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Editorial on the Research Topic
Cuproptosis and tumor

As a trace element, copper is widely involved in the physiological activities of cells and
plays an important role. Accumulation of copper in cells can induce oxidative stress and
disrupt cellular function, thus copper homeostasis in cells is strictly regulated. Cuproptosis is
a new type of programmed cell death induced by copper and is different from other types
such as apoptosis, pyroptosis, and ferroptosis (Tsvetkov, et al., 2022). Copper ions bind to
lipoacyl proteins during the tricarboxylic acid (TCA) cycle, leading to abnormal
oligomerization of lipoacyl protein (Li, et al.,, 2022). In addition, the level of iron-sulfur
cluster proteins can be reduced by copper ions, resulting in toxic stress reactions in proteins
and leading to cell death. Cuproptosis impacts the pathogenesis of various diseases, including
hepatolenticular degeneration, neurodegenerative diseases, and cancer (Wang, et al., 2023).
Therefore, targeting cuprotosis may become a potential treatment method for various
diseases and has attracted widespread attention.

This Research Topic focuses on the molecular mechanism of cuprotosis in the
development of tumors and the potential therapeutic approach to targeting cuprotosis.
Based on the significant impact of cuproptosis in the pathogenesis of colorectal cancer,
Li et al. identified potential cuprotosis-related genes (CRGs) and developed a new
predictive model using LASSO regression and multivariate Cox stepwise regression in
the TCGA dataset, which evaluates the immune characteristics of colorectal cancer
patients while predicting their prognosis. In addition, Wang et al. comprehensively
analyzed the relationship between CRG and TME in colon adenocarcinoma (COAD),
constructed a CRG risk scoring system, and accurately predicted the survival rate of
COAD patients. The CRG risk scoring systems have provided clinical doctors with new
insights to develop more effective and personalized treatment strategies. Fan et al.
designed a new nomograph containing CRG scores and clinical characteristics, which
can predict the 3-year, 5-year, and 7-year recurrence risk of ER + breast cancer. Liu et al.
revealed the potential impact on the overall survival period, immune invasion, drug
sensitivity, and metabolic spectrum of breast cancer through CRG. Similarly, scholars
have also explored the prognostic value of CRG in prostate adenocarcinoma, lung
adenocarcinoma, and gastric cancer.

5 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fcell.2023.1307501/full
https://www.frontiersin.org/researchtopic/48806
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1083956/full
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1152681/full
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1111480/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1145080/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1307501&domain=pdf&date_stamp=2023-11-24
mailto:liubing9909@whu.edu.cn
mailto:liubing9909@whu.edu.cn
mailto:laurence_ljn@163.com
mailto:laurence_ljn@163.com
mailto:guojun.chen@mcgill.ca
mailto:guojun.chen@mcgill.ca
mailto:chun.xu@uq.edu.au
mailto:chun.xu@uq.edu.au
mailto:lin-lin.bu@whu.edu.cn
mailto:lin-lin.bu@whu.edu.cn
https://doi.org/10.3389/fcell.2023.1307501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1307501

Liu et al.

The impact of cuproptosis on the occurrence and development
of hepatocellular carcinoma, as well as its potential targets and
prognostic value, seems to have aroused great interest. For example,
Shao et al. and Shi et al. developed scoring models based on CRG to
predict the prognosis of hepatocellular carcinoma and revealed the
potential synergistic effect of novel immunotherapies such as
TIGHT, CD274, and LAG-3 on cuproptosis. Cao et al. explained
the characteristics of cuproptosis in hepatocellular carcinoma
through single-cell sequencing and genetic multiomics and
identified that BEX1 may be a key hub gene mediating
cuproptosis in hepatocellular carcinoma and serve as a potential
therapeutic target. Wang et al. explained the potential role of
targeted cuproptosis in targeted immune microenvironment
therapy for hepatocellular carcinoma and proposed that CRG can
serve as a biomarker for immune checkpoint inhibitor therapy.

Although this Research Topic has collected many interesting
and valuable research results, the relationship between cuproptosis
and tumors still needs to be further explored. A deeper
understanding of the role of cuproptosis in different tumor
mechanisms should be explored, which may include aspects such
as cell death, energy metabolism, and tumor immunity (Chen, et al.,
2022). In addition, the role of targeted cuproptosis in tumor
treatment should also be taken seriously. Recent studies have
shown that inducing abnormal programmed cell death may be a
potential method for treating and preventing tumor diseases.
targeting cuproptosis to
cuproptosis in tumor cells provides a new approach for tumor

Therefore, increase the level of
treatment. Cuproptosis, as an immunogenic death (ICD), can

promote the release of tumor antigens, increase antigen
presentation levels, promote T cell activation, and enhance anti-
tumor immunity (Xie, et al., 2023). Therefore, targeting cuproptosis
as a supplement to immunotherapy or an adjuvant therapy to
improve the effectiveness of immunotherapy has enormous
potential application value. The combination of cuproptosis with
other therapies such as chemotherapy, radiotherapy, and
photodynamic therapy has also received attention (Li, et al,
2023). Currently, drug delivery systems have received a lot of
attention. The drug delivery system can accurately deliver drugs
that induce cuproptosis to the tumor microenvironment. While
improving the level of cuproptosis in tumor cells, it can reduce the
systemic toxicity and side effects of drugs, thereby improving the
survival period and quality of life of tumor patients. This will be the

focus of future research.
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Objective: Gastric cancer has a poor prognosis and high mortality. Cuproptosis, a
novel programmed cell death, is rarely studied in gastric cancer. Studying the
mechanism of cuproptosis in gastric cancer is conducive to the development of
new drugs, improving the prognosis of patients and reducing the burden of disease.

Methods: The TCGA database was used to obtain transcriptome data from
gastric cancer tissues and adjacent tissues. GSE66229 was used for external
verification. Overlapping genes were obtained by crossing the genes obtained by
differential analysis with those related to copper death. Eight characteristic genes
were obtained by three dimensionality reduction methods: lasso, SVM, and
random forest. ROC and nomogram were used to estimate the diagnostic
efficacy of characteristic genes. The CIBERSORT method was used to assess
immune infiltration. ConsensusClusterPlus was used for subtype classification.
Discovery Studio software conducts molecular docking between drugs and
target proteins.

Results: We have established the early diagnosis model of eight characteristic
genes (ENTPD3, PDZD4, CNN1, GTPBP4, FPGS, UTP25, CENPW, and FAM111A)
for gastric cancer. The results are validated by internal and external data, and the
predictive power is good. The subtype classification and immune type analysis of
gastric cancer samples were performed based on the consensus clustering
method. We identified C2 as an immune subtype and Cl as a non-immune
subtype. Small molecule drug targeting based on genes associated with
cuproptosis predicts potential therapeutics for gastric cancer. Molecular
docking revealed multiple forces between Dasatinib and CNN1.

Conclusion: The candidate drug Dasatinib may be effective in treating gastric
cancer by affecting the expression of the cuproptosis signature gene.

KEYWORDS

gastric cancer, cuproptosis, Diagnostic model, molecular docking, cancer
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1 Introduction

Gastric cancer is one of the most common malignant tumors in the
world, with the third highest mortality rate from cancer. In 2020, the
number of new cases of stomach cancer in the world exceeded 1
million, and 769,000 people died from stomach cancer (1). East Asia is
the concentrated area of the increasing gastric cancer cases in the
world, and our country is the increasing main country in East Asia (2).
The National Cancer Center reports that gastric cancer ranks second
place in the incidence rate of malignant tumors and third in the
mortality rate, posing a serious threat to the health of residents (3). The
development of gastric cancer is a complex evolutionary process
involving many factors and genes (4). Helicobacter pylori infection is
the most important risk factor for gastric cancer. In addition, excessive
consumption of preserved foods, alcohol consumption, and smoking
are also risk factors for an increased risk of gastric cancer (5, 6). The
molecular mechanism of gastric cancer is not fully understood. Current
studies suggest that gastric mucosal epithelial cells undergo gene
mutations under the influence of a number of complex factors,
which then activate proto-oncogenes or silence tumor suppressor
genes, thereby disrupting the balance between cell proliferation and
apoptosis, and ultimately leading to the development of gastric cancer
(7, 8). According to Lauren’s classification, gastric cancer is mainly an
intestinal type (9). The occurrence of intestinal gastric cancer is a multi-
step cascade reaction: non-atrophic gastritis-multifocal atrophic
gastritis with metaplasia-intestinal metaplasia-intraepithelial
neoplasia-early gastric cancer-invasive advanced gastric cancer (10).
Most of the previous studies have focused on advanced gastric cancer,
while there are relatively few studies on abnormal molecular expression
in early gastric cancer. The treatment and prognosis of gastric cancer
are closely related to the timing of diagnosis. The 5-year survival rate of
early gastric cancer patients after eradication is more than 90%, while
the 5-year survival rate of advanced gastric cancer patients after
eradication is less than 30% (11). In recent years, with the gradual
enhancement of people’s health awareness and the continuous progress
of medical technology, the diagnosis rate of early gastric cancer has
been greatly improved. The molecular mechanism of early gastric
cancer is a hot topic in translational medicine in recent years.

With the rapid development of life sciences, studies on genomics,
transcriptomics, proteomics, and metabolomics are emerging in an
endless stream, which making it possible to analyze the molecular
map of different stages of cancer transformation of gastric cancer
from multiple dimensions, facilitating the monitoring of the
occurrence, metastasis and drug resistance of gastric cancer.
Futawatari et al. found that KK-LC-1 was abnormally highly
expressed in early gastric cancer tissues, which could be used as a
tumor marker for the diagnosis of early gastric cancer (12). Through
genome-wide expression profiling microarray analysis, Zhang et al.
found that the expression levels of GRIN2D and BRCAL in early
gastric cancer and intraepithelial neoplasia were much higher than
those in paired normal gastric mucosa, while the expression levels of
BCL2L11, RET, and ALB were lower (13). Therefore, if the genes that
regulate the changes in the progression of early gastric cancer can be
screened and the specific mechanism of action can be clarified, it will
be of great importance in the search for new targets of gastric cancer
from the source.
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Copper is an essential nutrient whose REDOX properties make it
both beneficial and toxic to cells (14). Due to the high demand for
copper as a metallic nutrient in tumor growth and metastasis, copper-
related diagnostic methods are well suited for tumors (14). The
traditional view of copper as merely a cofactor of active site
metabolism has been challenged. A recent study has shown that
intracellular copper induces a novel form of regulatory cell death
(RCD), which difters from traditional cell death and has been termed
“cuproptosis” (15). Cuproptosis is a type of programmed cell death
that is distinct from apoptosis and may offer provide new hope for the
treatment of gastric cancer. Although scientists have identified a
number of genes and proteins that regulate cuproptosis, including
FDX1, LIAS, DLAT, and CNN1, among others (15). However, the
mechanism of action of these cuproptosis-related genes (CRGs) in
gastric cancer remains unclear. Little is also known about the role of
CRGs in diagnosis and the tumor microenvironment. Recent studies
have reported that cuproptosis is closely related to cancer progression
(15). There is increasing evidence that cuproptosis-associated long
non-coding RNAs can be used as biomarkers for the prognosis of
gastric cancer (16-18). However, the study on cuproptosis-related
genes in early diagnosis and treatment of gastric cancer has not been
reported. Therefore, in-depth understanding of the characteristics of
TME immune cell infiltration mediated by many CRGs will help
researchers better understand the potential mechanism of gastric
cancer, predict the immune treatment response, and develop new safe
and efficient targeted drugs.

2 Materials and methods

2.1 Microarray data set and
difference analysis

Microarray datasets from gastric cancer patients and adjacent
tissues were obtained from the TCGA database. The limma package
in R was then used to identify and standardize differentially expressed
genes (DEGs) by comparing the gene expression levels of gastric
cancer patients and adjacent tissues (19). P < 0.05 and | logFC | > 1
were used to define the standard of DEG. The ACRG (Asian Cancer
Research Group) dataset GSE66229 was used for external validation.

2.2 Analysis of cuproptosis and
immune-related genes

From a genome-wide CRISPR-Cas9 dysfunction test reported in
the previous literature (15), a total of 347 potential copper-associated
genes were identified (FDR<0.05). The list of 1793 immune-related
genes were obtained from the Immunology Database and Analysis
Portal (ImmPort; https://www.immport.org/home).

2.3 Functional annotation and pathway
enrichment analysis

ClusterProfiler packages are used for functional analysis of
biological functions, including Gene Ontology (GO) and the Kyoto
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Encyclopedia of Genes and Genomes (KEGG). P values are adjusted
using the Benjamini-Hochberg method or FDR for multiple testing
corrections. The threshold is set to FDR<0.05. The GO category
includes biological processes (BP), molecular functions (MF), and
cellular components (CC). GENEMANIA (http://genemania.org/
search/) was used to build a gene-interaction network for DEGs to
evaluate the function of these genes.

2.4 Selection of characteristic genes

Three machine learning algorithms, LASSO, Random Forest, and
SVM-RFE, were used to screen the trait genes. LASSO is a
dimensionality reduction method that has been shown to be superior
to regression analysis in evaluating high-dimensional data. The LASSO
analysis was performed using the steering/penalty parameters with 10x
cross-validation via the glmnet package. Recursive Feature Elimination
(RFE) of the Random Forest algorithm is a supervised machine
learning method for sequencing genes associated with atherosclerotic
plaque progression and immunity. The predicted performance was
estimated by ten-fold cross-validation. SVM-REE is superior to linear
discriminant analysis (LDA) and means square error (MSE) methods
in selecting correlation features and removing redundant features.
SVM-RFE was applied to feature selection by ten-fold cross-
validation. The receiver operating characteristic (ROC) curve and
area under the curve (AUC) were used to estimate the
diagnostic effectiveness.

2.5 Establishment of a line graph

The rms package was used to incorporate characteristic genes to
create a column map. Calibration curves are used to assess the
accuracy of a column plot. The clinical practicability of the line map
was assessed by decision curve analysis.

2.6 Estimation of immune cell infiltration in
gastric cancer

The CIBERSORT algorithm was used to estimate the proportion
of immune cell infiltration in gastric cancer samples. Estimates of
immune cell infiltration with P<0.05 were used for further analysis.

2.7 Consensus cluster analysis

Based on the expression profile of gastric cancer and
cuproptosis-associated genes, the number of unsupervised
categories in gastric cancer was quantitatively estimated by the
ConsensusClusterPlus software package (50 iterations and 80%
resampling rate) using the consensus clustering method (20). The
consensus matrix graph, consensus cumulative distribution
function (CDF) graph, the relative change in area under the CDF
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curve, and tracking graph were used to find the optimal clustering
number. Principal component analysis (PCA) was used to define
differences in the expression of gastric cancer and cuproptosis-
related genes between the two subtypes. The PCA plot was
generated using the ggplot2 package.

2.8 Small molecule drug prediction

We used the three characteristic genes selected by a gene-set
enrichment network tool Enrichr based on the Drug
Characterization Database (DSigDB) to predict potential drugs.
DSigDB is a free Web-based repository of information on GSEA
drugs and their target genes. DSigDB currently contains a total of
22,527 genomes, including 17,389 drugs and 19,531 genes. P<0.05
was used as the statistical criterion to identify drugs that were
significantly associated with target genes.

2.9 Molecular docking

For molecular docking, Dasatinib was selected as the receptor
target in this study. The 3D crystal structures of these receptors were
downloaded from the RCSB Protein database (http://www.rscb.org/
pdb/). PubChem ligand from the national library of medicine
(https://pubchem.ncbinlm.nih) to download and save the data file
format for the space (SDF). The Automatic Docking Tool version
1.5.6 was used to prepare protein ligand complexes for docking and
for 2D and 3D visualization of protein ligand complexes, operated
using the Discovery Studio Visualization tool 2016.

3 Results

3.1 Microarray data sets and
difference analysis

The mRNA expression profile of gastric cancer was retrieved
based on the TCGA database, and 375 cancer tissues and 32 para-
carcinoma tissues were obtained. The limma package in R was used
for the identification and standardization of differentially expressed
genes (DEG). The threshold was set as P < 0.05 and | logFC | > 1,
and 2951 differentially expressed genes were obtained. There were
2,532 up-regulated genes and 419 down-regulated genes. The DEGs
data is visualized as A volcano map (Figure 1A) and the first 50
DEGs are shown in a heat map (Figure 1B). The basic information is
in the supplementary documents.

3.2 Analysis of cuproptosis-related genes
347 cuproptosis genes were collected according to relevant

literature. Intersecting with DEGs, 66 overlapping genes (OG)
were obtained (Figure 1C).
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(A) The volcano map depicts the RNA expression levels of differential genes between gastric and paracancer tissues. (B) Heat maps showing
differentially expressed genes between the above groups. (C) VENN diagrams show the intersection of differential genes and cuproptosis-related
genes. (D) VENN diagram shows the intersection of three feature genes screened by machine learning.

3.3 GO term and KEGG pathway
enrichment analysis of OG

GO analysis shows that the biological process (BP) of OG
mainly focuses on the cellular nitrogen compound biological
process, macroporous biological process, and cellular
macroporous biological process (Figure 2A). The main cell
components (CC) include intelligent non membrane-bound
organelle, on-membrane-bounded organelle, and nuclear part
(Figure 2B). Molecular function (MF) includes nuclear acid
binding, RNA binding, and purine ribonuclease triphosphate
binding (Figure 2C). Genes are mainly involved in the KEGG
pathway of Aminoacyl tRNA biosynthesis, Cell cycle and
Ribome (Figure 2D).

3.4 Analysis of protein interaction
network of OGs

Based on the string website, we obtained the protein interaction
network of the OG gene set. The software Cytoscape was used to
present the results. The larger the circular area of the gene, the
higher the degree score and the greater the importance. This shows
that the element gene of the central circle is very important
(Figure 3A). In addition, based on GeneMANIA’s functional
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annotation model, a co-expression network was established to
describe the genetic interaction of 66 OGs and their co-expressed
genes (Figure 3B). Multiple attributes based on relationship (57.28%
co-expression), (17.78% physical interaction), (10.91% prediction),
(9.27% genetic interaction), (4.55% co-location). Of the 66 OGs, 13
were highly correlated with mitochondrial gene expression (adj.
P=3.87E-9), and 11 were highly correlated with mitochondrial
translation reaction (adj. P=5.28E-8) (Figure 3B).

3.5 Select characteristic genes
through LASSO, random forest, and
SVM-RFE algorithm

Three algorithms are used to select feature genes. For the
LASSO algorithm, after ten cross-validation, we selected the
minimum standard for constructing LASSO classifier, because
the accuracy of comparison is higher, and 15 characteristic genes
were identified (Figure 4A). For the random forest algorithm, 38
characteristic genes were identified (Figure 4B). For the SVM-RFE
algorithm, 38 characteristic genes were also identified (Figures 4C,
D). After cross-validation, eight characteristic genes (ENTPD3,
PDZD4, CNNI1, GTPBP4, FPGS, UTP25, CENPW, and
FAMI111A) shared by LASSO, Random Forest, and SVM-RFE
algorithm were finally determined (Figure 1D).
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3.6 Diagnostic efficacy and external
validation of characteristic genes in
predicting gastric cancer

Correlation analysis shows that there is a strong correlation
between the eight characteristic genes (Figure 5A). When the eight
characteristic genes (ENTPD3, PDZD4, CNN1, GTPBP4, FPGS,
UTP25, CENPW, and FAM111A) are all fitted into one variable, the
AUC of the ROC curve is 0.996, indicating a good diagnostic efficiency
for gastric cancer (Figures 5B, C). We also estimated the diagnostic
performance of each characteristic gene in predicting gastric cancer in

the GSE126307 cohort. The AUC values of area under the ROC curve
of 8 characteristic genes are very good, which proves that these
characteristic genes can estimate the occurrence of gastric cancer.
The expression of the characteristic genes was verified in the external
data set. In the GSE66,229 dataset, the AUC value of the area under the
ROC curve of eight characteristic genes (ENTPD3, PDZD4, CNN1,
GTPBP4, FPGS, UTP25, CENPW, and FAM111A) is also high. When
fitting together, the AUC of the ROC curve is 0.992, which shows that
they can distinguish gastric cancer from healthy controls (Figures 5D,
E). Therefore, the signature genes have excellent diagnostic
performance in predicting the occurrence of gastric cancer.

FIGURE 3

(A) PPI network of overlapping genes. (B) The GeneMANIA database was used to analyze the gene-gene interaction network of OG. Each node
represents a gene. The node color represents the possible function of the corresponding gene.
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3.7 Establishment of characteristic gene
nomogram

In the nomogram, each characteristic gene corresponds to a
score, and the total score is obtained by adding the scores of all the
characteristic genes. The total score corresponds to different risks of
gastric cancer (Figure 6A). The calibration curve, risk comparison,
and clinical decision curve show that a nomogram can accurately
predict the occurrence of gastric cancer (Figures 6B-D).

3.8 Analysis of immune cell infiltration and
correlation in gastric cancer

The proportion of immune cells in gastric cancer tissue samples
and adjacent tissues is different. Compared with adjacent tissues,
the proportion of B cell plasma, T cell CD4+memory resetting,
Monocyte, and mast cell activated in the cancer group is relatively
high, while the proportion of T cell CD4+memory activated, T cell
follicular helper, T cell regulatory (Tregs), Macrophage MO,
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Macrophage M1, and mast cell resetting is relatively low
(Figures 7A, B). Correlation analysis showed that there was a
strong correlation between the eight characteristic genes and
immune cells. It shows that the cuproptosis gene may influence
the degree of immune invasion of gastric cancer (Figure 8).

3.9 Construction of two subtypes
of copper dead gastric cancer
based on gastric cancer and
cuproptosis-related genes

Using the consensus clustering method, gastric cancer was
clustered according to the expression profiles of 66 gastric cancer
and cuproptosis-related genes. The optimal number of subtypes is 2,
as determined by the consensus matrix, the CDF chart, the relative
change of area under the CDF curve, and tracking chart
(Figures 9A-D). We noticed that most immune-related genes
were significantly up-regulated in subtype C2 compared with
subtype C1 (Figure 9E). We identified C2 as an immune subtype
and CI as a nonimmune subtype.

3.10 Prediction and molecular docking of
targeted drugs for gastric cancer

Further, we screened the candidate drugs that may be used to
treat gastric cancer. We consider the eight selected characteristic
genes as drug targets and use the online network tool Enrichr based
on DSigDB for drug target enrichment analysis. The results show
that the top ten drugs may be potential drugs for the treatment of
gastric cancer patients (Table 1). To verify the above results, we

Frontiers in Oncology

performed molecular docking between small molecule drugs and
target genes, and the results showed that there are multiple forces
between Dasatinib and CNNI1. For example, multiple forces
including hydrogen bonds can be formed (Figure 10). The above
results indicate that candidate drugs may achieve the effect of
treating gastric cancer by influencing the expression of
characteristic genes.

4 Discussion

We established a diagnostic model of cuproptosis for gastric
cancer based on machine learning and other methods, predicted
potential therapeutic drugs based on cuproptosis-related genes, and
finally performed a virtual combination of molecular docking space
structure for therapeutic drugs. The mRNA expression profiles of
gastric cancer were obtained from the TCGA database, and 375
cases of cancer tissues and 32 cases of para-carcinoma tissues were
obtained. We identified 2,951 differential genes in the cancer tissue
compared to the adjacent tissue. There were 2,532 up-regulated
genes and 419 down-regulated genes. Based on three machine
learning algorithms, we selected eight signature genes (ENTPD3,
PDZD4, CNN1, GTPBP4, FPGS, UTP25, CENPW, and
FAMI111A). Both internal and external dataset validation and
histogram results indicate that these signature genes can
accurately predict the progression of gastric cancer. There is
limited evidence to support the role of signature genes in gastric
cancer. GTPBP4 is highly expressed in gastric cancer tissues, which
promotes the progression of gastric cancer progression and may
interact with the p53 signaling pathway (21). Low FPGS expression
is an independent predictor of poor prognosis in stage II/III gastric
cancer patients receiving adjuvant chemotherapy after S-1 surgery
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(A) Immunocyte score heat map *P< 0.05, **P < 0.01, ***P < 0.001. (B) The percentage abundance of tumor-infiltrating immune cells in each sample.
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(22). However, the relationship between the other 6 characteristic
genes and gastric cancer has not been reported.

Cuproptosis is a novel form of programmed cell death
associated with copper accumulation, protein lipidation, and
mitochondrial respiration (15). Cuproptosis is molecularly
distinct from other forms of cell death, such as apoptosis,
necrosis, autophagy, and iron death. Copper binding leads to a
dangerous increase in lipid-acylated TCA circulating protein
function. Excess copper increases lipid-acylated protein
aggregation and Fe-S cluster protein instability, leading to protein

FIGURE 8
Correlation between eight characteristic genes and immune cells.
*P<0.05, **P<0.01.
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toxic stress and cell death. As key regulators of cuproptosis, FDX1,
and protein-lipid acylation play an important role in this process.
Copper ionophores are extremely sensitive to cells that use
mitochondrial respiration, which can be explained by their large
number of lipid-acylated TCA enzymes. Tumor cells have abnormal
mitochondrial metabolism due to the loss of active oncogenes and
tumor suppressor genes (23). Aerobic glycolysis is widely observed
in activated immune cells in the tumor microenvironment (TME)
to support biosynthetic requirements (24). TME is now recognized
to play a key role in carcinogenic effects and cancer development.
The immune microenvironment is closely linked to the
development of tumors (25, 26). It is composed of different types
of immune cells and stromal cells that can provide nutritional
support to tumor cells. The trace element copper has been reported
to play an important role in both cellular and humoral immunity
(27, 28), manipulating various immune cells to activate and
maintain the immune system (29). In this study, we identified
two subtypes Cl and C2 based on cuproptosis. Most immune-
related genes were significantly upregulated in the C2 subtype
compared to the Cl subtype. We identified C2 as an immune
subtype and C1 as a non-immune subtype. The new classification of
immune subtypes is helpful for the individualized classification and
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Relative change in area under CDF curve

FIGURE 9

(A) Consensus matrix heat map when k=2. (B) Consensus CDF when k=2-9. (C) The relative change of area under the CDF curve. (D) When k=2-9,
the tracking chart of sample classification is displayed. (E) Histogram of distribution of immune cells in subtype grouping.

medication guidance of gastric cancer patients. For small molecule
drug screening, we have a list of the top 10 predictors. Numerous

TABLE 1 Complete basic information was obtained from 261 follow-up
data.

