodynamic forces. The hydrodynamics of the northern slope of
the SCS is complex and includes a highly active contour current
activity (Chen et al,, 2014; Zhao et al., 2015). The northwestern
slope encounters the anticyclonic intermediate water circulation of
the SCS (Chen et al., 2014), which is likely to transform the existing
sediments. However, no obvious sedimentological evidence exists at
present, calling for the need for further analyzes in combination
with more data. Although the geochemical indices of the 212-214
cm and 230 cm layers were high, there was no indication of EM 3
(Figure 4). This result could possibly be attributed by the increase in
the content of authigenic minerals, such as opal.

3.2 Identification of methane seep events

The sediments of the methane seep environment usually show
abnormal enrichment of authigenic carbonate and pyrite due to the
existence of sulfate-driven anaerobic oxidation of methane (SD-
AOM) (Jorgensen et al., 2004; Peckmann et al., 2004; Bayon et al.,
2007; Bayon et al., 2013; Han et al., 2014; Crémiére et al., 2016; Lin
etal, 2016; Liu et al., 2020). This eventually leads to clear changes in
sediment geochemical characteristics, such as the CRS, TS/TOC
ratio and CaCOj (Peketi et al., 2012; Sato et al., 2012; Li et al., 2018;
Miao et al., 2021a; Miao et al.,, 2021b; Miao et al., 2022). Under a
normal environment without methane seepage, labile organic
matter is gradually degraded by sulfate-reducing bacteria via
organoclastic sulfate reduction (OSR) and this biogeochemical
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(A) Fraction of data variance explained by the unmixing model vs. number of end-members. (B) Volume percent vs. grain size (um) diagram of the

three end- members (EM1, EM2, and EM3) identified in core Q6 (C).

process would produce H,S (Jorgensen, 1982; Lim et al.,, 2011).
Hydrogen sulfide eventually mixes with iron ions in the
environment to form pyrite (Jorgensen, 1982). At this time, there
is a significant positive correlation between TS and TOC, and the
ratio of TS/TOC fluctuates between 0.1 and 0.5 (average of ~0.36)
(Berner, 1982; Wei and Algeo, 2020). However, SD-AOM resulting
from the methane seep provides a large quantity of additional
hydrogen sulfide for the pyrite formation process, promotes the
enrichment of authigenic pyrite in the methane anaerobic oxidation
zone (SMTZ), and leads to an increase in the CRS content and TS/
TOC ratio (Boetius et al., 2000; Peketi et al., 2012). In addition, the
additional H,S input destroys the positive relationship between
TOC and TS (Sato et al., 2012; Li et al., 2018; Miao et al., 2021b).The
TS/TOC ratio in the core Q6 mostly exceeded 0.36 and the organic
matter content was low (generally < 1.4%), inconsistent with the
sulfate reduction of organic debris. In particular, the TS/TOC ratios
of layers 88-96 cm, 116-128 cm, 160-162 cm, 212-214 cm, 230 cm,
238-240 cm, and 254-260 cm increased significantly, and were
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generally all above 0.5. The exceptions were those of layers 88-96
cm, 116-128 cm, 160-162 cm, and 254-260 cm, which were > 1.0
(Figures 6B, D). Furthermore, we further analyzed the correlation
between TOC and TS and CRS (Figure 7). We found a significant
positive between CRS and TS (R® = 0.94), indicating that TS mainly
consists of pyrite and other inorganic sulfur. At the same time, CRS
and TS have no significant correlation with TOC (R* = 0.13 and R* =
0.04, respectively), which indicates that pyrite generation has little
relationship with TOC. Moreover, SD-AOM-pyrite usually has a
heavy sulfur isotope value, which is also considered to be an
important marker for identifying methane seepage activities
(Jorgensen et al., 2004; Lin et al., 2016). In the previous work, we
also found the phenomenon of increasing sulfur isotope value of
pyrite in these horizons (Miao et al., 2021b). Therefore, this result
showed that pyrite is obviously enriched in these layers in the core
Q6 and is affected by SD-AOM (Figures 6B, G-I). In addition, SD-
AOM also makes the environment more alkaline and produces
large amounts of carbonates (Peckmann et al., 2004; Bayon et al.,
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Potential turbidite layers identification proxies of grain-size and element ratios.

2007; Bayon et al., 2013). In Q6, it is found that CaCOj; content also
increases in pyrite enriched horizons. The CaCO; content was
significantly higher than that of other hemi-pelagic layers. Similar
phenomena have been observed in other hydrate areas, such as the
Bay of Bengal (Peketi et al., 2012) and the Beikang Basin (Li et al.,
2018). Therefore, we can believe that the above layers are obviously
affected by methane seep.

3.3 Pulsed turbidite and methane
seep events: Sea-level and bottom
temperature forcing

The factors that induce strata instability and result in turbidity
current include occasional earthquakes, typhoons, volcanic activity,
instantaneous pulse of high sediment supply, sea level fluctuation,
gas hydrate decomposition, and leakage (Masson, 1996; Maslin
et al., 1998; Prins and Postma, 2000; Ducassou et al., 2009; Lombo
Tombo et al., 2015; Cremiére et al., 2016; Zhang et al., 2018b;
Maloney et al,, 2020; Li et al., 2021a). The instantaneous pulse of

high sediment supply is generally related to a sharp increase in the
quantity of erosion material. This is regulated by regional climate
conditions or the rapid entry of a large quantity of sediment into the
ocean caused by flood events (Ducassou et al., 2009). Lower
precipitation occurred both in the the East Asian summer
monsoon and Indian summer monsoon regimes during the LGM
period, whereas pulsed turbidite events occurred frequently in
many regions of the SCS (Hu et al, 2017; Li et al, 2017; Liu
etal., 2020; Di et al., 2021; Feng et al., 2021; Li et al., 2021b). Clearly,
these observations cannot be explained by strata instability caused
by the increase in the instantaneous sediment supply in the source
area alone. There has been no record of such high-frequency
volcanic eruptions around the SCS since the LGM. Sea level
fluctuation regulates the accumulation of sediment and controls
the strata pressure by changing the accommodation space, which
may affect the hydrate dissociation and induce strata instability.
Examples include the Amazon fan, the southern Carolina rise, and
the inner Blake Ridge, etc (Paull et al., 1996; Maslin et al., 1998). As
instantaneous triggering factors, occasional earthquakes and
typhoons are difficult to identify at a geological scale and may
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(A) Layers T1, T7 and T8; (B) Layers T2-T6; (C) Hemipelagic Layers.
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need to be comprehensively analyzed in combination with
other factors.

Gas hydrate dissociation is common in the continental slope
area and is generally considered to occur due to changes in
temperature and pressure (Phrampus and Hornbach, 2012; Tong
et al,, 2013; Cremiere et al., 2016). A low temperature and high-
pressure environment are suitable for hydrate storage, whereas the
opposite is conducive to hydrate dissociation. The sea level and
bottom water temperature of the SCS have increased significantly
since the LGM (Shackleton, 1987; Fairbanks, 1989; Waelbroecka
et al., 2002; Lisiecki and Raymo, 2005; Bates et al., 2014; Wan and
Jian, 2014) (Figure 8). Therefore, the changes in pressure and
temperature during this process can play a key role in the hydrate

dissociation. The present study integrated the hydrate dissociation
records of several cores in the northwestern slope, northeastern
slope, central northern slope, and southern slope areas of the SCS
(Figure 8). The results showed that the dissociation of hydrate could
be roughly divided into three stages according to the characteristics
of sea level and bottom water temperature: (1) 25-15.5 ka,
characterized by a low sea level (low pressure) and low
temperature stage during which methane leakage was common;
(2) 15.5-7 ka, characterized by rising trends in sea level and
temperature and in which methane leakage activity was common
and continuous, although this activity stopped during the latter part
of this stage; (3) 7 ka to the present, characterized by a low activity
of methane leakage at a high sea level (high pressure) and high
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temperature. The effects of sea level and bottom water temperature
on gas hydrate were opposite in each stage.

The sea level dropped by over 100 m during the regression of
the late Pleistocene, resulting in a decrease in the pressure on the
seabed by 1,000 kPa (Wang et al., 2004). The reduction in total
pressure resulted in the dissociation of natural gas hydrate, the
release of large quantities of methane and water, and an increase in

Frontiers in Marine Science

slope instability. These changes occurred globally, and resulted in
nearly 200 landslides on the continental margin of the Atlantic in
the United States, the continental slope of Southwest Africa, the
continental margin of Norway, the continental margins of the
Beaufort Sea, the Caspian Sea, the north Panama continental shelf
and Newfoundland. The Amazon submarine landslide is attributed
to the rapid decline in sea level. This is because the drop in sea level
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induced an instability in natural gas hydrate and to the sliding of
overlying sediments (Maslin et al., 1998). The sea level decreased
significantly during the last glacial period, particularly in the LGM,
during which the sea level was 120 m below the currentlevel in the SCS.
The strata pressure overlying the gas hydrate decreased significantly,
inducing dissociation leakage, which was recorded widely in slope
areas of the SCS (Hu et al., 2017; Li et al., 2017; Zhang et al., 2018b; Liu
etal, 2020; Di et al,, 2021; Feng et al., 2021; Li et al., 2021b) (Figure 8).
Although the low temperature during this period was suitable for
maintaining the stability of hydrate, the significant reduction in
pressure dominated the release of gas hydrate. The factors triggering
strata instability may include an occasional earthquake, typhoon, or
flood. For example, observations of a submarine canyon in the
northern SCS confirmed that typhoon triggered turbidity currents
(Zhang et al., 2018a). At the initiation of a landslide, free gas under the
hydrate layer rises along the crack, and the hydrate in the original
metastable state will decompose and release methane gas. This release
of gas will have a significant impact on the seabed redox environment,
such as deep-water oxygen consumption (Bayon et al.,, 2013) and
seawater sulfate concentration (Cremiére et al., 2013; Kiel, 2015). These
processes explain the significant increases in CRS, TS/TOC, CaCO;
and pyrite (Figure 6).

There were rapid increases in the sea level and bottom water
temperature between 15.5-7 ka. Gas hydrate leakage records
continued to be recorded in almost all areas, and significantly
decreased or stagnated during this period (Figure 8). This result
indicated that leakage activity continued concurrent with the
significant pressurization and heating of the storage environment.
Leakage activity then almost stagnated under pressure after a period.
The rapid rise in bottom water temperature since 15.5 ka likely
promoted the dissociation of gas hydrate, offset the inhibition of
hydrate dissociation resulting from sea-level rise-induced pressure
increase to a certain extent, and maintained the occurrence of
methane leakage until the early Holocene. This mechanism is
similar to the hydrate dissociation and release of a large quantity of
methane gas from many continental margins globally during the
Quaternary glacial-interglacial transition period, which is often
attributed to the rise of bottom water temperature (Dean et al,
2015; Himmler et al., 2019; Kennett James et al., 2000; Reagan and
Moridis, 2007). Hydrate decomposition events have been identified in
the transition periods of MIS10/9 (Tong et al,, 2013), MIS6/5(Chen
etal, 2019; Deng et al., 2021), MIS4/3 (Han et al,, 2014; Yang et al.,
2018), MIS2/1(Feng and Chen, 2015; Wei et al., 2020; Deng et al.,
2021) in the SCS. These events indicate that the significant change in
temperature was indeed conducive to hydrate dissociation. Although
there was no obvious change in bottom water temperature since the
early Holocene, the sea level continued to rise rapidly. The increasing
overlying sea water pressure maintained the stable state of hydrate.
Hydrate begins to form in large quantities once the appropriate
conditions are met and dissociation is halted.

The highest sea level and bottom water temperature have occurred
since 7 ka, and the records indicate significant decreases in gas hydrate
dissociation in various regions of the SCS (Figure 8). Although modern
seafloor observations show continued methane gas leakage (Zhang
etal.,2020), the stratigraphic records show no turbidite layer formed by
strata instability resulting from methane leakage.
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4 Conclusions

According to multi-disciplinary indicators, the small-scale
deep-sea turbidite and methane seep event layers in a gravity core
in the northwestern SCS were identified, and the role of the changes
in the sea level and paleoceanography environment during the late
Quaternary in the formation of the above layers was discussed, and
the following understanding was formed:

(1) Based on the petrographic characteristics, grain size
parameters and element geochemistry indicators, eight
potential pulsed turbidite layers were identified.
Meanwhile, indicators including TS/TOC ratio, CaCO;
content, and CRS revealed these horizons were mostly
related to methane seep events.

(2) These event layers mainly occurred from the LGM to early
Holocene, when low sea level and transgression were universal
to the SCS continental slope, indicating a high incidence of
small-scale turbidite layers and methane seepage events.

(3) Development of these small-scale pulsed turbidite and
methane seep events could be divided into three stages:
25-15.5 ka, 15.5-7 ka and 7 ka. The variations in strata
pressure over hydrate resulting from the changes in sea
level and bottom water temperature were suggested the
main factors regulating methane seepage, which affected
strata stability of the continental slope and the occurrence
of pulsed turbidite events.
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Upward diffusing methane in gas hydrate geological systems is consumed in the
sediment and water column by a series of biogeochemical reactions, which not
only affect living foraminifera but also lead to early diagenetic alteration of buried
foraminiferal tests. Previous studies of the impact of methane release events on
fossil foraminifera focused mainly on carbon and oxygen isotopes, with little
attention given to other geochemical proxies to date. Here, we examine the test
wall microstructure and analyze the elemental and stable carbon-oxygen
isotopic compositions of buried foraminifera from gas hydrate-bearing
sediments at Site GMGS2-16 in the northern South China Sea. Our results
show that diagenetic alteration of foraminiferal tests at Site GMGS2-16 is
mainly linked to high-Mg calcite overgrowths. Test 8"°C covaries negatively
with the degree of diagenetic alteration (based on petrographic characteristics)
but positively with Mg/Ca ratios. With increasing diagenetic alteration, Ba/Ca,
Mn/Ca, Fe/Ca, Mo/Ca, U/Ca, V/Ca, Ni/Ca and Co/Ca also generally increase, but
Sr/Ca and Cu/Ca exhibit variable changes. We infer that foraminiferal tests are
highly susceptible to alteration by methane-bearing fluids, and that the
elemental ratios of diagenetically altered tests are potentially reliable proxies
for paleo-methane release events. At Site GMGS2-16, the overall pattern of
diagenetic alteration of foraminiferal tests records frequent vertical fluctuations
of the sulfate-methane transition zone (SMTZ) caused by variable fluid flux and
methane release rates, with two discrete large-scale methane release events
having maximum ages of ~0.47 ka and ~170 ka.

KEYWORDS

carbon isotopes, oxygen isotopes, early diagenesis, LA-ICP-MS, trace elements,
gas hydrates
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1 Introduction

A large amount of methane is trapped as methane hydrates,
dissolved methane and free gas reservoirs in continental margin
sediments worldwide. Methane-rich fluids can migrate upwards
along faults and fractures, emitting methane back into the
hydrosphere and atmosphere, which can have serious impacts on
global climate and the biosphere (Dickens et al., 1997; Retallack
et al., 1998; Them et al., 2018). Hence, it is of considerable
importance to evaluate the character, timing, and drivers of
natural past methane release events and explore how to avoid
consequent climatic and biotic effects (Miao et al., 2021).
Methane-derived authigenic carbonate (MDAC) is regarded as a
reliable archive of information about paleo-methane release events,
past fluid composition and circulation, and sedimentary redox
processes (Peckmann and Thiel, 2004; Feng et al., 2009; Hu et al.,
2015; Cremiere et al., 2016; Liang et al., 2017; Zhu et al., 2019; Bayon
et al,, 2020; Schier et al,, 2021; Liu et al., 2022). During the upward
migration of methane-bearing fluids, steep chemical gradients
provide ecological niches for microbial communities mediating
the anaerobic oxidation of methane (AOM, CH, + SO3~ > HCOj3 +
HS™ + H,0) in the sulfate-methane transition zone (SMTZ). The
production of bicarbonate results in increased pore-fluid alkalinity,
inducing precipitation of MDAC at timescales typically in the range
of centuries to millennia (Schneider, 2018). Therefore, some short
duration paleo-methane release events may fail to leave a
carbonate record.

Diagenetically altered foraminifera have been found to preserve
post-depositional signals similar to those in MDAC (Torres et al.,
2010), and the wider distribution of the former therefore has the
potential to yield higher-resolution records of paleo-methane
release events. Organic matter in marine sediments is subject to a
succession of heterotrophic microbial metabolisms that utilize a
depth sequence of electron acceptors, largely in accordance with
Gibbs free energy yield: NO;~, Mn(IV), Fe(III), and SO,*
(Jorgensen, 2021). When all energetically more favorable terminal
electron acceptors have been depleted, organic carbon is
mineralized via methanogenesis, causing the accumulation of
methane in deeper sediments. Upward diffusing methane will
meet the zone of sulfate reduction and AOM occurs. The
diagenetic processes not only affect living benthic foraminifera
but also lead to diagenetic alteration of buried foraminiferal tests
(Millo et al., 2005a; Torres et al., 2010; Panieri et al., 2017; Schneider
etal., 2017; Cen et al., 2022). To date, most studies investigating the
effect of methane release events on foraminiferal tests have focused
on their stable carbon isotopic compositions (Hill et al., 2004; Millo
et al., 2005b; Martin et al., 2007; Panieri et al., 2014; Schneider et al.,
2017; Sztybor and Rasmussen, 2017; Wan et al., 2018). Additionally,
their elemental compositions (e.g., Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca,
Fe/Ca, U/Ca, and Al/Ca) (Torres et al., 2010; Schneider et al., 2017;
Fontanier et al., 2018; Detlef et al., 2020) may also be influenced by
MDAC precipitation. Borrelli et al. (2020) proposed benthic
foraminiferal $°*S as a novel tool to identify methane release
events in geological records and to indirectly date fossil seeps.
Nonetheless, a comprehensive understanding of the influence of
early diagenetic processes on the elemental composition of
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foraminifera awaits the analysis of a full suite of elemental ratios
in a suitably designed study.

Here, we undertook a suite of petrographic and geochemical
analyses including reflected light microscopy, scanning electron
microscope (SEM) imaging, oxygen and carbon isotopic
measurements, laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS), and electron probe microanalysis
(EPMA) elemental mapping on foraminiferal tests with varying
degrees of diagenetic alteration from gas hydrate-bearing sediments
of the northern South China Sea. Our main goal was to investigate
the effects of methane release on diagenetic alteration of
foraminiferal tests and to refine multiple proxies for recognition
of paleo-methane release events in gas hydrate geosystems.

