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Editorial on the Research Topic
Cuproptosis and tumor

As a trace element, copper is widely involved in the physiological activities of cells and
plays an important role. Accumulation of copper in cells can induce oxidative stress and
disrupt cellular function, thus copper homeostasis in cells is strictly regulated. Cuproptosis is
a new type of programmed cell death induced by copper and is different from other types
such as apoptosis, pyroptosis, and ferroptosis (Tsvetkov, et al., 2022). Copper ions bind to
lipoacyl proteins during the tricarboxylic acid (TCA) cycle, leading to abnormal
oligomerization of lipoacyl protein (Li, et al., 2022). In addition, the level of iron-sulfur
cluster proteins can be reduced by copper ions, resulting in toxic stress reactions in proteins
and leading to cell death. Cuproptosis impacts the pathogenesis of various diseases, including
hepatolenticular degeneration, neurodegenerative diseases, and cancer (Wang, et al., 2023).
Therefore, targeting cuprotosis may become a potential treatment method for various
diseases and has attracted widespread attention.

This Research Topic focuses on the molecular mechanism of cuprotosis in the
development of tumors and the potential therapeutic approach to targeting cuprotosis.
Based on the significant impact of cuproptosis in the pathogenesis of colorectal cancer,
Li et al. identified potential cuprotosis-related genes (CRGs) and developed a new
predictive model using LASSO regression and multivariate Cox stepwise regression in
the TCGA dataset, which evaluates the immune characteristics of colorectal cancer
patients while predicting their prognosis. In addition, Wang et al. comprehensively
analyzed the relationship between CRG and TME in colon adenocarcinoma (COAD),
constructed a CRG risk scoring system, and accurately predicted the survival rate of
COAD patients. The CRG risk scoring systems have provided clinical doctors with new
insights to develop more effective and personalized treatment strategies. Fan et al.
designed a new nomograph containing CRG scores and clinical characteristics, which
can predict the 3-year, 5-year, and 7-year recurrence risk of ER + breast cancer. Liu et al.
revealed the potential impact on the overall survival period, immune invasion, drug
sensitivity, and metabolic spectrum of breast cancer through CRG. Similarly, scholars
have also explored the prognostic value of CRG in prostate adenocarcinoma, lung
adenocarcinoma, and gastric cancer.
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The impact of cuproptosis on the occurrence and development
of hepatocellular carcinoma, as well as its potential targets and
prognostic value, seems to have aroused great interest. For example,
Shao et al. and Shi et al. developed scoring models based on CRG to
predict the prognosis of hepatocellular carcinoma and revealed the
potential synergistic effect of novel immunotherapies such as
TIGHT, CD274, and LAG-3 on cuproptosis. Cao et al. explained
the characteristics of cuproptosis in hepatocellular carcinoma
through single-cell sequencing and genetic multiomics and
identified that BEX1 may be a key hub gene mediating
cuproptosis in hepatocellular carcinoma and serve as a potential
therapeutic target. Wang et al. explained the potential role of
targeted cuproptosis in targeted immune microenvironment
therapy for hepatocellular carcinoma and proposed that CRG can
serve as a biomarker for immune checkpoint inhibitor therapy.

Although this Research Topic has collected many interesting
and valuable research results, the relationship between cuproptosis
and tumors still needs to be further explored. A deeper
understanding of the role of cuproptosis in different tumor
mechanisms should be explored, which may include aspects such
as cell death, energy metabolism, and tumor immunity (Chen, et al.,
2022). In addition, the role of targeted cuproptosis in tumor
treatment should also be taken seriously. Recent studies have
shown that inducing abnormal programmed cell death may be a
potential method for treating and preventing tumor diseases.
Therefore, targeting cuproptosis to increase the level of
cuproptosis in tumor cells provides a new approach for tumor
treatment. Cuproptosis, as an immunogenic death (ICD), can
promote the release of tumor antigens, increase antigen
presentation levels, promote T cell activation, and enhance anti-
tumor immunity (Xie, et al., 2023). Therefore, targeting cuproptosis
as a supplement to immunotherapy or an adjuvant therapy to
improve the effectiveness of immunotherapy has enormous
potential application value. The combination of cuproptosis with
other therapies such as chemotherapy, radiotherapy, and
photodynamic therapy has also received attention (Li, et al.,
2023). Currently, drug delivery systems have received a lot of
attention. The drug delivery system can accurately deliver drugs
that induce cuproptosis to the tumor microenvironment. While
improving the level of cuproptosis in tumor cells, it can reduce the
systemic toxicity and side effects of drugs, thereby improving the
survival period and quality of life of tumor patients. This will be the
focus of future research.
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Objective: Gastric cancer has a poor prognosis and high mortality. Cuproptosis, a

novel programmed cell death, is rarely studied in gastric cancer. Studying the

mechanism of cuproptosis in gastric cancer is conducive to the development of

new drugs, improving the prognosis of patients and reducing the burden of disease.

Methods: The TCGA database was used to obtain transcriptome data from

gastric cancer tissues and adjacent tissues. GSE66229 was used for external

verification. Overlapping genes were obtained by crossing the genes obtained by

differential analysis with those related to copper death. Eight characteristic genes

were obtained by three dimensionality reduction methods: lasso, SVM, and

random forest. ROC and nomogram were used to estimate the diagnostic

efficacy of characteristic genes. The CIBERSORT method was used to assess

immune infiltration. ConsensusClusterPlus was used for subtype classification.

Discovery Studio software conducts molecular docking between drugs and

target proteins.

Results: We have established the early diagnosis model of eight characteristic

genes (ENTPD3, PDZD4, CNN1, GTPBP4, FPGS, UTP25, CENPW, and FAM111A)

for gastric cancer. The results are validated by internal and external data, and the

predictive power is good. The subtype classification and immune type analysis of

gastric cancer samples were performed based on the consensus clustering

method. We identified C2 as an immune subtype and C1 as a non-immune

subtype. Small molecule drug targeting based on genes associated with

cuproptosis predicts potential therapeutics for gastric cancer. Molecular

docking revealed multiple forces between Dasatinib and CNN1.

Conclusion: The candidate drug Dasatinib may be effective in treating gastric

cancer by affecting the expression of the cuproptosis signature gene.

KEYWORDS

gastric cancer, cuproptosis, Diagnostic model, molecular docking, cancer
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1 Introduction

Gastric cancer is one of the most commonmalignant tumors in the

world, with the third highest mortality rate from cancer. In 2020, the

number of new cases of stomach cancer in the world exceeded 1

million, and 769,000 people died from stomach cancer (1). East Asia is

the concentrated area of the increasing gastric cancer cases in the

world, and our country is the increasing main country in East Asia (2).

The National Cancer Center reports that gastric cancer ranks second

place in the incidence rate of malignant tumors and third in the

mortality rate, posing a serious threat to the health of residents (3). The

development of gastric cancer is a complex evolutionary process

involving many factors and genes (4). Helicobacter pylori infection is

the most important risk factor for gastric cancer. In addition, excessive

consumption of preserved foods, alcohol consumption, and smoking

are also risk factors for an increased risk of gastric cancer (5, 6). The

molecular mechanism of gastric cancer is not fully understood. Current

studies suggest that gastric mucosal epithelial cells undergo gene

mutations under the influence of a number of complex factors,

which then activate proto-oncogenes or silence tumor suppressor

genes, thereby disrupting the balance between cell proliferation and

apoptosis, and ultimately leading to the development of gastric cancer

(7, 8). According to Lauren’s classification, gastric cancer is mainly an

intestinal type (9). The occurrence of intestinal gastric cancer is a multi-

step cascade reaction: non-atrophic gastritis-multifocal atrophic

gastritis with metaplasia-intestinal metaplasia-intraepithelial

neoplasia-early gastric cancer-invasive advanced gastric cancer (10).

Most of the previous studies have focused on advanced gastric cancer,

while there are relatively few studies on abnormal molecular expression

in early gastric cancer. The treatment and prognosis of gastric cancer

are closely related to the timing of diagnosis. The 5-year survival rate of

early gastric cancer patients after eradication is more than 90%, while

the 5-year survival rate of advanced gastric cancer patients after

eradication is less than 30% (11). In recent years, with the gradual

enhancement of people’s health awareness and the continuous progress

of medical technology, the diagnosis rate of early gastric cancer has

been greatly improved. The molecular mechanism of early gastric

cancer is a hot topic in translational medicine in recent years.

With the rapid development of life sciences, studies on genomics,

transcriptomics, proteomics, and metabolomics are emerging in an

endless stream, which making it possible to analyze the molecular

map of different stages of cancer transformation of gastric cancer

from multiple dimensions, facilitating the monitoring of the

occurrence, metastasis and drug resistance of gastric cancer.

Futawatari et al. found that KK-LC-1 was abnormally highly

expressed in early gastric cancer tissues, which could be used as a

tumor marker for the diagnosis of early gastric cancer (12). Through

genome-wide expression profiling microarray analysis, Zhang et al.

found that the expression levels of GRIN2D and BRCAl in early

gastric cancer and intraepithelial neoplasia were much higher than

those in paired normal gastric mucosa, while the expression levels of

BCL2L11, RET, and ALB were lower (13). Therefore, if the genes that

regulate the changes in the progression of early gastric cancer can be

screened and the specific mechanism of action can be clarified, it will

be of great importance in the search for new targets of gastric cancer

from the source.
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Copper is an essential nutrient whose REDOX properties make it

both beneficial and toxic to cells (14). Due to the high demand for

copper as a metallic nutrient in tumor growth andmetastasis, copper-

related diagnostic methods are well suited for tumors (14). The

traditional view of copper as merely a cofactor of active site

metabolism has been challenged. A recent study has shown that

intracellular copper induces a novel form of regulatory cell death

(RCD), which differs from traditional cell death and has been termed

“cuproptosis” (15). Cuproptosis is a type of programmed cell death

that is distinct from apoptosis and may offer provide new hope for the

treatment of gastric cancer. Although scientists have identified a

number of genes and proteins that regulate cuproptosis, including

FDX1, LIAS, DLAT, and CNN1, among others (15). However, the

mechanism of action of these cuproptosis-related genes (CRGs) in

gastric cancer remains unclear. Little is also known about the role of

CRGs in diagnosis and the tumor microenvironment. Recent studies

have reported that cuproptosis is closely related to cancer progression

(15). There is increasing evidence that cuproptosis-associated long

non-coding RNAs can be used as biomarkers for the prognosis of

gastric cancer (16–18). However, the study on cuproptosis-related

genes in early diagnosis and treatment of gastric cancer has not been

reported. Therefore, in-depth understanding of the characteristics of

TME immune cell infiltration mediated by many CRGs will help

researchers better understand the potential mechanism of gastric

cancer, predict the immune treatment response, and develop new safe

and efficient targeted drugs.
2 Materials and methods

2.1 Microarray data set and
difference analysis

Microarray datasets from gastric cancer patients and adjacent

tissues were obtained from the TCGA database. The limma package

in R was then used to identify and standardize differentially expressed

genes (DEGs) by comparing the gene expression levels of gastric

cancer patients and adjacent tissues (19). P < 0.05 and | logFC | > 1

were used to define the standard of DEG. The ACRG (Asian Cancer

Research Group) dataset GSE66229 was used for external validation.
2.2 Analysis of cuproptosis and
immune-related genes

From a genome-wide CRISPR-Cas9 dysfunction test reported in

the previous literature (15), a total of 347 potential copper-associated

genes were identified (FDR<0.05). The list of 1793 immune-related

genes were obtained from the Immunology Database and Analysis

Portal (ImmPort; https://www.immport.org/home).
2.3 Functional annotation and pathway
enrichment analysis

ClusterProfiler packages are used for functional analysis of

biological functions, including Gene Ontology (GO) and the Kyoto
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Encyclopedia of Genes and Genomes (KEGG). P values are adjusted

using the Benjamini-Hochberg method or FDR for multiple testing

corrections. The threshold is set to FDR<0.05. The GO category

includes biological processes (BP), molecular functions (MF), and

cellular components (CC). GENEMANIA (http://genemania.org/

search/) was used to build a gene-interaction network for DEGs to

evaluate the function of these genes.
2.4 Selection of characteristic genes

Three machine learning algorithms, LASSO, Random Forest, and

SVM-RFE, were used to screen the trait genes. LASSO is a

dimensionality reduction method that has been shown to be superior

to regression analysis in evaluating high-dimensional data. The LASSO

analysis was performed using the steering/penalty parameters with 10x

cross-validation via the glmnet package. Recursive Feature Elimination

(RFE) of the Random Forest algorithm is a supervised machine

learning method for sequencing genes associated with atherosclerotic

plaque progression and immunity. The predicted performance was

estimated by ten-fold cross-validation. SVM-RFE is superior to linear

discriminant analysis (LDA) and means square error (MSE) methods

in selecting correlation features and removing redundant features.

SVM-RFE was applied to feature selection by ten-fold cross-

validation. The receiver operating characteristic (ROC) curve and

area under the curve (AUC) were used to estimate the

diagnostic effectiveness.
2.5 Establishment of a line graph

The rms package was used to incorporate characteristic genes to

create a column map. Calibration curves are used to assess the

accuracy of a column plot. The clinical practicability of the line map

was assessed by decision curve analysis.
2.6 Estimation of immune cell infiltration in
gastric cancer

The CIBERSORT algorithm was used to estimate the proportion

of immune cell infiltration in gastric cancer samples. Estimates of

immune cell infiltration with P<0.05 were used for further analysis.
2.7 Consensus cluster analysis

Based on the expression profile of gastric cancer and

cuproptosis-associated genes, the number of unsupervised

categories in gastric cancer was quantitatively estimated by the

ConsensusClusterPlus software package (50 iterations and 80%

resampling rate) using the consensus clustering method (20). The

consensus matrix graph, consensus cumulative distribution

function (CDF) graph, the relative change in area under the CDF
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curve, and tracking graph were used to find the optimal clustering

number. Principal component analysis (PCA) was used to define

differences in the expression of gastric cancer and cuproptosis-

related genes between the two subtypes. The PCA plot was

generated using the ggplot2 package.
2.8 Small molecule drug prediction

We used the three characteristic genes selected by a gene-set

enrichment network tool Enrichr based on the Drug

Characterization Database (DSigDB) to predict potential drugs.

DSigDB is a free Web-based repository of information on GSEA

drugs and their target genes. DSigDB currently contains a total of

22,527 genomes, including 17,389 drugs and 19,531 genes. P<0.05

was used as the statistical criterion to identify drugs that were

significantly associated with target genes.
2.9 Molecular docking

For molecular docking, Dasatinib was selected as the receptor

target in this study. The 3D crystal structures of these receptors were

downloaded from the RCSB Protein database (http://www.rscb.org/

pdb/). PubChem ligand from the national library of medicine

(https://pubchem.ncbi.nlm.nih) to download and save the data file

format for the space (SDF). The Automatic Docking Tool version

1.5.6 was used to prepare protein ligand complexes for docking and

for 2D and 3D visualization of protein ligand complexes, operated

using the Discovery Studio Visualization tool 2016.
3 Results

3.1 Microarray data sets and
difference analysis

The mRNA expression profile of gastric cancer was retrieved

based on the TCGA database, and 375 cancer tissues and 32 para-

carcinoma tissues were obtained. The limma package in R was used

for the identification and standardization of differentially expressed

genes (DEG). The threshold was set as P < 0.05 and | logFC | > 1,

and 2951 differentially expressed genes were obtained. There were

2,532 up-regulated genes and 419 down-regulated genes. The DEGs

data is visualized as A volcano map (Figure 1A) and the first 50

DEGs are shown in a heat map (Figure 1B). The basic information is

in the supplementary documents.
3.2 Analysis of cuproptosis-related genes

347 cuproptosis genes were collected according to relevant

literature. Intersecting with DEGs, 66 overlapping genes (OG)

were obtained (Figure 1C).
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3.3 GO term and KEGG pathway
enrichment analysis of OG

GO analysis shows that the biological process (BP) of OG

mainly focuses on the cellular nitrogen compound biological

process, macroporous biological process, and cellular

macroporous biological process (Figure 2A). The main cell

components (CC) include intelligent non membrane-bound

organelle, on-membrane-bounded organelle, and nuclear part

(Figure 2B). Molecular function (MF) includes nuclear acid

binding, RNA binding, and purine ribonuclease triphosphate

binding (Figure 2C). Genes are mainly involved in the KEGG

pathway of Aminoacyl tRNA biosynthesis, Cell cycle and

Ribome (Figure 2D).
3.4 Analysis of protein interaction
network of OGs

Based on the string website, we obtained the protein interaction

network of the OG gene set. The software Cytoscape was used to

present the results. The larger the circular area of the gene, the

higher the degree score and the greater the importance. This shows

that the element gene of the central circle is very important

(Figure 3A). In addition, based on GeneMANIA’s functional
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annotation model, a co-expression network was established to

describe the genetic interaction of 66 OGs and their co-expressed

genes (Figure 3B). Multiple attributes based on relationship (57.28%

co-expression), (17.78% physical interaction), (10.91% prediction),

(9.27% genetic interaction), (4.55% co-location). Of the 66 OGs, 13

were highly correlated with mitochondrial gene expression (adj.

P=3.87E-9), and 11 were highly correlated with mitochondrial

translation reaction (adj. P=5.28E-8) (Figure 3B).
3.5 Select characteristic genes
through LASSO, random forest, and
SVM-RFE algorithm

Three algorithms are used to select feature genes. For the

LASSO algorithm, after ten cross-validation, we selected the

minimum standard for constructing LASSO classifier, because

the accuracy of comparison is higher, and 15 characteristic genes

were identified (Figure 4A). For the random forest algorithm, 38

characteristic genes were identified (Figure 4B). For the SVM-RFE

algorithm, 38 characteristic genes were also identified (Figures 4C,

D). After cross-validation, eight characteristic genes (ENTPD3,

PDZD4, CNN1, GTPBP4, FPGS, UTP25, CENPW, and

FAM111A) shared by LASSO, Random Forest, and SVM-RFE

algorithm were finally determined (Figure 1D).
B

C D

A

FIGURE 1

(A) The volcano map depicts the RNA expression levels of differential genes between gastric and paracancer tissues. (B) Heat maps showing
differentially expressed genes between the above groups. (C) VENN diagrams show the intersection of differential genes and cuproptosis-related
genes. (D) VENN diagram shows the intersection of three feature genes screened by machine learning.
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3.6 Diagnostic efficacy and external
validation of characteristic genes in
predicting gastric cancer

Correlation analysis shows that there is a strong correlation

between the eight characteristic genes (Figure 5A). When the eight

characteristic genes (ENTPD3, PDZD4, CNN1, GTPBP4, FPGS,

UTP25, CENPW, and FAM111A) are all fitted into one variable, the

AUC of the ROC curve is 0.996, indicating a good diagnostic efficiency

for gastric cancer (Figures 5B, C). We also estimated the diagnostic

performance of each characteristic gene in predicting gastric cancer in
Frontiers in Oncology 0511
the GSE126307 cohort. The AUC values of area under the ROC curve

of 8 characteristic genes are very good, which proves that these

characteristic genes can estimate the occurrence of gastric cancer.

The expression of the characteristic genes was verified in the external

data set. In the GSE66,229 dataset, the AUC value of the area under the

ROC curve of eight characteristic genes (ENTPD3, PDZD4, CNN1,

GTPBP4, FPGS, UTP25, CENPW, and FAM111A) is also high. When

fitting together, the AUC of the ROC curve is 0.992, which shows that

they can distinguish gastric cancer from healthy controls (Figures 5D,

E). Therefore, the signature genes have excellent diagnostic

performance in predicting the occurrence of gastric cancer.
B

C D

A

FIGURE 2

(A-C) Main BP, CC, and MF of overlapping gene enrichment. (D) Major KEGG pathways for the enrichment of the above overlapping genes.
BA

FIGURE 3

(A) PPI network of overlapping genes. (B) The GeneMANIA database was used to analyze the gene-gene interaction network of OG. Each node
represents a gene. The node color represents the possible function of the corresponding gene.
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3.7 Establishment of characteristic gene
nomogram

In the nomogram, each characteristic gene corresponds to a

score, and the total score is obtained by adding the scores of all the

characteristic genes. The total score corresponds to different risks of

gastric cancer (Figure 6A). The calibration curve, risk comparison,

and clinical decision curve show that a nomogram can accurately

predict the occurrence of gastric cancer (Figures 6B–D).
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3.8 Analysis of immune cell infiltration and
correlation in gastric cancer

The proportion of immune cells in gastric cancer tissue samples

and adjacent tissues is different. Compared with adjacent tissues,

the proportion of B cell plasma, T cell CD4+memory resetting,

Monocyte, and mast cell activated in the cancer group is relatively

high, while the proportion of T cell CD4+memory activated, T cell

follicular helper, T cell regulatory (Tregs), Macrophage M0,
B C

D E

A

FIGURE 5

(A) Circle chart of characteristic gene correlation analysis. (B, C) ROC curve for estimating the diagnostic performance of characteristic genes. (D, E)
ROC curve of externally verified characteristic genes.
B
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A

FIGURE 4

(A) Ten cross-validation of tuning parameter selection in the LASSO model. Each curve corresponds to a gene. LASSO coefficient analysis. The
vertical solid line represents the partial likelihood deviation SE. The vertical dotted line is drawn at the best lambda. (B) Random forest algorithm for
feature selection. (C, D) SVM-RFE algorithm for feature selection.
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Macrophage M1, and mast cell resetting is relatively low

(Figures 7A, B). Correlation analysis showed that there was a

strong correlation between the eight characteristic genes and

immune cells. It shows that the cuproptosis gene may influence

the degree of immune invasion of gastric cancer (Figure 8).
3.9 Construction of two subtypes
of copper dead gastric cancer
based on gastric cancer and
cuproptosis-related genes

Using the consensus clustering method, gastric cancer was

clustered according to the expression profiles of 66 gastric cancer

and cuproptosis-related genes. The optimal number of subtypes is 2,

as determined by the consensus matrix, the CDF chart, the relative

change of area under the CDF curve, and tracking chart

(Figures 9A–D). We noticed that most immune-related genes

were significantly up-regulated in subtype C2 compared with

subtype C1 (Figure 9E). We identified C2 as an immune subtype

and C1 as a nonimmune subtype.
3.10 Prediction and molecular docking of
targeted drugs for gastric cancer

Further, we screened the candidate drugs that may be used to

treat gastric cancer. We consider the eight selected characteristic

genes as drug targets and use the online network tool Enrichr based

on DSigDB for drug target enrichment analysis. The results show

that the top ten drugs may be potential drugs for the treatment of

gastric cancer patients (Table 1). To verify the above results, we
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performed molecular docking between small molecule drugs and

target genes, and the results showed that there are multiple forces

between Dasatinib and CNN1. For example, multiple forces

including hydrogen bonds can be formed (Figure 10). The above

results indicate that candidate drugs may achieve the effect of

treating gastric cancer by influencing the expression of

characteristic genes.
4 Discussion

We established a diagnostic model of cuproptosis for gastric

cancer based on machine learning and other methods, predicted

potential therapeutic drugs based on cuproptosis-related genes, and

finally performed a virtual combination of molecular docking space

structure for therapeutic drugs. The mRNA expression profiles of

gastric cancer were obtained from the TCGA database, and 375

cases of cancer tissues and 32 cases of para-carcinoma tissues were

obtained. We identified 2,951 differential genes in the cancer tissue

compared to the adjacent tissue. There were 2,532 up-regulated

genes and 419 down-regulated genes. Based on three machine

learning algorithms, we selected eight signature genes (ENTPD3,

PDZD4, CNN1, GTPBP4, FPGS, UTP25, CENPW, and

FAM111A). Both internal and external dataset validation and

histogram results indicate that these signature genes can

accurately predict the progression of gastric cancer. There is

limited evidence to support the role of signature genes in gastric

cancer. GTPBP4 is highly expressed in gastric cancer tissues, which

promotes the progression of gastric cancer progression and may

interact with the p53 signaling pathway (21). Low FPGS expression

is an independent predictor of poor prognosis in stage II/III gastric

cancer patients receiving adjuvant chemotherapy after S-1 surgery
B
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FIGURE 6

(A) The nomogram of integrated characteristic genes was established to predict the occurrence of gastric cancer. In the nomogram, each variable
corresponds to a score, and the total score can be calculated by adding the scores of all variables. (B) Prediction accuracy of calibration curve
estimation nomogram. (C) Risk comparison curve of nomograph. (D) Clinical decision curve of the nomogram.
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(22). However, the relationship between the other 6 characteristic

genes and gastric cancer has not been reported.

Cuproptosis is a novel form of programmed cell death

associated with copper accumulation, protein lipidation, and

mitochondrial respiration (15). Cuproptosis is molecularly

distinct from other forms of cell death, such as apoptosis,

necrosis, autophagy, and iron death. Copper binding leads to a

dangerous increase in lipid-acylated TCA circulating protein

function. Excess copper increases lipid-acylated protein

aggregation and Fe-S cluster protein instability, leading to protein
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toxic stress and cell death. As key regulators of cuproptosis, FDX1,

and protein-lipid acylation play an important role in this process.

Copper ionophores are extremely sensitive to cells that use

mitochondrial respiration, which can be explained by their large

number of lipid-acylated TCA enzymes. Tumor cells have abnormal

mitochondrial metabolism due to the loss of active oncogenes and

tumor suppressor genes (23). Aerobic glycolysis is widely observed

in activated immune cells in the tumor microenvironment (TME)

to support biosynthetic requirements (24). TME is now recognized

to play a key role in carcinogenic effects and cancer development.

The immune microenvironment is closely linked to the

development of tumors (25, 26). It is composed of different types

of immune cells and stromal cells that can provide nutritional

support to tumor cells. The trace element copper has been reported

to play an important role in both cellular and humoral immunity

(27, 28), manipulating various immune cells to activate and

maintain the immune system (29). In this study, we identified

two subtypes C1 and C2 based on cuproptosis. Most immune-

related genes were significantly upregulated in the C2 subtype

compared to the C1 subtype. We identified C2 as an immune

subtype and C1 as a non-immune subtype. The new classification of

immune subtypes is helpful for the individualized classification and
FIGURE 8

Correlation between eight characteristic genes and immune cells.
*P<0.05, **P<0.01.
B

A

FIGURE 7

(A) Immunocyte score heat map *P< 0.05, **P < 0.01, ***P < 0.001. (B) The percentage abundance of tumor-infiltrating immune cells in each sample.
Different colors represent different types of immune cells, the abscissa represents the sample, and the ordinate represents the percentage of
immune cells in a single sample.
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medication guidance of gastric cancer patients. For small molecule

drug screening, we have a list of the top 10 predictors. Numerous
Frontiers in Oncology 0915
studies have confirmed that pemetrexed is a safe and effective drug

for the treatment of metastatic gastric cancer (30–32). As a histone

deacetylase (HDAC) inhibitor, Vorinostat can be used in

combination with capecitabine plus cisplatin (XP) as a

therapeutic agent in patients with gastric cancer (33). Dasatinib,

which targets a variety of cancer kinases has strong antitumor

activity and has been approved for the treatment of leukemia (34).

There is increasing evidence that Dasatinib is also effective in gastric

cancer (35, 36). Molecular docking showed that Dasatinib could

form various forces with CNN1, including hydrogen bonding. The

results indicated that candidate drugs may be effective in the

treatment of gastric cancer by influencing the expression of

characteristic genes. The specific mechanism needs to be further

explored. In the future, we plan to establish SD rat gastric cancer
B C

D E

A

FIGURE 9

(A) Consensus matrix heat map when k=2. (B) Consensus CDF when k=2-9. (C) The relative change of area under the CDF curve. (D) When k=2-9,
the tracking chart of sample classification is displayed. (E) Histogram of distribution of immune cells in subtype grouping.
TABLE 1 Complete basic information was obtained from 261 follow-up
data.

Characteristics Cases

Gender

Male 181

Female 80

Age at surgery

<58 121

≥58 140

Tumor size

<5 cm 131

≥5 cm 130

Histological type

Diffuse 75

Intestinal 186

T classification

T1–2 39

T3–4 222

TNM stage

I + II 48

III + IV 213

Lymph node metastasis

Present 216

Absent 45
FIGURE 10

The 2D image shows the docking complex of Dashatinib and CNN1.
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model and primary gastric cancer cell model in vitro, and use

Dasatinib, siRNA and other intervention measures, combined with

CCK-8, Western Blot, Scratch assay, immunofluorescence and

immunocoprecipitate and other experimental technologies, to

explore related molecular mechanisms from multiple perspectives

and in all aspects. This will contribute to the development of new

targeted therapeutic drugs in molecular pharmacology and help

front-line clinical workers to better treat gastric cancer patients.

Improve the prognosis of patients, improve life treatment, reduce

the burden of family.

This study also has some shortcomings: Firstly, in the gastric

cancer samples in the TCGA database selected for this study, the

para-carcinoma tissues were not well matched to the cancer tissues,

which could lead to false positive results. However, the subsequent

validation of external datasets further confirms the reliability of

the results. Second, the selected therapeutic drugs in this study

were only predicted only by molecular docking without

experimental verification. Subsequent in vivo and in vitro

experiments will be carried out to further investigate the relevant

molecular mechanisms.
5 Conclusion

Eight specific cuproptosis gene diagnostic models and targeted

drugs have been identified in gastric cancer, which may contribute

to early diagnosis and individualized immunotherapy strategies for

gastric cancer patients.
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A cuproptosis random forest cox
score model-based evaluation
of prognosis, mutation
characterization, immune
infiltration, and drug sensitivity
in hepatocellular carcinoma
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and Lichuan Wu1*

1School of Medicine, Guangxi University, Nanning, China, 2Guangxi Scientific Research Center of
Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
Background:Hepatocellular carcinoma is the third most deadly malignant tumor

in the world with a poor prognosis. Although immunotherapy represents a

promising therapeutic approach for HCC, the overall response rate of HCC

patients to immunotherapy is less than 30%. Therefore, it is of great significance

to explore prognostic factors and investigate the associated tumor immune

microenvironment features.

Methods: By analyzing RNA-seq data of the TCGA-LIHC cohort, the set of

cuproptosis related genes was extracted via correlation analysis as a

generalization feature. Then, a random forest cox prognostic model was

constructed and the cuproptosis random forest cox score was built by random

forest feature filtering and univariate multivariate cox regression analysis.

Subsequently, the prognosis prediction of CRFCS was evaluated via analyzing

data of independent cohorts from GEO and ICGC by using KM and ROC

methods. Moreover, mutation characterization, immune cell infiltration,

immune evasion, and drug sensitivity of CRFCS in HCC were assessed.

Results: A cuproptosis random forest cox score was built based on a

generalization feature of four cuproptosis related genes. Patients in the high

CRFCS group exhibited a lower overall survival. Univariate multivariate Cox

regression analysis validated CRFCS as an independent prognostic indicator.

ROC analysis revealed that CRFCS was a good predictor of HCC (AUC =0.82).

Mutation analysis manifested that microsatellite instability (MSI) was significantly

increased in the high CRFCS group. Meanwhile, tumor microenvironment

analysis showed that the high CRFCS group displayed much more immune cell

infiltration compared with the low CRFCS group. The immune escape

assessment analysis demonstrated that the high CRFCS group displayed a
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decreased TIDE score indicating a lower immune escape probability in the high

CRFCS group compared with the low CRFCS group. Interestingly, immune

checkpoints were highly expressed in the high CRFCS group. Drug sensitivity

analysis revealed that HCC patients from the high CRFCS group had a lower IC50

of sorafenib than that from the low CRFCS group.

Conclusions: In this study, we constructed a cuproptosis random forest cox

score (CRFCS) model. CRFCS was revealed to be a potential independent

prognostic indicator of HCC and high CRFCS samples showed a poor

prognosis. Interestingly, CRFCS were correlated with TME characteristics

as well as clinical treatment efficacy. Importantly, compared with the low

CRFCS group, the high CRFCS group may benefit from immunotherapy and

sorafenib treatment.
KEYWORDS

cuproptosis, hepatocellular carcinoma, prognostic signature, immunotherapy,
tumor microenvironment
1 Introduction

Liver cancer remains one of the most lethal cancers, with

830,000 deaths worldwide in 2020, accounting for 8.3% of cancer

related deaths (1). Hepatocellular carcinoma (HCC) is the most

frequent of all primary liver cancers, comprising 75-85% of cases

(2). Due to the lack of diagnostic marker, most of the HCC patients

are diagnosed at advanced stages with a poor prognosis (3).

Therapies such as traditional cytotoxic drugs are rarely effective.

Over the last decade, sorafenib and lenvatinib are the only systemic

drugs that have been proven to be clinically effective in the therapy

of part of the advanced HCC patients (4). Therefore, it is crucial to

find valid prognostic models as well as treatment strategies.

Immune checkpoint inhibitor (ICIs) therapy is one of the fastest-

developing immunotherapy strategies, which effectively breaks the

dilemma of cancer treatment, especially in advanced cancer.

However, the efficacy of immunotherapy varies widely among

patients (5). HCC is intimately correlated with inflammation and

has a complicated tumor microenvironment (TME) (6). Immune

checkpoint therapy is being used for HCC treatment recently. The

sensitivity of immunotherapy in HCC varies significantly due to the

heterogeneity and complexity of the TME (7). Revealing the potential

TME characteristics of HCC patients is hence crucial for predicting

the efficacy of immunotherapy.

Copper (Cu) is a required element for human health.

Disturbance of intracellular coppers is associated with diverse

pathologies (8). Previous studies have demonstrated that Cu levels

are significantly increased in tumor tissues and cancer patients

derived serum (9–12). The elevated levels of Cu are reported to be

involved in tumor cell proliferation, angiogenesis, and metastasis

(13, 14). Cu may also increase the incidence of HCC in Wilson’s

disease patients (15). Both copper chelators and copper ionophores

have been exploited as antitumor drugs and tested in clinical trials
0219
(16–18). Besides, Cu homeostasis is essential for maintaining

normal immune function (19–21) and elevated Cu levels in

tumor cells contribute to immune escape by enhancing PD-L1

expression (22). These findings suggest that Cu plays an important

role in tumorigenesis and TME shaping. The Cu metabolism is

recognized as a unique vulnerability in cancer (23) and targeting Cu

metabolism might be an alternative strategy for cancer treatment

(24). Recently, a novel Cu induced programmed cell death termed

cuproptosis was revealed which occurs by targeting lipoylated TCA

cycle proteins (25). Previous studies have shown that cuproptosis-

related signature and genes are closely related to TME in colorectal

cancer (26), breast cancer (27), lung cancer (28), bladder cancer

(29), kidney renal clear cancer (30), and so forth. However, the

relationships between cuproptosis-related genes and prognosis,

immune microenvironment, and drug sensitivity of liver cancer

has not been fully elucidated.

In this study, cuproptosis-related gene sets were derived by

correlation analysis as generalization features. Then a random forest

Cox prognostic model was constructed, and the cuproptosis

random forest Cox score (CRFCS) was built by random forest

feature filtering and univariate multivariate Cox regression. The

HCC patients were clustered according to CRFCS and investigated

in terms of prognosis analysis, mutational characteristics, tumor

microenvironment, prediction of immune evasion, immune

checkpoint, and drug sensitivity.
2 Materials and methods

2.1 Data acquisition and processing

The mRNA expression data, somatic mutation data, and

corresponding clinical information of HCC were downloaded from
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the TCGA database via the R package “TCGAbiolinks”. The clinical

and mRNA expression data of GSE116174 and ICGC-LIHC-US

cohorts were downloaded from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) and the ICGC database (https://

dcc.icgc.org/projects/), respectively. Then, the mRNA data were

converted to TPM format and normalized by log2 transformation.
2.2 Development of cuproptosis random
forest cox score (CRFCS)

The cuproptosis-associated gene set was derived as a

generalization feature by correlation analysis based on the TCGA-

LIHC cohort. We used the method “rfsrc” in the R package

“randomForestSRC” to construct a random forest model and

selected features. The Cox regression was constructed based on

the mentioned characteristics, and Regression coefficients were

obtained by the “coxph” method in the “survival” package. The

Cuproptosis Random Forest Cox Score (CRFCS) was established by

the following formula:

Score =oEiri

Where Ei is the expression of feature gene i, and ri is the

characteristic co-efficient of feature gene i.
2.3 Survival analysis

Kaplan-Meier (K-M) survival analysis and visualization were

conducted with the “survival” and “survminer” packages. The time-

related receiver operating characteristic curve (time ROC) was

performed by the R package “pROC” to evaluate the prediction

performance of CRFCS in the training and test sets.
2.4 Processing and analysis of
mutation profile

The analysis and visualization of mutation profile were

performed by the “maftools” package. We plotted the mutation

waterfall by the method “oncoplot”. After removing the loci falling

into the CNV region, the Mutant-Allele Tumor Heterogeneity

(MATH) score of the samples was calculated by the

“inferHeterogeneity” method (31). MSI scores were calculated by

the “MSIsensor” method (32).
2.5 TME cell infiltration assessment

The immune cell infiltration was estimated by both ssGSEA and

CIBERSORT algorithms. For the ssGSEA method, we used the

TME-infiltrating gene set from Charoentong et al., which includes

28 immune cell types (33). We evaluated the enrichment fraction of

each sample in the cohort via the ssGSEA method to characterize
Frontiers in Immunology 0320
the immune cell invasion in each sample. The CIBERSORT

algorithm worked in conjunction with the immune infiltration

signature matrix LM22 to evaluate the invasion of various

immune cells in the samples. In the case of stromal cells, we

estimated the stromal cell infiltration by evaluating the expression

of markers for each stromal cell.
2.6 Immune evasion prediction

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm is used to assess the immune evasion mechanism of

tumors (34). The effect of both T-cell dysfunction and T-cell

exclusion mechanisms on immune evasion was evaluated

separately by the TIDE algorithm and the TIDE score was used

to predict the degree of immune evasion of the samples.
2.7 Drugs sensitivity prediction

The IC50 values of the drugs in the training set samples were

evaluated by the “pRRopheticPredict” method of the R package

“pRRophetic”, with the dataset “cgp2016”. We calculated the

correlation between IC50 values and CRFCS subgroups to

investigate the association between CRFCS and drug sensitivity.
2.8 Statistical analysis

The analysis and visualization of the data were performed in R

(version 4.1.1). The Wilcoxon test was used to compare the data

between the two groups. Charts were mainly visualized by the “

ggplot2 “ package. The p-value<0.05 was regarded as statistically

significant (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).
3 Results

3.1 The expressions and prognosis analysis
of cuproptosis-related genes in HCC

We initially evaluated the expressions of ten genes in HCC

which were reported to be crucial regulators of cuproptosis (25). It

was noticed that among these ten genes, all of them except FDX1

were significantly highly expressed in HCC (Figure 1A), indicating

that the cuproptosis process might be associated with HCC. To

further explore the prognosis of cuproptosis genes in HCC, we

performed a correlation analysis between cuproptosis gene

expression and HCC patients’ survival (OS) (Figure 1B). The

results displayed that genes DLAT (HR =1.71, p =0.003), PDHA1

(HR =1.42, p =0.046), GLS (HR =1.49, p =0.023), and CDKN2A

(HR =1.78, p =0.001) had prominent prognostic significance in

HCC, and patients with high expression of these four genes

exhibited shorter survival (Figures 1C–F).
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3.2 Construction of cuproptosis random
forest cox score (CRFCS) model

Given that cuproptosis may be involved in the progression of

HCC, a more robust prognostic model was constructed using the

above-mentioned cuproptosis genes with prominent prognostic

significance (DLAT, PDHA1, GLS, and CDKN2A). First and

foremost, correlation analysis of the above genes was initially

conducted via analyzing data from TCGA-LIHC cohort to

enhance the generalization ability of the model. For each

cuproptosis gene listed above, the top 25 expression-related genes

were identified as generalized features based on correlation

coefficients. For the gene sets after the generalization of features,

GO/KEGG analysis was performed to ensure that the characteristics

were not distorted by generalization. The results indicated that the

gene set after features generalization remained associated with key

pathways of cuproptosis, such as the TCA cycle (Figures 2A, B).

Training the gene set as input of the random forest model, the out-

of-bag error of the model stabilized when the number of trees was

approximately around 1000 (Figure 2C). The random forest model
Frontiers in Immunology 0421
derived the variable importance (VIMP) ranking of the input

features (Figure 2D). We selected the top 20% of the ranked

features to be involved in the construction of the Cox model.

Excluding the features not significant in the univariate Cox test,

17 features were obtained and model scores were established

according to the steps in Materials and Methods (Figure 2E).
3.3 Prognosis prediction of CRFCS

To evaluate the accuracy of the model’s predictions, we

validated CRFCS in the training set TCGA-LIHC and the external

validation set ICGC-LIHC-US and GSE116174. We divided the

samples of each set into high and low score groups by the median of

CRFCS. In the TCGA-LIHC set, the contemporaneous surviving

rate of the high CRFCS subgroup samples was much lower than that

of the low CRFCS subgroup. The HR for the CRFCS subgroups was

2.86 (1.96-4.16), with a p-value less than 0.001 (Figure 3A).

Likewise, the survival of the high CRFCS subgroup samples was

shorter in both validation cohorts. In the ICGC-LIHC-US cohort,
B C D

E F

A

FIGURE 1

The Expressions and Prognosis Analysis of Cuproptosis-Related Genes in HCC. (A) Differential expression of cuproptosis-related genes in the TCGA-
LIHC cohort. (***p<0.001; ns stands for not significant) (B) Correlation between cuproptosis-related gene expression and survival data (OS) of HCC
patients. The horizontal dotted line stands for p=0.05. The vertical dotted line represents HR=1. (C–F) Kaplan-Meier curves of DLAT (C), PDHA1
(D), GLS (E), and CDKN2A (F).
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the HR of the CRFCS subgroup was 2.69 (1.65-4.38) with a p-value

less than 0.001 (Figure 3B) while the HR value was 2.78 (1.24-6.23)

with a p-value of 0.013 in the GSE116174 cohort (Figure 3C).

Subsequently, ROC analysis was performed to evaluate the

diagnostic potency of CRFCS in HCC. The results demonstrated

that CRFCS was a strong predictor in both training and validation

cohorts (Figures 3D–F). The AUC values for predicting OS were

0.820 at 1 year, 0.727 at 3 years, and 0.670 at 5 years in the TCGA-

LIHC training cohort (Figure 3D). While AUC values for predicting
Frontiers in Immunology 0522
OS were 0.720 at 1 year, 0.671 at 3 years, and 0.664 at 5 years in the

ICGC-LIHC-US cohort (Figure 3E) and 0.727 at 1 year, 0.665 at 3

years, and 0.713 at 5 years in the GSE116174 cohort (Figure 3F).

Also, we performed univariate and multivariate Cox analyses of

CRFCS in order to examine the potential of CRFCS as an OS-

independent prognostic factor for HCC. The results showed a

hazard ratio of 2.708 (2.087-3.514) for CRFCS in the univariate

analysis with a p-value less than 0.001 (Figure 3G). In the

multifactorial analysis, the hazard ratio was 2.437 (1.825-3.254)
B

C D

E

A

FIGURE 2

Construction of CRFCS. (A, B) GO (A) and KEGG (B) enrichment analysis of gene sets after generalizing features. (C) Trend of out-of-bag error (oob) of
random forest model with the number of trees (nTree). (D) Ranking of variable importance (VIMP) of features. (E) Multivariate cox test of feature genes.
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with a p-value less than 0.001 (Figure 3H). These results implied

that CRFCS was a potential independent predictor of HCC.
3.4 CRFCS and mutation features

Mutational features are an integral part of the cancer process

landscape. We investigated the mutational characteristics of the
Frontiers in Immunology 0623
CRFCS subgroup of HCC. The top 3 high-frequency mutated genes

in the high-CRFCS subgroup were TP53 (29%), TTN (24%), and

CTNNB1 (20%) (Figure 4A) while CTNNB1 (31%), TNN (23%),

and ALB (15%) were identified as the top 3 mutated genes in the

low CRFCS subgroup (Figure 4B). We also found that Microsatellite

Instability (MSI) score was significantly higher in the high

CRFCS subgroup than in the low CRFCS group (p<0.001)

(Figure 4C). Then, we evaluated the MATH scores which were
B C

D E F
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FIGURE 3

Prognosis prediction of CRFCS. (A, C) Kaplan-Meier curves of CRFCS subgroups for the training cohort TCGA-LIHC (A), the external validation
cohorts ICGC-LIHC-US (B), and GSE116174 (C). (D–F) AUC curves for the prediction of overall survival (OS) by CRFCS in samples of TCGA-LIHC
(D), ICGC-LIHC-US (E), and GSE116174 (F). (G, H) Univariate (G) and multivariate analysis (H) of CRFCS.
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positively correlated with tumor heterogeneity. The results revealed

that the MATH scores between the two groups were not

significant (Figure 4D).
3.5 CRFCS and TME

Immunotherapy is vital for the treatment of patients with

advanced cancer and TME features are essential indicators of the

efficacy of immune checkpoint inhibitors (ICIs). The level of

various immune-related cellular infiltrates in TCGA-LIHC cohort

samples was assessed by the ssGSEA method (Figures 5A, B). The

results displayed a positive correlation between the CRFCS and the

level of some anti-tumor immune cell infiltration, such as activated

CD4 T cells (p<0.0001), activated dendritic cells (p =0.0142), central

memory CD4 T cells (p<0.0001), central memory CD8 T cells (p

=0.0025), and effector memory CD4 T cell (p<0.0001). Similarly,

infiltrations of pro-tumor immune cells including regulatory T cells

(p<0.0001), type 2 T helper cells (p<0.0001), immature dendritic

cells (p =0.0239), and MDSC (p =0.0173) were also positively

correlated with CRFCS. In addition, some neutral immune

infiltrates such as eosinophil (p<0.0001) and mast cell (p =0.0189)

were negatively related to CRFCS. We also evaluated the immune

infiltration of the samples with the CIBERSORT algorithm

(Figure 5C). Higher infiltration levels of T cells CD4 memory

activated (p<0.001), T cells follicular helper (p<0.01), T cells

regulatory (Tregs) (p<0.01), Macrophages M0 (p<0.001) and
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dendritic cells resting (p<0.01) were observed in the high CRFCS

subgroup. In contrast, B cells naïve (p<0.05), T cells CD4 memory

resting (p<0.05), NK cells activated (p<0.05), monocytes (p<0.05)

and mast cells resting (p<0.001) had higher levels in the low CRFCS

subgroup. Considering both methods together, the infiltration levels

of activated CD4 T cells and regulatory T cells were significantly

higher in the high-CRFCS subgroup, while the infiltration level of

Mast cells resting was lower. Infiltration of stromal cells is also an

integral part of TME. We also assessed the levels of stromal cell-

related markers in the TCGA-LIHC cohort samples. The analysis

showed that the levels of most markers of diverse stromal cells

including CAF, EC, MSC, TAM, M1, and M2 in the samples were

positively correlated with CRFCS (Figure 5D). Regulatory T cells

was reported to suppress the immune response and promote

tumorigenic immune escape (35). We then assessed the extent of

immune escape between high and low CRFCS subgroups by the

TIDE algorithm and the results showed that the high CRFCS group

displayed a decreased TIDE score compared with the low CRFCS

group (Figure 5E), indicating that samples with high CRFCS had

lower levels of immune escape.
3.6 CRFCS and drug-sensitivity

Next, we assessed the drug-sensitivity of CRFCS in HCC by

applying the R package of “pRRophetic”. By analyzing data from

TCGA, we found that the high CRFCS group had a lower IC50 of
B

C

D

A

FIGURE 4

CRFCS and mutation characteristics. (A, B) Mutation oncoplots of high CRFCS group (A) and low CRFCS group (B), including genes with top 30
mutation frequency. (C) Differences in MSI scores between high and low CRFCS subgroups. *** stands for p<0.001. (D) Differences in MATH scores
between CRFCS subgroups.
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sorafenib compared with the low CRFCS group (Figure 6A). To

verify these results, an external data from ICGC-LIHC-US was

analyzed which confirmed that the high CRFCS group are more

sensitive to sorafenib (Figure 6B). Immunotherapy delivers more

opportunities to patients with advanced HCC (36). It is well

recognized that TME characteristic can significantly influence the

outcome of immunotherapy (37). TME is classified into three

subtypes: immune-desert, immune-inflamed, and immune-

excluded. The immune-inflamed type which is highly expressed
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with immune checkpoint such as PD1 and PD-L1 is considered to

be very sensitive to immunotherapy (38). Therefore, we evaluated

the expression profile of immune checkpoint in CRFCS. Our results

displayed that the immune checkpoints including PD-L1, PD1,

TIGIT, TIM3, and CTLA4 were significantly highly expressed in the

high CRFCS group compared with the low CRFCS group in both

TCGA and ICGC HCC cohorts (Figures 6C, D). These results

suggested that high CRFCS group might be more responsive

to immunotherapy.
B
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FIGURE 5

CRFCS and immune infiltration. (A) Heat map of ssGSEA score of various immune cells in high and low CRFCS groups via analyzing TCGA-LIHC
cohort data. (B) The correlations between immune score and CRFCS. (C) Immune infiltration landscape of TCGA-LIHC cohort samples assessed by
the CIBERSORT algorithm. (D) Correlation of stromal cell-associated markers with CRFCS. (E) The level of immune escape between high and low
CRFCS subgroups was assessed by the TIDE algorithm. (*p<0.05; **p<0.01; ***p<0.001; ns stands for not significant).
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4 Discussion

Cuproptosis, a recently discovered new programmed cell death

induced by excessive accumulation of intracellular Cu, is distinct

from known cell death forms including apoptosis, pyroptosis,

ferroptosis, necrosis. To dissect the specific regulators of

cuproprosis, Tsvetkov et al. used genome-wide CRISPR/Cas9

screens and identify ten crucial cuproptosis-specific genes

including FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,

MTF1, GLS, and CDKN2A (25). These ten genes are closely

associated with HCC progression and TME. Zhang et al.

identified FDX1 as an immunotherapy predictor of HCC (39).

Yan et al. discovered that inhibition of LIPT1 restrained HCC cell

proliferation and invasion (40). Zhou et al. found that

overexpression of DLAT increased HCC cell growth and invasion

and may facilitate cancer cell evade immune system (41). Sun et al.

reported that activation of PDHA1 suppressed the Warburg effect

and promoted HCC apoptosis (42). Yang et al. demonstrated that

knockdown PDHB induced metabolic reprogramming of the

tricarboxylic acid (TCA) cycle leading to glutamine depletion and

inhibition of HCC cell proliferation (43). Yang et al. reported that

over-expression of MTF1 contributed to the proliferation of HCC

cells (44). Dong et al. found that GLS1 promoted HCC cell

proliferation via activating AKT/GSK3b/Cyclin D1 pathway (45).

Xu et al. revealed that upregulation of CDKN2A significantly

inhibited ACTR5 induced HCC cell proliferation (46).

Considering the role of these ten crucial cuproptosis-specific

genes in HCC, constructing a model based on these ten genes
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might provide potential insights for evaluation the TME and

immunotherapy efficacy of HCC.

Since the discovery of cuproptosis, the role of cuptoptosis in

liver cancer prognosis and TME has been gradually evaluated.

Previous studies mainly explored this issue by constructing Lasso

cox model, which directly entered the target genes as model inputs

(47–53). The Lasso model is applied to analyze multicollinearity

data (54). Usually, nonlinear data might be generated when

performing log normalization of the expression matrix. From this

perspective, the lasso cox model might not be the ideal strategy. The

random forest model is a set of binary trees constructed with

recursive partitioning (RPART), which enables the random forest

to handle nonlinear data due to the combination of trees (55).

Therefore, the random forest model with nonlinear data as the

application object is more suitable. Meanwhile, the random forest

model is better at learning potential crossover features consisting of

multidimensional features (56) and shows strong robustness when

applied to large feature sets (57). These reasons led us to use the

random forest model to construct the prognostic model. In

addition, considering that there might be noise differences

between individual data of each sample, some features may be

lost due to the presence of data noise if the target genes are

considered only, we trained the model using gene clusters related

to cuproptosis genes as model inputs to generalize the features. We

generalize the features by acquiring highly correlated genes of

crucial cuproptosis genes when constructing the model so that

the model could learn as much information as possible about the

implicit features in the data. This makes the output of the model
B
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FIGURE 6

CRFCS and drug sensitivity. (A, B) Drug sensitivity of sorafenib in high and low CRFCS subgroups via analyzing data from TCGA cohort (A) and ICGC-
LIHC (B). (C, D) Differential expression of immune checkpoints between high and low CRFCS subgroups via analyzing data from TCGA cohort
(C) and ICGC-LIHC (D). (**p<0.01; ***p<0.001).
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smoother and less susceptible to fluctuations caused by noise in the

data, thus improving the robustness of the model. The generalized

input data combined with the random forest model can better learn

the potential cross features in the data.

Microsatellite instability (MSI) is closely correlated with tumor

immunotherapy efficacy. High MSI (MSI-H) in tumor samples

usually cause additional mutant antigens and sensitize patient to

immunotherapy (58). However, MSI-H also tends to increase tumor

heterogeneity, which in turn results in poorer immunotherapy

efficacy (59). In the present study, the mutation landscape of

CRFCS subgroups was investigated which showed that the MSI

scores were significantly higher in the high-CRFCS subgroup

sample than in the low-CRFCS group while no significant

difference between high and low CRFCS subgroups was observed

in the tumor heterogeneity score MATH (Figure 4). These results

suggested that high CRFCS subgroups may have better

immunotherapeutic efficacy. Besides, studies exist demonstrated

that tumor patients with high expression of immune checkpoints

are more sensitive to immunotherapy (38). We evaluated the

expression of immune checkpoints in high and low CRFCS

group. Our results showed that the immune checkpoints

including PD-L1, PD1, TIGIT, TIM3, and CTLA4 were

remarkably highly expressed in the high CRFCS group compared

with the low CRFCS group (Figures 6C, D). In addition, evidence

displayed that Treg cells cause immune escape through several

mechanisms, which in turn impede the anti-tumor immune

response (60). To estimate the tumor immune escape effect

between the CRFCS subgroups, we calculated the TIDE scores of

the samples. The results showed that the high-CRFCS subgroup had

significantly lower TIDE scores (Figure 5E), indicating that samples

of the high-CRFCS subgroup had a lower probability of immune

escape and were less prone to be resistant to immunotherapy.

Combining the results above, it might be inferred that the high

CRFCS group might be more suitable to receive immunotherapy

than the low CRFCS group.

Although a cuproptosis related model termed CRFCS was

successfully constructed to evaluate prognosis and TME

characteristic in HCC, some limitations should not be neglected.

First, cuproptosis was discovered in 2022, only several genes were

confirmed as crucial cuproptosis-specific genes, more genes need to

be identified to provide systematic and comprehensive understanding

of cuproptosis. Second, our study was performed based on integrative

bioinformatic analysis, it would be more valid to carry out functional

experiments in vitro and in vivo. Finally, the data involved in this

study were retrieved from public dataset, it would be better to use

large-scale of local datasets to verify our findings.
5 Conclusions

In aggregate, we constructed a cuproptosis random forest cox

score (CRFCS) model. CRFCS was identified to be an independent

prognostic indicator of HCC and high CRFCS samples showed a

poor prognosis. Interestingly, CRFCS were correlated with TME

characteristics as well as clinical treatment efficacy. Patients with
Frontiers in Immunology 1027
high CRFCS had a better clinical prognosis for immunotherapy

and sorafenib.
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Copper and cuproptosis-related
genes in hepatocellular
carcinoma: therapeutic
biomarkers targeting tumor
immune microenvironment and
immune checkpoints

Xiaoqiang Wang1†, Dongfang Chen2†, Yumiao Shi1, Jiamei Luo1,
Yiqi Zhang1, Xiaohong Yuan3, Chaojin Zhang1, Huigang Shu1*,
Weifeng Yu1* and Jie Tian1*

1Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai, China, 2Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University,
Shanghai, China, 3Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese
Academy of Sciences, Hangzhou, China
Background: Hepatocellular carcinoma (HCC), one of the most common

cancers worldwide, exhibits high immune heterogeneity and mortality.

Emerging studies suggest that copper (Cu) plays a key role in cell survival.

However, the relationship between Cu and tumor development remains unclear.