Characteristics Cases

Gender

Male 181

Female 80
Age at surgery

<58 121

>58 140
Tumor size

<5 cm 131

>5cm 130
Histological type

Diffuse 75

Intestinal 186
T classification

T1-2 39

T3-4 222
TNM stage

I+1I 48

I+ IV 213
Lymph node metastasis

Present 216

Absent 45
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studies have confirmed that pemetrexed is a safe and effective drug
for the treatment of metastatic gastric cancer (30-32). As a histone
deacetylase (HDAC) inhibitor, Vorinostat can be used in
combination with capecitabine plus cisplatin (XP) as a
therapeutic agent in patients with gastric cancer (33). Dasatinib,
which targets a variety of cancer kinases has strong antitumor
activity and has been approved for the treatment of leukemia (34).
There is increasing evidence that Dasatinib is also effective in gastric
cancer (35, 36). Molecular docking showed that Dasatinib could
form various forces with CNN1, including hydrogen bonding. The
results indicated that candidate drugs may be effective in the
treatment of gastric cancer by influencing the expression of
characteristic genes. The specific mechanism needs to be further
explored. In the future, we plan to establish SD rat gastric cancer
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FIGURE 10

The 2D image shows the docking complex of Dashatinib and CNN1.
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model and primary gastric cancer cell model in vitro, and use
Dasatinib, siRNA and other intervention measures, combined with
CCK-8, Western Blot, Scratch assay, immunofluorescence and
immunocoprecipitate and other experimental technologies, to
explore related molecular mechanisms from multiple perspectives
and in all aspects. This will contribute to the development of new
targeted therapeutic drugs in molecular pharmacology and help
front-line clinical workers to better treat gastric cancer patients.
Improve the prognosis of patients, improve life treatment, reduce
the burden of family.

This study also has some shortcomings: Firstly, in the gastric
cancer samples in the TCGA database selected for this study, the
para-carcinoma tissues were not well matched to the cancer tissues,
which could lead to false positive results. However, the subsequent
validation of external datasets further confirms the reliability of
the results. Second, the selected therapeutic drugs in this study
were only predicted only by molecular docking without
experimental verification. Subsequent in vivo and in vitro
experiments will be carried out to further investigate the relevant

molecular mechanisms.

5 Conclusion

Eight specific cuproptosis gene diagnostic models and targeted
drugs have been identified in gastric cancer, which may contribute
to early diagnosis and individualized immunotherapy strategies for
gastric cancer patients.
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Background: Hepatocellular carcinoma is the third most deadly malignant tumor
in the world with a poor prognosis. Although immunotherapy represents a
promising therapeutic approach for HCC, the overall response rate of HCC
patients to immunotherapy is less than 30%. Therefore, it is of great significance
to explore prognostic factors and investigate the associated tumor immune
microenvironment features.

Methods: By analyzing RNA-seq data of the TCGA-LIHC cohort, the set of
cuproptosis related genes was extracted via correlation analysis as a
generalization feature. Then, a random forest cox prognostic model was
constructed and the cuproptosis random forest cox score was built by random
forest feature filtering and univariate multivariate cox regression analysis.
Subsequently, the prognosis prediction of CRFCS was evaluated via analyzing
data of independent cohorts from GEO and ICGC by using KM and ROC
methods. Moreover, mutation characterization, immune cell infiltration,
immune evasion, and drug sensitivity of CRFCS in HCC were assessed.

Results: A cuproptosis random forest cox score was built based on a
generalization feature of four cuproptosis related genes. Patients in the high
CRFCS group exhibited a lower overall survival. Univariate multivariate Cox
regression analysis validated CRFCS as an independent prognostic indicator.
ROC analysis revealed that CRFCS was a good predictor of HCC (AUC =0.82).
Mutation analysis manifested that microsatellite instability (MSI) was significantly
increased in the high CRFCS group. Meanwhile, tumor microenvironment
analysis showed that the high CRFCS group displayed much more immune cell
infiltration compared with the low CRFCS group. The immune escape
assessment analysis demonstrated that the high CRFCS group displayed a
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decreased TIDE score indicating a lower immune escape probability in the high
CRFCS group compared with the low CRFCS group. Interestingly, immune
checkpoints were highly expressed in the high CRFCS group. Drug sensitivity
analysis revealed that HCC patients from the high CRFCS group had a lower ICsq
of sorafenib than that from the low CRFCS group.

Conclusions: In this study, we constructed a cuproptosis random forest cox
score (CRFCS) model. CRFCS was revealed to be a potential independent
prognostic indicator of HCC and high CRFCS samples showed a poor
prognosis. Interestingly, CRFCS were correlated with TME characteristics
as well as clinical treatment efficacy. Importantly, compared with the low
CRFCS group, the high CRFCS group may benefit from immunotherapy and
sorafenib treatment.

KEYWORDS

cuproptosis, hepatocellular carcinoma, prognostic signature, immunotherapy,

tumor microenvironment

1 Introduction

Liver cancer remains one of the most lethal cancers, with
830,000 deaths worldwide in 2020, accounting for 8.3% of cancer
related deaths (1). Hepatocellular carcinoma (HCC) is the most
frequent of all primary liver cancers, comprising 75-85% of cases
(2). Due to the lack of diagnostic marker, most of the HCC patients
are diagnosed at advanced stages with a poor prognosis (3).
Therapies such as traditional cytotoxic drugs are rarely effective.
Over the last decade, sorafenib and lenvatinib are the only systemic
drugs that have been proven to be clinically effective in the therapy
of part of the advanced HCC patients (4). Therefore, it is crucial to
find valid prognostic models as well as treatment strategies.

Immune checkpoint inhibitor (ICIs) therapy is one of the fastest-
developing immunotherapy strategies, which effectively breaks the
dilemma of cancer treatment, especially in advanced cancer.
However, the efficacy of immunotherapy varies widely among
patients (5). HCC is intimately correlated with inflammation and
has a complicated tumor microenvironment (TME) (6). Immune
checkpoint therapy is being used for HCC treatment recently. The
sensitivity of immunotherapy in HCC varies significantly due to the
heterogeneity and complexity of the TME (7). Revealing the potential
TME characteristics of HCC patients is hence crucial for predicting
the efficacy of immunotherapy.

Copper (Cu) is a required element for human health.
Disturbance of intracellular coppers is associated with diverse
pathologies (8). Previous studies have demonstrated that Cu levels
are significantly increased in tumor tissues and cancer patients
derived serum (9-12). The elevated levels of Cu are reported to be
involved in tumor cell proliferation, angiogenesis, and metastasis
(13, 14). Cu may also increase the incidence of HCC in Wilson’s
disease patients (15). Both copper chelators and copper ionophores
have been exploited as antitumor drugs and tested in clinical trials
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(16-18). Besides, Cu homeostasis is essential for maintaining
normal immune function (19-21) and elevated Cu levels in
tumor cells contribute to immune escape by enhancing PD-L1
expression (22). These findings suggest that Cu plays an important
role in tumorigenesis and TME shaping. The Cu metabolism is
recognized as a unique vulnerability in cancer (23) and targeting Cu
metabolism might be an alternative strategy for cancer treatment
(24). Recently, a novel Cu induced programmed cell death termed
cuproptosis was revealed which occurs by targeting lipoylated TCA
cycle proteins (25). Previous studies have shown that cuproptosis-
related signature and genes are closely related to TME in colorectal
cancer (26), breast cancer (27), lung cancer (28), bladder cancer
(29), kidney renal clear cancer (30), and so forth. However, the
relationships between cuproptosis-related genes and prognosis,
immune microenvironment, and drug sensitivity of liver cancer
has not been fully elucidated.

In this study, cuproptosis-related gene sets were derived by
correlation analysis as generalization features. Then a random forest
Cox prognostic model was constructed, and the cuproptosis
random forest Cox score (CRFCS) was built by random forest
feature filtering and univariate multivariate Cox regression. The
HCC patients were clustered according to CRFCS and investigated
in terms of prognosis analysis, mutational characteristics, tumor
microenvironment, prediction of immune evasion, immune
checkpoint, and drug sensitivity.

2 Materials and methods
2.1 Data acquisition and processing

The mRNA expression data, somatic mutation data, and
corresponding clinical information of HCC were downloaded from
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the TCGA database via the R package “TCGAbiolinks”. The clinical
and mRNA expression data of GSE116174 and ICGC-LIHC-US
cohorts were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) and the ICGC database (https://
dcc.icgc.org/projects/), respectively. Then, the mRNA data were
converted to TPM format and normalized by log2 transformation.

2.2 Development of cuproptosis random
forest cox score (CRFCS)

The cuproptosis-associated gene set was derived as a
generalization feature by correlation analysis based on the TCGA-
LIHC cohort. We used the method “rfsrc” in the R package
“randomForestSRC” to construct a random forest model and
selected features. The Cox regression was constructed based on
the mentioned characteristics, and Regression coefficients were
obtained by the “coxph” method in the “survival” package. The
Cuproptosis Random Forest Cox Score (CRFCS) was established by
the following formula:

Score = > E;r;

Where E; is the expression of feature gene i, and r; is the
characteristic co-efficient of feature gene i.

2.3 Survival analysis

Kaplan-Meier (K-M) survival analysis and visualization were
conducted with the “survival” and “survminer” packages. The time-
related receiver operating characteristic curve (time ROC) was
performed by the R package “pROC” to evaluate the prediction
performance of CRFCS in the training and test sets.

2.4 Processing and analysis of
mutation profile

The analysis and visualization of mutation profile were
performed by the “maftools” package. We plotted the mutation
waterfall by the method “oncoplot”. After removing the loci falling
into the CNV region, the Mutant-Allele Tumor Heterogeneity
(MATH) score of the samples was calculated by the
“inferHeterogeneity” method (31). MSI scores were calculated by
the “MSIsensor” method (32).

2.5 TME cell infiltration assessment

The immune cell infiltration was estimated by both ssGSEA and
CIBERSORT algorithms. For the ssGSEA method, we used the
TME-infiltrating gene set from Charoentong et al., which includes
28 immune cell types (33). We evaluated the enrichment fraction of
each sample in the cohort via the ssGSEA method to characterize
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the immune cell invasion in each sample. The CIBERSORT
algorithm worked in conjunction with the immune infiltration
signature matrix LM22 to evaluate the invasion of various
immune cells in the samples. In the case of stromal cells, we
estimated the stromal cell infiltration by evaluating the expression
of markers for each stromal cell.

2.6 Immune evasion prediction

The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm is used to assess the immune evasion mechanism of
tumors (34). The effect of both T-cell dysfunction and T-cell
exclusion mechanisms on immune evasion was evaluated
separately by the TIDE algorithm and the TIDE score was used
to predict the degree of immune evasion of the samples.

2.7 Drugs sensitivity prediction

The IC5, values of the drugs in the training set samples were
evaluated by the “pRRopheticPredict” method of the R package
“pRRophetic”, with the dataset “cgp2016”. We calculated the
correlation between ICs, values and CRFCS subgroups to
investigate the association between CRFCS and drug sensitivity.

2.8 Statistical analysis

The analysis and visualization of the data were performed in R
(version 4.1.1). The Wilcoxon test was used to compare the data
between the two groups. Charts were mainly visualized by the “
ggplot2 “ package. The p-value<0.05 was regarded as statistically
significant (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).

3 Results

3.1 The expressions and prognosis analysis
of cuproptosis-related genes in HCC

We initially evaluated the expressions of ten genes in HCC
which were reported to be crucial regulators of cuproptosis (25). It
was noticed that among these ten genes, all of them except FDX1
were significantly highly expressed in HCC (Figure 1A), indicating
that the cuproptosis process might be associated with HCC. To
further explore the prognosis of cuproptosis genes in HCC, we
performed a correlation analysis between cuproptosis gene
expression and HCC patients’ survival (OS) (Figure 1B). The
results displayed that genes DLAT (HR =1.71, p =0.003), PDHA1
(HR =1.42, p =0.046), GLS (HR =149, p =0.023), and CDKN2A
(HR =1.78, p =0.001) had prominent prognostic significance in
HCC, and patients with high expression of these four genes
exhibited shorter survival (Figures 1C-F).
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FIGURE 1

The Expressions and Prognosis Analysis of Cuproptosis-Related Genes in HCC. (A) Differential expression of cuproptosis-related genes in the TCGA-
LIHC cohort. (***p<0.001; ns stands for not significant) (B) Correlation between cuproptosis-related gene expression and survival data (OS) of HCC
patients. The horizontal dotted line stands for p=0.05. The vertical dotted line represents HR=1. (C—F) Kaplan-Meier curves of DLAT (C), PDHAL

(D), GLS (E), and CDKN2A (F).

3.2 Construction of cuproptosis random
forest cox score (CRFCS) model

Given that cuproptosis may be involved in the progression of
HCC, a more robust prognostic model was constructed using the
above-mentioned cuproptosis genes with prominent prognostic
significance (DLAT, PDHAI1, GLS, and CDKN2A). First and
foremost, correlation analysis of the above genes was initially
conducted via analyzing data from TCGA-LIHC cohort to
enhance the generalization ability of the model. For each
cuproptosis gene listed above, the top 25 expression-related genes
were identified as generalized features based on correlation
coefficients. For the gene sets after the generalization of features,
GO/KEGG analysis was performed to ensure that the characteristics
were not distorted by generalization. The results indicated that the
gene set after features generalization remained associated with key
pathways of cuproptosis, such as the TCA cycle (Figures 2A, B).
Training the gene set as input of the random forest model, the out-
of-bag error of the model stabilized when the number of trees was
approximately around 1000 (Figure 2C). The random forest model
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derived the variable importance (VIMP) ranking of the input
features (Figure 2D). We selected the top 20% of the ranked
features to be involved in the construction of the Cox model.
Excluding the features not significant in the univariate Cox test,
17 features were obtained and model scores were established
according to the steps in Materials and Methods (Figure 2E).

3.3 Prognosis prediction of CRFCS

To evaluate the accuracy of the model’s predictions, we
validated CRFCS in the training set TCGA-LIHC and the external
validation set ICGC-LIHC-US and GSE116174. We divided the
samples of each set into high and low score groups by the median of
CRFCS. In the TCGA-LIHC set, the contemporaneous surviving
rate of the high CRFCS subgroup samples was much lower than that
of the low CRFCS subgroup. The HR for the CRFCS subgroups was
2.86 (1.96-4.16), with a p-value less than 0.001 (Figure 3A).
Likewise, the survival of the high CRFCS subgroup samples was
shorter in both validation cohorts. In the ICGC-LIHC-US cohort,
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the HR of the CRFCS subgroup was 2.69 (1.65-4.38) with a p-value
less than 0.001 (Figure 3B) while the HR value was 2.78 (1.24-6.23)
with a p-value of 0.013 in the GSE116174 cohort (Figure 3C).
Subsequently, ROC analysis was performed to evaluate the
diagnostic potency of CRFCS in HCC. The results demonstrated
that CRFCS was a strong predictor in both training and validation
cohorts (Figures 3D-F). The AUC values for predicting OS were
0.820 at 1 year, 0.727 at 3 years, and 0.670 at 5 years in the TCGA-
LIHC training cohort (Figure 3D). While AUC values for predicting
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OS were 0.720 at 1 year, 0.671 at 3 years, and 0.664 at 5 years in the
ICGC-LIHC-US cohort (Figure 3E) and 0.727 at 1 year, 0.665 at 3
years, and 0.713 at 5 years in the GSE116174 cohort (Figure 3F).
Also, we performed univariate and multivariate Cox analyses of
CRFCS in order to examine the potential of CRFCS as an OS-
independent prognostic factor for HCC. The results showed a
hazard ratio of 2.708 (2.087-3.514) for CRFCS in the univariate
analysis with a p-value less than 0.001 (Figure 3G). In the
multifactorial analysis, the hazard ratio was 2.437 (1.825-3.254)
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Prognosis prediction of CRFCS. (A, C) Kaplan-Meier curves of CRFCS subgroups for the training cohort TCGA-LIHC (A), the external validation
cohorts ICGC-LIHC-US (B), and GSE116174 (C). (D—F) AUC curves for the prediction of overall survival (OS) by CRFCS in samples of TCGA-LIHC
(D), ICGC-LIHC-US (E), and GSE116174 (F). (G, H) Univariate (G) and multivariate analysis (H) of CRFCS.

with a p-value less than 0.001 (Figure 3H). These results implied
that CRFCS was a potential independent predictor of HCC.

3.4 CRFCS and mutation features

Mutational features are an integral part of the cancer process
landscape. We investigated the mutational characteristics of the

Frontiers in Immunology

CRFCS subgroup of HCC. The top 3 high-frequency mutated genes
in the high-CRFCS subgroup were TP53 (29%), TTN (24%), and
CTNNBI (20%) (Figure 4A) while CTNNBI (31%), TNN (23%),
and ALB (15%) were identified as the top 3 mutated genes in the
low CRECS subgroup (Figure 4B). We also found that Microsatellite
Instability (MSI) score was significantly higher in the high
CRFCS subgroup than in the low CRFCS group (p<0.001)
(Figure 4C). Then, we evaluated the MATH scores which were
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positively correlated with tumor heterogeneity. The results revealed
that the MATH scores between the two groups were not
significant (Figure 4D).

3.5 CRFCS and TME

Immunotherapy is vital for the treatment of patients with
advanced cancer and TME features are essential indicators of the
efficacy of immune checkpoint inhibitors (ICIs). The level of
various immune-related cellular infiltrates in TCGA-LIHC cohort
samples was assessed by the ssGSEA method (Figures 5A, B). The
results displayed a positive correlation between the CRECS and the
level of some anti-tumor immune cell infiltration, such as activated
CDA4 T cells (p<0.0001), activated dendritic cells (p =0.0142), central
memory CD4 T cells (p<0.0001), central memory CD8 T cells (p
=0.0025), and effector memory CD4 T cell (p<0.0001). Similarly,
infiltrations of pro-tumor immune cells including regulatory T cells
(p<0.0001), type 2 T helper cells (p<0.0001), immature dendritic
cells (p =0.0239), and MDSC (p =0.0173) were also positively
correlated with CRFCS. In addition, some neutral immune
infiltrates such as eosinophil (p<0.0001) and mast cell (p =0.0189)
were negatively related to CRFCS. We also evaluated the immune
infiltration of the samples with the CIBERSORT algorithm
(Figure 5C). Higher infiltration levels of T cells CD4 memory
activated (p<0.001), T cells follicular helper (p<0.01), T cells
regulatory (Tregs) (p<0.01), Macrophages M0 (p<0.001) and
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dendritic cells resting (p<0.01) were observed in the high CRFCS
subgroup. In contrast, B cells naive (p<0.05), T cells CD4 memory
resting (p<0.05), NK cells activated (p<0.05), monocytes (p<0.05)
and mast cells resting (p<0.001) had higher levels in the low CRFCS
subgroup. Considering both methods together, the infiltration levels
of activated CD4 T cells and regulatory T cells were significantly
higher in the high-CRFCS subgroup, while the infiltration level of
Mast cells resting was lower. Infiltration of stromal cells is also an
integral part of TME. We also assessed the levels of stromal cell-
related markers in the TCGA-LIHC cohort samples. The analysis
showed that the levels of most markers of diverse stromal cells
including CAF, EC, MSC, TAM, M1, and M2 in the samples were
positively correlated with CRFCS (Figure 5D). Regulatory T cells
was reported to suppress the immune response and promote
tumorigenic immune escape (35). We then assessed the extent of
immune escape between high and low CRFCS subgroups by the
TIDE algorithm and the results showed that the high CRFCS group
displayed a decreased TIDE score compared with the low CRFCS
group (Figure 5E), indicating that samples with high CRFCS had

lower levels of immune escape.

3.6 CRFCS and drug-sensitivity
Next, we assessed the drug-sensitivity of CRFCS in HCC by

applying the R package of “pRRophetic”. By analyzing data from
TCGA, we found that the high CRFCS group had a lower ICs; of
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sorafenib compared with the low CRFCS group (Figure 6A). To  with immune checkpoint such as PD1 and PD-L1 is considered to
verify these results, an external data from ICGC-LIHC-US was

analyzed which confirmed that the high CRFCS group are more

be very sensitive to immunotherapy (38). Therefore, we evaluated
the expression profile of immune checkpoint in CRFCS. Our results

sensitive to sorafenib (Figure 6B). Immunotherapy delivers more
opportunities to patients with advanced HCC (36). It is well
recognized that TME characteristic can significantly influence the
outcome of immunotherapy (37). TME is classified into three
subtypes: immune-desert, immune-inflamed, and immune-
excluded. The immune-inflamed type which is highly expressed
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displayed that the immune checkpoints including PD-L1, PDI,
TIGIT, TIM3, and CTLA4 were significantly highly expressed in the
high CRFCS group compared with the low CRFCS group in both
TCGA and ICGC HCC cohorts (Figures 6C, D). These results
suggested that high CRFCS group might be more responsive
to immunotherapy.

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1146411
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al. 10.3389/fimmu.2023.1146411
Ao cs_ TCGA-LIHC
[ ]
0
25 ] o K o..
CRFCS & e ¢ . : '} %’ CRFCS
s & L4 ° ° ° © Low
o Low Z 4 . o e 4 2 LS e o High
“ EHEEET Y B
-V L
R ~ ’
24
154 ‘
o4
B TCGA-LIHC D PD-L1 TIGIT LAG3 TIM3 CTLA4
301 ICGC-LIHC-US
L] o ° fﬁ
[ ]
6 H ° e, o®
2.51 ® ¢ ¢
. = e o % 2, CRECS
crrcs & o ¢ "' o & o Sl
gﬁ E 4 — bﬂ’ ° ° *. ] ’.o < High
2.0 Hw‘ E : o 2 c o*
' H ogpt Folls | ) o’ o8
2] e ° < o,
°o 3e Ly
L]
z "
0- [
T T T T T T
ICGC-LIHC-US PD-L1 PD1 TIGIT LAG3 TIM3 CTLA4
FIGURE 6
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(C) and ICGC-LIHC (D). (**p<0.01; ***p<0.001).

4 Discussion

Cuproptosis, a recently discovered new programmed cell death
induced by excessive accumulation of intracellular Cu, is distinct
from known cell death forms including apoptosis, pyroptosis,
ferroptosis, necrosis. To dissect the specific regulators of
cuproprosis, Tsvetkov et al. used genome-wide CRISPR/Cas9
screens and identify ten crucial cuproptosis-specific genes
including FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,
MTFI1, GLS, and CDKN2A (25). These ten genes are closely
associated with HCC progression and TME. Zhang et al.
identified FDX1 as an immunotherapy predictor of HCC (39).
Yan et al. discovered that inhibition of LIPT1 restrained HCC cell
proliferation and invasion (40). Zhou et al. found that
overexpression of DLAT increased HCC cell growth and invasion
and may facilitate cancer cell evade immune system (41). Sun et al.
reported that activation of PDHALI suppressed the Warburg effect
and promoted HCC apoptosis (42). Yang et al. demonstrated that
knockdown PDHB induced metabolic reprogramming of the
tricarboxylic acid (TCA) cycle leading to glutamine depletion and
inhibition of HCC cell proliferation (43). Yang et al. reported that
over-expression of MTF1 contributed to the proliferation of HCC
cells (44). Dong et al. found that GLS1 promoted HCC cell
proliferation via activating AKT/GSK3B/Cyclin D1 pathway (45).
Xu et al. revealed that upregulation of CDKN2A significantly
inhibited ACTR5 induced HCC cell proliferation (46).
Considering the role of these ten crucial cuproptosis-specific
genes in HCC, constructing a model based on these ten genes
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might provide potential insights for evaluation the TME and
immunotherapy efficacy of HCC.

Since the discovery of cuproptosis, the role of cuptoptosis in
liver cancer prognosis and TME has been gradually evaluated.
Previous studies mainly explored this issue by constructing Lasso
cox model, which directly entered the target genes as model inputs
(47-53). The Lasso model is applied to analyze multicollinearity
data (54). Usually, nonlinear data might be generated when
performing log normalization of the expression matrix. From this
perspective, the lasso cox model might not be the ideal strategy. The
random forest model is a set of binary trees constructed with
recursive partitioning (RPART), which enables the random forest
to handle nonlinear data due to the combination of trees (55).
Therefore, the random forest model with nonlinear data as the
application object is more suitable. Meanwhile, the random forest
model is better at learning potential crossover features consisting of
multidimensional features (56) and shows strong robustness when
applied to large feature sets (57). These reasons led us to use the
random forest model to construct the prognostic model. In
addition, considering that there might be noise differences
between individual data of each sample, some features may be
lost due to the presence of data noise if the target genes are
considered only, we trained the model using gene clusters related
to cuproptosis genes as model inputs to generalize the features. We
generalize the features by acquiring highly correlated genes of
crucial cuproptosis genes when constructing the model so that
the model could learn as much information as possible about the
implicit features in the data. This makes the output of the model
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smoother and less susceptible to fluctuations caused by noise in the
data, thus improving the robustness of the model. The generalized
input data combined with the random forest model can better learn
the potential cross features in the data.

Microsatellite instability (MSI) is closely correlated with tumor
immunotherapy efficacy. High MSI (MSI-H) in tumor samples
usually cause additional mutant antigens and sensitize patient to
immunotherapy (58). However, MSI-H also tends to increase tumor
heterogeneity, which in turn results in poorer immunotherapy
efficacy (59). In the present study, the mutation landscape of
CRFCS subgroups was investigated which showed that the MSI
scores were significantly higher in the high-CRFCS subgroup
sample than in the low-CRFCS group while no significant
difference between high and low CRFCS subgroups was observed
in the tumor heterogeneity score MATH (Figure 4). These results
suggested that high CRFCS subgroups may have better
immunotherapeutic efficacy. Besides, studies exist demonstrated
that tumor patients with high expression of immune checkpoints
are more sensitive to immunotherapy (38). We evaluated the
expression of immune checkpoints in high and low CRFCS
group. Our results showed that the immune checkpoints
including PD-L1, PDI1, TIGIT, TIM3, and CTLA4 were
remarkably highly expressed in the high CRFCS group compared
with the low CRECS group (Figures 6C, D). In addition, evidence
displayed that Treg cells cause immune escape through several
mechanisms, which in turn impede the anti-tumor immune
response (60). To estimate the tumor immune escape effect
between the CRFCS subgroups, we calculated the TIDE scores of
the samples. The results showed that the high-CRFCS subgroup had
significantly lower TIDE scores (Figure 5E), indicating that samples
of the high-CRFCS subgroup had a lower probability of immune
escape and were less prone to be resistant to immunotherapy.
Combining the results above, it might be inferred that the high
CRFCS group might be more suitable to receive immunotherapy
than the low CRFCS group.

Although a cuproptosis related model termed CRFCS was
successfully constructed to evaluate prognosis and TME
characteristic in HCC, some limitations should not be neglected.
First, cuproptosis was discovered in 2022, only several genes were
confirmed as crucial cuproptosis-specific genes, more genes need to
be identified to provide systematic and comprehensive understanding
of cuproptosis. Second, our study was performed based on integrative
bioinformatic analysis, it would be more valid to carry out functional
experiments in vitro and in vivo. Finally, the data involved in this
study were retrieved from public dataset, it would be better to use
large-scale of local datasets to verify our findings.