2 Geological setting

The South China Sea (SCS) is one of the largest marginal seas in
the western Pacific Ocean (Taylor and Hayes, 1980). On account of
the interactive and complex collision among the Eurasian, Pacific
and Indian-Australian plates, a series of sedimentary basins, e.g., the
Qiongdongnan Basin and Pear] River Mouth Basin, were developed
along the northern continental margin of the SCS (Zhu et al., 2009;
Morley, 2012). During June to September in 2013, the gas hydrate
drilling expedition GMGS2 was conducted by the Chinese
Geological Survey (CGS) incorporating with Fugro and Geotek to
accurately quantify gas hydrate in the sediment cores and to
determine the nature and distribution of gas hydrate within the
sedimentary sequence in the Pearl River Mouth Basin (Zhang et al.,
2015). The drilling area of expedition GMGS2 was located in the
eastern Pearl River Mouth Basin, along the crest of two prominent
seafloor ridges (Figure 1), where bottom simulating reflectors and
other seismic indicators for widespread gas hydrate and seepage had
been recognized (Zhang et al., 2015).

The study site (GMGS2-16), which is located on the eastern
ridge (Figure 1) at a water depth of 871 m, yielded a 230-m-long
core. The age framework for site GMGS2-16 was established by
combining calcareous nannofossil and planktonic foraminifer
datums (Chen et al., 2016a). The oldest sediments recovered are
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FIGURE 1
Location of the study site (GMGS2-16) in the eastern Pearl River
Mouth Basin, South China Sea (modified after Zhang et al., 2015).
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of middle Pleistocene age, younger than ~500 ka. Sedimentation
rates since 440 ka have varied from 28 to 62.3 cm/kyr, with a mean
rate of 47.4 cm/kyr (Chen et al., 2016a). The logging-while-drilling
data indicated the existence of two layers of gas hydrate: an upper
hydrate layer, characterized by nodules and fracture-filling
hydrates, at a shallow depth (13-29 mbsf), and a lower pore-
filling hydrate layer near the bottom simulating reflector (BSR) at
depths of 192-222 mbsf (Feng et al.,, 2015). At this site, porewater
sulfate concentrations decline to zero at 13.69 mbsf, indicating a
high upward methane flux and a shallow SMTZ (Kuang
et al., 2018).

3 Materials and methods
3.1 Sample description and processing

The dominant lithologies of the sediments in this core are dark-
green, unconsolidated clayey silt and silty clay. Authigenic minerals
including carbonate, pyrite, and gypsum were observed at multiple
levels (Gong et al., 2017; Lin et al., 2018; Zhao et al., 2021). For this
study, sediment samples were collected from the curated core at the
GMGS laboratory in Guangzhou and processed in the State Key
Laboratory of Biogeology and Environmental Geology (BGEG) at
China University of Geosciences in Wuhan (CUG). Fifty-seven core
samples, each representing a quarter-section of the drillcore having
a volume of 10-15 cm?, were collected, weighed, and stored in a
freezer prior to analysis. For each sample, a ~10 cm® aliquot was
dried at 40 °C for 24 hours in an air-dry oven and re-weighed to
determine moisture-free sample weight. This aliquot was then
rinsed using distilled water, sieved through 150 pum, 65 wm and
30.8 um sifters. In the process of sieving, the sample was
ultrasonicated in distilled water for 30 s to remove clay minerals
and detrital materials sticking to the foraminiferal tests. For each
sample, the three size fractions were air dried at a temperature of 40
°C, and then stored separately after weighing.

3.2 Petrography

All particles with size of larger than 150 um were examined
using a binocular microscope (Carl Zeiss Stemi 2000-C).
Foraminiferal samples were grouped into four classes (pristine,
weakly altered, moderately altered, and strongly altered; Figure 2)
according to their degree of diagenetic alteration following the
approach of Schneider et al. (2017). Well-preserved pristine tests
are optically smooth with high reflectance and transparency, and
primary test features such as chambers, sutures and pores are easily
observed. Weakly altered tests are translucent or white in color with
decreased reflectance and transparency, but still have prominent
morphological features. Moderately altered tests appear white or
yellow with both translucent and opaque areas. Strongly altered
tests appear yellow to dark brown in color, low reflectance and
transparency with an opaque test wall, a ‘frosty’ texture, and
obscured morphological features. In order to determine the
frequencies of the various diagenetic alteration stages, all
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foraminiferal specimens larger than 150 um in each core sample
were assigned to one of these four categories and tallied. Given their
relatively greater abundance, three foraminiferal species were
chosen for geochemical measurements: the planktic taxa
Globorotalia menardii and Neogloboquadrina dutertrei, and the
benthic taxon Uvigerina peregrina.

3.3 Scanning electron microscopy

Representative foraminiferal tests of each species (ie., G.
menardii, N. dutertrei, and U. peregrina) at each diagenetic
alteration stage (as determined by reflected-light microscopy)
were selected from seven core samples and further tested using
SEM and elemental analysis (Table 1). The seven core samples cover
the intervals containing authigenic carbonate nodules above
(GMGS2-16B-1H-1a, 0.23 mbsf), within (GMGS2-16D-2H-1,
10.83 mbsf), and below (GMGS2-16F-6H-1, 50.47 mbsf; GMGS2-
16D-8H-1, 92.32 mbsf; GMGS2-16H-4H-1b, 164.68 mbsf) the
current SMTZ (the bottom boundary is at 13.69 mbsf) (Kuang
etal,, 2018), as well as some intervals where no authigenic carbonate
nodules are present (GMGS2-16F-2P-CC, 20.52 mbsf; GMGS2-
16F-5H-2, 40.92 mbsf), with the aim of achieving a comprehensive
understanding of the influence of diagenetic processes on
foraminiferal geochemistry.

We selected foraminiferal tests of the same species that had
approximately equal shell size in order to limit the size dependency
of the shell chemistry (Friedrich et al., 2012). The selected
specimens were then cleaned ultrasonically with methanol for 10
s to remove clay minerals and other particles, with repeated rinses
performed until visible discoloration was absent. Then each
specimen was mounted in epoxy resin and polished down to yield
a cross-section view for the purpose of studying its internal
structure. SEM observation and imaging were conducted on
whole and polished specimens of tests using a Hitachi SU8010
SEM in high-vacuum mode, with a beam voltage of 10-20 kV, at the
State Key Laboratory of BGEG (CUG-Wuhan).

3.4 Geochemical analyses

Foraminiferal §'°C and §'®0 were measured using a Gas Bench
coupled with a Thermo Finnigan MAT 253 at the Oxy-Anion Stable
Isotope Consortium (OASIC) in the Department of Geology &
Geophysics, Louisiana State University. Each isotopic sample
contained 2-3 foraminiferal tests to generate sufficient material for
measurement. Samples were loaded into 12 mL Labco Exetainer vials
and left in an oven for 12-24 h at 75 °C, then were sealed with
Labco septa and flushed with 99.999% helium and manually acidified
at 72°C. The carbon dioxide analytic gas was isolated via gas
chromatography, and water was removed using a Nafion trap prior
to introduction into the stable isotope mass spectrometer fitted with a
continuous flow interface. Isotopic results are expressed in the delta
notation as per mille (%o) deviations from the Vienna-Pee Dee
Belemnite (VPDB) standard. Precision was routinely < 0.06 %o for
8'°C and < 0.08 %o for §'°0.
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SEM images of foraminiferal tests representing a range of diagenetic alteration (DA) stages. Whole test, exterior wall, and wall cross-section views for
G. menardii (A1-B5), N. dutertrei (C1-D5), and U. peregrina (E1-F5). Authigenic pyrite framboids inside the test chamber (G 1-2), and authigenic

gypsum growing on the exterior wall (G3-4).

LA-ICP-MS was performed on polished cross-sections of the
selected tests. The isotopes of 24Mg, 27A1, 3Ca, 51V, >>Mn, *"Fe, *°Co,
%ONi, ®Cu, Sr, “ Mo, *"Ba, 2**U were measured along the laser
profile tracks. Analyses were measured using an integrated in situ
laser ablation (COMPexPro 102 ArF 193 nm excimer laser; Coherent
GeoLasPro) and ICP-MS (Agilent 7900) system at the Sample-
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Solution Analytical Technology Co. in Wuhan, China. The spot
size and frequency of the laser were set to 44 um and 5 Hz,
respectively. Internal standard-independent calibrations followed
the procedure of Chen et al. (2011). Each test session analyzed 50
sample spots, with measurement of a standard (NIST 610) for drift
correction after every fifth sample. A series of standard materials were
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TABLE 1 Overview of the analytical techniques for each sample.

Methodology
Sample ID Depth Foraminiferal Degree of diagenetic alteration v
P (mbsf) taxon (DA) SEM  EPMA 4'°C and LA-ICP-
8'%0 MS

Pristine test Y y V

Weak DA V V v
G. menardii

Moderate DA y V V

Strong DA y v V

Pristine test Y y y

GMGS2-16B-1H- , Weak DA v v v
1 0.23 N. dutertrei

a Moderate DA y y V

Strong DA \/ V v

Pristine test Y y V

Weak DA v v v
U. peregrina

Moderate DA Y y V

Strong DA Y y V

Pristine test y V

Weak DA V v v
G. menardii

Moderate DA Y V V

Strong DA y y v v

Pristine test y y

GMGS2-16D-2H- ‘ Weak DA v v v
1 10.83 N. dutertrei

Moderate DA Y y V

Strong DA Y Y y V

Pristine test y V

Weak DA v v v
U. peregrina

Moderate DA Y y y

Strong DA Y y V V

G. menardii Pristine test Y y V

GMGSé—é6F—2P- 20.52 N. dutertrei Pristine test Y y v

U. peregrina Pristine test \/ v v

G. menardii Pristine test y y

GMGSZ;GF’SH’ 40.92 N. dutertrei Pristine test y 3

U. peregrina Pristine test v v

Pristine test y y

G. menardii Weak DA Y y V

Moderate DA Y y y

GMGSZ_IIGF'6H' 50.47 Pristine test J J

N. dutertrei Weak DA Y y y

Moderate DA Y y V

U. peregrina Pristine test V V

(Continued)
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TABLE 1 Continued

Sample ID taxon

G. menardii

10.3389/fmars.2023.1166305

Methodology

Foraminiferal Degree of diagenetic alteration

(DA) 8'3C and LA-ICP-
SEM EPMA 50 e

Weak DA J
Moderate DA Y

Pristine test

Weak DA

Moderate DA

Strong DA

GMGS2-16D-8H-
1

92.32 N. dutertrei

Pristine test
Weak DA
Moderate DA

Strong DA

Pristine test

Weak DA

U. peregrina

Moderate DA

2 2 2 2 2 2 2 2 2 2 2 2 2 2

Strong DA
Pristine test

Weak DA

G. menardii

Moderate DA

Strong DA

GMGS2-16H-4H-

164.68 N. dutertrei
1b

Pristine test
Weak DA
Moderate DA

Strong DA

Pristine test

Weak DA

U. peregrina

measured before (NIST610, BHVO-2G, BIR-1G, BCR-2G, MACS-3,
and MACS-3 in order) and after (same measured in reverse order)
the session to set a calibration curve. Each spot analysis incorporated
an initial <5 s wash-out time then ~20 s background acquisition,
followed by a ~50 s sample-data acquisition interval. ICPMSDataCal
(version 10.8) software was used to calculate and calibrate off-line
data (Liu et al., 2008). For each sample, the reported Element/Ca
ratios were calculated by averaging 15-25 measurements (5 laser spots
per specimen, 3-5 specimens per sample) to reduce the impact of
natural geochemical heterogeneity in foraminiferal tests (Rathmann
et al,, 2004). The signals of Mn and Al were used to monitor clay
contamination, and any specimens with values above 1 mmol/mol
(Mn/Ca) or 0.25 mmol/mol (Al/Ca) were removed from the dataset
(Skinner et al., 2019).
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Moderate DA

2 2 22 22 2 22222222222 2222 22 2 2

Strong DA

To study the spatial cross-sectional distribution of Mg in the
altered specimens, EPMA elemental mapping were obtained with a
JEOL JXA-8230 electron microprobe at the Sample-Solution
Analytical Technology Co. in Wuhan, China. Operation
conditions were 15 kV acceleration voltage and 20 nA beam
current with 1 pm beam diameter. Standards were natural
minerals from international suppliers. Before measuring elemental
concentrations, optical microscope and SEM images were taken to
assess diagenetic alteration and assist in selecting sampling points.

Pairwise correlations among foraminiferal elemental proxies
measured by LA-ICP-MS were tested using Pearson correlation
coefficients. To test differences in the mean elemental contents of
foraminiferal tests, a Student’s t-test was performed for
sample pairs.
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4 Results

4.1 Foraminiferal preservation
and petrography

Petrographic observation of the core samples using reflected
light microscopy revealed that both planktonic and benthic
foraminiferal tests exhibit diagenetic alteration features. Each
foraminiferal specimen was assigned to one of four categories:
pristine, weakly altered, moderately altered, or strong altered
(Figure 2). For each core sample, the number of tests assigned to
each category was tabulated (Appendix 1). Altered foraminiferal
tests are present through nearly the full drillcore, at depths ranging
from 0.23 to 205.82 mbsf. The samples yielding the highest
percentage of altered tests (>30%) are at depths of 10.83 and
92.32 mbsf, but a larger number of samples contain at least 10%
altered tests, including those at 16.65, 22.08, 50.47, and 164.68 mbsf.
The samples containing the fewest altered foram tests (<1%) are at
25.73, 29.91, 59.48, 109.75, 148.63-154.63, 172.93, 179.67, 192.46,
and 205.82 mbsf. The intensity of diagenetic alteration is variable,
e.g., the sample at 10.83 mbsf is dominated by moderately altered
tests and the sample at 22.08 mbsf by weakly altered tests. There is
no systematic downhole increase in the intensity of diagenetic
alteration at site GMGS2-16, challenging the conventional view
that diagenetic intensity correlates with burial depth (Schlanger and
Douglas, 1974).

SEM microscopy was used to identify various alteration
features, including dissolution, overgrowth, and recrystallization
(Edgar et al., 2015). SEM imaging reveals that the foraminiferal tests
exhibit a range of diagenetic features, including overgrowths of
coarse inorganic crystallites, without recrystallization and
dissolution. As shown in Figure 2, the internal and external wall
surfaces of pristine tests are smooth and free of infilling and
overgrowths, pores are unplugged, and wall cross sections are
homogeneous with a well-defined outline (Figures 2A2-F2). In
contrast to pristine tests, altered tests reveal a fine (~1-30 um thick)
layer of calcite crystals on the tests (Figures 2A 3-F5). The
secondary calcite crystals encrust interior and/or exterior test
surfaces as well as fill in pores, resulting in a reduction in pore
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FIGURE 3

Carbon and oxygen stable isotopes of foraminiferal tests at variable
diagenetic alteration stages. The squares, circles, and triangles
represent the taxa G. menardii, N. dutertrei and U. peregrina,
respectively; black, green, orange and blue represent pristine,
weakly altered, moderately altered, and strongly altered tests,
respectively.

size until complete infilling is achieved. The euhedral crystals grow
perpendicular to test walls and are typically much larger than
primary foraminiferal biogenic crystals, making them easily
identified by SEM. Furthermore, authigenic pyrite (Figures 2G1-
2) and gypsum (Figures 2G3-4) were also found inside and outside
test chambers.

4.2 Stable isotopic compositions

The pristine and altered tests exhibit significantly different
carbon isotopic compositions. The pristine tests of G. menardii,
N. dutertrei and U. peregrina exhibit 8">C values ranging from
+1.53 %o to +1.66 %o, +1.21 %o to +1.83 %o, and —-0.75 %o to —0.31
%o, respectively (Figure 3, Table 2, Appendix 2). In contrast,
foraminiferal tests of G. menardii, N. dutertrei and U. peregrina
with variable diagenetic alteration stages have §'°C values ranging

TABLE 2 Overall range and average value of carbon and oxygen stable isotopes for samples with weak, moderate, and strong diagenetic alteration.

G. menardii N. dutertrei U. peregrina
Degree of diagenetic alteration (DA)
max average max average max = average

Pristine test 4152 4214 +1.73 +0.01 | +1.83 +1.21 -152 031 -0.87
Weak DA -0.18  +1.31 +0.84 -144 | +112 +0.22 208 095 -1.43

3"*C (%o VPDB)
Moderate DA -152 | +0.59 -0.10 -159 | -0.53 -0.96 -337  -16l -233
Strong DA -421 | -1.40 -2.35 -899 | -1.96 -5.01 -7.72 | =533 -6.54
Pristine test -141 | -0.30 -0.69 -157 | -0.36 -1.12 42,63 +3.68 +3.09
Weak DA -1.06 = -0.08 -0.45 -170 | -0.09 -0.66 4210 +3.67 +3.00

3'%0 (%0 VPDB)
Moderate DA -036 | +0.38 -0.09 -1.69 | +0.02 -0.96 4235 4325 +2.91
Strong DA -042 | +0.40 +0.05 -1.18 | +0.10 -0.38 4251 +3.76 +3.32
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from —1.52 %o to +1.59 %o, —8.99 %o to +1.32 %o and -7.72 %o to —
0.95 %o, respectively. As can be seen from Figure 3 and Table 2, with
the increase of diagenetic alteration, the range of carbon isotopes
tends to be wider and the boundary values of the range as well as the
average 8'°C value of both planktonic and benthic foraminiferal
tends to be more negative.

The oxygen isotopic compositions of the pristine and altered
tests do not differ as significantly as the carbon isotopic
composition. The §'%0 values of pristine tests are less variable
ranging from —0.57 %o to —0.30 %o for planktonic foraminifera (G.
menardii and N. dutertrei) and +2.63 %o to +3.68 %o for benthic
foraminifera (U. peregrina) (Table 2). On the other hand, the
foraminiferal tests of planktonic and benthic foraminifera with
variable diagenetic alteration stages have §'®O values ranging
from -1.70 %o to +0.40 %o and +2.10 %o to +3.76 %o,
respectively. With the increase of diagenetic alteration, the
average values of SISOplankmnic reveal a slight positive bias, while
the average values of 8" 0penthic exhibit no significant variation.

4.3 Elemental compositions

EPMA maps of G. menardii and N. dutertrei serve to investigate
the spatial variability of Mg/Ca in strongly altered tests (Figure 4).
SEM images of a single sample reveal isolated calcite crystal
overgrowth on the test wall cross-section (Figures 4A-C). The
EPMA maps demonstrate clear Mg enrichment in the authigenic
overgrowths. The highest Mg concentrations of the carbonate
crystals encrusting on the outside and/or inside of the
foraminiferal tests can reach up to 4.8 wt%, which is 4-10 times
higher than the Mg content of the biogenic low-Mg calcite of the
original test (Figures 4B-D).