Methods: We investigated the effects of Cu and cuproptosis-related genes

(CRGs) in patients with HCC in the TCGA-LIHC (The Cancer Genome Atlas-

Liver cancer, n = 347) and ICGC-LIRI-JP (International Cancer Genome

Consortium-Liver Cancer-Riken-Japan, n = 203) datasets. Prognostic genes

were identified by survival analysis, and a least absolute shrinkage and selection

operator (Lasso) regression model was constructed using the prognostic genes

in the two datasets. Additionally, we analyzed differentially expressed genes and

signal pathway enrichment. We also evaluated the effects of CRGs on tumor

immune cell infiltration and their co-expression with immune checkpoint genes

(ICGs) and performed validation in different tumor immune microenvironments

(TIMs). Finally, we performed validation using clinical samples and predicted the

prognosis of patients with HCC using a nomogram.

Results: A total of 59 CRGs were included for analysis, and 15 genes that

significantly influenced the survival of patients in the two datasets were

identified. Patients were grouped by risk scores, and pathway enrichment

analysis suggested that immune-related pathways were substantially enriched

in both datasets. Tumor immune cell infiltration analysis and clinical validation

revealed that PRNP (Prion protein), SNCA (Synuclein alpha), and COX17
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(Cytochrome c oxidase copper chaperone COX17) may be closely correlated

with immune cell infiltration and ICG expression. A nomogram was constructed

to predict the prognosis of patients with HCC using patients’ characteristics and

risk scores.

Conclusion: CRGs may regulate the development of HCC by targeting the TIM

and ICGs. CRGs such as PRNP, SNCA, and COX17 could be promising targets for

HCC immune therapy in the future.
KEYWORDS

copper, cuproptosis, hepatocellular carcinoma, immune checkpoints, tumor
immune microenvironment
1 Background

Cancer is one of the leading causes of death worldwide and

places a heavy burden on global health (1). According to statistical

reports, hepatocellular carcinoma (HCC) is currently the third most

common cancer worldwide. Moreover, based on related reports,

>45% of new HCC cases and related deaths occurred in China (2–

4). Although there have been advances in HCC therapy in recent

years, the high heterogeneity and lack of accurate early diagnostic

biomarkers have resulted in the poor prognosis of patients with

HCC (5).

For patients with advanced HCC, immunotherapy has emerged as

a prospective therapeutic approach through the targeting of

programmed cell death protein 1 (PD-1)/programmed cell death

ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA4)

(6). Studies have suggested that the objective response rates of anti-PD-

1 treatment (including nivolumab, pembrolizumab, and

camrelizumab) increased to about 15%–20% for patients with HCC

that were pretreated with sorafenib (7–9). However, drugs targeting

PD-1 and PD-L1 benefit few patients with HCC, as most patients have

poor responses to immune checkpoint inhibitors (ICIs) (10). This may

be attributed to the intrinsically high heterogeneity and immune

suppression microenvironment of HCC (10, 11). Previous studies

demonstrated that a large number of suppressive immune cells, such

as tumor-associated macrophages (TAMs), myeloid-derived
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suppressor cells (MDSCs), and regulatory T cells (Tregs), were

recruited to the tumor microenvironment of HCC, resulting in

immune cell dysfunction and immune surveillance escape (12, 13).

Therefore, exploring effective targets to improve HCC patients’

response to ICIs is important.

Copper (Cu) is an endogenous metal essential for all living

organisms and participates in various biological functions, such as

mitochondrial respiration, iron uptake, redox reactions, glucose

regulation, and cholesterol metabolism (14, 15). However, excessive

accumulation of Cu induces oxidative stress, cytotoxicity, or even

cuproptosis. The latter is a type of cell death that is regulated by Cu

and mitochondrial respiration, which has been recently discovered

(16). Furthermore, the dysfunction of Cu homeostasis can lead to

severe disorders such asWilson’s andMenke’s diseases (17). Therefore,

intracellular Cu concentrations are typically strictly maintained at

extraordinarily low levels via complex homeostatic mechanisms.

Exploring the mechanisms underlying Cu homeostasis dysfunction

and imbalanced cuproptosis may aid in the identification of novel

therapeutic targets for various diseases.

A previous study has shown a significant increase in Cu levels in

patients with cancer compared with healthy individuals (18). For

instance, a meta-analysis including 36 studies revealed significantly

upregulated serum Cu levels in patients with breast cancer compared

with healthy controls (19). Furthermore, some studies have

demonstrated the effective antitumor effects of Cu ionophores such

as elesclomol (16, 20, 21). Some studies have also found associations

among cuproptosis, tumor development, and response to ICIs (22, 23).

For instance, Luo et al. (24) found that cuproptosis could regulate the

response of acute myeloid leukemia cells to the immune system. Xiong

et al. (25) suggested that cuproptosis may be regulated by p53, a crucial

tumor suppressor and metabolic regulator. Thus, targeting cuproptosis

may be a promising strategy for HCC immunotherapy.

Studies on the role of Cu and cuproptosis-related genes (CRGs)

in HCC are lacking. Herein, we systematically analyzed the

functions and effects of CRGs on the survival of patients with

HCC based on two public HCC datasets. We aimed to identify the

critical CRGs that significantly influence the overall survival (OS) of

patients with HCC and to construct a useful nomogram to predict

the prognosis of patients. Moreover, we investigated the
frontiersin.org
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relationships among CRGs, tumor immune cell infiltration, and

immune checkpoint genes (ICGs) to detect potential HCC

biomarkers targeting the tumor immune microenvironment (TIM).
2 Methods

2.1 Data acquisition and CRG list

The total transcriptome RNA sequencing (RNA-seq) data and

clinical information of patients with HCC were obtained and

downloaded from The Cancer Genome Atlas Liver Hepatocellular

Carcinoma (TCGA-LIHC) dataset (https://tcga-data.nci.nih.gov/tcga/),

the International Cancer Genome Consortium (ICGC) portal (https://

dcc.icgc.org/projects/LIRI-JP), and GEO datasets (https://

www.ncbi.nlm.nih.gov/). The list of CRGs and their and functions

were obtained from the Gene Ontology (GO) resource (http://

geneontology.org/) and a published paper (16). The full list of CRGs

is provided in Supplementary Table 1.
2.2 Survival analysis

The effects of CRGs on the OS of patients with HCC were

validated using survival analysis. Patients were categorized into the

low-expression (L) and high-expression (H) groups, and the

median gene expression level was chosen as the cutoff value.

Similarly, survival analysis of the risk scores obtained from the

least absolute shrinkage and selection operator (Lasso) regression

model was performed, and patients were assigned to the low-risk or

high-risk group based on their risk scores. The cutoff value for

grouping was the median risk score. The survival analysis was

performed using the “survminer” R package.
2.3 Construction of the Lasso
regression model

Prognostic genes with a P-value of <0.05 in the survival analysis

in the two datasets were used to construct the model. A Lasso

regression model (26) for predicting the prognosis of patients with

HCC was constructed using the prognostic genes in the two datasets

using the “glmnet” R package. A 10-fold cross-validation method was

used to optimize the model. The risk score predicting the OS was

calculated for every patient using the following formula: risk score =

(gene A expression × a) + (gene B expression × b) … + (gene N

expression × n), where a, b, and n represent regression coefficients.
2.4 Validation and effectiveness of the
prognostic model

To validate the model’s effectiveness, survival and time-

dependent receiver operating characteristic (ROC) curve analyses

were performed based on the survival time, survival status, and risk

scores of patients with HCC using the “survminer” and “pROC” R
Frontiers in Immunology 0332
packages. Relationships among the risk scores, OS, survival status,

and gene expression of selected CRGs were analyzed using the

online bioinformatic analysis tool Sangerbox 3.0 (http://

vip.sangerbox.com/home.html).
2.5 Differentially expressed gene analysis

Patients were grouped according to risk scores, and DEGs were

identified using the “limma” R package. Briefly, genes with a false

discovery rate (FDR) of <0.05 and fold change of >1.5 between the

two groups were identified as DEGs. DEGs were visualized with a

volcano plot and generated using Sangerbox 3.0 (http://

vip.sangerbox.com/home.html).
2.6 Functional enrichment analysis

DEGs were used for multiple functional enrichment analyses

including Gene Set Enrichment Analysis (GSEA) and Kyoto

Encyclopedia of Genes and Genome (KEGG) pathway and Gene

Ontology-Biological Process (GO-BP) enrichment analyses using

the “clusterProfiler (version 3.14.3)” R package (27) and GSEA

software (version 3.0, http://software.broadinstitute.org/gsea/

index.jsp). The minimum and maximum number of genes in the

cluster were 5 and 5000, respectively. Pathways with a P-value

of <0.05 and FDR of <0.05 were considered statistically different.

Immune-related pathway enrichment (GO-immune system

process) was analyzed using the Cytoscape software and ClueGO

application (https://cytoscape.org/).
2.7 Tumor immune cell infiltration analysis

Tumor immune cell infiltration levels were evaluated using the

TIMER method (28) and the “IOBR” R package in the TCGA

database (29). Relationships between gene expression levels and

immune cell infiltration levels were calculated using the “psych

(version 2.1.6)” R package. Moreover, ESTIMATE analysis (https://

bioinformatics.mdanderson.org/estimate/, including ESTIMATE

score, stromal score, and immune score) was performed to visualize

the correlations between screened CRGs and TME in the TCGA

database. These analyses were performed using the open-source online

tool Sangerbox 3.0 (http://vip.sangerbox.com/home.html).
2.8 Expression of ICGs and correlations
with CRGs in HCC

The expression levels of PDCD1 (the gene coding PD-1), CD274

(the gene coding PD-L1), and CTLA4 in normal and HCC liver tissues

were analyzed using data obtained from UALCAN (http://

ualcan.path.uab.edu/analysis.html) (30). Additionally, co-expression

analysis between ICGs and CRGs in HCC was performed using data

obtained from cBioportal (https://www.cbioportal.org/) and the

Firehose Legacy dataset (31).
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2.9 Myeloid response score and different
immune subtypes in HCC

The myeloid response score (MRS) model was used as a

reference to distinguish between the immune subtypes in HCC

(32). RNA-seq data of patients with HCC with different MRSs was

obtained and analyzed using data obtained from the GSE134921

dataset. Expression levels of critical CRGs were compared between

the high-MRS and low-MRS groups.
2.10 Construction of a prognostic
nomogram for HCC

To provide a reliable and quantifiable method to predict the

prognosis of patients with HCC, a novel nomogram was

constructed by integrating risk score, age, sex, race, TNM (tumor,

nodes, metastases) stage, and tumor grade into a Cox regression

model using the “rms” R package.
2.11 Recruitment of patients with HCC and
collection of clinical HCC samples

An observational study was conducted at the Renji Hospital,

Shanghai Jiaotong University School of Medicine, and Eastern

Hepatobiliary Surgery Hospital, the Third Affiliated Hospital of

Naval Medical University. This study was approved by the Renji

Hospital Ethics Committee (KY2020-185). The study complied

with the Declaration of Helsinki and the Consolidated Standards

of Reporting Trials (CONSORT) statement. Patients aged ≥18

years, those with primary HCC, and those who received HCC

excision surgery were included in the study. Patients were excluded

if they suffered from multiple metastases, had other additional types

of cancer, or had missing clinical data. HCC samples were collected

in the operation room immediately after excision and stored at −80°

C. All samples were confirmed as HCC by pathological diagnosis

after surgery.
2.12 Expression levels of ICGs and CRGs in
HCC samples

Gene expression levels of ICGs (PDCD1, CD274, and CTLA4)

and CRGs (PRNP, SNCA, COX17, ATP7A, ATP13A2, and F5) were

analyzed in human HCC samples. Total RNA was extracted from

the HCC samples using the EZ-press RNA Purification Kit (EZ

Bioscience, USA) according to the manufacturers’ protocol. The

primers of genes are listed in Supplementary Table 2. Linear

correlations between the gene expression levels of ICGs and

CRGs were analyzed.
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2.13 Immunohistochemical staining of ICGs
and CRGs in HCC samples

To determine the protein expression levels of ICGs and CRGs in

HCC samples, IHC staining of PD-1 (Servicebio, cat: GB11338-1),

PD-L1 (Servicebio, cat: GB11339A), PRNP (Abclonal, cat: A18058),

SNCA (Abclonal, cat: A20407), and COX17 (SANTA Cruz, cat: sc-

100521) was performed.
2.14 Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics

23.0 (SPSS Inc., Armonk, NY, USA). Differences in the survival

analysis were compared by log-rank t-test with a 95% confidence

interval. ROC curves were plotted and area under the curve (AUC)

values were calculated to assess the discrimination strength of the

model. Linear correlations were assessed using Spearman’s or

Pearson’s correlation tests, and the correlation coefficient “r” was

calculated. All statistical tests were two sided. A P-value of <0.05

was considered statistically significant.
3 Results

The study design flow chart and validation process is presented

in Supplementary Figure 1. A total of 59 out of 62 CRGs were

analyzed in the two datasets because the expression data of three

CRGs (MT1HL1, MT-CO1, and MT-CO2) was missing from the

raw data. From the TCGA-LIHC and ICGC-LIRI-JP datasets, 347

and 203 patients with HCC were examined, respectively.
3.1 Screening of prognostic genes in the
TCGA-LIHC and ICGC-LIRI-JP datasets

Survival analysis was performed on 59 CRGs in the TCGA-

LIHC dataset and 10 prognostic genes (ATP13A2, ATP7A, COX17,

DBH, F5, PRNP, SLC31A1, SNCA, STEAP4, and TFRC) that were

significantly correlated with the OS of patients were identified

(Figure 1A). Among these 10 critical genes, ATP13A2, ATP7A,

PRNP, SNCA, and TFRC were unfavorable for patient OS, whereas

COX17, DBH, F5, SLC31A1, and STEAP4 were favorable for

patients’ prognosis (Figure 1B). Similarly, seven genes (ABCB6,

ALB, BECN1, CP, DAXX, SLC31A1, and STEAP4) were found to

significantly influence the OS of patients in the ICGC-LIRI-JP

dataset, and higher expression levels of ABCB6, BECN1, and

DAXX were associated with worse OS, whereas those of ALB, CP,

SLC31A1, and STEAP4 were associated with better prognosis for

patients with HCC (Figures 1C, D). Altogether, 15 prognostic genes

were identified in the two datasets (Figure 1E).
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3.2 Lasso model construction
and validation

A Lasso regression model was constructed using the 15

prognostic genes identified above. Eight genes were successfully

included in the model from the TCGA-LIHC dataset; the formula

used was follows: risk score = 0.158 × ATP13A2 + 0.070 × ATP7A −

0.173 × COX17 − 0.050 × DBH − 0. 004 × F5 + 0.054 × SNCA −

0.089 × STEAP4 + 0.087 × ABCB6 (Figures 2A, B). Patients were

assigned to the low-risk or high-risk group based on the median of

all the risk scores. Survival analysis revealed that patients in the

high-risk group showed reduced survival years compared with

patients in the low-risk group, with the hazard ratio reaching 2.40

(Figure 2C). The heatmap also demonstrated that more deaths were

observed in the high-risk group (Figure 2D). ROC curve analysis

revealed moderate predictive efficacy, with the AUC for 1-year
Frontiers in Immunology 0534
survival prediction reaching 0.75 (Figure 2E). Similar model

construction was conducted for the ICGC-LIRI-JP dataset, and

four critical genes (ALB, CP, SLC31A1, and STEAP4) were included

in the model (Figures 2F, G). Survival analysis and heatmaps

revealed significantly increased survival years and fewer patient

deaths in the low-risk group compared with the high-risk group

(Figures 2H, I). The AUC for 1-year and 2-year survival prediction

reached 0.77 and 0.81 respectively, suggesting good predictive

effects of the model (Figure 2J).
3.3 DEG validation and potential
immune-related pathway enrichment

DEGs between the two groups divided by the median risk score

in the ICGC-LIRI-JP dataset were identified and are shown in
D

A

B E

C

FIGURE 1

Survival analyses of cuproptosis-related genes (CRGs) for patients with hepatocellular carcinoma (HCC) in the TCGA-LIHC and ICGC-LIRI-JP
datasets. (A) Survival analyses of CRGs for patients with HCC in the TCGA-LIHC dataset. (B) Forest plot of prognostic genes in the TCGA-LIHC
dataset. (C) Survival analyses of CRGs for patients with HCC in the ICGC-LIRI-JP dataset. (D) Forest plot of prognostic genes in the ICGC-LIRI-JP
dataset. (E) Venn diagram of prognostic genes in the two datasets.
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Figure 3A. A total of 317 upregulated and 113 downregulated DEGs

were identified. GSEA showed that immune-related pathways,

including complement activation and complement activation

alternative pathway, were significantly different between the two

groups. Additionally, complement activation-related genes were

downregulated in the high-risk group compared with the low-risk
Frontiers in Immunology 0635
group (Supplementary Figure 2). KEGG and GO-BP pathway

enrichment analyses revealed considerable changes in immune-

related pathways, including complement-related signal pathways,

humoral immune response, and response to xenobiotic stimulus

(Figures 3B–D). In the TCGA-LIHC dataset, 812 upregulated DEGs

and 1333 downregulated DEGs were identified (Figure 3E). GSEA
D

A
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FIGURE 2

Construction and validation of the least absolute shrinkage and selection operator (Lasso) model in the TCGA-LIHC and ICGC-LIRI-JP datasets.
(A, B) The Lasso regression model was constructed using 15 prognostic genes in the TCGA-LIHC dataset, and eight genes were successfully
included in the model. (C) Kaplan–Meier survival analysis of patients with hepatocellular carcinoma (HCC) grouped by risk scores in the TCGA-
LIHC dataset. (D) Distribution of the risk scores, survival status, and expression of eight critical predictive genes. (E) Receiver operating
characteristic (ROC) curve of risk scores in the TCGA-LIHC dataset. (F, G) The Lasso regression model was constructed using 15 prognostic
genes in the ICGC-LIRI-JP dataset, and four genes were successfully included in the model. (H) Kaplan–Meier survival analysis of patients with
HCC grouped by risk scores in the ICGC-LIRI-JP dataset. (I) Distribution of the risk scores, survival status, and expression of four critical
predictive genes. (J) ROC curve of risk scores in the ICGC-LIRI-JP dataset.
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revealed that immune-related pathways, such as antigen processing

and presentation pathways, were enriched in the TCGA-LIHC

dataset (Figure 3F). KEGG pathway enrichment analysis showed

that the complement and coagulation cascade pathways were

significantly enriched (Supplementary Figure 3), suggesting

potential associations between Cu homeostasis and immune

function. Interestingly, metabolic pathways, such as small

molecule catabolic processes and fatty acid metabolism, were also

significantly enriched in both datasets, suggesting that CRGs play a

role in cell metabolism (Figures 3C, D and Supplementary

Figure 3) (33).

We further visualized the enrichment of GO-immune system

process pathways using DEGs from the two datasets (Figure 4).

Following enrichment, immune-related signal pathways were found

to be considerably altered between the two groups. In the TCGA-

LIHC dataset, DEGs were enriched mainly in the immune
Frontiers in Immunology 0736
response-regulatory signaling pathway (66.7%), complement

activation (11.1%), complement activation alternative pathway

(11.1%), and hemopoiesis (11.1%) (Figure 4A). In the ICGC-

LIRI-JP dataset, regulation of humoral immune response (66.7%),

complement activation-lectin pathway (11.1%), antimicrobial

humoral response (11.1%), and regulation of neutrophil-mediated

cytotoxicity (11.1%) were significantly enriched (Figure 4B). These

findings indicate the potential role of CRGs in immune function/

response regulation in HCC.
3.4 Correlations between CRGs and tumor
immune cell infiltration

Correlations between 11 prognostic genes screened by Lasso

models in the two datasets and tumor immune cell infiltration levels
D

A B
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C

FIGURE 3

Differentially expressed gene (DEG) validation and potential pathway enrichment analysis. (A) Volcano plot of DEGs in the ICGC-LIRI-JP dataset.
(B) Gene Set Enrichment Analysis (GSEA) of immune-related pathways in the ICGC-LIRI-JP dataset. (C, D) Top 20 enriched Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and Gene Ontology-biological process (GO-BP) pathways in the ICGC-LIRI-JP dataset. (E) Volcano plot of
DEGs in the TCGA-LIHC dataset. (F) GSEA of immune-related pathways in the TCGA-LIHC dataset.
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were analyzed using the TIMER method. Six CRGs that were

significantly correlated with tumor immune cell infiltration levels

were identified (Figure 5). Interestingly, ATP7A, ATP13A2, and

SNCA, which were all unfavorable for the OS of patients (Figure 1),

were found to be positively correlated with multiple types of

immune cell infiltration in HCC, whereas COX17, F5, and ALB,

which were all favorable for the OS of patients, were negatively

correlated with immune cell infiltration in HCC. Furthermore, we

performed ESTIMATE analysis (including ESTIMATE score,

stromal score, and immune score) to picture the correlations

between the screened CRGs and tumor microenvironment

(Supplementary Table 3). ATP7A, ATP13A2, PRNP, and SNCA

were found to be positively correlated with the three scores, whereas

COX17 and F5 were found to be negatively correlated with the three

scores. No significant correlations were found between ALB and the

three scores.
3.5 Correlations between CRGs and ICGs

A previous study has indicated that intratumoral Cu and CRGs

modulate the expression of ICGs (34). ICGs are widely expressed in

diverse cancer cells, including HCC, and regulate tumor

development (35, 36). Therefore, we compared expression levels

of ICGs between normal and HCC liver tissues. Three ICGs were

expressed in HCC, and the gene expression levels of PDCD1 and

CTLA4 were substantially increased in HCC samples compared
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with normal liver tissue (Figure 6A). By grouping patients based on

the median risk score, similar changes were observed in that the

expression levels of PDCD1 and CTLA4 were significantly higher in

the high-risk group than in the low-risk group (Figure 6B). These

findings indicate that higher expression levels of ICGs may be

correlated with worse prognosis in patients with HCC.

We assessed the co-expression between CRGs and ICGs at the

mRNA level in HCC (Figure 6C). Notably, ATP7A, ATP13A2,

SNCA, and PRNP (unfavorable for the OS of patients with HCC)

were significantly positively correlated with the expression of ICGs.

However, a negative correlation was observed between ICGs and

COX17 or F5 (favorable for the OS of patients with HCC).

Collectively, these results further suggest that CRGs participate in

the regulation of ICG expression and tumor immune escape.
3.6 Validation of critical CRGs in different
immune subtypes of HCC

Recently, Wu et al. developed and validated a simple scoring

model named MRS to distinguish between the different immune

subtypes of HCC (32). A higher MRS usually represents a

significantly immunosuppressive tumor microenvironment in

HCC (Figure 7A). We validated our findings regarding the

relationship between CRGs and the TIM using related sequencing

data (GSE134921) (32). The expression of CRGs including ATP7A,

PRNP, and SNCA, which were unfavorable for the prognosis of
A

B

FIGURE 4

GO-immune system process pathway enrichment using differentially expressed genes (DEGs). (A) GO-immune system process pathway enrichment
in the TCGA-LIHC dataset. (B) GO-immune system process pathway enrichment in the ICGC-LIRI-JP dataset.
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patients with HCC, was significantly increased in the high-MRS

group (Figure 7A). In contrast, the expression of DBH and F5,

which were favorable for the prognosis of patients with HCC, was

reduced in the high-MRS group. It was found that CD274 and

CTLA4 were remarkably upregulated in the high-MRS group. All

the abovementioned results suggest close relationships among

CRGs, TIM, and immune checkpoints in HCC.

Differential signaling pathways were analyzed and compared

between the low-MRS and high-MRS groups (Figure 7B).

Interestingly, the results of this analysis were surprisingly similar

to those of the pathway enrichment analyses of the low-risk and

high-risk groups (Figure 4C and Supplementary Figure 3),

suggesting good comparability between the MRS and risk scoring

systems. The risk score based on CRGs may discriminate immune

subtypes in HCC. Similarly, metabolic pathways such as small

molecule catabolic process and fatty acid metabolism were also
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enriched, suggesting that cell metabolism is associated with TIM

regulation in HCC (Figure 7B).
3.7 Validation of significant correlations
among CRGs, TIM, and ICGs in the
Renji cohort

Based on correlations analyses between CRGs and ICGs

(Figure 8 and Supplementary Figure 4), we selected three CRGs

(PRNP and SNCA [unfavorable for prognosis] and COX17

[favorable for prognosis]) that had more significant correlations

with ICGs than other CRGs for further validation in HCC samples;

the clinical characteristics of patients are shown in Table 1. Linear

regression analyses of gene expression levels revealed a significantly

positive correlation between PRNP and ICGs, with the R-value
FIGURE 5

Correlations between critical cuproptosis-related genes (CRGs) and tumor immune cell infiltration. ATP7A, ATP13A2, and SNCA were positively
correlated with multiple types of immune cell infiltration in hepatocellular carcinoma (HCC), while COX17, F5, and ALB were negatively correlated
with immune cell infiltration in HCC.
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reaching 0.94 and 0.51 for CD274 and CTLA4, respectively

(Figure 8A). This strongly suggests that PRNP plays a key role in

the regulation of ICGs in HCC. Positive correlations were observed

between SNCA and PDCD1/CTLA4. However, a negative

correlation was observed between COX17 and CD274, with the R-

value reaching −0.52 (Figure 8A). Moreover, IHC analysis of HCC

samples revealed similar results (Figure 8B).
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Correlations between CRGs and immune cell markers were

observed in HCC samples (Supplementary Figure 5). Linear

regression analyses of gene expression levels suggested that PRNP

be closely associated with multiple types of immune cells in HCC

(Supplementary Figure 5A). In summary, the validations in HCC

samples further verified the findings obtained from the

comprehensive bioinformatic analyses.
A

B

C

FIGURE 6

Co-expression analysis of cuproptosis-related genes (CRGs) and immune checkpoint genes (ICGs). (A) Expression levels of ICGs between normal
liver tissue and hepatocellular carcinoma (HCC). (B) Differences in the expression of ICGs between low-risk and high-risk groups. (C) Co-expression
analysis of CRGs and ICGs. ATP7A, ATP13A2, and SNCA were significantly positively correlated with the expression of ICGs, and a negative
correlation between ICGs and COX17 or F5 was observed. ns, no significance.
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3.8 Nomogram construction for HCC
based on CRGs

Finally, a novel prognostic nomogram to predict the survival of

patients with HCC was constructed by integrating risk score, age,

sex, race, TNM stage, and tumor grade. Both risk score and TNM

stage significantly influenced the survival of patients (both P < 0.05),

and the risk score had a greater influence than the TNM stage

(Figure 9A). Moreover, the calibration plots and ROC curves

suggested that the model could reliably predict the OS of patients

with HCC (Figures 9B, C).
4 Discussion

As a critical bioinorganic element, Cu plays important roles in

various biological processes in vertebrates (15, 37), and Cu

homeostasis is tightly regulated within the body. However,

elevated serum and tumor levels of Cu are common in many
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cancers, and studies have shown that Cu plays critical roles in

tumor growth and immune resistance (18, 34, 38, 39). Recently, the

mechanism of Cu in regulating HCC development has become a

topic of interest (40–42). For instance, a newly published study

showed that elevated intracellular levels of Cu promoted the

radioresistance of HCC cells, and novel treatment strategies can

recover the sensitivity to radiotherapy by disrupting Cu–Fe

homeostasis in HCC cells (42). Davis et al. found that the

expression of Cu transporter genes was significantly altered in

HCC; by limiting Cu homeostasis, the growth of HCC cell lines

could be inhibited (40). Therefore, exploring the relationships

among Cu metabolism, cuproptosis, and tumor immune response

may provide novel insights on cancer therapy.

In our study, we systematically analyzed 59 genes involved in Cu

metabolism and cuproptosis in patients with HCC from two public

datasets. Results suggested that 15 CRGs significantly influenced the

prognosis of patients. Furthermore, we successfully constructed a

Lasso model and nomogram to predict the risk of death for patients

with HCC based on the screened CRGs and 11 critical genes that were
A

B

FIGURE 7

Validation of cuproptosis-related genes (CRGs) and immune checkpoint gene (ICG) expression in different immune subtypes of hepatocellular
carcinoma (HCC). (A) Expression levels of critical CRGs and ICGs between the low-myeloid response score (MRS) group and high-MRS group.
(B) Differential signal pathway analysis between the low- and high-MRS groups.
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B

FIGURE 8

Validation of correlations among cuproptosis-related genes (CRGs), tumor immune microenvironment (TIM), and immune checkpoint genes (ICGs)
in the Renji cohort. (A) Correlation analyses between CRGs and ICGs. (B) Immunohistochemical (IHC) staining of CRGs and ICGs in hepatocellular
carcinoma (HCC) samples.
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identified using the Lasso model. HCC samples were validated and

potential targets that are closely associated with ICGs and immune

cells, such as PRNP, SNCA, and COX17, were identified. Collectively,

these findings confirm the key roles of CRGs in mediating tumor

development, and this prediction model could help clinicians predict

the prognosis of patients with HCC more easily.

The role of Cu in regulating tumor immune function and

immune checkpoints has rarely been explored. In 1981, a study

reported that mice fed a Cu-deficient diet made significantly fewer

antibody-producing cells and had an impaired immune system

(43). Another study revealed that endogenous Cu was involved in

the mediation of inflammatory responses (44). In 2020, Voli et al.

reported that intratumoral Cu modulated PD-L1 expression, tumor

immune cell infiltration, and immune escape in neuroblastoma.

However, to the best of our knowledge, studies regarding Cu
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metabolism and immune function in HCC are lacking.

Considering this, we focused our analyses on understanding the

mechanisms underlying the effects of CRGs on immune-related

pathways. By performing multiple function enrichment analyses,

we identified that the immune-related pathways were significantly

enriched, such as complement activation-related pathways,

humoral immune response, and immune response-regulating

signaling pathways. Furthermore, tumor immune cell infiltration

analysis showed that ATP7A, ATP13A2, and SNCA, which were

unfavorable for the OS of patients with HCC, were positively

correlated with multiple types of immune cell infiltration, whereas

COX17, F5, and ALB, which were favorable for the OS of patients

with HCC, were negatively correlated with immune cell infiltration

in HCC. These results could be explained by the complexity and

heterogeneity of immune contexture in HCC. Higher levels of

immune cell infiltration may be associated with worse prognosis

of patients with HCC owing to the accumulation of numerous

suppressive immune cells, such as TAMs, exhausted T cells, and

MDSCs. For instance, Wu et al. validated a simple myeloid

signature known as MRS for HCC and discriminated HCC

immune subtypes as immunocompetent, immunodeficient, and

immunosuppressive subtypes (32). They found that the

infiltration level of CD8+ T cells was comparable in the

immunocompetent and immunosuppressive subtypes, while most

T cells were PD-1high exhausted T cells in the immunosuppressive

subtypes, suggesting the presence of a highly immunosuppressive

tumor microenvironment in patients with HCC with a high MRS.

Immune checkpoints play critical roles in regulating immune

cell function and tumor immune cell infiltration, and ICI therapy

has revolutionized the treatment of advanced malignancies and

other diseases in recent years (45, 46). For example, Wang et al.

found that increased PD-L1 expression in human neutrophils

delays cellular apoptosis by triggering PI3K-dependent AKT

phosphorylation, thereby promoting lung injury and increasing

mortality during clinical and experimental sepsis (45).

Additionally, ICIs targeting PD-1, PD-L1, or CTLA4 have

enabled the possibility of long-term survival in patients with

tumors such as melanoma, HCC, breast cancer, and colorectal

cancer (47, 48). Previous studies demonstrated that tumor cell-

intrinsic ICGs regulated tumor development (34, 49, 50). Therefore,

correlations between CRGs and ICGs at the mRNA level were

investigated and discussed in our study. Among the 15 critical

prognostic genes, ATP7A, ATP13A2, SNCA, and PRNP were

significantly positively correlated with the expression of ICGs,

whereas COX17 and F5 were negatively correlated with the

expression of ICGs. These results were consistent with those of

the survival analysis in the two datasets, suggesting that CRGs

influence tumor immune escape by regulating the expression of

ICGs. Furthermore, based on the co-expression analysis between

CRGs and ICGs, we hypothesized that infiltrated immune cells may

be disabled by the high levels of immune checkpoints in tumor cells.

The meaningful findings of our study are as follows: 1) We

found potential associations between CRGs and immune function

regulation in HCC. Furthermore, we found that CRGs were

correlated with the expression of PD-1, PD-L1, and CTLA4,

which implies possible effects on regulating the immune escape
TABLE 1 Clinical characteristics of patients with HCC.

Characteristics n = 25

Gender (male/female) 24/1

Age (year) 53.28 (11.05)

Height (cm) 170.43 (5.96)

Weight (kg) 68.10 (9.44)

ASA stage (I/II) 7/18

Child-Pugh stage (A/B) 13/12

Hypertension (Yes/No) 10/15

Diabetes (Yes/No) 2/23

Drinking (Yes/No) 5/20

Viral hepatitis (Yes/No) 24/1

Cirrhosis (Yes/No) 20/5

Tumor size (cm) 4.92 (2.53)

Operation time (hour) 2.80 (0.90)

Bleeding (ml) 295.45 (164.69)

Urine (ml) 413.64 (190.98)

Liquid transfusion

Crystalloid fluid (ml) 1285.71 (373.21)

Colloid fluid (ml) 739.05 (375.53)

ALT (U/L) 36.64 (34.48)

AST (U/L) 35.05 (26.63)

Hb (g/L) 143.39 (16.43)

PLT (109/L) 175.04 (86.76)

TBiL (mmol/L) 14.35 (5.76)

ALB (g/L) 42.98 (3.96)

Cr (mmol/L) 70.57 (13.15)

INR 1.02 (0.12)
Variables are shown as “mean (SD)”. ASA, American Society of Anesthesiologists; ALT,
alanine transaminase; AST, aspartate aminotransferase; Hb, hemoglobin; PLT, platelets; TBiL,
total bilirubin; ALB, albumin; Cr, creatine; INR, international normalized ratio.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1123231
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1123231
and TIM, and may be promising targets to improve the efficacy of

immunotherapy in HCC. To target these potential genes may

cooperate with ICIs to suppress tumor growth. 2) We identified

critical CRGs that significantly influence the survival of patients

with HCC. We constructed a useful tool to predict the risk of death

for patients with HCC based on the prognostic genes identified. 3)

We analyzed the effect of cuproptosis on HCC and found that some

CRGs, such as ATP7A and SLC31A1, significantly affected the OS of

patients with HCC, suggesting that cuproptosis is involved in HCC

progression. Moreover, cuproptosis may provide new research

directions and targets for HCC clinical treatments, similar to

ferroptosis. Finally, our study revealed complex functions of Cu

in regulating the TIM, immune cell infiltration, and ICG expression.

Limitations of the present study are worth noting. First, in vivo or

in vitro experiments are required to validate the enrichment of

immune-related signaling pathways observed in the GSEA and

KEGG pathway enrichment analysis. Nevertheless, some

validations were performed on HCC samples in our study, and this

provides a meaningful direction for scientists to further investigate

the relationship between Cu metabolism and tumor immune

response in HCC. Second, it was unclear whether immune escape

and immune therapy resistance could be reversed by targeting the

critical CRGs, although correlations were identified at the mRNA

level among CRGs, tumor immune cell infiltration, and immune

checkpoints. Third, multicenter clinical trials with large sample sizes

are required to validate and improve our prognostic model.
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5 Conclusion

Our study provides meaningful insight into the key roles of

CRGs in the development of HCC. Functional enrichment and

pathway analysis suggest a close relationship between CRGs and

immune-related pathways in HCC. Critical CRGs, particularly

PRNP, SNCA, and COX17, may influence the infiltration of

multiple immune cells in HCC, and significant correlations with

the expression of PD-1, PD-L1, and CTLA4 were also observed.

Collectively, CRGs could be promising therapeutic targets for HCC

by regulating the TIM and immune checkpoints.
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FIGURE 9

A nomogram was constructed to predict the probability of the 1-year, 3-year, and 5-year overall survival (OS) in patients with hepatocellular
carcinoma (HCC). (A) The nomogram was constructed based on six factors, and the results suggest that the risk score and TNM (tumor, nodes,
metastases) stage significantly affected the OS of patients with HCC. For the factor sex, 0 represents male and 1 represents female; for the factor
race, 0 represents white, 1 represents Asian, and 2 represents others; for TNM, 1 represents stage I, 2 represents stage II, and 3 represents stages III
and IV. (B) Calibration plots of the nomogram for the 1-year, 3-year, and 5-year OS. (C), Receiver operating characteristic (ROC) curve of the
nomogram prediction model. ****P < 0.0001.
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Study design flow chart and validation process.

SUPPLEMENTARY FIGURE 2

Comparison of the expression levels of complement activation-related genes

between the two groups in the ICGC-LIRI-JP dataset.

SUPPLEMENTARY FIGURE 3

Differential pathway analysis in the TCGA-LIHC dataset grouped by risk score.

(A) Top 20 KEGG differential pathways between two groups. (B) Top 20 GO-

BP differential pathways between two groups.

SUPPLEMENTARY FIGURE 4

Correlation analysis between cuproptosis-related genes (CRGs) and immune

checkpoint genes (ICGs). (A) Correlation analysis between ATP7A and ICGs.
(B) Correlation analysis between ATP13A2 and ICGs. (C) Correlation analysis

between F5 and ICGs.

SUPPLEMENTARY FIGURE 5

Correlation analysis between cuproptosis-related genes (CRGs) and immune
cell markers. (A) Correlation analysis between PRNP and immune cell

markers. (B) Correlation analysis between SNCA and immune cell markers.

(C) Correlation analysis between COX17 and immune cell markers.
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A Commentary on

Copper and cuproptosis-related genes in hepatocellular carcinoma:
therapeutic biomarkers targeting tumor immune microenvironment
and immune checkpoints

by Wang X, Chen D, Shi Y, Luo J, Zhang Y, Yuan X, Zhang C, Shu H, Yu W and Tian J (2023).
Front. Immunol. 14:1123231. doi: 10.3389/fimmu.2023.1123231
Introduction

Since P Tsvetkov et al. have first coined “cuproptosis” in 2022, this novel pattern of

programmed cell death (PCD) greatly expands our horizons of human diseases (1).

Mechanistically, FDX1-mediated protein lipoylation and copper-mediated toxic gain

drive the onset of cuproptosis (1). As shown in Figure 1, FDX1, as a metal reductase, is

responsible for reducing Cu2+ to its more toxic form Cu1+. Next, protein lipoylation is

triggered with the aid of FDX1 and six regulators in the lipoic acid pathway. Due to the fact

that protein lipoylation is only observed in four enzymes (DBT, DLST, GCSH, and DLAT),

all of which participate in the tricarboxylic acid cycle (TCA), the cuproptosis process is

subjected to mitochondrial respiration. In the effector phase, copper directly binds to

lipoylated protein to increase its cytotoxicity through promoting its aberrant

oligomerization. Moreover, copper is able to destabilize Fe–S cluster proteins, thereby

enhancing proteotoxic stress. The above-mentioned two processes of copper-induced toxic

gain eventually lead to cuproptosis.
Considering the critical roles of other patterns of cell death in cancers, such as

apoptosis and ferroptosis, an increasing number of scholars move their attention on the
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associations of cuproptosis with human cancers. Recently, we

focused on the research by X Wang et al. entitled “Copper and

cuproptosis-related genes in hepatocellular carcinoma: Therapeutic

biomarkers targeting tumor immune microenvironment and

immune checkpoints”, which was published in Frontiers in

Immunology (2). In this study, the authors constructed a

cuproptosis-related (CR) signature using Lasso regression analysis

to evaluate tumor immune microenvironments (TIMs) and predict

the prognosis of patients in hepatocellular carcinoma (HCC).

Moreover, they found that some critical CR genes such as PRNP

and COX17 were closely related with the expressions of immune

checkpoints (ICs), which showed the potentials of the application of

a CR model to predict the efficacy of immune checkpoint

inhibitors (ICIs).

Despite the great inspiration of their findings to HCC clinical

assessment, there is still a long way ahead the clinical application of

cuproptosis in HCC. The first issue that needs to be urgently

addressed is whether cuproptosis is the dominant pattern of cell

death in a specific cancer compared to other PCD. If cuproptosis

rarely occurred or is hardly induced in a specific cancer, the

corresponding CR signature may be tedious. Moreover, how to

detect the intensity of cuproptosis and how to assess the effects of

genes on cuproptosis are the other critical issues needed to be

addressed. Regretfully, several recent studies in Frontiers in

Immunology have failed to eliminate the above-mentioned concerns

well (3–5). Therefore, we performed the following discussion which

aims to provide some insights into further CR research.
Roles of cuproptosis in cancer
pathogenesis: leader or retinue?

As a novel type of PCD, the precise mechanisms of cuproptosis

in the onset and progression of human cancers need to be further

identified. A bibliometric research revealed that the majority of

existing cuproptosis studies only exhibited the bioinformatic

functional predictions or associations of cuproptosis in cancer (6).

However, how big the roles of cuproptosis in cancer pathogenesis

remain elusive. Compared with other PCD, cuproptosis is not

characterized by the obvious alteration of cell microstructure—for
Frontiers in Immunology 0247
instance, the abnormal changes in structure of the mitochondria

observed through transmission electron microscopy can be the

direct evidence supporting ferroptosis, but not for cuproptosis

(7). Herein we provided some ideas for the above-mentioned issue.

It is now confirmed that cuproptosis is subjected to

mitochondrial respiration due to the fact that inhibitors of the

electron transport chain (ETC) as well as inhibitors of

mitochondrial pyruvate uptake both hinder the copper ionophore-

induced cell death (1). Not only that, the core link of cuproptosis,

protein lipoylation, only occurs in four enzymes of the TCA cycle (8).

Thus, it is not difficult to surmise that cuproptosis occurrence was

tightly related to the activity of the TCA cycle. In the above-

mentioned context, we speculate that the activity of the TCA cycle

or mitochondrial respiration could act as the indicator to assess the

cuproptosis level. At present, there have been reasonable and reliable

approaches to detect the alterations of mitochondrial respiration,

including the extracellular acidification rate (ECAR), the oxygen

consumption rate (OCR), and the detection on the activity of key

enzymes or products in the TCA cycle—for instance, X Pei et al. have

applied ECAR and OCR assays to confirm the influence of MDH2 on

mitochondrial respiration (9). FL Basei et al. have evaluated the

changes in the protein expressions of respiratory complexes, such as

NDUFB8, SDHB, MTCOI, and SDHB, thereby revealing the

regulatory function of Nek4 in mitochondrial respiration (10).

Therefore, it is more reasonable to clarify the cuproptosis level

in a certain tumor before constructing a CR signature for cancer

clinical assessments. If there are no differences in the activity of

mitochondrial respiration, especially the TCA cycle between normal

and tumor cells or samples, the constructed CR signature is more

like a purely mathematical model rather than an excellent

assessment tool related to cuproptosis.
Paying more attention on the
functions of research genes
in cuproptosis

To date, a considerable proportion of cuproptosis bioinformatic

studies have only investigated the oncogenic or inhibitory functions

of CR genes in cancers from the biological perspective, without

determining the impact of these genes on cuproptosis—for

example, another cuproptosis research published on Frontiers in

Immunology has established a CR model for predicting a metastatic

event in melanoma, and the authors analyzed the effects of FDX1,

the core gene in this model, on the proliferation and migration of

melanoma cells (11). Similar research strategy is also observed in

other studies (12). Nevertheless, the effects of CR genes on the

cuproptosis process remain unanswered among these research,

which inevitably raises a question on whether these genes actually

regulate cancer development through cuproptosis. To resolve this

issue, we suggest that researchers could determine the sensitivity of

a tumor cell to cuproptosis agonists, such as elesclcomol under the

deficiency or overexpression of the target gene. Alternatively, they

could ascertain whether cuproptosis agonists are able to reverse the

effects of genes on the malignant behaviors of tumor cells.
FIGURE 1

Mechanism diagram of cuproptosis.
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Conclusion

The discovery of cuproptosis extremely expands our

understanding of cancer pathogenesis and inspires the work

enthusiasm of researchers. Of note, conducting scientific functional

analysis related to cuproptosis prior to initiating CR research,

especially for CR bioinformatic research, is great of significance.
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Background: The role of copper in cancer treatment is multifaceted, with copper

homeostasis-related genes associated with both breast cancer prognosis and

chemotherapy resistance. Interestingly, both elimination and overload of copper

have been reported to have therapeutic potential in cancer treatment. Despite

these findings, the exact relationship between copper homeostasis and cancer

development remains unclear, and further investigation is needed to clarify this

complexity.

Methods: The pan-cancer gene expression and immune infiltration analysis were

performed using the Cancer Genome Atlas Program (TCGA) dataset. The R

software packages were employed to analyze the expression andmutation status

of breast cancer samples. After constructing a prognosis model to separate

breast cancer samples by LASSO-Cox regression, we examined the immune

statement, survival status, drug sensitivity and metabolic characteristics of the

high- and low-copper related genes scoring groups. We also studied the

expression of the constructed genes using the human protein atlas database

and analyzed their related pathways. Finally, copper staining was performed with

the clinical sample to investigate the distribution of copper in breast cancer tissue

and paracancerous tissue.

Results: Pan-cancer analysis showed that copper-related genes are associated

with breast cancer, and the immune infiltration profile of breast cancer samples is

significantly different from that of other cancers. The essential copper-related

genes of LASSO-Cox regression were ATP7B (ATPase Copper Transporting Beta)

and DLAT (Dihydrolipoamide S-Acetyltransferase), whose associated genes were

enriched in the cell cycle pathway. The low-copper related genes scoring group

presented higher levels of immune activation, better probabilities of survival,

enrichment in pathways related to pyruvate metabolism and apoptosis, and

higher sensitivity to chemotherapy drugs. Immunohistochemistry staining

showed high protein expression of ATP7B and DLAT in breast cancer samples.

The copper staining showed copper distribution in breast cancer tissue.

Conclusion: This study displayed the potential impacts of copper-related genes

on the overall survival, immune infiltration, drug sensitivity and metabolic profile

of breast cancer, which could predict patients’ survival and tumor statement.

These findings may serve to support future research efforts aiming at improving

the management of breast cancer.
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Introduction

Breast cancer has become a significant worldwide health issue, with

over two million emerging cases and six hundred thousand death

records in 2020 (1, 2). Common treatment options, such as

chemotherapy, endocrine therapy, immunotherapy and radiotherapy,

do not always provide optimal therapeutic effects to breast cancer

patients (3). Therefore, it is important to develop more accurate and

effective prognostic models that can effectively characterize and classify

the molecular subtypes of breast cancer in order to diagnose, treat and

prevent breast cancer in a more precise manner.

Copper is a cofactor for various enzymes and plays a vital role in

cellular metabolism and respiration, and disruption of copper

homeostasis cause Wilson disease and Menkes disease (4, 5). Copper

also contributes to cancer development by enhancing tumor cell

proliferation and angiogenesis. Consequently, copper chelator has

been applied to inhibit cancer metastasis in clinical trials (6–8). On

the contrary, copper overload has been recently proposed to induce

lipoylated protein aggregation and cancer cell death (9). Copper

homeostasis-related genes have been implicated in breast cancer

prognosis and chemotherapy resistance. Studies have shown that

breast cancer patients with poor prognoses exhibit higher expression

of the copper importer solute carrier family 31 member 1 (SLC31A1)

and the copper binding protein ceruloplasmin, which could be utilized

as potential prognosis factors (10–12). Decreased expression of the

copper exporters ATPase copper transporting a (ATP7A) and ATPase

copper transporting b (ATP7B) have been associated with decreased

chemotherapy resistance in breast cancer cells (13, 14). It is currently

not fully understood how copper metabolism may be involved in

breast cancer or the potential mechanisms by which it may influence

the development or progression of the disease. Therefore, a

comprehensive analysis of the genetic alterations of copper-related

genes in tumor tissue could identify molecular targets for future

diagnosis and treatments for breast cancer.

Our pan-cancer analysis identified a differential expression pattern

of copper-related genes and immune cell infiltration profile in breast

cancer. We further investigated the expression and copy number

variation (CNV) of copper-related genes in breast cancer and

separated breast cancer samples based on the risk score. We then

compared the survival status, immune status, drug sensitivity and

metabolic pathways of the high- and low-copper related genes scoring

groups. Specifically, we analyzed the protein expression, the related genes

and themetabolic pathways of the essential copper-related genes, namely

ATP7B and DLAT, in breast cancer samples. The clinical sample also

confirmed that copper is distributed in breast cancer tissue. In summary,

this studymay offer valuable insights for identifying potential therapeutic

interventions and biomarkers for breast cancer treatment.
Materials and methods

Acquisition of copper-related genes and
data collection

We collected copper metabolism-related genes from MSigDB (15)

and cuproptosis-related genes from literature (9). The 42 copper-related
Frontiers in Immunology 0250
genes are listed in Table S1. The transcriptome data and medical

information of breast cancer patients were obtained from the Cancer

Genome Atlas (TCGA) database (https://www.cancer.gov/tcga). After

excluding sampleswith incomplete transcriptomic and survival data,we

obtained a final dataset with 1069 breast cancer samples and 113

paracancerous samples, which were used for the following analysis.

The validating datasets were procured fromGene Expression Omnibus

(GEO), including GSE96058 with 3273 breast cancer samples (16),

GSE18229 with 82 samples of luminal A and HER2-enriched subtypes

(17), and GSE58812 with 107 samples of triple-negative breast cancer

(18). The data of Infiltration Estimation for all TCGA tumors were

obtained from TIMER2.0 (19). Copy number variation landscape was

presented by the R package “maftools” (20).
Heatmap, PPI network, and
correlation network

The heatmap was presented by chip lot (ht tps : / /

www.chiplot.online/) and data were collected from TCGA

database and Genotype-Tissue Expression (GTEx) based on

UCSC XENA platform (21). The PPI network (Protein-Protein

Interaction Networks) was created by the STRING database (22)

and Cytoscape (23). The degree of cuproptosis and copper

metabolism-related genes was calculated by CytoNCA (24). The

correlation network was presented by the R package “corrr”.
Construction and validation of the copper-
related genes’ prognostic index

Copper-related genes were analyzed by univariate Cox regression

and genes with p < 0.05 were integrated into the LASSO-Cox

regression via 10-fold cross-validation in order to narrow down

candidate genes. A prognostic signature was built by multivariate

Cox regression, whose predictive capability on overall survival (OS)

was analyzed by time-dependent receptor operating characteristic

(ROC) curves by using the R package “timeROC” and “ggplot2”

(25). The univariate and multivariate Cox regression results were

obtained from the online analysis platform ToPP (http://

www.biostatistics.online/topp/index.php.) (26).
Survival analysis

The Kaplan–Meier curve was performed to compare the

survival status of the high- and low-copper related genes scoring

groups stratified by the risk score of copper-related genes using the

R packages “survival”, “survminer” and “ggplot2” (R version 4.1.3).

Genes were considered statistically significant at the p < 0.05 level.
Immune profile analysis

In order to identify the immune states and prognostic features

of the high- and low-copper related genes scoring groups, we
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applied CIBERSORT (27) to evaluate and compare the immune

composition between the two groups. By Tumor Immune

Dysfunction and Exclusion (TIDE) (28), we obtained the MSI

(microsatellite instability), Exclusion and Dysfunction to compare

the potential of tumor immune escape between the two groups. We

calculated the stromal score, immune score, tumor purity and

estimated score through the ESTIMATE algorithm (29).
Immunohistochemical staining of
ATP7B and DLAT by the human protein
atlas (HPA) database

The gene expression data based on breast cancer clinical

specimens were obtained from the HPA database (https://

www.proteinatlas.org/). Visualizing data of HPA were presented

using the R package “HPAanalyze”.
GSEA

Gene set enrichment analysis (GSEA) of the high- and low-

copper related genes scoring groups was created by the desktop

application of GSEA 4.2.3. Pathways were considered statistically

enriched at the cut-off point of p< 0.05 and FDR < 0.25 (15).
Drug sensitivity analysis

Based on the transcriptome data of breast cancer samples, the

drug sensitivity was analyzed by the R package “oncoPredict” and

the Genomics of Drug Sensitivity in Cancer (GDSC) database (30).
LinkedOmics analysis

The LinkFinder and LinkInterpreter modules of the

LinkedOmics web application were employed to investigate the

potential gene regulation network of the signature genes (31). These

tools allowed for identifying and analyzing relevant attributes,

providing insight into the functional relationships and regulatory

mechanisms at play in the network.
Copper staining of breast cancer samples

Tissue sections were obtained from both cancerous and

paracancerous areas of a patient with stage III/IV breast cancer that

tested negative for both estrogen receptor (ER) and progesterone

receptor (PR). The tissue sections were fixed with 4% formaldehyde

(G1101; Servicebio, Wuhan, China) overnight. After dehydration,

wax leaching, deparaffinization and rehydration with ethanol and

xylene, the slides were stained following the kit manufacturer’s

instructions for copper stain (M094; Gefanbio, Shanghai, China)

followed by hematoxylin stain (G1004-500ML; Servicebio, Wuhan,

China). The histological images of the tissue sections were scanned by
Frontiers in Immunology 0351
a digital slide scanner (Pannoramic scan, Hungary). This study was

approved by the ethics committee of the Chinese People's Liberation

Army (PLA) General Hospital (No. S2016-055).
Statistical analysis

The R version 4.1.3 was used to analyze data. The comparative

methods of difference between the groups were applied, including

Student’s t-test, Wilcoxon test, Kruskal-Wallis, and Log-Rank test

for survival analysis. The asterisks symbolized the statistical p value

(*p < 0.05; **p < 0.01; ***p < 0.001, ****p< 0.0001).
Results

The pan-cancer expression patterns of the
copper-related genes and the pan-cancer
immune statement

Based on the Molecular Signatures Database (MsigDB) (15) and

the recent cuproptosis literature (9), we selected 42 copper-related

genes for analysis (Table S1). The expression of copper-related

genes in 14 cancer types was examined and demonstrated by a

heatmap (Figure 1A). The stacked bar chart showed differentially

expressed copper-related genes in different cancer types (Figure 1B).

The Sankey diagram showed the log2 fold change (tumor vs. non-

tumor sample) of differentially expressed copper-related genes

across different cancer types (Figure 1C). These results

demonstrated the dysregulation of copper-related genes in breast

cancer and other cancer types. To further identify the immune

profile of different types of cancer, we generated the boxplot to

compare the immune cells’ infiltration profile in tumor samples and

their paired non-tumor samples. The boxplot showed the different

immune cells statement of tumor samples, demonstrating that the

enrichment of naive B cells (Figure 1D), memory B cells (Figure 1E),

CD8+ T Cells (Figure 1F), activated memory CD4+T

Cells (Figure 1G), activated NK cells (Figure 1H), M0

macrophages (Figure 1I), M1 macrophages (Figure 1J) and M2

macrophages (Figure 1K) was significantly changed in many cancer

types, especially in breast cancer samples.
The expression and genetic variation
profile of copper-related genes in breast
cancer samples

We analyzed the expression of copper-related genes in breast

cancer and non-tumor samples, which verified that breast cancer

samples had dysregulation of copper-related genes (Figures 2A, B).