5 Conclusions

In aggregate, we constructed a cuproptosis random forest cox
score (CRFCS) model. CRFCS was identified to be an independent
prognostic indicator of HCC and high CRECS samples showed a
poor prognosis. Interestingly, CRFCS were correlated with TME
characteristics as well as clinical treatment efficacy. Patients with
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high CRFCS had a better clinical prognosis for immunotherapy
and sorafenib.
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Copper and cuproptosis-related
genes in hepatocellular
carcinoma: therapeutic
biomarkers targeting tumor
iImmune microenvironment and
iImmune checkpoints

Xiaogiang Wang*, Dongfang Chen?', Yumiao Shi*, Jiamei Luo®,
Yigi Zhang*, Xiaohong Yuan?, Chaojin Zhang*, Huigang Shu™,
Weifeng Yu™ and Jie Tian™

tDepartment of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai, China, ?Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University,
Shanghai, China, 3Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese
Academy of Sciences, Hangzhou, China

Background: Hepatocellular carcinoma (HCC), one of the most common
cancers worldwide, exhibits high immune heterogeneity and mortality.
Emerging studies suggest that copper (Cu) plays a key role in cell survival.
However, the relationship between Cu and tumor development remains unclear.

Methods: We investigated the effects of Cu and cuproptosis-related genes
(CRGs) in patients with HCC in the TCGA-LIHC (The Cancer Genome Atlas-
Liver cancer, n = 347) and ICGC-LIRI-JP (International Cancer Genome
Consortium-Liver Cancer-Riken-Japan, n = 203) datasets. Prognostic genes
were identified by survival analysis, and a least absolute shrinkage and selection
operator (Lasso) regression model was constructed using the prognostic genes
in the two datasets. Additionally, we analyzed differentially expressed genes and
signal pathway enrichment. We also evaluated the effects of CRGs on tumor
immune cell infiltration and their co-expression with immune checkpoint genes
(ICGs) and performed validation in different tumor immune microenvironments
(TIMs). Finally, we performed validation using clinical samples and predicted the
prognosis of patients with HCC using a nomogram.

Results: A total of 59 CRGs were included for analysis, and 15 genes that
significantly influenced the survival of patients in the two datasets were
identified. Patients were grouped by risk scores, and pathway enrichment
analysis suggested that immune-related pathways were substantially enriched
in both datasets. Tumor immune cell infiltration analysis and clinical validation
revealed that PRNP (Prion protein), SNCA (Synuclein alpha), and COX17
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(Cytochrome c oxidase copper chaperone COX17) may be closely correlated
with immune cell infiltration and ICG expression. A nomogram was constructed
to predict the prognosis of patients with HCC using patients’ characteristics and

risk scores.

Conclusion: CRGs may regulate the development of HCC by targeting the TIM
and ICGs. CRGs such as PRNP, SNCA, and COX17 could be promising targets for
HCC immune therapy in the future.

KEYWORDS

copper, cuproptosis, hepatocellular carcinoma, immune checkpoints, tumor
immune microenvironment

1 Background

Cancer is one of the leading causes of death worldwide and
places a heavy burden on global health (1). According to statistical
reports, hepatocellular carcinoma (HCC) is currently the third most
common cancer worldwide. Moreover, based on related reports,
>45% of new HCC cases and related deaths occurred in China (2-
4). Although there have been advances in HCC therapy in recent
years, the high heterogeneity and lack of accurate early diagnostic
biomarkers have resulted in the poor prognosis of patients with
HCC (5).

For patients with advanced HCC, immunotherapy has emerged as
a prospective therapeutic approach through the targeting of
programmed cell death protein 1 (PD-1)/programmed cell death
ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA4)
(6). Studies have suggested that the objective response rates of anti-PD-
1 treatment (including nivolumab, pembrolizumab, and
camrelizumab) increased to about 15%-20% for patients with HCC
that were pretreated with sorafenib (7-9). However, drugs targeting
PD-1 and PD-L1 benefit few patients with HCC, as most patients have
poor responses to immune checkpoint inhibitors (ICIs) (10). This may
be attributed to the intrinsically high heterogeneity and immune
suppression microenvironment of HCC (10, 11). Previous studies
demonstrated that a large number of suppressive immune cells, such
as tumor-associated macrophages (TAMs), myeloid-derived

Abbreviations: HCC, hepatocellular carcinoma; Cu, copper; CRGs, cuproptosis-
related genes; DEGs, differentially expressed genes; PD-1, programmed cell death
protein 1; PD-LI, programmed cell death ligand 1; CTLA4, cytotoxic T
lymphocyte antigen 4; ICIs, immune checkpoint inhibitors; TIM, tumor
immune microenvironment; IHC, immunohistochemical; TAMs, tumor-
associated macrophages; MDSCs, myeloid-derived suppressor cells; Tregs,
regulatory T cells; OS, overall survival; Lasso, least absolute shrinkage and
selection operator; ICGs, immune checkpoint genes; TCGA-LIHC, The Cancer
Genome Atlas Liver Hepatocellular Carcinoma; ICGC, International Cancer
Genome Consortium; GO, Gene Ontology; GSEA, Gene Set Enrichment
Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; MRS, myeloid
response score; ROC, receiver operating characteristic; AUC, area under the

curve; CI, confidence interval; HR, hazard ratio.
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suppressor cells (MDSCs), and regulatory T cells (Tregs), were
recruited to the tumor microenvironment of HCC, resulting in
immune cell dysfunction and immune surveillance escape (12, 13).
Therefore, exploring effective targets to improve HCC patients’
response to ICIs is important.

Copper (Cu) is an endogenous metal essential for all living
organisms and participates in various biological functions, such as
mitochondrial respiration, iron uptake, redox reactions, glucose
regulation, and cholesterol metabolism (14, 15). However, excessive
accumulation of Cu induces oxidative stress, cytotoxicity, or even
cuproptosis. The latter is a type of cell death that is regulated by Cu
and mitochondrial respiration, which has been recently discovered
(16). Furthermore, the dysfunction of Cu homeostasis can lead to
severe disorders such as Wilson’s and Menke’s diseases (17). Therefore,
intracellular Cu concentrations are typically strictly maintained at
extraordinarily low levels via complex homeostatic mechanisms.
Exploring the mechanisms underlying Cu homeostasis dysfunction
and imbalanced cuproptosis may aid in the identification of novel
therapeutic targets for various diseases.

A previous study has shown a significant increase in Cu levels in
patients with cancer compared with healthy individuals (18). For
instance, a meta-analysis including 36 studies revealed significantly
upregulated serum Cu levels in patients with breast cancer compared
with healthy controls (19). Furthermore, some studies have
demonstrated the effective antitumor effects of Cu ionophores such
as elesclomol (16, 20, 21). Some studies have also found associations
among cuproptosis, tumor development, and response to ICIs (22, 23).
For instance, Luo et al. (24) found that cuproptosis could regulate the
response of acute myeloid leukemia cells to the immune system. Xiong
et al. (25) suggested that cuproptosis may be regulated by p53, a crucial
tumor suppressor and metabolic regulator. Thus, targeting cuproptosis
may be a promising strategy for HCC immunotherapy.

Studies on the role of Cu and cuproptosis-related genes (CRGs)
in HCC are lacking. Herein, we systematically analyzed the
functions and effects of CRGs on the survival of patients with
HCC based on two public HCC datasets. We aimed to identify the
critical CRGs that significantly influence the overall survival (OS) of
patients with HCC and to construct a useful nomogram to predict
the prognosis of patients. Moreover, we investigated the
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relationships among CRGs, tumor immune cell infiltration, and
immune checkpoint genes (ICGs) to detect potential HCC
biomarkers targeting the tumor immune microenvironment (TIM).

2 Methods
2.1 Data acquisition and CRG list

The total transcriptome RNA sequencing (RNA-seq) data and
clinical information of patients with HCC were obtained and
downloaded from The Cancer Genome Atlas Liver Hepatocellular
Carcinoma (TCGA-LIHC) dataset (https://tcga-data.ncinih.gov/tcga/),
the International Cancer Genome Consortium (ICGC) portal (https://
dcc.icgc.org/projects/LIRI-JP), and GEO datasets (https://
www.ncbinlm.nih.gov/). The list of CRGs and their and functions
were obtained from the Gene Ontology (GO) resource (http://
geneontology.org/) and a published paper (16). The full list of CRGs
is provided in Supplementary Table 1.

2.2 Survival analysis

The effects of CRGs on the OS of patients with HCC were
validated using survival analysis. Patients were categorized into the
low-expression (L) and high-expression (H) groups, and the
median gene expression level was chosen as the cutoff value.
Similarly, survival analysis of the risk scores obtained from the
least absolute shrinkage and selection operator (Lasso) regression
model was performed, and patients were assigned to the low-risk or
high-risk group based on their risk scores. The cutoft value for
grouping was the median risk score. The survival analysis was
performed using the “survminer” R package.

2.3 Construction of the Lasso
regression model

Prognostic genes with a P-value of <0.05 in the survival analysis
in the two datasets were used to construct the model. A Lasso
regression model (26) for predicting the prognosis of patients with
HCC was constructed using the prognostic genes in the two datasets
using the “glmnet” R package. A 10-fold cross-validation method was
used to optimize the model. The risk score predicting the OS was
calculated for every patient using the following formula: risk score =
(gene A expression X a) + (gene B expression x b) ... + (gene N
expression x n), where a, b, and n represent regression coefficients.

2.4 Validation and effectiveness of the
prognostic model

To validate the model’s effectiveness, survival and time-
dependent receiver operating characteristic (ROC) curve analyses
were performed based on the survival time, survival status, and risk
scores of patients with HCC using the “survminer” and “pROC” R
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packages. Relationships among the risk scores, OS, survival status,
and gene expression of selected CRGs were analyzed using the
online bioinformatic analysis tool Sangerbox 3.0 (http://
vip.sangerbox.com/home.html).

2.5 Differentially expressed gene analysis

Patients were grouped according to risk scores, and DEGs were
identified using the “limma” R package. Briefly, genes with a false
discovery rate (FDR) of <0.05 and fold change of >1.5 between the
two groups were identified as DEGs. DEGs were visualized with a
volcano plot and generated using Sangerbox 3.0 (http://
vip.sangerbox.com/home.html).

2.6 Functional enrichment analysis

DEGs were used for multiple functional enrichment analyses
including Gene Set Enrichment Analysis (GSEA) and Kyoto
Encyclopedia of Genes and Genome (KEGG) pathway and Gene
Ontology-Biological Process (GO-BP) enrichment analyses using
the “clusterProfiler (version 3.14.3)” R package (27) and GSEA
software (version 3.0, http://software.broadinstitute.org/gsea/
index.jsp). The minimum and maximum number of genes in the
cluster were 5 and 5000, respectively. Pathways with a P-value
of <0.05 and FDR of <0.05 were considered statistically different.

Immune-related pathway enrichment (GO-immune system
process) was analyzed using the Cytoscape software and ClueGO
application (https://cytoscape.org/).

2.7 Tumor immune cell infiltration analysis

Tumor immune cell infiltration levels were evaluated using the
TIMER method (28) and the “IOBR” R package in the TCGA
database (29). Relationships between gene expression levels and
immune cell infiltration levels were calculated using the “psych
(version 2.1.6)” R package. Moreover, ESTIMATE analysis (https://
bioinformatics.mdanderson.org/estimate/, including ESTIMATE
score, stromal score, and immune score) was performed to visualize
the correlations between screened CRGs and TME in the TCGA
database. These analyses were performed using the open-source online
tool Sangerbox 3.0 (http://vip.sangerbox.com/home.html).

2.8 Expression of ICGs and correlations
with CRGs in HCC

The expression levels of PDCDI (the gene coding PD-1), CD274
(the gene coding PD-L1), and CTLA4 in normal and HCC liver tissues
were analyzed using data obtained from UALCAN (http://
ualcan.path.uab.edu/analysis.html) (30). Additionally, co-expression
analysis between ICGs and CRGs in HCC was performed using data
obtained from cBioportal (https://www.cbioportal.org/) and the
Firehose Legacy dataset (31).
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2.9 Myeloid response score and different
immune subtypes in HCC

The myeloid response score (MRS) model was used as a
reference to distinguish between the immune subtypes in HCC
(32). RNA-seq data of patients with HCC with different MRSs was
obtained and analyzed using data obtained from the GSE134921
dataset. Expression levels of critical CRGs were compared between
the high-MRS and low-MRS groups.

2.10 Construction of a prognostic
nomogram for HCC

To provide a reliable and quantifiable method to predict the
prognosis of patients with HCC, a novel nomogram was
constructed by integrating risk score, age, sex, race, TNM (tumor,
nodes, metastases) stage, and tumor grade into a Cox regression
model using the “rms” R package.

2.11 Recruitment of patients with HCC and
collection of clinical HCC samples

An observational study was conducted at the Renji Hospital,
Shanghai Jiaotong University School of Medicine, and Eastern
Hepatobiliary Surgery Hospital, the Third Affiliated Hospital of
Naval Medical University. This study was approved by the Renji
Hospital Ethics Committee (KY2020-185). The study complied
with the Declaration of Helsinki and the Consolidated Standards
of Reporting Trials (CONSORT) statement. Patients aged >18
years, those with primary HCC, and those who received HCC
excision surgery were included in the study. Patients were excluded
if they suffered from multiple metastases, had other additional types
of cancer, or had missing clinical data. HCC samples were collected
in the operation room immediately after excision and stored at —80°
C. All samples were confirmed as HCC by pathological diagnosis
after surgery.

2.12 Expression levels of ICGs and CRGs in
HCC samples

Gene expression levels of ICGs (PDCD1, CD274, and CTLA4)
and CRGs (PRNP, SNCA, COX17, ATP7A, ATP13A2, and F5) were
analyzed in human HCC samples. Total RNA was extracted from
the HCC samples using the EZ-press RNA Purification Kit (EZ
Bioscience, USA) according to the manufacturers’ protocol. The
primers of genes are listed in Supplementary Table 2. Linear
correlations between the gene expression levels of ICGs and
CRGs were analyzed.
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2.13 Immunohistochemical staining of ICGs
and CRGs in HCC samples

To determine the protein expression levels of ICGs and CRGs in
HCC samples, ITHC staining of PD-1 (Servicebio, cat: GB11338-1),
PD-L1 (Servicebio, cat: GB11339A), PRNP (Abclonal, cat: A18058),
SNCA (Abclonal, cat: A20407), and COX17 (SANTA Cruz, cat: sc-
100521) was performed.

2.14 Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics
23.0 (SPSS Inc., Armonk, NY, USA). Differences in the survival
analysis were compared by log-rank t-test with a 95% confidence
interval. ROC curves were plotted and area under the curve (AUC)
values were calculated to assess the discrimination strength of the
model. Linear correlations were assessed using Spearman’s or
Pearson’s correlation tests, and the correlation coefficient “r” was
calculated. All statistical tests were two sided. A P-value of <0.05
was considered statistically significant.

3 Results

The study design flow chart and validation process is presented
in Supplementary Figure 1. A total of 59 out of 62 CRGs were
analyzed in the two datasets because the expression data of three
CRGs (MTIHLI, MT-COI, and MT-CO2) was missing from the
raw data. From the TCGA-LIHC and ICGC-LIRI-JP datasets, 347
and 203 patients with HCC were examined, respectively.

3.1 Screening of prognostic genes in the
TCGA-LIHC and ICGC-LIRI-JP datasets

Survival analysis was performed on 59 CRGs in the TCGA-
LIHC dataset and 10 prognostic genes (ATP13A2, ATP7A, COX17,
DBH, F5, PRNP, SLC31A1, SNCA, STEAP4, and TFRC) that were
significantly correlated with the OS of patients were identified
(Figure 1A). Among these 10 critical genes, ATP13A2, ATP7A,
PRNP, SNCA, and TFRC were unfavorable for patient OS, whereas
COX17, DBH, F5, SLC31A1, and STEAP4 were favorable for
patients’ prognosis (Figure 1B). Similarly, seven genes (ABCB6,
ALB, BECNI, CP, DAXX, SLC31A1, and STEAP4) were found to
significantly influence the OS of patients in the ICGC-LIRI-JP
dataset, and higher expression levels of ABCB6, BECNI, and
DAXX were associated with worse OS, whereas those of ALB, CP,
SLC31A1, and STEAP4 were associated with better prognosis for
patients with HCC (Figures 1C, D). Altogether, 15 prognostic genes
were identified in the two datasets (Figure 1E).
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FIGURE 1

Survival analyses of cuproptosis-related genes (CRGs) for patients with hepatocellular carcinoma (HCC) in the TCGA-LIHC and ICGC-LIRI-JP
datasets. (A) Survival analyses of CRGs for patients with HCC in the TCGA-LIHC dataset. (B) Forest plot of prognostic genes in the TCGA-LIHC
dataset. (C) Survival analyses of CRGs for patients with HCC in the ICGC-LIRI-JP dataset. (D) Forest plot of prognostic genes in the ICGC-LIRI-JP

dataset. (E) Venn diagram of prognostic genes in the two datasets.

3.2 Lasso model construction
and validation

A Lasso regression model was constructed using the 15
prognostic genes identified above. Eight genes were successfully
included in the model from the TCGA-LIHC dataset; the formula
used was follows: risk score = 0.158 x ATP13A2 + 0.070 x ATP7A —
0.173 x COX17 - 0.050 x DBH - 0. 004 x F5 + 0.054 x SNCA -
0.089 x STEAP4 + 0.087 x ABCB6 (Figures 2A, B). Patients were
assigned to the low-risk or high-risk group based on the median of
all the risk scores. Survival analysis revealed that patients in the
high-risk group showed reduced survival years compared with
patients in the low-risk group, with the hazard ratio reaching 2.40
(Figure 2C). The heatmap also demonstrated that more deaths were
observed in the high-risk group (Figure 2D). ROC curve analysis
revealed moderate predictive efficacy, with the AUC for 1-year
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survival prediction reaching 0.75 (Figure 2E). Similar model
construction was conducted for the ICGC-LIRI-JP dataset, and
four critical genes (ALB, CP, SLC31A1, and STEAP4) were included
in the model (Figures 2F, G). Survival analysis and heatmaps
revealed significantly increased survival years and fewer patient
deaths in the low-risk group compared with the high-risk group
(Figures 2H, I). The AUC for 1-year and 2-year survival prediction
reached 0.77 and 0.81 respectively, suggesting good predictive
effects of the model (Figure 2]).

3.3 DEG validation and potential
immune-related pathway enrichment

DEGs between the two groups divided by the median risk score
in the ICGC-LIRI-JP dataset were identified and are shown in

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1123231
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al. 10.3389/fimmu.2023.1123231
A TCGA-LIHC F ICGC-LIRI-JP
@ atea) -
E / B sea E
< <9
£ — % -
o [}
Jeoxr)
B ) h-LogZ il) ' G -Log2 (»)
i 0,03 7,-1? 1] - bk 1004 =009
€ | | 5
bl | 3 |
T T 5
= 2 ..
= EXE
v v
B g .
= | = i
Log2 (M) Log2 ()
C H
Lo RiskScore RiskScore
\_\— L LT
. WH mH
= N ch \ S
\
Z. “ It z.
3 | 3 B
P=15¢-6 P=3.5¢4
.| HR=2.40 (95% CI= 1.66-3. 46) .| HR=3.52 (95% CI= 1.69-7.34)
Tlme (day) Time (month)
D @
Expression
=) Tosers T B
&, ,H‘;;h &
)
~ 3 B
Ll H [T T areraa2 "
Wﬂu it l' ”\nyum"”' W || \m ] 58 .
H Ll HI‘ Illli ‘ 1l M‘ | Hrl o e
s
[l H} [l HI\III [l Nea o
TR P R g
E J
2o £
z Z
w) w
Time: AUC (95% CI) 02 Time: AUC (95% CI)
= 1-year: 0.75 (0.68-0.81) = 1-year: 0.77 (0.68-0.85)
3-year: 0.70 (0.63-0.77) 2-year: 0.81(0.70-0.92) '
L — 5-year: 0.73 (0.63-0.81) e 3-year: 0.71 (0.59-0.84)
7 l-SpeciﬁcitYy 7 1-Specificity
FIGURE 2

Construction and validation of the least absolute shrinkage and selection operator (Lasso) model in the TCGA-LIHC and ICGC-LIRI-JP datasets.
(A, B) The Lasso regression model was constructed using 15 prognostic genes in the TCGA-LIHC dataset, and eight genes were successfully
included in the model. (C) Kaplan—Meier survival analysis of patients with hepatocellular carcinoma (HCC) grouped by risk scores in the TCGA-
LIHC dataset. (D) Distribution of the risk scores, survival status, and expression of eight critical predictive genes. (E) Receiver operating
characteristic (ROC) curve of risk scores in the TCGA-LIHC dataset. (F, G) The Lasso regression model was constructed using 15 prognostic
genes in the ICGC-LIRI-JP dataset, and four genes were successfully included in the model. (H) Kaplan—Meier survival analysis of patients with
HCC grouped by risk scores in the ICGC-LIRI-JP dataset. (I) Distribution of the risk scores, survival status, and expression of four critical
predictive genes. (J) ROC curve of risk scores in the ICGC-LIRI-JP dataset.

Figure 3A. A total of 317 upregulated and 113 downregulated DEGs
were identified. GSEA showed that immune-related pathways,
including complement activation and complement activation
alternative pathway, were significantly different between the two
groups. Additionally, complement activation-related genes were
downregulated in the high-risk group compared with the low-risk
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group (Supplementary Figure 2). KEGG and GO-BP pathway
enrichment analyses revealed considerable changes in immune-
related pathways, including complement-related signal pathways,
humoral immune response, and response to xenobiotic stimulus
(Figures 3B-D). In the TCGA-LIHC dataset, 812 upregulated DEGs
and 1333 downregulated DEGs were identified (Figure 3E). GSEA
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FIGURE 3

Differentially expressed gene (DEG) validation and potential pathway enrichment analysis. (A) Volcano plot of DEGs in the ICGC-LIRI-JP dataset.
(B) Gene Set Enrichment Analysis (GSEA) of immune-related pathways in the ICGC-LIRI-JP dataset. (C, D) Top 20 enriched Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and Gene Ontology-biological process (GO-BP) pathways in the ICGC-LIRI-JP dataset. (E) Volcano plot of
DEGs in the TCGA-LIHC dataset. (F) GSEA of immune-related pathways in the TCGA-LIHC dataset

revealed that immune-related pathways, such as antigen processing
and presentation pathways, were enriched in the TCGA-LIHC
dataset (Figure 3F). KEGG pathway enrichment analysis showed
that the complement and coagulation cascade pathways were
significantly enriched (Supplementary Figure 3), suggesting
potential associations between Cu homeostasis and immune
function. Interestingly, metabolic pathways, such as small
molecule catabolic processes and fatty acid metabolism, were also
significantly enriched in both datasets, suggesting that CRGs play a
role in cell metabolism (Figures 3C, D and Supplementary
Figure 3) (33).

We further visualized the enrichment of GO-immune system
process pathways using DEGs from the two datasets (Figure 4).
Following enrichment, immune-related signal pathways were found
to be considerably altered between the two groups. In the TCGA-
LIHC dataset, DEGs were enriched mainly in the immune
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response-regulatory signaling pathway (66.7%), complement
activation (11.1%), complement activation alternative pathway
(11.1%), and hemopoiesis (11.1%) (Figure 4A). In the ICGC-
LIRI-JP dataset, regulation of humoral immune response (66.7%),
complement activation-lectin pathway (11.1%), antimicrobial
humoral response (11.1%), and regulation of neutrophil-mediated
cytotoxicity (11.1%) were significantly enriched (Figure 4B). These
findings indicate the potential role of CRGs in immune function/
response regulation in HCC.

3.4 Correlations between CRGs and tumor
immune cell infiltration

Correlations between 11 prognostic genes screened by Lasso
models in the two datasets and tumor immune cell infiltration levels
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were analyzed using the TIMER method. Six CRGs that were
significantly correlated with tumor immune cell infiltration levels
were identified (Figure 5). Interestingly, ATP7A, ATPI3A2, and
SNCA, which were all unfavorable for the OS of patients (Figure 1),
were found to be positively correlated with multiple types of
immune cell infiltration in HCC, whereas COX17, F5, and ALB,
which were all favorable for the OS of patients, were negatively
correlated with immune cell infiltration in HCC. Furthermore, we
performed ESTIMATE analysis (including ESTIMATE score,
stromal score, and immune score) to picture the correlations
between the screened CRGs and tumor microenvironment
(Supplementary Table 3). ATP7A, ATP13A2, PRNP, and SNCA
were found to be positively correlated with the three scores, whereas
COX17 and F5 were found to be negatively correlated with the three
scores. No significant correlations were found between ALB and the
three scores.

3.5 Correlations between CRGs and ICGs

A previous study has indicated that intratumoral Cu and CRGs
modulate the expression of ICGs (34). ICGs are widely expressed in
diverse cancer cells, including HCC, and regulate tumor
development (35, 36). Therefore, we compared expression levels
of ICGs between normal and HCC liver tissues. Three ICGs were
expressed in HCC, and the gene expression levels of PDCDI and
CTLA4 were substantially increased in HCC samples compared
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with normal liver tissue (Figure 6A). By grouping patients based on
the median risk score, similar changes were observed in that the
expression levels of PDCDI and CTLA4 were significantly higher in
the high-risk group than in the low-risk group (Figure 6B). These
findings indicate that higher expression levels of ICGs may be
correlated with worse prognosis in patients with HCC.

We assessed the co-expression between CRGs and ICGs at the
mRNA level in HCC (Figure 6C). Notably, ATP7A, ATPI3A2,
SNCA, and PRNP (unfavorable for the OS of patients with HCC)
were significantly positively correlated with the expression of ICGs.
However, a negative correlation was observed between ICGs and
COX17 or F5 (favorable for the OS of patients with HCC).
Collectively, these results further suggest that CRGs participate in
the regulation of ICG expression and tumor immune escape.

3.6 Validation of critical CRGs in different
immune subtypes of HCC

Recently, Wu et al. developed and validated a simple scoring
model named MRS to distinguish between the different immune
subtypes of HCC (32). A higher MRS usually represents a
significantly immunosuppressive tumor microenvironment in
HCC (Figure 7A). We validated our findings regarding the
relationship between CRGs and the TIM using related sequencing
data (GSE134921) (32). The expression of CRGs including ATP7A,
PRNP, and SNCA, which were unfavorable for the prognosis of
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patients with HCC, was significantly increased in the high-MRS
group (Figure 7A). In contrast, the expression of DBH and F5,
which were favorable for the prognosis of patients with HCC, was
reduced in the high-MRS group. It was found that CD274 and
CTLA4 were remarkably upregulated in the high-MRS group. All
the abovementioned results suggest close relationships among
CRGs, TIM, and immune checkpoints in HCC.

Differential signaling pathways were analyzed and compared
between the low-MRS and high-MRS groups (Figure 7B).
Interestingly, the results of this analysis were surprisingly similar
to those of the pathway enrichment analyses of the low-risk and
high-risk groups (Figure 4C and Supplementary Figure 3),
suggesting good comparability between the MRS and risk scoring
systems. The risk score based on CRGs may discriminate immune
subtypes in HCC. Similarly, metabolic pathways such as small
molecule catabolic process and fatty acid metabolism were also
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enriched, suggesting that cell metabolism is associated with TIM
regulation in HCC (Figure 7B).