In addition, LA-ICP-MS analyses were utilized to determine the
elemental compositions of foraminiferal tests Appendix 3. Boxplots
reveal the overall distributions of elemental ratios of foraminiferal
tests at each diagenetic alteration stage (Figure 5). In general, Mg/Ca,
V/Ca, Mn/Ca, Fe/Ca, Co/Ca, Cu/Ca, Ba/Ca, and U/Ca ratios increase
strongly with the degree of diagenesis, Al/Ca, Ni/Ca, and Mo/Ca
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FIGURE 4
SEM images of foraminiferal wall cross-section and Mg (intensity)
EPMA map of G menardii (A, B) and N. dutertrei (C, D)
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ratios increase moderately, and there is no significant change in Ni/
Ca, Sr/Ca, and Cd/Ca ratios. Particularly noteworthy is the order-of-
magnitude increase in Mg concentrations (Figure 5), yielding Mg/Ca
values ranging from 0.85 for unaltered tests to 69.8 mmol/mol for
strongly altered tests. For comparison, an earlier study reported Mg/
Ca of 0.5 to 5 mmol/mol and 0.5 to 10 mmol/mol in pristine
planktonic and benthic foraminifera, respectively (Lea, 2003).

5 Discussion

5.1 Influence of diagenesis on
foraminiferal tests

Based on petrographic evidence, diagenetic alteration of
foraminiferal tests at Site GMGS2-16 is mostly due to calcite
overgrowths (Figure 2). The secondary calcite crystals encrust test
surfaces and fill test pores, leading to changes in the visual
characteristics of the tests. With increased amounts of secondary
calcite deposited on internal and/or external test surfaces and
within pores, the color of foraminiferal tests changes to yellow or
gray, the reflectance and transparency of the tests are reduced, and
test walls start to display a ‘frosty’ texture.

Precipitation of inorganic calcite can alter the original
geochemical composition of a foraminiferal test (Edgar et al,
2015). In a methane release environment, authigenic carbonate
acquires substantial carbon from methane, which has a strongly
13C—depleted signature (-110 %o to -50 %o for biogenic methane,
and -50 %o to -30 %o for thermogenic methane), resulting in
extremely low §"°C values for MDAC (Whiticar, 1999; Chen et al,,
2016b; Liang et al., 2017). MDAC precipitation can overprint the
isotope signal of the pristine biogenic test, leading to bulk-test §'°C
values of —10 %o or lower (Torres et al, 2010). The authigenic
carbonates of the study site precipitated in irregular clumps having
extremely negative 8"°C (~37.3 %o to —51.7 %o) and positive §'°0
values (+3.13 %o to +4.95 %o), which is typical of MDAC (Zhao
et al., 2018). We infer that methane release also caused secondary
calcite precipitation on foraminiferal tests, leading to strongly
negative 8"°C values (as low as —8.99%o) and weakly positive
8'®0 values. Compared with the planktonic foraminiferal taxa,
the 3'%0 of the benthic taxon U. peregrina was less affected by
MDAC precipitation, probably because the original oxygen isotopic
composition of U. peregrina tests was similar to that of the
secondary calcite.

Elemental compositions also provide evidence of diagenetic
alteration due to methane release. Mg-rich carbonates having low
83C values are known to dominate in cold-seep settings (Schneider
et al, 2017). In the vicinity of methane seeps, the Mg/Ca ratio of
carbonate overgrowths on foraminiferal test walls can be as high as
220 mmol/mol, while the Mg/Ca ratio of the original test calcite is
<10 mmol/mol (Panieri et al,, 2017). As the degree of diagenetic
alteration increases, Mg/Ca ratios rise and 8'>C declines, providing
evidence of concurrent incorporation of Mg and '>C-depleted
carbon into secondary precipitates. This pattern is observed in the
present study, in which Mg/Ca ratios are significantly negatively
correlated with 8'*C (R* = 0.32, p <0.001, n = 51) (Figure 6A).
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FIGURE 5

Boxplots of Element/Ca of foraminiferal specimens measured by LA-ICP-MS and tabulated according to degree of diagenetic alteration: pristine
(black), weakly altered (green), moderately altered (orange), and strongly altered (blue).

Authigenic carbonate minerals precipitated in cold-seep
systems include high-Mg calcite, aragonite, and dolomite
(Greinert et al., 2013). The mineralogy of carbonate assemblages
can be recognized by Sr/Ca versus Mg/Ca covariation patterns, as
shown for Niger Delta sediments influenced by methane seepage
(Figure 6B; Bayon et al, 2007). In the present study, pristine
foraminiferal samples yield Sr/Ca and Mg/Ca ratios typical of
biogenic calcite, whereas altered tests yield signals reflecting a
mixture of biogenic calcite and high-Mg calcite (Figure 6B). With
increasing diagenetic alteration, the average composition of the tests
more closely approaches that of high-Mg calcite, indicating that it is
the dominant secondary phase. Panieri et al. (2017) found that
foraminiferal calcite and authigenic Mg-calcite crystals have
identical lattice fringes, and, therefore, that foraminifera can serve
as a nucleation template for authigenic Mg-calcite overgrowths.

The stratigraphic distribution of diagenetically altered
foraminiferal tests at Site GMGS2-16 does not follow a regular
pattern of increasing intensity with depth. Rather, there is a close
association between intensely altered tests and authigenic carbonate
nodules, which are present at 4.68, 10.83, 92.32, 140.18, 148.63,
149.67, 164.68, 192.46, and 205.8 mbsf (Figure 7). The percentage of
altered foraminifera is obviously correlated with the content of
carbonate nodules in these core samples (Zhao et al., 2018) (y =
1.18x + 17.39, R* = 0.35, p = 0.04, n = 11). The most likely
explanation for this relationship is that formation of MDAC
nodules and high-Mg calcite overgrowths on foraminifera was
triggered by the same cause, i.e., a methane release event.
However, diagenetically altered foraminifera are also present in
intervals without authigenic carbonate nodules, such as at 50.47-
69.68, 120.81-144.18, and 180.96-189.66 mbsf (Figure 7). We infer
that this pattern is due to the high sensitivity of foraminiferal tests to
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methane, leading to secondary overgrowths at lower methane
concentrations and/or during shorter periods of peak methane
flow compared to MDAC precipitation.

Compared to the Sr/Ca of pristine foraminiferal tests (1.1-1.5
mmol/mol), the altered tests yield slightly higher values (1.1-2.1
mmol/mol), suggesting a limited increase in response to diagenetic
alteration (Figure 6B). For primary carbonate phases, aragonite is
typically enriched in Sr by a factor of 3-10x relative to calcite (Katz
etal, 1972). In the methane release environment, aragonite is more
inclined to precipitate near the sediment-water interface while
calcite tends to form at greater depth, because the sulfate
inhibition effect on calcite is stronger than on aragonite (Luff and
Wallmann, 2003; Goetschl et al.,, 2019; Jin et al., 2021). Although
cold seeps with high methane fluxes and, thus, shallow SMTZs are
commonly characterized by aragonite precipitation (Burton, 1993;
Bayon et al., 2007; Peckmann et al., 2009; Nothen and Kasten,
2011), increases in both the Mg and Sr content of the study samples
suggest precipitation of a secondary Mg-calcite phase that is
enriched in Sr. During early diagenesis, aragonite can be replaced
by more stable carbonate species, leading to Sr/Ca ratios above
typical values for pristine calcite tests (Detlef et al., 2020). Sr
enrichment may also be related to distortion of the calcite crystal
lattice due to incorporation of Mg>*, generating more space for
relatively large Sr*" cations (Mucci and Morse, 1983).

Cu was co-enriched with Mg, as shown by its positive
correlation with Mg/Ca (R* = 0.38, p < 0.001, n = 60; Figure 8A).
It is well known that Cu plays a central role in the metabolism of
aerobic methane-oxidizing bacteria. When Cu is abundant,
methanotrophic bacteria produce a membrane-bound Cu-
containing enzyme (particulate methane mono-oxygenase) that
catalyzes the oxidation of methane to methanol (Glass and
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GMGS2-16.

Orphan, 2012). Near the sediment-water interface, methane
oxidation can be catalyzed by Cu-dependent aerobic methane-
oxidizing bacteria, which may account for the high Cu contents
of a few Sr-rich foraminiferal tests (e.g., the diagenetically altered
test of U. peregrina from sample GMGS2-16B-1H-1a).
Foraminiferal Ba/Ca is positively correlated with Mg/Ca ratios
(R? = 0.55, p <0.001, n = 63) (Figure 8B). In the methane release
environment, porewater Ba concentrations increase below the
depth of sulfate depletion, and the consequent upward flux of
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dissolved Ba is almost quantitatively precipitated as authigenic
barite at the SMTZ (Torres et al,, 2002; Snyder et al, 2007).
Carbonate samples from the Oregon Margin and foraminiferal
samples from fossil methane seeps exposed from Oregon to
Vancouver Island also show a trend of increasing Mg and Ba,
consistent with barium incorporation into Mg-carbonates formed
in methane-charged sediments (Torres et al., 2009; Torres
et al., 2010).

Mn/Ca and Fe/Ca ratios also exhibit distinct increases from
pristine to strongly altered tests. In the latter, Fe is the second most
abundant cation with the Fe/Ca ratios of up to 4.6 mmol/mol, while
Mn/Ca ratios are up to 0.49 mmol/mol. LA-ICP-MS results show a
significant difference in the median values of Mn/Ca and Fe/Ca
ratios in the moderate and strongly altered foraminifera compared
with the pristine tests and positive correlations of Mn/Ca and Fe/Ca
with Mg/Ca (R* = 0.31, p < 0.001, n = 63; R* = 0.25, p < 0.001, n =
63, respectively) (Figures 8D, E). However, the presence of Fe-Mn-
oxides and pyrite in foraminiferal tests can bias LA-ICP-MS
analyses of Mn/Ca and Fe/Ca. Since the cleaning process applied
in this study may not completely eliminate detrital materials, Al/Ca
and Mn/Ca were monitored to identify possible contamination
from clays, silicate minerals, and Mn-Fe-oxide coatings (Lea, 2003).
Specimens with values above 1 mmol/mol Mn/Ca or 0.25 mmol/
mol Al/Ca (n.b., thresholds from Skinner et al., 2019) were removed
from the dataset before statistical calculations to avoid potential
effects linked to clay contamination. In the screened dataset, Al/Ca
shows little correlation with Mg/Ca (R* = 0.08, p < 0.001, n = 63)
(Figure 8C), supporting our inference of limited effects from detrital
materials. On the other hand, if all foraminiferal Mn was derived
from Mn-Fe-oxides, a Mn/Mg ratio close to that of global-ocean
Mn-Fe-oxide crusts/nodules of 5 mol/mol would be expected (de

frontiersin.org
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(A-I) Correlations of LA-ICP-MS foraminiferal elemental ratios. The samples are coded according to diagenetic alteration stage: pristine (black),
weakly altered (green), moderately altered (orange), and strongly altered (blue).

Lange et al, 1992; Pattan, 1993). However, all of the study
specimens have much lower Mn/Mg ratios (0.7-155 mmol/mol),
suggesting that Mn-Fe-oxides are not an important
contaminant phase.

SEM images of foraminifera from both above and below the
SMTZ at Site GMGS2-16 demonstrate the presence of pyrite
framboids within the foraminiferal tests, suggesting co-
precipitation of authigenic carbonates and pyrite. The AOM
reaction can lead to the production of pyrite (Lin et al.,, 2016).
Authigenic pyrite framboids form in the spaces between calcite
microcrystals of the overgrowths (Figures 2G1-2) and are not easily
removed during cleaning processes, resulting in Fe contamination.
Moreover, in the AOM process, anaerobic methanotrophic archaea
(ANME) require large amounts of iron (Glass and Orphan, 2012),
which can lead to further Fe enrichment of diagenetically altered
foraminiferal tests.
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The concentrations of trace elements such as Mo, U, V, Ni, Cd
and Co are very sensitive to environmental conditions in siliciclastic
depositional systems (Tribovillard et al, 2006; Guo et al, 2013;
Wang et al,, 2018). At Site GMGS2-16, significant differences in the
medians of Mo/Ca, U/Ca, V/Ca, and Co/Ca are observed between
moderately and strongly altered foraminifera (Figure 5). In
addition, these Element/Ca ratios are significantly positively
correlated with Mg/Ca (R? = 0.36, n = 50; R = 0.56, n = 63; R? =
0.69, n = 62; R> = 0.22, n = 57, respectively; all p < 0.001)
(Figures 8F-I). On the other hand, Ni/Ca and Cd/Ca show little
relationship to the degree of diagenetic alteration, although this
might be related to the lack of data for more than half of the samples
in which the trace-element content is below the detection limit. The
enrichment of these redox-sensitive elements in methane-derived
carbonates compared to other types of marine carbonates has
previously been ascribed to the ubiquitous presence of anoxic
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conditions in the methane release environment (Tribovillard et al.,
2006; Palomares et al., 2012; Sato et al., 2012; Hu et al., 2015; Chen
et al., 2016b). Moreover, in addition to iron, other transition metals
(Co, V, Mo) have been identified in proteins and enzymes involved
in the metabolism of sulfate-reducing bacteria or methanogenic and
methanotrophic archaea (Scheller et al., 2010; Glass and Orphan,
20125 Glass et al., 2014; Glass et al., 2018), which may account for
the enrichment of these elements in the sediment.

5.2 Diagenetic processes and implications
for paleo-methane release events

In this study, our results show that stable carbon and oxygen
isotopes as well as elemental ratios (Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca,
Fe/Ca, Mo/Ca, U/Ca, V/Ca, Ni/Ca, Co/Ca and Cu/Ca) measured in
the foraminiferal tests are consistent with those of MDAC reported
in earlier studies (see Section 5.1). Changes in geochemical
compositions can provide valuable information, as they record
fluid sources and biogeochemical processes during and after
methane release.

Dissolved inorganic carbon (DIC) produced during AOM is
typically characterized by highly '*C-depleted carbon derived from
methane (Haese et al., 2003; Yoshinaga et al., 2014), yielding
extremely low 3'°C values. Variation in the elemental
compositions of MDAC formed in various depositional
environments is closely related to the dynamics of methane
release (Feng et al., 2009).

Diagenetically altered foraminiferal tests from sample GMGS2-
16B-1H-1a (0.23 mbsf), record extremely negative §'°C values and
enrichments in Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca, Fe/Ca, Mo/Ca, U/Ca,
V/Ca, Ni/Ca, Co/Ca and Cu/Ca (Figure 9). This sample is located
near the sediment-water interface, above the present SMTZ. In this
sample, gypsum occurs on the exterior wall of foraminiferal test
(Figure 2G3), indicating downward migration of the SMTZ, a
process that caused anaerobic pyrite oxidation and gypsum
formation at the previous (higher) level of the SMTZ. As
mentioned above, aragonite precipitation is favored when the
SMTZ is located at shallower depths, in response to a methane
release event having high flow rates (Peckmann et al., 2001; Moore
et al., 2004; Gieskes et al., 2005; Nothen and Kasten, 2011; Hu et al.,
2015; Jin et al, 2021). Overgrowth of Sr-enriched Mg-calcite
possibly reflects recrystallization of primary aragonitic phases.
Near the sediment-water interface, methane oxidation can be
catalyzed by Cu-dependent aerobic methane-oxidizing bacteria,
resulting in a concomitant increase in the contents of both Sr and
Cu (Glass and Orphan, 2012). The foraminifera from sample
GMGS2-16D-8H-1 (92.32 mbsf) have similar geochemical
compositions (Figure 9) and contain gypsum (Figure 2G4), which
may be evidence of another methane release event from near the
sediment-water interface. Samples GMGS2-16D-2H-1 (10.83
mbsf), GMGS2-16F-6H-1 (50.47 mbsf) and GMGS2-16H-4H-1b
(164.68 mbsf) show similar extremely negative 8'°C values and
enrichments in Mg/Ca, Ba/Ca, Mn/Ca, Fe/Ca, Mo/Ca, U/Ca, V/Ca,
Ni/Ca and Co/Ca, suggesting that a high-Mg calcite contaminant
formed in the deeper SMTZ in association with low rates of
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methane-bearing fluid flow (Luff and Wallmann, 2003; Feng
et al., 2009).

We infer that Mg enrichment of diagenetically altered
foraminifera coupled with increases in Sr/Ca, Ba/Ca, Mn/Ca, Fe/
Ca, Mo/Ca, U/Ca, V/Ca, Ni/Ca, Co/Ca and Cu/Ca ratios are
potentially reliable indicators of paleo-methane release events.
Furthermore, the main differences in elemental compositions of
authigenic carbonate formed near the seafloor versus in deeper
anoxic porewaters are higher concentrations of Cu and Sr in the
former. For this reason, enrichments of Cu/Ca and Sr/Ca in
diagenetically altered foraminiferal tests may be used to recognize
intense upward methane fluxes within the sediment column.

Determining the timing of methane release events using
stratigraphic data is difficult because the SMTZ can migrate
vertically through the sediment column, leading to precipitation
of MDAC overgrowths on foraminiferal tests at times younger than
their stratigraphic ages. When a high methane flux produces a
shallow SMTZ, the formation of secondary overgrowths can be
considered quasi-synsedimentary, but otherwise the stratigraphic
age of MDAC represents a maximum formation age. At the study
site, stratigraphic ages were calculated by linear interpolation from
the age framework established by Chen et al, 2016a. The two
documented methane release events at 0.23 mbsf and 92.32 mbsf
thus have maximum ages of ~0.47 ka and ~170 ka, respectively.

Based on the observations and analyses of foraminifera from
Site GMGS2-16, a potential mechanism for diagenetic alteration of
buried foraminiferal tests linked to the gas hydrate geosystem is
proposed (Figure 10). When gas hydrates are in a stable state, there
is no unusual methane emission, and the geochemical compositions
of foraminifera record the original (i.e., unaltered) signal of normal
marine conditions (Figure 10A; sample GMGS2-16F-2P-CC and
GMGS2-16F-5H-2). During a high methane flux event, methane is
transported further towards the sediment-water interface, shifting
the SMTZ upward and compressing it into the uppermost sediment
column (Figure 10B; sample GMGS2-16B-1H-1a and GMGS2-
16D-8H-1). The authigenic carbonates (mainly Sr-enriched Mg-
calcite) with extremely negative §'°C values and enrichments in
Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca, Fe/Ca, Mo/Ca, U/Ca, V/Ca, Ni/Ca,
Co/Ca and Cu/Ca, are co-precipitated with pyrite in the SMTZ near
the seafloor. When the methane flux is subsequently reduced, the
SMTZ migrates back downward to a greater depth in the sediment
column (e.g., similar to the depth of the current SMTZ at the study
site). In this scenario, authigenic pyrites and carbonates (mainly
high-Mg calcite) formed in anoxic porewaters are characterized by
extremely negative 8'C values and enrichments in Mg/Ca, Ba/Ca,
Mn/Ca, Fe/Ca, Mo/Ca, U/Ca, V/Ca, Ni/Ca and Co/Ca. In the upper
part of the sediment column, carbonate and pyrite precipitated
before the downward shift of the SMTZ are converted to authigenic
gypsum through anaerobic pyrite oxidation (Figure 10C; samples
GMGS2-16D-2H-1, GMGS2-16F-6H-1, and GMGS2-16H-4H-1b).