The PPI network (Figure 2C) and correlation analysis (Figure 2D)

of copper-related genes in breast cancer samples showed the

interactions between candidate genes. Genetic variation plays a

crucial role in cancer origin and development. Therefore, we

analyzed somatic mutations and CNV of copper-related genes in

breast cancer samples (Figures 2E, F). According to the variant
frontiersin.org

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://doi.org/10.3389/fimmu.2023.1145080
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1145080
classification, the most prevalent variant, variant type and single

nucleotide variant (SNV) were missense mutations, single-

nucleotide polymorphisms (SNPs), and the C > T mutation,

respectively. In breast cancer samples, ATP7A (18%), amyloid

beta precursor protein (APP) (11%) and ATP7B (9%) were the

more frequently mutated genes. Cuproptosis genes, such as

d ihyd ro l i poamide dehydrogena s e (DLD) (2%) and

dihydrolipoamide s-acetyltransferase (DLAT) (2%), were also

among the top ten mutated genes.
Frontiers in Immunology 0452
Construction of the breast cancer’s survival
prediction model by copper-related genes

To predict the breast cancer survival pattern by a

prognostic gene set, we utilized univariate and multivariate

Cox regression analysis to plot the association between the

expression of copper-related genes and the OS of breast

cancer patients (Figures 3A, B and Table S2). Then, we built

the LASSO-Cox model using univariate Cox regression
A

B

D

E

F

G

I

H

J

K

C

FIGURE 1

The pan-cancer analysis of copper-related genes. (A) Heatmap of copper-related genes showed different expression patterns across different types
of cancers. (B) A stacked bar chart of copper-related genes in different types of cancer samples showed the number of differentially expressed
genes. The red and blue colors represented upregulated and downregulated genes, respectively. (C) The Sankey diagram of differentially expressed
copper-related genes across different cancer types. (D–K) Box plot comparison of the abundance of naive B cells (D), memory B cells (E), CD8+ T
Cells (F), memory CD4+ T cells (G), activated NK cells (H), M0 macrophages (I), M1 macrophages (J), and M2 macrophages (K) in different types of
cancers compared with paired non-tumor samples. (*p < 0.05; **p < 0.01; ***p < 0.001, ****p< 0.0001,NS: no significance).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1145080
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1145080
genes (p value <0.1) to select the best candidate genes for

constructing a survival prediction model of breast cancer

patients (Figure 3C). Eventually, 21 candidate gene signatures

emerged with the optimal log l value of the LASSO-Cox

model. We selected DLAT and ATP7B as the signature

genes to construct the prediction model based on OS

outcomes using regression coefficients. Risk score= 0.6664 x

DLAT - 0.1985 x ATP7B.
Frontiers in Immunology 0553
Prediction of breast cancer survival rates
by gene expression of ATP7B and DLAT

Weconfirmed the predictive performance of the prognostic gene set

using the TCGA-BRCA dataset (Figures 4A, C, E) and a validating

dataset (Figures 4B, D, F). Figures 4A, B presented Kaplan-Meier plot of

the two risk groups’OS in the training and validating dataset. We then

further demonstrated the risk score distribution plot and expression of
A B

D

E F

C

FIGURE 2

The expression and genetic variation of copper-related genes in breast cancer samples. Heatmap (A) and box plots (B) of differentially expressed
copper-related genes in breast cancer samples. (C) PPI network of copper-related genes. (D) Correlation of copper-related genes in breast cancer
samples. CNV, mutation frequency (E) and classification (F) of copper-related genes in breast cancer samples. (*p < 0.05; **p < 0.01; ***p < 0.001).
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ATP7BandDLATinbreastcancer samples (Figures4C,D).Thesurvival

plots indicated that the high- copper related genes scoring group had

poor survival. For ease of description, we define the high- and low-

copper related genes scoring groups as high- and low-scoring groups.

Time-dependentROCcurveswereconstructed toevaluate thepredictive

model’s efficacy. At the 1-, 3-, and 5-year time points, the TCGA-BRCA

dataset’s area under curves (AUCs) were 0.617, 0.623, and 0.597,

respectively (Figure 4E). As for the validating breast cancer dataset

(GSE96058), the areasunder the time-dependentROCcurvewere0.738,

0.623 and 0.595 at the 1-, 3- and 5-year time points (Figure 4F).

Comparison of the immune cells’
infiltration profile of the high-
and low-scoring groups

Immune infiltrates were increasingly considered responsible for

influencing the prognosis and clinical outcome of breast cancer
Frontiers in Immunology 0654
patients (32). Therefore, we compared the profile of tumor-

infiltrating immune cells between the high- and low-scoring

groups based on copper-related genes by heatmap (Figure 5A)

and box plot (Figure 5B). The low-scoring group had more naive B

cells, M2 macrophages, resting mast cells, monocytes, and CD8+ T

cells than the high-scoring group, while the high-scoring group had

more activated dendritic cells, M0 macrophages, M1 macrophages

and follicular helper T cells. The histogram (Figure 5C) and box plot

(Figure 5D) displayed the composition of different immune cells in

breast cancer samples. In order to further estimate the immune

statement of the two subgroups, four immune state indicators,

including the Immune score (Figure 5E), ESTIMATE score

(Figure 5F), stromal score (Figure 5G) and tumor purity

(Figure 5H) were plotted. The result showed that the low-scoring

group had a higher ESTIMATE score and stromal score and lower

tumor purity. To assess the likelihood of immune evasion in

tumors, we used TIDE to compare the gene expression profiles of
A B

C

FIGURE 3

Univariate and multivariate analysis and LASSO-Cox regression of copper-related genes in breast cancer samples. Univariate (A)- and multivariate
(B)-analysis of copper-related genes in breast cancer samples. (C) LASSO-Cox regression was built up from copper-related genes, based on which
we selected optimal genes by the cross-validation method.
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the high- and low-scoring groups (33). The box plot of Tide, MSI,

Exclusion, and Dysfunction (Figures 5I–L) also demonstrated that

the low-scoring group had lower TIDE, Exclusion and MSI than

those of the high-scoring group.
Metabolic features of the high- and
low-scoring groups

Cancer cells have a unique metabolic alteration known as aerobic

glycolysis, in which glucose is preferentially converted to lactate even
Frontiers in Immunology 0755
when oxygen is available (34). This phenomenon is in contrast to the

typical cellular metabolism of non-malignant cells. GSEA demonstrated

that breast cancer patients with lower scores for copper-related genes

were more likely to have enrichment in pathways related to pyruvate

metabolism and apoptosis (Figures 6A, B).

Tumor protein P53 (TP53), a crucial regulator of the Warburg

effect, may influence glycolysis by reducing pyruvate dehydrogenase

kinase-2 (Pdk2) expression, which results in the production of acetyl-

CoA rather than lactate (35). We identified that the low-scoring group

had a higher level of TP53 than the high-scoring group (Figure 6C).

The pyruvate dehydrogenase (PDH) complex, which converts pyruvate
A B

D

E F

C

FIGURE 4

Survival analysis of breast cancer patients stratified by the risk score of copper-related genes. The Kaplan–Meier curves of TCGA-BRCA samples
(A) and a validating dataset GSE96058 (B) grouped based on the risk score of copper-related genes at the best cut-off point. The statistical method
is the Log-rank test. The low-scoring group had a better survival probability in both TCGA-BRCA samples and GSE96058 samples. The dot and line
diagram of risk score, state of survival and expression of ATP7B and DLAT from TCGA-BRCA samples (C) and a validating dataset GSE96058 (D).
Time-dependent ROC curve of the constructed model of TCGA-BRCA samples (E) and the validating dataset (F).
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to acetyl-CoA, controls pyruvate entering the citric acid cycle or

participating in glycolysis. Pyruvate kinase M1/2 (PKM) converts

phosphoenolpyruvate to pyruvate and can inhibit the expansion

and metastasis of triple-negative breast cancer cells (36). We

observed that the low-scoring group had a higher level of

pyruvate dehydrogenase E1 subunit beta (PDHB) and PKM,

which tends to produce pyruvate rather than lactate (Figure 6C).

This result has revealed that the low-scoring group tended to rely
Frontiers in Immunology 0856
on pyruvate metabolism for energy supply. Hypoxia inducible

factor 1 subunit alpha (HIF1A) and the lactate transporter solute

carrier family 16 member 1(SLC16A1) also regulate aerobic

glycolysis in cancer metabolism, whose high expressions are

correlated with poor clinical outcomes in breast cancer patients

(37, 38). Pyruvate dehydrogenase kinase 1 (PDK1), a target of

HIF1A, could prevent pyruvate from entering into the

tricarboxylic acid cycle (TCA cycle) (39). The expression of
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FIGURE 5

Immune cells infiltration analysis of the high- and low-scoring groups. Heatmap (A) and box plot (B) of immune cell abundance in breast cancer
samples. (C) Histogram of the proportion of immune cells in each sample. (D) Box plot of the proportion of different immune cells (*p < 0.05;
**p < 0.01; ***p < 0.001, ****p< 0.0001). Box plots of the immune score (p=0.67) (E), ESTIMATE score (p < 0.01) (F), stromal score (p<0.0001)
(G) and tumor purity (p < 0.01) (H) of the high- and low-scoring groups were calculated by ESTIMATE algorithm. Violin plots of Tide (p=0.01) (I),
MSI (p <0.0001) (J), Exclusion (p =0.02) (K), and Dysfunction (p =0.79) (L) of the high- and low-scoring groups were calculated by TIDE algorithm.
(NS: no significance).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1145080
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1145080
HIF1A, SLC16A1 and PDK1 was increased in the high-scoring

group (Figure 6C), suggesting its glycolysis metabolic feature.
Treatment prognosis of the high- and
low-scoring groups

We predict breast cancer patients’ drug response using

“oncoPredict”. The lower sensitivity score represented a more

sensitive clinical response. Drugs with lower drug sensitivity

scores in the low-scoring group were selected using the t-test (p <

0.05). These selected drugs are Nilotinib, Nutlin 3A, RO 3306,

AZD8055, PF4708671, Niraparib, GSK269962A, Fulvestrant,

Temozolomide, Ruxolitinib, LCL161, IWP_2, Ribociclib,

Fludarabine, Nelarabine, GSK2578215A, MIM1, LJI30 and

BMS_754807 (Figures 7A–S). The low-scoring group had lower

drug sensitivity scores than the high-scoring group, indicating that
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individuals in the low-scoring group responded better to the above-

indicated chemotherapy drugs.
ATP7B- and DLAT-related functional
networks in breast cancer

To reveal additional links to the biological function of ATP7B and

DLAT in breast cancer development, we utilized the functional module

of LinkedOmics to analyze genes that were positively or negatively

correlated with ATP7B and DLAT (Figures 8A–C, E–G). Additionally,

we performed an enrichment analysis on the association results

(Figures 8D, H). ATP7B and its associated genes were enriched in

the cell cycle pathway (FDR ≤ 0.05). DLAT and its associated genes

were enriched in the cell cycle, oxidative phosphorylation and DNA

replication pathways (FDR ≤ 0.05). The result of this study suggested

that the two feature genes may contribute to the development of breast
A B

C

FIGURE 6

Metabolic characterization of breast cancer samples stratified by the high- and low-scoring groups. GSEA enrichment plot of regulation of
autophagy (A) and pyruvate metabolism (B) of the low-scoring group. (C) Boxplot showed that glycolysis-related genes, including HIF1A, PDHB,
PDK1, PKM, SLC16A1, and TP53, had a differential expression pattern among the high- and low-scoring groups. (***p < 0.001, ****p< 0.0001).
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cancer by impacting cell growth and energy metabolism, potentially in

collaboration with their co-expressed genes.
Dysregulation of ATP7B and DLAT proteins
in breast cancer

According to the HPA database (http://www.proteinatlas.org)

(40), the high staining intensity of ATP7B and DLAT in breast

cancer tissues is in contrast to those lowly stained in normal tissues

as indicated by the immunohistochemical analyses (Figures 9A, B).

HPAanalyze, a visualization R package, presented the expression of

ATP7B and DLAT proteins in myoepithelial and glandular cells in

breast cancer tissue using a heatmap (41) (Figure 9C). The IHC

staining intensity of ATP7B and DLAT is shown in Figure 9D, and

the subcellular locations of ATP7B (Golgi apparatus) and DLAT

(mitochondria) are also indicated (Figure 9E).
The expression profile and OS statement of
different breast cancer subtypes

We obtained the subtype information of TCGA samples from

XENA (42), based on which we grouped the primary breast cancers

samples into five subtypes using the Prediction Analysis of

Microarray 50 (PAM50) model, including luminal A, luminal B,

normal-like, HER2-enriched and basal-like subtypes (43). The
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heatmap showed that copper-related genes had a differential

expression pattern among breast cancer subtypes, indicating a

potential role of copper in the heterogeneity of breast cancer

(Figure 10A). Intriguingly, the expression of ATP7B and DLAT

were decreased and increased respectively in the basal-like subtype

compared with non-cancerous samples, which is opposite to those

in other breast cancer subtypes. In addition to differences in copper-

related gene expression, the survival status of breast cancer subtypes

differed. The Kaplan–Meier curves of different breast cancer

subtypes showed that the basal-like subtype had a worse survival

probability than the luminal A- and luminal B-subtypes in the early

stage (Figure 10B). We then used copper-related gene risk score to

assess our predictive model in different subtypes. According to the

survival curves, patients with basal-like subtype (Figure 10D) and

triple-negative breast cancers (TNBC) (Figure 10G) present better

survival in the high-scoring group and worse survival in the low-

scoring group, in contrast to other subtypes (Figures 10C, E, F).

This result suggests that the basal-like and TNBC patients had a

unique copper-related genes profile among breast cancer subtypes.
Copper staining of clinicopathological
sections of breast cancer

According to literature reports, breast cancer patients have

higher tissue and serum copper levels than normal subjects (44,
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FIGURE 7

Drug sensitivity score of the high- and low-scoring groups. Box plot of the drug sensitivity score of Nilotinib (A), Nutlin 3A (B), RO 3306 (C),
AZD8055 (D), PF4708671 (E), Niraparib (F), GSK269962A (G), Fulvestrant (H), Temozolomide (I), Ruxolitinib (J), LCL161 (K), IWP_2 (L), Ribociclib (M),
Fludarabine (N), Nelarabine (O), GSK2578215A (P), MIM1 (Q), LJI308 (R) and BMS_754807 (S). The drug sensitivity score was predicted based on the
R package “oncoPredict”, with a lower score representing a better clinical response. (*p < 0.05; **p < 0.01; ***p < 0.001, ****p< 0.0001).
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FIGURE 9

The protein expression of ATP7B and DLAT in BRCA tissues compared with non-tumor tissues in the HPA database. The protein expression of ATP7B
(A) and DLAT (B) in breast cancer and normal tissues in the HPA database (http://www.proteinatlas.org) (40). (C) The expression of ATP7B and DLAT
plotted according to cell types. (D) Column graphs showed the expression of ATP7B and DLAT in breast cancer samples. The subcellular localization
of ATP7B and DLAT (C–E) was visualized by the R package “HPAanalyze” (41).
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FIGURE 8

Genes co-expressed with ATP7B (A–D) and DLAT (E–H) in breast cancer. Volcano Plot showed genes associated with ATP7B (A) and DLAT (E) in
breast cancer samples analyzed by LinkedOmics. Heatmap showed the positively correlated genes with ATP7B (B) and DLAT (F) and the negatively
correlated genes with ATP7B (C) and DLAT (G) in breast cancer samples. The bar plot showed the GSEA results of genes associated with ATP7B (D)
and DLAT (H).
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45). We performed Timms copper staining on the paraffin section

of breast cancer patient to evaluate copper content and distribution

in their tumor tissue. In the breast cancer sample, copper particles

were found in the cytoplasm and nucleus of the breast cancer cells

(Figures 11A, B). The paired paracancerous tissue did not yield a

positive copper stain result (Figures 11C, D).
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Discussion

Breast cancer patients have been reported to exhibit higher

serum and tissue content of copper, with even higher serum copper

levels observed in patients non-responsive to chemotherapy

(46–48). The amount of copper-containing cells was positively
A B
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C

FIGURE 10

Gene expression profile and survival analysis of different subtypes of breast cancer stratified by the risk score of copper-related genes. (A) The gene
expression heatmap of different subtypes of breast cancer. The subtype information was obtained from Xena. (B) The Kaplan–Meier curves of
luminal A, luminal B, HER2-enriched and basal-like breast cancer patients. The Kaplan–Meier curves of luminal B (C), basal-like (D), luminal A and
HER2-enriched patients (E) from TCGA. (F) The Kaplan–Meier curves of luminal A and HER2-enriched patients from GSE18229. (G) The Kaplan–
Meier curves of Triple-negative breast cancers (TNBC) patients from GSE58812. The group was stratified based on the risk score of copper-related
genes at the best cut-off point.
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correlated with tumor growth rate (49). These results suggest that

copper levels may indicate breast cancer progression and

chemotherapy effectiveness in breast cancer patients. We found

that copper particles in the clinical breast cancer sample were

located in the cytoplasm and nucleus of the cancer cells

(Figures 11A, B), which might be associated with the function of

copper in promoting breast cancer metastasis. Several preclinical

studies have found that reducing copper levels could inhibit tumor

growth, angiogenesis and metastasis (50–52). Clinical trials using

tetrathiomolybdate to deplete copper levels have enhanced event-

free survival in breast cancer patients. Additionally, preclinical

models have shown that tetrathiomolybdate could reduce breast

cancer metastases to the lungs (53, 54). However, there is still a lack

of elucidation on how copper content may influence breast cancer

progression. Intriguingly, cuproptosis has been recently reported to

mediate copper’s effect on cell death and cancer development. In

breast cancer models, overloading copper by copper ionophores

could inhibit tumor growth (55–57). These seemingly opposite

conclusions prompted us to investigate the exact function of

copper homeostasis in breast cancer development.

We constructed a copper-related gene scoring system using

LASSO-Cox regression based on cuproptosis and copper

metabolism genes to recognize the essential copper-related genes

(Figure 3C). Two essential copper-related genes, ATP7B and DLAT,

were selected to construct the scoring model to predict breast cancer

patient survival. The higher AUCs of this model indicated advanced

predictive performance (Figure 4). ATP7B, a P-type ATPase

involved in copper secretion, played a pivotal role as a copper

transporter, whose mutation caused Wilson’s disease due to excess

copper accumulation-induced chronic liver diseases (58). DLAT,

which is subjected to lipoylation modification, mediates the entry of

carbon into the tricarboxylic acid cycle. Aggregation of lipoylated
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DLAT and reduction of iron-sulfur cluster proteins can be induced

by copper ions, which results in proteotoxic stress and cell death

(59). ATP7B and DLAT are both mutated in breast cancer samples,

with the most common mutation being missense mutation

(Figures 2E–F). Besides, we wonder what critical role ATP7B and

DLAT played in breast cancer, given that these genes are essential

for copper homeostasis and cuproptosis. The associated genes of

ATP7B and DLAT genes are enriched in the cell cycle, oxidative

phosphorylation, and DNA replication pathways (Figures 8A–H),

suggesting that these two genes and their associated genes might

influence breast cancer development by regulating the pathways

mentioned above. Aerobic glycolysis, also known as the Warburg

effect, is a characteristic metabolic process that is commonly

observed in cancer cells (60). Many types of tumors limit the

pyruvate oxidation process to meet the needs of the highly

proliferative tumor cells (61). The low-scoring group is enriched

in the pyruvate metabolism pathway (Figure 6A), suggesting that

the low-scoring group might have an altered metabolic profile

which is difficult to sustain the infinite growth of malignant cells.

Breast cancer is heterogeneous in genetic and biological features

(62). Generally, luminal A breast cancer had a better prognosis.

Compared with the luminal A subtype, the luminal B-and HER2-

enriched tumors present higher recurrence rates and worse survival

(63, 64). The basal-like breast cancer is associated with poor

prognosis, early relapses, and the highest locoregional recurrence

among all subtypes (65, 66). Interestingly, basal-like patients had a

unique expression and survival probability than other subtypes

(Figure 10). The expression of ATP7B and SLC31A1 were decreased

and increased, respectively, in the basal-like subtype patients

(Figure 10A), suggesting that patients with the basal-like subtype

of breast cancer may have different levels of copper in their tumor

tissues compared with those with other breast cancer subtypes. This

result might provide a comprehensive understanding of copper in

different breast cancer subtypes.

Previous studies mainly focused on the relationship between

cuproptosis-related genes and breast cancer (67, 68). Our study

included not only cuproptosis-related genes but also copper

metabolism-related genes to perform a comprehensive analysis of the

role of copper-related genes in breast cancer development. Our results

showed that the low-scoring group had lower expression of the copper

importer SLC31A1 and higher expression of the copper exporter

ATP7B (Figures S1A, B), which may altogether reduce intracellular

copper content. The low-scoring group with less copper content

appeared to have better survival outcomes and immune profiles.

Combined with the evidence that copper chelators inhibited breast

cancer metastasis, it is possible that reducing copper levels rather than

increasing them is an effective way to improve breast cancer outcomes,

which needs more experimental evidence for validation.

The composition of immune cells influences cancer progression.

Evidence suggests that B cells are anti-tumor through various

mechanisms, such as improving cytotoxic T cell activity and

activating antibody dependence (69, 70). Activated CD8+ T

lymphocytes are anti-tumor with cytotoxic molecules and have been

reported to correlate with favorable prognosis in triple-negative breast

cancer patients (71). In our result, the low-scoring group had more

naive B cells and CD8+ T cells compared with the high-scoring group
FIGURE 11

The copper stain of BRCA patients’ paraffin section using Timm’s
method. Copper staining of the pathological section of breast
cancer (A: 20x, B: 40x) and paired paracancerous (C: 20x, D: 40x)
sample. The copper-positive areas contain small black granules.
Coarse granules indicated intense copper deposition. The arrows
indicate the distribution of copper in pathological sections.
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(Figure 5B), indicating better immune response in the low-scoring

group. Additionally, because the copper chelate could reprogram and

enhance the anti-tumor reaction of T cells (72), eliminating copper

might be helpful for the anti-tumor response of breast cancer.

Based on the R package “oncoPredict”, we predict novel

chemotherapy drugs which might be helpful for the low-scoring

group’s breast cancer treatment. The low-scoring group seemed to

be more responsive to chemotherapy drugs (Figure 7) which have

been reported to suppress the metastasis or growth of breast cancer

cells and overcome tamoxifen resistance by targeting essential

regulators such as discoidin domain receptor 1, mTORC1/2,

PARP-1/2, JAK1/2, and CDK1 (73–82). In the future, utilizing

these newly developed chemotherapy drugs to treat breast cancer

may be possible after conducting appropriate screening and

classification and providing clinical guidance.

In summary, our study provided a novel prognostic signature to

predict breast cancer development, which revealed the association

of copper-related gene expression with immune cell infiltration,

cancer metabolic feature, and drug response. These results may

assist in the clinical management of breast cancer.
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A nomogram based on
cuproptosis-related genes
predicts 7-year relapse-free
survival in patients with estrogen
receptor-positive early
breast cancer

Yu Fan1, Chuanxu Luo1, Yu Wang1, Zhu Wang1,
Chengshi Wang2, Xiaorong Zhong1, Kejia Hu2, Yanping Wang1,
Donghao Lu2,3 and Hong Zheng1*

1Breast Center and Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan
University, Chengdu, China, 2West China Biomedical Big Data Center, West China Hospital, Sichuan
University, Chengdu, China, 3Institute of Environmental Medicine, Karolinska Institutet,
Stockholm, Sweden
Introduction: Excess copper induces cell death by binding to lipoylated

components of the tricarboxylic acid cycle. Although a few studies have

examined the relationship between cuproptosis-related genes (CRGs) and

breast cancer prognosis, reports on estrogen receptor-positive (ER+) breast

cancer are lacking. Herein, we aimed to analyze the relationship between CRGs

and outcomes in patients with ER+ early breast cancer (EBC).

Methods: We conducted a case-control study among patients with ER+ EBC

presenting poor and favorable invasive disease-free survival (iDFS) at West China

Hospital. Logistic regression analysis was performed to establish the association

between CRG expression and iDFS. A cohort study was performed using pooled

data from three publicly available microarray datasets in the Gene Expression

Omnibus database. Subsequently, we constructed a CRG score model and a

nomogram to predict relapse-free survival (RFS). Finally, the prediction

performance of the two models was verified using training and validation sets.

Results: In this case-control study, high expression of LIAS, LIPT1, and ATP7B and

low CDKN2A expression were associated with favorable iDFS. In the cohort

study, high expression of FDX1, LIAS, LIPT1, DLD, PDHB, and ATP7B and low

CDKN2A expression were associated with favorable RFS. Using LASSO-Cox

analysis, a CRG score was developed using the seven identified CRGs. Patients

in the low CRG score group had a reduced risk of relapse in both training and

validation sets. The nomogram included the CRG score, lymph node status, and

age. The area under the receiver operating characteristic (ROC) curve (AUC) of

the nomogramwas significantly higher than the AUC of the CRG score at 7 years.
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Conclusions: The CRG score, combined with other clinical features, could afford

a practical long-term outcome predictor in patients with ER+ EBC.
KEYWORDS

breast cancer, cuproptosis-related genes, nomogram, ER positive, RFS
1 Introduction

In 2020, breast cancer (BC), for the first time, surpassed lung

cancer as the most commonly diagnosed cancer. Overall, an

estimated 2.3 million new cases of BC have been diagnosed (1).

According to data on BC pathology among Asian women, 52–76% of

patients with BC have estrogen receptor (ER)-positive (ER+)

subtypes (2). Expression of ER has been associated with a favorable

prognosis and can predict the efficacy of endocrine therapies,

including aromatase inhibitors and tamoxifen (3). However, nearly

one-quarter of patients with ER + early BC (EBC) experience relapse

within 10 years (4). Approximately half of all relapses occur after five

years of adjuvant endocrine therapy (5). Although the clinical stage,

combined with other features like ki67 and differentiation grade, can

afford a preliminary assessment of prognosis, additional molecular

markers are needed to construct an exemplary long-term prognosis

model. Furthermore, these molecular markers could help identify

more effective therapeutic targets.

The copper-dependent regulation of cell death is distinct from

known death mechanisms and depends on mitochondrial

respiration in human cells (6). Copper directly binds to lipoylated

components of the tricarboxylic acid (TCA) cycle, resulting in

lipoylated protein aggregation (7) and subsequent iron-sulfur

cluster protein loss, thereby inducing proteotoxic stress (8) and,

ultimately, cell death (9). The regulators essential for cuproptosis

include two components, the lipoic acid (LA) pathway (FDX1,

LIAS, LIPT1, and DLD) and the pyruvate dehydrogenase (PDH)

complex (DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A) (9).

Research on cuproptosis and its relationship with cancer

remains in its early stages of development. Correlations between

cuproptosis-related genes (CRGs) and prognosis have been

reported in patients with renal carcinoma (10), head and neck

cancer (11), melanoma (12), glioma (13), and BC. However, data

mining on BC and CRGs currently involves The Cancer Genome

Atlas (TCGA) database with a relatively short follow-up period, and

molecular subtype analysis is required. The relationship between

CRGs and the long-term prognosis of ER+ EBC remains unclear.

Herein, we first suggested a correlation between the CRG profile

and invasive disease-free survival (iDFS) or relapse-free survival

(RFS) in patients with ER+ EBC by performing a case-control study

at our hospital and a cohort study from publicly available datasets.

In the case-control study performed at the West China Hospital

(WCH), high expression of LIAS, LIPT1, and ATP7B and low

expression of CDKN2A significantly reduced the odds ratio (OR)

of iDFS in patients with ER+ EBC. For validation, we used pooled
0266
data from three publicly available microarray studies (GSE42568,

GSE9195, and GSE20685). In this cohort, high expression of LIAS,

LIPT1, and ATP7B and low expression of CDKN2A significantly

reduced the hazard ratio (HR) of relapse of ER+ EBC. Moreover,

high expression of FDX1 and DLD, two molecules of the LA

pathway, and PDHB of the PDH complex significantly reduced

the HR for relapse. We then constructed a CRG score model in the

training set, which confirmed that a high CRG score could

significantly increase the risk of relapse in both training and

validation datasets. The nomogram comprising CRG score, lymph

node status, and age had an increased area under the receiver

operating characteristics (ROC) curve (AUC) at 7 years when

compared with that of the CRG score alone.

In brief, a novel nomogram comprising the CRG score and

clinical features could predict the 3-, 5-, and 7-year relapse risks of

ER+ EBC. Targeted enhancement of cuproptosis may be a potential

therapeutic strategy for patients with ER+ BC.
2 Materials and methods

2.1 WCH patients

Since 1989, patients with BC have been enrolled in the Breast

Cancer Management Information System of WCH, Sichuan

University (14). Physicians collected medical records, pathological

diagnoses, and treatment information. Between January 2008 and

April 2018, 7,784 females diagnosed with non-metastatic invasive

BC were prospectively followed up for clinical outcomes (15).

Patients with freshly frozen tumor and germline samples,

including blood or normal breast tissue, available during primary

surgery were eligible for study inclusion (N = 1462)
2.2 Case-control study of WCH

A matched extreme case-control design was employed (16).

Female patients diagnosed with EBC (stages I-III) who were

assessed for any iDFS endpoint at 7 years after diagnosis were

grouped into cases, and patients who survived without any iDFS

endpoint for at least 7 years were grouped into controls. One

control was randomly selected per case and individually matched

to the case of molecular subtype classified according to the St.

Gallen Consensus 2013, as previously described (15). Any local or
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regional relapse, distant metastasis, new primary tumors from any

site, cancer-specific death, or death from other causes were defined

as iDFS endpoints. Subsequently, samples from 222 patients were

RNA sequenced. Only ER+ samples were selected for further

analysis, and ER- samples were excluded. Sixty-three patients

were included in the case group and 62 in the control group. This

study was approved by the Clinical Test and Biomedical Ethics

Committee of the WCH, Sichuan University (No. 2019-16).
2.3 Pooled data from three mRNA
expression datasets, GSE42568, GSE9195,
and GSE20685

To verify the correlation between cuproptosis and patient

outcomes, we selected three GSE datasets (GSE42568, GSE9195, and

GSE20685) from the NCBI for Biotechnology Information Gene

Expression Omnibus (GEO). The data met the following criteria: 1.

Affymetrix Human Genome U133 Plus 2.0 Array; 2. provided ER

status, tumor size, T stage, lymph node status, N stage, and age of

patients with BC; 3. comprised at least 70 samples; 4. employed RFS as

the endpoint; 5. at least 80% of the relapse-free patients were followed

up for more than 5 years. In total, 508 samples from the three datasets

were downloaded from “https://www.ncbi.nlm.nih.gov/geo/”. We

excluded 164 samples owing to metastasis at diagnosis or ER-.

Overall, 344 patients were included in the subsequent analysis.
2.4 RNA sequencing data preparation

In the case-control study, RNA sequencing of frozen tumor

tissues was performed using the Illumina NovaSeq S6000 platform.

After quality control, reads were mapped to the reference genome

using Hisat2 v2.0.5, as previously described (15). To calculate the

fragments per kilobase of exons per million reads (FPKM) for gene

i, the following formula was used:

FPKMi =
qi

li ∗Sjqj
∗ 109

where qi is the raw read count, li is the gene length, and Sjqj
corresponded to the total number of mapped reads (17). All FPKM

data were then log2(x+1) transformed.
2.5 Microarray data preparation

The expression matrixes and clinical data for GSE42568,

GSE9195, and GSE20685 were downloaded from “https://

www.ncbi.nlm.nih.gov/geo”. The R package limma (v3.48.1) was

used to remove batch effects of these three GSE datasets, and

principal component analysis (PCA) of each sample was performed

before and after normalization. Each gene corresponded to a probe,

except for CDKN2A, which corresponded to three probes. The probe

with the highest normalized intensity averaged over all samples, was

used to represent the expression level of CDKN2A. RFS endpoints

were identical to iDFS endpoints, except for the occurrence of
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invasive contralateral BC, secondary primary invasive cancer, and

contralateral ductal carcinoma in situ (18).
2.6 Association between CRGs and iDFS in
the case-control study

We analyzed 13 CRGs from earlier studies: FDX1, LIAS, LIPT1,

DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, SLC31A1,

ATP7A, and ATP7B (9, 19). Univariate and multivariate logistic

regression analyses were performed to determine the association

between individual CRG expression levels and iDFS endpoints.

Pearson or Spearman correlation coefficient (r) was used for

measuring the relationship between individual CRGs and

clinicopathological features, including T stage, N stage, ki67,

grade, and HER2 status in the WCH cohort.
2.7 Construction and validation of a
prognostic CRG score in the cohort study

Univariate and multivariate Cox analyses of RFS were performed

to screen for individual CRGs with prognostic values in the pooled

GSE dataset. Kaplan-Meier survival analysis was used to estimate the

RFS between the high- and low- CRGs expression groups. The

“survminer” R package (V0.4.9) provided a cut-off for facilitating

survival analysis. The 344 enrolled patients were randomly divided

into two sets (7:3), with 241 and 103 patients in the training and

validation sets, respectively. In the training set, CRGs with P<0.05 in

the multivariate Cox regression were subjected to LASSO-penalized

Cox regression analysis to construct a prognostic CRG score model

using the “glmnet” R package (v4.1). The hyperparameter lambda (l)
was chosen based on tenfold cross-validation with the slightest mean

squared error. Patient CRG scores were calculated according to the

normalized expression levels of each gene and corresponding

regression coefficients. The LASSO-penalized Cox regression

formula is as follows:

CRGs:score =on
i=1(bi � exp ression(genei)) (20)

bi represented the corresponding coefficient of a specific gene,

and the expression(genei) indicates the expression level of the

corresponding gene. The CRGs score for each patient could be

calculated according to the formula. ROC curve analysis was used to

assess the performance of the CRG score using the R package

“timeROC” (V0.4). Univariate and multivariate Cox analyses and

Kaplan-Meier survival analysis were performed to verify the

association between CRGs score and RFS in the training and

validation sets.
2.8 Construction and validation of a
prognostic nomogram based on
CRGs score

A nomogram model predicting RFS was developed based on

CRG scores and other clinical features, including lymph node status
frontiersin.org
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and age, in the training set using the R package “rms” (V6.3).

Univariate Cox and Kaplan-Meier survival analyses were performed

to verify the relationship between the nomogram points and RFS.

The ROC curve assessed the performance of the nomogram model

using the “timeROC” package in both the training and validation

sets. A comparison of ROCs was performed between the CRG score

and nomogram points using the “compare” function in the

“timeROC” package.

Statistical analyses were performed using R software (V4.1.0).

Statistical significance was set at P< 0.05.
3 Results

3.1 Study design

Figure 1 presents the flow chart of the study. Our study used

two datasets and two study designs to demonstrate the association

between CRGs and iDFS or RFS in patients with ER+ EBC. The

genes in dotted boxes represent overlapping genes associated with

iDFS or RFS in both datasets.
3.2 Characteristics of patients in the case-
control study

In the case-control study, 63 patients who experienced endpoint

events within 7 years were grouped into cases, and the other 62

patients were grouped into controls. The two groups had no

significant differences in menopause, age, T stage, N stage, grade,

ki67, progesterone receptor status, or treatment, according to the
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chi-square test. The control group had a higher proportion of

HER2-positive patients, given that the HER2 status of 8 patients

was uncertain in the case group. The average iDFS and overall

survival (OS) were 127.1 ± 15.2 and 127.1 ± 15.2 months in the

control group and 31.4 ± 22.5 and 62.5 ± 35.2 months in the case

group, respectively (Table 1).
3.3 CRG expression associated with iDFS in
the case-control study

In the case-control study, the higher expression level of LIAS

(OR = 0.14, 95% confidence interval [CI] 0.03–0.57, P = 0.008),

LITP1 (OR = 0.2, 95%CI 0.06–0.65, P = 0.01), and ATP7B (OR =

0.38, 95%CI 0.17–0.81, P = 0.016) was associated with a lower risk

of iDFS endpoints. However, higher T stage (OR = 1.75, 95%CI

1.04–3.14, P = 0.045), N stage (OR = 2.32, 95%CI 1.12–4.88,

P = 0.025), and CDKN2A expression (OR = 1.8, 95%CI 1.24–2.74,

P = 0.003) were associated with a higher risk of iDFS endpoints

(Figure 2A; Supplementary Table 1). Menopause, age, grade, ki67,

HER2 status, chemotherapy, radiotherapy, trastuzumab, and other

CRGs showed no association with iDFS endpoints (Figure 2A).

Adjusted for T stage and N stage, LIAS (OR = 0.18, 95%CI 0.04–

0.81, P = 0.025), LIPT1 (OR = 0.26, 95%CI 0.07–0.9, P = 0.034),

CDKN2A (OR = 1.73, 95%CI 1.16–2.59, P = 0.007), and ATP7B

(OR = 0.42, 95%CI 0.19–0.94, P = 0.035) were still associated with

iDFS endpoints (Figure 2B; Supplementary Table 2).

Furthermore, we noted the relationship between these four

genes and other clinicopathological features. LIAS was negatively

associated with N stage (R = -0.18, P = 0.041), tumor grade (R = -0.24,

P = 0.012), ki67 (R = -0.2, P = 0.029), and HER2 expression

(R = -0.35, P = 9E-5). LITP1 was negatively associated with T stage
FIGURE 1

Flow diagram of the patient selection and study design. The red-marked gene represents the gene that negatively hit cuproptosis. Black-marked
genes represent the genes that positively hit cuproptosis. WCH, West China Hospital; iDFS, invasive disease-free survival; ER, estrogen receptor;
CRGs, cuproptosis-related genes.
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(R = -0.2, P = 0.027), N stage (R = -0.16, P = 0.066, borderline

significance), grade (R = -0.31, P = 0.001), ki67 (R = -0.28, P = 0.002),

and HER2 levels (R = -0.32, P = 0.0004). CDKN2A expression was

positively associated with N stage (R = 0.19, P = 0.034) and ki67

(R = 0.18, P = 0.047). ATP7B expression was negatively associated

with T stage (R = -0.17, P = 0.06, borderline significance) (Figure 2C).
Frontiers in Oncology 0569
3.4 Expression of CRGs associated with
RFS in the cohort study

In total, 344 patients were diagnosed with stage I-III ER-positive

BC using the GSE42568, GSE9195, and GSE20685 databases.

Supplemental Figure 1 shows the PCA of each sample before and
TABLE 1 Clinical and pathological features of 125 estrogen receptor positive invasive breast cancer patients in West China Hospital.

Features levels Control (N = 62) Case(N=63) p

menopause No 35 (56.5%) 32 (50.8%) 0.649

Yes 27 (43.5%) 31 (49.2%)

age <40y 13 (21%) 8 (12.7%) 0.319

≥40y 49 (79%) 55 (87.3%)

T stage 1 23 (37.1%) 12 (19%) 0.252

2 34 (54.8%) 43 (68.3%)

3 2 (3.2%) 3 (4.8%)

4 2 (3.2%) 4 (6.3%)

unknown 1 (1.6%) 1 (1.6%)

N status 0 31 (50%) 20 (31.7%) 0.055

1 19 (30.6%) 18 (28.6%)

2 8 (12.9%) 13 (20.6%)

3 4 (6.5%) 12 (19%)

grade 1 0 (0%) 1 (1.6%) 0.114

2 23 (37.1%) 15 (23.8%)

3 31 (50%) 43 (68.3%)

unknown 8 (12.9%) 4 (6.3%)

ki67 ≤10% 7 (11.3%) 4 (6.3%) 0.51

>10% 55 (88.7%) 59 (93.7%)

PR negative 54 (87.1%) 49 (77.8%) 0.257

positive 8 (12.9%) 14 (22.2%)

HER2 status negative 42 (67.7%) 36 (57.1%) 0.014*

positive 20 (32.3%) 19 (30.2%)

uncertain 0 (0%) 8 (12.7%)

chemotherapy No 1 (1.6%) 4 (6.3%) 0.371

Yes 61 (98.4%) 59 (93.7%)

radiotherapy No 36 (58.1%) 36 (57.1%) 1

Yes 26 (41.9%) 27 (42.9%)

Herceptin No 57 (91.9%) 58 (92.1%) 1

Yes 5 (8.1%) 5 (7.9%)

OS_bin 0 62 (100%) 33 (52.4%) <.001

1 0 (0%) 30 (47.6%)

iDFS_month Mean ± SD 127.1 ± 15.2 31.4 ± 22.5 <.001

OS_month Mean ± SD 127.1 ± 15.2 62.5 ± 35.2 <.001
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after normalization using the R package “limma.” Tumor size (HR =

1.6, 95%CI 1.1–2.2, P = 0.007) and lymph node status (HR = 3.8,

95%CI 2.3–6.3, P = 2.6E-07) were risk factors for relapse, and older

age (HR = 0.48, 95%CI 0.29-0.81, P = 0.006) was a protective factor

against relapse. Of identified CRGs, expression levels of LIAS (HR =

0.61,95%CI 0.41–0.9, P = 0.013), LITP1 (HR = 0.44, 95%CI 0.29–

0.66, P = 7.40E-05), CDKN2A (HR = 1.7, 95%CI 1.3–2.3, P =
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0.0001), ATP7B (HR = 0.75, 95%CI 0.58–0.98, P = 0.032), FDX1

(HR = 0.59, 95%CI 0.42–0.84, P = 0.003), DLD (HR = 0.59, 95%CI

0.42–0.83, P = 0.002), and PDHB (HR = 0.42, 95%CI 0.26-0.65, P =

0.0002) were associated with RFS (Figure 3A; Supplementary

Table 3). After adjusting for tumor size, lymph node status, and

age, these seven genes were still associated with the risk of relapse

(Figure 3B; Supplementary Table 4). The high expression of LIAS,
A

B

C

FIGURE 2

The association between CRGs and iDFS endpoints in WCH case-control study. (A) Univariate and (B) multivariate logistic regression analyses of
clinical features and CRGs for association with iDFS in the WCH cohort. (C) The relation of CRGs and the T stage, N stage, grade, ki67 and HER2
status. *, a p -value less than 0.05.
A C

B

FIGURE 3

The association between CRGs and RFS endpoints in the pooled cohort study. (A) Univariate and (B) multivariate cox regression of clinical features
and CRGs in pooled GSE data. (C) Kaplan-Meier survival analysis of CRGs. *, a p -value less than 0.05.
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LITP1, ATP7B, FDX1, DLD, and PDHB and the low expression of

CDKN2A were associated with longer RFS, as determined by the

Kaplan-Meier curve (Figure 3C). Collectively, five genes positively

affected cuproptosis, and one copper transporter gene decreased the

risk of relapse. However, one gene negatively impacting cuproptosis

may also increase the risk of relapse.
3.5 Construction CRGs score model in GSE
dataset and validation

Enrolled patients (n = 344) were randomly divided into two sets

(7:3): the training set (n = 241) and the validation set (n = 103). The

training and validation sets showed no significant differences in

clinical features or CRG expression (Supplementary Table 5).

LASSO-Cox regression analysis was used to establish a prognostic

model for the training set based on expression profiles of the seven

genes (Figure 4A). Seven gene signatures were determined based on

the optimal value (Figure 4B). The risk score was then calculated

based on the coefficient of each gene as follows:

CRGs.score = -FDX1*0.283 -LIAS*0.314 -LIPT1*0.428

-DLD*0.139 -PDHB*0.257 +CDKN2A*0.635 -ATP7B*0.275

According to the cut-off value of the CRG score calculated using

the R package “survminer,” patients were divided into the high CRG

score group and the low CRG score group in the training and

validation set. PCA revealed that patients in the different CRG score

groups were distributed in two directions (Figure 4C). As shown in

Figure 4D, the median survival time in the low and high CRG score

groups was 14.1 and 5.73 years, respectively, in the training set. The

HR of the low CRG score group was 0.21 (95%CI 0.13–0.35, P =

1.1E-9) when compared with that of the high CRG score group.

After adjustment for tumor size, lymph node status and age, the HR
Frontiers in Oncology 0771
of low CRG score was 0.24 (95%CI 0.14–0.41, P = 1.07E-07). The

AUC value was used to evaluate the predictive performance of the

CRG score over time. For the training set, the AUC was 0.74 at 3

years, 0.74 at 5 years, and 0.75 at 7 years (Figure 5C, left, solid line).

In the validation set, the median survival time was not reached

(NR) and 6.59 years for the low and high CRG score groups,

respectively. The HR of the low CRG score group was 0.29 (95%CI

0.13–0.64, P = 0.002), determined by univariate Cox regression

analysis, and 0.23 (95%CI 0.1–0.52, P = 0.0005) by multivariate

Cox regression analysis. For the validation set, the AUC was 0.77 at 3

years, 0.74 at 5 years, and 0.56 at 7 years (Figure 5C, right, solid line).
3.6 Development and validation of a
predictive nomogram based on CRG score

Multivariate Cox analysis of the CRG score, age, tumor size, and

lymph node status was performed. Tumor size (P = 0.52) was not an

independent prognostic factor. The CRG score (P = 1.80E-09) and

lymph node status (P = 3.03E-06) were independent prognostic

factors, while age reached borderline significance as an independent

prognostic factor (P = 0.055).

Based on the multivariate analysis results, we developed a

nomogram model as an easy-to-use tool (Figure 5A). As shown in

(Figures 5B, C), the median RFS time of patients with low and

high nomogram points in the training set were 14.1 and 5.42 years,

respectively. The HR of patients with low nomogram points was

0.14 (95%CI 0.085–0.24, P = 2.4E-13). The AUC was 0.79 at 3

years, 0.82 at 5 years, and 0.81 at 7 years (Figure 5C left, dotted

line). Compared with the CRG score, the AUC values of the

nomogram at 5 (P = 0.002) and 7 years (P = 0.02) were

significantly improved.
D

A B C

FIGURE 4

CRGs score model construction and survival analyses. (A) LASSO cox regression analysis was used to establish a prognostic model in the training
group based on the expression profiles of 7 CRGs. (B) 7 gene signatures were determined based on the optimal value of l. (C) Principal component
analysis (PCA) showed patients in different CRGs score groups distribution. (D) Kaplan-Meier survival analysis of CRGs score in training (left) and
validation set (right).
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In the validation set, the median RFS time of patients with low

and high nomogram points were NR and 3.5 years, respectively, and

the HR of patients with low nomogram points was 0.17 (95%CI

0.079–0.38, P = 1.6E-05). The AUC was 0.82 at 3 years, 0.81 at 5

years, and 0.7 at 7 years, as shown in Figure 5C (right, dotted line).

Compared with the CRG score, the AUC value of the nomogram

points at 7 years (P = 0.03) significantly improved.
4 Discussion

In the present study, we employed two datasets and two study

designs to demonstrate the association between CRGs and iDFS or

RFS in patients with ER+ EBC. Considering patients from WCH

and pooled GSE data, expression of LIAS, LIPT1, CDKN2A, and

ATP7B correlated with patient endpoints, and the risk direction was

consistent. In addition, three other CRGs, i.e., FDX1, DLD, and

PDHB, were negatively associated with the risk of relapse in the GSE

cohort. We then used pooled patients with GSEs to construct the

CRG score model and a nomogram for RFS prediction. In the

training and validation sets, the relapse risk of the high CRG score

group, comprising the seven genes, was significantly higher than

that of the low CRG score group. We used the CRG score combined

with lymph node status and age to construct a nomogram and

found that the RFS in the high-point group was significantly shorter

than in the low-point group. The 7-year predicted AUC of the

nomogram points was higher than that of the CRG score alone. The

findings of the present study revealed the potential impact of CRGs

on the clinicopathological features and prognosis of patients with

ER+ EBC. Interestingly, five genes promoting cuproptosis were

positively correlated with prognosis, and one gene inhibiting

cuproptosis negatively correlated with prognosis, suggesting that

cuproptosis may be a protective mechanism that reduces relapse in
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patients with ER+ EBC. Furthermore, high levels of LA pathway

genes, including FDX1, LIAS, LIPT1, and DLD, correlated with

prolonged RFS, suggesting that targeting the LA pathway in

cuproptosis may be a potential therapeutic strategy in patients

with ER+ BC.

Cu is a mineral nutrient, and a growing number of studies have

confirmed the involvement of Cu in cell proliferation and death

pathways (21). Given the intrinsic oxidized-reduced properties, Cu

can be both beneficial and potentially toxic to cells. Cu is an

essential cofactor for enzymes that mediate basic cellular

functions, including mitochondrial respiration, antioxidant

defense, and hormone and neurotransmitter biosynthesis.

However, dysregulation of Cu storage can lead to oxidative stress

and cytotoxicity (22, 23). First defined by Golub et al., cuproptosis is

a new cell death pattern that reveals the critical mechanism through

which CRGs regulate copper death (9). Copper ionophores, such as

disulfide (24) and elesclomol (25) can induce oxidative stress by

suppressing natural antioxidant systems, such as the mitochondria,

thereby inducing copper death. However, research on cuproptosis

remains in the early stages of development, and specific regulatory

mechanisms in various cancers remain unexplored.

CRGs have been previously correlated with the prognosis of

patients with renal carcinoma (10), head and neck cancer (11),

melanoma (12), and glioma (13). Considering BC, Zhi et al. (26)

analyzed the TCGA database and found that patients with high

expression levels of ATP7A, DBT, DLAT, DLD, GLS, PDHA1, and

SLC31A1 had a poor prognosis. High expression levels of ATP7B,

LIPT1, and NLRP3 were associated with improved OS. Li et al.

(27) found that expression of SLC31A1, ATP7A, DLD, DLAT, and

DBT significantly increased the risk of death, as determined by

analyzing the TCGA database. Li et al. (19) analyzed the TCGA

database and found that DLAT, SLC31A1, ATP7A, and ATP7B

expression levels were significantly related to the OS of patients
A B
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FIGURE 5

Nomogram model construction and survival analyses. (A) The Nomogram comprised the CRGs core, age, and lymph node status. (B) Kaplan-Meier
survival analysis of nomogram points in training (left) and validation set (right). (C) The area under the curve (AUC) of receiver operating
characteristics (ROC) of CRGs core and nomogram points model at 3-, 5- and 7- years in training (left) and validation (right) set.
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with BC. Furthermore, Li et al. (28) found that SLC31A1

expression and its related pathway genes could potentially

predict diagnosis, prognosis, and therapeutic response, as

determined by analyzing the TCGA database. Sha et al. (29)

analyzed a triple-negative subgroup of TCGA and found that

high expression of ATP7A, DLST, and LIAS was associated with

poor OS. Conversely, high expression levels of LIPT1 and PDHA1

indicated a good prognosis.

However, these studies have some limitations. First, the median

follow-up time of patients without relapse in the TCGA database

was 2.68 years for the ER+ subgroup. However, the relapse

probability of ER+ patients within 5 years was the same as that

after 5 years. Long-term follow-up of patients with ER+ BC is

necessary. Second, analyses of BC subgroups, such as ER+ or HER2,

are lacking in reported studies.

Herein, we used two independent long-term follow-up

databases and two study designs to analyze the correlation

between CRGs and outcomes in the ER+ subgroups and

constructed a relapse prediction nomogram. Among patients

enrolled at WCH, the control group had a median iDFS of 10.58

years. The median RFS of relapse-free patients was 7.3 years in the

pooled GSE data. Considering the relationship between DLD, LIAS,

and prognosis in TCGA, our findings contradict those reported in

earlier studies, which may be attributed to the follow-up time and

different molecular subgroups.

In our case-control study, the number of patients was limited.

Therefore, we identified fewer prognostic genes than those in the

pooled GSE data. In the cohort study, there were limited clinical

features in public datasets that could be included in the model

construction. Considering another limitation of our study, OS was

not used as an endpoint.

In conclusion, our study indicates that high expression of

positive hit genes (FDX1, LIAS, LIPT1, DLD, PDH1) and a

copper-transporting gene (ATP7B) and low expression of negative

hit genes (CDKN2A) related to cuproptosis can reduce the risk of

iDFS or RFS in patients with ER+EBC. In addition, the constructed

prognostic nomogram model had good predictive value for 7-year

RFS of patients with ER+EBC.
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Identification and validation
of a novel cuproptosis-
related stemness signature
to predict prognosis and
immune landscape in lung
adenocarcinoma by
integrating single-cell and
bulk RNA-sequencing

Jia Yang*, Kaile Liu, Lu Yang, Junqing Ji, Jingru Qin,
Haibin Deng and Zhongqi Wang*

Department of Medical Oncology, Longhua Hospital Shanghai University of Traditional Chinese
Medicine, Shanghai, China
Background: Cancer stem cells (CSCs) play vital roles in lung adenocarcinoma

(LUAD) recurrence, metastasis, and drug resistance. Cuproptosis has provided a

novel insight into the treatment of lung CSCs. However, there is a lack of knowledge

regarding the cuproptosis-related genes combined with the stemness signature and

their roles in the prognosis and immune landscape of LUAD.

Methods: Cuproptosis-related stemness genes (CRSGs) were identified by

integrating single-cell and bulk RNA-sequencing data in LUAD patients.

Subsequently, cuproptosis-related stemness subtypes were classified using

consensus clustering analysis, and a prognostic signature was constructed by

univariate and least absolute shrinkage operator (LASSO) Cox regression. The

association between signature with immune infiltration, immunotherapy, and

stemness features was also investigated. Finally, the expression of CRSGs and the

functional roles of target gene were validated in vitro.

Results: We identified six CRSGs that were mainly expressed in epithelial and

myeloid cells. Three distinct cuproptosis-related stemness subtypes were

identified and associated with the immune infiltration and immunotherapy

response. Furthermore, a prognostic signature was constructed to predict the

overall survival (OS) of LUAD patients based on eight differently expressed genes

(DEGs) with cuproptosis-related stemness signature (KLF4, SCGB3A1, COL1A1,

SPP1, C4BPA, TSPAN7, CAV2, and CTHRC1) and confirmed in validation cohorts.

We also developed an accurate nomogram to improve clinical applicability.

Patients in the high-risk group showed worse OS with lower levels of immune

cell infiltration and higher stemness features. Ultimately, further cellular

experiments were performed to verify the expression of CRSGs and prognostic
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DEGs and demonstrate that SPP1 could affect the proliferation, migration, and

stemness of LUAD cells.

Conclusion: This study developed a novel cuproptosis-related stemness signature

that can be used to predict the prognosis and immune landscape of LUAD patients,

and provided potential therapeutic targets for lung CSCs in the future.
KEYWORDS

cuproptosis-related stemness genes (CRSGs), prognostic signature, immune landscape,
single-cell sequencing, lung adenocarcinoma, cancer stem cells
Introduction

The most prevalent type of lung cancer, lung adenocarcinoma

(LUAD), is the primary reason for cancer-related deaths worldwide

(1). Although the advances of treatment in LUAD over the past 20

years, the 5-year overall survival (OS) is still below 20% due to its high

recurrence and metastasis (2, 3). Increasing evidence indicates that

lung cancer stem cells (CSCs) play a critical role in LUAD, and their

self-renewal, unlimited proliferation, and immunosuppressive

properties are responsible for generating tumor heterogeneity and

radio-chemotherapy resistance (4, 5). Despite salinomycin and its

derivatives have been identified that preferentially target breast CSCs

(6, 7), more efforts are needed to identify novel therapeutic targets and

develop effective prognostic models for LUAD patients to break the

logjam of CSCs-mediated drug resistance and immune suppression.

Since the low levels of ROS in CSCs, new therapeutic strategies

for generating intracellular reactive oxygen species (ROS) by

exogenous metal chelators and ionophores have emerged (8).

Copper (Cu), as an essential element for accumulating ROS, is

closely related to the progression of cancer by promoting

proliferation, angiogenesis, metastasis, and regulating immune

responses (9, 10). A series of copper complexes have demonstrated

encouraging anticancer potential by selectively suppressing lung,

colorectal, and breast CSCs, including copper ionophore such as

disulfiram, which has already entered phase I (11, 12). Recent studies

have revealed this novel copper-dependent cell death that is triggered
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by copper ionophores, known as cuproptosis (13), which is associated

with mitochondrial respiration and the tricarboxylic acid (TCA)

cycle, resulting in proteotoxic stress that is distinct from oxidative

stress-related cell death (14). Since Tsvetkov et al. first proposed that

FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, and PDHB are positive

cuproptosis-related genes, while MTF1, GLS, and CDKN2A are

negative cuproptosis-related genes (13). More and more novel

cuproptosis-related genes (CRGs) have been identified in various

tumors (15, 16). Evidence shows that lung cancer cells, including

LUAD, also require glutamine to fulfill metabolic needs, which is

important for the TCA cycle (17, 18). Numerous studies have

developed different cuproptosis-related risk models to predict

prognosis and immune infiltration in LUAD using bioinformatics

analyses (16, 19–21). However, no studies of CRGs combined with

stemness signatures in LUAD have been reported to date, and their

roles in prognosis and immune landscape remain unknown.