3.7 Validation of significant correlations
among CRGs, TIM, and ICGs in the
Renji cohort

Based on correlations analyses between CRGs and ICGs
(Figure 8 and Supplementary Figure 4), we selected three CRGs
(PRNP and SNCA [unfavorable for prognosis] and COX17
[favorable for prognosis]) that had more significant correlations
with ICGs than other CRGs for further validation in HCC samples;
the clinical characteristics of patients are shown in Table 1. Linear
regression analyses of gene expression levels revealed a significantly
positive correlation between PRNP and ICGs, with the R-value
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Co-expression analysis of cuproptosis-related genes (CRGs) and immune checkpoint genes (ICGs). (A) Expression levels of ICGs between normal
liver tissue and hepatocellular carcinoma (HCC). (B) Differences in the expression of ICGs between low-risk and high-risk groups. (C) Co-expression
analysis of CRGs and ICGs. ATP7A, ATP13A2, and SNCA were significantly positively correlated with the expression of ICGs, and a negative
correlation between ICGs and COX17 or F5 was observed. ns, no significance.

reaching 0.94 and 0.51 for CD274 and CTLA4, respectively Correlations between CRGs and immune cell markers were
(Figure 8A). This strongly suggests that PRNP plays a key role in  observed in HCC samples (Supplementary Figure 5). Linear
the regulation of ICGs in HCC. Positive correlations were observed ~ regression analyses of gene expression levels suggested that PRNP
between SNCA and PDCDI/CTLA4. However, a negative  be closely associated with multiple types of immune cells in HCC
correlation was observed between COX17 and CD274, with the R-  (Supplementary Figure 5A). In summary, the validations in HCC
value reaching —0.52 (Figure 8A). Moreover, IHC analysis of HCC ~ samples further verified the findings obtained from the
samples revealed similar results (Figure 8B). comprehensive bioinformatic analyses.
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3.8 Nomogram construction for HCC
based on CRGs

Finally, a novel prognostic nomogram to predict the survival of
patients with HCC was constructed by integrating risk score, age,
sex, race, TNM stage, and tumor grade. Both risk score and TNM
stage significantly influenced the survival of patients (both P < 0.05),
and the risk score had a greater influence than the TNM stage
(Figure 9A). Moreover, the calibration plots and ROC curves
suggested that the model could reliably predict the OS of patients
with HCC (Figures 9B, C).

4 Discussion

As a critical bioinorganic element, Cu plays important roles in
various biological processes in vertebrates (15, 37), and Cu
homeostasis is tightly regulated within the body. However,
elevated serum and tumor levels of Cu are common in many
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cancers, and studies have shown that Cu plays critical roles in
tumor growth and immune resistance (18, 34, 38, 39). Recently, the
mechanism of Cu in regulating HCC development has become a
topic of interest (40-42). For instance, a newly published study
showed that elevated intracellular levels of Cu promoted the
radioresistance of HCC cells, and novel treatment strategies can
recover the sensitivity to radiotherapy by disrupting Cu-Fe
homeostasis in HCC cells (42). Davis et al. found that the
expression of Cu transporter genes was significantly altered in
HCC; by limiting Cu homeostasis, the growth of HCC cell lines
could be inhibited (40). Therefore, exploring the relationships
among Cu metabolism, cuproptosis, and tumor immune response
may provide novel insights on cancer therapy.

In our study, we systematically analyzed 59 genes involved in Cu
metabolism and cuproptosis in patients with HCC from two public
datasets. Results suggested that 15 CRGs significantly influenced the
prognosis of patients. Furthermore, we successfully constructed a
Lasso model and nomogram to predict the risk of death for patients
with HCC based on the screened CRGs and 11 critical genes that were
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TABLE 1 Clinical characteristics of patients with HCC.

Characteristics n=25

Gender (male/female) 24/1
Age (year) 53.28 (11.05)

Height (cm) 170.43 (5.96)

Weight (kg) 68.10 (9.44)
ASA stage (I/II) 7/18
Child-Pugh stage (A/B) 13/12
Hypertension (Yes/No) 10/15
Diabetes (Yes/No) 2/23
Drinking (Yes/No) 5/20
Viral hepatitis (Yes/No) 24/1
Cirrhosis (Yes/No) 20/5
Tumor size (cm) 4.92 (2.53)
Operation time (hour) 2.80 (0.90)

Bleeding (ml) 295.45 (164.69)

Urine (ml) 413.64 (190.98)
Liquid transfusion
Crystalloid fluid (ml) 1285.71 (373.21)

Colloid fluid (ml) 739.05 (375.53)

ALT (U/L) 36.64 (34.48)
AST (U/L) 35.05 (26.63)
Hb (g/L) 143.39 (16.43)

PLT (10°/L) 175.04 (86.76)

TBiL (umol/L) 14.35 (5.76)

ALB (g/L) 42.98 (3.96)

Cr (umol/L) 70.57 (13.15)

INR 1.02 (0.12)

Variables are shown as “mean (SD)”. ASA, American Society of Anesthesiologists; ALT,
alanine transaminase; AST, aspartate aminotransferase; Hb, hemoglobin; PLT, platelets; TBiL,
total bilirubin; ALB, albumin; Cr, creatine; INR, international normalized ratio.

identified using the Lasso model. HCC samples were validated and
potential targets that are closely associated with ICGs and immune
cells, such as PRNP, SNCA, and COX17, were identified. Collectively,
these findings confirm the key roles of CRGs in mediating tumor
development, and this prediction model could help clinicians predict
the prognosis of patients with HCC more easily.

The role of Cu in regulating tumor immune function and
immune checkpoints has rarely been explored. In 1981, a study
reported that mice fed a Cu-deficient diet made significantly fewer
antibody-producing cells and had an impaired immune system
(43). Another study revealed that endogenous Cu was involved in
the mediation of inflammatory responses (44). In 2020, Voli et al.
reported that intratumoral Cu modulated PD-L1 expression, tumor
immune cell infiltration, and immune escape in neuroblastoma.
However, to the best of our knowledge, studies regarding Cu
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metabolism and immune function in HCC are lacking.
Considering this, we focused our analyses on understanding the
mechanisms underlying the effects of CRGs on immune-related
pathways. By performing multiple function enrichment analyses,
we identified that the immune-related pathways were significantly
enriched, such as complement activation-related pathways,
humoral immune response, and immune response-regulating
signaling pathways. Furthermore, tumor immune cell infiltration
analysis showed that ATP7A, ATP13A2, and SNCA, which were
unfavorable for the OS of patients with HCC, were positively
correlated with multiple types of immune cell infiltration, whereas
COX17, F5, and ALB, which were favorable for the OS of patients
with HCC, were negatively correlated with immune cell infiltration
in HCC. These results could be explained by the complexity and
heterogeneity of immune contexture in HCC. Higher levels of
immune cell infiltration may be associated with worse prognosis
of patients with HCC owing to the accumulation of numerous
suppressive immune cells, such as TAMs, exhausted T cells, and
MDSCs. For instance, Wu et al. validated a simple myeloid
signature known as MRS for HCC and discriminated HCC
immune subtypes as immunocompetent, immunodeficient, and
They found that the
infiltration level of CD8" T cells was comparable in the

immunosuppressive subtypes (32).

immunocompetent and immunosuppressive subtypes, while most
T cells were PD-1"¢" exhausted T cells in the immunosuppressive
subtypes, suggesting the presence of a highly immunosuppressive
tumor microenvironment in patients with HCC with a high MRS.

Immune checkpoints play critical roles in regulating immune
cell function and tumor immune cell infiltration, and ICI therapy
has revolutionized the treatment of advanced malignancies and
other diseases in recent years (45, 46). For example, Wang et al.
found that increased PD-L1 expression in human neutrophils
delays cellular apoptosis by triggering PI3K-dependent AKT
phosphorylation, thereby promoting lung injury and increasing
mortality during clinical and experimental sepsis (45).
Additionally, ICIs targeting PD-1, PD-L1, or CTLA4 have
enabled the possibility of long-term survival in patients with
tumors such as melanoma, HCC, breast cancer, and colorectal
cancer (47, 48). Previous studies demonstrated that tumor cell-
intrinsic ICGs regulated tumor development (34, 49, 50). Therefore,
correlations between CRGs and ICGs at the mRNA level were
investigated and discussed in our study. Among the 15 critical
prognostic genes, ATP7A, ATPI3A2, SNCA, and PRNP were
significantly positively correlated with the expression of ICGs,
whereas COX17 and F5 were negatively correlated with the
expression of ICGs. These results were consistent with those of
the survival analysis in the two datasets, suggesting that CRGs
influence tumor immune escape by regulating the expression of
ICGs. Furthermore, based on the co-expression analysis between
CRGs and ICGs, we hypothesized that infiltrated immune cells may
be disabled by the high levels of immune checkpoints in tumor cells.

The meaningful findings of our study are as follows: 1) We
found potential associations between CRGs and immune function
regulation in HCC. Furthermore, we found that CRGs were
correlated with the expression of PD-1, PD-L1, and CTLA4,
which implies possible effects on regulating the immune escape
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A nomogram was constructed to predict the probability of the 1-year, 3-year, and 5-year overall survival (OS) in patients with hepatocellular
carcinoma (HCC). (A) The nomogram was constructed based on six factors, and the results suggest that the risk score and TNM (tumor, nodes,
metastases) stage significantly affected the OS of patients with HCC. For the factor sex, O represents male and 1 represents female; for the factor
race, O represents white, 1 represents Asian, and 2 represents others; for TNM, 1 represents stage |, 2 represents stage Il, and 3 represents stages |lI
and V. (B) Calibration plots of the nomogram for the 1-year, 3-year, and 5-year OS. (C), Receiver operating characteristic (ROC) curve of the

nomogram prediction model. ****P < 0.0001.

and TIM, and may be promising targets to improve the efficacy of
immunotherapy in HCC. To target these potential genes may
cooperate with ICIs to suppress tumor growth. 2) We identified
critical CRGs that significantly influence the survival of patients
with HCC. We constructed a useful tool to predict the risk of death
for patients with HCC based on the prognostic genes identified. 3)
We analyzed the effect of cuproptosis on HCC and found that some
CRGs, such as ATP7A and SLC31A1, significantly affected the OS of
patients with HCC, suggesting that cuproptosis is involved in HCC
progression. Moreover, cuproptosis may provide new research
directions and targets for HCC clinical treatments, similar to
ferroptosis. Finally, our study revealed complex functions of Cu
in regulating the TIM, immune cell infiltration, and ICG expression.

Limitations of the present study are worth noting. First, in vivo or
in vitro experiments are required to validate the enrichment of
immune-related signaling pathways observed in the GSEA and
KEGG pathway enrichment analysis. Nevertheless, some
validations were performed on HCC samples in our study, and this
provides a meaningful direction for scientists to further investigate
the relationship between Cu metabolism and tumor immune
response in HCC. Second, it was unclear whether immune escape
and immune therapy resistance could be reversed by targeting the
critical CRGs, although correlations were identified at the mRNA
level among CRGs, tumor immune cell infiltration, and immune
checkpoints. Third, multicenter clinical trials with large sample sizes
are required to validate and improve our prognostic model.
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5 Conclusion

Our study provides meaningful insight into the key roles of
CRGs in the development of HCC. Functional enrichment and
pathway analysis suggest a close relationship between CRGs and
immune-related pathways in HCC. Critical CRGs, particularly
PRNP, SNCA, and COXI7, may influence the infiltration of
multiple immune cells in HCC, and significant correlations with
the expression of PD-1, PD-L1, and CTLA4 were also observed.
Collectively, CRGs could be promising therapeutic targets for HCC
by regulating the TIM and immune checkpoints.
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A Commentary on

Copper and cuproptosis-related genes in hepatocellular carcinoma:
therapeutic biomarkers targeting tumor immune microenvironment
and immune checkpoints

by Wang X, Chen D, Shi Y, Luo J, Zhang Y, Yuan X, Zhang C, Shu H, Yu W and Tian J (2023).
Front. Immunol. 14:1123231. doi: 10.3389/fimmu.2023.1123231

Introduction

Since P Tsvetkov et al. have first coined “cuproptosis” in 2022, this novel pattern of
programmed cell death (PCD) greatly expands our horizons of human diseases (1).
Mechanistically, FDX1-mediated protein lipoylation and copper-mediated toxic gain
drive the onset of cuproptosis (1). As shown in Figure 1, FDXI, as a metal reductase, is
responsible for reducing Cu®* to its more toxic form Cu'*. Next, protein lipoylation is
triggered with the aid of FDX1 and six regulators in the lipoic acid pathway. Due to the fact
that protein lipoylation is only observed in four enzymes (DBT, DLST, GCSH, and DLAT),
all of which participate in the tricarboxylic acid cycle (TCA), the cuproptosis process is
subjected to mitochondrial respiration. In the effector phase, copper directly binds to
lipoylated protein to increase its cytotoxicity through promoting its aberrant
oligomerization. Moreover, copper is able to destabilize Fe-S cluster proteins, thereby
enhancing proteotoxic stress. The above-mentioned two processes of copper-induced toxic
gain eventually lead to cuproptosis.

Considering the critical roles of other patterns of cell death in cancers, such as
apoptosis and ferroptosis, an increasing number of scholars move their attention on the
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FIGURE 1
Mechanism diagram of cuproptosis

associations of cuproptosis with human cancers. Recently, we
focused on the research by X Wang et al. entitled “Copper and
cuproptosis-related genes in hepatocellular carcinoma: Therapeutic
biomarkers targeting tumor immune microenvironment and
immune checkpoints”, which was published in Frontiers in
Immunology (2). In this study, the authors constructed a
cuproptosis-related (CR) signature using Lasso regression analysis
to evaluate tumor immune microenvironments (TIMs) and predict
the prognosis of patients in hepatocellular carcinoma (HCC).
Moreover, they found that some critical CR genes such as PRNP
and COX17 were closely related with the expressions of immune
checkpoints (ICs), which showed the potentials of the application of
a CR model to predict the efficacy of immune checkpoint
inhibitors (ICIs).

Despite the great inspiration of their findings to HCC clinical
assessment, there is still a long way ahead the clinical application of
cuproptosis in HCC. The first issue that needs to be urgently
addressed is whether cuproptosis is the dominant pattern of cell
death in a specific cancer compared to other PCD. If cuproptosis
rarely occurred or is hardly induced in a specific cancer, the
corresponding CR signature may be tedious. Moreover, how to
detect the intensity of cuproptosis and how to assess the eftects of
genes on cuproptosis are the other critical issues needed to be
addressed. Regretfully, several recent studies in Frontiers in
Immunology have failed to eliminate the above-mentioned concerns
well (3-5). Therefore, we performed the following discussion which
aims to provide some insights into further CR research.

Roles of cuproptosis in cancer
pathogenesis: leader or retinue?

As a novel type of PCD, the precise mechanisms of cuproptosis
in the onset and progression of human cancers need to be further
identified. A bibliometric research revealed that the majority of
existing cuproptosis studies only exhibited the bioinformatic
functional predictions or associations of cuproptosis in cancer (6).
However, how big the roles of cuproptosis in cancer pathogenesis
remain elusive. Compared with other PCD, cuproptosis is not
characterized by the obvious alteration of cell microstructure—for
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instance, the abnormal changes in structure of the mitochondria
observed through transmission electron microscopy can be the
direct evidence supporting ferroptosis, but not for cuproptosis
(7). Herein we provided some ideas for the above-mentioned issue.

It is now confirmed that cuproptosis is subjected to
mitochondrial respiration due to the fact that inhibitors of the
electron transport chain (ETC) as well as inhibitors of
mitochondrial pyruvate uptake both hinder the copper ionophore-
induced cell death (1). Not only that, the core link of cuproptosis,
protein lipoylation, only occurs in four enzymes of the TCA cycle (8).
Thus, it is not difficult to surmise that cuproptosis occurrence was
tightly related to the activity of the TCA cycle. In the above-
mentioned context, we speculate that the activity of the TCA cycle
or mitochondrial respiration could act as the indicator to assess the
cuproptosis level. At present, there have been reasonable and reliable
approaches to detect the alterations of mitochondrial respiration,
including the extracellular acidification rate (ECAR), the oxygen
consumption rate (OCR), and the detection on the activity of key
enzymes or products in the TCA cycle—for instance, X Pei et al. have
applied ECAR and OCR assays to confirm the influence of MDH2 on
mitochondrial respiration (9). FL Basei et al. have evaluated the
changes in the protein expressions of respiratory complexes, such as
NDUFB8, SDHB, MTCOI, and SDHB, thereby revealing the
regulatory function of Nek4 in mitochondrial respiration (10).

Therefore, it is more reasonable to clarify the cuproptosis level
in a certain tumor before constructing a CR signature for cancer
clinical assessments. If there are no differences in the activity of
mitochondrial respiration, especially the TCA cycle between normal
and tumor cells or samples, the constructed CR signature is more
like a purely mathematical model rather than an excellent
assessment tool related to cuproptosis.

Paying more attention on the
functions of research genes
in cuproptosis

To date, a considerable proportion of cuproptosis bioinformatic
studies have only investigated the oncogenic or inhibitory functions
of CR genes in cancers from the biological perspective, without
determining the impact of these genes on cuproptosis—for
example, another cuproptosis research published on Frontiers in
Immunology has established a CR model for predicting a metastatic
event in melanoma, and the authors analyzed the effects of FDX1,
the core gene in this model, on the proliferation and migration of
melanoma cells (11). Similar research strategy is also observed in
other studies (12). Nevertheless, the effects of CR genes on the
cuproptosis process remain unanswered among these research,
which inevitably raises a question on whether these genes actually
regulate cancer development through cuproptosis. To resolve this
issue, we suggest that researchers could determine the sensitivity of
a tumor cell to cuproptosis agonists, such as elesclcomol under the
deficiency or overexpression of the target gene. Alternatively, they
could ascertain whether cuproptosis agonists are able to reverse the
effects of genes on the malignant behaviors of tumor cells.
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Conclusion

The discovery of cuproptosis extremely expands our
understanding of cancer pathogenesis and inspires the work
enthusiasm of researchers. Of note, conducting scientific functional
analysis related to cuproptosis prior to initiating CR research,
especially for CR bioinformatic research, is great of significance.
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Background: The role of copper in cancer treatment is multifaceted, with copper
homeostasis-related genes associated with both breast cancer prognosis and
chemotherapy resistance. Interestingly, both elimination and overload of copper
have been reported to have therapeutic potential in cancer treatment. Despite
these findings, the exact relationship between copper homeostasis and cancer
development remains unclear, and further investigation is needed to clarify this
complexity.

Methods: The pan-cancer gene expression and immune infiltration analysis were
performed using the Cancer Genome Atlas Program (TCGA) dataset. The R
software packages were employed to analyze the expression and mutation status
of breast cancer samples. After constructing a prognosis model to separate
breast cancer samples by LASSO-Cox regression, we examined the immune
statement, survival status, drug sensitivity and metabolic characteristics of the
high- and low-copper related genes scoring groups. We also studied the
expression of the constructed genes using the human protein atlas database
and analyzed their related pathways. Finally, copper staining was performed with
the clinical sample to investigate the distribution of copper in breast cancer tissue
and paracancerous tissue.

Results: Pan-cancer analysis showed that copper-related genes are associated
with breast cancer, and the immune infiltration profile of breast cancer samples is
significantly different from that of other cancers. The essential copper-related
genes of LASSO-Cox regression were ATP7B (ATPase Copper Transporting Beta)
and DLAT (Dihydrolipoamide S-Acetyltransferase), whose associated genes were
enriched in the cell cycle pathway. The low-copper related genes scoring group
presented higher levels of immune activation, better probabilities of survival,
enrichment in pathways related to pyruvate metabolism and apoptosis, and
higher sensitivity to chemotherapy drugs. Immunohistochemistry staining
showed high protein expression of ATP7B and DLAT in breast cancer samples.
The copper staining showed copper distribution in breast cancer tissue.

Conclusion: This study displayed the potential impacts of copper-related genes
on the overall survival, immune infiltration, drug sensitivity and metabolic profile
of breast cancer, which could predict patients” survival and tumor statement.
These findings may serve to support future research efforts aiming at improving
the management of breast cancer.
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Introduction

Breast cancer has become a significant worldwide health issue, with
over two million emerging cases and six hundred thousand death
records in 2020 (1, 2). Common treatment options, such as
chemotherapy, endocrine therapy, immunotherapy and radiotherapy,
do not always provide optimal therapeutic effects to breast cancer
patients (3). Therefore, it is important to develop more accurate and
effective prognostic models that can effectively characterize and classify
the molecular subtypes of breast cancer in order to diagnose, treat and
prevent breast cancer in a more precise manner.

Copper is a cofactor for various enzymes and plays a vital role in
cellular metabolism and respiration, and disruption of copper
homeostasis cause Wilson disease and Menkes disease (4, 5). Copper
also contributes to cancer development by enhancing tumor cell
proliferation and angiogenesis. Consequently, copper chelator has
been applied to inhibit cancer metastasis in clinical trials (6-8). On
the contrary, copper overload has been recently proposed to induce
lipoylated protein aggregation and cancer cell death (9). Copper
homeostasis-related genes have been implicated in breast cancer
prognosis and chemotherapy resistance. Studies have shown that
breast cancer patients with poor prognoses exhibit higher expression
of the copper importer solute carrier family 31 member 1 (SLC31A1)
and the copper binding protein ceruloplasmin, which could be utilized
as potential prognosis factors (10-12). Decreased expression of the
copper exporters ATPase copper transporting o. (ATP7A) and ATPase
copper transporting 3 (ATP7B) have been associated with decreased
chemotherapy resistance in breast cancer cells (13, 14). It is currently
not fully understood how copper metabolism may be involved in
breast cancer or the potential mechanisms by which it may influence
the development or progression of the disease. Therefore, a
comprehensive analysis of the genetic alterations of copper-related
genes in tumor tissue could identify molecular targets for future
diagnosis and treatments for breast cancer.

Our pan-cancer analysis identified a differential expression pattern
of copper-related genes and immune cell infiltration profile in breast
cancer. We further investigated the expression and copy number
variation (CNV) of copper-related genes in breast cancer and
separated breast cancer samples based on the risk score. We then
compared the survival status, immune status, drug sensitivity and
metabolic pathways of the high- and low-copper related genes scoring
groups. Specifically, we analyzed the protein expression, the related genes
and the metabolic pathways of the essential copper-related genes, namely
ATP7B and DLAT, in breast cancer samples. The clinical sample also
confirmed that copper is distributed in breast cancer tissue. In summary,
this study may offer valuable insights for identifying potential therapeutic
interventions and biomarkers for breast cancer treatment.

Materials and methods

Acquisition of copper-related genes and
data collection

We collected copper metabolism-related genes from MSigDB (15)
and cuproptosis-related genes from literature (9). The 42 copper-related
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genes are listed in Table S1. The transcriptome data and medical
information of breast cancer patients were obtained from the Cancer
Genome Atlas (TCGA) database (https://www.cancer.gov/tcga). After
excluding samples with incomplete transcriptomic and survival data, we
obtained a final dataset with 1069 breast cancer samples and 113
paracancerous samples, which were used for the following analysis.
The validating datasets were procured from Gene Expression Omnibus
(GEO), including GSE96058 with 3273 breast cancer samples (16),
GSE18229 with 82 samples of luminal A and HER2-enriched subtypes
(17), and GSE58812 with 107 samples of triple-negative breast cancer
(18). The data of Infiltration Estimation for all TCGA tumors were
obtained from TIMER2.0 (19). Copy number variation landscape was
presented by the R package “maftools” (20).

Heatmap, PPl network, and
correlation network

The heatmap was presented by chiplot (https://
www.chiplot.online/) and data were collected from TCGA
database and Genotype-Tissue Expression (GTEx) based on
UCSC XENA platform (21). The PPI network (Protein-Protein
Interaction Networks) was created by the STRING database (22)
and Cytoscape (23). The degree of cuproptosis and copper
metabolism-related genes was calculated by CytoNCA (24). The
correlation network was presented by the R package “corrr”.

Construction and validation of the copper-
related genes’ prognostic index

Copper-related genes were analyzed by univariate Cox regression
and genes with p < 0.05 were integrated into the LASSO-Cox
regression via 10-fold cross-validation in order to narrow down
candidate genes. A prognostic signature was built by multivariate
Cox regression, whose predictive capability on overall survival (OS)
was analyzed by time-dependent receptor operating characteristic
(ROC) curves by using the R package “timeROC” and “ggplot2”
(25). The univariate and multivariate Cox regression results were
obtained from the online analysis platform ToPP (http://
www.biostatistics.online/topp/index.php.) (26).

Survival analysis

The Kaplan-Meier curve was performed to compare the
survival status of the high- and low-copper related genes scoring
groups stratified by the risk score of copper-related genes using the
R packages “survival”, “survminer” and “ggplot2” (R version 4.1.3).
Genes were considered statistically significant at the p < 0.05 level.

Immune profile analysis

In order to identify the immune states and prognostic features
of the high- and low-copper related genes scoring groups, we
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applied CIBERSORT (27) to evaluate and compare the immune
composition between the two groups. By Tumor Immune
Dysfunction and Exclusion (TIDE) (28), we obtained the MSI
(microsatellite instability), Exclusion and Dysfunction to compare
the potential of tumor immune escape between the two groups. We
calculated the stromal score, immune score, tumor purity and
estimated score through the ESTIMATE algorithm (29).

Immunohistochemical staining of
ATP7B and DLAT by the human protein
atlas (HPA) database

The gene expression data based on breast cancer clinical
specimens were obtained from the HPA database (https://
www.proteinatlas.org/). Visualizing data of HPA were presented
using the R package “HPAanalyze”.

GSEA

Gene set enrichment analysis (GSEA) of the high- and low-
copper related genes scoring groups was created by the desktop
application of GSEA 4.2.3. Pathways were considered statistically
enriched at the cut-off point of p< 0.05 and FDR < 0.25 (15).

Drug sensitivity analysis

Based on the transcriptome data of breast cancer samples, the
drug sensitivity was analyzed by the R package “oncoPredict” and
the Genomics of Drug Sensitivity in Cancer (GDSC) database (30).

LinkedOmics analysis

The LinkFinder and LinkInterpreter modules of the
LinkedOmics web application were employed to investigate the
potential gene regulation network of the signature genes (31). These
tools allowed for identifying and analyzing relevant attributes,
providing insight into the functional relationships and regulatory
mechanisms at play in the network.

Copper staining of breast cancer samples

Tissue sections were obtained from both cancerous and
paracancerous areas of a patient with stage III/IV breast cancer that
tested negative for both estrogen receptor (ER) and progesterone
receptor (PR). The tissue sections were fixed with 4% formaldehyde
(G1101; Servicebio, Wuhan, China) overnight. After dehydration,
wax leaching, deparaffinization and rehydration with ethanol and
xylene, the slides were stained following the kit manufacturer’s
instructions for copper stain (M094; Gefanbio, Shanghai, China)
followed by hematoxylin stain (G1004-500ML; Servicebio, Wuhan,
China). The histological images of the tissue sections were scanned by
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a digital slide scanner (Pannoramic scan, Hungary). This study was
approved by the ethics committee of the Chinese People's Liberation
Army (PLA) General Hospital (No. $2016-055).