6 Conclusions

In this study, we used a suite of petrographic and geochemical
analyses (including reflected light microscopy, SEM imaging,
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FIGURE 9

Sulfate (A) (Kuang et al,, 2018) and elemental-ratio (B—L) profiles for Site GMGS2-16. The samples are coded according to diagenetic alteration
stage: pristine (black), weakly altered (green), moderately altered (orange), and strongly altered (blue). Error bars represent one standard deviation.
The yellow lines show the depth of the current sulfate-methane interface (SMI; i.e., where porewater sulfate declines to zero).
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Schematic of post-depositional alteration of buried foraminiferal tests in a gas hydrate geosystem (modified from Kennett et al., 2000). (A) Gas
hydrates are in a stable state, and the geochemical compositions of foraminifera record the original signal of the normal marine conditions. (B)
During a high methane flux event, methane is transported further toward the sediment-water interface, shifting the SMTZ upward and compressing
it into the uppermost sediment column. Authigenic carbonates are co-precipitated with pyrite in the SMTZ near the seafloor, causing foraminiferal
shells buried in this interval to be coated with MDAC, along with some framboidal pyrite interspersed between carbonate crystals. (C) Subsequent
reduction of the methane flux causes the SMTZ to migrate back downward within the sediment column. Authigenic pyrite and carbonate form in the
active SMTZ, whereas pyrite precipitated in the upper part of the sediment column before the downward SMTZ shift are converted to authigenic
gypsum through anaerobic pyrite oxidation, which also leaves traces on foraminiferal shells. Cc, carbonate; Py, pyrite; Gy, gypsum.

oxygen and carbon isotopic measurements, LA-ICP-MS, and
EPMA elemental mapping) to study foraminiferal tests from gas
hydrate-bearing sediments of the northern South China Sea that
exhibit varying degrees of diagenetic alteration. Our goals were to
make inferences on the post-burial alteration processes affecting
foraminiferal calcite caused by methane release. Our results are
consistent with diagenetically altered foraminiferal tests acting as a
template for MDAC precipitation. The 8'°C values and Mg/Ca
ratios of tests are susceptible to diagenetic alteration. There is a
negative correlation between 8'°C values and the degree of
diagenetic alteration, but a positive correlation with Mg/Ca ratios.
This may be related to the relative contribution of Mg-calcite, which
has a strongly negative 8'>C value, to bulk foraminiferal carbonate.
The elemental content of diagenetically altered foraminifera can be
used to reconstruct methane release history. We infer that
enrichments in Mg along with increased Ba/Ca, Mn/Ca, Fe/Ca,
Mo/Ca, U/Ca, V/Ca, Ni/Ca and Co/Ca ratios are potentially reliable
indicators of paleo-methane release events. Furthermore,
enrichments of Cu/Ca and Sr/Ca may be used to recognize
episodes of intense methane flux. Reconstruction of the methane
release history of Site GMGS2-16 reveals that diagenetically altered
foraminifera record frequent fluctuations of the SMTZ, indicating a
variable methane flux intensity. Notably, the methane release events
have maximum ages of ~0.47 ka and ~170 ka.
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Cold seep, characterized by active material circulation and methane seepage, is
of great importance to reconstruct the paleo-marine environment and trace the
origin of life and the occurrence of minerals. Southern South China Sea (SCS)
with ample oil and gas resources is an ideal platform for cold seep study, but
information and researches on cold seeps here are rather deficient. We studied
the geochemical characteristics of sediment cores and pore water combined
with seismic profile information in the Beikang Basin, aiming to further
understand the nature of cold seeps in this area. Results show the extremely
low & ¥Cpc of pore water in each core and we also found sulfate content
decreases with depth, the high content of inorganic carbon (DIC) and the
corresponding minimuma Cp,c in pore water, the kink-type depth profiles of
Sr, Ba and Ni enrichment factors and Sr/Mg in the sediments of BH-CL37, the
reducing sedimentary environment constrained by the features of Mo, U and
REE. The extremely negative & BCpic in the pore water of the sediment cores
indicates strong AOM effect in cold seeps and the main biogenic origin of
methane. The SO4%  depth variation trends of pore water, the high DIC
content and the lowest value of § *Cpc can define the approximate SMTZ
depth of each sediment core effectively. We thought that fluid fluxes and
tectonic settings greatly influence the sedimentary environment and
geochemistry, leading to the manifest regional differences in the properties
and activities of cold seeps. This study of cold seep in southern SCS proves the
variation of cold seep in time and space, stressing the necessity of further region-
specific analysis towards different cold seeps; and the complex conditions of SCS
do function well in offering multiple types of cold seeps.
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geochemistry, cold seeps, sediment, pore water, southern South China Sea
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1 Introduction

Cold seep commonly occurs along the continental margin,
which is generated by the concentrated upward migration of
dissolved hydrocarbons and/or gaseous hydrocarbons (mainly
methane) (e.g. Suess, 2014; Wan et al., 2020), and functions
effectively in the element circulation (Tribovillard et al., 2013;
Feng D. et al., 2018; Smrzka et al., 2020). Additionally, cold seep
often nurtures a unique ecosystem with a series of typical
biochemical reactions (Levin, 2005; Levin and Sibuet, 2012). Cold
seep is closely related to natural gas hydrate (Ingram et al., 2016; Hu
et al., 2018).

Anaerobic oxidation of methane (AOM) is an important
biochemical reaction in cold seep (Reeburgh, 2007; Boetius and
Wenzhofer, 2013), mainly occurring in the sulfate methane
transition zone (SMTZ), carried out by a combination of
anaerobic methane-oxidizing archaea and sulfate-reducing
bacteria (Boetius et al., 2000; Orphan et al., 2001). AOM can
generate carbonate and hydrogen sulfide and then increase the
alkalinity in the surroundings, which further promotes the
precipitation of some authigenic minerals, such as authigenic
carbonates and pyrites etc. (Suess, 2014; Lin Q. et al,, 2016; Feng
D. et al, 2018). Studies on biochemistry of sediments, pore water
and authigenic minerals in cold seeps can reveal the nature and
history of cold seep. Sediment pore waters can offer information of
modern cold seep on a short timescale of days to months (Hu et al.,
2015; Feng J. et al,, 2018), while sediment cores can be used as a
continuous record to reconstruct the evolution of cold seep on
much longer timescales (Bayon et al., 2007; Peketi et al., 2015; Li
et al,, 2018). In addition, authigenic minerals precipitated in cold
seep sediments at a specific depth (usually SMTZ) effectively archive
the formation conditions and even the dynamics of gas hydrate
reservoirs (Tong et al., 2013; Bayon et al., 2015; Wang et al., 2015;
Crémieére et al., 2016; Liang et al., 2017).

Researches on cold seep in South China Sea (SCS) have gained
increasing concern in decades and many samples such as authigenic
carbonate, mussels, sediments and pore water, from more than 40
seepage in SCS have been studied so far (Feng D. et al,, 2018).
However, those studies mostly focused on northern SCS, which has
greatly furthered the understanding of the cold seep system of
northern SCS, including the fluid source and evolution etc. of cold
seeps (Feng and Chen, 2015; Liang et al., 2017; Feng D. et al., 2018).
In contrast, few studies have been carried out on the activities of
cold seeps in southern SCS. The trough areas such as Zengmu, Wan’
an, Nanwei, Nansha and Beikang in southern SCS are reported to
store rich hydrocarbon gas and gas hydrate resources, and southern
SCS has tectonic environment conducive to the migration of
hydrocarbon-rich fluids and extensive methane outlets (Zhu et al.,
2001; Wang et al.,, 2006; Yao, 2007; Zhang et al., 2010; Liu et al,,
2011; Trung, 2012; Wei et al, 2012). In the Beikang Basin, some
evidences that may indicate existence of cold seeps have been found,
including some geophysical features (such as BSR) and authigenic
minerals (such as authigenic pyrite) (Figure 1) (Wang et al., 2003;
Su et al., 2005; Chen et al., 2009; Chen Z. et al., 2010; Liu et al,,
2011). Nonetheless, till now there are only two studies focusing on
the activities of cold seeps in the Beikang Basin (Yao, 2007; Li et al.,
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2018; Feng J. et al,, 2018), their studies showed that the sulfate-
methane transition zones (SMTZ) of the four sites are between 5.3
and 8.8 mbsf and the dissolved SO}~ was predominantly consumed
by the anaerobic oxidation of methane (AOM) at rates between 27

and 44 mmol m_zyr_1

only by geochemical characteristics and
model of porewater near our study area in the Beikang Basin(Feng J.
et al., 2018). The cold seep system and its impact on the
surroundings in the Beikang Basin remain vague.

In this paper, to further understand the cold seep system of
southern SCS, combining the data of sediment and pore water, we
studied the geochemical characteristics of pore water
(concentration of Ca?t, Mg2+, Cl" and SO?, dissolved inorganic
carbon (DIC) and 8" Cpyc) and core sediments (mineralogy, total
organic carbon (TOC), 8Croc 8"Crie, 8'%01c and element
contents). Moreover, the S isotope values of tubular pyrites in the
sediments were analyzed to reveal the effects of cold seep activity on
pyrite precipitation to a certain extent.

2 Geological settings

Located at the intersection of the Eurasian, the Pacific and the
Indo-Australian plate, the South China Sea (SCS) is in complex
tectonic conditions controlled by the interaction among different
plates (Morley, 2012), with an average water depth of 1212 m and a
total area of 350x10* km”. The SCS is topographically tilted from
the periphery to the center, broad in the north and south, narrow in
the west and east. Diverse landscapes such as platforms, plateaus,
troughs, valleys and reefs have well been developed in southern SCS.

105°E
25°NfE

20°N |

10°N

5°N

FIGURE 1
Map of the regional tectonic and sampling site locations in the
Beikang basin.
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The sedimentary thickness of greater than 500 m with the
maximum over 10000 m, is favorable for the accumulation of
sediments and the preservation of organic matter. Additionally,
abundant resources of oil, gas and natural gas hydrate have been
discovered in southern SCS (Fu, 2007). Gas hydrate stability zone
thinned during the Last Glacial Maximum (LGM) can exhale plenty
of methane, possibly promoting the formation and development of
cold seeps in southern SCS (Wang et al., 2005; Yan et al., 2018).

The Beikang Basin is a Cenozoic flexural - extensional passive
marginal basin in the middle of Nansha area, southern SCS (Xie
et al, 2011). Its sedimentary evolution can be divided into three
periods: Paleocene-Middle Eocene rift stage, Late Eocene-Middle
Miocene depression stage and Late Miocene-Quaternary regional
subsidence stage (Feng J. et al., 2018). Since the Palaeocene, the
sedimentary environment of the Beikang Basin has gradually
changed from lacustrine and littoral-neritic to a bathyal and
abyssal environment (Feng J. et al, 2018). Abundant oil and gas
resources have been found in the Beikang Basin. The high
sedimentation rate, the deposition thickness up to 13 km and
geologic structures like a large number of well-developed faults,
mud diapirs and folds favoured for fluid migration, provide
environment and conditions conductive to the production of oil
and gas, the formation of natural gas hydrate and the migration and
release of hydrocarbon (Li et al., 2018; Feng J. et al,, 2018). The
average value of heat flow in the Beikang Basin is 76. 8 £ 21.7 mW/
m?, which is generally higher than that of the northern SCS (Chen
et al, 2017). In addition, the discovery of BSR further indicates a
good potential of gas hydrate occurrences in this area.

Figures 2A, B are seismic profiles of the study area. BH-CL37
and BH-CL37A show obvious diapirs as the source of cold seep
fluids, both of which are located on the same side of the fluid source,
and the latter is closer to the source. There is an apparent convex
phenomenon in the deep seismic profile of BH-CL374, indicating
rich fluid sources. Moreover, evident fractures, faults and other

10.3389/fmars.2023.1167578

favorable fluid migration channels under the sedimentary column
are present.

3 Materials and methods

The samples studied in this paper are sediment cores (BH-
CL37, BH-CL37A, BH-CL32A and BH-CL46A) collected by
Guangzhou Marine Geological Survey in the Beikang Basin,
southern SCS, through Haiyang IV in 2019 (Figure 1 and
Table 1). Ten cm of cores were sampled at every fifty cm, and
corresponding pore water was extracted from each interval. The
sediments were freezed-dried, and portions were ground to powder
with an agate mortar for subsequent geochemical analysis.

3.1 Pore water

Anions (CI', SO?) and cations (Ca**, Mg2+) of pore water were
measured after dilutions of 500 times with ultra-pure water by
DIONEX ICS-5000 and DIONEX ICS-900 ion chromatographs
respectively, with RSDs less than 3% completed at the Sun Yat-sen
University Instrumental Analysis and Research Center.

In order to calculate the diffused sulfate flux, we assumed a
steady-state condition and use Fick’s first law (Eq. (1),(2)) for
calculation:

] = _(‘PDSE (1)
__ Do
C 1= In(g)? @

Where J represents the diffusion flux of sulfate (mol m™ yr ')
and ¢ represents porosity (here we assume that the porosity of

BH-CL37A/37

vay Travel Time (s)

=N
BH-CL32A
V___— gasplume

Two-way Travel Time (s)

FIGURE 2

Seismic profiles of sampling sites in this study. (A) Seismic profile of BH-CL37, weak continuity of BSR, fault, enhanced reflection and seafloor dome;
(B) Seismic profile of BH-CL32A, discontinuous BSR, fault, enhanced reflection and gas leakage on the seafloor.
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sediments is 75%, Feng J. et al., 2018), Dy is the diffusion coefficient
of seawater (m” s™') (Boudreau, 1997), Dy is the diffusion coefficient
of sediment (m?s™), C is the concentration of sulfate (mmol L"), X
is the depth of sediment (m).

The contents of DIC and stable carbon isotopes in pore water
were measured by a MAT253-Gasbench mass spectrometer in
Beijing Createch Testing Technology Co., Ltd. 0.2 mL pore water
was treated with pure H;PO, in a glass vial of 25 °C, and the
resulting CO, was transported by He to the mass spectrometer. The
results were given in the standard §-notation in per mil (%o) relative
to the Vienna Peedee Belemnite Standard (V-PDB). §'°C analysis
precision is better than 0.1%o V-PDB; The accuracy of DIC
concentration analysis is better than 2%.

3.2 Sediments

The X-ray Diffraction (XRD) test of the samples was carried out
at the Guangdong Provincial Key Laboratory of Marine Resources
and Coastal Engineering, using a DMAX Rapid II Diffraction
system (Mo Ko radiation) manufactured by Rigaku, Japan, with a
working voltage of 50 kV and a current size of 30 mA. The diameter
of the collimator (incident line spot) is 0.1 mm and the exposure
time of each test is 10 minutes. Diffraction data were documented as
two-dimensional images and then transformed into 28-intensity
patterns by Rigaku’s 2DP software.

The analyses of major and trace elements in sediments were
carried out in the laboratory of Wuhan SampleSolution Analytical
Technology Co., Ltd, Wuhan, China. The major elements were
tested by Primus, Rigaku, Japan X-ray Fluorescence (XRF) and the
Agilent 7700e ICP-MS was used for testing the trace elements.
Detailed sample digestion process was described in Yang et al.
(2019). The measurement precision of major elements of whole
rocks is 2% and accuracy is 5%.The precision of trace element tests
is 5% and the accuracy is 10%.

The total organic carbon (TOC) and 8"*Croc measurements
were performed on an elemental analyzer manufactured by
Thermoelectric Corporation of America combined with a MAT
253 plus in the laboratory of Beijing Createch Testing Technology
Co., Ltd. Before TOC test, the samples were decalcified with 20%
HCl for 12 h, washed with deionized water 5 times, and dried at 60 °
C for 12 h. The carbon isotope analytical accuracy of the standard
samples could reach 0.2 %o V-PDB.

Carbon and oxygen stable isotopic measurements of total
inorganic carbon (TIC) in sediments were performed in the
laboratory of Beijing Createch Testing Technology Co., Ltd.,
using the MAT253-Gas Bench Mass Spectrometer of American
Thermoelectric Corporation. After the reaction of the sample and
phosphoric acid, the generated CO, was passed through a 70 °C
fused silicon capillary column for impurity separation, and finally
entered into a stable gas isotope mass spectrometer for
measurements. The results of carbon and oxygen isotopes are all
calibrated on VPDB standard, and the analytical accuracy of both
8"°C and §'%0 is better than 0.1%0 V-PDB.

The sediment samples were sifted and dried after washing by
water, and tubular pyrites were sorted out under a

Frontiers in Marine Science

10.3389/fmars.2023.1167578

stereomicroscope. 200 g pyrite was weighed with a precision
balance and put into a tin cup with 3 times of the combustion-
supporting agent V,0s. The samples were put into the automatic
sampler and combustioned rapidly and fully at 1020 °C to produce
SO, gas, which were then fed into the mass spectrometer by the He
carrier gas through the splitter interface. The tests were carried out
by MAT253 Plus stable isotope mass spectrometer combined with
elemental analyzer (EA-IRMS). The international standard used
was TAEA-S1 (Ag,S, 8°*$=-0.30%0 V-CDT), and the analytical
deviation is better than +0.3%o. The sulfur isotopes were
normalized to §**S by Vienna Canyon Diablo Troilite (V-CDT):
8%*S (%o, V-CDT) = [(**/728)sample/ C*S/**S)v_cpr -1]%1000.

4 Results

BH-CL37, BH-CL37A and BH-CL32A display obvious methane
leakage phenomenon, while BH-CL46A does not present significant
methane leakage, which is used as the reference cores for the study
of pore water in this paper.

BH-CL37, BH-CL37A and BH-CL32A core sediments are mainly
gray-green silty clay, fine-grained. With the increasing depth, sediments
show deeper color and stronger rotten egg smell interpreted as the
apparent hydrogen sulfide contents; and deep asphalt gray organic
interlayers are observed at the bottom of these cores.

4.1 Pore water

4.1.1 Main cations and anions of pore water

Cl and Mg2+ in the pore water of BH-CL37, BH-CL37A, BH-
CL32A and BH-CL46A generally fluctuate between 400-900 mmol/
L and 28-65 mmol/L. Ca** and SO? in each sediment core show a
decreasing trend with depth. These ions in BH-CL37 present high
concentrations at the depth of 50-60 cmbsf (102.7 mmol/L Mg**,
19.3 mmol/L Ca®*, 1143.3 mmol/L CI', 57.6 mmol/L SO%)
(Table 2).

In particular, Mngr/Ca2+ ratios of BH-CL46A, BH-CL37A and
BH-CL32A vary greatly and similarly (Figure 3), while Mg**/Ca®*
ratios increase slowly with depth in a minor range in BH-CL37.