Compared to conventional bulk sequencing, single-cell RNA

sequencing (scRNA-seq) is capable of uncovering specific cell

populations and intratumoral heterogeneity at the single-cell level (22,

23). Therefore, we for the first time identified the cuproptosis-related

stemness genes (CRSGs) in LUAD by integrating bulk and scRNA-seq

and constructed a prognostic signature to predict the prognosis,

immune infiltration, stemness features, immunotherapy response, and

drug sensitivity. Lastly, in vitro experiments were performed to

investigate the expression and biological function of CRSGs. These

findings highlight the essential role of CRSGs in LUAD patients, which

might provide new insights into elucidating heterogeneity and

developing more effective therapeutic targets for CSCs.
Materials and methods

Data acquisition and preprocessing

The Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) was used to analyze the scRNA-seq

data of 11 LUAD samples (GSE131907 (24)). The bulk RNA-seq

data of 541 LUAD samples and 59 para-carcinoma samples were

obtained from the Cancer Genome Atlas (TCGA) database,

including 491 patients with clinicopathologic and survival

information (Table S1). Additionally, transcriptomic data from 19
frontiersin.org
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LUAD samples is included in GSE141569 (25) as the external

validation set. All the datasets were normalized by the limma

package (26) and the R package (27). Simultaneously, in total of

10 cuproptosis marker genes and 2916 cancer stemness genes were

obtained by literature review (13, 28) and related databases (29, 30).
Single-cell data analysis and
intercellular communication

The quality control of scRNA-seq data was performed using the

Seurat R package (version 4.1.0) (31) to optimally eliminate

potential doublets. Using Uniform Manifold Approximation and

Projection (UMAP), the top 30 components from principal

component analysis (PCA) on highly variable genes were chosen.

Cells were clustered using the FindClusters function. The

FindMarkers function was used to annotate cell types based on

reported cell-specific marker genes (Table S2). The R package

CellChat (version 1.1.3) (32) was used to evaluate cell–cell

interactions based on the CellChatDB databases.
The scores of stemness and cuproptosis at
the single-cell level

To obtain the stemness signature gene set of LUAD, we

downloaded 2916 stemness-related genes from the literature and

database, and aligned them with single-cell genes. The scores of

stemness signature were divided by median values, which were

calculated by the AddModuleScore function in Seurat. The scores of

cuproptosis for each cell were obtained by calculating the Area

Under the Curve (AUC) value of key CRGs using the AUCell R

package (version 1.18.1) (31). The UMAP embedding is colored by

the AUC scores. The scores of cuproptosis signature were divided

by the activity of cell clusters in LUAD scRNA-seq.
Analysis of DEGs and cuproptosis-related
molecular subtypes

DEGs were identified based on the TCGA-LUAD data by using

the R package. DEGs were defined as |log2 FC|>2 with adjusted

p<0.05 and visualized using heatmaps (33) and volcano plots from

the R packages ggplot2 (34).

The consensus clustering analysis was used to identify different

subtypes in LUAD based on cuproptosis-related DEGs by the

“ConsensusClusterPlus” R package (35). To ascertain the K value,

a cumulative distribution function (CDF) curve was employed, and

the classification was verified by PCA in LUAD.
Functional enrichment and gene set
variation analysis

Using the clusterProfiler (36) package, the Gene Ontology (GO)

(37) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (38)
Frontiers in Immunology 0377
enrichment analyses of the DEGs were performed. The dataset of

immune cells was downloaded from TISIDB (39) (http://cis.hku.hk/

TISIDB/download.php) using the GSVA package (40). The

stemness and immune scores based on the gene expression

matrix were calculated using the single sample gene set

enrichment analysis (ssGSEA).
Construction of the prognostic model
and nomogram

Forest plots were drawn based on the results of univariate and

multivariate Cox regression. By using univariate and least absolute

shrinkage operator (LASSO) cox regression, a prognostic model

based on differently expressed CRSGs was built. Cox regression

coefficients using the formula:

RiskScore0 =o expGenei �coefGenei

Kaplan‐Meier (K-M) analysis and the receiver operator

characteristic (ROC) curve were performed to estimate the OS

using the R ‘survival’ and ‘timeROC’ packages. A nomogram for

predicting the OS was built by using the rms R package. To assess

the clinical value of nomograms, decision curve analysis (DCA) and

clinical impact curves were used.
Correlation analysis of immune
infiltrating cells

The gene expression matrix of infiltrating immune cells was

obtained by CIBERSORT (41) using the LM22 signature. The

correlation of 22 immune cells was shown in a heatmap by

the corrplot algorithm, and the correlation between immune

infiltration and prognosis was calculated by the ggplot2 package.

We also analyzed the correlation of prognostic genes with

immune checkpoints.
Anticancer drug sensitivity analysis

The anticancer drug sensitivity and markers of drug response

were collected from the Genomics of Drug Sensitivity in Cancer

(GDSC) database (42). A ridge regression model was built using

gene expression profiles by the pRRophetic algorithm (43). The

sensitivity of an anticancer drug was classified by IC50 values.
Cell culture and transfection

The LUAD cell lines (A549 and SPC-A1) and human

bronchial epithelial cells (BEAS-2B) were purchased from the

Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

All cells were cultured in DMEM or RPMI-1640 medium

(Hyclone, USA) supplemented with 10% fetal bovine serum

(FBS; Gibco, USA).
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The small interfering RNA of SPP1 (siSPP1) and control RNA

(si-Ctrl) were synthesized by GenePharma Inc. (Shanghai, China).

Lipofectamine 3000 (Invitrogen, USA) was used to transiently

transfect the siRNA into cells. The sequence of siSPP1#1 is

UAUUUUGGCCUUUAUUCUGUU, siSPP1#2 is GAGAA

TTGCAGTGATTTGCTTTT, and siSPP1#3 is AGGAA

AAGCAGCTTTACAAAA. After 48 hours of incubation, the

interfering effect was confirmed by Western blotting. The

following antibodies were used: anti-SPP1 (ab302942, 1:1000,

Abcam, USA), b-actin (ab8226, 1:1000, Abcam, USA).
Quantitative real-time PCR

TRIzol reagent (Invitrogen, USA) was used to extract total RNA

from the cells, and the cDNA synthesis kit (Takara, Japan) was used
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to reverse-transcribe the extracted total RNA into cDNA in

accordance with the kit’s instructions. SYBR Green RT-PCR Kits

(Takara, Japan) were used for the qPCR, and 2−DDCt was used to

determine the relative mRNA expression. b-actin provided internal

control. Table 1 contained a list of the primers.
Cell proliferation and migration assay

Cell proliferation was evaluated using the CCK-8 assay. The

transfected SPC-A1 cells were seeded onto 96-well plates with

2×103 cells/well and incubated for 5 days. Cell Counting Kit-8

(CCK-8) (Beyotime, China) was added and detected the absorbance

of the solution at 490 nm. Transwell test was used to measure cell

migration. Cells (2×105 cells/ml) were added to the upper 24-well

plate chamber with FBS-free medium, while the lower chamber was
TABLE 1 Primer sequences used for qRT-PCR.

Gene Primers Sequence (5′–3′)

CDKN2A
Forward GGAGGCCGATCCAGGTCAT

Reverse CACCAGCGTGTCCAGGAAG

GLS
Forward CACTCAAATCAGGATTGCG

Reverse CCAGACTGCTTTTTAGCACTTT

FDX1
Forward CCTGGCTTGTTCAACCTGTCA

Reverse CCAACCGTGATCTGTCTGTTAGTC

PDHA1
Forward CAGACCATCTCATCACAGCCTACC

Reverse CCTCCTTTCCCTTTAGCACAACCT

PDHB
Forward GACACTCCCATATCAGAGATGG

Reverse CTTGGCAGCTGAGTTTATAACC

DLD
Forward GCCGACGACCCTTTACTAAGAAT

Reverse GGACCAGCAACTACATCACCAAT

KLF4
Forward AACCTATACGAAGAGTTCTCAT

Reverse CCAGTCACAGTGGTAAGG

SCGB3A1
Forward ATGTCCCCACAATCAGCAAG

Reverse CTCTGCAGCTGGAGCAAGG

COL1A1
Forward GCTCCTCTTAGGGGCCACT

Reverse CCACGTCTCACCATTGGGG

SPP1
Forward CAAATACCCAGATGCTGTGGC

Reverse TGGTCATGGCTTTCGTTGGA

C4BPA
Forward CTACGCATACGGCTTTTCTGT

Reverse CCCATGTGAAACATCTGGCTTG

TSPAN7
Forward CTCATCGGAACTGGCACCACTA

Reverse CCTGAAATGCCAGCTACGAGCT

CAV2 Forward CGTGCCTAATGGTTCTGCCT

(Continued)
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contained with 20% FBS medium. After 24 hours, the cells in the

lower chamber were stained and counted under the

200x microscope.
Tumorsphere formation assay

SPC-A1 cells (3×103/well) were plated into an ultralow

attachment 6‐well plate (Corning, USA) and incubated for 5-7

days. Serum-free DMEM/F12 (Gibco, USA) supplemented with 20

ng/mL epidermal growth factor (Sigma, USA), 20 ng/mL basic

fibroblast growth factor (Sigma, USA), 20 mL/mL B27 (Invitrogen,

USA), and 5 mg/mL insulin (Invitrogen, USA) was used to culture

the cells. Morphology of CSC spheres was photographed under the

400x microscope.
Statistical analysis

Using R programming (version 4.1.0), all statistical analyses

were carried out. T-tests or the Mann-Whitney U test were used to

compare continuous variables between groups. All p values were

two-sided, and significance was indicated by p < 0.05.
Results

Clustering and differential analysis of
scRNA-seq data

The flow chat was shown in Figure 1. After quality control, we

used scRNA-seq data (GSE131907) to obtain gene expression

profiles for 45,149 cells from 11 primary LUAD samples. As

shown in Figure 2A, these cells were classified into 27 clusters by

the KNN algorithm. Subsequently, clusters were annotated into 8

major cell types (Figures 2B; S1A) based on the expression of

marker genes (Table S2). They were epithelial cells (contain non-

malignant cells and cancer cells), myeloid cells, T lymphocytes,

natural killer (NK) cells, B lymphocytes, fibroblasts, mast cells, and

endothelial cells (Figure 2C). There is a relatively high proportion of

T lymphocytes and a low proportion of endothelial cells

(Figure 2E). Then, we divided each cell into high- and low-

stemness cells according to the median value of the stemness
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score (Figure 2D). Furthermore, a total of 6107 differentially

expressed stemness genes were identified, and the top 20 genes

were shown in the heatmap (Figure 2F).
Analysis of cuproptosis score
based on stemness signature and
functional enrichment

Through the intersection of the 6107 differentially expressed

stemness genes and 10 cuproptosis-related genes, 6 CRSGs

(CDKN2A, GLS, FDX1, PDHA1, PDHB, and DLD) were

obtained (Figure 2G). We further explored that they were

mainly expressed in epithelial (contain non-malignant cells and

cancer cells), myeloid cells and T lymphocytes by scRNA-seq.

(Figures 2H–M). Additionally, there was a positive correlation

among these CRSGs, the expression of CDKN2A was positively

correlated with GLS (cor = 0.394) (Figure 2N). These genes were

significantly more active in epithelial and myeloid cells

(Figure 3A). In total, 25802 cells with a high-cuproptosis score

based on stemness signature were screened by the AUCell R

package (AUC > 0.054) (Figure 3B).

We further explored the functional enrichment between the

high- and low- cuproptosis score cells based on stemness signature

by GO and KEGG analyses. They were most enriched in the

metabolic microenvironments and cancer-related pathways, such

as protein catabolism, DNA-binding proteins, and endocytosis

(Figure 3C, D; Table S3-4).
Clustering subtypes of high-cuproptosis
score with stemness signature in single-
cell data

After obtaining the high-cuproptosis score stemness cells, we

classified them into 30 clusters by the KNN algorithm (Figure 4A).

Finally, cell types were recognized based on previous cell markers

(Figures 4B; S1B): epithelial cells (contain non-malignant cells and

cancer cells), myeloid cells, T lymphocytes, fibroblasts, B

lymphocytes, mast cells, and endothelial cells (Figure 4C). Cell

clusters were almost consistent with the distribution by stemness

score above. Additionally, the expression of CRSGs in subtypes was

similar to previous results from scRNA-seq (Figures 4D–I).
TABLE 1 Continued

Gene Primers Sequence (5′–3′)

Reverse CGCTCGTACACACAATGGAGCA

CTHRC1
Forward ATAATGGAATGTGCTTACAAGG

Reverse TTCCCAAGATCTATGCCATAAT

b-actin
Forward CTTCGCGGGCGACGAT

Reverse CCACATAGGAATCCTTCTGACC
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Intercellular communication between
cuproptosis stemness cluster and others

CellChat was used to delineate intricate a cell-cell network from

scRNA-seq. Figure 5A shows the intercellular communication of

high- and low- cuproptosis score stemness cluster that mainly

occurred in epithelial, endothelial, fibroblast, lymphocytes, and

myeloid cells with differential interaction numbers and strengths.

Further analysis suggested that high-cluster was more associated

with immune cells, such as NK cells and lymphocytes, and less

associated with epithelial cells, endothelial cells and myeloid cells

(Figures 5B, C). Moreover, ligand-receptor pair analysis revealed

that fibroblasts preferred to communicate with immunocytes

through MIF-(CD74+CXCR4), MIF-(CD74+CD44) and MDK-

NCL (Figure 5D).
Characteristics of CRSGs in the bulk RNA-
seq of LUAD

Further, we examined 2550 DEGs in total, including 985 genes

upregulated and 1565 genes downregulated in TCGA-LUAD

(Figures S1C-D). The expression of CRSGs in bulk RNA-seq

showed that CDKN2A and PDHA1 were higher in LUAD (p <

0.001), while FDX1 and GLS were lower in LUAD (p < 0.05), and
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with unaltered levels of DLD and PDHB (p > 0.05) (Figures 5E, F).

Additionally, through the intersection of the DEGs and the marker

genes in high-cuproptosis stemness cluster, a total of 129 genes were

obtained (Figure 5G; Table S5). GO analysis showed they were

mostly related to immune features and complement activation.

(Figure 5H; Table S6).
Analysis of cuproptosis-related stemness
subtypes and immune infiltration in LUAD

Three distinct cuproptosis-related stemness subtypes were

identified (Cluster 1-3) based on 129 intersecting DEGs by

unsupervised clustering. (Figures 6A–C). The clustering criteria

were k=3, and the results were confirmed by PCA (Figure 6D,

Figure S1E). Furthermore, most CRSGs except FDX1, were

significantly differentially expressed among the three clusters (p <

0.05) (Figure 6E).

Next, the immune infiltration score of the 28 immune cell types

was evaluated in the three subtypes by employing the ssGSEA

analysis (Figure 6F). The results showed that most immune

infiltrating cells like activated B cells, CD4+ T cells, CD8+ T cells,

myeloid-derived suppressor cells (MDSCs), and NK cells were

significantly lower in Cluster 1, indicating that patients in Cluster

1 would be more insensitive to immunotherapy.
FIGURE 1

Flow chat in the study.
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Construction and validation of the
prognostic model with cuproptosis-related
stemness signature

A prognostic signature was constructed by univariate and

LASSO Cox regression to select the most significantly prognostic

CRSGs among the 129 DEGs (Figures 7A, B). As a result, eight

genes (KLF4, SCGB3A1, COL1A1, SPP1, C4BPA, TSPAN7, CAV2,

and CTHRC1) with minimal lambda (p = 0.01) were finally

screened out to construct the prognostic model. Internal

validation cohort (TCGA-LUAD) shows patients with a high-risk

score exhibited a worse OS (p=0.00004, Figure 7C). Similarly, K-M

analysis showed that patients in the high-risk group had

significantly lower survival rates (p < 0.001, Figure 7D). The ROC

curves for 1-, 2- and 3- year OS were calculated, with AUCs of

0.7049, 0.7049, and 0.6836, respectively (Figures S2A, B).

Additionally, we also validated in external cohort (GSE141569).

Consistent with the above results, patients with higher risk scores
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showed higher mortality (p = 0.0038, Figure 7E). The K-M curve

and AUC values also exhibited higher OS rates in the low-risk group

(p = 0.005, Figurea 7F; S2C, D). All the results indicated that the risk

score may be a trustworthy and accurate model to predict the

prognosis of LUAD.
Construction of the nomogram for
LUAD patients

To further apply the prognostic model, we performed the

univariate and multivariate Cox regression analysis (Figure 8A-B;

Table S7) based on the clinical information (Table S1) and CRSGs

features from TCGA-LUAD. Similar results were validated in an

external cohort (Figures S3A, B). The nomogram was constructed

based on the results of multivariable Cox regression (Figure 8C).

The accuracy of the nomogram’s 1-, 3-, and 5-year survival

predictions was demonstrated by calibration curves. (Figure 8D).
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FIGURE 2

Clustering and differential analysis of scRNA-seq data. (A) Cells in scRNA-seq (GSE131907) were classified into 27 clusters by dimensional reduction
and clustering analysis. (B) Marker gene expression in each cluster. (C) The UMAP diagram shows the distribution of the 8 major cell types in each
sample. (D) The major cell types were divided into high- and low- stemness cells by the stemness score. (E) Histogram overlays display the
proportion of cell types in each sample. (F) A heatmap showing the top 20 differentially expressed stemness genes in each cell type. (G) Venn
diagram shows the intersection of differential stemness genes and cuproptosis-related genes. (H-M) Expression of CRSGs in different cell types:
CDKN2A, FDX1, PDHA1, PDHB, DLD, and GLS. (N) The circle plot shows the correlation between CRSGs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1174762
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1174762
B

C D

A

FIGURE 3

Analysis of cuproptosis score based on stemness signature and functional enrichment in scRNA-seq. (A) The UMAP plot shows the cuproptosis
score based on stemness signature in each cell type. (B) The distribution graph of AUC. High-cuproptosis score cells were selected using AUCell
function by AUC>0.054. (C) GO enrichment analysis of DEGs between the high- and low- cuproptosis score cells based on stemness signature.
(D) KEGG pathway analysis of DEGs.
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FIGURE 4

Clustering subtypes of high-cuproptosis score with stemness signatures in single-cell data. (A) The UMAP diagram shows the high-cuproptosis score
stemness cells were classified into 30 clusters using dimensional reduction and clustering analysis. (B) Marker gene expression in each cluster. The
bigger the dots, the higher the cell proportion. (C) Seven recognized cell types based on previous cell markers. (D-I) Expression of CRSGs in each
cell type: CDKN2A (D), FDX1 (E), DLD (F), GLS (G), PDHA1 (H), PDHB (I).
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Meanwhile, the DCA also indicated that LUAD patients were more

likely to benefit from the nomogram model (Figures 8E–G).
Immune infiltration profiles and stemness
score based on a prognostic signature

We further performed the CIBERSORT algorithm to assess the

proportion and correlation of immune cells in each LUAD patient

(Figures S3C, D). Correlation analyses found that CRSGs with

prognostic signature were associated with most of the 22 immune
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cells (Figure 9A). Besides, there were significant immune cell

differences between the high- and low-risk groups. (Figure 9B).

Finally, a correlation analysis between risk score and immune

infiltration was performed, which revealed that risk score was

positively correlated with M0 macrophages, memory CD4+ T

cells, and resting NK cells but negatively correlated with activated

NK cells, resting mast cells and Tregs (Figure 9C)

Moreover, the stemness score was calculated using ssGSEA, and

correlated with the risk score. A positive association was found

between risk score and stemness score (r = 0.286, p = 1.95e-10,

Figure 9E), which indicated that patients with a higher risk score
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FIGURE 5

Intercellular communication between cuproptosis score stemness cluster and others. (A) Cell-cell communication network of high-(Left) and low-
(Right) cuproptosis score stemness cluster with others by CellChat. (B) Differential interaction number (Left) and strength (Right) between the cuproptosis
score stemness cluster with others. (C) The heatmap shows the differential interaction number and strength. (D) Ligand-receptor interactions plot. (E)
The heatmap shows the differential expression of CRSGs in bulk RNA-seq. (F) Violin plots showing the expression of CRSGs between LUAD and para-
carcinoma tissues in TCGA dataset. (G) Venn diagram shows the intersection of the DEGs and the marker genes in high-cuproptosis score stemness
clusters. (H) GO analysis of the intersecting genes. p values were shown as: *, p<0.05; **, p<0.01; ***, p<0.001; NS, no significance.
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also had a higher stemness score and more CSC features (p = 3.3e-

13, Figure 9F).
Immunotherapy response and
drug sensitivity

To further evaluate the immunotherapy response with CRSGs

in LUAD, a correlation analysis between the prognostic CRSGs and

the immune checkpoint genes was conducted. KLF4, COL1A1,

SPP1, CAV2, and CTHRC1 were positively related to the top 14

immune checkpoint genes, of which CTHRC1 and COL1A1 had the

highest correlation, while TSPAN7, C4BPA, and PSMB9 showed a

negative correlation (Figure 9D). Taken together, these results

indicated that the prognostic CRSGs could be a useful biomarker

to predict LUAD patients who will benefit from immunotherapy.
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We also evaluated potential anti-tumor drugs between high-

and low- risk group based on drug sensitivity profiles from the

GDSC database. The top 16 sensitivity drugs were selected by

calculating IC50 values, such as AKT-VIII, EHT-1864, GW-

441756, erlotinib, lapatinib, etc., implying that patients in the

high-risk group were more sensitive to chemotherapy and

targeted therapy (Figures S4A-P).
Validation of cuproptosis-related stemness
signature in vitro

Finally, we further verified the mRNA expression of CRSGs and

DEGs with prognostic signature in LUAD cells. Compared with

normal bronchial epithelial BEAS-2B, the expression of CDKN2A,

PDHA1, COL1A1, SPP1, CAV2, and CTHRC1 was significantly
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FIGURE 6

Analysis of cuproptosis-related stemness subtypes and immune infiltration in LUAD. (A) Plot of the Cumulative Distribution Function (CDF). (B) Delta
area. (C) Unsupervised clustering heatmap when k=3. (D) Three distinct cuproptosis-related stemness subtypes were identified based on intersecting
DEGs by principal component analysis (PCA). (E) Expression of CRSGs in the three clusters. (F) A box plot displaying the differences in immune cells
that have infiltrated the three clusters by ssGSEA analysis. *, p<0.05, **, p<0.01, ***, p<0.001, NS, no significance.
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upregulated in A549 and SPC-A1 as expected with the above

analyses (p < 0.05, Figure 10A, B). SPP1 in particular was found

to be highly expressed at both the mRNA and protein levels (p <

0.001, Figure 10C). Thus, SPP1 was selected to further explore

biological function in vitro. The effectiveness of SPP1 silencing was

confirmed by western blot (Figure 10D). The CCK-8 and transwell

assays revealed that the knockdown of SPP1 significantly

suppressed the proliferation and migration of LUAD cells (p <

0.01, Figures 10E, F). Furthermore, tumorsphere numbers and sizes

were markedly reduced in SPC-A1 after transfection with siRNA-2

and -3, indicating that SPP1 promoted cancer stemness and might

be a potential target for CSCs (Figure 10G). Together, these results

strongly support the reliability of our bioinformatics analysis.
Discussion

LUAD accounts for approximately 50% of all lung cancers, with

a high morbidity and mortality rate due to its properties of high

metastasis, radio-chemotherapy resistance, and immunotherapy

insensitivity (1, 2). CSCs, only a small population of cancer cells

possess the stemness abilities of tumor-initiation, self-renewal, and

unlimited proliferation, which are considered the “root” of LUAD

recurrence, metastasis, and resistance (4, 5). Thus, there is an urgent

need to identify more effective therapeutic strategies for CSCs.

Low levels of ROS are essential to maintaining stemness in

CSCs (44). A promising new approach for generating intracellular

ROS and mitochondrial oxidative stress by copper ionophores has

emerged, with an intrinsic selectivity for CSCs of the lung,
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colorectal, and breast (8, 11, 12). Copper acts as a “double-edged

sword” and plays an essential role in cancer development,

metastasis, and immunomodulatory (9, 10). In fact, a novel form

of copper-dependent cell death that is triggered by copper

ionophores, called cuproptosis, is accompanied by the

accumulation of ROS and mitochondrial metabolism (13, 14).

Previous studies have identified several genes and lncRNAs

related to cuproptosis in LUAD (20, 21, 45–47), and developed a

cuproptosis signature that correlates with the prognosis and tumor

microenvironment of LUAD patients (16, 19, 48). Therefore,

cuproptosis may play an important role in LUAD and provide

new insights into the treatment of CSCs.

To the best of our knowledge, no studies of cuproptosis-related

genes combined with the stemness signature in LUAD have been

reported, and their roles in prognosis and the immune landscape

remain unknown. Due to the high heterogeneity of CSCs (49, 50),

we first systematically analyzed the CRSGs in LUAD by integrating

bulk and single-cell RNA-seq. A total of 6 CRSGs were screened out,

including CDKN2A, GLS, FDX1, PDHA1, PDHB, and DLD; most

of them have been reported in the direct regulation of cuproptosis

and cancer progression (13). In our study, the expression of CRSGs

in bulk RNA-seq showed that CDKN2A and PDHA1 were

significantly higher, while FDX1 and GLS were lower in LUAD

patients, and with unaltered levels of DLD and PDHB. Although

CDKN2A showed a high mutation frequency in various cancers, the

expression of CDKN2A was overexpressed in many tumors and

associated with immunosuppression and poor prognosis (51).

CDKN2A genomic alterations were associated with urothelial

carcinoma treated with immune checkpoint inhibitors (ICIs) (52).
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FIGURE 7

Construction and validation of the prognostic model with cuproptosis-related stemness signature. (A, B) Eight prognostic CRSGs were filtered to
construct a prognostic model by LASSO-Cox regression. (C) The risk score for patients was validated in an internal cohort (TCGA-LUAD) and marked
as low- (blue) and high-risk (red) (p=0.00004). (D) Kaplan-Meier survival analysis the survival probability between the low- and high-risk groups in
TCGA-LUAD (p<0.001). (E) The risk score for patients was validated in an external cohort (GSE141569) and marked as low- and high-risk (p=0.0038).
(F) K–M survival analysis of the risk score in an external cohort (p=0.005).
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PDHA1 is crucial to metabolic reprogramming and is often

aberrantly expressed in various tumors (53). In LUAD, patients

with high expression of PDHA1 had a significantly negative

correlation with poor prognosis and immune infiltration (54).

Our further qRT-PCR assay validated the expression trend in the

datasets, with only CDKN2A and PDHA1 having statistically

significant differences (p < 0.05), which may be attributed to the

differences between tissues and cell lines.

Based on the expression of 129 intersecting DEGs in LUAD,

cells were classified into three cuproptosis-related stemness

subtypes (Cluster 1-3) by unsupervised clustering. Additionally,

functional enrichment analysis showed that those subtypes were

enriched in cancer and immune-related pathways. Thus, we further

explored the association between the subtypes and immune

infiltration. Notably, most of the immune infiltrating cells like

activated B cells, CD4+ T cells, CD8+ T cells, MDSCs, and NK

cells were significantly lower in Cluster 1, indicating that patients in

Cluster 1 would be insensitive to immune treatment (55).
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Furthermore, we used CellChat to delineate intercellular

communication at the single-cell level, and a high-cluster had

more communication with immune cells such as fibroblasts, NK

cells, T lymphocytes, and B lymphocytes than a low-cluster. Further

potential ligand-receptor interactions including MIF-(CD74

+CXCR4), MIF-(CD74+CD44) and MDK-NCL have also been

found (56). The persistent upregulation of CD74 could impair

MHC class II antigen presentation, contributing to immune

escape and promoting tumor metastasis (57). Overall, cuproptosis

might bridge cancer stem cells and immunocyte infiltration to affect

LUAD progression.

More importantly, to quantify the prognosis of cuproptosis-

related stemness signature in each LUAD patient, we constructed a

risk score based on the 129 intersecting DEGs by LASSO and

univariate regression. Then, 8 prognostic genes with cuproptosis-

related stemness signature (KLF4, SCGB3A1, COL1A1, SPP1,

C4BPA, TSPAN7, CAV2, and CTHRC1) were involved in the

novel prognostic model, which stratified LUAD patients into
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FIGURE 8

Construction and validation of the nomogram. (A, B) Univariate and multivariate Cox regression based on TCGA-LUAD. (C) The nomogram was
constructed to predict OS. (D) The calibration curve demonstrated the validity and accuracy of the nomogram. (E-G) The decision curve analysis
(DCA) for the nomogram at 1, 3, and 5 years.
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high- and low-risk groups. The K-M survival and ROC curves, as

expected, showed that patients in the high-risk group had a poor

overall survival (OS), which was validated in both the TCGA

internal cohort and the GSE 141569 external cohort. By

combining the risk signature with clinical information, a more

accurate nomogram was constructed to predict the OS of LUAD

patients. All the results indicated that cuproptosis-related stemness

signature could serve as a solid predictive model for LUAD.

Among the eight CRSGs with prognostic signature identified in

this study, COL1A1, SPP1, CAV2 and CTHRC1 were significantly

upregulated in A549 and SPC-A1, while KLF4 was downregulated

in LUAD cells. SPP1 in particular was found to be highly expressed

at both the mRNA and protein levels (p < 0.001). Secreted

phosphoprotein 1 (SPP1), also called osteopontin, has been

demonstrated overexpressed in many cancers including LUAD

and was correlated with a poor OS (58). SPP1 can induces EMT

through the PI3K/Akt and MAPK/ERK1/2 pathways in lung

cancer (59). It can enhance EGFR-TKI resistance by up-

regulating integrin aVb3 (60) and promote colorectal cancer

stem cell-like properties by PI3K/AKT/GSK3 (61). Knockdown

of SPP1 greatly decreased stemness features in cancer-associated
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fibroblasts treated with pancreatic cancer cells (62). Moreover,

SPP1 was also considered as a cuproptosis-related gene in similar

research based on database and learning algorithm (63). Our

further in vitro experiments revealed that the silencing of SPP1

inhibited the proliferation, migration, and stemness sphere-

forming capacities of LUAD cells. Therefore, SPP1 might serve

as a novel therapeutic target for lung CSCs. Nevertheless, more

research is needed to unravel the underlying mechanism of SPP1 to

regulate cuproptosis in LUAD.

Besides, we also analyzed the correlation between the prognostic

signature and the immune landscape and stemness score in each

LUAD patient. The results revealed that the risk score was

significantly correlated with correlated with immune cell

infiltration. The high-risk group has more resting NK cells and

less activated NK cells. We did not observe a significant difference in

CD8+ T cells between risk scores and prognosis may be related to the

immune escape. A positive relationship was discovered between risk

score and stemness score, indicating that patients with a higher risk

score had more stemness features. Moreover, the predictive effect of

the CRSGs with prognostic signature for immunotherapy was also

evaluated. In our study, KLF4, COL1A1, SPP1, CAV2, and CTHRC1
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FIGURE 9

Immune landscape and stemness score based on prognostic signature. (A) The heatmap shows the correlation between CRSGs with prognostic
signature and immune cells. (B) The differences in immune cells between high- and low- risk groups. (C) Lollipop plot showing the correlation
between immune cells and the risk score. The size of the bubbles represents the strength of the correlation. (D) The correlation between prognostic
CRSGs and immune checkpoint genes. Red, positive correlation; blue, negative correlation. (E) Correlation analysis between stemness score and the
risk score (p=1.95e-10). (F) High- and low-risk groups’ stemness score were compared (p=3.3e-13). p values were shown as: *p<0.05; **p<0.01;
***p<0.001.
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had a high positive relationship with the immune checkpoint genes,

while TSPAN7, C4BPA, and PSMB9 showed a negative correlation.

Patients in the high-risk group were more susceptible to

chemotherapy and targeted therapy based on drug sensitivity

analysis. Taken together, we speculated that our model was

capable of reflecting the immune infiltration and immunotherapy

in LUAD.
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Nowadays, increasing studies of CRGs, lncRNAs, and their

prognostic value for lung cancer have been published. We for the

first time identified the CRGs combined with stemness signature

by integrating bulk and sc-RNAseq, and the prognosis and

immune landscape in LUAD were also investigated. Inevitably,

there were several limitations in this study. First, our research was

mainly based on public databases and was retrospective, though we
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FIGURE 10

Validation of cuproptosis-related stemness signature in LUAD cells. (A) The mRNA expression of CRSGs in LUAD cells A549 and SPC-A1 and normal
bronchial epithelial cells BEAS-2B was analyzed by qRT-PCR. (B) The mRNA expression level of DEGs with prognostic signature. (C) The protein
expression of SPP1 in A549, SPC-A1, and BEAS-2B by Western blot. (D) Western blot assay verified the efficiency of SPP1 knockdown in SPC-A1.
(E) CCK-8 assay was used to evaluate the effect of SPP1 on cell proliferation. (F) Transwell assay to assess the effect of SPP1 on the migration of
SPC-A1 cells (scale bar, 100um). And the corresponding statistical plot was displayed. (G) Representative images show the effect of SPP1 knockdown
on the tumorsphere formation ability of SPC-A1 cells, which were cultured in stemness medium for 7 days (scale bar, 100um). Quantitative analysis
was counted by sphere diameters. p values were shown as: *p<0.05; **p<0.01; ***p<0.001.
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have validated the prognostic signature in internal and external

cohorts, and further validations using prospective multi-center

studies are needed. Moreover, although we have verified the

expression of CRSGs and the functional roles of target gene by

cellular assays, the underlying cuproptosis mechanism of CRSGs in

LUAD needs to be further investigated, and more studies directly

connected to cuproptosis features of SPP1 (such as the elesclomol

concentration in different LUAD cell lines and the intensity of

intracellular cuproptosis at different expression levels of SPP1) in

vitro are required.
Conclusion

Taken together, we comprehensively identified the CRSGs in

LUAD and constructed a risk signature based on differentially

expressed CRSGs, which was closely associated with the prognosis,

immune infiltration, immunotherapy response, stemness features,

and drug sensitivity. Additionally, the expression and biological

function of CRSGs were also evaluated in vitro. These findings

highlight the clinical significance of CRSGs in LUAD patients, and

provide new insights for developing more effective therapeutic targets

for lung CSCs in the future.
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Cuproptosis-related risk
score predicts prognosis
and characterizes the
tumor microenvironment
in colon adenocarcinoma

Jinyan Wang1, Zhonghua Tao1, Biyun Wang1, Yizhao Xie1,
Ye Wang1, Bin Li1, Jianing Cao1, Xiaosu Qiao1, Dongmei Qin2,
Shanliang Zhong3 and Xichun Hu1*

1Department of Breast and Urologic Medical Oncology, Shanghai Medical College, Fudan University
Shanghai Cancer Center, Shanghai, China, 2Department of Pathology, Nanjing Jiangning Hospital,
The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China, 3Center of Clinical
Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer
Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
Introduction: Cuproptosis is a novel copper-dependent regulatory cell death

(RCD), which is closely related to the occurrence and development of multiple

cancers. However, the potential role of cuproptosis-related genes (CRGs) in the

tumor microenvironment (TME) of colon adenocarcinoma (COAD) remains unclear.

Methods: Transcriptome, somatic mutation, somatic copy number alteration

and the corresponding clinicopathological data of COAD were downloaded

from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database

(GEO). Difference, survival and correlation analyses were conducted to evaluate

the characteristics of CRGs in COAD patients. Consensus unsupervised

clustering analysis of CRGs expression profile was used to classify patients into

different cuproptosis molecular and gene subtypes. TME characteristics of

different molecular subtypes were investigated by using Gene set variation

analysis (GSVA) and single sample gene set enrichment analysis (ssGSEA). Next,

CRG Risk scoring system was constructed by applying logistic least absolute

shrinkage and selection operator (LASSO) cox regression analysis and

multivariate cox analysis. Real-time quantitative polymerase chain reaction

(RT-qPCR) and immunohistochemistry (IHC) were used to exam the

expression of key Risk scoring genes.

Results: Our study indicated that CRGs had relatively common genetic and

transcriptional variations in COAD tissues. We identified three cuproptosis

molecular subtypes and three gene subtypes based on CRGs expression

profile and prognostic differentially expressed genes (DEGs) expression profile,

and found that changes in multilayer CRGs were closely related to the clinical

characteristics, overall survival (OS), different signaling pathways, and immune

cell infiltration of TME. CRG Risk scoring system was constructed according to

the expression of 7 key cuproptosis-related risk genes (GLS, NOX1, HOXC6,

TNNT1, GLS, HOXC6 and PLA2G12B). RT-qPCR and IHC indicated that the
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expression of GLS, NOX1, HOXC6, TNNT1 and PLA2G12B were up-regulated in

tumor tissues, compared with those in normal tissues, and all of GLS, HOXC6,

NOX1 and PLA2G12B were closely related with patient survival. In addition, high

CRG risk scores were significantly associated with high microsatellite instability

(MSI-H), tumor mutation burden (TMB), cancer stem cell (CSC) indices, stromal

and immune scores in TME, drug susceptibility, as well as patient survival. Finally,

a highly accurate nomogramwas constructed to promote the clinical application

of the CRG Risk scoring system.

Discussion: Our comprehensive analysis showed that CRGs were greatly

associated with TME, clinicopathological characteristics, and prognosis of

patient with COAD. These findings may promote our understanding of CRGs in

COAD, providing new insights for physicians to predict prognosis and develop

more precise and individualized therapy strategies.
KEYWORDS

cuproptosis-related genes (CRGs), tumormicroenvironment (TME), molecular subtypes,
prognosis model, colon adenocarcinoma
1 Introduction

Colon adenocarcinoma (COAD) is presently considered as one

of the most common malignancies and the leading cause for

mortality worldwide, resulting in more than 500,000 deaths every

year (1). Although surgery, adjuvant/neoadjuvant chemotherapy,

targeted therapy and immunotherapy have achieved certain

efficacy, some patients still have a poor prognosis due to high

recurrence and mortality rate (2). In recent years, more and more

studies have aimed to provide a more personalized and accurate

assessment of patient prognosis through a comprehensive analysis

of the genomic and clinicopathological characteristics of specific

tumors, with a view to potentially improving patient prognosis (3).

Nonetheless, present biomarkers or methods are far from

satisfactory to accurately predict outcome of patients with COAD.

Copper (Cu) is known as the third most abundant trace element

in human body (4). It is traditionally considered as a redox-active

transition metal which participated in the process from cellular

respiration to pigmentation, acting through cytochrome c oxidase

and tyrosinase (5). However, in the last decade, metalloallostery, a

new form of protein regulation and nutrient sensing, has appeared

to extend the function of Cu beyond the catalytic proteins to

dynamic signaling molecules, which are the basis of cell biology

affecting pathophysiological processes (6). Blood concentrations of

Cu were significantly increased in multiple cancers, such as thyroid

cancer, lung cancer, breast cancer and pancreatic cancer (7–10). In

addition, Cu concentration was elevated in tissues of large bowel

and oesophageal cancer (11). However, the blood concentration of

Cu was decreased in patients with endometrial cancer (12). As a

result, researches started to pay attention to the specific underlying

mechanisms of Cu dys-homeostasis in cancers. Increasing evidence

indicated that Cu dys-homeostasis might induce cytotoxicity and

affect proliferation, apoptosis, and metastasis of tumors, thus
0293
resulting in cancer progression, partly through regulating kinases

activation, lipolysis, potassium channels, BRAF, NF-kB and TGF-b
signaling pathways (13–18). Most importantly, Tsvetkov et al. (19)

recently claimed that cuproptosis was a kind of copper-dependent

death and different from all other known programmed cell death

(PCD). In terms of mechanics, Cu directly bound to the fatty

acylation component of the tricarboxylic acid (TCA) cycle, thus

leading to the accumulation of fatty acylation proteins and the

subsequent loss of iron-sulfur cluster proteins, which leaded to

protein-toxic stress and ultimately to cell death. Additionally, a total

of 10 cuproptosis-related genes (CRGs), including PDHB, MTF1,

FDX1, DLAT, PDHA1, LIAS, LIPT1, DLD, GLS and CDKN2A,

were identified in this study. Based on Tsvetkov et al.’s findings, a

growing number of researches have begun to investigate the

relationships between CRGs and typical cancers. For instance,

Zhang, Z., et al. (20) demonstrated prognostic features associated

with cuproptosis in patients with hepatocellular carcinoma (HCC).

Wang, W., et al. (21), identified a cuproptosis-related prognostic

signature (H19, CYTOR, IGFBP2, KLRC2, C5orf38 and CHI3L1)

for patients with glioma.

Tumor microenvironment (TME), which contains different

immune and stromal cells and their secreted factors, has been

recognized to cultivate a chronic inflammatory, immunosuppressive,

and pro-angiogenic intra-tumoral atmosphere and is closely

associated with patient outcomes and treatment efficacy (22).

Distinct cuproptosis-related signatures were also found to be

significantly associated with TME of kidney renal clear cell

carcinoma (KIRC) (23), triple-negative breast cancer (TNBC) (24)

and lung adenocarcinoma (LUAD) (25). However, due to tumor and

corresponding TME heterogeneity, CRGs characteristics vary across

cancers. In addition, studies of CRGs in COAD are limited.

In our study, we aimed to comprehensively analyze the

relationship between CRGs and TME in COAD and construct a
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CRGs Risk scoring system to accurately predict COAD patient

survival. The development of the scoring system provided

physicians with new insights to design more effective and

individualized treatment strategies.
2 Materials and methods

2.1 Data

Transcriptome and the corresponding clinicopathological data of

COAD were downloaded from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/) and Gene Expression Omnibus

database (GEO) (https://www.ncbi.nlm.nih.gov/geo/). In detail, the

TCGA cohort included 480 COAD tissues and 41 normal tissues. The

GEO cohort containing GSE17536, GSE29623 and GSE39582,

included 827 COAD samples. The detailed clinicopathological data

of these COAD patients was presented in Table S1. The TCGA and

GEO cohorts were combined by using “Combat” algorithm in R to

eliminate batch effects before conducting subsequent analyses.

Principal component analysis (PCA) was applied to validate the

effect of batch effect removal by using the R package ggplot2. In order

to verified the accuracy of model, we also downloaded transcriptome

and the corresponding clinicopathological data of GSE40967 from

GEO database, which contained 585 COAD sampes.

Additionally, we downloaded somatic mutation data of 454

tumor samples and copy number variation (CNV) data of 506

tumor samples from TCGA.
2.2 Difference analyses, survival analyses
and correlation analyses of CRGs

A total of 10 CRGs (PDHA1, PDHB, FDX1, DLD, DLAT,

MTF1, LIAS, LIPT1, GLS and CDKN2A) were obtained from the

previous well-known publication of Tsvetkov et al. (19). Difference

analyses of CRGs were conducted between tumor and normal

tissues. Wilcoxon test was used to for statistical analysis. Survival

and survminer R packages were used for survival analysis, the same

as our previous study (26). Kaplan-Meier plot and cox regression

analyze were further applied to evaluate the relationships between

CRGs expression and patient overall survival (OS). Schoenfeld

residuals were used to check the proportional assumption of COX

model. Spearman correlation analyses were conducted to explore

the interactions among CRGs
2.3 Consensus clustering analysis of CRGs

ConsensusClusterPlus R package was applied for consensus

unsupervised clustering analysis. Patients were grouped into

distinct molecular subtypes according to the expression of CRGs,

and distinct gene subtypes according to the expression of prognostic

differentially expressed genes (DEGs), derived from different

molecular subtypes. The criteria included that the samples size in

each set was relatively consistent and the cumulative distribution
Frontiers in Oncology 0394
function (CDF) curve increased gradually and smoothly. After

consensus clustering analysis, the intra-set association became

stronger, while the inter-set association became weaker.
2.4 Associations among molecular
subtypes, clinicopathological features
and prognosis

We applied Kaplan-Meier plot and log-rank test to evaluate the

associations between different molecular subtypes and patient

survival. Correlation analyses between molecular subtypes and

clinicopathological features were carried out to learn the clinical

values of distinct molecular subtypes by using Chi-square test. The

clinicopathological features contained age, gender, grade and tumor

node metastasis (TNM) stage.
2.5 Relationships between molecular
subtypes and TME

We downloaded the hallmark gene sets, including C2.CP.KEGG

(186 gene sets) and C5.GO.Gene Ontology (10561 gene sets), from the

Molecular Signatures Database (MSigDB) (https://www.gsea-

msigdb.org/gsea/msigdb). Gene set variation analysis (GSVA) with

the above two gene sets was conducted to explore the TME

characteristics of different molecular subtypes. The adjusted P-value<

0.05 was considered statistically different. Additionally, the proportion

of tumor-infiltrating immune cells (TICs) in tumor samples was

calculated by using the deconvolution algorithm, which was also

known as CIBERSORT (27). The gene expression signature matrix

of TICs was downloaded from CIBERSORT platform (https://

cibersortx.stanford.edu/). P-value for the deconvolution of each

sample was obtained by using Monte Carlo sampling algorithm in R.

A CIBERSORT P-value< 0.05 was considered suitable for further

analysis. Single sample gene set enrichment analysis (ssGSEA) was

used to evaluate the infiltration of TICs in different molecular subtypes.
2.6 Acquisition of DEGs from distinct
molecular subtypes

DEGs of distinct molecular subtypes were acquired by applying

limma package in R. The fold change of 1.5 and the adjusted P-

value< 0.05 were considered qualified for searching DEGs. Gene

Ontology (GO) and Kyoto Encylopedia of Genes and Genomes

(KEGG) enrichment analysis of DEGs were carried out by using

org.Hs.eg.db, ClusterProfiler, enrichplot, and ggplot2 packages in R.

The adjusted P-value< 0.05 was deemed statistically significant.
2.7 Establishment of CRG Risk
scoring system

Firstly, cox regression analyses of DEGs, achieved from different

molecular subtypes, were carried out to seek those associated with
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patients’ prognosis. Secondly, patients were separated into different

gene subtypes via consensus clustering analysis of prognostic DEGs

expression. Thirdly, patients were randomly divided into the

training (n=603) and testing (n=603) sets at a ratio of 1:1. Lastly,

CRG Risk scoring system was established in the training set and

verified in the testing set, GSE29263, GSE17536, GSE39582 and the

combined set. Logistic least absolute shrinkage and selection

operator (LASSO) cox regression analysis was carried out by

applying Glmnet R package to decrease the risk of over-fitting.

Next, we analyzed and cross-validated the varied trajectory of each

independent variable. Multivariate Cox analysis was carried out to

screen prognostic DEGs in the training group. The Risk score was

calculated as follows:

CRG Riskscore = S(Expi ∗ coefi)

In detail, Expi indicated key prognostic DEGs expression and

coefi indicated the coefficient of Risk. Correlation analysis between

CRG Risk score and distinct subtypes was also carried out. Survival

analysis between high- and low-risk sets was conducted by Kaplan-

Meier plot and log-rank test. Receiver operating characteristic

(ROC) curves were utilized to learn the sensitivity and specificity

of the scoring system. Similarly, all of the testing group, GSE29263,

GSE17536, GSE39582 and the combined group were classified into

high- and low-risk groups, respectively, and further analyzed by

Kaplan-Meier survival curves and ROC curves.
2.8 Tissue samples acquisition, real-time
quantitative polymerase chain reaction
and immunohistochemistry

A total of 8 sets of COAD and paired normal tissues were

harvested from COAD patients at Nanjing Jiangning Hospital. The

study was permitted by the Ethics Committee of Nanjing Jiangning

Hospital (2021-03-048-K01). Total RNA extraction and RT-qPCR

were performed as our previous study (28). The primers used for

RT-qPCR are shown in Table S2. Slides (4mm) of formalin-fixed

paraffin-embedded tissue sections were incubated with GLS (1:200;

Cell Signaling Technology), NOX1 (1:200; Proteintech), HOXC6

(1:50; Affinity Biosciences), TNNT1 antibody (1:100; Invitrogen).

The expression level was scored semiquantitatively based on

staining intensity and distribution using the immunoreactive

score (IRS) as described (29) and as following: IRS = SI (staining

intensity) x PP (percentage of positive cells). SI was determined as 0,

negative; 1, weak; 2, moderate; and 3, strong. PP was defined as 0,

negative; 1, 1-20% positive cells; 2, 21-50% positive cells; 3, 51-100%

positive cells. Ten visual fields from different areas of each sample

were selected randomly for the IRS evaluation and the average IRS

was calculated as final value.
2.9 Relationships between TME and
distinct Risk score groups

Difference analyses of CRGs expression levels were carried out

between high- and low- Risk groups. Wilcoxon test was used for
Frontiers in Oncology 0495
comparison. We further conducted correlation analyses not only

between TICs and risk scores, but also TICs and key prognostic Risk

genes. An ESTIMATE algorithm was used to analyze the ratio of

immune/stromal components in TME. The Immune Score, Stromal

Score and ESTIMATE Score presented the ratio of immune

component, the stromal component and the sum of the both,

respectively. Difference analyses of Immune/Stromal/ESTIMATE

Score were conducted between high- and low- Risk score sets.

Wilcoxon test was used for comparison.
2.10 Microsatellite instability cancer stem
cell, tumor mutation burden and somatic
mutations in different Risk score sets

Difference and correlation analyses of MSI, TMB and CSC in

distinct CRG Risk score groups were conducted to study the

underlying associations. Maftools package in R was applied for

the comparison of mutation frequency in different Risk score sets.
2.11 Drug susceptibility analyses

In order to study effectiveness of drugs in different Risk groups,

pRRophetic package in R was used to calculate the semi-inhibitory

concentration (IC50) values of drugs.
2.12 Development of a nomogram

We applied Rms package in R to establish a nomogram, which

combined clinicopathological characteristics, patient survival and

CRG Risk score. In the nomogram, a variable matched a score and

the scores for all variables were added together to get an overall

score. Calibration maps of the nomogram were developed to

evaluate the consistency between predicted 1, 3, and 5-year

survival rates and actual outcomes. ROC curve was drawn to

understand the sensitivity and specificity of the scoring system.
2.13 Statistical analyses

All statistical analyses were conducted by using R version 4.2.1.

Statistical significance was set at P-value< 0.05.
3 Results

3.1 Identification of CRGs in COAD

We analyzed 10 CRGs in our study, including DLD, DLAT,

PDHB, MTF1, PDHA1, FDX1, LIAS, LIPT1, GLS and CDKN2A.

Difference analyses showed that 7 of 10 CRGs were dys-regulated in

tumor samples compared with those in normal samples, among

which LIPT1, PDHA1, GLS and CDKN2A were up-regulated, and

FDX1, DLD and MTF1 were down-regulated (Figure 1A).
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In order to further study the genetic and transcriptional

alterations of CRGs in COAD, we generally analyzed the somatic

mutation frequency of CRGs and found 10.13%mutation frequency

in tumor samples (Figure 1B). LIPT1, DLD, PDHA1 and LIAS

shared the highest mutation frequency (2%), followed by PDHB,

MTF1, DLAT and GLS (1%). Both FDX1 and CDKN2A had no

mutations in tumor tissues. We further examined CNV frequency

in CRGs, among which DLD, CDKN2A, FDX1, DLAT, PDHB and

LIAS had elevated copy number loss (Figure 1C). The detailed

locations of these CRGs on chromosomes were shown in Figure 1D.

As a result, we noted that CRGs had relatively common genetic and

transcriptional variations in COAD tissues, which might

affect oncogenesis.
3.2 Identification of cuproptosis-related
molecular subtypes

To learn the role of CRGs in oncogenesis of COAD, we

combined expression patterns of CRGs and clinicopathological

information of TCGA-COAD, GSE17536, GSE29623 and

GSE39582 by using “Combat” algorithm to eliminate batch

effects. PCA indicated that batch differences were well eliminated

(Figure 2A). Kaplan-Meier plot revealed 3 of 10 CRGs were closely

associated with patients’ OS, among which GLS and CDKN2A were

negatively related, while LIAS was positively related (Figures 2B–D).

Multivariate Cox regression analyses of CRGs also indicated that

both GLS and CDKN2A were closely related with the survival of
Frontiers in Oncology 0596
COAD patients (Table 1). Cuproptosis network generally described

the complex interrelations among CRGs and the prognosis of

patients with COAD (Figure 2E; Table S3).

Considering the pervasive interrelations among CRGs, we used

consensus clustering algorithm to divide patients into three groups

based on the expression profile of CRGs. K=3 appeared to be an

optimal choice for grouping samples into 3 sets, including

molecular subtype A (n=511), B (n=444) and C (n=328)

(Figures 3A, S1A–I, Tables S4, 5). Survival analysis revealed that

patients in subtype C had the worst prognosis than those in subtype

A or B (Figure 3B). The heat-map exhibited the expression profile of

10 CRGs in distinct molecular subtypes (Figure 3C). CDKN2A was

obviously up-regulated in molecular subtype C, while PDHA1,

FDX1, DLAT, DLD and GLS were greatly elevated in subtype A

(Figure 3C). In addition, grade, N, M and stage were found to be

s ign ificant ly as soc ia ted wi th cuproptos i s molecu lar

subtypes (Figure 3C).
3.3 Functional characteristics of TME in
distinct molecular subtypes

We further performed GSVA enrichment analyses to explore

the features of TME in different cuproptosis subtypes. GO GSVA

enrichment analysis revealed that molecular subtype A

was primarily enriched in messenger ribonucleoprotein complex,

regulation of translational initiation by eif2 alpha phosphorylation

and phosphatase activity, compared with subtype B (Figure 4A;
B

C D

A

FIGURE 1

Genetic and transcriptional alterations of CRGs in colon adenocarcinoma. (A) The expression levels of 10 CRGs between 480 COAD samples and 41
normal samples. Wilcoxon test was used to compare two groups. (B) The maftool exhibited incidence of somatic mutations of CRGs in 454 COAD
patients from TCGA database. (C) The CNV frequency of CRGs in 454 COAD samples from TCGA database. (D) Locations of CNV alterations on 23
chromosomes. P<0.05 was considered as significant importance. ** indicated P-value<0.01, *** indicated P-value<0.001.
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Table S6). Subtype B was enriched in acyl coa binding, fatty acid

derivative binding and acylcoa dehydrogenase activity, compared

with subtype C (Figure 4B; Table S6). Subtype C was significantly

enriched in embryonic skeletal joint morphogenesis, gap junction

and connexin complex, compared with subtype A (Figure 4C;

Table S6). Several biological pathways, such as endoplasmic

reticulum tubular network organization, cellular response to zinc

ion and mrna methylation were recurrent in the comparisons of
Frontiers in Oncology 0697
subtype A and B, A and C, and B and C (Table S7). KEGG GSVA

enrichment analysis indicated subtype A mainly participated in

TGF-b signaling pathway, riboflavin metabolism and RNA

degradation, compared with subtype B (Figure 5A; Table S8).

Subtype B was primarily enriched in metabolic related pathways,

including fatty acid metabolism, butanoate metabolism,

porphyrin and chlorophyll metabolism, compared with subtype

C (Figure 5B; Table S8). Subtype C was mainly enriched in
B

C D

E

A

FIGURE 2

Survival analyses of CRGs and a comprehensive landscape of cuproptosis network in COAD patients from TCGA and GEO database. (A) PCA of
TCGA, GSE17536, GSE29623 and GSE39582 after batch effect removal. (B–D) Survival analyses of CRGs (GLS, CDKN2A and LIAS) in COAD patients.
Kaplan-Meier plot and log-rank tests were performed for survival analyses. Schoenfeld residuals was used to check the proportional assumption of
COX model. (E) Mutual associations among CRGs in COAD samples. Spearman correlation analyses were used. The line between two CRGs
indicated their interaction, and the stronger the correlation, the thicker the line. Pink line indicated positive correlation and blue line indicated
negative correlation. P-value< 0.05 was considered to be statistically significant.
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glycosphingolipid biosynthesis globo series, glycosaminoglycan

biosynthesis chondroitin sulfate and glycosaminoglycan

biosynthesis keratan sulfate, compared with subtype A

(Figure 5C; Table S8).
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Regarding the complex functions of different molecular

subtypes in TME, we next conducted ssGSEA between TICs and

different subtypes to further identify tumor immune

microenvironment (TIME) characteristics of COAD. The ratio of
TABLE 1 Multivariate Cox regression analyses of CRGs in COAD patients.

id HR HR.95L HR.95H P-value km

CDKN2A 1.198237 1.0668866 1.3457599 0.002266 0.002461

GLS 1.302257 1.0853925 1.562451 0.004488 0.002666

LIAS 0.856896 0.718415 1.0220694 0.085936 0.009963

PDHB 0.792502 0.5976615 1.0508627 0.106232 0.002516

DLD 0.853752 0.6900535 1.0562847 0.145449 0.063517

PDHA1 0.887978 0.7283648 1.0825689 0.239915 0.066255

FDX1 0.884588 0.683168 1.1453929 0.352246 0.063822

DLAT 0.960967 0.7880859 1.1717723 0.693977 0.048397

LIPT1 1.02602 0.8300225 1.2682982 0.812277 0.112617

MTF1 1.027758 0.7957044 1.3274861 0.833903 0.10872
fron
B

C

A

FIGURE 3

CRG molecular subtypes and their clinicopathological characteristics. (A) Identification of three molecular subtypes (k = 3) and their correlation area
through consensus clustering analysis in COAD samples. (B) Survival analysis showed a significant difference in different molecular subtypes. Kaplan-
Meier plot and log-rank tests were conducted for survival analyses. (C) The heat-map displayed the CRGs expression profile in distinct molecular
subtypes, and the associations between clinicopathologic features and molecular subtypes. Chi-square test was used for the comparison. Red color
indicated increased expression level and blue color indicated decreased expression level. P-value< 0.05 was considered to be statistically significant.
** indicated P-value<0.01, *** indicated P-value<0.001.
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23 TICs in each tumor sample was presented in Table S9. The result

of ssGSEA suggested great difference between the infiltration of 19

TICs and distinct subtypes. In detail, the infiltration levels of

eosinophil and plasmacytoid dendritic cell were elevated in

subtype A, activated B cell, activated CD8 T cell, activated

dendritic cell, monocyte and neutrophil were up-regulated in

subtype B, and another 12 TICs were obviously raised in subtype

C (Figure 5D).