Statistical analysis

The R version 4.1.3 was used to analyze data. The comparative
methods of difference between the groups were applied, including
Student’s t-test, Wilcoxon test, Kruskal-Wallis, and Log-Rank test
for survival analysis. The asterisks symbolized the statistical p value
(*p < 0.05 *p < 0.01; *p < 0.001, ****p< 0.0001).

Results

The pan-cancer expression patterns of the
copper-related genes and the pan-cancer
immune statement

Based on the Molecular Signatures Database (MsigDB) (15) and
the recent cuproptosis literature (9), we selected 42 copper-related
genes for analysis (Table SI). The expression of copper-related
genes in 14 cancer types was examined and demonstrated by a
heatmap (Figure 1A). The stacked bar chart showed differentially
expressed copper-related genes in different cancer types (Figure 1B).
The Sankey diagram showed the log2 fold change (tumor vs. non-
tumor sample) of differentially expressed copper-related genes
across different cancer types (Figure 1C). These results
demonstrated the dysregulation of copper-related genes in breast
cancer and other cancer types. To further identify the immune
profile of different types of cancer, we generated the boxplot to
compare the immune cells’ infiltration profile in tumor samples and
their paired non-tumor samples. The boxplot showed the different
immune cells statement of tumor samples, demonstrating that the
enrichment of naive B cells (Figure 1D), memory B cells (Figure 1E),
CD8" T Cells (Figure 1F), activated memory CD4"T
Cells (Figure 1G), activated NK cells (Figure 1H), MO
macrophages (Figure 1I), M1 macrophages (Figure 1J) and M2
macrophages (Figure 1K) was significantly changed in many cancer
types, especially in breast cancer samples.

The expression and genetic variation
profile of copper-related genes in breast
cancer samples

We analyzed the expression of copper-related genes in breast
cancer and non-tumor samples, which verified that breast cancer
samples had dysregulation of copper-related genes (Figures 2A, B).
The PPI network (Figure 2C) and correlation analysis (Figure 2D)
of copper-related genes in breast cancer samples showed the
interactions between candidate genes. Genetic variation plays a
crucial role in cancer origin and development. Therefore, we
analyzed somatic mutations and CNV of copper-related genes in
breast cancer samples (Figures 2E, F). According to the variant
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FIGURE 1

The pan-cancer analysis of copper-related genes. (A) Heatmap of copper-related genes showed different expression patterns across different types
of cancers. (B) A stacked bar chart of copper-related genes in different types of cancer samples showed the number of differentially expressed
genes. The red and blue colors represented upregulated and downregulated genes, respectively. (C) The Sankey diagram of differentially expressed
copper-related genes across different cancer types. (D—K) Box plot comparison of the abundance of naive B cells (D), memory B cells (E), CD8* T
Cells (F), memory CD4" T cells (G), activated NK cells (H), MO macrophages (1), M1 macrophages (J), and M2 macrophages (K) in different types of
cancers compared with paired non-tumor samples. (*p < 0.05; **p < 0.01; ***p < 0.001, ****p< 0.0001,NS: no significance).

classification, the most prevalent variant, variant type and single
nucleotide variant (SNV) were missense mutations, single-
nucleotide polymorphisms (SNPs), and the C > T mutation,
respectively. In breast cancer samples, ATP7A (18%), amyloid
beta precursor protein (APP) (11%) and ATP7B (9%) were the
more frequently mutated genes. Cuproptosis genes, such as
dihydrolipoamide dehydrogenase (DLD) (2%) and
dihydrolipoamide s-acetyltransferase (DLAT) (2%), were also
among the top ten mutated genes.
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Construction of the breast cancer’s survival
prediction model by copper-related genes

To predict the breast cancer survival pattern by a
prognostic gene set, we utilized univariate and multivariate
Cox regression analysis to plot the association between the
expression of copper-related genes and the OS of breast
cancer patients (Figures 3A, B and Table S2). Then, we built
the LASSO-Cox model using univariate Cox regression
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genes (p value <0.1) to select the best candidate genes for
constructing a survival prediction model of breast cancer
patients (Figure 3C). Eventually, 21 candidate gene signatures
emerged with the optimal log A value of the LASSO-Cox
model. We selected DLAT and ATP7B as the signature
genes to construct the prediction model based on OS
outcomes using regression coefficients. Risk score= 0.6664 x
DLAT - 0.1985 x ATP7B.
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Prediction of breast cancer survival rates
by gene expression of ATP7B and DLAT

We confirmed the predictive performance of the prognostic gene set
using the TCGA-BRCA dataset (Figures 4A, C, E) and a validating
dataset (Figures 4B, D, F). Figures 4A, B presented Kaplan-Meier plot of
the two risk groups’ OS in the training and validating dataset. We then
further demonstrated the risk score distribution plot and expression of
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ATP7Band DLAT in breast cancer samples (Figures 4C, D). The survival
plots indicated that the high- copper related genes scoring group had
poor survival. For ease of description, we define the high- and low-
copper related genes scoring groups as high- and low-scoring groups.
Time-dependent ROC curves were constructed to evaluate the predictive
model’s efficacy. At the 1-, 3-, and 5-year time points, the TCGA-BRCA
dataset’s area under curves (AUCs) were 0.617, 0.623, and 0.597,
respectively (Figure 4E). As for the validating breast cancer dataset
(GSE96058), the areas under the time-dependent ROC curve were 0.738,
0.623 and 0.595 at the 1-, 3- and 5-year time points (Figure 4F).

Comparison of the immune cells’
infiltration profile of the high-
and low-scoring groups

Immune infiltrates were increasingly considered responsible for
influencing the prognosis and clinical outcome of breast cancer
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patients (32). Therefore, we compared the profile of tumor-
infiltrating immune cells between the high- and low-scoring
groups based on copper-related genes by heatmap (Figure 5A)
and box plot (Figure 5B). The low-scoring group had more naive B
cells, M2 macrophages, resting mast cells, monocytes, and CD8" T
cells than the high-scoring group, while the high-scoring group had
more activated dendritic cells, MO macrophages, M1 macrophages
and follicular helper T cells. The histogram (Figure 5C) and box plot
(Figure 5D) displayed the composition of different immune cells in
breast cancer samples. In order to further estimate the immune
statement of the two subgroups, four immune state indicators,
including the Immune score (Figure 5E), ESTIMATE score
(Figure 5F), stromal score (Figure 5G) and tumor purity
(Figure 5H) were plotted. The result showed that the low-scoring
group had a higher ESTIMATE score and stromal score and lower
tumor purity. To assess the likelihood of immune evasion in
tumors, we used TIDE to compare the gene expression profiles of
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Survival analysis of breast cancer patients stratified by the risk score of copper-related genes. The Kaplan—Meier curves of TCGA-BRCA samples
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diagram of risk score, state of survival and expression of ATP7B and DLAT from TCGA-BRCA samples (C) and a validating dataset GSE96058 (D)
Time-dependent ROC curve of the constructed model of TCGA-BRCA samples (E) and the validating dataset (F).

the high- and low-scoring groups (33). The box plot of Tide, MSI,
Exclusion, and Dysfunction (Figures 5I-L) also demonstrated that
the low-scoring group had lower TIDE, Exclusion and MSI than
those of the high-scoring group.

Metabolic features of the high- and
low-scoring groups

Cancer cells have a unique metabolic alteration known as aerobic
glycolysis, in which glucose is preferentially converted to lactate even

Frontiers in Immunology

when oxygen is available (34). This phenomenon is in contrast to the
typical cellular metabolism of non-malignant cells. GSEA demonstrated
that breast cancer patients with lower scores for copper-related genes
were more likely to have enrichment in pathways related to pyruvate
metabolism and apoptosis (Figures 6A, B).

Tumor protein P53 (TP53), a crucial regulator of the Warburg
effect, may influence glycolysis by reducing pyruvate dehydrogenase
kinase-2 (Pdk2) expression, which results in the production of acetyl-
CoA rather than lactate (35). We identified that the low-scoring group
had a higher level of TP53 than the high-scoring group (Figure 6C).
The pyruvate dehydrogenase (PDH) complex, which converts pyruvate
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Immune cells infiltration analysis of the high- and low-scoring groups. Heatmap (A) and box plot (B) of immune cell abundance in breast cancer
samples. (C) Histogram of the proportion of immune cells in each sample. (D) Box plot of the proportion of different immune cells (*p < 0.05;

**p < 0.01;, ***p < 0.001, ****p< 0.0001). Box plots of the immune score (p=0.67) (E), ESTIMATE score (p < 0.01) (F), stromal score (p<0.0001)

(G) and tumor purity (p < 0.01) (H) of the high- and low-scoring groups were calculated by ESTIMATE algorithm. Violin plots of Tide (p=0.01) (I),
MSI (p <0.0001) (3), Exclusion (p =0.02) (K), and Dysfunction (p =0.79) (L) of the high- and low-scoring groups were calculated by TIDE algorithm.

(NS: no significance).

to acetyl-CoA, controls pyruvate entering the citric acid cycle or
participating in glycolysis. Pyruvate kinase M1/2 (PKM) converts
phosphoenolpyruvate to pyruvate and can inhibit the expansion
and metastasis of triple-negative breast cancer cells (36). We
observed that the low-scoring group had a higher level of
pyruvate dehydrogenase E1 subunit beta (PDHB) and PKM,
which tends to produce pyruvate rather than lactate (Figure 6C).
This result has revealed that the low-scoring group tended to rely
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on pyruvate metabolism for energy supply. Hypoxia inducible
factor 1 subunit alpha (HIF1A) and the lactate transporter solute
carrier family 16 member 1(SLC16A1) also regulate aerobic
glycolysis in cancer metabolism, whose high expressions are
correlated with poor clinical outcomes in breast cancer patients
(37, 38). Pyruvate dehydrogenase kinase 1 (PDK1), a target of
HIF1A, could prevent pyruvate from entering into the
tricarboxylic acid cycle (TCA cycle) (39). The expression of
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Metabolic characterization of breast cancer samples stratified by the high- and low-scoring groups. GSEA enrichment plot of regulation of
autophagy (A) and pyruvate metabolism (B) of the low-scoring group. (C) Boxplot showed that glycolysis-related genes, including HIF1A, PDHB,
PDK1, PKM, SLC16A1, and TP53, had a differential expression pattern among the high- and low-scoring groups. (***p < 0.001, ****p< 0.0001).

HIF1A, SLC16A1 and PDKI1 was increased in the high-scoring
group (Figure 6C), suggesting its glycolysis metabolic feature.

Treatment prognosis of the high- and
low-scoring groups

We predict breast cancer patients’ drug response using
“oncoPredict”. The lower sensitivity score represented a more
sensitive clinical response. Drugs with lower drug sensitivity
scores in the low-scoring group were selected using the t-test (p <
0.05). These selected drugs are Nilotinib, Nutlin 3A, RO 3306,
AZDB8055, PF4708671, Niraparib, GSK269962A, Fulvestrant,
Temozolomide, Ruxolitinib, LCL161, IWP_2, Ribociclib,
Fludarabine, Nelarabine, GSK2578215A, MIM1, LJI30 and
BMS_754807 (Figures 7A-S). The low-scoring group had lower
drug sensitivity scores than the high-scoring group, indicating that
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individuals in the low-scoring group responded better to the above-
indicated chemotherapy drugs.

ATP7B- and DLAT-related functional
networks in breast cancer

To reveal additional links to the biological function of ATP7B and
DLAT in breast cancer development, we utilized the functional module
of LinkedOmics to analyze genes that were positively or negatively
correlated with ATP7B and DLAT (Figures 8A-C, E-G). Additionally,
we performed an enrichment analysis on the association results
(Figures 8D, H). ATP7B and its associated genes were enriched in
the cell cycle pathway (FDR < 0.05). DLAT and its associated genes
were enriched in the cell cycle, oxidative phosphorylation and DNA
replication pathways (FDR < 0.05). The result of this study suggested
that the two feature genes may contribute to the development of breast
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Drug sensitivity score of the high- and low-scoring groups. Box plot of the drug sensitivity score of Nilotinib (A), Nutlin 3A (B), RO 3306 (C),
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Fludarabine (N), Nelarabine (O), GSK2578215A (P), MIM1 (Q), LJI308 (R) and BMS_754807 (S). The drug sensitivity score was predicted based on the

R package “oncoPredict”, with a lower score representing a better clinical

cancer by impacting cell growth and energy metabolism, potentially in
collaboration with their co-expressed genes.

Dysregulation of ATP7B and DLAT proteins
in breast cancer

According to the HPA database (http://www.proteinatlas.org)
(40), the high staining intensity of ATP7B and DLAT in breast
cancer tissues is in contrast to those lowly stained in normal tissues
as indicated by the immunohistochemical analyses (Figures 9A, B).
HPAanalyze, a visualization R package, presented the expression of
ATP7B and DLAT proteins in myoepithelial and glandular cells in
breast cancer tissue using a heatmap (41) (Figure 9C). The IHC
staining intensity of ATP7B and DLAT is shown in Figure 9D, and
the subcellular locations of ATP7B (Golgi apparatus) and DLAT
(mitochondria) are also indicated (Figure 9E).

The expression profile and OS statement of
different breast cancer subtypes

We obtained the subtype information of TCGA samples from
XENA (42), based on which we grouped the primary breast cancers
samples into five subtypes using the Prediction Analysis of
Microarray 50 (PAM50) model, including luminal A, luminal B,
normal-like, HER2-enriched and basal-like subtypes (43). The
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response. (*p < 0.05,; **p < 0.01, ***p < 0.001, ****p< 0.0001).

heatmap showed that copper-related genes had a differential
expression pattern among breast cancer subtypes, indicating a
potential role of copper in the heterogeneity of breast cancer
(Figure 10A). Intriguingly, the expression of ATP7B and DLAT
were decreased and increased respectively in the basal-like subtype
compared with non-cancerous samples, which is opposite to those
in other breast cancer subtypes. In addition to differences in copper-
related gene expression, the survival status of breast cancer subtypes
differed. The Kaplan-Meier curves of different breast cancer
subtypes showed that the basal-like subtype had a worse survival
probability than the luminal A- and luminal B-subtypes in the early
stage (Figure 10B). We then used copper-related gene risk score to
assess our predictive model in different subtypes. According to the
survival curves, patients with basal-like subtype (Figure 10D) and
triple-negative breast cancers (TNBC) (Figure 10G) present better
survival in the high-scoring group and worse survival in the low-
scoring group, in contrast to other subtypes (Figures 10C, E, F).
This result suggests that the basal-like and TNBC patients had a
unique copper-related genes profile among breast cancer subtypes.

Copper staining of clinicopathological
sections of breast cancer

According to literature reports, breast cancer patients have
higher tissue and serum copper levels than normal subjects (44,
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Gene expression profile and survival analysis of different subtypes of breast cancer stratified by the risk score of copper-related genes. (A) The gene
expression heatmap of different subtypes of breast cancer. The subtype information was obtained from Xena. (B) The Kaplan—Meier curves of
luminal A, luminal B, HER2-enriched and basal-like breast cancer patients. The Kaplan—Meier curves of luminal B (C), basal-like (D), luminal A and
HER2-enriched patients (E) from TCGA. (F) The Kaplan—Meier curves of luminal A and HER2-enriched patients from GSE18229. (G) The Kaplan—
Meier curves of Triple-negative breast cancers (TNBC) patients from GSE58812. The group was stratified based on the risk score of copper-related

genes at the best cut-off point.
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45). We performed Timms copper staining on the paraffin section
of breast cancer patient to evaluate copper content and distribution
in their tumor tissue. In the breast cancer sample, copper particles
were found in the cytoplasm and nucleus of the breast cancer cells
(Figures 11A, B). The paired paracancerous tissue did not yield a
positive copper stain result (Figures 11C, D).
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Discussion

Breast cancer patients have been reported to exhibit higher
serum and tissue content of copper, with even higher serum copper
levels observed in patients non-responsive to chemotherapy
(46-48). The amount of copper-containing cells was positively
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correlated with tumor growth rate (49). These results suggest that
copper levels may indicate breast cancer progression and
chemotherapy effectiveness in breast cancer patients. We found
that copper particles in the clinical breast cancer sample were
located in the cytoplasm and nucleus of the cancer cells
(Figures 11A, B), which might be associated with the function of
copper in promoting breast cancer metastasis. Several preclinical
studies have found that reducing copper levels could inhibit tumor
growth, angiogenesis and metastasis (50-52). Clinical trials using
tetrathiomolybdate to deplete copper levels have enhanced event-
free survival in breast cancer patients. Additionally, preclinical
models have shown that tetrathiomolybdate could reduce breast
cancer metastases to the lungs (53, 54). However, there is still a lack
of elucidation on how copper content may influence breast cancer
progression. Intriguingly, cuproptosis has been recently reported to
mediate copper’s effect on cell death and cancer development. In
breast cancer models, overloading copper by copper ionophores
could inhibit tumor growth (55-57). These seemingly opposite
conclusions prompted us to investigate the exact function of
copper homeostasis in breast cancer development.

We constructed a copper-related gene scoring system using
LASSO-Cox regression based on cuproptosis and copper
metabolism genes to recognize the essential copper-related genes
(Figure 3C). Two essential copper-related genes, ATP7B and DLAT,
were selected to construct the scoring model to predict breast cancer
patient survival. The higher AUCs of this model indicated advanced
predictive performance (Figure 4). ATP7B, a P-type ATPase
involved in copper secretion, played a pivotal role as a copper
transporter, whose mutation caused Wilson’s disease due to excess
copper accumulation-induced chronic liver diseases (58). DLAT,
which is subjected to lipoylation modification, mediates the entry of
carbon into the tricarboxylic acid cycle. Aggregation of lipoylated

FIGURE 11

The copper stain of BRCA patients’ paraffin section using Timm's
method. Copper staining of the pathological section of breast
cancer (A: 20x, B: 40x) and paired paracancerous (C: 20x, D: 40x)
sample. The copper-positive areas contain small black granules.
Coarse granules indicated intense copper deposition. The arrows
indicate the distribution of copper in pathological sections.
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DLAT and reduction of iron-sulfur cluster proteins can be induced
by copper ions, which results in proteotoxic stress and cell death
(59). ATP7B and DLAT are both mutated in breast cancer samples,
with the most common mutation being missense mutation
(Figures 2E-F). Besides, we wonder what critical role ATP7B and
DLAT played in breast cancer, given that these genes are essential
for copper homeostasis and cuproptosis. The associated genes of
ATP7B and DLAT genes are enriched in the cell cycle, oxidative
phosphorylation, and DNA replication pathways (Figures 8A-H),
suggesting that these two genes and their associated genes might
influence breast cancer development by regulating the pathways
mentioned above. Aerobic glycolysis, also known as the Warburg
effect, is a characteristic metabolic process that is commonly
observed in cancer cells (60). Many types of tumors limit the
pyruvate oxidation process to meet the needs of the highly
proliferative tumor cells (61). The low-scoring group is enriched
in the pyruvate metabolism pathway (Figure 6A), suggesting that
the low-scoring group might have an altered metabolic profile
which is difficult to sustain the infinite growth of malignant cells.
Breast cancer is heterogeneous in genetic and biological features
(62). Generally, luminal A breast cancer had a better prognosis.
Compared with the luminal A subtype, the luminal B-and HER2-
enriched tumors present higher recurrence rates and worse survival
(63, 64). The basal-like breast cancer is associated with poor
prognosis, early relapses, and the highest locoregional recurrence
among all subtypes (65, 66). Interestingly, basal-like patients had a
unique expression and survival probability than other subtypes
(Figure 10). The expression of ATP7B and SLC31A1 were decreased
and increased, respectively, in the basal-like subtype patients
(Figure 10A), suggesting that patients with the basal-like subtype
of breast cancer may have different levels of copper in their tumor
tissues compared with those with other breast cancer subtypes. This
result might provide a comprehensive understanding of copper in
different breast cancer subtypes.

Previous studies mainly focused on the relationship between
cuproptosis-related genes and breast cancer (67, 68). Our study
included not only cuproptosis-related genes but also copper
metabolism-related genes to perform a comprehensive analysis of the
role of copper-related genes in breast cancer development. Our results
showed that the low-scoring group had lower expression of the copper
importer SLC31A1 and higher expression of the copper exporter
ATP7B (Figures S1A, B), which may altogether reduce intracellular
copper content. The low-scoring group with less copper content
appeared to have better survival outcomes and immune profiles.
Combined with the evidence that copper chelators inhibited breast
cancer metastasis, it is possible that reducing copper levels rather than
increasing them is an effective way to improve breast cancer outcomes,
which needs more experimental evidence for validation.

The composition of immune cells influences cancer progression.
Evidence suggests that B cells are anti-tumor through various
mechanisms, such as improving cytotoxic T cell activity and
activating antibody dependence (69, 70). Activated CD8" T
lymphocytes are anti-tumor with cytotoxic molecules and have been
reported to correlate with favorable prognosis in triple-negative breast
cancer patients (71). In our result, the low-scoring group had more
naive B cells and CD8" T cells compared with the high-scoring group
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(Figure 5B), indicating better immune response in the low-scoring
group. Additionally, because the copper chelate could reprogram and
enhance the anti-tumor reaction of T cells (72), eliminating copper
might be helpful for the anti-tumor response of breast cancer.

Based on the R package “oncoPredict”, we predict novel
chemotherapy drugs which might be helpful for the low-scoring
group’s breast cancer treatment. The low-scoring group seemed to
be more responsive to chemotherapy drugs (Figure 7) which have
been reported to suppress the metastasis or growth of breast cancer
cells and overcome tamoxifen resistance by targeting essential
regulators such as discoidin domain receptor 1, mTORC1/2,
PARP-1/2, JAK1/2, and CDK1 (73-82). In the future, utilizing
these newly developed chemotherapy drugs to treat breast cancer
may be possible after conducting appropriate screening and
classification and providing clinical guidance.

In summary, our study provided a novel prognostic signature to
predict breast cancer development, which revealed the association
of copper-related gene expression with immune cell infiltration,
cancer metabolic feature, and drug response. These results may
assist in the clinical management of breast cancer.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and
approved by the multicenter clinical study on screening genetic
mutation hotspots in Chinese breast cancer patients, Chinese PLA
General Hospital. The patients/participants provided their written
informed consent to participate in this study.

References

1. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast
cancer incidence and mortality: a population-based cancer registry data analysis from
2000 to 2020. Cancer Commun (2021) 41(11):1183-94. doi: 10.1002/cac2.12207

2. Cao W, Chen H-D, Yu Y-W, Li N, Chen W-Q, Ni J. Changing profiles of cancer
burden worldwide and in China: a secondary analysis of the global cancer statistics
2020. Chin Med J (2021) 134(07):783-91. doi: 10.1097/CM9.0000000000001474

3. Trayes KP, Cokenakes SEH. Breast cancer treatment. Am Fam Physician (2021)
104(2):171-8.

4. Zischka H, Einer C. Mitochondrial copper homeostasis and its derailment in
Wilson disease. Int J Biochem Cell Biol (2018) 102:71-5. doi: 10.1016/
j.biocel.2018.07.001

5. Garza NM, Swaminathan AB, Maremanda KP, Zulkifli M, Gohil VM.
Mitochondrial copper in human genetic disorders. Trends Endocrinol Metab (2023)
34(1):21-33. doi: 10.1016/j.tem.2022.11.001

6. Li Y. Copper homeostasis: emerging target for cancer treatment. [UBMB Life
(2020) 72(9):1900-8. doi: 10.1002/iub.2341

Frontiers in Immunology

10.3389/fimmu.2023.1145080

Author contributions

MJ designed the study. YL and JW did data collection and
analysis. YL and MJ wrote the manuscript. All authors contributed
to the article and approved the submitted version.

Funding

This work was funded by the Beijing Municipal Natural Science
Foundation Grant 7212148 (to MJ), the National Natural Science
Foundation of China Grant 82000807 (to M]J), and the R&D
Program of Beijing Municipal Education Commission Grant
KM202110025023 (to MJ).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1145080/
full#supplementary-material

7. Wang F, Jiao P, Qi M, Frezza M, Dou QP, Yan B. Turning tumor-promoting
copper into an anti-cancer weapon via high-throughput chemistry. Curr medicinal
Chem (2010) 17(25):2685-98. doi: 10.2174/092986710791859315

8. Liu YL, Bager CL, Willumsen N, Ramchandani D, Kornhauser N, Ling L, et al.
Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling
and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer
(2021) 7(1):108. doi: 10.1038/s41523-021-00313-w

9. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al.
Copper induces cell death by targeting lipoylated TCA cycle proteins. Science (2022)
375(6586):1254-61. doi: 10.1126/science.abf0529

10. LiX, Ma Z, Mei L. Cuproptosis-related gene SLC31A1 is a potential predictor for
diagnosis, prognosis and therapeutic response of breast cancer. Am J Cancer Res (2022)
12(8):3561-80.