In BH-CL37, BH-CL37A and BH-CL32A cores, a quasi-linear
decline of sulfate concentration can be observed among the depths
of 350-600 cmbsf, 170-360 cmbsf and 350-540 cmbsf. Calculated
sulfate fluxes of BH-CL37A and BH-CL32A are 110 mol m™ yr ',
135 mol m™ yr "' and 119 mol m™ yr ", respectively (Figure 4).

4.1.2 DIC and 8*Cp,c of pore water

The §*Cpyc values of pore water in BH-CL46A show a slight
decrease trend with the increase of depth, and the variation ranges
are -40.73 - -16.70%0 V-PDB, -11.8 - -55.66%0 V-PDB and -40.57 -
-21.24%0 V-PDB, respectively. The 8'°Cpc values of BH-CL37,
BH-CL37A and BH-CL32A are rather stable at the top section, and
then decrease to the minimum values at 530-540 cmbsf, 290- 300
cmbsf and 470-480 cmbsf, respectively. There is a good correlation
between the depth profiles of DIC and §"Cpyc (Figure 5). DIC
concentrations of the pore water in BH-CL46A show a trend of slow
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TABLE 1 Details of the study sites.

Water depth(m) Core length(cmbsf) Seafloor temperature(°C) Geothermal gradient(°C/km)
BH-CL37 1336 660 323 74.80
BH-CL37A 360
BH-CL32A 1653 730 273 102.00
BH-CL46A - 730 - -

TABLE 2 Concentration of main ions, DIC and 8*3Cp,c in pore water.

Sampling sites Interval Mg?* Ca%* cr o ®DIC 8"3Cpic
(cmbsf) (mmol/L) (mmol/L) (mmol/L) (mmol/L) (ug/mL) (%0)
BH-CL37
50-60 102.74 19.28 1143.33 57.60 582.04 -11.60
110-120 66.52 12.50 77227 37.78 665.44 -15.17
170-180 54.79 10.54 642.06 30.96 635.98 -16.86
230-240 58.24 10.24 681.58 32,67 798.31 -19.39
290-300 56.78 10.23 65321 31.34 679.42 -18.97
350-360 58.09 10.39 697.85 3220 939.39 2524
410-420 51.71 8.58 675.93 22.00 1452.52 -37.90
470-480 45.06 7.11 625.00 13.86 1653.93 -42.58
530-540 39.73 5.84 605.52 6.07 2367.02 -46.37
590-600 36.74 487 581.06 1.22 2569.10 -44.96
650-660 28.84 3.65 461.85 0.88 1955.68 -32.25
BH-CL37A
50-60 47.02 8.48 544.95 28.32 426.15 -11.18
110-120 4778 8.73 544.26 27.97 475.10 -11.98
170-180 53.04 9.76 609.27 30.96 543,01 -12.75
230-240 4595 7.05 537.60 23.40 929.46 -35.17
290-300 47.83 5.09 619.79 10.57 2597.94 -55.66
350-360 37.86 272 531.31 3.51 2667.72 -40.62
BH-CL32A
50-60 50.10 9.46 562.54 29.12 2337.34 -6.76
110-120 57.91 10.62 649.99 32.99 491.78 -6.74
170-180 46.55 8.43 538.89 2753 496.30 -6.52
230-240 49.75 9.11 568.16 29.20 416.12 -7.67
290-300 51.76 9.49 598.62 30.93 493.08 -9.61
350-360 43.94 8.01 505.35 2553 576.11 -16.12
410-420 48.15 7.48 579.81 24.07 511.63 -39.72
470-480 47.70 5.81 624.04 15.37 1190.63 -51.45
530-540 32.30 245 479.55 2.79 2611.66 -41.98
590-600 46.98 3.50 693.74 3.81 2419.39 27.23
(Continued)
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TABLE 2 Continued

10.3389/fmars.2023.1167578

Sampling sites Interval Mg>* Cca*t cr soZ @DIC 8"3Coic
(cmbsf) (mmol/L) (mmol/L) (mmol/L) (mmol/L) (ug/mL) (%0)
650-660 36.54 2.59 531.86 2.80 323028 1750
710-720 33.43 237 48534 223 227452 1472
BH-CL46A
50-60 74.51 13.06 892.71 39.54 1168.34 2124
110-120 57.75 9.28 711.98 3045 1301.05 2406
170-180 56.50 9.46 69192 29.06 134111 2545
230-240 58.39 9.11 729.58 28.52 1682.77 2730
290-300 48.04 7.07 595.56 21.14 1555.77 2995
350-360 42,60 601 541.50 17.05 1636.88 3254
410-420 4330 5.46 563.68 14.69 1886.05 3405
470-480 1638 5.17 628.69 12.52 2383.49 3665
530-540 44.02 3.88 617.88 7.38 2776.17 3897
590-600 38.54 276 565.04 331 3007.67 4057
650-660 38.32 294 565.44 157 3097.25 43806
710-720 36.73 2.59 546.47 0.64 3355.97 3339

increase with depth (1168-3356 pg/mL), while DIC concentration

profiles of BH-CL37, BH-CL37A and BH-CL32A show more
complicated trend (Figure 5).

4.2 Sediments

4.2.1 XRD results of the sediments

The sediments of BH-CL37, BH-CL37A and BH-CL32A are
mainly composed of quartz and clay minerals (such as illite and
chlorite, etc). Some sediments at shallow intervals contain relatively

abundant calcite (Figure 6).

4.2.2 Major and trace elements in the sediments

The contents of some major elements in the sediments are
shown in Table 3. Al contents of BH-CL37, BH-CL37A and BH-
CL32A are in the range of 7.69-10.06% (9.00% on average), 7.90-
9.61% (8.80% on average), 7.85-9.95% (9.26% on average)
respectively. Al is used to standardize the major elements

considering the variation of carbonate contents (Tribovillard
et al., 2006; Tribovillard et al., 2013). Both Ca/Al and Mg/Al in

each sediment core show a trend of first decreasing and finally
stabilizing, and Mn/Al ratios shallower than 400 cmbsf obviously
are lower in each sediment core. Ti/Al and Si/Al ratios fluctuate in a

small range of 0.043-0.053 and 2.48-3.15 respectively, showing

Depth (cmbsf)
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Estimated SMTZ depth and methane diffusion flux for BH-CL37, BH-CL37A and BH-CL32A cores.

relatively constant values. Fe/Al ratios have no obvious trend with
depth, ranging from 0.44 to 0.52 (Figure 7).

The enrichment factor (EF) of the trace element in sediments
was calculated by Xpr = (Xsampte/ Alsampie) / Kupper crust/ Alupper crust)>
where X and Al refer to the element and Al content in the sample of
the upper crust (McLennan, 2001), respectively. Enrichment factor
can effectively evaluate the authigenic enrichment degree of trace
elements (Tribovillard et al., 2006). In general, the enrichment
factor greater than 1 indicates enrichment relative to the standard

5 "°C (%, VPDB)

(the upper crust); EF greater than 3 indicates detectable enrichment;
and EF greater than 10 indicates moderate to strong enrichment
(Algeo and Tribovillard, 2009).

Trace elements (Table 4) such as Mo, U, Ni, V, Co, Zn are
known as redox sensitive elements and Ba content can record the
activity of paleo cold seep (Dickens, 2001; Castellini et al., 20065
Riedinger et al., 2006; Joseph et al., 2013). As shown in Figure 8,
except for Mo, their enrichment factors basically decrease with

depth at first and then tend to be stable, and their values in the

5 "°C (%, VPDB)
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Depth profiles of DIC and §Cp,c in pore water of each sediment core.
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XRD results of the studied sediment cores. Shallow sediments show higher contents of calcite in each sediment core.

TABLE 3 Concentration of some major elements in sediments.

Sampling sites Interval
(cmbsf)
BH-CL37
50-60 7.69 0.35 7.98 1.52 0.06 3.66 20.04
110-120 7.92 037 7.27 1.51 0.06 4.03 20.78
170-180 8.37 038 4.94 1.52 0.07 411 21.61
230-240 8.88 0.39 417 1.46 0.05 433 22.72
290-300 8.91 0.39 4.09 1.44 0.05 423 22.36
350-360 9.56 045 1.48 1.38 0.05 475 25.02
410-420 10.06 0.46 0.73 1.44 0.09 499 25.04
470-480 9.28 0.47 0.56 1.31 0.08 4.57 26.91
530-540 9.47 0.50 0.34 1.20 0.10 4.39 2735
590-600 9.45 0.50 0.32 1.19 0.09 4.53 27.36
650-660 9.42 0.50 0.33 1.19 0.09 4.61 27.51
BH-CL37A
50-60 7.90 0.36 7.01 1.53 0.05 3.88 20.38
110-120 8.07 0.37 6.44 1.58 0.05 3.92 21.19
170-180 8.11 0.40 2.98 126 0.04 3.92 25.51
230-240 9.53 0.43 2.30 1.44 0.05 453 24.25
290-300 9.58 0.43 2.02 147 0.05 4.54 24.15
(Continued)
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TABLE 3 Continued

10.3389/fmars.2023.1167578

Sampling sites Interval
(cmbsf)
350-360 9.61 045 115 1.45 0.05 481 25.03
BH-CL32A
50-60 7.86 035 8.57 1.46 0.04 3.63 19.50
110-120 7.96 036 7.63 1.48 0.04 3.81 19.98
170-180 8.37 038 6.39 1.42 0.03 3.95 20.98
230-240 9.37 0.42 2.75 1.40 0.04 431 23.33
290-300 9.81 045 1.67 1.42 0.04 439 2477
350-360 9.76 047 0.58 1.30 0.05 478 2578
410-420 9.41 0.46 1.45 1.32 0.07 475 25.73
470-480 9.60 0.48 0.51 1.30 0.09 476 2641
530-540 9.58 047 1.20 1.39 0.09 478 2592
590-600 9.95 0.48 0.42 1.40 0.09 4.77 25.64
650-660 9.93 0.49 0.43 1.44 0.09 478 26.04
710-720 9.56 048 0.44 1.37 0.09 495 2636

shallow depths are bigger than 1. U first enriches in shallow depth,
then decreases and finally tends to the equilibrium of 1 with depth
in each sediment core. However, the variations of Mo enrichment
factor are significantly different in the sediments: At BH-CL37,
Mogr is generally less than 1, while the value as high as 12.4
suddenly appears between 350 cmbsf and 400 cmbsf; at BH-CL37A,
Mogr decreases rapidly from a high value of 42.5 to a low value of
about 1.4 with depth; At BH-CL32A, Mogg increases first and then
decreases with depth, ranging from 0.8 to 44.8, and reaches the
highest value at the depth of 410-420 cmbsf (Figure 8).

The total rare earth element (REE) contents of BH-CL37,
BH-CL37A and BH-CL32A sediments range from 153.91 ug/g
to 190.11 pg/g, from 151.50 ug/g to 183.24 ug/g and from

153.91 ug/g to 196.63 ug/g, respectively, generally increasing with
depth (Table 5).

The studied sediments show no Eu anomaly, while most
samples show no Ce anomaly, and minor show negative Ce
anomaly caused by La anomaly (Figures 9 and 10).

4.2.3 TOC and 8Croc in sediments

TOC of BH-CL37 varies from 0.66% to 1.30% with an average
value of 0.89%. TOC of BH-CL37A varies from 0.75% to 1.02% with
an average value of 0.84%. TOC of BH-CL32A ranges from 0.69% to
1.15% with an average value of about 0.86% (Table 6).

8" Croc values of BH-CL37 greatly fluctuate at the depth of 50-
420 cmbsf with a range of -23.80%o - -21.29%0 V-PDB, and then
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FIGURE 7

Images of the ratios of major elements to Al changing with depth.
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TABLE 4 Concentration of some trace elements in sediments.

Sampling sites Interval Mo U i Vv (@) Zn Ba Cr Cu Sr
(cmbsf)  (ug/g)  (ug/g)  (na/g)  (ug/g)  (ug/g)  (ug/g)  (ug/g) | (ug/g)  (ug/g) | (1g/9)
BH-CL37
50-60 0.48 4.13 57.2 99.2 15.1 110 516 70.3 26.5 442
110-120 0.70 5.06 63.9 109 17.1 118 548 76.8 29.5 419
170-180 1.55 4.71 58.3 114 16.6 114 467 78.0 285 326
230-240 1.20 5.81 51.3 114 15.6 108 478 76.8 30.4 290
290-300 1.11 5.81 51.8 116 15.7 109 475 77.4 30.3 290
350-360 11.1 4.28 42.6 124 16.5 104 343 80.0 21.1 142
410-420 1.27 3.01 41.6 129 17.6 106 325 81.9 19.6 108
470-480 0.74 3.01 36.3 118 16.0 95.2 291 77.2 17.4 94.6
530-540 0.71 3.03 36.3 119 16.7 96.4 282 75.2 15.9 84.9
590-600 0.68 3.09 36.5 117 16.7 96.8 283 77.2 15.9 86.9
650-660 0.67 3.21 35.1 117 16.3 96.5 275 784 15.7 89.5
BH-CL37A
50-60 31.4 12.2 55.3 107 149 110 492 72.0 28.3 398
110-120 29.7 13.6 56.2 117 15.7 111 397 77.5 28.8 366
170-180 221 9.69 42.1 107 14.2 92.3 320 72.9 243 202
230-240 234 7.67 44.0 130 17.0 103 304 80.7 21.7 160
290-300 1.63 3.52 40.6 122 16.5 101 301 77.7 21.6 149
350-360 1.22 3.28 40.8 126 16.7 102 309 80.4 20.5 133
BH-CL32A
50-60 2.43 6.44 61.2 109 15.6 124 566 74.4 31.5 483
110-120 7.40 8.64 61.1 114 16.3 121 555 77.2 322 434
170-180 153 8.69 56.5 120 16.2 118 517 80.0 334 370
230-240 329 9.34 53.2 136 17.4 116 427 84.9 319 204
290-300 26.0 8.94 49.9 142 17.0 116 403 88.1 29.6 151
350-360 39.8 7.51 44.7 130 18.3 107 311 82.6 219 994
410-420 394 6.32 429 125 17.9 100 297 81.5 20.1 112
470-480 4.75 4.37 38.6 122 17.7 99.9 301 78.8 18.3 96.9
530-540 1.53 3.39 38.3 118 17.2 98.0 296 76.7 18.0 122
590-600 1.21 3.02 38.5 121 17.5 99.2 297 77.2 17.7 90.2
650-660 0.71 3.02 38.6 126 17.5 102 294 77.9 18.3 94.8
710-720 0.84 3.07 379 123 17.0 97.2 282 76.7 17.5 95.7

decrease slowly to a relatively stable value of -25.14%o - -24.98%o V-
PDB from 530 cmbsf to 660 cmbsf with an overall mean of -23.62%o
V-PDB. §"*Croc values of BH-CL37A decrease from -22.91%o to
-25.50%0 V-PDB in the depth range of 50-180 cmbsf, and then
increase to -23.92%o V-PDB with depth, finally tend to be stable
gradually, with an overall mean value of -23.94%o V-PDB. §"*Croc
of BH-CL32A is basically stable in the range of -22.41-21.70%o V-
PDB at the depth of 50-300cmbsf, then drops sharply to -25.88%o

Frontiers in Marine Science

V-PDB at the depth of 350-360cmbsf, and later remains relatively
stable (-25.88-24.78%0 V-PDB) with an overall mean of
-24.15%o (Figure 11).

4.2.4 Carbon and oxygen isotope compositions
of TIC in sediments

8"Cric values in BH-CL37, BH-CL37A and BH-CL32A are
-14.15 - 0.98%o V-PDB, -31.89 - -4.91%0 V-PDB and -29.11 - 1.26%o
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FIGURE 8

Depth profiles of trace element enrichment factors. The shadow area denotes a kink-type feature.

V-PDB, respectively, and have minimum values at 590-600 cmbsf,
230-240 cmbsf and 410-420 cmbsf. §'®0ryc values of BH-CL37,
BH-CL37A and BH-CL32A are -2.02 - 0.15%o, -0.33 - 1.94%0 and
-2.51 - 0.68%o, respectively, which are similar to the results of Li
et al. (2018) (Figure 12 and Table 6).

4.2.5 Sulfur isotopes of tubular pyrites in
sediments

The sulfur isotope values of pyrites in BH-CL37 sediments vary
widely, ranging from -45.04%o to 8.69%o V-CDT. §*S fluctuates
slightly at shallow depth, reaching a relatively low value at 230-240
cmbsf and 350-360 cmbsf, and a maximum value at 470-480 cmbsf.
The sulfur isotopes of pyrites in BH-CL37A range from -30.58%o to
-7.81%0 V-CDT. The sulfur isotopes of pyrites in BH-CL32A vary
from -27.38%o to -15.38%o0 V-CDT (Figure 13 and Table 7).

5 Discussion
5.1 AOM signals in cold seeps.

Generally, DIC in pore water in marine sediments is mainly
derived from (1) DIC from overlying seawater diffusing into
sediments or DIC retained during burial (usually 8"Cp1c=0 V-
PDB); (2) DIC generated by degradation of organic matter; (3) DIC
generated by AOM; (4) The residual DIC after methane formation

Frontiers in Marine Science

(Feng D. et al.,, 2018; Feng J. et al.,, 2018). In cold seeps with active
methane leakage, DIC generated by AOM often has extremely
negative 3'°C values (usually lower than -30%0 V-PDB, Borowski
et al,, 2000; Claypool et al,, 2006). Strong negative 8'*Cpyc values in
pore water are present at the bottom of BH-CL37, BH-CL37A and
BH-CL32A cores (as low as -55-35%o0 V-PDB, Figure 3). In
addition, considering the low content of organic matter in the
sediments and the §'*Croc values that vary between -25.94%o V-
PDB and -21.29%o V-PDB (Figure 5), we infer that methane is the
main source of DIC through AOM.

There are two main sources of methane in marine sediments:
biogenic methane and thermogenic methane, which have different
8"3C characteristics. The 8'*C values of biogenic methane generally
range from -110%o to -50%0 V-PDB (Whiticar, 1999), while the
8"°C values of thermogenic methane are generally between -50%o
and -30%o V-PDB (Sackett, 1978). Therefore, stable carbon isotopes
are often used in the studies to trace the methane source in cold
seeps (Feng D. et al., 2018). °*C isotopes of DIC in sediment pore
water can well define the source of methane (Chen Y. et al., 2010;
Wang et al., 2018). Previous studies have found that the carbon
fractionation between methane and DIC generated by AOM is
insignificant. However, due to various mixing of different DIC
sources such as seawater and organic degradation, the §'°C of
methane is about 10-20%o V-PDB lighter than the 8"Cpic of pore
water (Chen Y. et al.,, 2010; Feng J. et al., 2018), so the minimum
value is usually used to constrain the main source of methane
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FIGURE 9

REE+Y distribution curves of BH-CL37, BH-CL37A and BH-CL32A at different depths. They are characterized as enrichment of middle rare earth

element (MREE) and Y without Ce and Eu anomalies.