According to above analyses, we primarily speculated that

different subtypes took a different part in TME, especially TIME

of COAD.
3.4 Identification of cuproptosis-related
gene subtypes

As the potential role of different molecular subtypes in TME of

COAD, we further explore the underlying biological behavior of

different subtypes through seeking for DEGs. We identified 114

DEGs derived from subtype A and B, 90 DEGs from subtype A
Frontiers in Oncology 0899
and C, 49 DEGs from subtype B and C (Table S10). Finally, a total of

186 DEGs were obtained for further analyses through combination

(Figure 6A; Table S11). GO enrichment analysis demonstrated that

186 DEGs mainly participated in signaling pathways associated with

digestion, such as maintenance of gastrointestinal epithelium and

digestive system process (Figures 6B, C; Table S12). Univariate Cox

regression analysis was performed to seek DEGs of prognostic value

and finally identified 86 DEGs associated with patients’ OS, which

were analyzed in the following section (Table S13). According to 86

prognostic DEGs expression, consensus clustering analysis was

carried out to separate patients into 3 sets, namely gene subtype A

(n=310), B (n=729) and C (n=244) (Figures 6D, S2A–I; Tables S14,

15). Distinct gene subtypes showed great differences in the expression

levels of both prognostic DEGs and 8 CRGs (FDX1, LIPT1, DLD,

PDHA1, PDHB, MTF1, GLS and CDKN2A) (Figures 6E, F; Tables

S16, 17). In addition, cuproptosis gene subtypes were closely related

with age, gender, grade, and T and N stage of COAD patients

(Figure 6E). Survival analysis revealed that patients of gene subtype

B had a better prognosis, compared with those of subtype A or

C (Figure 6G).
B

C

A

FIGURE 4

GO GSVA enrichment analyses indifferent molecular subtypes. (A) GO GSVA enrichment analyses between molecular subtype A and B (B) GO GSVA
enrichment analyses between molecular subtype B and C (C) GO GSVA enrichment analyses between molecular subtype A and (C) Red color indicated
more enriched in pathways and blue color indicated less enriched in pathways. Adjusted P-value<0.05 was considered to be statistically significant.
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3.5 Construction and validation of CRG
Risk scoring system

To study the prognostic value of CRGs in COAD, we further

constructed CRG Risk scoring system based on different molecular

and gene subtypes. First, we applied “caret” package in R to randomly

separate COAD patients into the training (n=603) and testing (n=603)

groups at a ratio of 1:1. The clinicopathological characteristics of patients

in the training and testing group were consistent (Table S18). Second,

LASSO and multivariate Cox analyses were conducted to identify

optimum prognostic signature based on 86 DEGs expression (Figure

S3). Finally, CRG Risk scoring system was established through
Frontiers in Oncology 09100
multivariate Cox regression analysis in the training set, the formula

was as follow: Risk score = (0.30346935571892* expression of GLS) +

(0.285346929484159 * expression of CAB39L) + (-0.171967289741126*

expression ofNOX1) + (0.149406405352724 * expression ofHOXC6) +

(0.128828618079011 * expression of TNNT1) + (-0.305462961248901*

expression of ASRGL1) + (-0.142788274274145* expression of

PLA2G12B). We classified patients into two groups, namely high- and

low-Risk score sets, according to the calculation of Risk score in each

tumor sample. Figure 7Apresented the specific classifications of patients

in the training set, including three cuproptosismolecular subtypes, three

gene subtypes and twoCRGRisk score sets. The detailed information of

7 key cuproptosis-related risk genes, Risk score and survival features in
B

C

D

A

FIGURE 5

KEGG GSVA enrichment analyses and immune infiltration in different molecular subtypes. (A) KEGG GSVA enrichment analyses between molecular
subtype A and B (B) KEGG GSVA enrichment analyses between molecular subtype B and C (C) KEGG GSVA enrichment analyses between molecular
subtype A and C Red color indicated more enriched in pathways and blue color indicated less enriched in pathways. Adjusted P-value<0.05 was
considered to be statistically significant. (D) ssGSEA indicated differences between the infiltration levels of TICs and distinct molecular subtypes.
Pvalue<0.05 was considered to be statistically significant. * indicated P-value<0.05, *** indicated P-value<0.001.
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trainingand testinggroupswasdisplayed inTablesS19, 20.The resultsof

difference analyses indicated that all of the expression of GLS, NOX1,

HOXC6, TNNT1 and PLA2G12B were increased in tumor tissues,

compared with those in normal tissues (Figure S4). Among these five

genes, GLS and HOXC6 were negatively associated with patients’

survival, while NOX1 and PLA2G12B were positively related. RT-

qPCR and IHC indicated the same result (Figures 7B–G). Difference

analyses in the training set showedRisk scorewas extremely increased in

both molecular subtype C and gene subtype C and decreased in both

molecular subtype B and gene subtype B (Figures 7H, I). The heat-map

presented a great difference of 7 key Risk score gene expression profile

between high- and low-Risk score sets in the training group (Figure 7J).

The scattergram of patients’ survival in different Risk score groups

revealed that COAD patients’ survival got worse, while Risk score

increased (Figure 7K), which was also proven by Kaplan-Meier
Frontiers in Oncology 10101
survival curves (Figure 7L). In addition, area under the time-

concentration curve (AUC) values of 1-, 3-, and 5-year survival rates

of CRG Risk score in the training set were 0.693, 0.706, and 0.703,

respectively, signifying both relative high sensitivity and

specificity (Figure 6M).

To verify the accuracy of the scoring system, we further

calculated Risk score according to the above Risk score formula,

in the testing group, individual GSE17536, GSE29623, GSE39582,

GSE40967, respectively (Tables S21–24). Patients were

respectively divided into distinct cuproptosis molecular

subtypes, gene subtypes and Risk score sets, the same as which

in the training set (Figures S5–8A). Risk score showed a great

difference in both molecular subtypes and gene subtypes of the

testing group, individual GSE17536, GSE29623, GSE39582

(Figures S5–8B, C). The expressions of 7 key Risk scoring genes
B C

D E

A

F G

FIGURE 6

Identification of CRG gene subtypes based on 186 DEGs derived from different molecular subtypes. (A) The intersection of DEGs from the
comparison between molecular subtype A and B, B and C, A and C (B, C) GO enrichment analyses of 186 DEGs from distinct molecular subtypes.
Adjusted P-value<0.05 was considered to be statistically significant. (D) Identification of three gene subtypes (k = 3) and their correlation area
through consensus clustering analysis according to the expression of 86 prognosis-related DEGs. (E) The heat-map presented the gene profiles in
distinct gene subtypes, and the correlations between clinicopathologic characteristics and distinct gene subtypes. Chi-square test was used for the
comparison. P-value< 0.05 was considered to be statistically significant. (F) Difference analyses of CRGs expression in different gene subtypes.
Pvalue< 0.05 was considered to be statistically significant. (G) Survival analysis of three gene subtypes. Kaplan-Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be statistically significant. ** indicated P-value<0.01, *** indicated P-value<0.001.
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in different Risk group were shown in Figures S5–8 D; 9A,

respectively. Both scattergram and Kaplan-Meier survival curves

showed that high Risk score predicted poor survival in testing

group, individual GSE17536, GSE39582 and GSE40967 (Figures

S5E, F, S7–8E, F, S9B, C). However, in GSE29623, survival analysis

revealed that Risk score was not associated with patients’ survival,
Frontiers in Oncology 11102
which might be related with the small sample size (Figure S6F).

We further plot ROC curves to confirm the sensitivity

and specificity of the scoring system and found relatively

high AUC values in the cohorts of validation, indicating the

system as an accurate predictor for patients’ survival (Figures

S5–8G, 9D).
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FIGURE 7

Construction of CRG Risk scoring system in the training group. (A) Alluvial diagram of patients’ distributions in groups with different molecular subtypes,
gene subtypes, Risk scores and survival outcomes. (B) The expression of 7 key genes between COAD and paired normal tissues. (C) Immunoreactive
score of key genes between tumor and normal tissues. (D) The expression of GLS in COAD tissues and normal tissues. (E) The expression of NOX1 in
COAD tissues and normal tissues. (F) The expression of HOXC6 in COAD tissues and normal tissues. (G) The expression of TNNT1 in COAD tissues and
normal tissues. (H) Difference analysis of CRG Risk score in different molecular subtypes. (I) Difference analysis of CRG Risk score in different gene
subtypes. (J) Heat-map displayed five scoring genes expression profile in different risk sets of the training group. (K) Ranked dot and scatter plot of CRG
Risk score distribution and patient survival in the training group. (L) Survival analysis between high- and low-Risk score groups in the training set. Kaplan-
Meier plot and log-rank tests were conducted for survival analyses. (M) ROC curve predicted the sensitivity and specificity of 1-, 3-, and 5-year survival
according to CRG Risk score in the training group. P-value< 0.05 was considered to be statistically significant. * indicated P-value<0.05.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1152681
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1152681
3.6 Associations between TME and the
CRG Risk score

Difference analyses of CRGs indicated that 6 CRGs showed a

great difference in distinct Risk score sets. To be specific, GLS and

CDKN2A expression were increased, while DLD, DLAT, PDHA1

and PDHB expression were decreased in high-Risk score group,

compared with those in low-Risk group (Figure 8A). In order to learn

the relationships between CRG Risk score and TICs in TME of
Frontiers in Oncology 12103
COAD, correlation analyses were carried out and suggested that CRG

Risk score was positively associated with activated NK cells, memory

B cells, eosinophils, M0 macrophages, M1 macrophages, M2

macrophages, and neutrophils, while negatively associated with

CD8 T cells, regulatory T cells (Tregs), naïve B cells, resting

dendritic cells, plasma cells and CD4 memory resting T cells

(Figures 8B–N). Furthermore, all of immune, stromal and estimate

score were higher in high-Risk score set than those in low-Risk score

set (Figure 8O).Most immune cells were greatly associated with seven
B
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FIGURE 8

Associations between TME and CRG Risk score. (A) Difference analyses of CRGs expression in the high- and low-Risk score groups. (B–N) Correlation
analyses between CRG Risk score and TICs. (O) Difference analyses between CRG Risk score and immune/stromal/estimate scores. (P) Correlation analyses
between the abundance of TICs and seven key Risk scoring genes in the proposed model. P-value< 0.05 was considered to be statistically significant.
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prognostic genes (Figure 8P). Consequently, CRG Risk score might

be associated with TME of COAD.
3.7 Associations among MSI, CSC, TMB,
somatic mutations and CRG Risk score

Up to data, limited molecular markers are available to lead

therapeutic decisions for patients with COAD, among which MSI,

CSC, TMB and somatic mutations appeared to be the most

promising. An increasing number of research revealed that

patients with high microsatellite instability (MSI-H) tumor might

benefit from immune checkpoint inhibitors (ICIs) in COAD (30,

31). As a result, we assessed the MSI status and found that in the

low-risk group, 73% were MSS, 17% were low microsatellite

instability (MSI-L), and 10% were MSI-H, while in the high-risk

group, 59% were MSS, 20% were MSI-L, and 20% were MSI-H
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(Figure 9A). The results indicated that patients with high-risk

shared a higher MSI-H frequency. Figure 9B suggested that

patients bearing MSI-H tumors appeared to have a higher Risk

score, compared with those with MSS. This might be related with

better treatment outcomes of ICIs. Additionally, crosstalk between

immune cells and CSCs, another important indicator of TIME,

takes a great part in tumor progression (32). As presented in

Figure 9C, CRG Risk score was negatively associated with CSC

index, indicating COAD cells with high CRG Risk scores had less

difference in stem cell properties and higher cell differentiation than

those with low-risk scores. TMB, as an indicator of the number of

tumor mutations, is known to be closely associated with patients’

immunotherapy benefits (33). Differential analysis indicated that

TMB in high-risk group was significantly higher than that in low-

risk group (Figure 9D). Correlation analysis also suggested that

TMB was positively associated CRG Risk score (Figure 9E).

Maftools of somatic mutations showed that the top 10 mutant
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FIGURE 9

Associations among MSI, TMB, CSC and CRG Risk score. (A) The distribution of MSI in different Risk score groups. (B) Difference analysis between
CRG Risk score and MSI. (C) Correlation analysis between CRG Risk score and CSC index. (D) Difference analysis of TMB in distinct CRG Risk score
groups. (E) Correlation analysis between CRG Risk score and TMB. (F-G) The waterfall plot of somatic mutation characteristics in high- and low-Risk
score groups. P-value< 0.05 was considered to be statistically significant.
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genes in the high-risk and low-risk groups were APC, TP53, TTN,

KRAS, PIK3CA, SYNE1, MUC16, FAT4, RYR2 and ZFHX4,

respectively (Figures 9F, G).
3.8 Drugs susceptibility analysis in distinct
Risk score groups

To investigate the predictive value of CRG Risk score in drug

sensitivity, we used pRRophetic R package to calculate the IC50

values of various drugs (Figures S10, 11; Table 2). Both drugs under

clinical use and clinical trials were included in our analyses. Various

drugs were divided into different groups, such as AKT inhibitor,

AMPK activator, Bcr-Abl inhibitor, BTK inhibitor, EGFR inhibitor,

MAPK inhibitor, mTOR inhibitor, TrkA inhibitor, Topoisomerase

inhibitor, Microtubule assosiated inhibitor, XIAP inhibitor,

TNF inhibitor and so on. In particular, patients of low-Risk score

set showed increased IC50 value for AMPK activator (AICAR), Bcl-2
Frontiers in Oncology 14105
inhibitor (TW.37, Obatoclax.Mesylate and ABT.263), BRAF inhibitor

(PLX4720), c-Kit inhibitor (AMG.706), DNA Synthesis

inhibitor (Cytarabine, Bleomycin and Gemcitabine), HSP90

inhibitor (AUY922), ITK inhibitor (BMS.509744), MEK inhibitor

(CI.1040 and RDEA119), PARP inhibitor (AG.014699 and

AZD.2281) and ROCK inhibitor (GSK269962A). In addition,

patients of high-Risk score set showed increased IC50 value for

AKT inhibitor (AKT.inhibitor.VIII and A.443654), CDK inhibitor

(Roscovitine), Raf/VEGFR/c-Kit inhibitor (Sorafenib), Her-2

inhibitor (Lapatinib) and EGFR inhibitor (Erlotinib and BIBW2992).

However, drugs that target the same site may have opposite

effects in different risk groups. For example, patients with low CRG

risk scores had increased IC50 values for Aurora kinase inhibitors

(ZM.447439) and decreased IC50 values for aurora kinase

inhibitors (VX.680). HDAC inhibitors (Vorinostat) had increased

IC50 values and HDAC inhibitors (MS.275) had decreased IC50

values in the low-risk score set. mTOR inhibitors (Temsirolimus,

NVP.BEZ235 and AZD8055) presented better drug sensitivity in
TABLE 2 Drug susceptibility in patients of the low- and high-score groups.

Drugs Low-score group High-score group

AKT inhibitor AKT.inhibitor.VIII +

A.443654 +

AMPK activator AICAR +

Aurora Kinase inhibitor ZM.447439 +

VX.680 +

Bcl-2 inhibitor TW.37 +

Obatoclax.Mesylate +

ABT.263 +

Bcr-Abl inhibitor Nilotinib +

AP.24534 +

Dasatinib +

Imatinib +

BRAF inhibitor PLX4720 +

BTK inhibitor LFM.A13 +

CDK inhibitor Roscovitine +

CHK inhibitor AZD7762 +

c-Kit inhibitor AMG.706 +

Raf/VEGFR/c-Kit inhibitor Sorafenib +

DNA Synthesis inhibitor Cytarabine +

Bleomycin +

Gemcitabine +

DNA crosslinker/apoptosis inducer Cisplatin +

EGFR inhibitor Erlotinib +

BIBW2992 +

(Continued)
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TABLE 2 Continued

Drugs Low-score group High-score group

FAK inhibitor PF.562271 +

FGFR inhibitor PD.173074 +

FTase inhibitor FTI.277 +

Proteosome inhibitor Z.LLNle.CHO +

GSK-3 inhibitor CHIR.99021 +

SB.216763 +

HDAC inhibitor Vorinostat +

MS.275 +

Hedgehog inhibitor GDC.0449 +

Her-2 inhibitor Lapatinib +

HSP90 inhibitor AUY922 +

ITK inhibitor BMS.509744 +

JNK inhibitor JNK.Inhibitor.VIII +

JNK.9L +

AS601245 +

MAPK inhibitor VX.702 +

MDM2 inhibitor JNJ.26854165 +

MEK inhibitor CI.1040 +

RDEA119 +

mTOR inhibitor Temsirolimus +

Rapamycin +

NVP.BEZ235 +

AZD8055 +

PAK inhibitor IPA.3 +

PARP inhibitor AG.014699 +

AZD.2281 +

TBK1 and PDK1 inhibitor BX.795 +

PI3K inhibitor AZD6482 +

GDC0941 +

NVP.BEZ235 +

PKC inhibitor Midostaurin +

PLK inhibitor BI.2536 +

GW843682X +

PPAR inhibitor FH535 +

Rac inhibitor EHT.1864 +

Raf inhibitor AZ628 +

ROCK inhibitor GSK269962A +

RPTK inhibitor CEP.701 +

RSK inhibitor BI.D1870 +

(Continued)
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low-risk score set, while mTOR inhibitor (rapamycin) had the

opposite. RSK inhibitors (BI. D1870 and CMK) and PF.4708671.

RSK inhibitor (BI.D1870 and CMK) and PF.4708671 also showed

the opposite drug susceptibility between different risk score sets.
3.9 Construction of a nomogram for the
prediction of COAD patient’s survival

Regarding the important role of Risk score in patients’ survival,

we constructed a nomogram combining CRG Risk scores and

clinicopathological characteristics to predict 1, 3, and 5-year

survival rates of COAD patients (Figure 10A). The calibration

graph showed that the nomogram functioned well in predicting

patients’ survival compared to an ideal model (Figure 10B). The
Frontiers in Oncology 16107
AUC values of 1, 3, and 5-year survival rates of nomogram were

0.873, 0.798, and 0.804, respectively, suggesting both relatively high

sensitivity and specificity (Figure 10C).
4 Discussion

COAD is a global health problem. Despite continuous

improvement of early screening and treatment strategies, the

survival of patients with advanced COAD remains poor (1).

Previous research suggested genomic susceptibility contributed to

the occurrence and development of COAD (34–37). For example,

BRAF V600E and KRAS mutations were significantly related with

poor prognosis of patients with microsatellite-stable COAD (38).

However, risk factors affecting patients’ survival varied and the
TABLE 2 Continued

Drugs Low-score group High-score group

PF.4708671 +

CMK +

RXR activator Bexarotene +

Src inhibitor A.770041 +

AZD.0530 +

Bosutinib +

Syk inhibitor BAY.61.3606 +

TNF inhibitor Lenalidomide +

TrkA inhibitor GW.441756 +

VEGFR inhibitor Axitinib +

Pazopanib +

PPM1D/Wip1 inhibitor CCT007093 +

XIAP inhibitor Embelin +

Topoisomerase I inhibitor Camptothecin +

Topoisomerase II inhibitor Doxorubicin +

Etoposide +

Microtubule Assosiated inhibitor Docetaxel +

Vinblastine +

Microtubule stabilizer Paclitaxel +

SER Ca2+-ATPase inhibitor Thapsigargin +

Metformin +

Cuproptosis inducer Elesclomol +

ARFGAP1 inhibitor QS11 +

Chloride Channel inhibitor Shikonin +

eIF2a Dephosphorylation inhibitor Salubrinal +

SHP PTP inhibitor NSC.87877 +

DNA-PK inhibitor NU.7441 +
“+”: Indicated up-regulated sensitivity.
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above risk factors predicting the prognosis of patients were not

yet satisfactory.

TME is a highly complex ecosystem (39). The subtle interactions

between tumor cells and co-existing immune cells in TME determine

tumor’s natural history. Based on pioneer studies on TME, the two

most widely applied ICIs, blocking cytotoxic-T-lymphocyte-

associated protein 4 (CTLA-4) and targeting programmed cell

death 1 (PD-1) or programmed cell death ligand 1 (PD-L1),

emerged as exciting treatment strategies across various

malignancies in the last decade (40). ICIs showed impressive anti-

tumor efficacy in COAD patients bearing tumors with the expression

of PD-L1, deficient mismatch repair (dMMR), MSI-H, or high TMB

(41, 42). Whereas the number of COAD patients who benefit from

ICIs is limited due to primary and acquired resistance. Therefore,

comprehensive knowledge of changes in genomic, transcriptome and

somatic mutations in TME is of great significance for the prevention,

treatment and prognosis assessment of COAD.

PCD, also termed as RCD, is a form of cell death that can be

regulated by multiple biomacromolecules, thus leading to

biochemical and morphological alterations which are depend on

energy (43). Increasing evidence has indicated that RCD is the key

features of tumorigenesis, which may ultimately affect therapeutic
Frontiers in Oncology 17108
strategies in cancers (44). RCD subroutines containing apoptosis,

necroptosis, autophagy, pyroptosis, ferroptosis, lysosome-dependent

cell death (LCD), alkaliptosis and NETosis have been identified and

are being extensively investigated in a variety of malignancies (45).

For instance, interactions between specific pyroptosis-related

subtypes and TME greatly influenced patients’ prognosis (46).

Dividing cancer patients into different subtypes according to their

genomic features allows us to more accurately predict drug

susceptibility and patient outcome, helping physicians design more

precise and individualized treatment strategies (47–49).

Cu is an essential micronutrient participated in multiple

fundamental biological processes (50). Aberrant Cu homeostasis

(ACH) is associated with tumor growth, metastasis, and drug

resistance due to its role in oxidative stress and chronic

inflammation (51). A higher Cu level indicated a higher risk of

colorectal cancer (52). In addition, Cu chelator exhibited great

antitumor activity in various cancers, such as esophageal cancer,

triple-negative breast cancer and COAD (53–57). For example, the

disulfiram (DSF), a well-known antialcohol drug, combined with

Cu triggered autophagic cell death and inhibited cell viability in

colorectal cancer by targeting ULK1 (55). Tetrathiomolybdate (TM)

and TPEN, specific Cu chelators, also showed obvious anti-tumor
B C
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FIGURE 10

Construction and validation of a nomogram in COAD patients. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of COAD patients.
(B) Calibration curves of the nomogram. (C) ROC curves for predicting the 1-, 3-, and 5-year OS of COAD patients.
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activity in COAD (58–60). In addition, quite a few novel Cu

compounds were developed to investigate their antitumor

mechanisms and therapeutic effect in COAD. For instance, the

copper-imidazo[1,2-a] pyridines induced COAD apoptosis (61). Cu

(dmp)2(CH3CN)]
2+ exhibited anti-proliferative activity in human

colorectal cancer cells (62). Cu(qmbn)(q)(Cl) triggered

mitochondrion-mediated apoptotic cell death via activating the

caspases-3 and 9 proteins (63). Moreover, nanoparticles

combining Cu were designed to investigate the anticancer

potential in COAD. Cu nanoparticles (CuNPs and Cu-Cy) shed a

good insight for COAD treatment (64, 65). Cu2O@CaCO3

nanocomposites inhibited CRC distant metastasis and recurrence

by immunotherapy through inducing an immunologically favorable

TME and intensing the immune responses of anti-CD47 antibodies

(66). The Bi : Cu2O@HA nanoparticles exhibited excellent targeting

ability and photothermal therapeutic effect (67). Cuproptosis, a

novel RCD, was recently identified as copper-dependent death,

which occurred through directly binding Cu to TCA cycle (19).

However, the role of cuproptosis in COAD is unclear, and the

prognostic value of CRGs has not been thoroughly evaluated.

Thanks to the large public database such as TCGA and GEO, we

are able to access and analyze the transcriptome profiles of a variety of

malignancies to gain a comprehensive understanding of genetic

landscape, screen potential biomarkers, develop therapy strategies

and predict patient outcome (68, 69). Several studies have described

cuproptosis-related molecular patterns and the characterization of

TME in colorectal cancer and found that cuproptosis patterns were

closely associated with TME and served to predicted survival of

patients with colorectal cancer (70–74). D. Hou, et al. (75) developed

a risk model of 11-cuproptosis-related lncRNAs to predict clinical

and therapeutic implications of CRC patients. However, colon and

rectal cancer were quite different in their biological characteristics,

surgical protocol, treatment strategy and prognosis (76). Previously,

Luo, B., et al. (77) identified two clusters based on 30 differentially

expressed CRGs of 963 COAD samples from TCGA-COAD and

GSE39582 databases. However, the OS between the two clusters

showed no statistical difference and the accuracy of risk model was

not verified. Xu, C., et al. (78) classified COAD samples from TCGA-

COAD and GSE39582 databases into two groups according to 9

cuproptosis-related DEGs and further constructed a risk model.

Whereas, ROC curves of the model showed that AUC values for

the 1-year, 2-year, and 3-year survival were 0.575, 0.577 and 0.571

respectively, signifying the moderate predictive power of the model.

In addition, Yang, G., et al. (79) grouped 623 COAD patients from

TCGA-COAD and GSE17536 databases into 2 sets based on 12

CRGs expression profiles and established nomogram pattern based

on risk model to predict patient prognosis. However, the sensitivity

and specificity of the nomogram was not verified. As a result, we

aimed to establish a more accurate risk model to predict survival

through comprehensively integrating CRGs expression patterns of

1307 COAD samples fromTCGA-COAD, GSE17536, GSE29623 and

GSE39582 databases. In our study, 7 of 10 CRGs were found to be

dys-regulated in tumor samples compared with those in normal

samples, and a relatively high mutation frequency and CNV of CRGs

was observed in COAD samples. Survival analysis and univariate Cox

regression analysis of patients from TCGA (TCGA-COAD) and
Frontiers in Oncology 18109
GEO database (GSE17536, GSE29623 and GSE39582) suggested

both GLS and CDKN2A were significantly related with patients’

survival. The cuproptosis network demonstrated the complex

interrelations among CRGs and prognosis of cancer patients.

Considering the relatively common genetic and transcriptional

variation and the potential prognostic value of CRGs in COAD, we

speculated cuproptosis may be a new therapeutic target and that

CRGs characteristics might play an important role in predicting

therapeutic response and patient outcome, providing new insights

into the role of Cu in COAD. We further categorized patients into

three cuproptosis related molecular subtype, including subtype A, B

and C, based on CRGs expression profile. Distinct molecular subtypes

differed in both the CRGs expression profile, and the survival and

clinicopathological features of COAD patients. GO and KEGGGSVA

enrichment analyses suggested that different molecular subtypes

enriched in different signaling pathways. Given the indispensable

role of immunotherapy in colorectal adenocarcinoma, TIME-

associated indicators such as TICs, MSI, CSC, TMB, somatic

mutations, etc., were investigated to study the relationship between

CRGs and TIME of colorectal adenocarcinoma. TICs profile revealed

great difference in the infiltration of 19 TICs among distinct subtypes.

GO enrichment analysis of 186 DEGs, obtained from the comparison

between subtype A and B, A and C, and B and C, revealed that DEGs

mainly enriched in signaling pathways associated with digestion.

Univariate Cox regression analysis identified 86 prognostic DEGs

from the above 186 genes. Based on 86 prognostic DEGs expression

profile, we once again classified patients into 3 sets, namely gene

subtype A, B and C, which were differed in the expressions of both

prognostic DEGs and 8 CRGs. Additionally, cuproptosis gene

subtypes were closely associated with the survival and

clinicopathological characteristics (age, sex, grade, T and N stage)

of COAD patients. In view of the important role of CRGs in COAD,

the risk scoring system of CRG was further constructed in the

training set according to prognostic DEGs expression, and verified

in the testing set and the combined set. Risk scores of molecular

subtype C and gene subtype C were significantly increased, while risk

scores of molecular subtype B and gene subtype B were significantly

decreased. The higher the risk score, the lower the survival rate. In

addition, CRGs, TICs, CSC, TMB, MSI, somatic mutations, and drug

sensitivity were closely associated with distinct risk score sets. Finally,

a nomogram integrating risk scores and clinicopathological

characteristics was established to predict OS rates of COAD

patients. AUC values of 1-, 3-, and 5-year survival rates of

nomogram were 0.873, 0.798, and 0.804, respectively, which was

higher than previous nomogram established by Zhong, L., et al. (80).

However, our study of the relationships between CRGs and TME in

COAD were primarily based on the bioinformatics analysis. The

specific mechanism of CRGs affecting TME needs to be further

studied in vitro and in vivo, which may be crucial for the treatment

of COAD.
5 Conclusion

CRGs were significantly correlated with clinicopathologic

features, TME and immunoinfiltration of COAD. The higher the
frontiersin.org
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Risk score, the higher the MSI and TMB, and the lower the CSC. In

addition, the CRGs Risk scoring system showed good ability to

predict patient survival and drug sensitivity.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee of Nanjing Jiangning Hospital.

The patients/participants provided their written informed consent

to participate in this study.
Author contributions

(I) Conception and design: JW; ZT; (II) Administrative support:

JW; ZT; BW; XH (III) Provision of study materials or patients: JW;

XQ; DQ (IV) Collection and assembly of data: JW; YW; BL; DQ (V)

Data analysis and interpretation: JW; YX; JC (VI) Manuscript

writing: JW; (VII) All authors contributed to the article and

approved the submitted version.
Funding

This research was funded by the National Nature Science

Foundation of China, grant number 82103032, Medical Research

Grant of Jiangsu Commission of Health, grant number M2020010,

the Medical Science and Technology Development Foundation of

Nanjing, grant number YKK21224.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Frontiers in Oncology 19110
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1152681/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Unsupervised clustering of CRGs and consensus matrix heat-maps for k = 2,

4-9 through consensus clustering analysis in COAD samples from TCGA and

GEO database.

SUPPLEMENTARY FIGURE 2

Unsupervised clustering of prognostic genes and consensus matrix heat-

maps for k = 2, 4-9 through consensus clustering analysis in COAD samples
from TCGA and GEO database.

SUPPLEMENTARY FIGURE 3

Identification of optimum prognostic genes in COAD samples. (A, B) The

LASSO regression analysis and partial likelihood deviance analysis on 86
subtype-related prognostic DEGs.

SUPPLEMENTARY FIGURE 4

Difference, paired difference and survival analyses of 7 key Risk scoring genes
(GLS, NOX1, HOXC6, TNNT1, PLA2G12B, CAB39L and ASRGL1) in

COAD patients.

SUPPLEMENTARY FIGURE 5

Validation of CRG Risk score in the testing group. (A) Alluvial diagram of
patients’ distributions in testing groups with different molecular subtypes,

gene subtypes, Risk scores and survival outcomes. (B) Differential analysis of
CRG Risk score in different molecular subtypes of the testing group. (C)
Differential analysis of CRG Risk score in different gene subtypes of the testing

group. (D) The heat-map of seven scoring genes expression in different risk
sets of the testing group. (E) Ranked dot and scatter plot of CRG Risk score

distribution and patient survival in the testing group. (F) Survival analysis of
high- and low- CRG Risk score in the testing group. Kaplan–Meier plot and

log-rank tests were conducted for survival analyses. P-value < 0.05 was
considered to be statistically significant. (G) ROC curve predicted the

sensitivity and specificity of 1-, 3-, and 5-year survival according to CRG

Risk score in the testing group.

SUPPLEMENTARY FIGURE 6

Validation of CRG Risk score in GSE29623. (A) Alluvial diagram of patients’

distributions in testing groups with different molecular subtypes, gene
subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE29623. (C) Differential

analysis of CRG Risk score in different gene subtypes of GSE29623. (D) The
heat-map of seven scoring genes expression in different risk sets of

GSE29623. (E) Ranked dot and scatter plot of CRG Risk score distribution
and patient survival in GSE29623. (F) Survival analysis of high- and low- CRG

Risk score in GSE29623. Kaplan–Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be

statistically significant. (G) ROC curve predicted the sensitivity and

specificity of 1-, 3-, and 5-year survival according to CRG Risk score
in GSE29623.

SUPPLEMENTARY FIGURE 7

Validation of CRG Risk score in GSE17536. (A) Alluvial diagram of patients’
distributions in testing groups with different molecular subtypes, gene

subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE17536. (C) Differential
analysis of CRG Risk score in different gene subtypes of GSE17536. (D) The
heat-map of seven scoring genes expression in different risk sets of
GSE17536. (E) Ranked dot and scatter plot of CRG Risk score distribution

and patient survival in GSE17536. (F) Survival analysis of high- and low- CRG
Risk score in GSE17536. Kaplan–Meier plot and log-rank tests were

conducted for survival analyses. P-value< 0.05 was considered to be

statistically significant. (G) ROC curve predicted the sensitivity and
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specificity of 1-, 3-, and 5-year survival according to CRG Risk score
in GSE17536.

SUPPLEMENTARY FIGURE 8

Validation of CRG Risk score in GSE39582. (A) Alluvial diagram of patients’

distributions in testing groups with different molecular subtypes, gene
subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE39582. (C) Differential
analysis of CRG Risk score in different gene subtypes of GSE39582. (D) The
heat-map of seven scoring genes expression in different risk sets of

GSE39582. (E) Ranked dot and scatter plot of CRG Risk score distribution
and patient survival in GSE39582. (F) Survival analysis of high- and low- CRG

Risk score in GSE39582. Kaplan–Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be

statistically significant. (G) ROC curve predicted the sensitivity and
specificity of 1-, 3-, and 5-year survival according to CRG Risk score

in GSE39582.
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SUPPLEMENTARY FIGURE 9

Validation of CRG Risk score in GSE40967. (A) The heat-map of seven scoring
genes expression in different risk sets of the combined group. (B) Ranked dot

and scatter plot of CRG Risk score distribution and patient survival in the

combined group. (C) Survival analysis of high- and low- CRG Risk score in the
combined group. Kaplan–Meier plot and log-rank tests were conducted for

survival analyses. P-value< 0.05 was considered to be statistically significant.
(D) ROC curve predicted the sensitivity and specificity of 1-, 3-, and 5-year

survival according to CRG Risk score in the combined group.

SUPPLEMENTARY FIGURE 10

Differential drugs susceptibility analyses in high- and low-Risk group. P-
value< 0.05 was considered to be statistically significant.

SUPPLEMENTARY FIGURE 11

Differential drugs susceptibility analyses in high- and low-Risk group. P-
value< 0.05 was considered to be statistically significant.
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Characterization of a
cuproptosis-related signature
to evaluate immune features
and predict prognosis in
colorectal cancer

Lei Li1,2†, Fengyuan Sun3†, Fanyang Kong3†, Yongpu Feng3†,
Yingxiao Song3†, Yiqi Du3*, Feng Liu1* and Xiangyu Kong3,4*

1Digestive Endoscopy Center, Shanghai Tenth People’s Hospital, Shanghai, China, 2Department of
Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Shanghai, China, 3Department of Gastroenterology, Changhai Hospital, Naval Medical University,
Shanghai, China, 4Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
Purpose: Cuproptosis is a newly discovered type of cell death. Little is known

about the roles that cuproptosis related genes (CRGs) play in colorectal cancer

(CRC). The aim of this study is to evaluate the prognostic value of CRGs and their

relationship with tumor immune microenvironment.

Methods: TCGA-COAD dataset was used as the training cohort. Pearson

correlation was employed to identify CRGs and paired tumor-normal samples

were used to identify those CRGs with differential expression pattern. A risk score

signature was constructed using LASSO regression andmultivariate Cox stepwise

regression methods. Two GEO datasets were used as validation cohorts for

confirming predictive power and clinical significance of this model. Expression

patterns of seven CRGs were evaluated in COAD tissues. In vitro experiments

were conducted to validate the expression of the CRGs during cuproptosis.

Results: A total of 771 differentially expressed CRGs were identified in the training

cohort. A predictive model termed riskScore was constructed consisting of 7

CRGs and two clinical parameters (age and stage). Survival analysis suggested

that patients with higher riskScore showed shorter OS than those with lower

(P<0.0001). ROC analysis revealed that AUC values of cases in the training cohort

for 1-, 2-, and 3-year survival were 0.82, 0.80, 0.86 respectively, indicating its

good predictive efficacy. Correlations with clinical features showed that higher

riskScore was significantly associated with advanced TNM stages, which were

further confirmed in two validation cohorts. Single sample gene set enrichment

analysis (ssGSEA) showed that high-risk group presented with an immune-cold

phenotype. Consistently, ESTIMATE algorithm analysis showed lower immune

scores in riskScore-high group. Expressions of key molecules in riskScore model

are strongly associated with TME infiltrating cells and immune checkpoint

molecules. Patients with a lower riskScore exhibited a higher complete

remission rate in CRCs. Finally, seven CRGs involved in riskScore were

significantly altered between cancerous and paracancerous normal tissues.
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Elesclomol, a potent copper ionophore, significantly altered expressions of seven

CRGs in CRCs, indicating their relationship with cuproptosis.

Conclusions: The cuproptosis-related gene signature could serve as a potential

prognostic predictor for colorectal cancer patients and may offer novel insights

into clinical cancer therapeutics.
KEYWORDS

cuproptosis, prognosis, immune infiltration, elesclomol, colorectal cancer
Introduction

Colorectal cancer (CRC) is the third most common cancer and

the second leading cause of cancer-related deaths worldwide, with

more than 1.85 million cases and 850,000 deaths annually occurred

(1). Among people diagnosed with CRC, 20% have metastatic CRC,

and 40% patients with localized disease will have a relapsing

metastasis after curative surgical resection. The 5-year survival rate

for those diagnosed with metastatic CRC is less than 20% (1, 2). To

improve the prognosis of patients with CRC, there is an urgent need

to develop more efficient prognostic models and targeted therapy

against CRC.

Regulated cell death (RCD) is generally regulated by signaling

molecules and has unique biochemical, morphological, and

immunological characteristics (3). Different forms of RCD,

including apoptosis, necroptosis, autophagy, ferroptosis,

pyroptosis, alkaliptosis, and etc., have been identified to be

involved in diverse pathological processes , including

tumorigenesis (4). Certain RCD forms are regarded as targets of

almost all treatment strategies. Resistance to these RCDs are

common causes for failure of cancer treatment. Different forms of

RCDs can be alternative therapeutics to each other to conquer

treatment resistance (5). Therefore, finding new forms of RCD will

bring novel therapeutics for refractory cancer cases.

Copper is an essential cofactor for all organisms, and yet it

becomes toxic if concentrations exceed a threshold maintained by

evolutionally conserved mechanisms (6). Accumulating evidence

suggests that organic chelators of copper, e.g., elesclomol, can

induce cellular copper overload and restrain malignant behaviors

across various cancer types, including CRC (7). However, detained

mechanisms underlying copper-related anticancer effects remain

poorly understood. Different publications raised contradictory

opinions, including either induction of ferroptosis (7), autophagy

(8), apoptosis (9), or inhibition of the aerobic glycolysis pathway

(10). Recently, Tsvetkov et al. established that copper induced

death, namely cuproptosis, was a totally distinct RCD form from

previous identified ones, e.g., apoptosis, ferroptosis, and

necroptosis. They also showed that cuproptosis occurs by means

of direct binding of copper to lipoylated components of the

tricarboxylic acid cycle. Ten pivotal genes were identified involved

in cuproptosis through whole-genome CRISPR-Cas9 selection
02114
screen, including seven genes (FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1 and PDHB) conferred resistance to cuproptosis, while

three genes (MTF1, GLS and CDKN2A) sensitized the cells to

cuproptosis. Mounting evidence showed that those cuproptosis

associated molecules, including noncoding genes, exhibited strong

association with prognosis and immune infiltration levels.

In current study, we defined a list of cuproptosis associated

genes (CRGs) as candidate molecules, and further developed a

predictive model through LASSO regression and multivariate Cox

stepwise regression in TCGA dataset. We further evaluated its

associations with a list of clinical parameters, e.g., TNM stages,

overall survival, treatment response, immune infiltration levels, and

etc., to test its predictive efficacy and relationship with immune

microenvironment features. An overview of the research design was

presented in Figure 1.
Material and methods

Data collection and preprocessing

Gene expression data and clinical feature of colon cancer

samples were collected from publicly available datasets of the

NCBI GEO database and TCGA. A total of three colon cancer

expression profile cohorts were included in our study, including

GSE17536, GSE39582 and TCGA-COAD cohorts. We downloaded

the normalized matrix files of each GEO cohort for further analyses

(https://www.ncbi.nlm.nih.gov/geo/). For RNA sequencing data

from TCGA, we downloaded the read counts of gene expression

from the Xena Genomic Data Commons (http://xena.ucsc.edu/),

including 471 tumor and 41 normal samples. Study participants

with incomplete clinical information were excluded for further

survival analysis.
Identification of differentially
expressed genes

Differential expression analysis was carried out using R package

DESeq2 (11) on the 41 paired samples. Genes that showed significantly

differential expression (P<0.05 and |log2 fold‐change| >1) between
frontiersin.org
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paired tumor and normal samples were selected for

downstream analysis.
Identification of cuproptosis-related genes

We then assessed the correlation of DEGs with 10 key

cuproptosis regulators (CDKN2A, DLAT, DLD, FDX1, GLS,

LIAS, LIPT1, MTF1, PDHA1 and PDHB) by Pearson ’s

correlation analysis. In order to identify cuproptosis-related

genes, absolute Pearson’s correlation coefficients higher than 0.4

and P values less than 0.05 were required.
Functional annotation and gene set
enrichment analysis

To explore potential biological processes related to the obtained

cuproptosis-related DEGs, we performed gene ontology (GO) and
Frontiers in Oncology 03115
KEGG enrichment analysis using the ClusterProfiler R package (12).

The GO enrichment analysis was conducted based on three aspects

including biological process (BP), molecular functions (MF) and cellular

components (CC). We also identified the activated or inactivated

biological pathways among patients with low- and high-riskScore by

running the gene set enrichment analysis (GSEA) of the adjusted

expression data for all transcripts. The used gene sets were

downloaded from MSigDB database, and the “c5.go.bp.v7.5

.1.symbols” gene sets were used to quantify the activity of biological

pathways, which was represented by the enrichment score.
Survival analysis

Survival analysis was performed using univariate and

multivariate Cox regression hazard analysis and survival curves

derived from Kaplan–Meier survival analysis by using the packages

survival and survminer. The receiver operating characteristic curve

(ROC) were performed with the timeROC packages.
FIGURE 1

The flowchart shows the overall analytical process of this study.
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CRG-related risk signature construction
and validation

TCGA-COAD dataset was set as the training cohort to screen

for those survival-related genes in COAD. Univariate Cox

regression analysis was performed to screen out OS-related DEGs.

LASSO regression analysis was further applied to refine DEGs, and

multivariate Cox regression hazard analysis (backward stepwise)

was eventually used to establish a predictive model, performance of

which was ultimately validated in two independent GEO datasets.

Risk score was computed with the following equation:

riskScore  =o
n

i=1
(Coefi � xi)
Establishment and validation of a
nomogram scoring system

We later created a hybrid nomogram using the regplot R

package that incorporates the mRNA signature and

clinicopathological features of COAD patients to predict their OS

(1-, 3-, and 5-year). For determining the predictive power of a

nomogram, calibration curves and consistency indices (C-index)

were used.
Evaluation of intratumoral immune
cell infiltration

ssGSEA was used to quantify the abundance of each TME cell

infiltration based on the gene sets obtained from the study of

Charoentong (13). To control the bias resulted by the tumor

purity, we adjusted the enrichment scores of each TME cell

subtype by calculating the tumor purity using ESTIMATE

algorithm. The adjusted enrichment scores calculated by ssGSEA

analyses were used to represent the abundance of each TME

infiltration cell.
Mutation analysis

Somatic mutation data of COAD from whole exome/genome

sequencing (WXS/WGS) were downloaded from the GDC TCGA-

COAD project on the UCSC Xena server. Oncoplot was drawn

according to the descending order of mutations using the R package

“ maftools” (14).
Cell culture

HCT116 and SW480 were cultured in Dulbecco’s modified

Eagle medium which was supplemented with 100 U*mL-1
Frontiers in Oncology 04116
penicillin and streptomycin as well as 10% fetal bovine serum in a

humidified atmosphere of 5% CO2 at 37°C.
Reagents and drug treatment in vitro

Elesclomol was purchased from Master of Bioactive Molecules

(MCE). When cells were adherent and had morphologically spread,

Colon cancer cell lines (HCT116 and SW480) were treated with

2mM copper chloride and/or 40nM elesclomol for 24 hours,

respectively. Cells were harvested after treatment and RNA was

collected via the following extraction method.
RNA extraction and quantitative real-time
polymerase chain reaction

Total cellular RNA was extracted using a total RNA extraction

kit (220010, Shanghai Feijie) according to standard protocol. The

RNA was used to synthesize complementary DNA (cDNA) with a

cDNA Synthesis SuperMix (RR036A, TaKaRa). The cDNA was

used as a template and the seven cuproptosis related genes (GRGs)

expression was quantified with the Roche LightCycler 480 using TB

Green Premix Ex Taq II (RR820A, TaKaRa). GAPDH was used as

an endogenous control. Primers were synthesized by Sangon

Biotech (Sangon, Shanghai). The primer sequences are shown

in Table 1.
Statistical analyses

The data were analyzed with R software version 4.2.0. For

comparisons, data conforming to normal and nonnormal

distributions were assessed using the unpaired/paired Student’s t-

test and the Wilcoxon test, respectively. The difference significance

test for three or more groups was performed using One-way

ANOVA and Kruskal-Wallis tests. All statistical P value were

two-side, with P< 0.05 as statistically significance.
Results

Identification of CRGs in
TCGA-COAD cohort

As the sample size of normal cases is relatively small (41 out of

512 cases), we employed paired tumor vs. normal samples to

improve detection rate for differentially expressed genes (DEGs).

Principal component analysis (PCA) of the full transcriptomes

identified differential grouping between two cohorts (Figure 2A).

Differential expression analysis identified 4319 significantly

upregulated and 4398 significantly downregulated transcripts in

CRC tissues compared with paired normal tissues (Figures 2B, C) at
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a P<0.05 and a |log2 fold-change| >1. Of note, seven out of ten

pivotal CRGs, which were identified in Science article (6), showed

significantly altered expression patterns, with CDKN2A exhibited

higher and DLAT, DLD, FDX1, LIAS, MTF1, PDHB exhibited

lower expression in tumor tissues (Supplementary Figure 1A,

P<0.05). Correlations across these seven molecules in CRCs were

shown in Figure 2D. Survival analysis showed that five out of seven

molecules were significantly associated with overall survival

(P<0.05, Supplementary Figure 1B).

As the concept of Cuproptosis has just recently been proposed

(6) and no database are available to download the full picture of

CRGs, here we used coexpression strategy (15) to define mRNAs

with 7 reported CRGs absolute coefficients values >0.4 and P

values<0.05 as the standard of CRGs. A total of 7946 genes were

identified CRGs. Further Venn diagram showed 771 overlapping

genes in DEGs and CRGs (Figure 3A), which we select as candidates

for constructing a prognosis predictive signature. Functional

annotations of GO enrichment indicated these genes were

significantly associated with TME immune related biological

processes such as B cell receptor signaling pathway, humoral

immune response, production of molecular mediator of immune

response, positive regulation of B cell activation, leukocyte

migration, suggesting these CRGs could be significantly correlated

with TME immune cell infiltration (Figures 3B-D). Consistently,
B
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A

FIGURE 2

Identification of DEGs between paired normal and tumor cases in TCGA-COAD cohort. (A) PCA of the global transcriptome in tumor (red) and
paired normal (blue) cases. A heatmap (B) and volcano plot (C) of significantly (P<0.05) upregulated (log2 fold-change >1, red) and downregulated
(log2 fold-change<−1, blue) genes in tumor vs. normal cases. (D) Seven out of ten reported CRGs were differentially expressed between tumor and
paired normal cases (P<0.05).
TABLE 1 PCR primer sequences of target genes.

Primer Sequence (5' to 3')

DPP7-F GGACCACTTCAACTTCGAGC

DPP7-R GCCCTCGTTCCCAGTGTAG

GPRASP1-F AGGAGGAGACCAATATGGGGT

GPRASP1-R GGACCTAGACATGGTATTAGCCT

UNC5C-F TGGGACTGGGATACTTGCTG

UNC5C-R ACAGTACAGGTTCACAGGCTTAT

CDR2L-F TGGGCTGACGGAGACCATT

CDR2L-R TGTAGGCGGAAAGCATCCTTG

RAB3B-F CCGCTATGCTGATGACACGTT

RAB3B-R ACGGTAGACTGTCTTCACCTTG

PCDH9-F CTGCTCTGATTGCCTGTTTAAGG

PCDH9-R ACCAGTCTGTAGACAAGGCTG

SLC18A2-F CGGAAGCTCATCCTGTTCATC

SLC18A2-R CCTGGCCGTCTGGATTTCTG

GAPDH-F GGAGCGAGATCCCTCCAAAAT

GAPDH-R GGCTGTTGTCATACTTCTCATGG
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KEGG pathway analysis also demonstrated that these genes were

correlated with immune related signaling pathways (Figure 3E).
Establishment of risk model for prognosis
prediction based on CRGs

Considering the markedly differential expression patterns of

these CRGs, we set TCGA-COAD dataset as the training cohort to

screen for those survival-related genes (n = 44, P<0.05 both in log-

rank test and in univariate Cox regression analysis). We used

LASSO Cox regression to distinguish those most informative

prognostic mRNA biomarkers for prognosis. Regression

coefficients of the 44 DEGs were evaluated (Figure 4A;

Supplementary Table 1). It was finally verified through cross-

validation that 20 (Supplementary Table 1) DEGs could achieve a
Frontiers in Oncology 06118
better effect in the model (Figure 4B). Eventually, multivariate Cox

stepwise regression method was used to establish several

multivariate regression models. A risk model consisting of 7

DEGs (DPP7, GPRASP1, UNC5C, CDR2L, RAB3B, PCDH9,

SLC18A2), as well as two clinical parameters (age and stage), was

at last identified (Figure 4C). DPP7, CDR2L exhibited higher and

UNC5C, RAB3B, SLC18A2, GPRASP1, PCDH9 exhibited lower

expression in tumor tissues (Supplementary Figure 2A, P<0.05).

Survival analysis showed that UNC5C, RAB3B, SLC18A2 were low-

risk genes, while DPP7, GPRASP1, CDR2L, PCDH9, were high-risk

genes (P<0.05, Supplementary Figure 2B). The correlation analysis

was performed to investigate the similarities among seven key

molecules, and the results are visually displayed in Figure 4D.

Somatic mutation profiles of 7 key genes for 406 CRC patients

were retrieved from the TCGA dataset. The waterfall plot was used

to present the mutation data for each gene in every sample
B
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FIGURE 3

Functional annotation of differentially expressed CRGs. (A) Venn diagram analysis demonstrated genes appeared both in DEGs and CRGs. (B-D) Gene
Ontology functional enrichment analyses for differentially expressed genes. (B) Biological processes enrichment. (C) Cellular component enrichment.
(D) Molecular function enrichment. (E) KEGG pathway enrichment analyses for differentially expressed CRGs. All enriched pathways were significant.
The color depth represented enriched adjusted P value.
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(Figure 4E), Further, mutations were grouped based on various

categories. In the grouping, missense mutation was the most

common (Figure 4F), while single nucleotide polymorphisms

(SNP) is more common than other kinds of mutations

(Figure 4G). Regarding single nucleotide variants, C>A and C>G

are two most common kinds (Figure 4H).
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Evaluation of the predictive efficacy of the
riskScore for prognosis in TCGA-COAD

We further evaluated the predictive efficacy of riskScore for

prognosis. Based on the model, cases in the training cohort were

scored and divided into high- and low- risk group with the median
B
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FIGURE 4

Construction of the riskScore signature and mutation analysis of seven riskScore-associated molecules. (A) Least absolute shrinkage and selection
operator (LASSO) coefficient profiles of the 45 key molecules. (B) Tuning parameter selection by tenfold cross-validation in the LASSO model. The
partial likelihood deviance was plotted against log(Lambda/l), and l was the tuning parameter. The partial likelihood deviance values were shown
and error bars represented s.e. The dotted vertical lines showing the optimal values through minimum criteria and 1 -s.e. criteria. (C) Multivariate Cox
regression analysis of seven CRGs and two clinical parameters (D) Correlation between seven riskScore-associated molecules. Blue, negative
correlation; Red, positive correlation. (E) The mutation landscape of key molecules in 406 samples of TCGA-COAD cohort. (F-H) the CNV and
mutation frequency and classification of seven prognosis-related CRGs in Colorectal cancer. *P<0.05, **P<0.01, ***P<0.001.
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riskScore as the cutoff. Survival analysis showed that cases with

higher riskScore had a significant shorter OS compared with those

with lower riskScore (P< 0.0001) (Figure 5A). ROC analysis

revealed that AUC values of cases in the training cohort for 1-, 2-

, and 3-year survival were 0.82, 0.80, 0.86 respectively, indicating

good predictive efficacy of this model (Figure 5B). As the values of

riskScore increased, mortality of those cases correspondingly

increased (Figure 5C). Hierarchical clustering showed distinct

expression patterns of seven key molecules between two groups

(Figure 5C). Furthermore, levels of riskScore progressively
Frontiers in Oncology 08120
increased with TNM stages of cases in the training cohort, which

further consolidate its strong association with malignant phenotype

(Figure 6A; Supplementary Figure 3A).