11. Fan J, Wan Y, Wang Y, Wei H, Zhao G, Li S, et al. The relationship between
serum level of copper and ceruloplasmin and pathologic and clinical characteristics in
early breast cancer patients. J Clin Oncol (2018) 36(15_suppl):e13504-4. doi: 10.1200/
JCO.2018.36.15_suppl.e13504

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2023.1145080/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1145080/full#supplementary-material
https://doi.org/10.1002/cac2.12207
https://doi.org/10.1097/CM9.0000000000001474
https://doi.org/10.1016/j.biocel.2018.07.001
https://doi.org/10.1016/j.biocel.2018.07.001
https://doi.org/10.1016/j.tem.2022.11.001
https://doi.org/10.1002/iub.2341
https://doi.org/10.2174/092986710791859315
https://doi.org/10.1038/s41523-021-00313-w
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1200/JCO.2018.36.15_suppl.e13504
https://doi.org/10.1200/JCO.2018.36.15_suppl.e13504
https://doi.org/10.3389/fimmu.2023.1145080
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

12. Chen F, Han B, Meng Y, Han Y, Liu B, Zhang B, et al. Ceruloplasmin correlates
with immune infiltration and serves as a prognostic biomarker in breast cancer. Aging
(Albany NY) (2021) 13(16):20438-67. doi: 10.18632/aging.203427

13. Chisholm CL, Wang H, Wong AH, Vazquez-Ortiz G, Chen W, Xu X, et al.
Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and
enhances sensitivity of breast cancer to cisplatin. Oncotarget (2016) 7(51):84439-52.
doi: 10.18632/oncotarget.12992

14. Janardhanan P, Somasundaran AK, Balakrishnan AJ, Pilankatta R. Sensitization
of cancer cells towards cisplatin and carboplatin by protein kinase d inhibitors through
modulation of ATP7A/B (copper transport ATPases). Cancer Treat Res Commun
(2022) 32:100613. doi: 10.1016/j.ctarc.2022.100613

15. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci (2005) 102(43):15545-50.
doi: 10.1073/pnas.0506580102

16. Brueffer C, Vallon-Christersson ], Grabau D, Ehinger A, Hikkinen J, Hegardt C,
et al. Clinical value of RNA sequencing-based classifiers for prediction of the five
conventional breast cancer biomarkers: a report from the population-based multicenter
Sweden cancerome analysis network-breast initiative. JCO Precis Oncol (2018) 2:1-18.
doi: 10.1200/p0.17.00135

17. Prat A, Parker ]S, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al.
Phenotypic and molecular characterization of the claudin-low intrinsic subtype of
breast cancer. Breast Cancer Res (2010) 12(5):R68. doi: 10.1186/bcr2635

18. Jezéquel P, Loussouarn D, Guérin-Charbonnel C, Campion L, Vanier A,
Gouraud W, et al. Gene-expression molecular subtyping of triple-negative breast
cancer tumours: importance of immune response. Breast Cancer Res (2015) 17:43.
doi: 10.1186/s13058-015-0550-y

19. Li T, FuJ, Zeng Z, Cohen D, Li ], Chen Q, et al. TIMER2.0 for analysis of tumor-
infiltrating immune cells. Nucleic Acids Res (2020) 48(W1):W509-w514. doi: 10.1093/
nar/gkaa407

20. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res (2018) 28(11):1747-
56. doi: 10.1101/gr.239244.118

21. Goldman MJ, Craft B, Hastie M, Repecka K, Mcdade F, Kamath A, et al.
Visualizing and interpreting cancer genomics data via the xena platform. Nat
Biotechnol (2020) 38(6):675-8. doi: 10.1038/s41587-020-0546-8

22. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
et al. STRING v10: protein-protein interaction networks, integrated over the tree of life.
Nucleic Acids Res (2015) 43(Database issue):D447-52. doi: 10.1093/nar/gkul003

23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Res (2003) 13(11):2498-504. doi: 10.1101/gr.1239303

24. Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for
centrality analysis and evaluation of protein interaction networks. Biosystems (2015)
127:67-72. doi: 10.1016/j.biosystems.2014.11.005

25. Blanche P, Dartigues J-F, Jacqmin-Gadda H. Estimating and comparing time-
dependent areas under receiver operating characteristic curves for censored event times
with competing risks. Stat Med (2013) 32(30):5381-97. doi: 10.1002/sim.5958

26. Ouyang J, Qin G, Liu Z, Jian X, Shi T, Xie L. ToPP: tumor online prognostic
analysis platform for prognostic feature selection and clinical patient subgroup
selection. iScience (2022) 25(5):104190. doi: 10.1016/j.is¢i.2022.104190

27. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor
infiltrating immune cells with CIBERSORT. Methods Mol Biol (2018) 1711:243-59.
doi: 10.1007/978-1-4939-7493-1_12

28. Jiang P, Gu S, Pan D, Fu ], Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med (2018) 24(10):1550-8.
doi: 10.1038/s41591-018-0136-1

29. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun (2013) 4(1):2612. doi: 10.1038/ncomms3612

30. Maeser D, Gruener RF, Huang RS. oncoPredict: an r package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data. Brief
Bioinform (2021) 22(6). doi: 10.1093/bib/bbab260

31. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics
data within and across 32 cancer types. Nucleic Acids Res (2018) 46(D1):D956-d963.
doi: 10.1093/nar/gkx1090

32. Dieci MV, Miglietta F, Guarneri V. Immune infiltrates in breast cancer: recent
updates and clinical implications. Cells (2021) 10(2):223-50. doi: 10.3390/
cells10020223

33. FuJ, LiK, Zhang W, Wan C, Zhang J, Jiang P, et al. Large-Scale public data reuse
to model immunotherapy response and resistance. Genome Med (2020) 12(1):21.
doi: 10.1186/s13073-020-0721-z

34. Jones W, Bianchi K. Aerobic glycolysis: beyond proliferation. Front Immunol
(2015) 6:227. doi: 10.3389/fimmu.2015.00227

35. Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate
dehydrogenase kinase Pdk2. Cancer Res (2012) 72(2):560-7. doi: 10.1158/0008-
5472.Can-11-1215

Frontiers in Immunology

10.3389/fimmu.2023.1145080

36. Ma C, Zu X, Liu K, Bode AM, Dong Z, Liu Z, et al. Knockdown of pyruvate
kinase m inhibits cell growth and migration by reducing NF-kB activity in triple-
negative breast cancer cells. Mol Cells (2019) 42(9):628-36. doi: 10.14348/
molcells.2019.0038

37. Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield S, et al.
Hypoxia-inducible factor-lalpha expression predicts a poor response to primary
chemoendocrine therapy and disease-free survival in primary human breast cancer.
Clin Cancer Res (2006) 12(15):4562-8. doi: 10.1158/1078-0432.Ccr-05-2690

38. Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC.
Cancer metabolism and the warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep
(2015) 42(4):841-51. doi: 10.1007/s11033-015-3858-x

39. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of
pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to
hypoxia. Cell Metab (2006) 3(3):177-85. doi: 10.1016/j.cmet.2006.02.002

40. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et al. A pathology
atlas of the human cancer transcriptome. Science (2017) 357(6352):660-71.
doi: 10.1126/science.aan2507

41. Tran AN, Dussaq AM, Kennell T, Willey CD, Hjelmeland AB. HPAanalyze: an r
package that facilitates the retrieval and analysis of the human protein atlas data. BMC
Bioinf (2019) 20(1):463. doi: 10.1186/s12859-019-3059-z

42. Koboldt DC, Fulton RS, Mclellan MD, Schmidt H, Kalicki-Veizer ], Mcmichael
JF, et al. Comprehensive molecular portraits of human breast tumours. Nature (2012)
490(7418):61-70. doi: 10.1038/nature11412

43. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al.
Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol
(2009) 27(8):1160-7. doi: 10.1200/jco.2008.18.1370

44. Adeoti ML, Oguntola AS, Akanni EO, Agodirin OS, Oyeyemi GM. Trace
elements; copper, zinc and selenium, in breast cancer afflicted female patients in
LAUTECH osogbo, Nigeria. Indian ] Cancer (2015) 52(1):106-9. doi: 10.4103/0019-
509x.175573

45. Rizk SL, Sky-Peck HH. Comparison between concentrations of trace elements in
normal and neoplastic human breast tissue. Cancer Res (1984) 44(11):5390-4.

46. Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH. Serum and tissue trace elements
in patients with breast cancer in Taiwan. Biol Trace Elem Res (2002) 89(1):1-11.
doi: 10.1385/bter:89:1:1

47. Ding X, Jiang M, Jing H, Sheng W, Wang X, Han J, et al. Analysis of serum levels
of 15 trace elements in breast cancer patients in Shandong, China. Environ Sci pollut
Res Int (2015) 22(10):7930-5. doi: 10.1007/s11356-014-3970-9

48. Majumder S, Chatterjee S, Pal S, Biswas ], Efferth T, Choudhuri SK. The role of
copper in drug-resistant murine and human tumors. Biometals (2009) 22(2):377-84.
doi: 10.1007/s10534-008-9174-3

49. Fuchs AG, De Lustig ES. Copper histochemistry of 5 murine tumors and their
respective metastases. Tumour Biol J Int Soc Oncodevelopmental Biol Med (1989) 10
(1):38-45. doi: 10.1159/000217592

50. Pass HI, Brewer GJ, Dick R, Carbone M, Merajver S. A phase II trial of
tetrathiomolybdate after surgery for malignant mesothelioma: final results. Ann
Thorac Surg (2008) 86(2):383-9;discussion 390. doi: 10.1016/j.athoracsur.2008.03.016

51. Brewer GJ, Dick RD, Grover DK, Leclaire V, Tseng M, Wicha M, et al.
Treatment of metastatic cancer with tetrathiomolybdate, an anticopper,
antiangiogenic agent: phase I study. Clin Cancer Res (2000) 6(1):1-10.

52. Ge EJ, Bush Al Casini A, Cobine PA, Cross JR, Denicola GM, et al. Connecting
copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer
(2022) 22(2):102-13. doi: 10.1038/541568-021-00417-2

53. Chan N, Willis A, Kornhauser N, Ward MM, Lee SB, Nackos E, et al. Influencing
the tumor microenvironment: a phase II study of copper depletion using
tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in
preclinical models of lung metastases. Clin Cancer Res (2017) 23(3):666-76.
doi: 10.1158/1078-0432.Ccr-16-1326

54. Jain S, Cohen J, Ward MM, Kornhauser N, Chuang E, Cigler T, et al.
Tetrathiomolybdate-associated copper depletion decreases circulating endothelial
progenitor cells in women with breast cancer at high risk of relapse. Ann Oncol
(2013) 24(6):1491-8. doi: 10.1093/annonc/mds654

55. Allensworth JL, Evans MK, Bertucci F, Aldrich AJ, Festa RA, Finetti P, et al.
Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative
stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol Oncol (2015)
9(6):1155-68. doi: 10.1016/j.molonc.2015.02.007

56. Zhang H, Chen D, Ringler J, Chen W, Cui QC, Ethier SP, et al. Disulfiram
treatment facilitates phosphoinositide 3-kinase inhibition in human breast cancer cells
in vitro and in vivo. Cancer Res (2010) 70(10):3996-4004. doi: 10.1158/0008-5472.Can-
09-3752

57. Chen D, Cui QC, Yang H, Dou QP. Disulfiram, a clinically used anti-alcoholism
drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures
and xenografts via inhibition of the proteasome activity. Cancer Res (2006) 66
(21):10425-33. doi: 10.1158/0008-5472.Can-06-2126

58. Chen L, Min ], Wang F. Copper homeostasis and cuproptosis in health and
disease. Signal Transduction Targeted Ther (2022) 7(1):378. doi: 10.1038/s41392-022-
01229-y

frontiersin.org


https://doi.org/10.18632/aging.203427
https://doi.org/10.18632/oncotarget.12992
https://doi.org/10.1016/j.ctarc.2022.100613
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1200/po.17.00135
https://doi.org/10.1186/bcr2635
https://doi.org/10.1186/s13058-015-0550-y
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.biosystems.2014.11.005
https://doi.org/10.1002/sim.5958
https://doi.org/10.1016/j.isci.2022.104190
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.3390/cells10020223
https://doi.org/10.3390/cells10020223
https://doi.org/10.1186/s13073-020-0721-z
https://doi.org/10.3389/fimmu.2015.00227
https://doi.org/10.1158/0008-5472.Can-11-1215
https://doi.org/10.1158/0008-5472.Can-11-1215
https://doi.org/10.14348/molcells.2019.0038
https://doi.org/10.14348/molcells.2019.0038
https://doi.org/10.1158/1078-0432.Ccr-05-2690
https://doi.org/10.1007/s11033-015-3858-x
https://doi.org/10.1016/j.cmet.2006.02.002
https://doi.org/10.1126/science.aan2507
https://doi.org/10.1186/s12859-019-3059-z
https://doi.org/10.1038/nature11412
https://doi.org/10.1200/jco.2008.18.1370
https://doi.org/10.4103/0019-509x.175573
https://doi.org/10.4103/0019-509x.175573
https://doi.org/10.1385/bter:89:1:1
https://doi.org/10.1007/s11356-014-3970-9
https://doi.org/10.1007/s10534-008-9174-3
https://doi.org/10.1159/000217592
https://doi.org/10.1016/j.athoracsur.2008.03.016
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1158/1078-0432.Ccr-16-1326
https://doi.org/10.1093/annonc/mds654
https://doi.org/10.1016/j.molonc.2015.02.007
https://doi.org/10.1158/0008-5472.Can-09-3752
https://doi.org/10.1158/0008-5472.Can-09-3752
https://doi.org/10.1158/0008-5472.Can-06-2126
https://doi.org/10.1038/s41392-022-01229-y
https://doi.org/10.1038/s41392-022-01229-y
https://doi.org/10.3389/fimmu.2023.1145080
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

59. Li S-R, Bu L-L, Cai L. Cuproptosis: lipoylated TCA cycle proteins-mediated
novel cell death pathway. Signal Transduction Targeted Ther (2022) 7(1):158.
doi: 10.1038/s41392-022-01014-x

60. Koltai T, Reshkin SJ, Harguindey S. Chapter 3 - the pH-centered paradigm in
cancer. In: Koltai T, Reshkin SJ, Harguindey S, editors. An innovative approach to
understanding and treating cancer: targeting pH. Academic Press (2020) 53-97.
doi: 10.1016/B978-0-12-819059-3.00003-4

61. Woolbright BL, Rajendran G, Harris RA, Taylor JA. Iii: metabolic flexibility in
cancer: targeting the pyruvate dehydrogenase Kinase:Pyruvate dehydrogenase axis. Mol
Cancer Ther (2019) 18(10):1673-81. doi: 10.1158/1535-7163.Mct-19-0079

62. Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance
with breast tumor subtyping. J Cancer (2017) 8(16):3131-41. doi: 10.7150/jca.18457

63. Yersal O, Barutca S. Biological subtypes of breast cancer: prognostic and
therapeutic implications. World ] Clin Oncol (2014) 5(3):412-24. doi: 10.5306/
Wjco.v5.i3.412

64. Haque R, Ahmed SA, Inzhakova G, Shi J, Avila C, Polikoff J, et al. Impact of
breast cancer subtypes and treatment on survival: an analysis spanning two decades.
Cancer Epidemiology Biomarkers Prev (2012) 21(10):1848-55. doi: 10.1158/1055-
9965.Epi-12-0474

65. Bertucci F, Finetti P, Birnbaum D. Basal breast cancer: a complex and deadly
molecular subtype. Curr Mol Med (2012) 12(1):96-110. doi: 10.2174/
156652412798376134

66. Mcguire A, Lowery AJ, Kell MR, Kerin MJ, Sweeney KJ. Locoregional recurrence
following breast cancer surgery in the trastuzumab era: a systematic review by subtype.
Ann Surg Oncol (2017) 24(11):3124-32. doi: 10.1245/5s10434-017-6021-1

67. LiJ, WuF, Li C, Sun S, Feng C, Wu H, et al. The cuproptosis-related signature
predicts prognosis and indicates immune microenvironment in breast cancer. Front
Genet (2022) 13:977322. doi: 10.3389/fgene.2022.977322

68. Song S, Zhang M, Xie P, Wang S, Wang Y. Comprehensive analysis of
cuproptosis-related genes and tumor microenvironment infiltration characterization
in breast cancer. Front Immunol (2022) 13:978909. doi: 10.3389/fimmu.2022.978909

69. Dilillo DJ, Yanaba K, Tedder TF. B cells are required for optimal CD4+ and CD8
+ T cell tumor immunity: therapeutic b cell depletion enhances B16 melanoma growth
in mice. ] Immunol (2010) 184(7):4006-16. doi: 10.4049/jimmunol.0903009

70. Wu X-Z, Shi X-Y, Zhai K, Yi F-S, Wang Z, Wang W, et al. Activated naive b cells
promote development of malignant pleural effusion by differential regulation of TH1
and TH17 response. Am ] Physiology-Lung Cell Mol Physiol (2018) 315(3):1443-55.
doi: 10.1152/ajplung,00120.2018

71. Li X, Gruosso T, Zuo D, Omeroglu A, Meterissian S, Guiot M-C, et al.
Infiltration of CD8" T cells into tumor cell clusters in triple-negative breast

Frontiers in Immunology

64

10.3389/fimmu.2023.1145080

cancer. Proc Natl Acad Sci (2019) 116(9):3678-87. doi: 10.1073/pnas.
1817652116

72. Chatterjee S, Mookerjee A, Mookerjee Basu J, Chakraborty P, Ganguly A,
Adhikary A, et al. A novel copper chelate modulates tumor associated macrophages to
promote anti-tumor response of T cells. PloS One (2009) 4(9):€7048. doi: 10.1371/
journal.pone.0007048

73. Wang S, Xie Y, Bao A, Li ], Ye T, Yang C, et al. Nilotinib, a discoidin
domain receptor 1 (DDR1) inhibitor, induces apoptosis and inhibits migration in
breast cancer. Neoplasma (2021) 68(5):975-82. doi: 10.4149/neo_2021_
201126N1282

74. Pedersen AM, Thrane S, Lykkesfeldt AE, Yde CW. Sorafenib and nilotinib
resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen
receptor o. Int J Oncol (2014) 45(5):2167-75. doi: 10.3892/ij0.2014.2619

75. Das M, Dilnawaz F, Sahoo SK. Targeted nutlin-3a loaded nanoparticles
inhibiting p53-MDM2 interaction: novel strategy for breast cancer therapy.
Nanomedicine (2011) 6(3):489-507. doi: 10.2217/nnm.10.102

76. Ni Z, Xu S, Yu Z, Ye Z, Li R, Chen C, et al. Comparison of dual mTORC1/2
inhibitor AZD8055 and mTORCI inhibitor rapamycin on the metabolism of breast
cancer cells using proton nuclear magnetic resonance spectroscopy metabolomics.
Investigational New Drugs (2022) 40(6):1206-15. doi: 10.1007/s10637-022-01268-w

77. Shi J-J, Chen S-M, Guo C-L, Li Y-X, Ding J, Meng L-H. The mTOR inhibitor

AZD8055 overcomes tamoxifen resistance in breast cancer cells by down-regulating
HSPBS. Acta Pharmacologica Sin (2018) 39(8):1338-46. doi: 10.1038/aps.2017.181

78. Turner NC, Balmafia J, Poncet C, Goulioti T, Tryfonidis K, Honkoop AH, et al.
Niraparib for advanced breast cancer with germline BRCA1 and BRCA2 mutations: the
EORTC 1307-BCG/BIG5-13/TESARO PR-30-50-10-C BRAVO study. Clin Cancer
Res (2021) 27(20):5482-91. doi: 10.1158/1078-0432.Ccr-21-0310

79. Zimmer AS, Steinberg SM, Smart DD, Gilbert MR, Armstrong TS, Burton E,
et al. Temozolomide in secondary prevention of HER2-positive breast cancer brain
metastases. Future Oncol (2020) 16(14):899-909. doi: 10.2217/fon-2020-0094

80. Lim ST, Jeon YW, Gwak H, Kim SY, Suh Y]J. Synergistic anticancer effects of
ruxolitinib and calcitriol in estrogen receptor—positive, human epidermal growth factor
receptor 2—positive breast cancer cells. Mol Med Rep (2018) 17(4):5581-8. doi: 10.3892/
mmr.2018.8580

81. Kim JW, Gautam J, Kim JE, Kim JA, Kang KW. Inhibition of tumor growth and
angiogenesis of tamoxifen-resistant breast cancer cells by ruxolitinib, a selective JAK2
inhibitor. Oncol Lett (2019) 17(4):3981-9. doi: 10.3892/01.2019.10059

82. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306
improves the response of BRCA-proficient breast cancer cells to PARP inhibition. Int |
Oncol (2014) 44(3):735-44. doi: 10.3892/ij0.2013.2240

frontiersin.org


https://doi.org/10.1038/s41392-022-01014-x
https://doi.org/10.1016/B978-0-12-819059-3.00003-4
https://doi.org/10.1158/1535-7163.Mct-19-0079
https://doi.org/10.7150/jca.18457
https://doi.org/10.5306/wjco.v5.i3.412
https://doi.org/10.5306/wjco.v5.i3.412
https://doi.org/10.1158/1055-9965.Epi-12-0474
https://doi.org/10.1158/1055-9965.Epi-12-0474
https://doi.org/10.2174/156652412798376134
https://doi.org/10.2174/156652412798376134
https://doi.org/10.1245/s10434-017-6021-1
https://doi.org/10.3389/fgene.2022.977322
https://doi.org/10.3389/fimmu.2022.978909
https://doi.org/10.4049/jimmunol.0903009
https://doi.org/10.1152/ajplung.00120.2018
https://doi.org/10.1073/pnas.1817652116
https://doi.org/10.1073/pnas.1817652116
https://doi.org/10.1371/journal.pone.0007048
https://doi.org/10.1371/journal.pone.0007048
https://doi.org/10.4149/neo_2021_201126N1282
https://doi.org/10.4149/neo_2021_201126N1282
https://doi.org/10.3892/ijo.2014.2619
https://doi.org/10.2217/nnm.10.102
https://doi.org/10.1007/s10637-022-01268-w
https://doi.org/10.1038/aps.2017.181
https://doi.org/10.1158/1078-0432.Ccr-21-0310
https://doi.org/10.2217/fon-2020-0094
https://doi.org/10.3892/mmr.2018.8580
https://doi.org/10.3892/mmr.2018.8580
https://doi.org/10.3892/ol.2019.10059
https://doi.org/10.3892/ijo.2013.2240
https://doi.org/10.3389/fimmu.2023.1145080
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

:' frontiers ‘ Frontiers in Oncology

@ Check for updates

OPEN ACCESS

EDITED BY
Chun Xu,
The University of Queensland, Australia

REVIEWED BY
Jia Li,

University of North Carolina at Charlotte,
United States

Dipendra Khadka,

Wonkwang University School of Medicine,
Republic of Korea

*CORRESPONDENCE
Hong Zheng
hzheng@scu.edu.cn

RECEIVED 07 December 2022
ACCEPTED 28 April 2023
PUBLISHED 12 May 2023

CITATION

FanY, Luo C, Wang Y, Wang Z, Wang C,
Zhong X, Hu K, Wang Y, Lu D and Zheng H
(2023) A nomogram based on cuproptosis-
related genes predicts 7-year relapse-free
survival in patients with estrogen receptor-
positive early breast cancer.

Front. Oncol. 13:1111480.

doi: 10.3389/fonc.2023.1111480

COPYRIGHT
© 2023 Fan, Luo, Wang, Wang, Wang,
Zhong, Hu, Wang, Lu and Zheng. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Oncology

TvpPE Original Research
PUBLISHED 12 May 2023
Dol 10.3389/fonc.2023.1111480

A nomogram based on
cuproptosis-related genes
predicts 7-year relapse-free
survival in patients with estrogen
receptor-positive early

breast cancer

Yu Fan', Chuanxu Luo®, Yu Wang*, Zhu Wang*,

Chengshi Wang?, Xiaorong Zhong*, Kejia Hu? Yanping Wang?,
Donghao Lu** and Hong Zheng™*
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University, Chengdu, China, ?West China Biomedical Big Data Center, West China Hospital, Sichuan
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Stockholm, Sweden

Introduction: Excess copper induces cell death by binding to lipoylated
components of the tricarboxylic acid cycle. Although a few studies have
examined the relationship between cuproptosis-related genes (CRGs) and
breast cancer prognosis, reports on estrogen receptor-positive (ER+) breast
cancer are lacking. Herein, we aimed to analyze the relationship between CRGs
and outcomes in patients with ER+ early breast cancer (EBC).

Methods: We conducted a case-control study among patients with ER+ EBC
presenting poor and favorable invasive disease-free survival (iDFS) at West China
Hospital. Logistic regression analysis was performed to establish the association
between CRG expression and iDFS. A cohort study was performed using pooled
data from three publicly available microarray datasets in the Gene Expression
Omnibus database. Subsequently, we constructed a CRG score model and a
nomogram to predict relapse-free survival (RFS). Finally, the prediction
performance of the two models was verified using training and validation sets.

Results: In this case-control study, high expression of LIAS, LIPT1, and ATP7B and
low CDKNZ2A expression were associated with favorable iDFS. In the cohort
study, high expression of FDX1, LIAS, LIPT1, DLD, PDHB, and ATP7B and low
CDKNZA expression were associated with favorable RFS. Using LASSO-Cox
analysis, a CRG score was developed using the seven identified CRGs. Patients
in the low CRG score group had a reduced risk of relapse in both training and
validation sets. The nomogram included the CRG score, lymph node status, and
age. The area under the receiver operating characteristic (ROC) curve (AUC) of
the nomogram was significantly higher than the AUC of the CRG score at 7 years.
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Conclusions: The CRG score, combined with other clinical features, could afford
a practical long-term outcome predictor in patients with ER+ EBC.

KEYWORDS

breast cancer, cuproptosis-related genes, nomogram, ER positive, RFS

1 Introduction

In 2020, breast cancer (BC), for the first time, surpassed lung
cancer as the most commonly diagnosed cancer. Overall, an
estimated 2.3 million new cases of BC have been diagnosed (1).
According to data on BC pathology among Asian women, 52-76% of
patients with BC have estrogen receptor (ER)-positive (ER+)
subtypes (2). Expression of ER has been associated with a favorable
prognosis and can predict the efficacy of endocrine therapies,
including aromatase inhibitors and tamoxifen (3). However, nearly
one-quarter of patients with ER + early BC (EBC) experience relapse
within 10 years (4). Approximately half of all relapses occur after five
years of adjuvant endocrine therapy (5). Although the clinical stage,
combined with other features like ki67 and differentiation grade, can
afford a preliminary assessment of prognosis, additional molecular
markers are needed to construct an exemplary long-term prognosis
model. Furthermore, these molecular markers could help identify
more effective therapeutic targets.

The copper-dependent regulation of cell death is distinct from
known death mechanisms and depends on mitochondrial
respiration in human cells (6). Copper directly binds to lipoylated
components of the tricarboxylic acid (TCA) cycle, resulting in
lipoylated protein aggregation (7) and subsequent iron-sulfur
cluster protein loss, thereby inducing proteotoxic stress (8) and,
ultimately, cell death (9). The regulators essential for cuproptosis
include two components, the lipoic acid (LA) pathway (FDXI,
LIAS, LIPTI1, and DLD) and the pyruvate dehydrogenase (PDH)
complex (DLAT, PDHAI, PDHB, MTFI, GLS, and CDKN2A) (9).

Research on cuproptosis and its relationship with cancer
remains in its early stages of development. Correlations between
cuproptosis-related genes (CRGs) and prognosis have been
reported in patients with renal carcinoma (10), head and neck
cancer (11), melanoma (12), glioma (13), and BC. However, data
mining on BC and CRGs currently involves The Cancer Genome
Atlas (TCGA) database with a relatively short follow-up period, and
molecular subtype analysis is required. The relationship between
CRGs and the long-term prognosis of ER+ EBC remains unclear.

Herein, we first suggested a correlation between the CRG profile
and invasive disease-free survival (iDFS) or relapse-free survival
(RFS) in patients with ER+ EBC by performing a case-control study
at our hospital and a cohort study from publicly available datasets.
In the case-control study performed at the West China Hospital
(WCH), high expression of LIAS, LIPTI, and ATP7B and low
expression of CDKN2A significantly reduced the odds ratio (OR)
of iDFS in patients with ER+ EBC. For validation, we used pooled
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data from three publicly available microarray studies (GSE42568,
GSE9195, and GSE20685). In this cohort, high expression of LIAS,
LIPTI, and ATP7B and low expression of CDKN2A significantly
reduced the hazard ratio (HR) of relapse of ER+ EBC. Moreover,
high expression of FDXI and DLD, two molecules of the LA
pathway, and PDHB of the PDH complex significantly reduced
the HR for relapse. We then constructed a CRG score model in the
training set, which confirmed that a high CRG score could
significantly increase the risk of relapse in both training and
validation datasets. The nomogram comprising CRG score, lymph
node status, and age had an increased area under the receiver
operating characteristics (ROC) curve (AUC) at 7 years when
compared with that of the CRG score alone.