(Feng D. et al., 2018). The lowest 8"*Cpic values of BH-CL37, BH-
CL37A and BH-CL32A are lower than -44%o V-PDB, indicating the
microbial origin of methane in the shallow sediments of the study
area. This result is consistent with that of biogenic methane
obtained by Feng J. et al. (2018). Moreover, as shown in the
seismic profiles of BH-CL37, BH-CL37A and BH-CL32A
(Figure 2), there are obvious fluid migration channels below the
sampling sites, indicating that the migration of deep fluid and
thermogenic methane may play a crucial role in the sediment cores.
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The sediment cores BH-CL46A show extremely negative
8"Cpyc values as well, suggesting the abundant methane diffusion
and biogenic methane. Additionally, their DIC contents increasing
with depth are interpreted as the contribution of active biological
reactions and methane derived from bottom (including
thermogenic methane).

Based on the images of SOF /Cl™ (Figure 3), we infer that the
approximate SMTZ depths of BH-CL37, BH-CL37A and BH-
CL32A are 590-600 cmbsf, 355 cmbsf and 535-595 cmbsf,
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TABLE 5 Concentration of rare earth element in sediments.

Sampling sites | Interval La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y TREE
(cmbsf)  (ug/g)  (ug/9) (ug/g)  (ug/9)  (ng/g)  (no/9)  (ug/9) (ug/9)  (ug/g9)  (ug/g)  (ug/9)  (ug/g)  (ug/9)  (ug/g)  (ug/g)  (ug/9)
BH-CL37

50-60 33.2 63.8 7.36 27.5 5.19 1.09 4.74 0.73 424 0.85 2.35 0.34 2.23 0.33 252 153.92
110-120 35.1 68.4 7.69 289 5.60 1.19 4.89 0.77 4.52 0.87 2.50 0.36 2.42 0.37 259 163.56
170-180 36.4 70.7 8.07 299 5.61 1.19 5.12 0.76 4.57 0.87 2.49 0.36 2.37 0.36 259 168.79
230-240 37.3 73.4 8.29 30.4 5.78 1.20 5.15 0.79 4.52 0.90 2.65 0.36 2.39 0.38 25.8 173.60
290-300 36.6 72.3 8.39 30.7 5.67 1.17 5.15 0.79 4.36 0.87 2.44 0.36 2.37 0.35 25.1 171.60
350-360 379 73.3 8.51 31.6 6.13 1.30 5.56 0.82 4.82 0.98 2.78 0.42 2.61 0.40 27.7 177.12
410-420 394 77.5 8.93 33.7 6.51 1.41 5.95 0.91 5.18 1.00 2.94 0.42 2.80 0.43 29.0 187.06
470-480 37.7 74.4 8.55 319 6.27 1.36 5.49 0.86 5.01 0.98 2.92 0.40 2.68 0.42 27.6 178.88
530-540 39.4 79.0 9.20 34.1 6.53 1.41 5.85 0.93 5.52 1.08 3.19 0.45 2.98 0.47 30.2 190.10
590-600 40.0 76.5 8.97 34.3 6.65 1.43 6.19 0.94 5.55 1.09 3.19 0.44 3.02 0.49 31.3 188.78
650-660 39.3 77.2 8.86 33.8 6.56 1.40 5.85 0.95 5.37 1.10 3.19 0.43 2.94 0.45 30.8 187.45

BH-CL37A
50-60 32.7 63.6 7.19 26.7 5.18 1.05 4.63 0.70 3.97 0.80 2.30 0.31 2.07 0.32 23.6 151.51
110-120 35.2 69.8 7.76 28.6 5.52 1.08 4.80 0.75 4.11 0.84 2.35 0.33 2.25 0.36 24.0 163.71
170-180 355 68.4 7.87 29.1 5.66 1.14 4.99 0.81 4.46 0.90 2.66 0.38 2.58 0.40 25.6 164.86
230-240 38.2 729 8.43 31.3 6.07 1.23 5.55 0.83 4.79 0.96 2.66 0.35 2.49 0.40 26.5 176.13
290-300 379 73.5 8.37 31.5 6.11 1.23 5.42 0.82 4.83 0.96 2.71 0.37 2.54 0.41 26.3 176.71
350-360 39.0 75.4 8.77 33.1 6.45 1.33 5.78 0.89 5.16 1.00 2.86 0.39 2.65 0.45 28.2 183.24

BH-CL32A
50-60 34.2 64.5 7.43 27.2 5.40 1.05 5.07 0.74 4.21 0.85 2.45 0.32 2.31 0.36 26.1 156.12
110-120 34.5 67.2 7.58 283 5.50 1.12 5.04 0.77 4.37 0.86 2.53 0.34 2.26 0.37 26.0 160.75
170-180 36.3 71.5 7.99 29.6 5.88 1.16 5.14 0.76 4.55 0.87 2.55 0.34 2.36 0.37 25.6 169.34
230-240 38.8 77.2 8.80 32.6 6.34 1.26 5.52 0.88 4.88 0.98 2.83 0.37 2.61 0.42 27.1 183.47
290-300 399 80.2 9.05 334 6.86 1.32 5.74 0.88 5.18 0.98 2.92 0.40 2.73 0.45 28.0 190.10
350-360 40.5 80.2 9.19 34.2 6.94 1.41 6.13 0.99 5.59 1.06 3.09 0.40 2.97 0.48 30.0 193.22

(Continued)
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Interval

TABLE 5 Continued
Sampling sites
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respectively (Figure 3). Due to the intense AOM, DIC
concentrations and carbon isotopic compositions of sediment
pore water vary greatly in the SMTZ. The maximum DIC
concentration with the corresponding minimum 33Cpyc value is
an indicative parameter for the depth of SMTZ in cold seeps
(Malinverno and Pohlman, 2011). Compared with the slow
changing 8"Cpic values of BH-CL46A, the 8'°Cpc depth
profiles of BH-CL37, BH-CL37A and BH-CL32A all show sudden
decreasing trend at a certain depth, which confirm the existence of
active AOM process (Figure 5). From minimum 3Cpic depth
corresponding to the maximum DIC content of pore water, we infer
that the SMTZ depth in each sediment core is 530-540 cmbsf for
BH-CL37, 290-300 cmbsf for BH-CL37A, and 470-480 cmbsf for
BH-CL32A. But for BH-CL32A site, there is a gap of 100cm
between the depth of the maximum DIC concentration and the
minimum §"Cp¢ value. We think because the distance between
our adjacent samples was 50cm, the accuracy was not high enough.
So some key information may not be reconstructed. respectively,
The depth of SMTZ is slightly shallower than the SMTZ illustrated
by the minimum value of SO} in the depth profiles. Kim et al.
(2011) explained that this deviation was related to methanogenesis
reaction and other biochemical reactions in the shallow sediments.
The steep reduction of Ca>* and Mg”" at these depths also denotes
the saturation of DIC and probable precipitation of authigenic
carbonates (Figure 3), confirming the strong AOM. Based on the
extremely low 8"Cpic and positive S isotope values of the
carbonates in the sediment cores, Li et al. (2018) defined the
possible paleo SMTZ depths of 5.5-6.2 mbsf and 6.8-7.2 mbsf in
the Beikang Basin; Feng J. et al. (2018) determined that the
approximate SMTZ depth was between 5.3 mbsf and 8.8 mbsf by
studying the chemical characteristics of pore water in the sediment
cores in the Beikang Basin. These SMTZ depths are slightly deeper
than the estimated SMTZ depths in our study area, indicating that
the cold seeps studied here may have experienced more intense
methane seepage activity.

In addition, considering the influence of active cold seep activity
(deep fluid migration), the increase of Mg**/Ca®" in the deep
sediments of BH-CL37A and BH-CL32A indicates strong
carbonate precipitation (Figure 3). BH-CL37, which is relatively
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FIGURE 10
Ce/Ce* vs Pr/Pr* (Bau and Dulski, 1996; Shields and Webb, 2004) in
the sediments. Zone |: no Ce and La anomaly; Zone Il a: positive La
anomaly, no Ce anomaly.

frontiersin.org


https://doi.org/10.3389/fmars.2023.1167578
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Chen et al. 10.3389/fmars.2023.1167578

TABLE 6 Data of TOC, §3Croc, 83Cric and 88O+ c in sediments.

Sampling sites Interval
(cmbsf)
BH-CL37
50-60 1.09 -23.10 0.98 -0.98
110-120 0.80 2195 0.25 -133
170-180 1.30 -23.80 0.71 -0.52
230-240 0.95 2129 0.11 -1.04
290-300 1.16 -23.64 0.22 -1.29
350-360 0.86 2372 -1.35 -0.75
410-420 0.69 -22.90 -3.47 -1.84
470-480 0.80 2434 -6.01 -2.02
530-540 0.78 -25.01 -13.55 0.15
590-600 0.72 -24.93 -14.15 -1.10
650-660 0.67 25.14 -13.98 -0.65
BH-CL37A
50-60 0.79 2291 -4.91 -0.33
110-120 1.01 2435 -17.08 023
170-180 0.83 -25.50 -13.37 0.46
230-240 0.85 -23.92 -31.89 1.94
290-300 0.76 2354 2534 -0.20
350-360 0.83 -23.40 1327 0.08
BH-CL32A
50-60 0.99 2241 1.26 -0.81
110-120 0.72 2170 0.86 -0.63
170-180 0.76 2213 0.16 -1.46
230-240 0.94 -22.60 0.30 -1.39
290-300 0.86 2234 0.47 -1.17
350-360 L.14 -25.88 -0.54 251
410-420 0.76 -25.57 -29.11 0.68
470-480 0.86 -25.61 -11.87 -2.37
530-540 0.78 25.94 -15.08 038
590-600 1.06 2577 -17.20 -0.10
650-660 0.69 2478 -14.01 -1.09
710-720 0.70 -25.10 -12.99 -0.94
close to BH-CL37A, doesn’t show any similar trend, which Previous studies have shown steep linear sulfate gradients under

may result from too small methane flux to induce manifest  high methane fluxes and strong AOM effects (Borowski et al., 1996;
carbonate precipitation (Luff and Wallmann, 2003; Karaca et al.,  Borowski et al., 1999). Here, the theoretical SMTZ calculated based
2010). BH-CL46A shows high value of Mg**/Ca®" at the bottom,  on the linear extension of SOZ" is approximately 589.4 cmbsf, 371.4
which may be affected by deep fluid environment or horizontal — cmbsf and 564.4 cmbsf (Figure 4). These are very close to the depth
fluid intrusion. our observed, indicating certain reliability of our calculation.
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TABLE 7 Results of sulfur isotopes of tubular pyrites in sediments.

Sampling sites Interval
(cmbsf)
BH-CL37
230-240 -43.64
290-300 -37.46
350-360 -45.05
410-420 -37.06
470-480 8.69
BH-CL37A
230-240 -28.41
350-360 -7.81
BH-CL32A
110-120 -22.86
170-180 2532
230-240 -27.38
290-300 2121
350-360 -15.38
470-480 21.12

Besides, considering that concentration of SO} at SMTZ is often
not zero in reality, the gap between our theoretical and observed
SMTZ is reasonable. Based on the 1:1 reaction relationship between
SO} and CH, in the AOM reaction and the low organic matter

10.3389/fmars.2023.1167578

content in the sediments of the study area, we use the change of
SOF to roughly define the methane diffusion flux in the SMTZ of
the study area, 110 mol m yr ', 135 mol m™ yr " and 119 mol m™
yr ', respectively (Figure 4), higher than that calculated in Feng J.
etal. (2018), which indicates the active CH,4 leakage in the study and
good gas storage potential in the Beikang Basin.

In contrast to pore water, sediment cores are formed in
cumulative processes that record both current and past
biochemical processes in geochemical features. In this study,
8"3Cryc values of the sediments represent the mixture of biogenic
carbonates (benthic and planktic foraminiferal shells) (8"Crpyc of
about 1.1 %o V-PDB) and authigenic carbonates (8"3Cric smaller
than -30 %o V-PDB) (Figure 12) (Li et al., 2018; Wang et al., 2018).
Our results show the lowest 8'>Cryc value of the sediments near the
SMTZ, which indicates that the authigenic carbonates were
generated by strong AOM at SMTZ.

5.2 Response of environmental
geochemical characteristics to cold seep
activity

5.2.1 Sulfur isotope characteristics of tubular
pyrites under the influence of AOM

Previous studies have shown that the AOM process can affect
both the abundance of solid sulfide phase and its sulfur isotopic
compositions in sediments (Canfield and Thamdrup, 1994;
Borowski et al., 2013; Lin Z. et al.,, 2016). Sulfate reduction in
anoxic marine sediments mainly includes organoclastic sulfate
reduction (OSR; Berner, 1980), and anaerobic oxidation of

13,
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FIGURE 11
Depth profiles of TOC and 8**Croc in the sediments.
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FIGURE 12

Depth profiles of the 80 and 8**Cy ¢ in the sediments. Oxygen isotopes are shown in blue and carbon isotopes in black.

methane (AOM). The §**S value of dissolved sulfate in seawater is
about 21%0 V-CDT (Rees et al., 1978), while the isotope
fractionation can be as high as 60%0 V-CDT due to microbial
sulfate reduction (Jorgensen et al., 2004). OSR is the main sulfate
reduction process in methane-free sediments, usually leading to the
production of poor **S sulfide, while **S of pyrite in methane-free
sediments is often close to -50%o to -40%o V-CDT (Feng D. et al.,
2018). In cold seeps, AOM strongly consumes sulfate under closed
or semi-closed conditions, which may lead to the generation of
sulfur compounds enriched in 349 (Jorgensen et al., 2004; Lin et al.,
2017; Feng D. et al., 2018). Although both OSR and AOM will lead
to positive 8°*S (Feng D. et al., 2018), we think that changes of 5**S
at different depths at the same site can reflect the AOM process to
small extent. The **S of tubular pyrites in BH-CL37, BH-CL37A
and BH-CL32A have a large variation range,and present low and
stable values in the shallow part, where the sulfate reduction rate is
low and the fractionation is relatively thorough (Figure 13). Deeper
than 350 cmbsf, all three sediment cores show high sulfur isotope
values, and the values of BH-CL37A and BH-CL32A are generally
bigger than -25%o V-CDT. Both OSR and AOM will lead to positive
5°*S, we think different ranges in sites between BH-CL37 and BH-
CL32A are most likely due to the large differences in OSR rates
among different sites. The values of §*S of pyrites at the bottom of
BH-CL37 are even greater than 0 V-CDT, indicating that the
reduction rate of sulfate is increasing. These prove the important
influence of AOM on the S cycle in cold seeps, and the higher
methane flux in the deeper formation also supports the AOM
process. According to our results, the **S variations with depth
and previous studies (Lin Z. et al., 2016; Feng D. et al., 2018), we
speculate that pyrites formed near the SMTZ in the sediment core
are likely to have higher **S isotope values. In addition, BH-CL37
and BH-CL37A are located at similar locations but affected by
different intensities of cold seep activities, while the S isotopes of
BH-CL37A are heavier in the same depth range, which may indicate
a quicker sulfate consumption rate here and a stronger effect of
cold seep.

Frontiers in Marine Science

5.2.2 Geochemical evidence of methane seepage
variation

Cold seeps rich in methane usually have high biological
abundance (Gibson et al., 2005; Campbell, 2006; Levin and
Sibuet, 2012). The shallow parts of the sediment cores are
abundant in the biological shells e.g. foraminifera and show a
high content of Ca (Figure 7). The XRD results show that shallow
sediments contain a high content of carbonates (Figure 6), mainly
low magnesium calcite, which is associated with calcareous
biological shells and deep fluids with low salinity.

Sr/Ca and Mg/Ca ratios in sediments have recently been used to
reconstruct cold seep activities in the past in methane seepage (Yang
et al, 2014; Gong et al, 2018). The images of Sr/Ca vs Mg/Ca
(Figure 14) show the major calcite content with minor aragonite,

hich is consistent wi r XRD results (Figure 6). As th h
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FIGURE 13
Depth profiles of sulfur isotopes of tubular pyrite in the sediment
cores.
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increases, the data points get closer to the reference detrital value,
and there is a good correlation between Sr/Ca and Mg/Ca in the
sediment cores, indicating that the influence of debris gradually
increases with the increase of depth. Meanwhile, from the §"°Cryc
and XRD results of shallow sediments, we conclude that the
contents of carbonates in the sediment cores are not high enough
and the carbonates in shallow sediments are mainly calcareous
biological shells, which may conceal the information of authigenic
carbonates. Therefore, it is difficult for Mg/Ca and Sr/Ca to directly
and effectively reflect the types and formation of
authigenic carbonates.

Specially, Sr, Ca/Al, Ca/Sr, St/Mg and Ca/Mg in the BH-CL37
sediments show a kick-type feature at depths of 290-300 cmbsf. The
image of Ca®/Cl" concentration in BH-CL37 pore water shows no
addition of fluid from horizontal or other directions is found in this
layer, and a relatively consistent Ca deposit rate is found in the
corresponding depth range (Figure 3). As mentioned above, the
information of elements of authigenic carbonates is easily covered
by the biological shell information in the sediments, so the kick-type
feature here reflects the precipitation of the authigenic carbonates
with higher Ca/Sr, Sr/Mg and Ca/Mg ratios. Similar feature is also
present in the depth profiles of Ba and Ni enrichment factors. Srgg,
Ca concentration, Ca/Sr and Sr/Mg have a good correlation with the
enrichment factors of trace elements Ba, Ni, Cu and Zn (as shown in
Figure 15, Ca concentration, Ca/Sr and Sr/Mg etc. have similar
relationship with these trace elements). Many studies have shown
that the authigenic minerals in cold seeps may have recorded the
changes of paleo cold seeps, while the Ba peak and authigenic
carbonates are often considered as the indicator of paleo SMTZ
(Torres et al., 1996; Dickens, 2001; Snyder et al., 2007; Vanneste
etal, 2013; Gong et al., 2018; Feng D. et al., 2018). The correlations
between Ni, Cu, Zn and Sr, Ca, Mg indicate that cold seep
authigenic carbonates have strong enrichment and retention
potential of trace elements (Smrzka et al, 2019; Smrzka et al,
2020). The good correlation between Ni and Sr is also present in our
carbonate samples from southern SCS. Thus, this kick-type feature
in BH-CL37 probably reflects a periodic strengthened AOM

20 40 60 80 100 120 140 160 180 200

0 1 L 1 L ! L 1 1
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reaction, indicating the depth of the paleo SMTZ. §*'S of pyrite
in BH-CL37 also appears a relatively high value near the depth of
300 cmbsf, which provides evidence for the existence of
paleo SMTZ.