Gene set enrichment analysis (GSEA) reveals two immune

related pathways, including humoral immune response and B cell

receptor signaling pathway, were significantly attenuated, indicating

that TME immune cells may be involved in high malignant

phenotype of the high-risk cases (Figure 5D). To develop a

clinically related quantitative method for predicting probability of

patient mortality, we established the nomogram integrating all
B
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FIGURE 5

Correlation of the riskScore with clinicopathological features. (A) Kaplan-Meier plot of the riskScore signature in the TCGA cohort (log-rank test).
(B) ROC curves for one-year, three-year and five-year overall survival prediction of the riskScore signature in the TCGA cohort. (C) Distribution of
riskScore, survival status and the expression of prognostic CRGs. (D) Gene set enrichment analysis (GSEA) reveals two significantly activated signaling
pathways including angiogenesis pathway and epithelial to mesenchymal transition pathway. (E) The nomogram to predict the probability of patient
mortality using seven key molecules, age, and stage. (F) The calibration plot of nomograms between predicted and observed 1-year, 2-year, and 3-
year outcomes. The 45-degree line represented the ideal prediction. *P<0.05, **P<0.01, ***P<0.001.
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factors involved in the riskScore model (Figure 5E). The calibration

plots demonstrated that the derived nomogram performed well

compared to the ideal model (Figure 5F).
Validation of the riskScore in two
independent GEO datasets

To further confirm the prognosis predictive efficacy of the

riskScore signature, we used GSE17536 and GSE39582 datasets as

validation cohorts (n=177 and 561, respectively). Among different

stages of COAD, cases with advanced TNM stages exhibited higher

riskScore than in early TNM stages (Figures 6B, C). Higher

riskScore was associated with advanced stages of T, N, M, stages
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in GSE39582 dataset, which is consistent with results in training

cohort (Supplementary Figure 3B). Survival analysis showed OS of

the high-risk group was significantly shorter than that of low-risk

group (both P< 0.001) (Figure 6D). ROC analysis revealed that

AUC value of the cases in the validation cohort for 1-, 2-, and 3-year

survival were 0.87, 0.86, 0.79 for GSE17536, and 0.72, 0.66, 0.67 for

GSE39582, respectively, indicating good predictive efficacy of the

model (Figure 6E). We further evaluated association of riskScore

with treatment response. Patients with complete remission (CR)

exhibited a lower riskScore (Figure 6F). ROC analysis revealed that

AUC value reached 0.81, indicating this model has excellent

discriminant ability for CR (Figure 6G). CR rate was significantly

enhanced in patients with low risk than those with high risk

(93.75% vs 52.5%, Figure 6H).
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FIGURE 6

Validation of the prognostic prediction value of the riskScore in TCGA-COAD cohort, GSE17536 and GSE39582 dataset. (A-C) Differential levels of
the riskScore between various TNM stages in TCGA-COAD cohort (A), GSE17536 (B)and GSE39582 dataset (C). (D) Kaplan-Meier plot of the
riskScore signature in the GSE17536 and GSE39582 datasets (log-rank test). (E) ROC curves for one-year, three-year and five-year overall survival
prediction of the riskScore signature in the GSE17536 and GSE 39582 datasets. (F) Differential levels of the riskScore between various treatment
response in TCGA-COAD cohort. (G) ROC curves of the riskScore signature for complete remission prediction in the TCGA cohort. (H) The
proportion of patients with response to chemical therapy in high or low riskScore groups. ns, not significant; **P<0.01, ****P<0.0001.
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Evaluation of TME immune infiltration and
checkpoints between the high- and
low-risk groups

The diverse range of immune responses are largely attributed to

the differential composition of immune cell population. It is

uncertain whether those key molecules and riskScore signature

are associated with TME immune infiltration, which may account

for their association with prognosis. In this study, ssGSEA was used

to determine the immune heterogeneity between riskScore-high

group and -low group. We generated a heatmap to visualize the

relative abundance of 28 infiltrating immune cells in each group. Of

note, samples with low riskScore present with a high degree of

immune cell infiltration, suggesting that they adopt an immune-hot

phenotype, whereas those samples with high riskScore did the

opposite (Figure 7A). We further evaluated proportion of

immunoreactive and immunosuppressive cells in each of these

populations. Consistent with the immune-hot phenotype of

riskScore-low samples, the infiltrating cells were largely associated

with immune activation (e.g., activated B cell, activated CD4 T cell,

activated CD8 T cell, activated dendritic cell, etc.) (Figure 7B). An

analysis based on the Tumor Immune Estimation Resource

(TIMER; cistrome.shinyapps.io/timer) (16) further confirmed the

relationship between seven key CRGs and the abundance of six

immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages,

neutrophils and dendritic cells) (Supplementary Figure 4).

ESTIMATE algorithm analysis showed that immune scores, but

not stromal scores, were significantly lower in riskScore-high group

than in -low group (Figure 7C). We further used pearson
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correlation analysis to correlate key molecules with TME

infiltrating cells, and multiple strong correlations were identified

among them (Figure 7D). We also found that patients with lower

riskScore is associated with elevated expression of PD-L1, CTLA4

and PD-L2, which is consistent with their immune-hot phenotype

and suggested their potential vulnerability to Immune checkpoint

inhibitors (ICI) treatments (Figure 7E). Expressions of seven key

molecules were significantly correlated with immune checkpoint

molecules (Figure 7F), of these, PD-1 and PD-L2 were consistently

associated with seven key molecules. Correlations between

SLC18A2 and PD-L2, PCDH9 and PD-L2, SLC18A2 and CTLA4

were particularly significant (Figures 7G-I).
Validation of expression patterns of seven
CRGs included in the riskScore

We further evaluated the expressions of the seven cuproptosis-

related genes involved in our riskScore signature. Ten paired cancer

and paracancerous normal colon tissues were retrieved from COAD

patients in our hospital. Consistent with results obtained from the

TCGA-COAD cohort (Supplementary Figure 1A), six CRGs,

including DPP7, GPRASP1, UNC5C, RAB3B, PCDH9, SLC18A2,

were significantly downregulated, whereas CDR2L was upregulated

in cancer tissues in comparison with paracancerous normal tissues

(Figure 8). These results indicated that seven CRGs involved in our

newly developed riskScore signature, may have regulatory effects in

colon carcinogenesis, and may be explored as therapeutic targets

against COAD.
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FIGURE 7

Evaluation of TME immune infiltration and checkpoints between the high- and low-risk groups. (A) Heatmap visualization of the relative abundance
of 28 infiltrating immune cell types in the TCGA database data. Each small grid represents each immune cell, and the shade of color represents the
infiltration level of this immune cell. The larger infiltration level is, the darker color will be (red is upregulated, and blue is downregulated).
(B) Differences in 28 TME infiltration cells between high- and low-risk tissues (*P< 0.05; **P< 0.01; ***P< 0.001; **** P< 0.0001) (C) The difference
of overall immune and stromal activity between high- and low-risk tissues using ESTIMATE algorithm. (D) The different expression levels of immune
checkpoint molecules between high- and low-risk tissues (E) The correlation between each key molecule and each TME infiltration cell type. Red,
positive; Blue, negative. (F) The correlation between the seven key molecules and immune checkpoint molecules. Red, positive; Blue, negative.
(G-I) The correlations between SLC18A2 and CTLA4 (G), PCDH9 and PD-L2 (H), SLC18A2 and PD-L2 expression levels (I). ns, not significant.
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The seven CRGs involved in riskScore are
regulated by copper

We next examined whether expressions of these 7 CRGs are

altered in the setting of cuproptosis. Elesclomol is a copper

ionophore that could shuttle copper into CRC cells and induce its

overload, thus cuproptosis. We treated HCT116 and SW480 with

copper chloride (2mM) in combination with different

concentrations of elesclomol (10mM and 40mM) for 24 hours.

RT-PCR analysis showed that expressions of all 7 CRGs were

significantly altered (Figure 9). These results showed that these

CRGs may be involved in the process of cuproptosis in COAD.
Frontiers in Oncology 11123
Discussion

Cuproptosis is a newly discovered cell death form with

emerging potential as a silver bullet in treatment against cancer.

As apoptosis is the most common mechanism that mediates

resistance to chemotherapy, identification of new cell death types,

e.g., cuproptosis, will shed light on alternative treatment strategies

for conquering drug resistance in refractory cancer cases.

Copper is an indispensable mineral nutrient for all organisms,

homeostasis of which play critical roles in different physiological

and pathological processes. Though previous publications

established that copper overload was detrimental to cancer cells, a
FIGURE 8

Validation of the expression levels of the seven cuproptosis-related genes in human tissues. Expression analysis of DPP7, GPRASP1, UNC5C, RAB3B,
PCDH9, SLC18A2 and CDR2L were quantitated using qPCR in 10 pairs of cancer and paracancerous normal colon tissues.
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clear picture of the mechanisms underlying copper-induced toxicity

has not yet emerged. Take CRC as an example, though numerous

studies validated the anti-tumor effects of copper, distinct but

contradictory death forms were suggested for underlying

mechanisms, including ferroptosis (7, 17), autophagy (8),

paraptosis (18), and etc. Recently, Tsvetkov et al. established a

new death form named Cuproptosis, in which excess intracellular

copper directly binds to lipoylated components of the tricarboxylic

acid (TCA) Cycle. Ten genes, including FDX1, LIAS, LIPT1, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS and CDKN2A, were identified

playing pivotal roles in cuproptosis.

A growing number of studies showed that prognostic models

constructed based on RCD associated genes, including both coding

and non-coding genes, may contribute greatly to the evaluation of

patient prognosis, molecular characteristics and treatment modalities,

and could be further translated into clinical applications (15, 19).

Correspondingly, various prognostic models based on cuproptosis-
Frontiers in Oncology 12124
regulated genes have recently been constructed in diverse tumors,

including soft tissue sarcoma (20), melanoma (21), clear cell renal cell

carcinoma (22), liver cancer (23), and so on. However, no research

regarding the role that cuproptosis played in CRC has been reported.

As studies regarding the field of cuproptosis are still in its infancy,

those molecules constitute the complicated network are severely

understudied. Our study first systematically investigates CRGs by

calculating a coexpression correlation matrix in CRC, and established

a riskScore model consisting of seven key CRGs and two clinical

parameters (stage and age). Survival analysis suggested that patients

with higher riskScore showed longer OS than those with lower

riskScore. ROC analysis revealed that AUC values of cases in the

training cohort for 1-, 2-, and 3-year survival were 0.82, 0.80, 0.86

respectively, indicating the good predictive efficacy of this model.

Correlations with clinical features showed that higher riskScore was

significantly associated with advanced stages of T, N, M, and TNM

stages. Consistent results were further validated in two independent
FIGURE 9

Regulation of cuproptosis on seven CRGs involved in riskScore. qPCR showed CRGs expression in HCT116 and SW480 cells treated with indicated
drugs for 24 h (n=3). Drugs included CuCl2 (2mM), elesclomol (40 nM) alone or in combination. *P<0.05, **P<0.01, ***P<0.001. ns, not significant.
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GEO datasets. Regarding associations with treatment response, CR

rate was significantly enhanced in patients with low risk than those

with high risk. Through integrating those factors involved in riskScore,

we established a quantitative nomogram, which improved the

performance and facilitated clinical use of the riskScore.

Numerous studies revealed the essential roles of RCDs in innate

immunity and antitumor effects (15, 19); however, few studies

reported the potential role of CRGs in immunotherapy, with none

regarding CRC. Several lines of evidence support the potential

involvement of our riskScore model in CRC TME immunity. First,

cases in the TCGA cohort were scored and divided into high- and

low- risk group with the median riskScore as the cutoff, and Gene set

enrichment analysis (ssGSEA) showed that high-risk group presents

with an immune-cold phenotype. Second, Gene set enrichment

analysis (GSEA) reveals that certain immune-related pathways were

significantly associated with riskScore levels. Third, ESTIMATE

algorithm analysis showed that immune scores varied widely in

different riskScore groups. Therefore, we quantified the proportions

of tumor infiltrating immune cells in the low- and high-risk groups to

evaluate their associations. Emerging evidence supported the

potential role of B cells in cancer immune response (24, 25). In

soft-tissue sarcomas, B cell infiltration was an independent and the

strongest prognostic factor for good prognosis and correlated with

improved response to PD-1 blockade (26). Consistently, favorable

prognosis was also identified in CRC patients with enhanced tumor-

infiltrating B cells (27), which is the case in metastatic CRC, that

increased B cells infiltration was associated with lower risk of

recurrence and improved survival (28). These data established B

cells as a novel target for immunotherapy and could be a strong

weapon against cancer. In our study, patients with lower riskScore,

showed higher infiltration of B cells, suggesting that they play an anti-

tumor role in CRC development. Cytotoxic T cells which corresponds

to our finding of more activated CD8+ T cells in patients with lower

riskScore compared with those in the high-risk group. ICIs based

immunotherapy has provided a new direction for tumor treatment in

various cancer types (29, 30), including CRC (31). In the present

study, higher levels of ICIs, including PDL1, CTLA4, and PDL2, were

observed in patients with lower riskScore group, indicating their

potential good response to immune checkpoint blockade.

Recently, several papers have been published on the use of a

model based on cuproptosis-associated genes for predicting

prognosis (32–35). However, these papers suffer from several

limitations, including a small number of genes in their signature,

relatively low prognostic power, and illogical combination with

other cell death types like ferroptosis. Additionally, no experiments

on colorectal cancer cells have been conducted regarding CRGs.

Our work is unique in that we evaluate the association between our

predictive score and treatment response. Our results show excellent

discriminant ability for complete remission, providing valuable

information to clinicians for therapeutic selection.

There are several strengths in our study. First, our study is the

first to systematically investigate CRGs by calculating a coexpression

correlation matrix in CRC. A riskScore model was constructed with

good predictive efficacy for survival and TME immune infiltration.
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Second, clinical significance of our model was validated in two

independent GEO datasets, indicating stability and universality of

our model. Third, we established a nomogram involving all factors of

this model, which further improved clinical applicability of the

riskScore. Last but not least, we examined expressions of these

CRGs and validated that their levels were significantly altered in

cancer tissues in comparison with paracancerous normal tissues. In

vitro studies also showed that these CRGs may be altered in the

setting of copper overload. All these findings expand our knowledge

regarding the potential roles of seven key CRGs in the process of

cuproptosis. Certainly, there are some limitations of current study.

All analysis were conducted based on data extracted from

retrospective public databases with possible selection bias, large-

scale prospective studies are needed to confirm our results.

In conclusion, this study is the first that constructed a riskScore

based on CRGs that exhibited good predictive performance for OS

in CRC. Future studies are warranted to dissect the underlying

mechanisms by which these CRGs get involved in the process of

cuproptosis and explore their potential roles as therapeutic targets

against CRC. We hope that this riskScore can be validated and used

in future clinic to guide therapeutics selection.
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SUPPLEMENTARY FIGURE 1

The expression level and survival of 7 pivotal CRGs. (A) Seven out of ten

reported CRGs were differentially expressed between tumor and paired

normal cases (P<0.05). (B) Kaplan-Meier plot of seven genes in TCGA-
COAD (log-rank test).

SUPPLEMENTARY FIGURE 2

The expression level and survival of seven prognosis-related CRGs. (A) Seven
prognosis-related CRGs were differentially expressed between tumor and
paired normal cases (P<0.05). (B) Kaplan-Meier plot of seven prognosis-

related CRGs in TCGA-COAD (log-rank test).

SUPPLEMENTARY FIGURE 3

The relationship between the riskScore and TNM stage. (A) Differential levels
of the riskScore between various T, N, M stage in TCGA-COAD cohort. (B)
Differential levels of the riskScore between various T, N, M stage in

GSE39582 dataset.

SUPPLEMENTARY FIGURE 4

(A-G) Correlation between each key molecule expression and immune
infiltration in TCGA-COAD in the TIMER database.
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Introduction: Reliable biomarkers are in need to predict the prognosis of
hepatocellular carcinoma (HCC). Whilst recent evidence has established the critical
role of copper homeostasis in tumor growth and progression, no previous studies have
dealtwith the copper-relatedgenes (CRGs) signaturewithprognostic potential inHCC.

Methods: To develop and validate a CRGs prognostic signature for HCC, we
retrospectively included 353 and 142 patients as the development and validation
cohort, respectively. Copper-related Prognostic Signature (Copper-PSHC) was
developed using differentially expressed CRGs with prognostic value. The hazard
ratio (HR) and the area under the time-dependent receiver operating characteristic
curve (AUC) during 3-year follow-up were utilized to evaluate the performance.
Additionally, the Copper-PSHC was combined with age, sex, and cancer stage to
construct a Copper-clinical-related Prognostic Signature (Copper-CPSHC), by
multivariate Cox regression. We further explored the underlying mechanism of
Copper-PSHC by analyzing the somatic mutation, functional enrichment, and
tumor microenvironment. Potential drugs for the high-risk group were screened.

Results: TheCopper-PSHCwas constructedwith nineCRGs. Patients in the high-risk
group demonstrated a significantly reduced overall survival (OS) (adjusted HR, 2.65
[95% CI, 1.83–3.84] and 3.30, [95% CI, 1.27–8.60] in the development and validation
cohort, respectively). The Copper-PSHC achieved a 3-year AUC of 0.74 [95% CI,
0.67–0.82] and 0.71 [95% CI, 0.56–0.86] for OS in the development and validation
cohort, respectively. Copper-CPSHC yield a 3-year AUC of 0.73 [95% CI, 0.66–0.80]
and 0.72 [95% CI, 0.56–0.87] for OS in the development and validation cohort,
respectively. Higher tumor mutation burden, downregulated metabolic processes,
hypoxia status and infiltrated stromacellswere found for thehigh-risk group. Six small
molecular drugs were screened for the treatment of the high-risk group.

Conclusion: Copper-PSHC services as a promising tool to identify HCCwith poor
prognosis and to improve disease outcomes by providing potential clinical
decision support in treatment.
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Introduction

Liver cancer is the second leading cause of cancer-related death and
the seventh most common cancer worldwide (Sung et al., 2021).
Hepatocellular carcinoma (HCC) is unequivocally the most
dominant type of liver cancer, accounting for 90% of all cases
(Llovet et al., 2021). The disease burden of HCC has been rising,
with over 1 million new cases per year being estimated during the next
decade globally (Llovet et al., 2018). Despite recent advances in the
clinical management of HCC including both local and systemic
therapies, there remain large and growing unmet medical needs
(Villanueva, 2019). Due to occult onset and limited treatment
efficacy, HCC is generally subject to poor prognosis (Golabi et al.,
2017), with the 5-year survival rate as low as 18% in the United States
(Jemal et al., 2017). The conventional clinical decisions for HCC
treatment depend substantially on the tumor stage employing the
Barcelona Clinic Liver Cancer (BCLC) staging system (EASL
Clinical Practice Guidelines, 2018) and Tumor Node Metastasis
(TNM) staging system. However, these staging systems, which take
primarily tumor size andmetastasis into account, have failed to benefit a
considerable proportion of patients, owing to their insensitivity to the
molecular features in HCC (Yang et al., 2019). Thus, it is crucial to
formulate a more precise and Supplementary Model to identify the
segments of HCCpatients who are at high risk of unfavorable prognosis
necessitating additional treatment or targeted therapy (Solimando et al.,
2022), so as to improve the survival rate and terminal life quality of
patients with better clinical decision making. With the insight into the
biology of HCCupdated, several biomarkers and gene expression-based
signatures have been proposed (Mann et al., 2007; vanMalenstein et al.,
2011;Wu et al., 2020; Dai et al., 2021); yet, they were rarely incorporated
into clinical practice due to less-than-satisfactory performance and
insufficient validation (Liu et al., 2019), which warrants a high demand
for novel and robust prognostic models.

Elevated levels of copper have been previously observed in the
malignant neoplasms of breast, lung, and gastrointestinal tract (Jin et al.,
2011; Adeoti et al., 2015; Stepien et al., 2017), indicating an essential role
of copper in the genesis of carcinoma. Specifically, increased cellular
copper concentrations might contribute to cancer progression by
enhancing blood vessel formation which is critical for tumor
initiation, growth and metastasis (Blockhuys et al., 2017). With the
concept of “Cuproplasia” (i.e., copper-dependent cell growth and
proliferation) being proposed, the diverse mechanisms of copper
sensing involved in the cancer have been further unveiled (Ishida
et al., 2013). Meanwhile, cuproptosis, a newly proposed form of cell
death triggered by copper overloads (Tsvetkov et al., 2022), was found to
be closely linked to cancer such as clear cell renal cell carcinoma (Bian
et al., 2022). Notably, as the central regulatory organ of copper
homeostasis, the liver is particularly susceptible to copper-related
carcinogenesis (Kim et al., 2008). Patients with Wilson’s disease,
characterized by a progressively increased copper load in the liver,
are more likely to develop liver cancer than the general population
(Bandmann et al., 2015). This finding indicates that elevated
intracellular copper levels would impair the liver physiological
functions and increase the risk of developing HCC (McGlynn et al.,
2021). Additionally, serum copper concentrations were demonstrated

to be correlated with the BCLC stage (Tamai et al., 2020). The
alterations in copper transporter genes, such as ATP7A, ATP7B,
SLC31A1, and SLC31A2, were also found to be associated with poor
prognosis in HCC patients (Davis et al., 2020). Those findings
collectively highlight an important role of copper in the HCC,
suggesting that copper-related biomarkers might provide valuable
information for the treatment and prognosis of HCC.

Copper-related genes (CRGs) which regulate copper
metabolisms including copper homeostasis, cuproptosis and
copper binding (Ge et al., 2022) serve as a valid channel for us
to examine the copper-HCC link. Hence, in this study, we used
publicly available gene dataset to develop a prognostic stratification
model, Copper-related Prognostic Signature (Copper-PSHC), for
HCC patients based on CRGs. We then incorporated Copper-PSHC
with clinical factors to establish an integrative prognostic model for
pragmatic application. Beyond that, we also explored the potential
underlying mechanism of Copper-PSHC.

Materials and method

Study design and patients

To construct a CRG-based prognostic signature (i.e., Copper-
PSHC), we retrospectively analyzed the RNA sequencing data from
two public HCC cohorts. The overall study design was depicted in
Figure 1. HCC patients from The Cancer Genome Atlas (TCGA) liver
and intrahepatic carcinoma dataset were utilized as the development
cohort (Grossman et al., 2016) and those from Liver Cancer—RIKEN,
JP (LIRI-JP) dataset were adopted as an independent validation cohort
(The International Cancer GenomeConsortiumData Portal, 2019).We
excluded patients who had received systemic pharmaceutical therapy or
radiotherapy prior to sample collection since such treatment may
influence gene expression (Nakamura et al., 2013). Similarly, patients
with multiple samples were also excluded to minimize the bias from
tumor heterogeneity (Pe’er et al., 2021). Totally, we included
495 patients (351 men [70.9%], 304 aged ≥60 years [86.1%] and
355 at the cancer stage I/II [71.7%]), with 353 in the development
cohort and 142 in the independent validation cohort (Supplementary
Figure S1). Variables with less than 20% missing observations were
imputed using multiple imputations by Chained Equations (White
et al., 2011). Characteristics of participants following imputation were
displayed in Supplementary Table S1. Details of case identification and
imputation can be found in the Supplementary Method S1. The study
was exempted from ethical review due to its use of de-identified,
publicly available data.

Construction of the Copper-PSHC and
Copper-CPSHC

In accordance with the previous literature, ninety-six genes
relevant to copper homeostasis, cuproptosis, and copper binding
were screened (Supplementary Table S2) to construct the Copper-
related Prognostic Signature (Copper-PSHC). First, the
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differentially expressed genes (DEGs) between tumor and adjacent
non-tumor tissues with a false discovery rate (FDR) < 0.05 were
identified in the development cohort. Then, univariable Cox analysis
of overall survival (OS) was performed, with p < 0.05 chosen as the
significance threshold, to determine the DEGs having prognostic

value. Those prognostic DEGs measured in both cohorts were
included to build the Copper-PSHC. Thereafter, we used the
String Interaction Network to demonstrate the association
between these genes (Szklarczyk et al., 2021) and estimated the
correlation of gene expression. To minimize the risk of overfitting, a

FIGURE 1
Flowchart of this study.
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LASSO-Cox regression was applied to select the most contributing
prognostic genes and to construct Copper-PSHC (Engebretsen and
Bohlin, 2019). To calculate the risk score of each patient in the
development and validation cohort, the normalized expression level
of each gene and the corresponding regression coefficients generated
from the development cohort were used. Then, patients were
stratified into low-risk and high-risk groups based on the median
risk score determined by the development cohort. Details of gene
screening and Copper-PSHC construction can be found in
Supplementary Method S2.

We further applied multivariable Cox regression, which integrated
age, sex, cancer stage and Copper-PSHC risk score, to construct a
composite prognostic model, Copper-CPSHC, in the development
cohort. Age, sex, and cancer stage were treated as continuous
variables. We also presented a nomogram of Copper-CPSHC to
facilitate its use in clinical settings. The optimal cut-off value for
classifying the patients into low- or high-risk groups was determined
using a time-dependent ROC curve at 3 years of follow-up by Youden
index (Fluss et al., 2005) in the development cohort. Details of Copper-
CPSHC construction can be found in Supplementary Method S2.

Validation of the Copper-PSHC and Copper-
CPSHC

The primary endpoint was overall survival (OS), and the
secondary endpoint was disease-free survival (DFS) which was
not evaluated in the validation cohort owing to a lack of
information on tumor recurrence. Proportional hazard
assumption was not violated (Supplementary Table S3). The
prognosis value of Copper-PSHC was first assessed as binary
variables (high vs. low risk) in both cohorts by the univariable
Cox proportional hazard model and represented with the Kaplan-
Meier curve. Restricted mean survival time (RMST) was estimated
for the high- and low-risk groups to quantify the life expectancy at
3 years of follow-up, while the difference between the two risk
groups was determined by their disparity. Stratified analyses by
age, sex, cancer stage were conducted for both cohorts, and the
hazard ratio (HR) was merged using a fixed model. Then, we
combined Copper-PSHC with age, sex and cancer stage in
multivariable Cox proportional hazard regression to justify the
prognostic value of Copper-PSHC. Adjusted HR (controlling for
age, sex and cancer stage) was used to assess the performance of
Copper-PSHC as a binary variable.We additionally performed time-
dependent ROC analysis for OS and DFS to evaluate the predictive
power of the model over time. The performance of Copper-PSHC
continuous risk score was assessed by the area under the curve
(AUC) of the time-dependent ROC curve at 3 years of follow-up.
The concordance index (c-index) was also estimated to quantify the
prognostic accuracy of the Copper-PSHC. Details of Copper-PSHC
validation can be found in Supplementary Method S3.

Similarly, we performed univariable analysis for Copper-
CPSHC using Kaplan-Meier curve and compared the RMSTs of
two risk groups. The performance of Copper-CPSHC was also
evaluated by HR (in binary scenario) and AUC of time-
dependent ROC curve at 3 years of follow-up (in continuous
form). The c-index was calculated. Additionally, calibration
curves were depicted to characterize the discrimination of

Copper-CPSHC. Decision curve analysis (DCA) was applied to
measure the net benefits, which was compared with tumor stage
and the clinical model. Details of Copper-CPSHC validation can be
found in Supplementary Method S3.

Annotation of Copper-PSHC

Somatic mutation analysis
In an attempt to explore the somatic mutations in high- and low-

risk groups determined by Copper-PSHC in the development
cohort, gene mutation data (available at cBioprotal, in “.maf”
format) (Cerami et al., 2012) were analyzed. The 20 most
commonly mutated genes were listed for each risk group and
measured as frequency. Meanwhile, the total mutation frequency
and tumor mutation burden (TMB) were also estimated. The
waterfall plots were depicted to manifest the mutation landscape
for the high- and low-risk groups by the “maftool” R package
(Mayakonda et al., 2018).

Functional enrichment analysis
We performed the functional enrichment analysis in both the

development and validation cohorts. Biological function and
pathways regarding Copper-PSHC were analyzed based on Gene
Ontology (GO) (The Gene Ontology Consortium, 2019) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa et al., 2021) using the DEGs between high- and low-risk
groups. Further, Gene Set Enrichment Analysis (GSEA) was conducted
to determine the upregulated and downregulated cellular pathways in
high-risk group compared with low-risk group, with an FDR <0.01 as
the screening criteria (Kos et al., 2021). The function enrichment
analysis was conducted by the “clusterProfiler” R package (Yu et al.,
2012). We also estimated the HCC hypoxia score proposed by Hu et al.
(2020) (Supplementary Method S4.1) for two risk groups.

Tumor microenvironment analysis
The correlation between Copper-PSHC and the tumor

microenvironment (TME), which is comprised primarily of immune
cells and stromal cells, was investigated in both the development and
validation cohorts.We first applied ESTIMATE (Yoshihara et al., 2013)
algorithm to depict the presence of immune cells, stromal cells, and
tumor purity in two risk groups. Then, we adopted CIBERSORT
(Newman et al., 2015), ssGESA (Barbie et al., 2009) and xCell (Aran
et al., 2017) for the comparison of TME cells infiltration in two groups
(Supplementary Method S4.2). Moreover, we also analyzed the
expression of multiple cell markers related to immune checkpoint
blockade (ICB) and exhausted T-cells (Kos et al., 2021) between
high- and low-risk groups. These markers could represent the cell
progressively losing function due to long-term exposure to persistent
antigens or chronic inflammation (Wherry and Kurachi, 2015).

Exploration of potential therapy for HCC
We explored potential therapy for HCC patients in different risk

groups via the CLUE (Subramanian et al., 2017) based on the DEGs
between the high- and low-risk groups (Lamb et al., 2006). CLUE was
developed based on the concept of CMap (connectivity map), where
genes, drugs and disease states are connected. Hence, the potential drug
to reverse the current disease status for the high-risk group can be
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FIGURE 2
Performance of Copper-PSHC. (A) The distribution of Copper-PSHC risk score, survival time and the expression of each gene in Copper-PSCH in
the development and validation cohort. (B) Kaplan-Meier survival curves showing the difference of overall survival (OS) and disease-free survival (DFS)
between high- and low-risk groups in the development cohort. (C) Kaplan-Meier survival curves showing the difference of OS between high- and low-
risk groups in the validation cohort. (D) Time-dependent ROC curves of 1-year, 2-year and 3-year OS and DFS for Copper-PSHC in the development
cohort. (E) Time-dependent ROC curves and AUC in 1-year, 2-year and 3-year OS for Copper-PSHC in the validation cohort.
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identified by DEGs. See Supplementary Method S4.3 for detail. The
potential drugs were selected with the criteria of enrichment
score < −0.60 with p < 0.005 as the significance level (Yue et al., 2022).

Statistical analysis
All statistical analyses were carried out using R software (version

4.1.0). To compare the difference in proportions, Chi-square test
was implemented. Student’s t-test was used for the comparison of
continuous variables between two groups when the assumption of
normal distribution was met; otherwise, its non-parametric
counterpart Mann-Whitney U test was adopted. The correlation
between gene expressions was examined by Spearman’s correlation
coefficient. RMST was estimated by the “survRM2” package
(survRM2, 2022) and c-index was calculated by the “survminer”
package. A two-tailed p < 0.05 was deemed as statistically significant,
unless otherwise specified.

Results

Construction of the Copper-PSHC

A total of 59 CRGs selected from 96 CRGs in previous literature
were screened as DEGs between tumor and adjacent non-tumor
tissues. By assessing the association of 59 DEGs with OS in the
development cohort, 19DEGSwith prognostic value were determined
as candidate genes (All p < 0.05, Supplementary Figures S2A–C). The
correlation between these genes was shown in Supplementary Figure
S2D and Supplementary Table S4, where ALB and LOX were
identified as hub genes (Supplementary Figure S2E).

Thirteen DEGs out of the 19 candidate genes were measured in
both cohorts and were included for further analysis. Finally, nine
genes were selected by LASSO-Cox regression to construct the
Copper-PSHC index, i.e., CDKN2A, GPC1, LOX, MEMO1,
SLC25A3, STEAP1, STEAP4, UBE2D2, and XIAP (Supplementary
Figure S3), where high expression of those genes portended a poor
prognosis, with an exception for STEAP4. The associations of the
nine genes with OS were presented in Supplementary Figure S4.
According to the normalized expression level of each gene and the
corresponding Cox regression coefficients, the Copper-PSHC risk
score was generated for each individual as follows:

Copper-PSHC risk score = 0.069*expression level of CDKN2A+
0.228*expression level of GPC1 + 0.119*expression level of LOX +
0.089*expression level of MEMO1 + 0.007*expression level of
SLC25A3 + 0.150* expression level of STEAP1 −0.187*expression
level of STEAP4 + 0.147*expression level of UBE2D2 +
0.017*expression level of XIAP.

Taking the median risk score in the development cohort as the
optimal cut-off value, the patients in the development cohort and the
validation cohort were dichotomized into the low-risk (risk
score < −0.021) and high-risk (risk score ≥ −0.021) groups (Figure 2A).

Validation of the prognostic value of
Copper-PSHC

Copper-PSHC demonstrated outstanding prognostic value. In
terms of the primary endpoint, patients from the high-risk group

demonstrated a significantly reduced OS (Figure 2B; HR: 2.65 [95%
CI, 1.83–3.84] and 3.30 [95% CI, 1.27–8.60] in the development and
validation cohorts, respectively) compared with those from the low-
risk group. The 3-year RMSTs were significantly prolonged for the
low-risk group in both the development (RMST difference:
−7.4 [95% CI, −10.0 to −4.8] months) and validation cohorts
(RMST difference: −4.1 [95% CI, −6.8 to −1.4] months)
(Supplementary Table S5). After adjusting for age, sex and cancer
stage, Copper-PSHC remained as an independent prognostic factor
in the development cohort (HR: 2.33 [95% CI, 1.60–3.39]) as well as
the validation cohort (HR: 3.11 [95% CI, 1.15–8.42]), as shown in
Supplementary Table S6. Stratified analysis indicated that the
Copper-PSHC maintained a prognostic factor for all subgroups,
except for females (Supplementary Figure S5; Supplementary Table
S7). Concerning the secondary endpoint, patients in the high-risk
group had a significantly worse DFS than the low-risk group with
(Figure 2C; HR: 2.07 [95%CI, 1.53–2.79]) or without adjusting for
age, sex, vascular invasion and cancer stage (HR: 1.86 [95% CI,
1.36–2.52]) in the development cohort (Supplementary Table S8).

Time-dependent ROC curves for OS and DFS exhibited an
excellent discriminative power of Copper-PSHC at 3 years of
follow-up (Figure 2D). In development cohort, the AUC of OS
achieved 0.80 [95% CI, 0.73–0.87], 0.74 [95% CI, 0.66–0.81] and
0.74 [95% CI, 0.67–0.82] at 1-, 2- and 3-year time points, respectively
(Figure 3F). In validation cohort, the AUC value of OS remained
0.70 [95% CI, 0.30–1.10], 0.75 [95% CI, 0.60–0.89] and 0.71 [95% CI,
0.56–0.86] at 1-, 2- and 3-year time points, respectively (Figure 2D).
For DFS, AUC yielded 0.71 [95% CI, 0.65–0.77], 0.66 [95% CI,
0.58–0.73] and 0.66 [95% CI, 0.58–0.75] at 1-, 2- and 3-year of
follow-up, respectively (Figure 2E). Copper-PSHC also demonstrated
accurate prediction for OS in both cohorts (c-index: 0.64 [95% CI,
0.60–0.68] and 0.68 [95% CI, 0.58–0.78] for development and
validation cohorts, respectively; Supplementary Table S5).

A higher risk score was observed in patients with undesirable
biological behaviors or processes, including more advanced TMN
stage (III-IV, p < 0.001), margin residual (p = 0.021) and higher
tumor grade (G3/G4, p < 0.001), as shown in Supplementary Figures
S6A–I. Additionally, PCA analysis also divided patients into two
directions, which was consistent with the classification pattern
generated by Copper-PSHC (Supplementary Figures S6J, K).

Construction and validation of the Copper-
CPSHC

The Copper-CPSHC was derived after combining Copper-
PSHC risk score with age, sex and TNM stage, leveraging the
complementary value of molecular and clinical characteristics:

Copper-CPSHC risk score = [1.07292* Copper-PSHC risk
score] + [0.12480* age] + [0.07879* sex] + [0.29818* stage].

Then, patients were classified into the high- (≥0.677) and low-
risk (<0.677) groups according to the optimal cut-off determined by
Youden index of the time-dependent ROC curve at 3-year follow-up
in the development cohort.

The significant prolonged OS was observed among the low-risk
group in the development cohort (HR: 4.27 [95% CI, 3.00–6.08]) and
validation cohort (HR: 2.63 [95%CI, 1.09–6.32]) (Supplementary
Figures S7A, C), with the difference of 3-year RMST of −11.8 (95%
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CI, −14.9 to −8.7) months and −4.0 (95% CI, −7.5 to −0.5) months for
the development and validation cohorts, respectively (Supplementary
Table S9). In development cohort, the AUC of the time-dependent
ROC for OS reached 0.78 [95%CI, 0.72–0.84], 0.70 [95%CI, 0.63–0.78]
and 0.73 [95% CI, 0.66–0.80] at 1-, 2- and 3-year time points,
respectively (Supplementary Figure S7B). The AUC for OS in
validation cohort yielded 0.72 [95% CI, 0.31–1.13], 0.75 [95% CI,
0.62–0.89] and 0.72 [95% CI, 0.56–0.87] at 1-, 2- and 3-year of
follow-up, respectively (Supplementary Figure S7D). The c-index
also demonstrated the validity of Copper-CPSHC on prognostic
prediction in the development cohort (0.68 [95% CI, 0.63–0.72]) as
well as the validation cohort (0.65 [95% CI, 0.53–0.77]), as shown in
Supplementary Table S9.

We then constructed a nomogram to provide a handy quantitative
instrument for clinical use (Supplementary Figure S7E). The
calibration curves for 1-year and 3-year follow-up confirmed that
the nomogram’s predicted probabilities were close to the observed
probabilities (Supplementary Figures S7F, G), indicating the
consistency between the prediction and the actual observation in
both development and validation cohorts. Meanwhile, DCA
demonstrated that the nomogram prediction possessed more area
than the TNM stage and a clinical model including age, sex and cancer
stage (Supplementary Figures S7H–K). Similar results were obtained
for DFS in the development cohort (Supplementary Figure S8).

Annotation of Copper-PSHC

Somatic mutation analysis
In view of the causal role of somaticmutation in cancer, we depicted

the somatic mutation spectrum of the high- and low-risk groups

determined by Copper-PSHC in the development cohort. In general,
high-risk group was characterized by a higher mutation frequency
(high-vs. low-risk: 88.6% vs. 84.3%, p < 0.01). The TMB was
significantly higher for patients in the high-risk group (high-vs. low-
risk:1.98 vs. 1.54, p < 0.05, Supplementary Figure S9). We exhibited the
20 most frequently mutated genes in two risk groups, respectively
(Figure 3). The mutation related to undesirable biological behavior was
enriched in high-risk group when compared to low-risk group, such as
TP53 (47% vs. 15%; OR: 5.15 [95% CI, 4.80–5.53]), a well-known
carcinogenic gene of P53 pathway, and DOCK2 (10% vs. 2%; OR:
4.76 [95% CI, 3.45–6.56]), an intercellular regulator of the Rho family
GTPase, RAC1 (Sanui et al., 2003). The overview of mutations was also
presented in Supplementary Figure S10 for both cohorts, revealing that
missense mutation, SNP and C>T mutation were more common.

Functional enrichment analysis

The functional enrichment analysis highlighted the role of
metabolic and biosynthesis pathways in the molecular
mechanism regarding Copper-PSHC. GO enrichment revealed
that the DEGs between high- and low-risk groups were related to
metabolic processes, such as those regarding alpha-amino acid,
hormone, and fatty acid (Figures 4A, B). Likewise, KEGG
analysis demonstrated an enrichment of carbon metabolism and
biosynthesis of amino acids in both cohorts (Figures 4C, D).
Generally, most gene pathways were downregulated in the high-
risk group when compared to the low-risk group, except for cell cycle
and DNA replication pathways (Figure 4E). Considering that several
pathways related to oxidation (e.g., pyruvate metabolism) were
downregulated in the high-risk group, we additionally estimated the

FIGURE 3
Somatic genes mutation analysis in the development cohort for high-risk group (A) and (B) low-risk group.
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hypoxia score in two risk groups. The high-risk group was associated
with a significantly increased hypoxia score than the low-risk group
(1.39 vs. 1.08, p < 0.001; Supplementary Figure S11), suggesting a low
oxygen status in HCC patients from the high-risk group.

Tumor microenvironment analysis

The association between Copper-PSHC and tumor
microenvironment was shown in Figure 5 and Supplementary

FIGURE 4
Functional enrichment analysis. The significant GO enrichment in the (A) development and (B) validation cohorts. The significant KEGG pathways in
the (C) development and (D) validation cohorts. (E) The significantly upregulated and downregulated KEGG pathways in both cohorts according to GSEA.
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Figures S12, S13. Overall, a significantly negative correlation was
demonstrated between stroma score and Copper-PSHC risk score in
both development and validation cohorts, with Spearman

correlation coefficient estimated as −0.12 (p = 0.02) and −0.56
(p < 0.001), respectively. That echoed the observation of high
stroma cell infiltration in the low-risk group (both p < 0.001).

FIGURE 5
Tumor microenvironment analysis in development cohort. (A) The immune, stroma and Estimate score according to ESTIMATE algorithm. The
differences of TME cells infiltration between high- and low-risk groups according to (B)Cibersort, (C) xCELL and (D) ssGSEA. (E) The significant difference
of the expression of the cell marker related to ICB between groups. (where *p < 0.05, **p < 0.01, ***p < 0.001).
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The enrichment of stroma cells in low-risk group is primarily driven
by (pre-) adipocytes, pericytes, lymphatic endothelial cells, and
skeletal muscle cells (Figure 5C; Supplementary Figure S12C).

The immune score was neither significantly correlated with
Copper-PSHC risk score nor differed between the two risk
groups. However, between-group differences were observed for
certain immune cell infiltration, despite disagreement using
different algorithms. For example, CD4+T cells memory resting
and conventional dendritic cell (cDC) were highly infiltrated among
the low-risk group, while CD4+T cells memory activated, natural
killer T cell (NKT), type 2T helper cell (Th2) were enriched among
the high-risk group (All p < 0.05; Figures 5B–D; Supplementary
Figures S12B–D).

Additionally, the expression of markers related to ICB and T cell
exhaustion was significantly elevated for the high-risk group in the
development cohort, including CD274, PDCD1, LAG3, CD44,
CTLA4, CD27, TIGHT and HAVCR2 (All p < 0.05; Figure 5E;
Supplementary Figure S13A, B). This result hinted that
immunotherapy might benefit the high-risk group.

Identification of potential drugs

Potential treatments were explored via CLUE based on the DEGs
between high- and low-risk groups. Under our screening criteria,
flavokavain-b, simeprevir, BRD-K88741031, RAF-265 butein and
ASC-J9 were discovered as potential drugs for the high-risk group
(Table 1). EGFR inhibitor was the primarymode of action for the drugs
above. Also, carcinogens, HCV inhibitors, tyrosine kinase inhibitors,
RAF inhibitors, Src inhibitors and androgen receptor agonists were the
potential targets for treating the high-risk group as well.

Discussion

In this study, we developed and validated a 9-CRG prognostic
signature, Copper-PSHC, for HCC patients. We also combined clinical
features including age, sex and cancer stage with Copper-PSHC to build
a composite prediction model, Copper-CPSHC, for clinical prognostic
stratification. Both Copper-PSHC and Copper-CPSHC were
demonstrated as reliable tools with excellent prognostic value in the
development and validation cohorts. Beyond that, extensive work has
been carried out for the annotation of Copper-PSHC.

An increasing number of prognostic models for HCC have been
proposed. For example, Liang et al. (2020) developed a ferroptosis-
related gene signature for OS prediction. Tang et al. (2022)
constructed an immunological phenotype-related gene signature
for predicting prognosis. Xu et al. (2021) fitted a ferroptosis-
related nine-lncRNA signature for predicting prognosis and
immune response. Compared to those models, Copper-PSHC
had an exceptional advantage in predicting OS and DFS in both
the development and validation cohorts. We also provided a
nomogram combining clinical variables and risk score for ready
clinical application. Additional advantage of our study includes
examining the potential of immunotherapy in the management
of HCC. On balance, we developed a reliable copper-related
model to predict prognosis which is of high significance in
clinical decision-making.

Our study confirmed previous findings on the association
between 9 genes in Copper-PSHC with cancer. It is collectively
speculated that these genes could play crucial roles in tumor
development and/or progression, and therefore own considerable
prognostic value for HCC. Previous research on network-based
prioritization of HCC markers by module detection and ranking
has demonstrated the diagnostic value of CDKN2A (Shang and
Liu, 2021). Besides, Luo et al. (2021) found that CDKN2A was
highly expressed in HCC and associated with a decreased OS via
facilitating the proliferation of cancer cells and inhibiting
apoptosis. LOX was the mediator of remodeling of the
extracellular matrix cross-linking, thereby contributing to the
angiogenesis (Sun et al., 2022). XIAP could induce the resistance
to apoptosis, providing survival advantage to the metastatic
tumor cells (Shi et al., 2008). As a cell surface heparan sulfate
proteoglycan, GPC1 was found to exhibit a mitogenic response to
multiple heparin-binding growth factors and lead to progression
in breast cancer (Matsuda et al., 2001). GPC1 was also used as a
potent predictive biomarker for the general prognosis of HCC
(Wang JY. et al., 2021). Analogously, SLC25 protein family,
MEMO and STEAP were identified as potential biomarkers for
prognosis (Gomes et al., 2012; MacDonald et al., 2014; Rochette
et al., 2020). However, much uncertainty still exists about the
opposite roles of STEAP1 and STEAP4 in HCC.

To our knowledge, Copper-PSHC was the first prognostic
prediction model related to copper binding, copper homeostasis
and cuproptosis. Recently, the association between cuproptosis and
HCC has been elucidated. As a mineral nutrient, the significance of

TABLE 1 Potential small molecules drug for high-risk HCC treatment.

CMap name MOA Target Enrichmenta

Flavokavain-b Carcinogen IKBKB −0.6015

Simeprevir HCV inhibitor CYP2C19, CYP2C8, SLCO1B3, CYP1A2, CYP3A4 −0.6017

BRD-K88741031 Tyrosine kinase inhibitor, EGFR inhibitor EGFR −0.6018

RAF-265 RAF inhibitor, VEGFR inhibitor BRAF, KDR, KIT, PDGFRB, RAF1 −0.6116

Butein EGFR inhibitor, Src inhibitor ACE, CXCL8, IL6, SIRT1, SRD5A1, SRD5A2, TNF −0.6118

ASC-J9 Androgen receptor agonist AR −0.6487

Abbreviations: HCC, hepatocellular carcinoma; CMap, Connectivity map.
aThe enrichment score represents the similarity between drugs and current biological process or disease status. A negative score indicates that the drug could reverse the disease status and have

potential therapeutic value.
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copper for various physiological processes has been well recognized
across the animal kingdom to human (Ge et al., 2022). Copper
functions as a crucial cofactor for enzymes that mediate a range of
cellular activities including mitochondrial respiration and
antioxidant defense (Luo et al., 2021); therefore, copper
homeostasis was critical for cellular growth and maintenance. Of
note, increasing evidence demonstrated that copper and the
disruption of copper homeostasis were involved in oncogenesis
(Brady et al., 2014; Shanbhag et al., 2019; Llovet et al., 2021).
This supports the argument that copper may activate several
proangiogenic factors such as vascular endothelial growth factor,
fibroblast growth factor 2, tumor necrosis factor and interleukin-1
(Gérard et al., 2010; Das et al., 2022; Ge et al., 2022). Meanwhile,
emerging cancer therapeutics targeting copper and copper-
dependent signaling pathways exhibit significant promise,
including copper chelators to inhibit cuproplasia and copper
supplementation to promote cuproptosis. Taken together, it is of
great importance to assess the copper status and characterize the
landscape of copper in HCC patients. Regarding this, our study
might provide valuable insights for understanding HCC and the
management of HCC patients through the lens of copper
homeostasis.

Our findings of correlation between high expression of
CDKN2A and poor prognosis in HCC further evidenced the
antitumor effect of cuproptosis, a distinct form of cell death
dependent on intracellular copper accumulation, where
FDX1 and protein lipoylation serve as the hub regulators and
CDKN2A serve as a negative regulator (Tsvetkov et al., 2022).
Besides, we found that pyruvate metabolism related to the TCA
cycle, which is a necessary condition for copper-induced cell
death, was downregulated in the high-risk group. This finding
again echoes the currently available evidence that cuproptosis
may contribute to the inhibition of tumor growth and recurrence
and thus a favorable prognosis by killing cancer cells modulated
by the tumor microenvironment. It was reported that copper-
dependent cell death was attenuated under the hypoxic
condition, leading to an increased risk of tumor growth and
progression. In support of this, we analyzed the hypoxic level in
high- and low-risk groups and found that tumor cells in high-risk
group were prone to be in hypoxic environments. Our results
reveal that evaluation of the hypoxia level may help guide HCC
treatment, especially the copper-targeted therapeutic strategies.
Patients at high-risk are warranted for more intensive or
personalized treatment strategies. For example, regorafenib
and cabozantinib should be additionally used as systemic
therapy for those high-risk patients (Solimando et al., 2022).
Also, more targeted clinical studies need to be conducted in the
high-risk populations we identified. Elesclomol, in combination
with paclitaxel for melanoma, was a good example where
statistically significant improvement was observed for patients
with normal baseline levels of lactate dehydrogenase (LDX)
(O’Day et al., 2013).

Additionally, we found that the high-risk group held a higher
mutation frequency and TMB. TP53, as the most common mutation
in the high-risk group, has been reported to be associated with
undesirable biological behaviors including high AFP, advanced
tumor stage, vascular invasion, poor tumor differentiation, and
poor Child-Pugh class (Long et al., 2019). Other undesirable

mutations were also enriched in the high-risk group, such as
DOCK2 which regulates Rac activation and cytoskeletal
reorganization (survRM2, 2022), accounting partly for poor
prognosis in the high-risk group as well.

Functional enrichment analysis suggested that the metabolic
and biosynthetic processes were instrumental in Copper-PSHC.
The downregulated pathways related to amino acid and lipid
metabolism implied that the high-risk group featured low
metabolic activity. According to the metabolism-associated
molecular classification of HCC, high metabolic activity was
related to α-fetoprotein (AFP) expression and good prognosis
(Yang et al., 2020). Another model proposed by Désert et al.
classified HCC as “ECM-type,” “STEM-type,” “PV-type” and
“PP-type.” Among them, “PP-type” characterized by high lipid
and bile salt metabolism has displayed low proliferation and
favorable prognosis (Ng et al., 2017). Given that liver is the
primary handler of amino acid and lipid metabolism, we
supposed that maintenance of high metabolic activity in the
low-risk group conferred high chances of preserving normal
liver phenotype, which may lead to less aggressive clinical and
biological behaviors (Phillips, 2022).

Importantly, we explored the association between Copper-
PSHC and tumor microenvironment. Overall, more infiltration
of stromal cells was found in the low-risk group, suggesting their
low degree of tumor purity and well differentiation. Although no
significant difference in overall immune cell infiltration was
observed between high- and low-risk groups, great disparities
exist for certain types of immune cells. Patients in the high-risk
group were prone to possess more activated cells and T helper
cells. Generally, the infiltration of immune cells including T cells,
macrophages, and B cells would conduct to the desirable
prognosis (Galluzzi et al., 2020), especially in colorectal cancer
(Picard et al., 2020) and breast cancer (Wang S. et al., 2021). Such
inconsistency led us to further explore the expression of receptors
in immune cells. As a result, high expression of immune
regulators including CTLA-4 and PD-L1 was found in the
high-risk group, which suggested that the infiltrated T cells in
the high-risk group were mainly exhausted T cells. T cell
exhaustion characterized by a loss of effector functions and
memory T cell properties would hamper optimal control of
tumors (Blank et al., 2019) and thereby account for poor
prognosis of the high-risk group. Notably, the enrichment of
cell markers related to ICB lent credence to the availability of
immunotherapy for the high-risk subpopulation. This
implication was also supported by the finding that higher
TMB was shown in the high-risk group. Tumors with high
TMB were more likely to respond to ICB agents (Chan et al.,
2019) because greater tumor load could enhance the likelihood of
being recognized by T cells (Litchfield et al., 2021).

Apart from the advantages and implications of this study as
discussed above, several limitations also require due consideration.
Firstly, restricted to the retrospective study, we may introduce the
selection bias such as the exclusion of some patients who lacked
data or were ineligible for sequencing, particularly those patients
who are unable to undertake surgery treatment due to
comorbidities or tumor metastasis. Secondly, the sample size
was not considered large enough owing to the limited number
of HCC patients in advanced stage. Further optimization of the
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Copper-PSHC index taking the stages of patient population into
account is warranted for future studies. Thirdly, due to the
unavailability of other clinical data including treatment history,
comorbidities and laboratory values, and radiomic data, we were
unable to incorporate more variables into our composite model.
Notwithstanding, the index Copper-CPSHC developed in this
study already owns satisfactory prognostic prediction value.
Fourthly, with an aim of ensuring the robustness of results in
tumor microenvironmental analysis, most immune cells were
analyzed by two or more algorithms. However, certain cells,
stromal cells for instance, were exclusively analyzed by xCell.
Fifthly, the screening of potential drugs in this study is
explorative and more efforts are warranted to further validate
these finding in future studies. Lastly, the validation was performed
using the public cohorts and we only provided a brief discussion of
the potential mechanism of the genes in the model. More
prospective studies and further exploration of the biological
mechanism in the context of copper and HCC was in warranted.

In conclusion, this study constructed a copper-related signature,
Copper-PSHC, based on nine CRGs, which has been subsequently
demonstrated to be a reliable biomarker for prognostic prediction.We
then move forward to examine the hypothesis of metabolic process
and tumor immunity being the mechanisms of this signature,
illuminating the potential of certain small molecular drugs and
immunotherapy for better management of HCC patients. It is
envisaged that further investigation using different research tools
will help to elucidate the underlying mechanism and verify its
clinical utility in the real world.
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Background: Cuproptosis plays a crucial role in cancer, and different subtypes of

cuproptosis have different immune profiles in prostate adenocarcinoma (PRAD).

This study aimed to investigate immune genes associated with cuproptosis and

develop a risk model to predict prognostic characteristics and chemotherapy/

immunotherapy responses of patients with PRAD.

Methods: The CIBERSORT algorithm was used to evaluate the immune and

stromal scores of patients with PRAD in The Cancer Genome Atlas (TCGA)

cohort. Validation of differentially expressed genes DLAT and DLD in benign and

malignant tissues by immunohistochemistry, and the immune-related genes of

DLAT and DLD were further screened. Univariable Cox regression were

performed to select key genes. Least absolute shrinkage and selection

operator (LASSO)–Cox regression analyse was used to develop a risk model

based on the selected genes. The model was validated in the TCGA, Memorial

Sloan-Kettering Cancer Center (MSKCC) and Gene Expression Omnibus (GEO)

datasets, as well as in this study unit cohort. The genes were examined via

functional enrichment analysis, and the tumor immune features, tumor mutation

features and copy number variations (CNVs) of patients with different risk scores

were analysed. The response of patients to multiple chemotherapeutic/targeted

drugs was assessed using the pRRophetic algorithm, and immunotherapy was

inferred by the Tumor Immune Dysfunction and Exclusion (TIDE) and

immunophenoscore (IPS).

Results: Cuproptosis-related immune risk scores (CRIRSs) were developed

based on PRLR, DES and LECT2. High CRIRSs indicated poor overall survival

(OS), disease-free survival (DFS) in the TCGA-PRAD, MSKCC and GEO datasets

and higher T stage and Gleason scores in TCGA-PRAD. Similarly, in the sample

collected by the study unit, patients with high CRIRS had higher T-stage and

Gleason scores. Additionally, higher CRIRSs were negatively correlated with the

abundance of activated B cells, activated CD8+ T cells and other stromal or

immune cells. The expression of some immune checkpoints was negatively

correlated with CRIRSs. Tumor mutational burden (TMB), mutant-allele tumor
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heterogeneity (MATH) and copy number variation (CNV) scores were all higher in

the high-CRIRS group. Multiple chemotherapeutic/targeted drugs and

immunotherapy had better responsiveness in the low-CRIRS group.

Conclusion: Overall, lower CRIRS indicated better response to treatment

strategies and better prognostic outcomes.
KEYWORDS

cuproptosis, PrlR, des, LECT2, prostate cancer
1 Introduction

Prostate adenocarcinoma (PRAD) is a major disease affecting

the health of men worldwide and is the second most common

malignancy among men (1). In 2020, more than 1.4 million new

cases of PRAD were reported worldwide (2). Recent changes in

acquired risk factors have led to an increase in the incidence of

PRAD in Asian countries (3). Radical prostatectomy (RP) or

radiotherapy is the standard treatment for most patients with

local PRAD (4). However, biochemical relapse occurs in 30%–

50% of patients after treatment (5). Approximately 20% of

intermediate-risk patients experience biochemical failure within

18 months of initial local treatment (6, 7). The oncogenic

mechanisms underlying PRAD remain unclear, and targeted

therapy, especially for high-risk PRAD and castration-resistant

prostate cancer (CRPC), remains challenging (8, 9). Therefore, an

in-depth understanding of the multiple characteristics of PRAD and

the identification of effective prognostic indicators can help to

develop more effective treatment strategies for PRAD.