In brief, a novel nomogram comprising the CRG score and
clinical features could predict the 3-, 5-, and 7-year relapse risks of
ER+ EBC. Targeted enhancement of cuproptosis may be a potential
therapeutic strategy for patients with ER+ BC.

2 Materials and methods

2.1 WCH patients

Since 1989, patients with BC have been enrolled in the Breast
Cancer Management Information System of WCH, Sichuan
University (14). Physicians collected medical records, pathological
diagnoses, and treatment information. Between January 2008 and
April 2018, 7,784 females diagnosed with non-metastatic invasive
BC were prospectively followed up for clinical outcomes (15).
Patients with freshly frozen tumor and germline samples,
including blood or normal breast tissue, available during primary
surgery were eligible for study inclusion (N = 1462)

2.2 Case-control study of WCH

A matched extreme case-control design was employed (16).
Female patients diagnosed with EBC (stages I-III) who were
assessed for any iDFS endpoint at 7 years after diagnosis were
grouped into cases, and patients who survived without any iDFS
endpoint for at least 7 years were grouped into controls. One
control was randomly selected per case and individually matched
to the case of molecular subtype classified according to the St.
Gallen Consensus 2013, as previously described (15). Any local or

frontiersin.org


https://doi.org/10.3389/fonc.2023.1111480
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Fan et al.

regional relapse, distant metastasis, new primary tumors from any
site, cancer-specific death, or death from other causes were defined
as iDFS endpoints. Subsequently, samples from 222 patients were
RNA sequenced. Only ER+ samples were selected for further
analysis, and ER- samples were excluded. Sixty-three patients
were included in the case group and 62 in the control group. This
study was approved by the Clinical Test and Biomedical Ethics
Committee of the WCH, Sichuan University (No. 2019-16).

2.3 Pooled data from three mRNA
expression datasets, GSE42568, GSE9195,
and GSE20685

To verify the correlation between cuproptosis and patient
outcomes, we selected three GSE datasets (GSE42568, GSE9195, and
GSE20685) from the NCBI for Biotechnology Information Gene
Expression Omnibus (GEO). The data met the following criteria: 1.
Affymetrix Human Genome U133 Plus 2.0 Array; 2. provided ER
status, tumor size, T stage, lymph node status, N stage, and age of
patients with BC; 3. comprised at least 70 samples; 4. employed RES as
the endpoint; 5. at least 80% of the relapse-free patients were followed
up for more than 5 years. In total, 508 samples from the three datasets
were downloaded from “https://www.ncbinlm.nih.gov/geo/”. We
excluded 164 samples owing to metastasis at diagnosis or ER-.
Overall, 344 patients were included in the subsequent analysis.

2.4 RNA sequencing data preparation

In the case-control study, RNA sequencing of frozen tumor
tissues was performed using the Illumina NovaSeq S6000 platform.
After quality control, reads were mapped to the reference genome
using Hisat2 v2.0.5, as previously described (15). To calculate the
fragments per kilobase of exons per million reads (FPKM) for gene
i, the following formula was used:

a % 10°

FPKMi =
TS

where qi is the raw read count, li is the gene length, and Xjqj
corresponded to the total number of mapped reads (17). All FPKM
data were then log2(x+1) transformed.

2.5 Microarray data preparation

The expression matrixes and clinical data for GSE42568,
GSE9195, and GSE20685 were downloaded from “https://
www.ncbinlm.nih.gov/geo”. The R package limma (v3.48.1) was
used to remove batch effects of these three GSE datasets, and
principal component analysis (PCA) of each sample was performed
before and after normalization. Each gene corresponded to a probe,
except for CDKN2A, which corresponded to three probes. The probe
with the highest normalized intensity averaged over all samples, was
used to represent the expression level of CDKN2A. RFS endpoints
were identical to iDFS endpoints, except for the occurrence of
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invasive contralateral BC, secondary primary invasive cancer, and
contralateral ductal carcinoma in situ (18).

2.6 Association between CRGs and iDFS in
the case-control study

We analyzed 13 CRGs from earlier studies: FDX1, LIAS, LIPT1I,
DLD, DLAT, PDHAI, PDHB, MTF1, GLS, CDKN2A, SLC31Al,
ATP7A, and ATP7B (9, 19). Univariate and multivariate logistic
regression analyses were performed to determine the association
between individual CRG expression levels and iDFS endpoints.
Pearson or Spearman correlation coefficient (r) was used for
measuring the relationship between individual CRGs and
clinicopathological features, including T stage, N stage, ki67,
grade, and HER2 status in the WCH cohort.

2.7 Construction and validation of a
prognostic CRG score in the cohort study

Univariate and multivariate Cox analyses of RFS were performed
to screen for individual CRGs with prognostic values in the pooled
GSE dataset. Kaplan-Meier survival analysis was used to estimate the
RES between the high- and low- CRGs expression groups. The
“survminer” R package (V0.4.9) provided a cut-off for facilitating
survival analysis. The 344 enrolled patients were randomly divided
into two sets (7:3), with 241 and 103 patients in the training and
validation sets, respectively. In the training set, CRGs with P<0.05 in
the multivariate Cox regression were subjected to LASSO-penalized
Cox regression analysis to construct a prognostic CRG score model
using the “glmnet” R package (v4.1). The hyperparameter lambda (L)
was chosen based on tenfold cross-validation with the slightest mean
squared error. Patient CRG scores were calculated according to the
normalized expression levels of each gene and corresponding
regression coefficients. The LASSO-penalized Cox regression
formula is as follows:

CRGs.score = > (B; X exp ression(gene;)) (20)

B; represented the corresponding coefficient of a specific gene,
and the expression(gene;) indicates the expression level of the
corresponding gene. The CRGs score for each patient could be
calculated according to the formula. ROC curve analysis was used to
assess the performance of the CRG score using the R package
“timeROC” (V0.4). Univariate and multivariate Cox analyses and
Kaplan-Meier survival analysis were performed to verify the
association between CRGs score and RFS in the training and
validation sets.

2.8 Construction and validation of a
prognostic nomogram based on
CRGs score

A nomogram model predicting RFS was developed based on
CRG scores and other clinical features, including lymph node status
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and age, in the training set using the R package “rms” (V6.3).
Univariate Cox and Kaplan-Meier survival analyses were performed
to verify the relationship between the nomogram points and RES.
The ROC curve assessed the performance of the nomogram model
using the “timeROC” package in both the training and validation
sets. A comparison of ROCs was performed between the CRG score
and nomogram points using the “compare” function in the
“timeROC” package.

Statistical analyses were performed using R software (V4.1.0).
Statistical significance was set at P< 0.05.

3 Results
3.1 Study design

Figure 1 presents the flow chart of the study. Our study used
two datasets and two study designs to demonstrate the association
between CRGs and iDFS or RES in patients with ER+ EBC. The
genes in dotted boxes represent overlapping genes associated with
iDFS or RES in both datasets.

3.2 Characteristics of patients in the case-
control study

In the case-control study, 63 patients who experienced endpoint
events within 7 years were grouped into cases, and the other 62
patients were grouped into controls. The two groups had no
significant differences in menopause, age, T stage, N stage, grade,
ki67, progesterone receptor status, or treatment, according to the

10.3389/fonc.2023.1111480

chi-square test. The control group had a higher proportion of
HER2-positive patients, given that the HER2 status of 8 patients
was uncertain in the case group. The average iDFS and overall
survival (OS) were 127.1 + 15.2 and 127.1 + 15.2 months in the
control group and 31.4 + 22.5 and 62.5 + 35.2 months in the case
group, respectively (Table 1).

3.3 CRG expression associated with iDFS in
the case-control study

In the case-control study, the higher expression level of LIAS
(OR = 0.14, 95% confidence interval [CI] 0.03-0.57, P = 0.008),
LITPI (OR = 0.2, 95%CI 0.06-0.65, P = 0.01), and ATP7B (OR =
0.38, 95%CI 0.17-0.81, P = 0.016) was associated with a lower risk
of iDFS endpoints. However, higher T stage (OR = 1.75, 95%CI
1.04-3.14, P = 0.045), N stage (OR = 2.32, 95%CI 1.12-4.88,
P =0.025), and CDKN2A expression (OR = 1.8, 95%CI 1.24-2.74,
P = 0.003) were associated with a higher risk of iDFS endpoints
(Figure 2A; Supplementary Table 1). Menopause, age, grade, ki67,
HER?2 status, chemotherapy, radiotherapy, trastuzumab, and other
CRGs showed no association with iDFS endpoints (Figure 2A).
Adjusted for T stage and N stage, LIAS (OR = 0.18, 95%CI 0.04-
0.81, P = 0.025), LIPT1 (OR = 0.26, 95%CI 0.07-0.9, P = 0.034),
CDKN2A (OR = 1.73, 95%CI 1.16-2.59, P = 0.007), and ATP7B
(OR = 0.42, 95%CI 0.19-0.94, P = 0.035) were still associated with
iDFS endpoints (Figure 2B; Supplementary Table 2).

Furthermore, we noted the relationship between these four
genes and other clinicopathological features. LIAS was negatively
associated with N stage (R =-0.18, P = 0.041), tumor grade (R = -0.24,
P = 0.012), ki67 (R = -0.2, P = 0.029), and HER2 expression
(R =-0.35, P = 9E-5). LITPI was negatively associated with T stage
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TABLE 1 Clinical and pathological features of 125 estrogen receptor positive invasive breast cancer patients in West China Hospital.

Features levels Control (N = 62) Case(N=63) p
menopause No 35 (56.5%) 32 (50.8%) 0.649
Yes 27 (43.5%) 31 (49.2%)
age <40y 13 (21%) 8 (12.7%) 0319
=40y 49 (79%) 55 (87.3%)
T stage 1 23 (37.1%) 12 (19%) 0.252
2 34 (54.8%) 43 (68.3%)
3 2 (3.2%) 3 (4.8%)
4 2 (3.2%) 4 (6.3%)
unknown 1 (1.6%) 1(1.6%)
N status 0 31 (50%) 20 (31.7%) 0.055
1 19 (30.6%) 18 (28.6%)
2 8 (12.9%) 13 (20.6%)
3 4 (6.5%) 12 (19%)
grade 1 0 (0%) 1 (1.6%) 0.114
2 23 (37.1%) 15 (23.8%)
3 31 (50%) 43 (68.3%)
unknown 8 (12.9%) 4 (6.3%)
ki67 <10% 7 (11.3%) 4 (6.3%) 0.51
>10% 55 (88.7%) 59 (93.7%)
PR negative 54 (87.1%) 49 (77.8%) 0.257
positive 8 (12.9%) 14 (22.2%)
HER2 status negative 42 (67.7%) 36 (57.1%) 0.014*
positive 20 (32.3%) 19 (30.2%)
uncertain 0 (0%) 8 (12.7%)
chemotherapy No 1 (1.6%) 4 (6.3%) 0.371
Yes 61 (98.4%) 59 (93.7%)
radiotherapy No 36 (58.1%) 36 (57.1%) 1
Yes 26 (41.9%) 27 (42.9%)
Herceptin No 57 (91.9%) 58 (92.1%) 1
Yes 5 (8.1%) 5 (7.9%)
0S_bin 0 62 (100%) 33 (52.4%) <001
1 0 (0%) 30 (47.6%)
iDFS_month Mean + SD 127.1 + 15.2 314 £225 <.001
OS_month Mean + SD 127.1 + 15.2 62.5 £ 35.2 <.001

(R = -0.2, P = 0.027), N stage (R = -0.16, P = 0.066, borderline
significance), grade (R =-0.31, P = 0.001), ki67 (R = -0.28, P = 0.002),
and HER?2 levels (R = -0.32, P = 0.0004). CDKNZ2A expression was
positively associated with N stage (R = 0.19, P = 0.034) and ki67
(R =0.18, P = 0.047). ATP7B expression was negatively associated
with T stage (R = -0.17, P = 0.06, borderline significance) (Figure 2C).
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3.4 Expression of CRGs associated with
RFS in the cohort study

In total, 344 patients were diagnosed with stage I-III ER-positive
BC using the GSE42568, GSE9195, and GSE20685 databases.
Supplemental Figure 1 shows the PCA of each sample before and
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after normalization using the R package “limma.” Tumor size (HR =
1.6, 95%CI 1.1-2.2, P = 0.007) and lymph node status (HR = 3.8,
95%CI 2.3-6.3, P = 2.6E-07) were risk factors for relapse, and older
age (HR = 0.48, 95%CI 0.29-0.81, P = 0.006) was a protective factor
against relapse. Of identified CRGs, expression levels of LIAS (HR =
0.61,95%CI 0.41-0.9, P = 0.013), LITP1 (HR = 0.44, 95%CI 0.29-
0.66, P = 7.40E-05), CDKN2A (HR = 1.7, 95%CI 1.3-2.3, P =
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0.0001), ATP7B (HR = 0.75, 95%CI 0.58-0.98, P = 0.032), FDX1
(HR = 0.59, 95%CI 0.42-0.84, P = 0.003), DLD (HR = 0.59, 95%CI
0.42-0.83, P = 0.002), and PDHB (HR = 0.42, 95%CI 0.26-0.65, P =
0.0002) were associated with RES (Figure 3A; Supplementary
Table 3). After adjusting for tumor size, lymph node status, and
age, these seven genes were still associated with the risk of relapse
(Figure 3B; Supplementary Table 4). The high expression of LIAS,
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LITP1, ATP7B, FDXI, DLD, and PDHB and the low expression of
CDKN2A were associated with longer RFES, as determined by the
Kaplan-Meier curve (Figure 3C). Collectively, five genes positively
affected cuproptosis, and one copper transporter gene decreased the
risk of relapse. However, one gene negatively impacting cuproptosis
may also increase the risk of relapse.

3.5 Construction CRGs score model in GSE
dataset and validation

Enrolled patients (n = 344) were randomly divided into two sets
(7:3): the training set (n = 241) and the validation set (n = 103). The
training and validation sets showed no significant differences in
clinical features or CRG expression (Supplementary Table 5).
LASSO-Cox regression analysis was used to establish a prognostic
model for the training set based on expression profiles of the seven
genes (Figure 4A). Seven gene signatures were determined based on
the optimal value (Figure 4B). The risk score was then calculated
based on the coefficient of each gene as follows:

CRGs.score = -FDX1*0.283 -LIAS*0.314 -LIPT1*0.428
-DLD*0.139 -PDHB*0.257 +CDKN2A*0.635 -ATP7B*0.275

According to the cut-oft value of the CRG score calculated using
the R package “survminer,” patients were divided into the high CRG
score group and the low CRG score group in the training and
validation set. PCA revealed that patients in the different CRG score
groups were distributed in two directions (Figure 4C). As shown in
Figure 4D, the median survival time in the low and high CRG score
groups was 14.1 and 5.73 years, respectively, in the training set. The
HR of the low CRG score group was 0.21 (95%CI 0.13-0.35, P =
1.1E-9) when compared with that of the high CRG score group.
After adjustment for tumor size, lymph node status and age, the HR
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of low CRG score was 0.24 (95%CI 0.14-0.41, P = 1.07E-07). The
AUC value was used to evaluate the predictive performance of the
CRG score over time. For the training set, the AUC was 0.74 at 3
years, 0.74 at 5 years, and 0.75 at 7 years (Figure 5C, left, solid line).

In the validation set, the median survival time was not reached
(NR) and 6.59 years for the low and high CRG score groups,
respectively. The HR of the low CRG score group was 0.29 (95%CI
0.13-0.64, P = 0.002), determined by univariate Cox regression
analysis, and 0.23 (95%CI 0.1-0.52, P = 0.0005) by multivariate
Cox regression analysis. For the validation set, the AUC was 0.77 at 3
years, 0.74 at 5 years, and 0.56 at 7 years (Figure 5C, right, solid line).

3.6 Development and validation of a
predictive nomogram based on CRG score

Multivariate Cox analysis of the CRG score, age, tumor size, and
lymph node status was performed. Tumor size (P = 0.52) was not an
independent prognostic factor. The CRG score (P = 1.80E-09) and
lymph node status (P = 3.03E-06) were independent prognostic
factors, while age reached borderline significance as an independent
prognostic factor (P = 0.055).

Based on the multivariate analysis results, we developed a
nomogram model as an easy-to-use tool (Figure 5A). As shown in
(Figures 5B, C), the median RFS time of patients with low and
high nomogram points in the training set were 14.1 and 5.42 years,
respectively. The HR of patients with low nomogram points was
0.14 (95%CI 0.085-0.24, P = 2.4E-13). The AUC was 0.79 at 3
years, 0.82 at 5 years, and 0.81 at 7 years (Figure 5C left, dotted
line). Compared with the CRG score, the AUC values of the
nomogram at 5 (P = 0.002) and 7 years (P = 0.02) were
significantly improved.

PCA Soores Plot PCA Scores Prot

5 10
RFS(Years)
Number at risk
2 11 1 0
] 69 1 0

3 5 10 3
RFS(Years)

CRGs score model construction and survival analyses. (A) LASSO cox regression analysis was used to establish a prognostic model in the training
group based on the expression profiles of 7 CRGs. (B) 7 gene signatures were determined based on the optimal value of A. (C) Principal component
analysis (PCA) showed patients in different CRGs score groups distribution. (D) Kaplan-Meier survival analysis of CRGs score in training (left) and

validation set (right).
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In the validation set, the median RFS time of patients with low
and high nomogram points were NR and 3.5 years, respectively, and
the HR of patients with low nomogram points was 0.17 (95%CI
0.079-0.38, P = 1.6E-05). The AUC was 0.82 at 3 years, 0.81 at 5
years, and 0.7 at 7 years, as shown in Figure 5C (right, dotted line).
Compared with the CRG score, the AUC value of the nomogram
points at 7 years (P = 0.03) significantly improved.

4 Discussion

In the present study, we employed two datasets and two study
designs to demonstrate the association between CRGs and iDFS or
RFS in patients with ER+ EBC. Considering patients from WCH
and pooled GSE data, expression of LIAS, LIPT1, CDKN2A, and
ATP7B correlated with patient endpoints, and the risk direction was
consistent. In addition, three other CRGs, i.e., FDX1, DLD, and
PDHB, were negatively associated with the risk of relapse in the GSE
cohort. We then used pooled patients with GSEs to construct the
CRG score model and a nomogram for RFS prediction. In the
training and validation sets, the relapse risk of the high CRG score
group, comprising the seven genes, was significantly higher than
that of the low CRG score group. We used the CRG score combined
with lymph node status and age to construct a nomogram and
found that the RFS in the high-point group was significantly shorter
than in the low-point group. The 7-year predicted AUC of the
nomogram points was higher than that of the CRG score alone. The
findings of the present study revealed the potential impact of CRGs
on the clinicopathological features and prognosis of patients with
ER+ EBC. Interestingly, five genes promoting cuproptosis were
positively correlated with prognosis, and one gene inhibiting
cuproptosis negatively correlated with prognosis, suggesting that
cuproptosis may be a protective mechanism that reduces relapse in

10.3389/fonc.2023.1111480

patients with ER+ EBC. Furthermore, high levels of LA pathway
genes, including FDX1, LIAS, LIPTI1, and DLD, correlated with
prolonged RFS, suggesting that targeting the LA pathway in
cuproptosis may be a potential therapeutic strategy in patients
with ER+ BC.

Cu is a mineral nutrient, and a growing number of studies have
confirmed the involvement of Cu in cell proliferation and death
pathways (21). Given the intrinsic oxidized-reduced properties, Cu
can be both beneficial and potentially toxic to cells. Cu is an
essential cofactor for enzymes that mediate basic cellular
functions, including mitochondrial respiration, antioxidant
defense, and hormone and neurotransmitter biosynthesis.
However, dysregulation of Cu storage can lead to oxidative stress
and cytotoxicity (22, 23). First defined by Golub et al., cuproptosis is
a new cell death pattern that reveals the critical mechanism through
which CRGs regulate copper death (9). Copper ionophores, such as
disulfide (24) and elesclomol (25) can induce oxidative stress by
suppressing natural antioxidant systems, such as the mitochondria,
thereby inducing copper death. However, research on cuproptosis
remains in the early stages of development, and specific regulatory
mechanisms in various cancers remain unexplored.

CRGs have been previously correlated with the prognosis of
patients with renal carcinoma (10), head and neck cancer (11),
melanoma (12), and glioma (13). Considering BC, Zhi et al. (26)
analyzed the TCGA database and found that patients with high
expression levels of ATP7A, DBT, DLAT, DLD, GLS, PDHAI, and
SLC31A1I had a poor prognosis. High expression levels of ATP7B,
LIPT1, and NLRP3 were associated with improved OS. Li et al.
(27) found that expression of SLC31A1, ATP7A, DLD, DLAT, and
DBT significantly increased the risk of death, as determined by
analyzing the TCGA database. Li et al. (19) analyzed the TCGA
database and found that DLAT, SLC31A1, ATP7A, and ATP7B
expression levels were significantly related to the OS of patients

~ e certssgn — nomogan prtsmin

CRGs score

Survival probabilty

05 10 95 o -85 -8 75 -7 -65 -6 55 -5

Total Points
0 0 2 30 4 5 & 70 80 w 10 10 120

Linear Predictor
-3 25 2 -15 41 05 0 05 1 15 2 25 3 35

rvival probabilty

s

3yearsrfs,
0%5 09 07 05 03 o1

5 years rfs
0% 09 07 05 03 01

7 years ris

0% 09 07 05 03 01 o

Sensitivity

" —— AUCat3year of CRGs: 074
——  AUCat5 yearof CRGs: 074
AUC at 7 year o CRGs: 0.75

-~ AUCat3 year of nomogram: 0.79

-~ AUCat5 year of nomogram: 0.82

AUC at 7 year of nomogram: 081

08

FIGURE 5

Sensitivity

w
:
RFS time(Yeas) RFS time(Yeas) ¢

" —— AUCat 3 year of CRGs: 077
——  AUCat 5 year of CRGs: 0.74
AUC at 7 year of CRGs: 0.56
-~ AUC at 3 year of nomogram: 0.62
-~ AUC at 5 year of nomogram: 081
AUC at 7 year of nomogram: 0.7

Nomogram model construction and survival analyses. (A) The Nomogram comprised the CRGs core, age, and lymph node status. (B) Kaplan-Meier
survival analysis of nomogram points in training (left) and validation set (right). (C) The area under the curve (AUC) of receiver operating
characteristics (ROC) of CRGs core and nomogram points model at 3-, 5- and 7- years in training (left) and validation (right) set

Frontiers in Oncology

72

frontiersin.org


https://doi.org/10.3389/fonc.2023.1111480
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Fan et al.

with BC. Furthermore, Li et al. (28) found that SLC31A1
expression and its related pathway genes could potentially
predict diagnosis, prognosis, and therapeutic response, as
determined by analyzing the TCGA database. Sha et al. (29)
analyzed a triple-negative subgroup of TCGA and found that
high expression of ATP7A, DLST, and LIAS was associated with
poor OS. Conversely, high expression levels of LIPTI and PDHAI
indicated a good prognosis.

However, these studies have some limitations. First, the median
follow-up time of patients without relapse in the TCGA database
was 2.68 years for the ER+ subgroup. However, the relapse
probability of ER+ patients within 5 years was the same as that
after 5 years. Long-term follow-up of patients with ER+ BC is
necessary. Second, analyses of BC subgroups, such as ER+ or HER2,
are lacking in reported studies.

Herein, we used two independent long-term follow-up
databases and two study designs to analyze the correlation
between CRGs and outcomes in the ER+ subgroups and
constructed a relapse prediction nomogram. Among patients
enrolled at WCH, the control group had a median iDFS of 10.58
years. The median RFS of relapse-free patients was 7.3 years in the
pooled GSE data. Considering the relationship between DLD, LIAS,
and prognosis in TCGA, our findings contradict those reported in
earlier studies, which may be attributed to the follow-up time and
different molecular subgroups.

In our case-control study, the number of patients was limited.
Therefore, we identified fewer prognostic genes than those in the
pooled GSE data. In the cohort study, there were limited clinical
features in public datasets that could be included in the model
construction. Considering another limitation of our study, OS was
not used as an endpoint.

In conclusion, our study indicates that high expression of
positive hit genes (FDXI, LIAS, LIPT1, DLD, PDHI) and a
copper-transporting gene (ATP7B) and low expression of negative
hit genes (CDKN2A) related to cuproptosis can reduce the risk of
iDFS or RFS in patients with ER+EBC. In addition, the constructed
prognostic nomogram model had good predictive value for 7-year
REFS of patients with ER+EBC.
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Background: Cancer stem cells (CSCs) play vital roles in lung adenocarcinoma
(LUAD) recurrence, metastasis, and drug resistance. Cuproptosis has provided a
novel insight into the treatment of lung CSCs. However, there is a lack of knowledge
regarding the cuproptosis-related genes combined with the stemness signature and
their roles in the prognosis and immune landscape of LUAD.

Methods: Cuproptosis-related stemness genes (CRSGs) were identified by
integrating single-cell and bulk RNA-sequencing data in LUAD patients.
Subsequently, cuproptosis-related stemness subtypes were classified using
consensus clustering analysis, and a prognostic signature was constructed by
univariate and least absolute shrinkage operator (LASSO) Cox regression. The
association between signature with immune infiltration, immunotherapy, and
stemness features was also investigated. Finally, the expression of CRSGs and the
functional roles of target gene were validated in vitro.

Results: We identified six CRSGs that were mainly expressed in epithelial and
myeloid cells. Three distinct cuproptosis-related stemness subtypes were
identified and associated with the immune infiltration and immunotherapy
response. Furthermore, a prognostic signature was constructed to predict the
overall survival (OS) of LUAD patients based on eight differently expressed genes
(DEGs) with cuproptosis-related stemness signature (KLF4, SCGB3A1, COL1AL,
SPP1, C4BPA, TSPAN7, CAV2, and CTHRC1) and confirmed in validation cohorts.
We also developed an accurate nomogram to improve clinical applicability.
Patients in the high-risk group showed worse OS with lower levels of immune
cell infiltration and higher stemness features. Ultimately, further cellular
experiments were performed to verify the expression of CRSGs and prognostic
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DEGs and demonstrate that SPP1 could affect the proliferation, migration, and
stemness of LUAD cells.

Conclusion: This study developed a novel cuproptosis-related stemness signature
that can be used to predict the prognosis and immune landscape of LUAD patients,
and provided potential therapeutic targets for lung CSCs in the future.

KEYWORDS

cuproptosis-related stemness genes (CRSGs), prognostic signature, immune landscape,
single-cell sequencing, lung adenocarcinoma, cancer stem cells

Introduction

The most prevalent type of lung cancer, lung adenocarcinoma
(LUAD), is the primary reason for cancer-related deaths worldwide
(1). Although the advances of treatment in LUAD over the past 20
years, the 5-year overall survival (OS) is still below 20% due to its high
recurrence and metastasis (2, 3). Increasing evidence indicates that
lung cancer stem cells (CSCs) play a critical role in LUAD, and their
self-renewal, unlimited proliferation, and immunosuppressive
properties are responsible for generating tumor heterogeneity and
radio-chemotherapy resistance (4, 5). Despite salinomycin and its
derivatives have been identified that preferentially target breast CSCs
(6,7), more efforts are needed to identify novel therapeutic targets and
develop effective prognostic models for LUAD patients to break the
logjam of CSCs-mediated drug resistance and immune suppression.