SMTZ depth is reported to be affected by different methane
fluxes (Michaelis et al., 2002; Luff et al., 2004). Generally, while the
cold seep is more active, the methane flux is greater, and its SMTZ
depth is shallower, and vice versa. The paleo SMTZ depth of BH-
CL37 is obviously shallower than the present SMTZ depth,
indicating that the methane flux of BH-CL37 was reduced and
reflecting the existence of stronger methane leakage in a certain
period in the past; this may be caused by the weakening of cold seep
activity or the periodic decomposition of natural gas hydrate in the
past, resulting in the local increase of methane. Similar feature in
BH-CL37A is absent though these two cores are located closely. The
reason may be that the larger and more concentrated deep fluid flow
in BH-CL37A leading to a shallower SMTZ and more open
condition, preventing the accumulation and preservation of
authigenic carbonates and barite. Additionally, due to the limited
permeability and fluid migration conditions, the locally increased
methane leakage at BH-CL37 may not affect BH-CL37A.

5.2.3 cold seep influenced trace elements

The trace elements transported and ultimately enriched in
seafloor sediments come from the sinking organic and inorganic
particulate matter, as well as the seawater itself (Smrzka et al., 2019).
Redox conditions often promote the accumulation of trace elements
in sediments due to their redox sensitivity, which leads to the wide
application of trace element contents as a proxy of paleo
environmental conditions (Tribovillard et al., 2006).

Redox sensitive elements such as U, Mo and other trace
elements are often used to trace the redox condition during the
formation of cold seep carbonates (Merinero Palomares et al., 2012;
Sato et al,, 2012; Tribovillard et al., 2012; Hu et al.,, 2015). In
oxidizing seawater, U and Mo are stable and persist for a long time
(residence time of U and Mo is 450 kyr and 780 kyr, respectively),
but U and Mo behave differently between the anoxic and euxinic
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environment (Algeo and Tribovillard, 2009). U exists stably in the
soluble form of UO,(CO;)3™ in oxidizing seawater; but in the iron
reduction zone, the reduction of iron produces hydrogen sulfide,
and U begins to form UO, precipitates or be absorbed by
organometallic ligands and preserved in sediments (Tribovillard
et al., 2006; Smrzka et al., 2019). As a result, U enrichment is
stronger than Mo, resulting in the smaller (Mo/U)gr ratio in
carbonates than the corresponding ratio in seawater (Algeo and
Tribovillard, 2009). Mo mainly exists in the form of MoOi’in
oxidizing seawater, while in the euxinic environment caused by

Frontiers in Marine Science

hydrogen sulfide supersaturation, Mo will transform and combine
with metal ions to form a series of Molybdate thiomolybate
(MoS,_,0¥") which is easily captured by iron sulfide or sulfur-
rich organic compounds and stored in carbonates, finally resulting
in the larger (Mo/U)gp ratio (Algeo and Tribovillard, 2009; Li et al.,
2016; Smrzka et al, 2020). Therefore, the different authigenic
enrichment degree of U and Mo, and (Mo/U)gr can help to
distinguish euxinic condition from anoxic condition effectively.

U tends to enrich in the Fe-Mn reduction zone, while Mo is
enriched in sulfate reduction zone (Smrzka et al., 2019; Smrzka et al.,
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2020). As shown in Figure 8, U is enriched in the shallow part of the
sediments, and the enrichment depth of U varies among different
sediment cores. The deeper SMTZ corresponds to the deeper Fe-Mn
reduction zone. The Fe-Mn reduction zone of BH-CL37A appears
narrower and shallower than that of BH-CL37 due to the stronger
methane seepage found in BH-CL37A. Furthermore, the enrichment
factors of U in the shallow depths of BH-CL37A are much higher than
those of BH-CL37. Studies have shown that the behaviour of U varies
greatly with oxygen content and it can be re-mobilized in case of post-
deposition reoxygenation (Smrzka et al,, 2019; Smrzka et al., 2020).
BH-CL37A gains a greater cold seep effect due to the closer distance to
the diapir than BH-CL37. The actively upward migration of anoxic
fluid prevents the oxic seawater from diffusing into the sediments, so
BH-CL37A could better preserve the enrichment of U, while seawater
could diffuse downward to deeper formation in BH-CL37, harmful for
the preservation of U enrichment. Moreover, considering the obvious
change of methane flux in BH-CL37 in the past (discussed in section
5.2.2), the previously formed U precipitate was reactivated and
dissolved in pore water due to the reoxygenation, weakening the
indicator function of U enrichment. In contrast to BH-CL37, BH-
CL37A has enough methane flux to maintain U enrichment even if the
methane flux decreases, and the decrease of methane flux would also
result in a more focused fluid seepage, protecting the original condition
from fast change to some extent. Compared with the enrichment of U,
the difference of V enrichment between BH-CL37 and BH-CL37A is
not manifest (Figure 8), which further stresses that the decrease of cold
seep fluid flow or the decrease after the sudden increase of methane
flux does affect the enrichment degree of U by changing the redox
conditions of sediments.

In anoxic marine sediments, Mo tends to be incorporated into
pyrite by adsorbing molybdate and thiomolybdate to form stable
complexes, which can be retained irreversibly (Bostick et al., 2003).
Based on our Mo results, we believe that the euxinic environment in
the study area is limited to pore water and does not include overlying
seawater. Previous studies have shown that in areas where sulfide and
thiomolybdate are present but confined to in pore water, Mo content in
sediments averages 10 mg/kg and rarely exceeds 25 mg/kg, while Mo
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content under euxinic condition with free H,S exceeds 60 mg/kg and
can even reach 100 mg/kg in sediments (Scott and Lyons, 2012; Chen
et al,, 2016). Mo in our study area is significantly enriched at some
depths, exceeding 30 pg/g (BH-CL37A: 50-120 cmbsf; BH-CL32A:
230-420 cmbsf) with low Mn contents, indicating euxinic environment
in the pore water. OSR and AOM are two main important biochemical
reactions related to the sulfate reduction that influence greatly on Mo.
However, the low content of organic matter in sediments in the study
area and the insignificant enrichment of redox sensitive elements such
as Co, Cu, Ni, Zn and V (their enrichment factor are mostly under 3)
indicate that OSR is not the main reason for the enrichment of Mo. In
fact, rapid AOM reaction will create a suitable euxinic environment for
Mo enrichment as a dominant process in cold seeps. It can be
concluded from Figure 16 that Mo enrichment factor is greater than
U enrichment factor at 350-360 cmbsf of BH-CL37, 50-120 cmbsf of
BH-CL37A and 230-420 cmbsf of BH-CL32A, indicating the intense
sulfate reduction. Though having the close locations and similar fluid
sources, the depth profiles of Mogy. vary greatly: Mo enrichment occurs
only at 410-420 cmbsf in BH-CL37, while Mo is enriched significantly
in shallow sediments in a wide depth range in BH-CL37A. From the
difference of the methane seepage, we deduce that Mo enrichment is
more likely to occur in shallow sediments with high methane flux. In
methane fluid flow events or high methane flux, methane is
transported to the water-sediment interface, and compresses the
SMTZ into a narrow area of the topmost sediment cores where
sulfate flux and hydrogen sulfide produced by rapid AOM are
relatively high. However, deeper SMTZ usually appears with limited
Mo availability in BH-CL37 (Figure 17). Comparing the depth profiles
of Ugg and Mogg, high methane flux and active cold seep activity tend
to compress the Fe-Mn reduction zone and sulfate reduction zone into
a narrow area, so Mo and U are enriched within the same depth range
(for example, in BH-CL37A, Figure 8). However, under the influence
of low methane flux, the sediment core presents a wider sulfate
reduction zone and a deeper SMTZ, accompanied by a lower Mo
precipitation effect, such as BH-CL37.

BH-CL32A has a deep SMTZ similar as BH-CL37A and the
overlap degree of Fe-Mn redox zone and sulfate reduction zone is
lower than that of BH-CL37A (the area with high methane flux and
high AOM reaction rate). In contrast to BH-CL37, evident Mo
enrichment is present in several depth intervals of the shallow
sediments here indicating the high AOM reaction rate and the
relatively closed structural conditions at certain depths, indicating
the high AOM reaction rate and the condition in favor of
Mo diffusion.

Previous studies have shown that Mo-Fe-S can co-precipitate
from pore water with the threshold of 0.1 um H,S, while Mo can co-
precipitate with S or precipitate in granular form when H,S is
greater than 100 um (Zheng et al., 2000; Chen et al., 2016). In other
words, Mo can precipitate under the condition of 0.1 um H,S
content in pore water with sufficient Fe, so the enrichment depth of
Mo precipitation in pore water may not be consistent with the depth
of H,S maximum or SMTZ, which contributes to the inconsistent
depth of the Mo enrichment and SMTZ in this study.

Other redox sensitive elements, such as Co, Cr, Cu, Zn, V, etc.,
generally show a relatively consistent trend of enrichment factors,
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Response of different cold seep activities in BH-CL37 and BH-CL37A to geochemistry.

decreasing first and then stabilizing with the increase of depth
(Figure 8). According to the Mn/Al image (Figure 7), the higher
contents of trace elements in the shallow layer may be mainly from
the reductive dissolution of manganese oxides or hydroxides
(Tribovillard et al., 2006). Although these trace elements do not
show significant enrichment factors, their changes to some extent
reflect the changes of redox conditions in the sedimentary
environment, and the speed of trace element removals often
corresponds to the transition and transformation of iron
reduction zone and sulfate reduction zone. As shown in Figure 8,
compared with trace elements of BH-CL37, BH-CL37A has a
shallower turning depth and a larger gradient of descent,
indicating that the intense cold seep activity and large methane
flux make the Fe-Mn reduction zone and sulfate reduction
zone much closer, narrower and shallower. The enrichment of
these trace elements in the shallow sediments reflects the relatively
reductive pore water environment under the influence of cold
seeps effectively.
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The REE+Y distribution curves standardized by PAAS for each
sediments cores show similar MREE-enriched pattern (Figure 9).
MREE enrichment generally occurs in iron reduction zone and is
related to anoxic pore water, indicating the anoxic sedimentary
environment. The enrichment of Y shows the obvious influence of
seawater. In this study, the samples generally show no Eu anomaly,
and most of the samples show no Ce anomaly, while minor shows
negative Ce anomaly caused by La anomaly (Figure 10), confirming
the reductive condition.

5.3 Evolution and regional specificity of
cold seep activity under the influence of
different methane fluxes

BH-CL37 and BH-CL37A are two sites impacted by cold seeps

located on the same side of the same fluid source with different
distances (Figure 2). BH-CL37A closer to the fluid source, is affected
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by stronger cold seep activity than BH-CL37, and has a larger
methane fluid flux. Its intense AOM reaction and the relatively open
environment of the shallow SMTZ may make the sulfur isotopes of
pyrites in the shallow sediments larger than that of BH-CL37A at
the corresponding depth, but less than that of BH-CL37 at deeper
down to the bottom. Near the present SMTZ of BH-CL37, the more
closed sedimentation environment is conductive to the deposits of
authigenic pyrite with higher S isotopic values (>0), but impeding
the Mo enrichment (Figure 17).

The seismic profile of BH-CL37 and BH-CL37A shows weak
continuity of BSR and the seafloor dome (Figure 2). The low-
frequency fuzzy reflection of the underlying layer on one side of the
updip of the BSR may indicate the phenomenon of acoustic
turbidity caused by gas in the formation and the rich source of
methane in the study area, leading to the low background value of
8"°Cpic. The obvious geochemical differences between BH-CL37
and BH-CL37A in similar locations may denote the poor seepage
conditions, such as low porosity or blocking effect on migration
channels due to the formation of gas hydrate. Previous studies have
measured that the geothermal gradient in this area is 69.8 °C/km,
lower than the average geothermal gradient value of 84.5 °C/km in
the Beikang Basin. Strong fluid activity is supposed to cause the
change of the thermal field (Milkov, 2000; Feseker et al., 2009; Yang
et al., 2018). The lower geothermal gradient indicates the more
dispersed fluid diftusion, which corresponds to the wide and deep
SMTZ in BH-CL37 and the smaller §"*Cric fluctuation gradient
(Figure 18). Meanwhile, the abnormally high ion concentrations
(ClI', Mg>"Ca*", SOF) in the 50-60 cmbsf of BH-CL37 are
interpreted as the abnormal fluid input with high salinity, which
may reflect the influence of high-salt fluid caused by the formation
of natural gas hydrate, combined with previous studies and its
regionally geological structures (Feng J. et al, 2018; Huang
et al., 2022).

BH-CL32A has discontinuous BSR and significant submarine
gas leakage (Figure 2). Figure 2B shows that BH-CL32A has a
relatively isolated fluid migration channel that communicates
with the deep strata and extends directly to the seafloor.
Combined with its geothermal gradient as high as 102 °C/km,
BH-CL32A shows obvious concentrated cold seep fluid upwelling,
which is consistent with its high gradient of 8"%Cpic with the
narrow area of strong negative values(Figures 5, 18). The
compositions of headspace gas in the study area further
demonstrate a typical bio-methane source for BH-CL37 and
mixed methane source with a significant contribution of the
thermogenic gas for BH-CL32A (Huang et al., 2022), which
is corresponding to our analysis of the geochemistry of pore
water. BH-CL37 and BH-CL32A have similar SMTZ depths, but
BH-CL37 has wider depth range of §'°C strongly deficient
(compared with the stable values at the top and bottom of the
sediment cores). In general, the background 8"Cpic values (the
average 8" Cpyc of the top and bottom sediments that show stable
values of 8"°Cpyc) of BH-CL32A is slightly higher than that of
the other sediment cores. The lower 8'°Cpc values in BH-CL37
and BH-CL37A result from the abundant biogenic methane
sources, and the higher values in BH-CL32A confirm the great
influence of the thermogenous methane sources. Furthermore,
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the variation range of 3"Cpic in SMTZ is comparable to that
of BH-CL37A, indicating the intense AOM in SMTZ in
BH-CL32A. In BH-CL37, the lower reaction rate of AOM and the
lower 8"Cprc here lead to a wider sulfate reduction zone, so the
slope of 8" Cpic change is less obvious. Besides, BH-CL37 shows a
shallower Fe and Mn reduction zone restricted by U enrichment
and the lower AOM rate had a limited effect on Mo accumulation.
By contrast, the intense and concentrated upwelling of cold seep
fluid shown in BH-CL32A activates the exchange of elements
between the overlying water and sediments, which is conducive to
Mo enrichment.

6 Conclusion

In this paper, we combined geochemical analyses of various
samples (pore water, sediments and authigenic pyrites) and the
local geological structure to systematically study the cold seep
phenomenon in southern SCS on the basis of previous studies.
We conclude that SMTZ depth is relatively shallow compared with
Feng’s study.

The extremely negative 8"°Cpjc in the pore water of the
sediment cores indicates strong AOM effect in cold seeps and the
main biogenic origin of methane. The SO} depth variation trends
of pore water, the high DIC content and the lowest value of 3"Cpic
can define the approximate SMTZ depth of each sediment core
effectively. In addition, paleo SMTZ depth of about 290-300 cmbsf
in BH-CL37 indicates the decrease of methane flux or the sudden
release of methane flux in the past.
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The strong AOM in cold seep leads to the formation of
authigenic minerals (authigenic carbonates and authigenic
pyrites), and affects the enrichment of trace elements, especially
the redox sensitive elements.

BH-CL32A is different from BH-CL37 and BH-CL37A in fluid
sources and regional geological structures. The §'*Cpc value of the
background methane in BH-CL32A is higher, which may indicate a
greater contribution of thermogenic gas. Furthermore, due to its
high AOM rate, BH-CL32A shows a large and steep variation of
8"3Cpjc value in pore water, which indicates that the geochemistry
in cold seep is closely related to fluid flux, methane sources and local
geologic structures.

In conclusion, geologic tectonic conditions such as fluid
migration channels in the study area can effectively constrain the
generation and evolution of cold seeps, emphasizing the obvious
regional specificity of cold seep.

Though many studies on columns and drill cores have been
carried out in SCS, the complexity of geological features in the SCS
aggravates differences of cold seeps. More quantities of researches on
cold seeps in the SCS are inevitably requested for better
understanding of cold seeps. With the Sunda continental shelf, one
of the most extensive continental shelves in the world, southern SCS
has great sensitivity to environmental changes and uniqueness
different from northern SCS, pointing to the necessity of researches
on cold seep here. Thus, we hope that this study can lay a foundation
for the construction of a larger cold seep database in southern SCS
and better knowledge of the cold seep system in the future.
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Authigenic carbonates that form at hydrocarbon seeps, known as seep
carbonates, are direct records of past fluid flow close to the seafloor. Stable
carbon isotopes of seep carbonates (§-°C,) have been widely used as a proxy
for determining fluid sources and seepage mode. Although the spatial
heterogeneity of 8'°C in seep carbonates is increasingly understood, the
temporal heterogeneity of 8*°C in seep carbonates is not well studied. In this
study, we report 8°C values of different components (clasts, matrix, and pore-
filling cements) for 124 subsamples drilled across an authigenic carbonate block
from Green Canyon block 140 (GC140) of the northern Gulf of Mexico
continental slope. High-Mg calcite is the dominant mineral regardless the
types of components. The 8°C.. values range from —39.6%. to 3.6%.,
indicating multiple dissolved inorganic carbon (DIC) sources that include
methane carbon (**C-depleted), seawater DIC, and residual CO, from
methanogenesis (3*C-enriched). Specifically, the clasts show large variability in
3C values (-39.6%. to 2.3%.; mean: —27.6%., n = 71), demonstrating the
dominance of methane-derived fluids during formation at the initial seepage
stage. The 8°C values of the matrix vary between —29.4%. and 3.4%. (mean:
—-11.6%., n = 21). The carbon isotopes of pore-filling cements that formed most
recently vary narrowly, with §**C values of —3.2%. to 3.6%. (mean: 1.7%., n = 28).
Isotopic variations within individual samples were observed in seep carbonate.
However, common trends occur across components of carbonates that formed
during different seepage stages. This suggests that the temporal evolution of
local fluid sources may play an important role in determining carbonate isotope
geochemistry. Studies regarding seeps must take into account the highly variable
fluids that leave their geochemical imprints on the seep carbonate.

KEYWORDS

hydrocarbon seep, methane, authigenic carbonate, stable carbon isotopes, Gulf
of Mexico
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1 Introduction

Observations of methane seepage in marine settings are
common (Suess, 2020, and references therein). The seeping
methane is primarily consumed by consortia of methane-
oxidizing archaea and sulfate-reducing bacteria, a process known
as anaerobic oxidation of methane (e.g., Boetius et al., 2000). As a
result, carbonate alkalinity increase induces the precipitation of
carbonate minerals close to the seafloor. These carbonates serve as
an excellent archive of past seepage (Ritger et al., 1987; Bohrmann
et al., 1998; Aloisi et al., 2000; Peckmann et al., 2001; Mazzini et al.,
2004; Gontharet et al., 2007; Naehr et al., 2007; Haas et al., 2010;
Sun et al,, 2015; Himmler et al., 2019; Wang et al., 2022).