Copper is an indispensable trace element involved in biological

processes in eukaryotes, including iron transport, oxygen free
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radical detoxification and mitochondrial respiration (10). The

intracellular copper concentration is in a dynamic gradient-based

equilibrium and various cellular processes such as lipolysis,

proliferation and autophagy are regulated by this dynamic signal

(11–15). Owing to the dysregulation of copper transmembrane

transport, intracellular copper accumulation leads to cytotoxicity

and cell death (16). Excess copper increases intracellular reactive

oxygen species (ROS) levels, induces endoplasmic reticulum stress,

enhances damage-related molecular patterns and promotes

macrophage phagocytosis (17). Peter et al. identified a novel

mechanism by which copper induces cell death: copper directly

binds to the lipoacylated components of the tricarboxylic acid

(TCA) cycle, leading to toxic protein stress and, eventually, cell

death (18). They also identified seven genes positively associated

with cupviaroptosis, including FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1 and PDHB. Cuproptosis is a new cell death mechanism

that is different from necrosis (19), apoptosis (20), necroptosis (21),

autophagy (22), pyroptosis (23), oxeiptosis (24), parthanatos (25)

and ferroptosis (26). Copper importers (SCL31A1) and exporters

(ATP7A and ATP7B) are key genes that regulate and maintain

intracellular copper concentration (18). Mutations in the ATP7A

and ATP7B genes can lead to deficiency and accumulation of

copper, leading to Menkes and Wilson diseases, respectively.

Supplementation or removal of copper represents a novel

therapeutic strategy for neurodegenerative diseases (27).

Copper may also play a role in the pathogenesis and progression

of cancer (28, 29). Elevated serum copper levels are associated with

tumor stage and disease progression in patients with colorectal, lung

and breast cancers (30–32). Daily administration of copper sulfate

(CuSO4) has been shown to increase tumor growth in a rat model of

chemically induced mammary tumors (33). The cuproenzyme LOX

is involved in the invasion and metastasis of tumor cells (34). In a

mouse model of breast cancer, knockdown of ATP7A reduced LOX

activity, decreased the recruitment of bone marrow cells to the lung,

and inhibited tumor growth and metastasis (35). Further, it has been

reported that patients with high expression of FDX1, SDHB, DLAT

and DLST in colorectal cancer tissues have a better prognosis (36). In

hepatocellular carcinoma, characteristics based on cuproptosis

patterns are important for predicting the tumor microenvironment

(TME) and immunotherapy responses (37). Cuproptosis features can

also help to predict the prognosis and immune microenvironment of

patients with breast cancer (38). Copper chelators can be used as
frontiersin.org
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antiangiogenic agents to alter the TME (39) and enhance antitumor

immunity (40) in various cancers (39). However, the role of

cuproptosis in prostate adenocarcinoma (PRAD) remains unclear.

An in-depth study on the impact of cuproptosis on the immune

landscape of PRAD may help to elucidate the role of cuproptosis in

PRAD and identify novel therapeutic targets.

In this study, we clustered and analysed alterations in immune-

related genes associated with two subtypes of cuproptosis with different

prognostic features. We developed a new metric named ‘cuproptosis-

related immune risk score’ (CRIRS) based on cuproptosis- and

immune-related genes to assess the immune characteristics and

prognosis of patients with PRAD. Additionally, immune-related

components, metabolic characteristics, and gene mutation profiles

were analysed in different risk groups, and the results showed

significant differences in these aspects between the high- and low-

risk groups. The predictive staging model showed great potential to

guide the classification of patients with PRAD and predict the

chemotherapy and immunotherapy responses of risk-stratified

patients. Overall, the model exhibited potential clinical value.
2 Materials and methods

2.1 Data collection

Survival data, clinical information and mRNA expression data,

CNV and somatic mutation data for PRAD in the TCGA dataset

downloaded from the UCSC-Xena database (https : / /

xenabrowser.net/datapages/). The Memorial Sloan Ketterring

Cancer Center (MSKCC)-PRAD database (Cancer Cell 2010,

https://www.cbioportal.org/) and Gene Expression Omnibus (GEO)

database (GSE70770, https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE70770) were used as validation sets (Supplementary

Table S1). Samples without important clinical or survival data were

excluded from further analysis. Immune-related genes were extracted

from ImmPort Shared Data (http://www.immport.org). Raw reads

were post-processed and normalized using the ‘DESeq2’ (version

1.38.3) package in the R (version 4.2.0) software.
2.2 Estimation of stromal and immune cells

The CIBERSORT algorithm was used to assess the proportion

of immune cell subpopulations in each PRAD sample (41). The

single-sample gene set enrichment analysis (ssGSEA) algorithm was

used to assess the levels of human leukocyte antigens (HLAs),

immune cell infiltration and immune cell function (42). In addition,

the proportion of 64 cell types in the TME of patients in TCGA-

PRAD cohort was assessed using the xCell algorithm, and elements

of TME, including immune, stromal and microenvironment scores,

were estimated (43).
2.3 Consensus clustering

To examine the effects of cuproptosis on the immune function

of patients with PRAD, the correlation between the expression
Frontiers in Immunology 03144
of cuproptosis-related positive regulators and CIBERSORT

results was examined via Spearman analysis. The R package

‘ConsensusClusterPlus’ was used for consensus clustering of

tumor samples based on the expression of DLAT and DLD and

for visualisation of the results (44). The Kaplan–Meier method and

log-rank test were used to compare OS between two clusters.
2.4 Analysis and validation of scRNA data

IMMUcan Database (https://immucanscdb.vital-it.ch/) is a

comprehensive tumor microenvironment database platform that

mines the single cell characteristics of tumor immune

microenvironment based on a large collection and integrated

analysis of single cell data (45). To validate the expression of

DLAT and DLD in prostate cancer immune cells, the prostate

cancer single-cell sequencing dataset GSE141445 was analyzed

using the UMAP algorithm in the IMMUcan Database.
2.5 Differentially expressed genes and
cuproptosis-related immune scores

Differentially expressed genes (DEGs) in cancerous and

paraneoplastic tissues were identified using the ‘DESeq2’ package

in R in TCGA-PRAD cohort, with the threshold set as log2

foldchange (FC) values of ≥1 and FDR < 0.05. Pearson

correlation analysis was performed to select DEGs associated with

DLAT and DLD (cor > 0.3, P < 0.05), named cuproptosis-related

DEGs (CR-DEGs). On the other hand, crossover between immune-

related genes and DEGs was performed to obtain immune-related

DEGs (IR-DEGs); the latter immune-related genes (n = 2,483) were

extracted from the Immunology Database and Analysis Portal

(ImmPort, https://www.immport.org/) database. The cuproptosis-

and immune-related genes are the intersecting genes of CR-DEGs

and IR-DEGs (CR-IRGs). The screening process of CR-IRGs is

shown in Figure 1. The potential function of these CR-DEGs and

CR-IRGs was then determined by Gene Ontology (GO) annotation

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment pathway analysis using the “clusterProfiler” package

in R. Univariable Cox regression analysis was performed to screen

for CR-IRGs related to the prognosis of PRAD (P < 0.05).

Subsequently, a CR-IRGs signature was constructed via least

absolute shrinkage and selection operator (LASSO)–Cox

regression analysis. The risk score was calculated as follows: Risk

score = oCoefi ∗ Expi, where Coefi represents the coefficients and

Expi represents the expression levels of the three key genes.
2.6 Functional enrichment analysis

The ‘GSVA’ (version 1.30.0) package was used to identify the

different pathways associated with cuproptosis-related genes and

analyse the relationship between CRIRSs and HALLMARK

pathways. Heatmaps were drawn using the ‘heatmap’ package in

R to visualise the results. GSEA was performed for CRIRS-based
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classification of patients with PRAD. Line plots were drawn using

the ‘ggplot2’ package in R.
2.7 Survival analysis

FPKM method was used to normalize the raw data. Based on

the best survival cut-off grouping, we classified patients into high-

or low-CRIRS groups. For Kaplan–Meier curves, P-values and

hazard ratios (HRs) with 95% confidence intervals (CIs) were

calculated via the log-rank test. HRs of > 1 indicated risk factors,

whereas HRs of < 1 indicated protective factors. The R packages

‘survival’, ‘survminer’ and ‘timeROC’ were used for survival

analysis. P-values of < 0.05 were considered statistically

significant. More importantly, 1-year, 3-year and 5-year

prognostic values for OS and DFS, survival-dependent subject

operating characteristic (ROC) curves and calibration curves were

used to evaluate the CRIRS model in the TCGA training set and

robustly validated in the MSKCC and GSE70770 cohorts.
2.8 Correlations between CRIRS model and
clinical characteristics

A subgroup analysis of the three signature genes in the

prognostic profile associated with cuproptosis was performed

according to the clinical characteristics of the patients. Next,

univariable and multivariable Cox regression analyses were

performed to determine the prognostic role of the CRIRS model.

The ‘forestplot’ R package was used to draw a forest plot to

demonstrate P-values, HRs and 95% CIs for each variable. Then,
Frontiers in Immunology 04145
the association between CRIRSs and each clinical parameter was

further analyzed and presented by boxplots and pieTable.
2.9 Quantitative real-time PCR

Total RNA was extracted from paraffin-embedded tissues using

a reliable RNA-isolation kit from Thermo Fisher Scientific, USA.

The mRNA levels of specific genes, PRLR, DES and LECT2, were

measured by qRT-PCR using SYBR green Master MIX from

Applied Biosystems, which fluoresces when it binds to double-

stranded DNA during the PCR reaction. GAPDH was used as an

endogenous control. The primer sequences are presented below:

GAPDH: 5’- TGGCCATTATAGGACCGAGACTT -3’ (forward)

and 5’- CACCCTGTTGCTGTAGCCAAA -3’ (reverse); PRLR: 5’-

TCTCCACCTACCCTGATTGAC -3’ (forward) and 5’- CGAACC

TGGACAAGGTATTTCTG -3’ (reverse); DES: 5’- TCGGCTCTA

AGGGCTCCTC -3’ (forward) and 5’- CGTGGTCAGAAACTCCT

GGTT -3’ (reverse); LECT2: 5’- TGGGCCAGGAGAAACCTTATC

-3’ (forward) and 5’- CAAGGGCAATAGAGTTCCAAGTT -3’

(reverse).
2.10 Immunohistochemistry

Immunohistochemistry (IHC) was utilized to evaluate the

protein expression of DLD and DLAT in paraffin sections

obtained from patients diagnosed with prostate cancer and

benign prostatic hyperplasia. Mouse monoclonal antibodies

(Proteintech Group, Inc, Chicago, USA) for DLAT (1: 1000) and

DLD (1:500) were used, respectively. All tissue information on the
FIGURE 1

Venn diagram of the CR-IRGs screening process.
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sections was captured using the Panoramic MIDI (manufacturer:

3D HISTECH).
2.11 Frequency of somatic mutations and
copy number variations

The somatic mutation data of TCGA-PRAD cohort were

extracted in the varscan file format. CNV data were downloaded

from UCSC Xena (https://xenabrowser.net/datapages/). To

determine the somatic mutation patterns of patients with PRAD

in the high- and low-CRIRS groups, the data were converted into

the mutation annotation format (MAF) using the ‘maftools’ R

package. Tumor mutation burden (TMB) and mutant-allele

tumor heterogeneity (MATH) scores were also evaluated in

both groups.
2.12 Chemotherapy and immunotherapy
drug sensitivity

The Genomics of Drug Sensitivity in Cancer (GDSC; https://

www.cancerrxgene.org/) database was used to assess the sensitivity

of each patient to several chemotherapeutic agents, and the half-

maximal inhibitory concentration (IC50) was quantified using the

‘pRRophetic’ package in R. The response to immune checkpoint

blockade therapy (ICB) was predicted using the TIDE score (http://

tide.dfci.harvard.edu/login/) and immunophenoscore (IPS) (TCIA,

https://tcia.at/patients).
2.13 Statistical analysis

Survival analysis was performed using the R survival package,

and the survival rate of each group was evaluated using the log-rank

test. Student T test and Wilcoxon test were used to compare data

between groups. The Kaplan–Meier method was used to generate

survival curves. The chi-square test was used to analyse the

association of CRIRS subgroups and clinicopathological

parameters. Pearson and Spearman methods were used for

correlation analysis. All statistical analyses were performed using

the R software. In the analysis of differences between cancerous and

paraneoplastic tissues in PRAD, the screening condition was FDR <

0.05 and |log2 FC| > 1. A P-value of < 0.05 indicated significant

differences in other analyses.
3 Results

3.1 Consensus clustering of patients with
PRAD based on cuproptosis-related genes

The analysis flow chart of this study is shown in Figure 2. After

excluding primary tumor samples without sufficient survival

information, 499 samples were selected for follow-up analysis. To

assess whether the expression of cuproptosis regulators affects the
Frontiers in Immunology 05146
immune status of patients with PRAD, the expression of seven

cuproptosis regulators, including FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1 and PDHB, was compared among patients, and the

immune cell infiltration levels of patients were calculated using

the CIBERSORT algorithm. The results were ordered by absolute

value of correlation with the ImmuneScore, and the expression of

the seven cuproptosis regulators was significantly correlated with

the infiltration of immune cells (Figure 3A). The expressions of the

three highest correlated regulators with ImmuneScore, PDHB,

DLAT and DLD, were compared among 550 samples. PDHB

expression was not significantly different in cancerous and

paracancerous tissues, and DLAT and DLD were significantly

downregulated in cancerous tissues (Figure 3B). To further assess

the expression of DLAT and DLD in prostate cancer tissues, we

conducted IHC assays. Consistent with the aforementioned

findings, our results indicated that DLAT and DLD expression

was higher in benign prostatic hyperplasia tissues compared to

prostate cancer tissues (Figure 3C). Next, the scRNA data were

analyzed using the IMMUcan database to explore the expression of

DLAT and DLD in the immune microenvironment of prostate

cancer. Figure 4A shows the results of annotating prostate cancer

cell types at the immune level. DLAT and DLD are expressed in

both tumor cells and different types of stromal and immune cell

subsets (Figures 4B, C). In stromal cell subpopulations, DLAT

expression was mainly in fibroblasts, pericytes and myofibroblasts

(Figure 4D), whereas DLD was mainly expressed in mast cells, NK

cells and macrophages (Figure 4E). Subsequently, we selected

DLAT and DLD to construct a risk profile and consensus

clustering was performed to obtain two cuproptosis-associated

clusters (Figures 4F, G). The survival of patients in the two

clusters was analysed based on Kaplan–Meier curves. As shown

in Figure 4H, patients in Cluster 2 had significantly better OS than

patients in Cluster 1 (P = 0.034).
3.2 Identification and annotation
cuproptosis- related and immune- related
PRAD DEGs

To determine the correlation between cuproptosis subtypes and

immune function, 2483 IRGs were obtained from the ImmPort

database. The ‘DESeq2’ package was used to identify differentially

expressed genes (DEGs) in cancerous and paraneoplastic tissues

(FDR < 0.05, |log2 FC| > 1). Further investigation of the relationship

between PRAD DEGs and cuproptosis-related genes by Pearson

correlation analysis showed 603 cuproptosis-related DEGs (CR-

DEGs) (Figure 5A) (Supplementary Table S2). As shown in

Figure 5B, 223 immune-related DEGs were screened in PRAD

(IR-DEGs) (Supplementary Table S3). By taking the intersection

of CR-DEGs and DE-IRGs, we identified 50 cuproptosis- related

immune-related DEGs and were therefore referred to as CR-IRGs

(Supplementary Table S4). Analysis of the GO and KEGG pathways

of CR-DEGs and IR-DEGs showed intriguing results. Some of the

pathways most enriched by CR-DEGs are overlapping with

pathways associated with the most enriched by IR-DEGs,

including Ras signaling pathway, Neuroactive ligand-receptor
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interaction, Regulation of actin cytoskeleton, Calcium signaling

pathway and Axon guidance (Figures 5C–F), suggesting that the

different cuproptosis states affecting PRAD prognosis may be

associated with activation of immune pathways.
3.3 Construction of a prognostic model
based on cuproptosis-related immune-
related genes in TCGA-PRAD cohort

Based on the expression profiles of the 50 CR-IRGs, 3 significant

CR-IRGs were initially screened via univariable Cox regression

analysis (Supplementary Table S5). Subsequently, a prognostic

model based on these genes was established via LASSO–Cox

regression analysis (Figures 6A–C). Of the 499 patients, 311

patients (about 62%) were included in the high-risk group and

188 patients (about 38%) were included in the low-risk group

(Figure 6D). Consistently, Kaplan–Meier curves showed that OS

(P = 0.022) and DFS (P = 0.0028) were significantly worse in the

high-CRIRS group than in the low-CRIRS group (Figures 6E, H).

The OS and DFS predictive performance of the CRIRSs was assessed

based on time-dependent ROC curves, and the area under the curve

(AUC) values at 1, 3 and 5 years were 1.000, 0.666 and 0.698, and
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0.631, 0.619 and 0.594, respectively (Figures 6F, I). The calibration

curve shows that CRIRSs may accurately estimate the OS and DFS

(Figures 6G, J). CRIRSs are calculated in the MSKCC and GSE70770

cohorts and validated by taking the same grouping approach as the

TCGA-PRAD cohort (Figures 6K, O). Patients with lower CRIRSs

had longer DFS in both MSKCC (P = 0.029) and GSE70770 (P =

0.035) cohorts (Figures 6L, P). Therefore, CRIRS was identified as a

strong predictor of DFS, with AUC values of 0.687, 0.646 and 0.642

in MSKCC cohort and 0.573, 0.547 and 0.512 in the GSE70770

cohort at 1, 3 and 5 years, respectively (Figures 6M, Q). The

calibration curves further validate the accurate predictive

performance of CRIRSs for DFS (Figures 6N, R). These results

illustrate the strong efficacy of the CRIRS model to predict the

prognosis of prostate cancer.
3.4 Validation of the independent
prognostic value of the 3-immune-gene
signature

Figure 7A illustrates the expression of PRLR and LECT2 was

higher and that of DES was lower in the high-CRIRS group.

Univariable and multivariable Cox regression analyses based on
FIGURE 2

Flow chart of the analysis process.
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age, TNM stage, Gleason scores and CRIRSs revealed that the

CRIRS was an independent prognostic factor for OS (Figure 7B).

Additionally, To investigate whether CRIRS model correlated with

the clinical characteristics of PRAD, we performed the Wilcoxon

test and found that the high-CRIRS group had a later T stage (P =

0.0058) (Figure 7D), N stage (P = 0.014) (Figure 7E) and higher

Gleason scores (P = 5.2e-05) (Figure 7G). However, age (Figure 7C)

and M stage (Figure 7F) did not significantly differ between the two

groups. The pieTable further demonstrates the significant

correlation of CRIRSs with T stage (P = 0.0064) and Gleason

scores (P = 0.0024) (Figure 7H). Additionally, we obtained 32

prostate cancer tissue samples to conduct correlation analysis

between CRIRS and clinical parameters. The mRNA levels of
Frontiers in Immunology 07148
PRLR, DES, and LECT2 were determined by qRT-PCR, while

CRIRS was calculated using a specific formula. Results showed

that in prostate cancer patients, CRIRS was positively correlated

with their T stage (P = 0.033) and Gleason score (P = 0.025).

However, no significant correlation was found between CRIRS and

patients’ age and clinical stage (P > 0.05) (Table 1).
3.5 Metabolic characteristics of patients
classified based on CRIRSs

Cuproptosis is associated with multiple cancer pathways (46).

HALLMARK enrichment analysis showed that pathways related to
A

B

C

FIGURE 3

Classification of patients with PRAD in TCGA cohort according to the expression of DLAT and DLD. (A) Association of cuproptosis-related genes with the
results of CIBERSORT. (B) Comparison of the expression of PDHB, DLAT and DLD between normal and PRAD tissues. (C) The protein levels of DLAT and
DLD in prostate hyperplasia and prostate cancer clinical tissues were examined by immunohistochemistry. *P < 0.05, **P < 0.01, ***P < 0.001.
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tumor growth and invasion, such as mTORC1 signaling (47), PI3K/

Akt/mTOR signaling (47), G2M checkpoint and Myc signaling (48)

were significantly enriched in the high-CRIRS group (Figure 8A).

Additionally, various immune activities, including complement,

IL2/STAT5 signaling and IL6/Jak/STAT3 signaling, as well as

metabolic pathways, such as spermatogenesis, myogenesis, and

xenobiotic metabolism, were significantly enriched in the low-

CRIRS group (Figure 8A). These findings explain, to some extent,

the better prognosis of the low group. Subsequently, to further

validate the function of the CRIRS model in terms of immunity, we

performed GSEA pathway enrichment analysis and found six

immune-related gene sets enriched in the high-CRIRS group,

including Early T Lymphocyte Up, Large To Small Pre Bii

Lymphocyte Up, IL6 Deprivation Dn, Immunature B Lymphocyte
Frontiers in Immunology 08149
Dn and Pre Bii Lymphocyte Up. Three other immune-related

pathways Innate Immune System, Blebbishield To Immune Cell

Fusion Pbshms Dn and Silenced By Tumor Microenvironment

were enriched in the low-CRIRS group (Figure 8B). Due to the

complexity of enrichment of immune-related gene sets between the

two CRIRS groups, we need further in-depth assessment of

the immune status of the CRIRS model.
3.6 Correlation Between CRIRSs and the
Tumor Microenvironment of PRAD

Several studies have shown that patients with higher immune

scores and lower stromal scores have a better prognosis (49, 50).
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FIGURE 4

The expression of DLAT and DLD in immune cells in the GSE141445 dataset. (A) UMAP diagram of 13 samples. (B, C) UMAP distribution diagram showed
the relative expression of DLAT and DLD in each cell. (D, E) Violin diagram showed the relative expression of DLAT and DLD in 8 types of cells. (F, G)
Consensus matrix heat map defining two clusters (k = 2) and their correlation area. (H) Kaplan–Meier curves of overall survival in the two clusters.
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However, the low-CRIRS group with a better prognosis had higher

stromal scores and lower immune scores, and no significant

differences in immune microenvironment scores were observed

between the low and high CRIRS groups in our study

(Figures 9A–C). It has been showed that the density of infiltration

of different immune cells in the center and invasive margins of

tumors has different predictive significance for tumor prognosis and

outcome due to the different immune structures of different tumors

(51). This was also demonstrated in a study by Sun et al., kidney

renal clear cell carcinoma patients who had a worse prognosis had

higher immune scores and stromal scores (52). The relationship

between CRIRSs and 64 types of adaptive and congenital immune

cells, haematopoietic progenitor cells, epithelial cells and

extracellular stromal cells was examined using the xCell

algorithm. The proportion of multiple cell types was significantly
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different between the high- and low-CRIRS groups (Figure 9D). The

proportion of multiple stromal cells including adipocytes,

fibroblasts, lymphatic (ly) endothelial cells, and microvascular

(mv) endothelial cells was high in the low-CRIRS group, whereas

that of stem cells, such as hematopoietic stem cells (HSCs),

megakaryocytes and megakaryocyte-erythroid progenitors

(MEPs), and lymphoids NKT cells were also in higher

proportions in the low-CRIRS group. Additionally, the proportion

of a variety of lymphoids, such as B cells, CD4+ memory T cells,

CD8+ Tcm, Th2 cells and Tregs, and some myeloids including

Basophils andMast cells, were highly represented in the high-CRIRS

group. The ssGSEA analysis further demonstrates the infiltration of

immune cells in two CRIRS groups. As shown in Figure 9E,

activated B cells, activated CD8 T cells, CD56bright natural killer

cells, CD56dim natural killer cells and natural killer cells was high in
D

A B

E F

C

FIGURE 5

Identification of DLAT and DLD-related immune genes in TCGA-PRAD cohort. (A) Volcano plot of cuproptosis-related DEGs between normal and
tumor tissues in TCGA-PRAD cohort. (B) Heatmap plot of immune-related DEGs between normal and tumor tissues in TCGA-PRAD cohort. (C) Top
20 terms for GO analysis of cuproptosis genes DLAT and DLD-related DEGs. (D) Top 20 pathways for KEGG analysis of cuproptosis genes DLAT and
DLD-related DEGs. (E) Top 20 terms for GO analysis of immune-related DEGs. (F) Top 20 pathways for KEGG analysis of immune-related DEGs.
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FIGURE 6

Construction and validation of a cuproptosis-related-IRG-based prognostic signature in TCGA-PRAD cohort. (A, B) DE-IRGs screened using a
LASSO–Cox regression model. (C) Coefficients of three selected genes PRLR, LECT2, DES. (D-J) Construction of TCGA-PRAD training cohort. (D)
Distribution and cut-off values of CRIRSs of TCGA training cohort. (E) OS of two CRIRS groups of TCGA-PRAD cohort. (F) ROC curves
demonstrating the prognostic value of the CRIRS model in predicting 1-, 3- and 5-year OS in TCGA. (G) Calibration curves for CRIRS model of
TCGA-PRAD cohort. y-axis: actual OS; x-axis: nomogram-predicted OS. (H) DFS of two CRIRS groups of TCGA-PRAD cohort. (I) ROC curves
demonstrating the prognostic value of the CRIRS model in predicting 1-, 3- and 5-year DFS in TCGA. (J) Calibration curves for CRIRS model of
TCGA-PRAD cohort. y-axis: actual DFS; x-axis: nomogram-predicted DFS. (K-N) Construction of MSKCC validation cohort. (K) Distribution and cut-
off values of CRIRSs of MSKCC validation cohort. (L) DFS of two CRIRS groups of MSKCC cohort. (M) ROC curves demonstrating the prognostic
value of the CRIRS model in predicting 1-, 3- and 5-year DFS in MSKCC. (N) Calibration curves for CRIRS model of MSKCC cohort. y-axis: actual
DFS; x-axis: nomogram-predicted DFS. (O-R) Construction of GSE70770 validation cohort. (O) Distribution and cut-off values of CRIRSs of
GSE70770 validation cohort. (P) DFS of two CRIRS groups of GSE70770 cohort. (Q) ROC curves demonstrating the prognostic value of the CRIRS
model in predicting 1-, 3- and 5-year DFS in GSE70770. (R) Calibration curves for CRIRS model of GSE70770 cohort. y-axis: actual DFS; x-axis:
nomogram-predicted DFS.
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the low-CRIRS group, whereas that of activated CD4 T cells,

memory B cells, neutrophils, regulatory T cells and type 2 T

helper cells was high in the high-CRIRS group. The activity status

of the seven-step tumor–immunity cycle of patients with PRAD was

determined using the Tracking Tumor Immunophenotype (TIP)

(http://biocc.hrbmu.edu.cn/TIP/) and visualised on a thermogram.

Consistent with the above results, CRIRSs were negatively correlated

with multiple step tumor–immunity cycle, especially in Step 4

(trafficking of immune cells to tumors) (Figure 9F). All three

types of immune checkpoints, major histocompatibility complex

(MHC), immunoinhibitors and immunostimulators, were highly

expressed in the low-CRIRS group, especially HLA-A, HLA-B,
Frontiers in Immunology 11152
LAG3, LGALS9, CD40 and CTLA (Figures 9G–I). These results

reveal the reasons for the better prognosis in the low-CRIRS group.
3.7 Mutation landscape of patients
classified based on CRIRSs

TMB and CNV in tumor patients correlate with prognosis (53).

The mutation profile of patients stratified based on CRIRSs was

examined. Higher TMB and MATH scores were observed in the

high-CRIRS group (Figures 10A, B). The mutation profiles of patients

were different between the two groups. As shown in Figures 10C, D,
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FIGURE 7

Correlation between CRIRS model and clinical characteristics based on TCGA-PRAD cohort. (A) Differences in clinicopathological features and
expression levels of PRLR, LECT2 and DES between the low- and high-CRIRS groups. (B) Results of univariable and multivariable Cox regression
analyses for predicting OS. Differences in CRIRS levels by age (C), T stage (D), N stage (E), M stage (F), and Gleason score (G) grouping. (H) Clinical
characteristics of the high- and low-CRIRS groups.
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the top 5 genes with the highest mutation frequency were tumor

protein P53 (TP53; 9%); titin (TTN; 8%); speckle-type BTB/POZ

protein (SPOP; 7%); mucin 16, cell surface associated (MUC16; 7%)

and titin-interacting RhoGEF (OBSCN; 6%) in the low-CRIRS group

and TTN (18%); SPOP (17%); TP53 (11%); MUC16 (8%) and

spectrin repeat containing nuclear envelope protein 1 (SYNE1; 8%)

in the high-CRIRS group. TTN mutations were found in 34 patients

in the high-CRIRS group and 24 patients in the low-CRIRS group

(odds ratio [OR] = 0.374, P < 0.01, Figure 10E). The mutation

frequency of HTR1E was high in the low-CRIRS group (P < 0.05),

whereas mutation frequencies in 53 genes including SPOP, ADGRE2

and KIRREL were higher in the high-CRIRS group (P < 0.05,

Figure 10E). Co-mutation relationships were observed between

multiple genes and the five genes with the highest mutation

frequencies: TTN mutations were related to FAT4, FLG, OBSCN

and SYNE1 mutations; SPOP mutations were related to USH2A and

FOXA1 mutations, TP53 mutations were related to FOXA1

mutations; MUC16 mutations were related to FOXA1 and

HMCN1 mutations; and SYNE1 mutations were related to FLG,

FOXA1, ABCA13 and FAT3 (Figure 10F). Given that CNVs may

lead to chromosomal alterations, we further investigated the

relationship between CRIRSs and CNVs. The frequency of CNV

amplification and deletion was significantly high in the high-CRIRS

group (Figures 11A–C). Figure 11D shows the topography of CNVs

in the high- and low-risk groups. More genes had CNV amplification

and deletion in the high-CRIRS group than in the low-CRIRS group.
3.8 Predicting the sensitivity of patients to
antitumor therapy

The IC50 values of several chemotherapeutic agents commonly

used in the treatment of PRAD were evaluated to predict the
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response of patients with different CRIRSs to antitumor therapy.

The IC50 values of Camptothecin (P = 0.00623) (Figure 12A),

Dactolisib (P = 1.8e-07) (Figure 12B), Epirubicin (P = 0.0016)

(Figure 12C), Gemcitabine (P = 6.4e-05) (Figure 12D), Irinotecan

(P = 3.8e-05) (Figure 12E), Mitoxantrone (P = 3.5e-06)

(Figure 12F), Niraparib (P = 0.0013) (Figure 12G) and

Oxaliplatin (P = 0.027) (Figure 12H) were significantly higher in

the high-CRIRS group than in the low-CRIRS group. In addition,

TIDE analysis showed that CRIRS was significantly and negatively

correlated with TIDE, Dysfunction and Exclusion scores

(Figure 12I). However, IPS scores were higher in the low-CRIRS

group, indicating a better response to immunotherapy in the low-

CRIRS group (Figure 12J).
4 Discussion

Unbalanced copper homeostasis can affect tumor growth and

induce tumor cell death (54). Copper also plays an integral role in

tumor immunity and antitumor therapy (55, 56). Cuproptosis plays a

complex regulatory role in the TME of various cancers such as

endometrial and colorectal cancers. However, its role in the

development of TME and its potential therapeutic value in PRAD

remain unclear. Multiple riskmodels based on cuproptosis-associated

genes can accurately predict prognosis and assess the tumor

microenvironment (57, 58). Zhu et al. reported that the three

cuproptosis patterns they constructed in colorectal cancer were

consistent with the results of immune infiltration characteristics (59).

In this study, we proposed a cuproptosis-related immune

scoring system to assess individual immune profiles. Immune

regulation was analyzed based on transcriptional changes and the

expression of cuproptosis-related genes in TCGA-PRAD cohort.

The cuproptosis genes DLAT and DLD were found to be closely
TABLE 1 Association of CRIRS with clinicopathological parameters in prostate cancer patients.

Characteristics CRIRS (Low)(%) CRIRS (High) (%) P

n 20 12

Age 0.399

≤ 60 3(15.0) 3(25.0)

> 60 17(85.0) 9(75.0)

T stage 0.033

T2 13(65.0) 3(25.0)

T3 7(35.0) 9(75.0)

Stage 0.227

II 9(45.0) 5(41.7)

III-V 11(55.0) 7(58.3)

Gleason Score 0.025

≤ 7 15(75.0) 4(33.3)

≥ 8 5(25.0) 8(66.7)
Bold values means P < 0.05.
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associated with PRAD. An unsupervised clustering approach was

used to divide TCGA-PRAD cohort into two differentially

characterized cuproptosis clusters based on the expression of

DLAT and DLD. Prognosis was significantly different between the

two groups. Based on cuproptosis-related IRGs, three genes

associated with different clinical outcomes, immune activity and

immune function were identified, namely, PRLR, DES and LECT2.

These three genes play an important role in tumor immunity. It has

been reported that PRLR might affect the prognosis of breast cancer

by inhibiting the expression of immune checkpoints (60). Liu et al.

demonstrated that TP53-associated immune prognostic model

(TIPM) including PRLR predicts overall survival and treatment

response in pancreatic cancer (61). Absence of Reed-Sternberg cell

DES and cytokeratin expression in Hodgkin’s disease with Ki-1

antigen expression may be associated with dysregulation of the
Frontiers in Immunology 13154
immune system and the observed immunological abnormalities

(62). Pouyanfard et al. demonstrated that treatment of liver fibrosis

with a population of human iPSC-derived M2 subtype macrophages

in an immunodeficient Rag2 gc mouse model significantly reduced

the expression of fibrotic genes, including DES (63). LECT2

deficiency fosters the accumulation of pejorative inflammatory

monocytes harboring immunosuppressive properties and strong

tumor-promoting potential in hepatocellular carcinoma (64). Qin et

al. reported that LECT2 expression was low in hepatocellular

carcinoma and negatively correlated with the infiltration of

immune cells such as B cells, neutrophils and monocytes and

positively correlated with naïve CD8 T cells, endothelial cells and

hematopoietic stem cells (65).

The CRIRS system was established via LOSSO–Cox regression

analysis. High CRIRSs were associated with shorter OS and DFS.
A

B

FIGURE 8

Enrichment analysis in the two CRIRS groups. (A) Analysis of multiple HALLMARK pathways via GSVA in the two CRIRS groups. (B) Immune-related
pathways for GSEA enrichment analysis in two CRIRS groups.
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GSEA revealed that multiple cancer-related pathways were

significantly enriched in the high-CRIRS group, suggesting that

the three cuproptosis-associated IRGs are involved in tumor

development. CRIRSs were significantly correlated with the

clinicopathological features of PRAD, such as T stage and

Gleason scores. After controlling for confounding factors, CRIRS

was identified as an independent predictor of survival outcomes in
Frontiers in Immunology 14155
PRAD. ROC curves and Calibration curves demonstrated that

CRIRSs had good accuracy in predicting OS and DFS at 1, 3 and

5 years. Therefore, CRIRSs may serve as an effective tool to predict

the prognosis of PRAD. Significant differences were observed in the

frequency of gene mutations between the high- and low-CRIRS

groups. Multiple genes had higher mutation frequencies in the

high-CRIRS group. CNVs are one of the most important somatic
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FIGURE 9

Comparison of immune activity in the two CRIRS groups. (A-C) Immune, stromal and microenvironment scores in the two CRIRS subtypes. (D)
Different infiltration levels of 64 immune and stromal cells in the two CRIRS groups analysed using the xCell algorithm. (E) ssGSEA showed
differences in the infiltration of immune cells between the two CRIRS groups. (F) Heatmap demonstrating correlation between seven key steps in the
tumor immune cycle and CRIRSs. Differential expression of different types of immunomodulatory molecules MHC (G), immunoinhibitors (H) and
immunostimulators (I) in the two CRIRS groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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aberrations in cancer, which contribute to the pathogenesis of many

disease phenotypes. In this study, the frequency of CNV

amplification and deletion was high in the high-CRIRS group.

The immune response plays a dominant role in tumorigenesis

and can often serve as the target of tumor therapy. Immune and

stromal cells are major components of TME (66). Our study found

that the CIBERSORT algorithm showed zero abundance of T cell

CD4 naive infiltration, probably because CIBERSORT calculated
Frontiers in Immunology 15156
the relative proportions of immune cell subpopulations in tumor

tissues instead of the actual values (67). Immune cell infiltration is

associated with the prognosis of PRAD, and high infiltration levels

of CD8+ T cells and NK cells may indicate a good prognosis, which

is consistent with the results of this study (68–70). Therefore,

cuproptosis may be involved in regulating TME, especially CD8+

T cells and NK cells, thereby promoting tumor growth and

progression. Previous studies have reported that reactivation of
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FIGURE 10

Genetic characteristics in the two CRIRS groups. (A) The distribution of TMB scores in the two CRIRS groups. (B) The distribution of MATH scores in the
two CRIRS groups. (C, D) Waterfall plot of mutations in the top 20 genes in the low-CRIRS group top and high-CRIRS group bottom. (E) Forest plots
demonstrating the frequency of 54 mutations that differed significantly between the two CRIRS groups. Higher mutation frequencies were found in the
high-CRIRS group. (F) Heatmap demonstrating the commonality of mutations in the top 25 genes in PRAD. *P < 0.05, ***P < 0.001.
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CD8+ T cells can indicate the efficacy of immunotherapy.

Therefore, targeting cuproptosis-related IRGs may be an effective

and novel therapeutic strategy for the treatment of PRAD.

Chemotherapy and androgen deprivation therapy may limit

tumor progression and improve the prognosis of patients with

PRAD (71, 72). At present, the decreasing sensitivity of PRAD to

chemotherapy is a major concern worldwide (73). The ‘cold’

tumor characteristics of PRAD inhibit the development of

immunotherapeutic strategies that can optimize treatment by
Frontiers in Immunology 16157
driving T cells into the tumor and transforming the ‘cold’ TME

into an immune ‘hot’ TME (74). In this study, patients in low-

CRIRS groups were potentially sensitive to several therapeutic

drugs, which may help to mitigate resistance mechanisms and

improve clinical outcomes. To investigate whether CRIRSs can

help to predict the efficiency of immunotherapy in PRAD, the

correlation between CRIRSs and 31 immune checkpoint genes was

examined. The vast majority of these genes were highly expressed

in the low-CRIRS group. The TIDE algorithm and IPS scores
D
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FIGURE 11

Genomic mutation profiles in the two CRIRS groups. (A, B) Box plot demonstrating the amplitudes of all chromosome amplifications/deletions in the
two CRIRS groups. (C) Focal amplification/deletion of different chromosomal regions in the two CRIRS groups. (D) CNVs in the two CRIRS groups,
including the logistic scores and mutation frequencies corresponding to different CNVs. ****P < 0.0001.
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were used to predict the ICB responses of patients with the low-

CRIRS group with higher IPS predicted a better response

to immunotherapy.

This study has some limitations. First, individual differences

among patients with PRAD might have affected the cuproptosis-

associated IRG-based prognostic signature, and more external and

practical validation is required to determine whether the signature

can be used in clinical practice. In addition, we have only limited

knowledge of the signalling pathways related to the three

cuproptosis-associated IRGs identified in this study, and the

specific molecular mechanisms of these genes in PRAD and their

relationship with TME and cuproptosis remain unknown. The role
Frontiers in Immunology 17158
of these genes in PRAD should be examined in vivo and in vitro in

future studies using the results of GSEA as a reference.
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Background: Cuprotosis is a recently discovered copper-dependent cell death
mechanism that relies on mitochondrial respiration. However, the role of
cuprotosis-related genes (CRGs) in hepatocellular carcinoma (HCC) and their
prognostic significances remain unknown.

Methods: Based on the recently published CRGs, the LASSO Cox regression
analysis was applied to construct a CRGs risk model using the gene expression
data from the International Cancer GenomeConsortium as a training set, followed
by validation with datasets from The Cancer Genome Atlas and the Gene
Expression Omnibus (GSE14520). Functional enrichment analysis of the CRGs
was performed by single-sample gene set enrichment analysis.

Results: Five of the 13 previously published CRGswere identified to be associated
with prognosis in HCC. Kaplan-Meier analysis suggested that patients with high-
risk scores have a shorter overall survival time than patients with low-risk scores.
ROC curves indicated that the average AUC was more than 0.7, even at 4 years,
and at least 0.5 at 5 years. Moreover, addition of this CRG risk score can
significantly improve the efficiency of predicting overall survival compared to
using traditional factors alone. Functional analysis demonstrated increased
presence of Treg cells in patients with high-risk scores, suggesting a
suppressed immune state in these patients. Finally, we point to the possibility
that novel immunotherapies such as inhibitors of PDCD1, TIGIT, IDO1, CD274,
CTLA4, and LAG3 may have potential benefits in high-risk patients.

Conclusion: We constructed a better prognostic model for liver cancer by using
CRGs. The CRG risk score established in this study can serve as a potentially
valuable tool for predicting clinical outcome of patients with HCC.

KEYWORDS

cuprotosis (CRGs), prognostic model, hepatocellular carcinoma (HCC), treg cells,
immunotherapy
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Background

Multicellular organisms have a variety of predetermined and precisely
programmed cell death pathways, such as apoptosis, necroptosis
(programmed necrosis), pyroptosis (inflammation mediated), and
ferroptosis (iron regulated cell death) (Yan et al., 2022). Recent
research reported a novel mechanism known as cuprotosis where cell
death is regulated by copper. Thismechanisms can be triggered by copper
ions even when other common cell death pathways are blocked (Tang
et al., 2022). Copper ions directly bind to fatty acylated components of the
tricarboxylic acid (TCA) cycle within the mitochondria, leading to
aggregation of fatty acylated proteins and downregulation of iron-
sulfur cluster proteins, which induces proteotoxic stress and cell death
(Tsvetkov et al., 2022). This novel pathway may have significant
implications for understanding cancer biology and treatment.

Copper concentrations are elevated in the tumor tissues and serum
samples of animals and patients with cancers (Jiang et al., 2022). The
level of copper is associated with liver cirrhosis, acute hepatitis, and liver
cancer. Serum copper may be useful as a marker for liver cancer
detection (Jaafarzadeh et al., 2021). In patients with hepatocellular
carcinoma (HCC), excessive copper concentrations can enhance
tumor development, chemoresistance, and poor prognosis (Fang
et al., 2019). All the above studies indicate that copper may be
related to the occurrence of liver tumors, providing a new perspective
for the treatment of this malignancy (Ge et al., 2022).

Here, we comprehensively explored the clinical relevance of the
expression of cuproptosis-related genes (CRGs), their molecular
alterations, and the tumor immune microenvironment in HCC.
Moreover, our study also constructed a new prognostic model for
HCC with CRGs and laid a foundation for potential therapeutic
development utilizing cuproptosis regulators forHCC targeting and
immunotherapy.

Methods

Data acquisition

Gene expression information and related clinicopathologic data
of 817 HCC patients were retrieved from The Cancer Genome Atlas
(https://portal.gdc.cancer.gov/repository) (TCGA, 231 samples),
International Cancer Genome Consortium (https://dcc.icgc.org)
(ICGC, 231 samples) and Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/) (GEO, GSE14520, 365 samples).
Log2 transformation was performed to normalize the expression
profiles of the gene sets. A total of 370 samples with copy number
variation (CNV) and single nucleotide variant (SNV) relevant to
HCC were downloaded from the TCGA-LIHC site (University of
California Santa Cruz Xena database). Moreover, 13 CRGs were
collected from a previous literature (Tsvetkov et al., 2022) and are
shown in Supplementary Table S1.

Cuproptosis-related prognostic signature
model

The LIRI-JP cohort from the ICGC database was employed
as the training cohort. Overall survival (OS)—related CRGs

were screened via the univariate Cox analysis (p < 0.1). The
prognostic CRG signature was constructed using the LASSO
regression analysis based on 10-fold cross-validation penalized
maximum likelihood estimators. The minimum criteria were
used to choose the optimal penalty parameter (λ) values. The
GSE14520 and TCGA-LIHC datasets were selected as the
external validation cohorts. We calculated the CRG risk score
(RS) for eachHCC patient using the following formula: RS = (β *
ATP7A expression level) + (β * DLAT expression level) + (β *
DLD expression level) + (β * FDX1 expression level) + (β * PDHB
expression level), where β is the coefficient for each gene.
Patients were further assigned into the high- and low-risk
sets in accordance with the median RS. Kaplan-Meier and
time-dependent receptor operating characteristic (ROC)
curves were employed to assess the predictability of the CRG
signature. The design of the study is shown in Figure 1.

Cell lines

The liver cancer cell lines including HEG2, MHCC97-H, HUH-7,
SNU449, PLC-PRF-5, LM3, and LM9, and normal liver cell lines such as
HL7702, WRL68, QSG-7701, and MIHA cells were obtained from Sun
Yat-sen University Cancer Center. The expression data of these CRGs
were obtained from Cancer Cell Line Encyclopedia (CCLE).

Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

Total RNA was extracted from cells using TRIzol reagent
(Takara Bio, Carlsbad, United States) and reverse transcribed
using a cDNA reverse transcription kit (Takara Bio, Carlsbad,
United States) in accordance with the manufacturer’s
instructions, and the obtained cDNA was amplified using TB
Green® Premix Ex Taq (Takara Bio, Carlsbad, United States).
qRT-PCR was performed to detect expression levels of the genes
of interest. Each experiment was repeated three times. The 2−ΔΔCT

methodology was adopted to calculate the relative expression of
genes. The primers used are listed in Supplementary Table S2.

Functional enrichment analysis

The GSEA_4.2.3 software was applied to examine the
physiological pathways that genes in the low- and high-risk
datasets are involved in according to the KEGG and GO
analyses, “c2. cp.kegg.v7.5.1. symbols” and “c5. go.bp.v7.5.1.
symbols”, respectively. Normalized p-value <0.05 was considered
statistically significant. In addition, we calculated the activity of
13 immune-linked networks and 16 immune cell types through the
single-sample gene set enrichment analysis (ssGSEA) (Rooney et al.,
2015). Protein interactions between model-related proteins were
constructed with the STRING algorithm (https://cn.string-db.org).
Genetic variation information in the cancer cell lines was from the
cBioPortal Genomics database. DNA methylation analysis was
performed by methsurv (https://biit.cs.ut.ee/methsurv/)
(Modhukur et al., 2018; Anuraga et al., 2021; Xing et al., 2021).
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Statistical analysis

The Student’s t-test or Wilcoxon test was employed to analyze
continuous data. OS comparisons between two sets were completed
by the log-rank test. The time-ROC package was applied to complete
the ROC curves and estimate the values of the area under the curve
(AUC). The independent prognosis index was estimated by the uni-
and multivariate COX analyses. All statistical analyses were
performed using the R software (Version 4.0.4) or SPSS (Version
25.0). A two-sided p-value <0.05 indicated statistical significance.

Results

Genetic landscape of cuprotosis related
genes

A recent study reported 13 genes related to the cuproptosis
pathway, including ATP7A, ATP7B, DBT, DLA, DLD, DLAT, DLST,
FDX1, GCSH, LIAS, LIPT1, PDHA1, and PDHB (Tsvetkov et al.,
2022). To determine whether these cuproptosis-related genes
(CRGs) are involved in HCC, we extracted their expression levels
from 817HCC patient samples from three databases (TCGA, ICGC
and GEO) for further analysis (Supplementary Figure S1A;
Supplementary Table S1). Many of these CRGs are mutated in
HCC samples and the top 10 mutated genes with the highest
frequencies are showed in the Supplementary Figure S1A.
Among them, the gene with the highest mutation frequency is
ATP7A, accounting for about 10%, followed by DLST, DLD, and

DBT accounting for about 7%. The major mutation type is missense
mutation (43.33%, 13/33), with C>T being the most common
(Figure 2A). The expression levels of most CRGs, except for
FDX1, showed a positive correlation to HCC samples
(Supplementary Figure S1B). In addition, the CRGs, DLAT, DLD,
PDHB, ATP7A, PDHA1, DLST, LIPT1, and LIAS, are also expressed
at significantly higher levels in liver cancer cells than in normal
tissues (Figure 2B). On the other hand, the heatmaps suggested that
expression of ATP7A, DBT, and LIPT1 are lower than other genes,
and lower in tumors compared to controls (Supplementary Figure
S1C). Twelve of theCRGs are significantly differentially expressed in
the TCGA database and analysis also indicated that FDX1 has the
lowest expression (Supplementary Figure S1D). In addition, except
for ATP7A and PDHA1, which are located on the X chromosome, all
other genes are located in the autosomes (Supplementary Figure
S1E). Copy number variation (CNV) analysis showed that most of
the 13 genes have copy number losses, with GCSH and ATP7B being
the most obvious, while DLD showed a copy number gain
(Figure 2C). We further validated the expressions of the CRGs in
liver cancer cell lines and related normal cells and found that the
expression of DLAT and DLA are much higher and FDX1 lower in
cancer cell lines compared to normal cells (Supplementary Figure
S2A). We also validated the same results of CRGs expressions in
HCC cancer cell lines through Cancer Cell Line Encyclopedia
(CCLE) project (Supplementary Figure S2B).

Establishment and validation of a prognostic
model for HCC

Next, we used the ICGC databset to explore the prognostic value
of these 13 CRGs in liver cancer. The forest plot results indicated
that the expressions of five genes (ATP7A, DLAT, DLD, FDX1, and
PDHB) are associated with prognosis. Except for FDX1, expressions
of the other four genes are closely related to poor prognosis
(Figure 2D). The gene correlation results also pointed out that in
addition to FDX1, the other CRGs are associated with at least three
or more other genes (Supplementary Figure S3A). Protein
interaction analysis showed that FDX1 is weakly associated with
the other proteins, while DLD, PDHB, and DLAT have stronger
interactions among these five proteins (Supplementary Figure S3B).
Moreover, the mutational landscape of these five CRGs in different
cancer cell lines indicated that they also have different frequencies of
mutations in tumor cells (Supplementary Figure S3C). Further,
LASSO-Cox regression analysis of these five prognosis-related
CRGs in the ICGC LIRI-JP training dataset showed that they
can be used as a cuprotosis signature (Supplementary Figures
S3D, E).

To further examine the prognostic significance of this five-gene
cuprotosis signature in HCC, we validated this signature in the
GSE14520 and TCGA datasets. A CRG risk score was established
using the expression levels of the five CRGs and the HCC patients
were divided into two groups based on the median CRG risk score.
Patients in different risk categories are scattered in two directions
(Supplementary Figures S4A–C). The scatter charts demonstrated
that patients with high-risk scores have shorter survival time than
patients with low-risk scores (Supplementary Figures S4D–F). This
can also be seen in the Kaplan-Meier analysis showing that high-risk

FIGURE 1
Flow chart of data collection and analysis, LIRI-JP cohort OCHC
database was used as training cohort.
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patients have shorter overall survival than low-risk patients in both
the training and validation datasets (Figures 2E–G). To further
validate the survival prediction of this prognostic CRG signature,
we utilized the time-dependent ROC curves to analyze the AUC
between the specificity and sensitivity of these risk factors in liver
cancer patients. In the training set, theAUCwas more than 0.7, even
at 4 years, and it was also at least 0.5 at 5 years in the validation
datasets (Supplementary Figures S4G–I).

Implications of the CRG risk score for
clinical features and prognosis

To further validate the importance of the CRG risk score in clinical
features and prognosis, univariate andmultivariate analyses were applied
to examine whether the CRG risk score can be an independent
prognostic marker for OS in HCC patients. Univariate Cox analysis
showed that a high-risk score is a poor prognostic indicator of OS in liver

FIGURE 2
Genetic landscape and prognostic significance of CRGs in HCC. (A)Mutation status of 13 CRGs in the TCGA database. (B) Tumor-normal expression
difference of CRGs in TCGA database. (C) CNV situation of CRGs in TCGA database. (D) Forest plot of five prognosis-related CRGs in ICGC database.
(E–G) Kaplan-Meier curves for the OS of patients in the high-risk group and low-risk group in ICGC, GSE14520 and TCGA cohort. (H) Nomogrammodel
built on the ICGC dataset. (I) Calibration curves for nomogram models. (J–L) AUC of time-dependent ROC curves verified the prognostic
performance of merged risk score in 1-year, 3-years or 4 years of ICGC, GSE14520 and TCGA cohort.
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cancers (Supplementary Figures S5A–C). Moreover, when combining
with other well-known prognostic factors, multivariate Cox analysis
suggested that the CRG risk score can also be a significant predictor of
OS in liver cancer (Supplementary Figures S5D–F). Further, heatmap of
clinical features including grade, TNM staging, AFP levels, BCLC
staging, ALT levels, HBV status, and so on indicated that some of
these biomarkers distributed differently in the high- and low-risk groups
(Supplementary Figures S5G–I).

To further expand the clinical applicability of the five-CRG
signature, a nomogram of clinical variables and the CRG risk score
was created as shown in Figure 2H. A total score was obtained for
each patient by combining the scores for each prognostic criterion.
The results suggested that patients with higher total scores have
poorer clinical outcomes. Furthermore, the nomogram calibration
plots are highly consistent with the operating modes of the ideal
model and predicted the 1-, 3- and 4-year survival time (Figure 2I).
The AUC for 1-year overall survival of the merged score group is
0.847 [95% CI: 0.75–0.94], the CRG risk score group is 0.777 [95%

CI: 0.68–0.88], the stage is 0.822 [95% CI: 0.74–0.91], and the gender
is 0.581 [95% CI: 0.46–0.70]. In addition, the AUC for 3-year
survival of the merged score group is 0.785 [95% CI: 0.69–0.88],
the CRG risk score group is 0.760 [95% CI: 0.66–0.86], the stage is
0.657 [95% CI: 0.55–0.76], and the gender is 0.582 [95% CI:
0.48–0.68]. Further, the AUC for 4-year OS of merged score
group is 0.801 [95% CI: 0.64–0.96], the CRG risk score group is
0.751 [95% CI: 0.58–0.92], the stage is 0.513 [95% CI: 0.35–0.68],
and the gender is 0.615 [95% CI: 0.51–0.72]. All these results
suggested that the addition of this five-CRG risk score can
significantly improve the OS prediction efficiency compared to
traditional factors alone (Figures 2J–L).

Functional analyses of the CRG risk model

Since the five-CRG signature described above can distinguish
between high- and low-risk patients, we look wider to asked which

FIGURE 3
Immunoassay correlation analysis of CRGs in HCC. (A–C) Immune-related functions between different risk groups in ICGC, GSE14520 and TCGA
cohort. The correlation of the type I IFN response or type II IFN responsewith risk scorewas displayed on the right panel. The relation valuewas calculated
by pearson analysis. (D–F) The scores of immune cells between different risk groups in ICGC, GSE14520 and TCGA cohort. The correlation of the
macrophages or Treg cells with risk score was displayed on the right panel. The relation value was calculated by pearson analysis. *, p < 0.05; **, p <
0.01; ***, p < 0.001.
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genes are differentially expressed between these patient subgroups.
We applied “limma” to identify the differentially expressed genes
with the criterion (|log2FC| ≥ 1 and FDR <0.05) in the ICGC,
GSE14520 and TCGA datasets. Functional pathway analysis of these
differentially expressed genes using Go terms showed that immune
response pathways of different types of immune cells are more
enriched in the high-risk score group. Moreover, single sample gene
set enrichment analysis (ssGSEA) functional results further
indicated that several different immune-related pathways are
closely associated with the CRG risk score (Supplementary
Figures S6A–C). What caught our attention was that the results
of the refined immunophenotyping analysis suggested that the type I
and II interferon (IFN) response pathway is the only pathway
significantly more enriched in the low-risk score group in all
three datasets (Figures 3A–C). To further determine the
correlation between immune cell infiltration and the CRG risk
score, we quantified and analyzed the enriched fractions of
different immune cell subsets using ssGSEA. We found that NK
cells, Th2, and Treg cells have significant differences between the
high- and low-risk groups in the ICGC dataset. In the
GSE14520 dataset, activated dendritic cells (aDCs), macrophages,
and Treg cells are more enriched in the high-risk group.While in the
TCGA dataset, aDCs, DCs, macrophages, neutrophils, masts, NK
cells, and Treg cells have significant enrichment differences (Figures

3D–F). Interestingly, Treg cells are the only immune cell subtype,
that is, more enriched in the high-risk score group, with significant
differences in all three datasets.

CRG-related immune microenvironment
and therapeutic targets

Cancer immunotherapy has made great breakthroughs and
significantly improved the survival rate of cancer patients (Riley
et al., 2019). Our results showed that the high-risk score is closely
associated with Treg cells, indicating that cuprotosis may affect the
prognosis of HCC patients by regulating the tumor immune
microenvironment. We explored the relationship between the
CRG risk score and immunosuppressive marker molecules
including IL-10, FOXP3, FAP, TGFB1, and IL-6 and found that
the CRG risk score is positively correlated with IL-10 (t = 2.36, p =
0.02), FAP (t = 3.3, p = 1.08e-03), and TGFB1 (t = 4.25, p = 2.75e-05)
(Figure 4A; Supplementary Figure S5D). Therefore, we wondered
whether the current immunotherapy-related drugs can improve the
prognosis of patients in the high-risk group. We investigated the
correlation between the CRG risk score and the known targets genes
of immunotherapy, including PVR, PDCD1, CD96, TIGIT, IDO1,
CD274, CTLA4, and LAG3. Consistent with our predictions, the

FIGURE 4
Immune checkpoint target correlation analysis of CRGs in HCC (A) Relationship between the risk score and immunosuppressive marker molecules
including IL-10, FOXP3, FAP, TGFB1, and IL-6. (B) The correlation between the risk score and the targets of immunotherapy such as PVR, PDCD1, CD96,
TIGHT, IDO1, CD274, CTLA4, and LAG3. The relation value was calculated by pearson analysis.
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CRG risk score is positively correlated with PDCD1 (t = 2.2, p =
0.03), TIGIT (t = 3.24, p = 1.32e-03), IDO1 (t = 2.11, p = 0.04),
CD274 (t = 2.51, p = 0.01), CTLA4 (t = 3.76, p = 2.01e-04), and LAG3
(t = 2.67, p = 7.93e-03) (Figure 4B; Supplementary Figure S6D). The
DNA methylation of these genes showed no significant changes
among these genes in HCC (Supplementary Table S3).

Discussion

Copper is an essential nutrient with redox properties that can be
both beneficial and harmful to cells. The role of copper in tumor
biology is gradually being recognized and the understanding of
cuprotosis in tumors is continuously being improved (Riley et al.,
2019). Numerous observations had shown that tumor tissue requires
higher levels of copper than healthy tissue (Shanbhag et al., 2021).
Gene analysis in clear cell renal cell carcinoma suggested that CRGs
play a key role in clinical outcomes of this disease (Xia et al., 2017).

For liver cancer, there are currently insufficient studies supporting a
role for CRGs in this disease. Our study found that the CRGs are
significantly overexpressed in liver cancer. Among the 13 published
CRGs, we found that the expression levels of five genes are correlated
with the prognosis of liver cancer patients. Except for the high expression
of FDX1, which indicated a lower risk of poor prognosis, the other genes,
ATP7A,DLAT,DLD, and PDHB, all correlated with poor prognosis.We
constructed a prognostic score model composed of these five genes and
found that patients with high CRG risk scores tend to have the worse
prognosis in all three datasets. FDX1 and fatty acylation of proteins are
key factors in copper ionophore-induced cell death (Dorsam and Fahrer,
2016). Deletion of FDX1 blocks the progress of theTCA cycle, triggering
the accumulation of pyruvate and α-ketoglutarate in cells and promotes
tumor development (Rayess et al., 2012). DLAT is one of the
components of the pyruvate dehydrogenase (PDH) complex, which
catalyzes the decarboxylation of pyruvate in the TCA cycle to form
acetyl-CoA (Tsvetkov et al., 2022). The expression of ATP7A in breast
cancer tissues is significantly higher than that in normal tissues, and
inhibiting the expression of ATP7A can improve the sensitivity of breast
cancer to cisplatin (Yu et al., 2020). A spectrum of diverse genomic
alterations in PDHB has been found in non-clear cell renal carcinoma
(Durinck et al., 2015). These research support the significance of our
CRG model in the prognostic prediction of HCC.

The tumor microenvironment is intimately involved the
occurrence and development of tumors, and affects the
therapeutic effect of any treatments that targets the tumor
(Kennedy and Salama, 2020). Several studies have shown that
pyroptosis is closely associated with tumor immunity (Gao et al.,
2022). In this study, we emphasized the relationship between the
immune microenvironment and CRGs, and found that in the high-
risk group with high expression ofCRGs, the expression of the type I
and II IFN response pathways are significantly lower than that in the
low-risk group, indicating that the overall immunity of the patients
in the high-risk group is in a suppressed state. In addition, we also
found that immunosuppressive Treg cells are significantly increased
in the high-risk score group. This suggested that the high expression
of CRGs can induce immune disorders to promote the development
of tumors. The novel immunotherapy agents such as inhibitors of
PDCD1, TIGHT, IDO1, CD274, CTLA4 and LAG3 were considered
had potential survival benefit in several cancers. The CD274 and

PDCD1 immune checkpoint interaction could accelerate cancer
progression in the colorectal cancer microenvironment and
elderly non-small cell lung cancer patients (Elomaa et al., 2023;
Tanaka et al., 2023). The SNP of PDCD1, including rs11568821 and
rs2227981 was a prognostic marker in a triple-negative breast cancer
(Boguszewska-Byczkiewicz et al., 2023). Moreover, TIGHT
regulated TWIST1and promoted vasculature remodeling in
bladder cancer (Liu et al., 2022). It also affected autophagy in
leukemia and esophageal squamous cell carcinoma (Gschwind
et al., 2022; Huang et al., 2023). LAG3 was identified as an
important therapeutic target in pancreatic cancer, liver, brain,
breast cancer and melanoma (Gulhati et al., 2023; Huuhtanen
et al., 2023; Ulase et al., 2023; Zou et al., 2023). In this study, we
found that these inhibitors of PDCD1, TIGHT, IDO1, CD274,
CTLA4 and LAG3 had potential benefit in high-risk patients.

Conclusion

With increasing knowledge of the mechanism of copper-driven
cell death in tumors, we demonstrated here that this mechanism is
also likely to be applicable for HCC. Using copper death-related
genes, we constructed a prognostic model that will help to better
understand the relationship between cuprotosis and liver cancer.
The CRG risk score is related to the overall immune status of
patients, particularly the presence of Treg cells. This suggested that
immune checkpoint inhibitor therapies may have better effects in
HCC patients with high CRG risk scores.
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Glossary

TCA Tricarboxylic acid cycle

CRG Cuproptosis related genes

HCC Hepatocellular carcinoma

TCGA The cancer genome Atlas

ICGC International cancer genome consortium

GEO Gene expression omnibus

CNV Copy number variation

SNV Single nucleotide variant

OS Overall survival

LASSO Least absolute shrinkage and selection operator

RS Risk score

ROC Receptor operating characteristic

ssGSEA Single-sample gene set enrichment analysis

AUC Area under the curve

HR Hazard ratio

CI Confidence interval

TNM Tumor node metastasis

AFP Alpha fetoprotein

BCLC Barcelona clinic liver cancer

ALT Alanine amiotransferase

HBV Hepatitis B virus

aDC Activated dendritic cell

APC Antigen presenting cell

CCR Cytokine-cytokine receptor

HLA Human leukocyte antigen

iDC Immature dendritic cell

pDC Plasmacytoid dendritic cell

Tfh T follicular helper cell

TIL Tumor infiltrating lymphocyte

Treg Regulatory T cells

NK Natural killer
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Single-cell and genetic
multi-omics analysis combined
with experiments confirmed the
signature and potential targets of
cuproptosis in hepatocellular
carcinoma

Feng Cao1†, Yong Qi2†, Wenyong Wu2, Xutong Li3* and
Chuang Yang4*
1Department of General, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen,
Germany, 2Department of General Surgery, The First Hospital of Anhui Medical University, Hefei, China,
3Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China,
4Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig,
Germany

Background: Cuproptosis, as a recently discovered type of programmed cell
death, occupies a very important role in hepatocellular carcinoma (HCC) and
provides newmethods for immunotherapy; however, the functions of cuproptosis
in HCC are still unclear.

Methods:We first analyzed the transcriptome data and clinical information of 526
HCC patients using multiple algorithms in R language and extensively described
the copy number variation, prognostic and immune infiltration characteristics of
cuproptosis related genes (CRGs). Then, the hub CRG related genes associated
with prognosis through LASSO and Cox regression analyses and constructed a
prognostic prediction model including multiple molecular markers and
clinicopathological parameters through training cohorts, then this model was
verified by test cohorts. On the basis of the model, the clinicopathological
indicators, immune infiltration and tumor microenvironment characteristics of
HCC patients were further explored via bioinformation analysis. Then, We further
explored the key gene biological function by single-cell analysis, cell viability and
transwell experiments. Meantime, we also explored the molecular docking of the
hub genes.

Results: We have screened 5 hub genes associated with HCC prognosis and
constructed a prognosis prediction scoring model. And the model results showed
that patients in the high-risk group had poor prognosis and the expression levels of
multiple immune markers, including PD-L1, CD276 and CTLA4, were higher than
those patients in the low-risk group. We found a significant correlation between
risk score and M0 macrophages and memory CD4+ T cells. And the single-cell
analysis and molecular experiments showed that BEX1 were higher expressed in
HCC tissues and deletion inhibited the proliferation, invasion and migration and
EMT pathway of HCC cells. Finally, it was observed that BEX1 could bind to
sorafenib to form a stable conformation.

Conclusion: The study not only revealed themultiomics characteristics of CRGs in
HCC but also constructed a new high-accuracy prognostic prediction model.
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Meanwhile, BEX1 were also identified as hub genes that can mediate the
cuproptosis of hepatocytes as potential therapeutic targets for HCC.

KEYWORDS

hepatocellular carcinoma, cuproptosis, programmed cell death, immune
microenvironment, single-cell RNA-sequencing, molecular docking

1 Introduction

The latest global cancer statistics indicate that there are more
than 900,000 new cases of liver cancer and 800,000 deaths per year,
and its morbidity and mortality rank seventh and third among all
cancers, respectively (Sung et al., 2021), which pose a serious threat
to human health and safety (Llovet et al., 2021). Among them,
nearly 90% of the cases are hepatocellular carcinoma (HCC) and it
is also the most common type of pathology (Llovet et al., 2016).
HCC progresses rapidly and stealthily, with a high degree of
malignancy, the prognosis of HCC is very poor and the 5-year
survival rate is below 20% (Craig et al., 2020). Although alpha-
fetoprotein (AFP) is currently widely used in early HCC screening
and prognosis assessment, it is affected not only by many non-
hepatic carcinoma-related factors, but its expression level is also
significantly increased in other diseases, such as acute viral
hepatitis (AHA), resulting in low sensitivity and specificity
(Huo et al., 2018; Cai et al., 2019). For lack of effective
biomarkers, most patients are in the advanced stages when they
are diagnosed with HCC. Although a variety of modalities
including surgical resection, radiofrequency ablation, trans-
arterial chemoembolization, systemic chemotherapy and liver
transplantation have been significantly developed, the clinical
effect is still very limited. In addition, the complex pathogenesis
of HCC is also an important factor in its high mortality, which
involves multiple molecular mechanisms, such as cell death
regulation, genetic mutation, tumor heterogeneity, immune
regulation, and dysregulation of the tumor microenvironment
(Kurebayashi et al., 2018; Demirtas and Gunduz, 2021; Torrens
et al., 2021). Thus, it is vital to identify new HCC-specific
biomarkers, extensively study the pathogenesis of HCC and
explore new precise therapeutic targets.

In recent years, with the in-depth understanding of cell death, a
growing number of studies have confirmed that a serious of
programmed cell death (PCD) programs, such as autophagy,
ferroptosis and pyroptosis, play an indispensable role in
tumorigenesis and progression (Mou et al., 2019; Li et al., 2020;
Hou et al., 2020). Cuproptosis, as a new PCD program, has the
characteristics of copper dependence and copper regulation. The
mechanism is mainly through copper binding directly to lipoylated
components in the tricarboxylic acid (TCA) cycle to mediate
lipoylated protein aggregation and iron-sulfur cluster protein
loss, which ultimately leads to proteotoxic stress and cell death
(Tsvetkov et al., 2022). Copper has the functions as a metabolic
cofactor at the active site as well as a dynamic signaling metal and
metalloallosteric regulator, which is connected with various
clinical diseases, especially cancer, because the growth and
metastasis of tumors have higher requirements for this metal
nutrient (Ge et al., 2022). As the Mortada study found, the
copper levels in the plasma and bladder tissue were significantly

higher in patients with bladder cancer than in those non-bladder
cancer patients (Mortada et al., 2020). Interestingly, Atakul et al.
(2020) found that the serum copper level of patients with
endometrial cancer was significantly lower than that of normal
people, and it was negatively correlated with the degree of tumor
invasion. Relevant studies have shown that unbalanced copper
homeostasis can induce many forms of cell death including
apoptosis, autophagy and ferroptosis, through various
mechanisms, such as reactive oxygen species accumulation,
proteasome inhibition and mitochondrial dysfunction (Jiang
et al., 2022). However, the specific mechanism of copper ion-
induced PCD is still unclear. In addition, with the role of copper in
tumor proliferation, invasion and metastasis, its antitumor
potential has also been highlighted. Li et al. (2020) showed that
the combination of disulfiram with copper can greatly improve its
antitumor efficacy. Similarly, Mariani et al. (2021) also
demonstrated that the combined use of copper complexes and
cisplatin enhanced the antitumor effect against melanoma, lung
cancer and breast cancer. Therefore, this could be a new strategy
for cancer treatment by using copper ion metal carriers to
eliminate cancer cells. However, the role of copper-induced
cuoproptosis in HCC has not been reported. Therefore, this
study aimed to explore the possible molecular markers and
drug targets of copper death in HCC, comprehensively analyze
the multiomics characteristics of cuproptosis related genes (CRGs),
including genomics, transcriptomics and tumor
microenvironment (TME), and extensively investigate the latent
function of cuproptosis in the TME, clinical characteristics and
prognosis of HCC to provide a new strategy and prediction model
for clinical diagnosis, treatment and prognosis evaluation.

2 Methods and materials

2.1 Data sources

The workflow chart of this study is shown in Supplementary
Figure S1. We downloaded 424 HCC patients with ribonucleotide
(RNA) sequences, clinical information and GSE76427, GSE52018,
GSE149614 datasets from the Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/) databases and Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). All raw
files were normalized and annotated by using “limma” package
in R, and the RNA sequences of fragments per kilobase million
(FPKM) in TCGA were converted to transcripts per kilobase
million (TPM) sequences. Then, batch effects of the three
datasets were eliminated by the “Combat” algorithm. After
integrating all datasets and excluding patients lacking overall
survival (OS) data, the clinical data of 526 HCC patients were
saved for succeeding analysis.
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2.2 Difference analysis and cluster analysis of
CRGs

We obtained 10 CRGs from previous publications [13].
According to the expression levels of CRGs in the HCC
genomic dataset, the R language “reshape2” and “ggpubr”
packages were used to analyze and plot the expression
differences of CRGs in tumor and normal samples. Then,
Kaplan‒Meier survival curves and interaction networks were
analyzed and plotted using the HCC clinical dataset. Finally,
according to the gene expression levels of CRGs, consensus
unsupervised clustering (CUC) analysis was performed using
the k-means method in the “ConensusClusterPlus” package to
classify all HCC patients into different molecular subtypes. The
principal component analysis (PCA) graph was drawn by
analyzing the expression levels of CRGs and typing results by
the “ggplot2” software package.

2.3 Difference analysis between CRG-
related subtypes

We compared the prognosis and clinical characteristics of
CRGS-related subtypes according to the clinical information files
and classification results of HCC patients and drew Kaplan‒Meier
survival curves and clinical characteristic heatmaps using R language
for visualization. Then, we used the R language “GSVA” package to
complete the gene set variation analysis (GSVA) enrichment
analysis. At the same time, the ssGSEA algorithm in the “GSVA”
package was used to quantitatively analyze the immune cells to
compare the immune infiltration fraction between different
subtypes.

2.4 Difference analysis between DEG-
related subtypes and functional annotation

At first, we used R language “limma” package with parameters
set to fold-change of 1.5 and adjusted p-value of <0.05 to extract
CRG-related genes. Gene ontology (GO) and Kyoto encyclopedia
of genes and genomes enrichment (KEGG) functional
enrichment analyses were performed. Then, univariate cox
regression analysis was performed on CRG-related genes to
screen for prognosis-related differentially expressed genes
(DEGs). The prognostic and clinical features between DEG-
related subtypes were compared using the R “survival”
package and the “PheATmap” package and visualized using
Kaplan‒Meier survival curves and heatmaps. In addition, the
differences in the expression of CRGs among the related types of
CRG-related genes were compared again using the R packages
“Reshape2” and “GGPubR.”

2.5 Prognosis model construction and
validation

First, 526 HCC patients were randomly divided into training
and test cohorts with 263 cases each according to the 1:1 ratio. The R

package “Glmnet” was used to include prognosis-related DEGs in
the Least Absolute shrinkage and Selection Operator (LASSO) and
multivariate Cox regression analyses. Then, risk scores (RSs) were
calculated for genes with nonzero regression coefficients. The RS
was calculated as follows: RS = ∑n

j�1Xj pCoefj, (n represent
number of prognosis-related DEGs, Xj and Coefj represent the
DEGs expression level and risk coefficient). According to themedian
value of RS, two cohorts were divided into low-risk and high-risk
groups, respectively. “ggalluvial” and “dplyr” are used to draw an
alluvial diagram to visualize the model building process. Based on
the typing results, RS differences were compared in CRG-related
subtypes and gene-related subtypes using the “limma” and “ggpubr”
packages, respectively. In addition, boxplots of the differential
expression of CRGs and immune checkpoints were constructed
by the “GGPLOT2” and “GGPUBR” packages. In addition, the
survival differences and the receiver operating characteristic
(ROC) curves were analyzed and plotted in the training and test
cohorts.

2.6 Establishment of a nomogram scoring
system

Based on the clinical data and grouping results, the “pheatmap”
package was used to visualize the correlation of RS with survival
status and the difference in expression of prognosis-related DEGs.
Then, the “rms” package was used to construct a nomogram scoring
system for predicting prognosis, and the “calibrate” function was
used to draw a calibration curve for evaluating the accuracy of the
prognostic prediction model.

2.7 Analysis of immune cell infiltration, TME
and CSCs

The 22 immune cell infiltration degrees of each sample were
evaluated by the “preprocessCore” and “e1071” packages, and
then the “CiberSort” algorithm was used to calculate the
correlation between immune cell infiltration degree and RS-
and prognosis-related DEGs. Next, we used the “estimate”
package to calculate the stromal score, immune score and
estimation score and further evaluated tumor purity. In
addition, we evaluated the relationship between CSCs and RSs
using cancer stem cell (CSC) score files.

2.8 Somatic mutation and drug susceptibility
analysis

Differences in somatic mutations of HCC patients were analyzed
using the “maftools” package and displayed in a waterfall diagram.
We continued to use the “pRophetic” software package and the
genomics of drug sensitivity in cancer (GDSC) database (https://
cancerrxgene.org) to calculate the semi-inhibitory concentration
(IC50) value of commonly used chemotherapy drugs in tumors,
and the Wilcoxon signed rank test was used to compare the
difference in IC50 values between the risk group and the low-risk
group. The filter condition was set to p < 0.001.
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2.9 Western blotting

We randomly collected tumor tissues and paracancerous tissues
from 3 HCC patients treated at the First Affiliated Hospital of Anhui
Medical University from March to April 2022. Tissue and normal
LO2 hepatocytes and Hep3b, Huh7 and LM3 HCC cells were
extracted with RIPA (Beyotime, Shanghai, China) after grinding
and filtration. Then, the tissue was lysed on ice and centrifuged. We
collected the supernatant and then the protein concentration was
determined by a BCA kit (Beyotime). After gel preparation,
electrophoresis, and transfer, the membrane was incubated with
primary (BEX1, 1:5000, 12390-1-AP, Proteintech), (G6PC, 1:5000,
66860-1-Ig, Proteintech), (NEIL3, 1:5000, 11621-1-AP,
Proteintech), (GCLM, 1:5000, 66808-1-Ig, Proteintech),
(NT5DC2, 1:5000, YLS-K0806, Yilisa) and secondary antibodies
(Anti-rabbit IgG, HRP-linked Antibody, 7074S, CST). For Western
blotting analysis, the proteins underwent separation by SDS‒PAGE,
nitrocellulose membrane transfer, quick blocker kit (Beyotime)
blocking. After that, the bands were detected by ECL Plus (EMD
Millipore, Billerica, MA, United States).

2.10 Single-cell analysis

GSE149614 raw data were processed in R using the “Seurat”
package, and cells within the tissue were filtered and visualized with
parameters of 500–6,000 expressed genes and mitochondrial
ratio >10%. After performing quality control (QC) and selecting
cells using the “CreateSeuratObject” algorithm. Then, we used the
Seurat function of FindIntegrateionAnchors to merge sample files
with common anchors among variables (dims = 1:20). We
performed PCA on the scaled data using the “JackStraw”
algorithm and ranked the PCA using the “ElbowPlot” function.
The FindClusters function was used to perform T-distributed
stochastic neighbor embedding (tSNE) dimensionality reduction
clustering (resolution = 0.2) on the first 20 PC data. The
FindMarkers function of Seurat and the CIBERSORT algorithm
were used to determine the expression of marker genes in each
cluster.

2.11 Cell viability, migration and invasion
assays

LM3 cells were purchased from. Then cells were cultured with
RPMI-1640 supplemented with 10% FBS (Beyotime, Shanghai,
China). Subsequently, two siRNAs were used to knock out the
expression of BEX1. Specifically, the sequences of siRNAs for
BEX1 were listed. Then, LM3 cells were cultured until the
density reached about 60%–70%, and plasmids, shRNA and
Lipofectamine™ 2000 diluents were prepared by serum-free
Opti-MEM medium to prepare transfection complexes. The
transfection complex was added to LM3 cells and cultured for
48 h. Then 5,000 cells with BEX1 siRNAs were cultured in 96-
well plate and incubated for 48 h at 37°C. Then the cell viability was
measured using CCK-8 kit. In addition, 24-well inserts were used to
perform cell migration and invasion assays. Briefly, LM3 cells were
infected with BEX1 siRNAs for 48 h. Then 5,000 cells were seeded in

the upper chamber with (migration assay) or without Matrigel
(invasion assay). Meanwhile, 500 μl fresh medium were
transferred to the low chamber and incubated for 24 h. After
that, cells were fixed by 3.7% paraformaldehyde and stained with
crystal violet. Cell images were obtained by fluorescence microscope
and counted using ImageJ.

2.12 Molecular docking

We used AutoDock Vina software for molecular docking (Trott
and Olson, 2010). Sorafenib was used as a ligand, and the key genes
BEX1, NEIL3, GCLM, G6PC and NT5DC2 were used as receptors.
The PDB format files were downloaded from the RSCB PDB
database (http://www.rcsb.org/). Convert the Suolafeini PDB
format to MOL2 format using Chem3D. Then, AutoDockTools
1.5.6 (https://autodock.scripps.edu/) was used to process receptor
proteins and small molecule ligands and saved as PDBQT format
files. During the molecular docking process, the Lamarckian
algorithm was used to identify the most binding mode. The
search space volume was > 27,000 Â3, the exhaustiveness was set
to 8 and the maximum number of conformations output was set
to 15.

2.13 Statistical analyses

The study was carried out under the R version 4.1.3, Strawberry
Perl version 5.32.1.1, GraphPad Prism 7 and ImageJ. *, **, ***
indicated p < 0.05, p < 0.01, p < 0.001, respectively. A p <
0.05 was considered statistically significant.

3 Results

3.1 Differential expression of CRGs and
identification of cuproptosis-related
subtypes

A total of 10 CRGs were obtained in this study for subsequent
analysis. First, the results of copy number variation (CNV) analysis
showed that there were clear CNVs in all genes except MIF1.
CDKN2A had the highest gene mutation frequency and was
mainly amplified on chromosome 9. The remaining CRGs also
had different degrees of deletion and amplification variation, and
their positions on the chromosome were also shown (Figures 1A, B).
In addition, we obtained results showed that the remaining CRGs,
except FDX1 andMIF1, were significantly highly expressed in tumor
tissues. Interestingly, CDKN2A, which had the highest frequency of
CNVs, also had the most significant differences in expression
(Figure 1C). This suggests that the expression levels of genes in
tumor tissues may be regulated by their CNVs. The results of the
interaction network showed that CDKN2A and FDX1 were
negatively correlated and were not found to be associated with
other CRGs, while other genes interacted closely. Among them,
FDX1, DLD and LIAS may be anticancer factors (Figure 1D).
Further survival analysis found that CDKN2A, DLAT, FDX1,
PDHA1, GLS and LIPT1 were associated with HCC prognosis
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(Figures 1E–J). Patients with highly-expressed FDX1 had a better
prognosis, which further verified the anticancer effect of FDX1. The
remaining five genes are the opposite. In addition, HCC patients
were classified by CUC analysis of CRGs. The obtained results
showed that k = 2 was the best choice, and the correlation between
samples in subtypes A and B was the highest (Supplementary Figure
S2). Besides, HCC samples can be separated into subtype A and
subtype B, which was also verified by PCA (Supplementary
Figure S3).

3.2 Differences in clinical features and
functional annotations of CRG-related
genes across subtypes

Kaplan‒Meier survival curves between different subtypes
showed that patients with subtype A had a longer OS time than
patients with subtype B (Figure 2A). Compared with subtype B,
patients with subtype A had lower TNM stage and clinical stage than

those with subtype B, the expression of FDX1 was relatively high,
while the other genes were highly expressed in subtype B
(Figure 2B). Moreover, GSVA suggested that subtype A was
primarily enriched in fatty acid, bile acid and amino acid
metabolism pathways, while cell cycle regulation, nucleic acid
repair, nucleic acid synthesis and metabolism pathways were
more likely to be found in subtype B (Figure 2C). The
dysregulation of these pathways can cause gene mutation which
can lead to abnormal cell metabolism or cell death. In the differences
of immune cell infiltration. We found that activated B cell, activated
CD8 T cell, eosinophilna, macrophagena, etc., degree was
significantly higher in subtype A than in subtype B, whereas
those of activated CD4 T cells and type 2 T helper cells were
lower than those of subtype B (Figure 2D). To explore the
underlying molecular behaviors of cuproptosis pattern, we
identified 614 CRG-related DEGs and performed functional
annotation analysis. These CRG-related DEGs were mainly
enriched in biological processes such as cell cycle regulation and
DNA replication (Supplementary Figure S4A). KEGG analysis

FIGURE 1
Genetic and transcriptional alterations of CRGs in HCC. (A) CNV of CRGs in 424 samples in TCGA. (B) Chromosomal localization of CRGs with CNV.
(C) Expression of CRGs. (D) CRGs interaction network. (E–J) Kaplan-Meier survival analysis of 6 CRGs associated with HCC prognosis.
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showed that these genes were mainly enriched in cell cycling and
DNA replication signaling pathways (Supplementary Figure S4B).

3.3 Identification of gene subtypes and
construction of a prognostic model

First, we obtained 382 DEGs that were associated with
prognosis. We divided HCC patients into two subtypes, A and B,
by CUC analysis (Supplementary Figure S5). Kaplan‒Meier survival
curves showed that patients of subtype A survived longer than those
of subtype B (Figure 3A). Combined with clinical characteristics, a
positive correlation was found between B subtype pattern and
advanced TNM staging, BCLC staging, and high expression of
prognosis-related genes (Figure 3B). In addition, FDX1, DLD,
CDKN2A, DLAT, PDHB, PDHA1, GLS and LIPT1 also showed
significant differences in expression between the two subtypes.
Among them, only FDX1 was highly expressed in subtype A,
which further verified the role of FDX1 as an anticancer factor
(Figure 3C). We then constructed a predictive model based on CRG-
related genes. LASSO regression analysis was performed on CRG-
related DEGs with prognostic value, and the risk coefficient of each

CRG-related DEGs was evaluated. Thirteen prognostic CRG-related
DEGs were retained according to the minimum partial likelihood
deviance (Figures 3D, E). Then, we performed multivariate Cox
regression analysis on 13 genes related to prognosis and finally
found that BEX1, G6PC, GCLM, NEIL3 and NT5DC2 CRG-related
genes are independent influencing factors of HCC. The Sankey
diagram shows the distribution and correlation of patients with
different prognoses in distinct subtypes and RS subgroups
(Figure 3F). Among the different gene subtypes, the RS of
subtype B was higher than that of subtype A (Figure 3G).
Interestingly, the difference in CRG expression between the two
groups was consistent with the difference between gene subtypes.
Only FDX1 was highly expressed in the low-risk group, while DLD,
CDKN2A, DLAT, PDHB, PDHA1, GLS and LIPT1 were all highly
expressed in the high-risk group (Figure 3H). This further
demonstrates the anticancer effect of FDX1. In addition, there
was also a clear correlation between RS and immune
checkpoints, including programmed cell death protein 1 (PD-1),
programmed cell death 1 ligand 1 (PD-L1), cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) and cluster of differentiation 44
(CD44), which were highly expressed in the high-risk group
(Figure 3I).

FIGURE 2
Difference analysis in distinct subtypes and functional annotations of CRGs related genes. (A) Survival curves between CRGs subtypes. (B) Clinical
characteristics of CRGs subtypes. (C) GSVA enrichment analysis. (D) Differences in immune cell infiltration.
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3.4 Validation of the prognostic model and
development of a nomogram

Based on the median RS, the patients in the training and test
groups were sorted according to the RS (Figures 4A, B). Survival
status showed that patients in high-risk group of training group

had a worse outcome than those in the low-risk group. We also
found the similar results in the test group (Figures 4C, D). The
heatmaps showed that NEIL3, GCLM and NT5DC2 had a higher
expression level in the high-risk group, and G6PC and BEX1 were
expressed at low levels (Figures 4E, F). Furthermore, in both the
training and test groups, Kaplan‒Meier survival curves showed

FIGURE 3
Identification of hub genes and construction of the prognostic model. (A) Survival curves between the hub genes subtypes. (B) Clinical
characteristics of DEGs. (C) Expression of CRGs between DEGs subtypes. (D,E) LASSO regression analysis and partial likelihood deviance. (F) Alluvial
diagram of subtype and RS distributions. (G) Differences of RS in DEGs clusters. (H,I) Expression of CRGs and immune checkpoints.
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that the survival rate in the high-risk group was significantly lower
than that in the low-risk group (Figures 5A, B). This may be related
to the high expression of BEX1 and G6PC in the low-risk group,
indicating that BEX1 and G6PC may have a synergistic effect with
FDX1. In addition, to assess the efficacy of the prognostic model,
the areas under the curve (AUCs) of the training group at 1, 3, and
5 years were 0.792, 0.756, and 0.740, respectively. Likewise, the test
group also had the similar performance, with AUCs of 0.720, 0.688,
and 0.641 at 1, 3, and 5 years, respectively (Figures 5C, D).
Therefore, this study created a nomogram that integrated
multiple molecular markers and clinicopathological parameters
to predict the prognosis (Figure 5E). Meanwhile, the calibration
diagram also demonstrated that the model had a perfect reliability
(Figure 5F).

3.5 Correlation of RSwith immune cells, TME
score and somatic mutation and drug
susceptibility analysis

The protein interaction network between CRG-related DEGs
showed that five key prognosis-related genes in the prognostic
model were negatively correlated with FDX1. Among them,
NEIL3 and NT5DC2 were positively correlated with
CDKN2A, and the correlation was the highest (Figure 6A). In

addition, we found RS was positively correlated with
M0 macrophages and negatively correlated with resting
memory CD4+ T cells (Figures 6B, C). Among the five key
prognosis-related genes, G6PC, GCLM, NEIL3 and
NT5DC2 were significantly associated with a variety of
immune cells, among which G6PC was positively associated
with M1 macrophages, and NEIL3 was positively correlated
with activated memory CD4+ T cells and negatively correlated
with resting memory CD4+ T cells (Figure 6D). TME difference
analysis found that the stromal score in the low-risk group was
significantly higher than that in the high-risk group (Figure 6E).
Our study also assessed the correlation between CSC and RS and
concluded that RS was positively correlated with CSC
(Figure 6F). Furthermore, we analyzed the somatic mutation
profile. The obtained results showed that the top 10 mutated
genes in the two groups were TP53, CTNNB1, TTN, MUC16,
ALB, PCLO, APOB, RYR2, MUC4 and FLG. Among them, the
PCLO mutation frequency was higher in the low-risk group,
while other genes were lower than those in the high-risk group
(Figures 6G, H). Finally, we evaluated the association between RS
and drug sensitivity. We found that the IC50 values of various
chemotherapeutics were significantly different between the high-
and low-risk groups, including axitinib, gefitinib and erlotinib,
sorafenib, vinorelbine, gemcitabine, nilotinib and tipifarnib
(Supplementary Figures S6A–H).

FIGURE 4
Prognostic value of the CRGs signature. (A,B) RS distribution. (C,D) Survival status. (E,F) Expression of the 5 hub genes.
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3.6 BEX1 are differentially expressed in
hepatocytes

Detecting protein expression in HCC cells found that these five key
genes were abnormally expressed to varying degrees in different HCC
cells, especially BEX1 (Figure 7A). Compared with normal tissues, the
expression levels of BEX1 in tumor tissues were significantly different,
while the GCLM, G6PC, NEIL3 and NT5DC2 protein bands were
unclear, which may be related to their low expression levels (Figure 7B).
This was confirmed by single-cell analysis, which showed that there was
no significant expression in hepatocytes (Figures 7K, L). To further
explore the cellular expression of BEX1 inHCC tumors, 18HCC samples
in the GSE149614 dataset were analyzed. First, we controlled the effects
of low-quality cells, mitochondrial genes, ribosomal genes, and

hemoglobin. The correlations between the total number of unique
molecular identifiers (UMIs) in each cell and the mitochondrial ratio,
the total number of genes, and the hemoglobin ratio were 0.11, 0.91,
and −0.01, respectively (Supplementary Figures S7A, B). No significant
separation trend of HCC cells was observed when PCA was used to
reduce the dimension, and we finally selected the top 20 PCs for further
analysis based on the elbow plots (Supplementary Figures S5C, D). tSNE
analysis classified HCC cells into 30 clusters (Figure 7C). The cells were
annotated and divided into immune cell clusters and non-immune cell
clusters (Figure 7D). We then proceeded to annotate eight subclusters
using single-cell markers, including B cells, endothelial cells, hepatocytes,
macrophages, monocytes, NK cells, smooth muscle cells and T cells
(Figure 7E). In addition, normal and tumor tissues were similarly
clustered and annotated by tSNE (Figures 7F, G). Finally, we tested

FIGURE 5
Prediction model and nomogram. (A,B) Kaplan-Meier curves in the training and test cohorts. (C,D) ROC curves estimate prognosis value. (E)
Nomogram for predicting the OS of HCC patients. (F) Calibration curves of the nomogram.
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the expression patterns of target genes inHCC cell clusters. The obtained
results showed that the expression levels of BEX1 were the same as
Western blotting, and they were only expressed in hepatocytes (Figures
7H–J). This finding indicates that BEX1may be the key genes mediating
cuproptosis in HCC cells.

3.7 Knockdown of BEX1 inhibited HCC cell
proliferation, invasion and migration

We found that BEX1 had the most significant differences in the
five hub genes after detection of liver cancer cells, tissues and single-
cell analysis. In order to further explore the biological function of
BEX1, we used two methods to knockdown BEX1, both of which

could effectively silence the expression of BEX1 (Figure 8C). The
results of cell viability experiment showed that the viabilities of liver
cancer cells decreased significantly after 48 h of BEX1 knockdown
compared with the control group (Figure 8A). In addition, transwell
results showed that the invasion and migration of LM3 cells with low
BEX1 were significantly reduced (Figure 8B). Finally, we also detected
the expression of epithelial mesenchymal transition (EMT) markers
including E-cadherin, N-cadherin and Vimentin. The results
indicated that BEX1 knockdown promoted E-cadherin expression
and decreased the expression of N-cadherin and Vimentin. Which
demonstrated that inhibition of BEX1 suppressed liver cancer cells
EMT pathway (Figure 8C). Those results indicated that BEX1 deletion
inhibited the proliferation, invasion andmigration and EMT pathway
of HCC cells.

FIGURE 6
TME characteristics and drug susceptibility. (A)The interaction network of CRGs and hub genes. (B,C) Correlation between immune cells and RS. (D)
Correlations between the immune cells and 5 hub genes. (E) Differences in the StromalScore and ImmuneScore. (F) Correlation of RS with CSCs. (G,H)
Mutation of genes in distinct RS group.
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3.8 Sorafenib specifically binds to key genes

To further explore whether the target gene may be a potential
target of HCC immunotherapy, we used sorafenib as the ligand
and the hub gene as the receptor for molecular docking
analysis. The obtained results showed that the binding energies
of sorafenib to G6PC, GCLM, BEX1, NT5DC2 and
NEIL3 were −9.6, −8.5, −6.7, −8.3, and −8.0 kcal/mol,
respectively. These hub genes can bind to sorafenib and form a
stable conformation (Figure 8D). This finding suggests that the high

expression of BEX1 in hepatocytes may be a potential therapeutic
target to mediate cuproptosis in HCC.

4 Discussion

Numerous studies have indicated that PCD plays a key role in
tumorigenesis and progression of HCC and antitumor response,
with the powerful immunotherapeutic potential (Demirtas and
Gunduz, 2021). However, the specific function in anti-tumor

FIGURE 7
Western blotting and single cell analysis of the 5 hub genes. (A,B)Western blotting in HCC cell and tumor tissue. (C–G) Cell clusters and annotates
for GSE149614 of HCC patients. (H–L) Expression pattern of 5 hub genes at the single-cell level in normal and tumor cell clusters through t-SNE analysis.
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remains unknown, and research on cuproptosis is even scarcer.
Therefore, this study extensively explored the copy number
variation, clinical feature relationship, TME and immune
infiltration of CRGs in HCC at the transcriptome level, single-
cell level and network pharmacology level and revealed that GCLM
and BEX1 may be potential therapeutic targets mediating
cuproptosis in HCC.

CNV is a characteristic change in neoplastic diseases that has
been gradually recognized in the postgenomic era. The human
genome contains numerous repetitive sequences of varying
frequencies and intensities, and CNV is defined as a type of
alteration involving deletion, insertion, replication and multilocus
variation of gene segments ranging from 1 Kb to 3 Mb (Kinross
et al., 2012; Shi et al., 2021). Current studies suggest that CNV is not
only the basis of individual genetic differences but also plays an
essential role in tumorigenesis, invasion and metastasis. CNV-
related indicators may become ideal tumor diagnostic markers
(Behroozi et al., 2020; Pariyar et al., 2021). Huang et al. (2021)
found that estrogen-related receptor alpha (ESRRA) CNV was

significantly correlated with the histological grade of ovarian
cancer (OC). The results indicated that CNV has the function in
affecting biological phenotype and heterogeneity of tumors and
promoting tumor progression. However, the above mentioned study
evaluated only the CNV of genes alone and lacked a comprehensive
study combining CNV and gene expression. In this study, we
analyzed them together, and the characteristics of cuproptosis
genes in HCC were more accurately identified. We found clear
CNVs in all CRGs except MIF1. Among them, CDKN2A had the
highest mutation frequency and expression difference, while
FDX1 had no difference in expression between normal tissue and
tumor tissue, although there was a higher amplification mutation.
Similarly, previous studies by Ghaffari et al. (2016) showed that the
CNV of the baculoviral inhibitor of apoptosis repeat-containing
5 gene is highly increased in tumor tissue and may become a marker
for early cancer detection and prognosis. Therefore, this study
suggests that CNV detection of these highly expressed CRGs may
contribute to the diagnosis of HCC. Of note, CNVs can also activate
proto-oncogenes and reduce the activity of tumor suppressor genes,

FIGURE 8
BEX1 biological function and molecular docking. (A) Cell viability experiment of BEX1 knockdown. (B,C) Transwell results and cadherin proteins
expression in HCC cell with sh-BEX1. (D) Molecular docking of sorafenib and the 5 hub genes.

Frontiers in Cell and Developmental Biology frontiersin.org12

Cao et al. 10.3389/fcell.2023.1240390

181

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1240390


thereby mediating the pathogenesis and prognostic mechanisms of
various tumors, including liver cancer (Diskin et al., 2009; Nik-
Zainal et al., 2016). In the analysis of prognosis and clinical features
in this study, it was found that CNV genes were closely related to OS,
disease progression and immune invasion in HCC patients. This
finding indicates that CNV genes, such as CDKN2A, plays a key role
in the escape from immune surveillance.

Furthermore, this study also screened CRG-related genes to
construct an HCC risk model for predicting prognosis, searching for
immunotherapy strategies and drug targets. The obtained results
indicated that five CRG-related genes were independent prognostic
factors of HCC. We further constructed a new prognostic model
based on these genes. Compared with traditional TNM staging, this
model integrates multiple molecular markers, clinicopathological
parameters and other multilevel prognostic indicators, which can
not only identify HCC patients with different risks but also more
accurately and dynamically monitor tumor progression and
prognosis. Similar studies have been conducted in previous
studies, such as by Song et al. (2021), who screened pyroptosis-
related genes and constructed a colorectal cancer (CRC) risk model.
Based on these model results, Liao et al. (2022) found that
FOXP2 promotes CRC pyroptosis by interacting with caspase-1.
In addition, several studies have reported the role of cuproptosis in
HCC. Zhao et al. (2022) explored cuproptosis related genes (CRGs)
related to HCC survival and clinical features. And they found
20 CRGs were correlated to HCC outcomes and might be used
as a prognostic biomarker for HCC. Besides, Zhang et al. (2022)
investigated the association between FDX1 expression and cancer
stages and outcomes in HCC. They constructed the model based on
FDX1 and its related genes. And the AUC values of cuproptosis-
related risk score (CRRS) in predicting the OS were 0.72 and 0.68 at
1 and 3 years respectively. Similarly, Yan et al. (2022) developed a
predictive model (GCSH, LIPT1 and CDKN2A) based on CRGs in
HCC. The AUC values of ROC analysis for 1 year OS were from
0.614 to 0.683. And they found LIPT1 might be a target in the
treatment of HCC. In our study, a predictive model was constructed
consists of five genes (BEX1, NEIL3, GCLM, G6PC and NT5DC2)
through comprehensive bioinformatics analysis. The model was
validated by an internal dataset with an AUC was
0.720–0.792 for 1 year, 0.688–0.756 for 3 years and
0.641–0.740 for 5 years, respectively, which showed a robust
performance than previous models. Besides, molecular docking
and experiments indicated that BEX1 may mediate the
cuproptosis of hepatocytes as potential therapeutic targets for
HCC. Therefore, the five key genes and risk models screened in
this study play an extremely vital role in the diagnosis and treatment
of HCC. On the other hand, the accuracy of quantitative analysis of
these genes is not less than that of whole transcriptome sequencing,
and it is more economical and clinically feasible.

With the great breakthrough in immunotherapy, an increasing
number of researchers have realized that tumor cells do not exist in
isolation, and the TME in which they are located plays an
indispensable role in tumor progression. The TME is mainly
composed of immune cells including lymphocytes, macrophages
and granulocytes in the center and fibroblasts, inflammatory cells
and various signaling molecules in the surroundings (Turley et al.,
2015; Seager et al., 2017). Numerous evidence have shown that the
cellular components in the TME are strongly linked to the

progression, metastasis and efficacy of HCC (Chew et al., 2017;
Satilmis et al., 2021). For example, Mano et al. (2019) found that
bone morphogenetic protein 4 (BNP-4) could enhance the
aggressiveness of HCC by activating fibroblasts (CAFs) to secrete
cytokines in the TME. Besides, tumor-associated macrophages
(TAMs) also exhibited different activation states in the TME
depending on the different stimulus. Previous studies have shown
that TAMs in HCC tumor stroma produce various proinflammatory
cytokines, including TNF-α, IL-β, IL-6 and IL-23, which induce the
expansion of CD4+ Th17 cells, according to the overexpression of
PD-L1, CTLA4 to inhibit antitumor immunity (Kuang et al., 2010).
Previous studies have mainly concentrated on the innate T cell
immune response. However, in the ongoing exploration of advanced
HCC and other cancers, immunotherapy methods increasingly
focus on immune checkpoint inhibitors (ICIs), such as CTLA-4,
PD-1 and PD-L1, which lock the immune checkpoint inhibition
pathways (Kudo, 2019a). These results indicate that ICIs based on
TME changes will be a new therapeutic strategy for HCC.

However, in this research, we found thatmultiple immunemarkers,
such as PD-L1, CD276, CD80 and CTLA4, were significantly higher in
the high-risk group with worse prognosis than in the low-risk group,
and RS was significantly correlated withM0macrophages and memory
CD4+ T cells. This suggests that HCC hepatocytes may achieve immune
resistance or immune escape by overexpressing PD-L1 and binding to
PD-1 on the surface of specific cytotoxic T cells. Of course, this
mechanism is more complicated in practice. For example, Kudo
(2019b) found that activated CD8+ T cells released interferon
gamma (IFN-γ) during the process of initial cellular immunity,
which not only attacked tumor cells but also engaged with receptors
on the surface of cancer cells to upregulate PD-L1 and inhibit antitumor
effects. Currently, research on PD-1 and PD-L1 inhibitors is in full
swing and has become an important part of the systemic treatment of
HCC in clinical practice. Numerous studies demonstrated that
nivolumab and pembrolizumab have shown efficacy in the
treatment of HCC especially as an alternative strategy after sorafenib
failure or unacceptable toxicity (El-Khoueiry et al., 2017; Zhu et al.,
2018). In addition, as a transmembrane receptor on the surface of
activated T cells, the expression of CTLA4 is strictly regulated. In resting
or naive T cells, CTLA4 is mainly located in intracellular vesicles (Valk
et al., 2008). However, on activated T cells, CTLA4 directly competes
with CD28 for B7 ligands to mediate tumor immune responses
(Hathcock et al., 1993). In addition, CTLA4 activation also
supported the transformation of CD4+ T cells into regulatory T cells
by increasing transforming growth factor-β (TGFβ) secretion and
forkhead box protein 3 (FOXP3) expression (Zheng et al., 2006). In
fact, many mechanisms are involved in the tumor immune response in
the TME, but the specific effects are still controversial.

In addition, we detected the protein level of five important genes
and found that the expression of BEX1 in tumor cells and tissues was
higher than that in normal liver cells and tissues. To further explore
the biological function of BEX1, cell viability experiment and
transwell results showed that BEX1 deletion inhibited the
proliferation, invasion and migration of HCC cells. These results
suggest that BEX1 may play a key role in HCC tumorigenesis and
development. However, only few studies described the role of
BEX1 in HCC. BEX1 (brain-expressed X-linked protein 1),
attached to the BEX family and consists of five proteins with
unclear functions (Kazi et al., 2015). BEX1 was initially thought
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to be associated with retinoic acid differentiation in teratomas (Faria
et al., 1998). Later, multiple research teams successively reported its
expression changes in many cancers (Quentmeier et al., 2005; Foltz
et al., 2006; Kazi et al., 2015). Current research suggests that in
addition to being involved in the regeneration of neuronal axons and
regulating the cell cycle, BEX1 is also involved in the proliferation
and invasion (Vilar et al., 2006; Khazaei et al., 2010; Doi et al., 2020;
Lee et al., 2021) showed that BEX1 and BEX4 can improve the tumor
formation and radio resistance of glioblastoma multiforme cells. In
breast cancer, overexpression of BEX1 and BEX2 can inhibit the
apoptosis of tumor cells (Naderi et al., 2007). Deficiency of
Bex1 expression led to the decrease of cell proliferation, colony
and tumor formation, and the increase of cell apoptosis in acute
myeloid leukemia (Lindblad et al., 2015). These studies all suggest
that BEX1 may be an oncogene, but there is still a lack of studies on
the gene, especially in HCC. Sagawa et al. (2015) showed that
BEX1 was upregulated in Cx32ΔTg rat liver, and knockdown of
BEX1 could significantly inhibit the growth of rat hepatoma cell
lines. In human HCC studies, Wang et al. (2021) discovered that
BEX1 is an oncofetal protein that interacts with RUNX family
transcription factor 3 (RUNX3) in hepatoblastoma (HB) and
CSC-HCC to block β-catenin transcription and activate the Wnt/
β-catenin signaling pathway, thereby regulating the self-renewal of
hepatic CSCs. These results indicate that BEX1 is a promising
therapeutic target forHB and CSC-HCC, and targeting the BeX1-
mediated Wnt/β-catenin signaling pathway may help to resolve the
heterogeneity and high recurrence rate of HCC.

Previous studies also explored the potential targets of cuproptosis in
HCC. For example, FDX1, LIPT1, DLAT, CDKN2A and GLS were
reported to have potential value as cuproptosis targets in HCC. Zhang
et al. (2022) found FDX1 was downregulated in HCC, and higher
expression of FDX1 was related to a better outcome. Beside,
FDX1 inhibited the proliferation and colony formation of tumor
cells in the presence of copper ions and this inhibitory effect was
diminished by using tetrathiomolybdate (TTM) to chelate copper ions,
which indicated that FDX1 exerted anti-tumor effects through
cuproptosis (Li et al., 2022). And Yan et al. (2022) revealed that
LIPT1 was higher expressed in HCC and patients with low
LIPT1 expression had longer OS than those high LIPT1 expression.
Cell proliferation assay showed that LIPT1 depletion inhibited cancer
viability in HCC cells. Besides, LIPT1 knock down significantly
suppressed cell migration and invasion capacity in HCC cells.
Similar results were found in DLAT (Yang et al., 2023), CDKN2A
and GLS (Ma et al., 2023). In our study, we found BEX1 deletion
inhibited the proliferation, invasion and migration and EMT pathway
of HCC cells. Besides, BEX1 can bind to sorafenib and form a stable
conformation which further suggests that the BEX1 in hepatocytes may
be a potential therapeutic target to mediate cuproptosis in HCC.

Furthermore, we detected the protein level of five important
genes and found that the expression of the other genes except
BEX1 in tumor cells and tissues was higher than that in normal
liver cells and tissues. To further explore the specific cellular
expression patterns of these genes in HCC, we conducted
scRNA-seq data to identify the distribution of G6PC, GCLM
NEIL3 and NT5DC2 in different cell subclusters in HCC tissues
including HCC tumor cells and non-tumor cells. And the results
clearly revealed that GCLM and G6PC were only highly expressed in
HCC cells, while lowly expressed in non-tumor cells. The expression

of NEIL3 and NT5DC2 was not obvious in hepatocellular carcinoma
cells. These results suggest that GCLM and G6PC regulate HCC
development directly on the target of hepatocytes rather than other
cells, which provides potential therapeutic targets.

Glucose-6-phosphatase (G6PC) is a component critical for
catalyzing glycogenolysis, and the downregulated of G6PC
enhances glucose storage in premalignant cells (Franco et al.,
2005; Resaz et al., 2014), and glycogen accumulation is a key
carcinogenic event in the malignant transformation of the liver
(Liu et al., 2021). Bioinformatics analysis demonstrated that low
expression of G6PC was related to poor outcomes in HCC (Tian and
Liao, 2022). However, there still is an empty in studies related to the
regulation of copper by BEX1 and GP6C.

GCLM is a glutamate cysteine ligase modifier subunit that is the
main component of glutathione (GSH) synthetase and participates
in the synthesis and metabolism of GSH on multiple levels, and
increasing evidence has shown that GSH metabolic dysregulation is
involved in the pathophysiological mechanisms of various diseases,
including diabetes, liver fibrosis, alcoholic liver disease, and
malignant tumors (Liu and Gaston, 2010; Lv et al., 2019; Shen
and Wang, 2021). Previous studies have shown that HCC patients
showed higher levels of oxidative stress markers and low levels of
GSH and GSH-related antioxidant enzymes in plasma compared
with nonalcoholic steatohepatitis patients (Shimomura et al., 2017).
The imbalance between high oxidative stress and low antioxidant
capacity may be an important reason for the occurrence and
development of HCC. Therefore, regulating the expression of
GCLM may indirectly play an essential function in the
development of HCC. In addition, studies have shown that
GCLM expression is mainly regulated by transcription factors,
including activator protein-1 (AP-1), nuclear factor kappa B
(NFκB) and nuclear factor erythroid 2 related factor 2 (Nrf2)
(Jaiswal, 2004; Yang et al., 2005; Roos et al., 2020) confirmed
that treatment of human hepatocellular carcinoma (HepG2) cells
with the receptor tyrosine kinase inhibitor lapatinib activates the
Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 signaling
pathway, thereby upregulating GCLM levels and inducing GSH
synthesis. Most interestingly, Thai et al. (2021) found that copper
nanoparticles (Cu NPs) have the most significant effect on NrF2-
mediated cytotoxicity, and upregulated GCLM can be used as a
biomarker for Cu NP exposure in HCC cells. This is similar to our
study, indicating that GCLM is more sensitive to copper damage and
may be a key target in mediating cuproptosis in hepatocytes.

Finally, we verified the potential role of these hub genes as
therapeutic targets in HCC. We performed drug-target network and
molecular docking analyses with sorafenib as the ligand and the hub
gene as the receptor, and the obtained results showed that BEX1, G6PC
and GCLM could bind to sorafenib and form stable conformations.
Sorafenib, as a multiple-target tyrosine kinase inhibitor (TKI), has the
functions of anti-angiogenesis and anti-proliferation, besides it can also
prolong the overall median survival time of patients with advanced
HCC (Llovet et al., 2008). Two important clinical trials, the Asia-Pacific
and Sorafenib HCC Assessment Randomized Protocol (SHARP), also
showed that sorafenib has a powerful function in improving the
prognosis of patients with HCC (Cheng et al., 2009; Vogel and
Saborowski, 2020). In addition, Sorafenib is an effective first-line
treatment in patients with advanced HCC (Xing et al., 2021). In
vitro experiments revealed that sorafenib inhibits tumor cell viability,

Frontiers in Cell and Developmental Biology frontiersin.org14

Cao et al. 10.3389/fcell.2023.1240390

183

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1240390


promotes cell apoptosis in HCC cells (Xie et al., 2018). Therefore, we
used sorafenib as the ligand and the hub gene as the receptor for
molecular docking analysis.

Although current ICIs have opened up a new strategy in treating
malignant tumors, sorafenib is still the first-line drug for HCC
chemotherapy (Benson et al., 2021). In recent years, studies on the
discovery of new efficacy and potential therapeutic targets for
known drugs are not uncommon; Pushpakom et al. (2019) found
that Raloxifene was initially used to treat osteoporosis and was later
approved for the treatment of breast cancer. Additionally, a study by
Pang et al. (2019) is similar to ours; they confirmed that C3 and
ANXN1 can stably bind to Vorinostat, which can be used as
potential therapeutic targets for papillary renal cell carcinoma
through genetic screening and molecular docking. Therefore, it is
reasonable to speculate that BEX1, G6PC and GCLM can be used as
potential therapeutic targets of HCC to mediate the mechanism of
cuproptosis in hepatocytes.

Nevertheless, there are still several limitations in this study.
First, this is a prospective study, outcomes can be affected by the
introduction of unknown variables during follow-up, or changes in
known variables including treatment modality disease and
surgery-related complications. Second, our prognostic model
was obtained based on TCGA and GEO data but lacked
validation with external datasets, limited the breadth of its use.
Third, we investigated the cellular molecular function of BEX1 in
HCC but did not explore the interaction between BEX1 and copper
ions in hepatic tumor cells, therefore, we could not clarify whether
the BEX1-regulated cellular activity was related to copper ions.
Finally, the specific mechanism by which BEX1 regulates HCC
progression remains unclear. In the future studies, external
datasets or one’s own data to assess the stability of the model is
needed. Furthermore, in vivo and in vitro experiments are needed
to investigate the exact mechanism by which BEX1 regulates
cuproptosis especially in the presence of copper ions or when
activity is inhibited.

5 Conclusion

This study extensively explored the multi-omics features of
CRGs in HCC, including CNV, clinicopathological indicators,
prognosis, immune infiltration, and TME, and constructed a
prognostic prediction model integrating multiple molecular
markers and clinicopathological parameters, which offers a
new method for clinical diagnosis and prognosis evaluation.
Meanwhile, GCLM and BEX1 were identified as hub genes,
which are potential therapeutic targets to mediate the
cuproptosis program in HCC cells.
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