Carbon isotopes in the mineral phase of seep carbonate are
derived from ambient bicarbonate and dissolved inorganic carbon
(DIC). The variation of carbon isotopic composition of these
carbonates (as much as 85%o) indicating an almost equally wide
range of geochemical processes involved in carbonate precipitation
(e.g., Naehr et al,, 2007). The stable carbon isotopes of seep
carbonates (8'°C.,1,) have been widely used since the discovery of
methane seep in 1980s for almost any carbonate-based seep studies.
For instance, 8"°C values provided stable isotopic evidence for
methane seeps in Neoproterozoic postglacial cap carbonates
(Jiang et al., 2003), demonstrated the involvement of oil seepage
(Smrzka et al.,, 2016; Sun et al., 2020), meteoric water and
methogenesis during carbonate formation (Naehr et al., 2007).

Seep carbonates are known to show a wide range of carbon
isotopic and variation across multiple geographic areas (Gontharet
et al., 2007; Roberts et al., 2010; Zhang et al., 2023). The observed
variations, spatial heterogeneity of 8'°C in seep carbonates, mainly
reflect local controls on the sources of fluids and flux of the fluids,
which have been well constrained. In contrast, carbon isotopic
variation in authigenic carbonate composition within individual
study samples, the temporal heterogeneity of §'°C in seep
carbonates is not well studied. Such temporal heterogeneity of
8"C in seep carbonates can be used to constrain the evolution of

94°W

96°W 93°W

FIGURE 1

Location of the Green Canyon block 140 (GC140; 27°48'N/91°32'W) study site, northern Gulf of Mexico (from Bian et al., 2013). The inset 3-D
seismic surface amplitude illustrates the extent of the hard bottom (A) and the profile view (B), showing that the dome top has an irregular surface
and that the seafloor reflector is a strong, positive reflector, indicating a hard bottom (Roberts, 2001).
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the fluid sources and mode of seepage with time. Given that seep-
related authigenic minerals provide an important geological
archive, as they represent one of the few permanent records of an
otherwise ephemeral phenomenon (Roberts et al., 2010; Smrzka
et al., 2016; Chen et al., 2019).

The aim of this paper is to assess the heterogeneity of §'>C in a
single seep carbonate sample to reveal the evolution of seep fluids
during carbonate formation. We describe different types of
components of the studied carbonates including clasts, matrix,
and pore-filling cements that represent archive of variation
between different formation stages. We use the obtained data to
constrain the conditions under which carbonate formation
occurred and uncover the temporal carbon isotope heterogeneity
during the precipitation.

2 Samples and methods
2.1 Samples

The Green Canyon block 140 (GC140) seep site is in the
northern upper continental slope of the GOM (Figure 1; Roberts
et al, 1989; Roberts and Feng, 2013). Bathymetric and high-
resolution seismic profiles and side-scan sonographs indicate that
the thin sedimentary sequence over the shallow salt mass of site
GC140 is broken by numerous faults and that most mounded
carbonates are cut due to salt deformation (Roberts and Carney,
1997; Roberts et al., 2000). Previous investigations revealed the
occurrence of mound-like buildups, 20-100 m in diameter and up to
20 m in height, are composed of chaotically oriented carbonate
blocks in the surrounding sediments (Roberts et al., 1990; Roberts
and Aharon, 1994; Roberts et al., 2000; Roberts et al., 2010; Roberts
and Feng, 2013). In terms of the seepage, the site GC140 is currently
not active. However, scattered living tube worms and sponges were
present at the sampling site (Roberts et al., 2010). The studied
authigenic carbonate was recovered during Pisces II dive in 1989

Depth in meters

92°W 91°W 90°W
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(Roberts et al., 1989). The sample was collected from the seafloor.
The water depth at the site was 320 m, and the bottom water
temperature was about 13°C (Roberts et al., 2010).

2.2 Methods

After collection, the sample was rinsed with fresh water and left
to air dry. The resulting carbonate block was photographed digitally
and then cut into slabs using a water-lubricated rock saw. Each slab
was also photographed. Visual examination of the rock slab used to
distinguish main components of the carbonate (see Figure 2), which
were determined to be clasts, matrix, and pore-filling cements. All
components were collected using a dental drill to determine their
mineralogy. Mineralogy was determined using x-ray diffraction
(XRD) using a Rigaku DXR 3000 computer-automated
diffractometer at the Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences (CAS). Bulk samples were
powdered to less than 200 mesh. The x-ray source operated at 40
kV and 40 mA using CuKo radiation equipped with a diffracted
beam graphite monochromator. Scans were made through a 5-65°
using a 0.02° step at 5 sec/step.

Subsamples for carbonate carbon and oxygen isotopes were
extracted from polished rock slabs using a hand-held dental drill.
Clast, matrix, and pore-filling cements were selected for sampling
(see Figure 2 for sampling locations). The powdered samples were
processed with 100% phosphoric acid at 70°C to release CO2 for
analysis using a Delta V Advantage stable isotopic mass
spectrometer at Shanghai Ocean University. All isotope values are
expressed using the d-notion relative to the Vienna-Pee Dee
Belemnite (V-PDB) standard. The values were reported in permil
(%o) with a standard deviation of less than 0.1%o (26) for both §'°C
and §'%0 values.

FIGURE 2

Morphology and sampling points for the carbon and oxygen
isotopes of seep carbonate. Yellow dots represent clasts, blue dots
represent matrix, and purple dots represent pore-filling cements.
Sponge borings around the perimeter indicate exposure on the
seafloor (Roberts and Aharon, 1994).
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3 Results
3.1 Minerology and petrography

The carbonate sample show no obvious stratification and
present as irregular structures. The mineral composition of the
carbonate is summarized in Table 1. Visual examination of the rock
slab revealed that the carbonate consisted mainly of clasts,
carbonate mud matrix, and pore-filling cements (Figure 2). The
paragenetic sequence identified in this study consisted of three
stages: (1) deposition of carbonate clasts; (2) precipitation of
microcrystalline matrix and (3) pore-filing cements. High-Mg
calcite serves as the predominant mineral while a small amount
(less than 3%) of quartz is present for all components. The clasts
occur as homogeneous micrite while the matrix and pore-filling
cements are characterized by a dominance of microcrystalline Mg-
calcite. Geopetal structures in various orientations are common,
suggesting multiple attitudes during the development (Roberts,
2001). Sponge borings around the perimeter indicate exposure on
the seafloor (Roberts and Aharon, 1994).

3.2 Carbonate carbon and oxygen isotopes

The carbon and oxygen isotopic compositions of the three main
types of components vary widely (Table 2; Figure 3). The 3"Cearp
values of the clasts vary between —39.6%o to 2.3%o (mean: —27.6%o,
n =71). The §"*C_,yp, values of the matrix are from —29.4%o to 3.4%o
(mean: —11.6%o, n = 21). The carbon isotopes of pore-filling
cements vary narrowly with 8"Cearp, values between —3.2%o and
3.6%o (mean: 1.7%o, n = 28). In contrast, the stable oxygen isotopic
compositions of these components display relatively narrow ranges,
with §'80 values from 1.9%o to 4.1%o (mean: 3.3%o, n = 71) for
clasts, 1.8%o to 3.9%o (mean: 2.9%o, n = 21) for the matrix, and
2.4%o to 4.1%o (mean: 3.2%o, n = 28) for the pore-filling cements.

4 Discussion

4.1 Implications on megascopic
characteristics and mineral composition of
the carbonate

Seep carbonates have significant potential for preserving
detailed information on the paleoenvironmental conditions of
their formation (Haas et al., 2010; Oppo et al., 2017; Oppo et al.,
2020). The megascopic features of the studied carbonate reflect local
controls, such as the intensity and duration of seep activity at the
formation site. The block is heterogeneous, up to 0.5 x 0.5 x 0.5 m
(length, width and height), represent the biggest carbonate sample
obtained from the Gulf of Mexico (Figure 2; Roberts and Feng,
2013). At a small scale, the carbonate consists of clasts that formed
initially, followed by the matrix, these were then cemented by pore-
filling cements (Figure 2), indicating multiple stages during the
formation of the carbonate. A previous study on samples from the
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TABLE 1 Mineral composition of the seep carbonate.

High-Mg Aragonite = Quartz  Comment
calcite (%) (%)

47 97.8 2.6 Matrix

67 982 1.8

106 97.5 25

60 98.9 11 Clast

101 98.9 11

18 100 Pore-filling

cement
61 99.3 0.7
86 79.1 19.8 1.1

Sample locations are indicated in Figure 2.

TABLE 2 Stable carbon and oxygen isotopic compositions of the seep

carbonate.
TestID  §'°C (%0,VPDB)  §'%0 (%o,VPDB) ~ Comment
1 -1.3 3.6 Clast
2 -34.9 3.4 Clast
3 -18.3 3.7 Clast
4 -30.6 32 Clast
5 1.7 35 Pore-filling cement
6 -34.4 3.4 Clast
8 -25.3 3.6 Clast
9 -24.4 35 Clast
10 -24.2 3.8 Clast
11 -16.3 35 Matrix
12 -20.4 2.8 Matrix
13 -19.9 35 Clast
14 -324 2.7 Clast
15 -22.2 35 Clast
16 -11 39 Matrix
17 32 33 Pore-filling cement
18 0.4 4.1 Pore-filling cement
19 -3.1 35 Matrix
20 -22.3 33 Clast
22 -34.8 34 Clast
23 -33.3 33 Clast
24 -36.9 34 Clast
25 -31.6 2.3 Clast
27 3 3.6 Pore-filling cement
28 -34.2 33 Clast
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TestID  8'C (%0,VPDB)  §'°0 (%0,VPDB) ~Comment
29 -33 3.1 Clast
30 -6.5 1.8 Matrix
31 1.4 2.9 Pore-filling cement
32 3.5 3.3 Pore-filling cement
33 -29.6 33 Clast
34 -28.8 33 Clast
35 33 2.4 Pore-filling cement
36 -13.8 32 Clast
37 -325 33 Clast
38 -17.9 34 Clast
39 -17.4 34 Clast
40 -25.1 33 Clast
41 -32.6 2.6 Clast
42 -29.7 3.6 Clast
43 -26.7 2.8 Clast
44 -27.5 33 Clast
45 -34.2 32 Clast
46 -0.3 34 Pore-filling cement
47 -33.6 3.4 Clast
48 -322 32 Clast
49 -30 3.2 Clast
50 -32.6 32 Clast
51 -1.5 2.8 Matrix
52 -18 3 Matrix
53 0.5 3.2 Pore-filling cement
54 -2.7 33 Pore-filling cement
55 -35.3 33 Clast
56 -29.4 35 Clast
57 -36.7 3.3 Clast
58 -36.9 3.4 Clast
59 23 32 Clast
60 -7.7 3.1 Matrix
61 2.3 3.2 Pore-filling cement
62 34 3.7 Pore-filling cement
63 -0.9 3 Matrix
64 -20.7 2.4 Matrix
65 -9.9 3.7 Matrix
66 -22.6 3.7 Matrix
67 -31.3 39 Clast
(Continued)
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TABLE 2 Continued TABLE 2 Continued
TestID  §'°C (%0,VPDB)  §'®0 (%0,VPDB) Comment TestID  §'°C (%o,VPDB)  §'®0 (%0, VPDB) ~Comment
68 -10.9 3 Matrix 108 -3.4 3 Clast
69 -33.6 2.8 Clast 109 -30.9 3.1 Clast
70 -34.9 35 Clast 110 -34.3 2.8 Clast
71 -15.5 32 Clast 111 -10.3 1.9 Matrix
72 -17.3 3.5 Clast 112 -9.3 3 Clast
73 -18.8 32 Clast 113 2.7 29 Pore-filling cement
74 -33 3.7 Clast 114 1.9 2.7 Pore-filling cement
75 -3.2 35 Pore-filling cement 115 1.9 3 Pore-filling cement
76 -27.7 2 Clast 116 1.9 3.1 Pore-filling cement
77 -26.7 32 Clast 117 14 2.7 Pore-filling cement
78 -28.1 3.9 Clast 118 1.5 2.4 Pore-filling cement
79 -10.7 3.1 Matrix 119 1.8 32 Pore-filling cement
80 2.5 35 Matrix 120 34 33 Pore-filling cement
81 -9.7 33 Clast 121 -294 2.2 Matrix
82 -36 2.3 Clast 122 -28.8 2.8 Matrix
83 -36 35 Clast 123 -23.7 33 Matrix
84 -34.8 34 Clast 124 -27.9 2.7 Clast
85 1.8 35 Pore-filling cement Sample locations are indicated in Figure 2.
86 1.2 35 Pore-filling cement
87 -2.6 4.1 Clast
88 -4.2 3.4 Clast 50 (%o, VPDB)
89 3.6 38 Pore-filling cement 0 2 4 6
90 -0.3 3.6 Pore-filling cement
91 1.9 3.6 Pore-filling cement 5
Y3
[ ]
92 32 2.9 Pore-filling cement °o®
(<] (<]
oe
e® ©
93 -38 35 Clast 9
o (o)
94 -37.5 32 Clast -5 1 °
L)
95 -32.5 4 Clast o ° Op o
[m) )
96 25 1.9 Matrix a
. : > o
é -1 5 7 e} °
97 -27.8 3.7 Clast = @
3} ®o” 0
98 -39.6 33 Clast "—I’o o © o
[ele™Y
99 353 3.6 Clast %5 0
-25 1 0%
O O
101 34 23 Matrix o o O o0p
o © cg;oo
102 -37.8 34 Clast ° o
@Bd) o o
103 -33.3 3 Clast -35 1 o 5
104 -37.3 33 Clast oClast o&
) ® Matrix
105 21 34 Pore-filling cement e Pore-filling cement
106 -334 34 Clast -45
FIGURE 3
107 354 L9 Clast Stable carbon and oxygen isotopic compositions of seep carbonate.
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same site identified three types of carbonates with "*C ages from
46.5 ka to 11.7 ka BP (Bian et al,, 2013). The observed geopetal
structures with different orientations in the carbonate indicate
multiple reworking, most likely resulting from salt tectonics in
this area (Roberts, 2001; Figure 2).

The precipitation of carbonate is related to the presence of
rising methane-rich fluids, which migrate upward through faults
(Figure 1; Roberts and Feng, 2013). The predominance of high-Mg
calcite and the negligible content of background sediment (< 3%
quartz) in the seep carbonate suggests that the carbonate
precipitated in sediment (Table 1; Gontharet et al., 2007). As
suggested by numerous studies, high-Mg calcite formation occurs
in a deep sediment column with relatively low sulfate content
(Burton, 1993; Greinert et al., 2001; Bayon et al., 2007; Haas
et al., 2010).

4.2 Constraints on the temporal §*C
heterogeneity in seep carbonate

The authigenic minerals in cold seeps help to reveal the
chemistry of the diagenetic fluids. The oxygen isotope
composition of seep carbonates is commonly a convolution of
multiple variables, such as temperature, fluid source, pH and
growth rate (Watkins et al, 2014). In this study, the oxygen
isotope compositions fall within the typical range of seep
carbonate in the Gulf of Mexico (Roberts et al., 2010). The
variation of carbon isotope in seep carbonate is basically
controlled by the mixability of different carbon sources
(Gontharet et al, 2007). The extremely large variable range of
S Ceary, values (from —39.6%o to 3.6%o; Figure 3) of the sample
reveal that multiple DIC sources were involved during the
precipitation of the carbonate. At GC140 seep site, potential
carbon sources include: 1) methane (8'°C = —110%o to —30%o;
Whiticar et al., 1986; Whiticar, 1999), 2) crude oil fraction (813C =
—35%0 to —25%o; Roberts and Aharon, 1994), 3) seawater (613(3 =0
+ 3%o; Anderson and Arthur, 1983), and 4) residual CO, from
methanogenesis (813C as high as 26%o; Paull et al, 2007). The
lowest 8'*Cepp value of —39.6%o suggest that methane is the
primary carbon source, while the highest 8"3Carpy value of 3.6%o
points to the possible contribution of residual CO, from
methanogenesis (cf. Bian et al, 2013). Although significant
isotopic variations were observed within individual samples, the
scattered distribution of the 8'>C,y, values makes it challenging to
determine the DIC source based solely on carbon isotopes.

Nevertheless, the variation in 8"°C_,, values among different
seepage stages of carbonate formation suggests a shift in dominant
carbon sources. The relatively more negative carbon isotopic ratios
(from -39.6%0 to 2.3%o0; mean: —27.6%o, n = 71) of the clasts
indicate that methane is the primary carbon source. The moderately
negative 3'°C.,y, values (from —29.4%o to 3.4%o; mean: —11.6%o, n =
21) of the matrix likely reflect less incorporation of methane-
derived DIC compared to clasts due to a decrease in seepage
intensity. The 8" Cearp, values close to 0 of the pore-filling cement
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(from —3.2%o to 3.6%0; mean: 1.7%o, n = 28) likely result from the
incorporation of seawater DIC due to the cessation of seepage. The
contribution of DIC from residual CO, from methanogenesis
cannot be ruled out but the contribution should not be
significant. The 8" Cearp values of clast, matrix, and pore-filling
cements that formed during different seepage stages provide insight
into the temporal evolution of local fluid sources at site GC140.

4.3 A time-capsule §°C,,, of seep system

In the Gulf of Mexico (GOM), the deformation of salt bodies
and faults results in dynamic fluid flow, leading to rapid expulsion
of fluid and gas. This process creates conditions that are favorable
for the formation of authigenic carbonates in close proximity to the
seafloor (Roberts, 2001; Roberts, 2011). The carbonate outcropping
at the seafloor provides an accessible overview to monitor the long-
term dynamics of fluid and gas expulsions. By integrating
mineralogical and geochemical data, a schematic model of the
evolution of seep fluids at site GC140 is proposed (Figure 4; Bian
et al., 2013).

During stage I, high flux fluid flow induced the formation of
clasts in the subsurface sediments. The high methane flux resulted
in relatively negative 8'°C values of the carbonates (Luff and
Wallmann, 2003; Peckmann and Thiel, 2004). In stage II, low flux
of fluid seepage at the studied site led to the formation of the matrix
and voids. The previously formed clasts were cemented together by
a surrounding matrix sediment and left voids during this stage. In
stage III, fluid seepage decreased, and the formation of pore-filling
cements tended to occur. At the same time, seawater was
transported downwards from a minor mode to a moderate
mode (Figure 4).

It is noteworthy that during all three stages, salt tectonics, such
as salt bodies and salt diapirs, developed in the study site (Cook and
D’Onfro, 1991; Sassen et <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>