Since the low levels of ROS in CSCs, new therapeutic strategies
for generating intracellular reactive oxygen species (ROS) by
exogenous metal chelators and ionophores have emerged (8).
Copper (Cu), as an essential element for accumulating ROS, is
closely related to the progression of cancer by promoting
proliferation, angiogenesis, metastasis, and regulating immune
responses (9, 10). A series of copper complexes have demonstrated
encouraging anticancer potential by selectively suppressing lung,
colorectal, and breast CSCs, including copper ionophore such as
disulfiram, which has already entered phase I (11, 12). Recent studies
have revealed this novel copper-dependent cell death that is triggered

Abbreviations: LUAD, lung adenocarcinoma; CSCs, Cancer stem cells; CRG,
cuproptosis-related genes; CRSGs, cuproptosis-related stemness genes; DEGs,
differentially expressed genes; scRNA-seq, Single-cell RNA sequencing; NK,
natural killer; OS, overall survival; LASSO, least absolute shrinkage and
selection operator; K-M, Kaplan-Meier; TCA, tricarboxylic acid cycle; ROS,
reactive oxygen species; GEO, Gene Expression Omnibus; TCGA, The Cancer
Genome Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; GDSC, Genomics of Drug Sensitivity in Cancer; TIDE: Tumor
Immune Dysfunction and Exclusion; ROC, receiver operating characteristic;
PCA, principal component analysis; UMAP, uniform manifold approximation
and projection; AUC, area under curve; CDF, cumulative distribution function;
DCA, decision curve analysis; ssGSEA, Single sample gene set enrichment
analysis; GSVA, Gene Set Variation Analysis; CNV, copy-number variation;

ICIs, immune checkpoints inhibitors.
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by copper ionophores, known as cuproptosis (13), which is associated
with mitochondrial respiration and the tricarboxylic acid (TCA)
cycle, resulting in proteotoxic stress that is distinct from oxidative
stress-related cell death (14). Since Tsvetkov et al. first proposed that
FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, and PDHB are positive
cuproptosis-related genes, while MTF1, GLS, and CDKN2A are
negative cuproptosis-related genes (13). More and more novel
cuproptosis-related genes (CRGs) have been identified in various
tumors (15, 16). Evidence shows that lung cancer cells, including
LUAD, also require glutamine to fulfill metabolic needs, which is
important for the TCA cycle (17, 18). Numerous studies have
developed different cuproptosis-related risk models to predict
prognosis and immune infiltration in LUAD using bioinformatics
analyses (16, 19-21). However, no studies of CRGs combined with
stemness signatures in LUAD have been reported to date, and their
roles in prognosis and immune landscape remain unknown.

Compared to conventional bulk sequencing, single-cell RNA
sequencing (scRNA-seq) is capable of uncovering specific cell
populations and intratumoral heterogeneity at the single-cell level (22,
23). Therefore, we for the first time identified the cuproptosis-related
stemness genes (CRSGs) in LUAD by integrating bulk and scRNA-seq
and constructed a prognostic signature to predict the prognosis,
immune infiltration, stemness features, immunotherapy response, and
drug sensitivity. Lastly, in vitro experiments were performed to
investigate the expression and biological function of CRSGs. These
findings highlight the essential role of CRSGs in LUAD patients, which
might provide new insights into elucidating heterogeneity and
developing more effective therapeutic targets for CSCs.

Materials and methods
Data acquisition and preprocessing

The Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) was used to analyze the scRNA-seq
data of 11 LUAD samples (GSE131907 (24)). The bulk RNA-seq
data of 541 LUAD samples and 59 para-carcinoma samples were
obtained from the Cancer Genome Atlas (TCGA) database,
including 491 patients with clinicopathologic and survival
information (Table S1). Additionally, transcriptomic data from 19
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LUAD samples is included in GSE141569 (25) as the external
validation set. All the datasets were normalized by the limma
package (26) and the R package (27). Simultaneously, in total of
10 cuproptosis marker genes and 2916 cancer stemness genes were
obtained by literature review (13, 28) and related databases (29, 30).

Single-cell data analysis and
intercellular communication

The quality control of scRNA-seq data was performed using the
Seurat R package (version 4.1.0) (31) to optimally eliminate
potential doublets. Using Uniform Manifold Approximation and
Projection (UMAP), the top 30 components from principal
component analysis (PCA) on highly variable genes were chosen.
Cells were clustered using the FindClusters function. The
FindMarkers function was used to annotate cell types based on
reported cell-specific marker genes (Table S2). The R package
CellChat (version 1.1.3) (32) was used to evaluate cell-cell
interactions based on the CellChatDB databases.

The scores of stemness and cuproptosis at
the single-cell level

To obtain the stemness signature gene set of LUAD, we
downloaded 2916 stemness-related genes from the literature and
database, and aligned them with single-cell genes. The scores of
stemness signature were divided by median values, which were
calculated by the AddModuleScore function in Seurat. The scores of
cuproptosis for each cell were obtained by calculating the Area
Under the Curve (AUC) value of key CRGs using the AUCell R
package (version 1.18.1) (31). The UMAP embedding is colored by
the AUC scores. The scores of cuproptosis signature were divided
by the activity of cell clusters in LUAD scRNA-seq.

Analysis of DEGs and cuproptosis-related
molecular subtypes

DEGs were identified based on the TCGA-LUAD data by using
the R package. DEGs were defined as [log2 FC|>2 with adjusted
p<0.05 and visualized using heatmaps (33) and volcano plots from
the R packages ggplot2 (34).

The consensus clustering analysis was used to identify different
subtypes in LUAD based on cuproptosis-related DEGs by the
“ConsensusClusterPlus” R package (35). To ascertain the K value,
a cumulative distribution function (CDF) curve was employed, and
the classification was verified by PCA in LUAD.

Functional enrichment and gene set
variation analysis

Using the clusterProfiler (36) package, the Gene Ontology (GO)
(37) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (38)
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enrichment analyses of the DEGs were performed. The dataset of
immune cells was downloaded from TISIDB (39) (http://cis.hku.hk/
TISIDB/download.php) using the GSVA package (40). The
stemness and immune scores based on the gene expression
matrix were calculated using the single sample gene set
enrichment analysis (ssGSEA).

Construction of the prognostic model
and nomogram

Forest plots were drawn based on the results of univariate and
multivariate Cox regression. By using univariate and least absolute
shrinkage operator (LASSO) cox regression, a prognostic model
based on differently expressed CRSGs was built. Cox regression
coefficients using the formula:

. /
RiskScore” = 2 €XPGenei ><CC'efGenei

Kaplan-Meier (K-M) analysis and the receiver operator
characteristic (ROC) curve were performed to estimate the OS
using the R ‘survival’ and ‘timeROC’ packages. A nomogram for
predicting the OS was built by using the rms R package. To assess
the clinical value of nomograms, decision curve analysis (DCA) and
clinical impact curves were used.

Correlation analysis of immune
infiltrating cells

The gene expression matrix of infiltrating immune cells was
obtained by CIBERSORT (41) using the LM22 signature. The
correlation of 22 immune cells was shown in a heatmap by
the corrplot algorithm, and the correlation between immune
infiltration and prognosis was calculated by the ggplot2 package.
We also analyzed the correlation of prognostic genes with
immune checkpoints.

Anticancer drug sensitivity analysis

The anticancer drug sensitivity and markers of drug response
were collected from the Genomics of Drug Sensitivity in Cancer
(GDSC) database (42). A ridge regression model was built using
gene expression profiles by the pRRophetic algorithm (43). The
sensitivity of an anticancer drug was classified by IC50 values.

Cell culture and transfection

The LUAD cell lines (A549 and SPC-A1l) and human
bronchial epithelial cells (BEAS-2B) were purchased from the
Cell Bank of the Chinese Academy of Sciences (Shanghai, China).
All cells were cultured in DMEM or RPMI-1640 medium
(Hyclone, USA) supplemented with 10% fetal bovine serum
(FBS; Gibco, USA).
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The small interfering RNA of SPP1 (siSPP1) and control RNA
(si-Ctrl) were synthesized by GenePharma Inc. (Shanghai, China).
Lipofectamine 3000 (Invitrogen, USA) was used to transiently
transfect the siRNA into cells. The sequence of siSPP1#1 is
UAUUUUGGCCUUUAUUCUGUU, siSPP1#2 is GAGAA
TTGCAGTGATTTGCTTTT, and siSPP1#3 is AGGAA
AAGCAGCTTTACAAAA. After 48 hours of incubation, the
interfering effect was confirmed by Western blotting. The
following antibodies were used: anti-SPP1 (ab302942, 1:1000,
Abcam, USA), B-actin (ab8226, 1:1000, Abcam, USA).

Quantitative real-time PCR

TRIzol reagent (Invitrogen, USA) was used to extract total RNA
from the cells, and the cDNA synthesis kit (Takara, Japan) was used

TABLE 1 Primer sequences used for qRT-PCR.

10.3389/fimmu.2023.1174762

to reverse-transcribe the extracted total RNA into cDNA in
accordance with the kit’s instructions. SYBR Green RT-PCR Kits

—AA
€t was used to

(Takara, Japan) were used for the qPCR, and 2
determine the relative mRNA expression. 3-actin provided internal

control. Table 1 contained a list of the primers.

Cell proliferation and migration assay

Cell proliferation was evaluated using the CCK-8 assay. The
transfected SPC-A1 cells were seeded onto 96-well plates with
2x107 cells/well and incubated for 5 days. Cell Counting Kit-8
(CCK-8) (Beyotime, China) was added and detected the absorbance
of the solution at 490 nm. Transwell test was used to measure cell
migration. Cells (2x10> cells/ml) were added to the upper 24-well
plate chamber with FBS-free medium, while the lower chamber was

Gene Primers Sequence (5'-3")

Forward GGAGGCCGATCCAGGTCAT
CDKN2A

Reverse CACCAGCGTGTCCAGGAAG

Forward CACTCAAATCAGGATTGCG
GLS

Reverse CCAGACTGCTTTTTAGCACTTT

Forward CCTGGCTTGTTCAACCTGTCA
FDX1

Reverse CCAACCGTGATCTGTCTGTTAGTC

Forward CAGACCATCTCATCACAGCCTACC
PDHA1

Reverse CCTCCTTTCCCTTTAGCACAACCT

Forward GACACTCCCATATCAGAGATGG
PDHB

Reverse CTTGGCAGCTGAGTTTATAACC

Forward GCCGACGACCCTTTACTAAGAAT
DLD

Reverse GGACCAGCAACTACATCACCAAT

Forward AACCTATACGAAGAGTTCTCAT
KLF4

Reverse CCAGTCACAGTGGTAAGG

Forward ATGTCCCCACAATCAGCAAG
SCGB3A1

Reverse CTCTGCAGCTGGAGCAAGG

Forward GCTCCTCTTAGGGGCCACT
COL1A1

Reverse CCACGTCTCACCATTGGGG

Forward CAAATACCCAGATGCTGTGGC
SPP1

Reverse TGGTCATGGCTTTCGTTGGA

Forward CTACGCATACGGCTTTTCTGT
C4BPA

Reverse CCCATGTGAAACATCTGGCTTG

Forward CTCATCGGAACTGGCACCACTA
TSPAN7

Reverse CCTGAAATGCCAGCTACGAGCT
CAV2 Forward CGTGCCTAATGGTTCTGCCT

(Continued)
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TABLE 1 Continued

10.3389/fimmu.2023.1174762

Sequence (5'-3')
CGCTCGTACACACAATGGAGCA

ATAATGGAATGTGCTTACAAGG

Gene Primers
Reverse
Forward
CTHRC1
Reverse
Forward
B-actin
Reverse

contained with 20% FBS medium. After 24 hours, the cells in the
lower chamber were stained and counted under the
200x microscope.

Tumorsphere formation assay

SPC-A1 cells (3x10°/well) were plated into an ultralow
attachment 6-well plate (Corning, USA) and incubated for 5-7
days. Serum-free DMEM/F12 (Gibco, USA) supplemented with 20
ng/mL epidermal growth factor (Sigma, USA), 20 ng/mL basic
fibroblast growth factor (Sigma, USA), 20 uL/mL B27 (Invitrogen,
USA), and 5 pug/mL insulin (Invitrogen, USA) was used to culture
the cells. Morphology of CSC spheres was photographed under the
400x microscope.

Statistical analysis

Using R programming (version 4.1.0), all statistical analyses
were carried out. T-tests or the Mann-Whitney U test were used to
compare continuous variables between groups. All p values were
two-sided, and significance was indicated by p < 0.05.

Results

Clustering and differential analysis of
scRNA-seq data

The flow chat was shown in Figure 1. After quality control, we
used scRNA-seq data (GSE131907) to obtain gene expression
profiles for 45,149 cells from 11 primary LUAD samples. As
shown in Figure 2A, these cells were classified into 27 clusters by
the KNN algorithm. Subsequently, clusters were annotated into 8
major cell types (Figures 2B; S1A) based on the expression of
marker genes (Table S2). They were epithelial cells (contain non-
malignant cells and cancer cells), myeloid cells, T lymphocytes,
natural killer (NK) cells, B lymphocytes, fibroblasts, mast cells, and
endothelial cells (Figure 2C). There is a relatively high proportion of
T lymphocytes and a low proportion of endothelial cells
(Figure 2E). Then, we divided each cell into high- and low-
stemness cells according to the median value of the stemness
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score (Figure 2D). Furthermore, a total of 6107 differentially
expressed stemness genes were identified, and the top 20 genes
were shown in the heatmap (Figure 2F).

Analysis of cuproptosis score
based on stemness signature and
functional enrichment

Through the intersection of the 6107 differentially expressed
stemness genes and 10 cuproptosis-related genes, 6 CRSGs
(CDKN2A, GLS, FDX1, PDHAI1, PDHB, and DLD) were
obtained (Figure 2G). We further explored that they were
mainly expressed in epithelial (contain non-malignant cells and
cancer cells), myeloid cells and T lymphocytes by scRNA-seq.
(Figures 2H-M). Additionally, there was a positive correlation
among these CRSGs, the expression of CDKN2A was positively
correlated with GLS (cor = 0.394) (Figure 2N). These genes were
significantly more active in epithelial and myeloid cells
(Figure 3A). In total, 25802 cells with a high-cuproptosis score
based on stemness signature were screened by the AUCell R
package (AUC > 0.054) (Figure 3B).

We further explored the functional enrichment between the
high- and low- cuproptosis score cells based on stemness signature
by GO and KEGG analyses. They were most enriched in the
metabolic microenvironments and cancer-related pathways, such
as protein catabolism, DNA-binding proteins, and endocytosis
(Figure 3C, D; Table S3-4).

Clustering subtypes of high-cuproptosis
score with stemness signature in single-
cell data

After obtaining the high-cuproptosis score stemness cells, we
classified them into 30 clusters by the KNN algorithm (Figure 4A).
Finally, cell types were recognized based on previous cell markers
(Figures 4B; S1B): epithelial cells (contain non-malignant cells and
cancer cells), myeloid cells, T lymphocytes, fibroblasts, B
lymphocytes, mast cells, and endothelial cells (Figure 4C). Cell
clusters were almost consistent with the distribution by stemness
score above. Additionally, the expression of CRSGs in subtypes was
similar to previous results from scRNA-seq (Figures 4D-I).
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Flow chat in the study.

Intercellular communication between
cuproptosis stemness cluster and others

CellChat was used to delineate intricate a cell-cell network from
scRNA-seq. Figure 5A shows the intercellular communication of
high- and low- cuproptosis score stemness cluster that mainly
occurred in epithelial, endothelial, fibroblast, lymphocytes, and
myeloid cells with differential interaction numbers and strengths.
Further analysis suggested that high-cluster was more associated
with immune cells, such as NK cells and lymphocytes, and less
associated with epithelial cells, endothelial cells and myeloid cells
(Figures 5B, C). Moreover, ligand-receptor pair analysis revealed
that fibroblasts preferred to communicate with immunocytes
through MIF-(CD74+CXCR4), MIF-(CD74+CD44) and MDK-
NCL (Figure 5D).

Characteristics of CRSGs in the bulk RNA-
seq of LUAD

Further, we examined 2550 DEGs in total, including 985 genes
upregulated and 1565 genes downregulated in TCGA-LUAD
(Figures S1C-D). The expression of CRSGs in bulk RNA-seq
showed that CDKN2A and PDHA1 were higher in LUAD (p <
0.001), while FDX1 and GLS were lower in LUAD (p < 0.05), and
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with unaltered levels of DLD and PDHB (p > 0.05) (Figures 5E, F).
Additionally, through the intersection of the DEGs and the marker
genes in high-cuproptosis stemness cluster, a total of 129 genes were
obtained (Figure 5G; Table S5). GO analysis showed they were
mostly related to immune features and complement activation.
(Figure 5H; Table S6).

Analysis of cuproptosis-related stemness
subtypes and immune infiltration in LUAD

Three distinct cuproptosis-related stemness subtypes were
identified (Cluster 1-3) based on 129 intersecting DEGs by
unsupervised clustering. (Figures 6A-C). The clustering criteria
were k=3, and the results were confirmed by PCA (Figure 6D,
Figure SIE). Furthermore, most CRSGs except FDX1, were
significantly differentially expressed among the three clusters (p <
0.05) (Figure 6E).

Next, the immune infiltration score of the 28 immune cell types
was evaluated in the three subtypes by employing the ssGSEA
analysis (Figure 6F). The results showed that most immune
infiltrating cells like activated B cells, CD4+ T cells, CD8+ T cells,
myeloid-derived suppressor cells (MDSCs), and NK cells were
significantly lower in Cluster 1, indicating that patients in Cluster
1 would be more insensitive to immunotherapy.
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and clustering analysis. (B) Marker gene expression in each cluster. (C) The UMAP diagram shows the distribution of the 8 major cell types in each
sample. (D) The major cell types were divided into high- and low- stemness cells by the stemness score. (E) Histogram overlays display the
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diagram shows the intersection of differential stemness genes and cuproptosis-related genes. (H-M) Expression of CRSGs in different cell types:
CDKN2A, FDX1, PDHAL, PDHB, DLD, and GLS. (N) The circle plot shows the correlation between CRSGs.

Construction and validation of the
prognostic model with cuproptosis-related
stemness signature

A prognostic signature was constructed by univariate and
LASSO Cox regression to select the most significantly prognostic
CRSGs among the 129 DEGs (Figures 7A, B). As a result, eight
genes (KLF4, SCGB3A1, COL1A1l, SPP1, C4BPA, TSPAN7, CAV2,
and CTHRC1) with minimal lambda (p = 0.01) were finally
screened out to construct the prognostic model. Internal
validation cohort (TCGA-LUAD) shows patients with a high-risk
score exhibited a worse OS (p=0.00004, Figure 7C). Similarly, K-M
analysis showed that patients in the high-risk group had
significantly lower survival rates (p < 0.001, Figure 7D). The ROC
curves for 1-, 2- and 3- year OS were calculated, with AUCs of
0.7049, 0.7049, and 0.6836, respectively (Figures S2A, B).
Additionally, we also validated in external cohort (GSE141569).
Consistent with the above results, patients with higher risk scores
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showed higher mortality (p = 0.0038, Figure 7E). The K-M curve
and AUC values also exhibited higher OS rates in the low-risk group
(p =0.005, Figurea 7F; S2C, D). All the results indicated that the risk
score may be a trustworthy and accurate model to predict the
prognosis of LUAD.

Construction of the nomogram for
LUAD patients

To further apply the prognostic model, we performed the
univariate and multivariate Cox regression analysis (Figure 8A-B;
Table S7) based on the clinical information (Table S1) and CRSGs
features from TCGA-LUAD. Similar results were validated in an
external cohort (Figures S3A, B). The nomogram was constructed
based on the results of multivariable Cox regression (Figure 8C).
The accuracy of the nomogram’s 1-, 3-, and 5-year survival
predictions was demonstrated by calibration curves. (Figure 8D).
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Meanwhile, the DCA also indicated that LUAD patients were more
likely to benefit from the nomogram model (Figures 8E-G).

Immune infiltration profiles and stemness
score based on a prognostic signature

We further performed the CIBERSORT algorithm to assess the
proportion and correlation of immune cells in each LUAD patient
(Figures S3C, D). Correlation analyses found that CRSGs with
prognostic signature were associated with most of the 22 immune
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cells (Figure 9A). Besides, there were significant immune cell
differences between the high- and low-risk groups. (Figure 9B).
Finally, a correlation analysis between risk score and immune
infiltration was performed, which revealed that risk score was
positively correlated with MO macrophages, memory CD4+ T
cells, and resting NK cells but negatively correlated with activated
NK cells, resting mast cells and Tregs (Figure 9C)

Moreover, the stemness score was calculated using ssGSEA, and
correlated with the risk score. A positive association was found
between risk score and stemness score (r = 0.286, p = 1.95e-10,
Figure 9E), which indicated that patients with a higher risk score
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Analysis of cuproptosis-related stemness subtypes and immune infiltration

in LUAD. (A) Plot of the Cumulative Distribution Function (CDF). (B) Delta

area. (C) Unsupervised clustering heatmap when k=3. (D) Three distinct cuproptosis-related stemness subtypes were identified based on intersecting
DEGs by principal component analysis (PCA). (E) Expression of CRSGs in the three clusters. (F) A box plot displaying the differences in immune cells

that have infiltrated the three clusters by ssGSEA analysis. *, p<0.05, **, p<

0.01, ***, p<0.001, NS, no significance.

also had a higher stemness score and more CSC features (p = 3.3e-
13, Figure 9F).

Immunotherapy response and
drug sensitivity

To further evaluate the immunotherapy response with CRSGs
in LUAD, a correlation analysis between the prognostic CRSGs and
the immune checkpoint genes was conducted. KLF4, COL1Al,
SPP1, CAV2, and CTHRCI were positively related to the top 14
immune checkpoint genes, of which CTHRC1 and COL1A1 had the
highest correlation, while TSPAN7, C4BPA, and PSMB9 showed a
negative correlation (Figure 9D). Taken together, these results
indicated that the prognostic CRSGs could be a useful biomarker
to predict LUAD patients who will benefit from immunotherapy.
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We also evaluated potential anti-tumor drugs between high-
and low- risk group based on drug sensitivity profiles from the
GDSC database. The top 16 sensitivity drugs were selected by
calculating IC50 values, such as AKT-VIII, EHT-1864, GW-
441756, erlotinib, lapatinib, etc., implying that patients in the
high-risk group were more sensitive to chemotherapy and
targeted therapy (Figures S4A-P).

Validation of cuproptosis-related stemness
signature in vitro

Finally, we further verified the mRNA expression of CRSGs and
DEGs with prognostic signature in LUAD cells. Compared with
normal bronchial epithelial BEAS-2B, the expression of CDKN2A,
PDHAI, COL1Al, SPP1, CAV2, and CTHRCI was significantly
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(F) K=M survival analysis of the risk score in an external cohort (p=0.005).

upregulated in A549 and SPC-Al as expected with the above
analyses (p < 0.05, Figure 10A, B). SPP1 in particular was found
to be highly expressed at both the mRNA and protein levels (p <
0.001, Figure 10C). Thus, SPP1 was selected to further explore
biological function in vitro. The effectiveness of SPP1 silencing was
confirmed by western blot (Figure 10D). The CCK-8 and transwell
assays revealed that the knockdown of SPP1 significantly
suppressed the proliferation and migration of LUAD cells (p <
0.01, Figures 10E, F). Furthermore, tumorsphere numbers and sizes
were markedly reduced in SPC-A1 after transfection with siRNA-2
and -3, indicating that SPP1 promoted cancer stemness and might
be a potential target for CSCs (Figure 10G). Together, these results
strongly support the reliability of our bioinformatics analysis.

Discussion

LUAD accounts for approximately 50% of all lung cancers, with
a high morbidity and mortality rate due to its properties of high
metastasis, radio-chemotherapy resistance, and immunotherapy
insensitivity (1, 2). CSCs, only a small population of cancer cells
possess the stemness abilities of tumor-initiation, self-renewal, and
unlimited proliferation, which are considered the “root” of LUAD
recurrence, metastasis, and resistance (4, 5). Thus, there is an urgent
need to identify more effective therapeutic strategies for CSCs.

Low levels of ROS are essential to maintaining stemness in
CSCs (44). A promising new approach for generating intracellular
ROS and mitochondrial oxidative stress by copper ionophores has
emerged, with an intrinsic selectivity for CSCs of the lung,
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colorectal, and breast (8, 11, 12). Copper acts as a “double-edged
sword” and plays an essential role in cancer development,
metastasis, and immunomodulatory (9, 10). In fact, a novel form
of copper-dependent cell death that is triggered by copper
ionophores, called cuproptosis, is accompanied by the
accumulation of ROS and mitochondrial metabolism (13, 14).
Previous studies have identified several genes and IncRNAs
related to cuproptosis in LUAD (20, 21, 45-47), and developed a
cuproptosis signature that correlates with the prognosis and tumor
microenvironment of LUAD patients (16, 19, 48). Therefore,
cuproptosis may play an important role in LUAD and provide
new insights into the treatment of CSCs.

To the best of our knowledge, no studies of cuproptosis-related
genes combined with the stemness signature in LUAD have been
reported, and their roles in prognosis and the immune landscape
remain unknown. Due to the high heterogeneity of CSCs (49, 50),
we first systematically analyzed the CRSGs in LUAD by integrating
bulk and single-cell RNA-seq. A total of 6 CRSGs were screened out,
including CDKN2A, GLS, FDX1, PDHA1, PDHB, and DLD; most
of them have been reported in the direct regulation of cuproptosis
and cancer progression (13). In our study, the expression of CRSGs
in bulk RNA-seq showed that CDKN2A and PDHAI were
significantly higher, while FDX1 and GLS were lower in LUAD
patients, and with unaltered levels of DLD and PDHB. Although
CDKN2A showed a high mutation frequency in various cancers, the
expression of CDKN2A was overexpressed in many tumors and
associated with immunosuppression and poor prognosis (51).
CDKN2A genomic alterations were associated with urothelial
carcinoma treated with immune checkpoint inhibitors (ICIs) (52).
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Construction and validation of the nomogram. (A, B) Univariate and multivariate Cox regression based on TCGA-LUAD. (C) The nomogram was
constructed to predict OS. (D) The calibration curve demonstrated the validity and accuracy of the nomogram. (E-G) The decision curve analysis

(DCA) for the nomogram at 1, 3, and 5 years.

PDHAL is crucial to metabolic reprogramming and is often
aberrantly expressed in various tumors (53). In LUAD, patients
with high expression of PDHAI had a significantly negative
correlation with poor prognosis and immune infiltration (54).
Our further qRT-PCR assay validated the expression trend in the
datasets, with only CDKN2A and PDHAI1 having statistically
significant differences (p < 0.05), which may be attributed to the
differences between tissues and cell lines.

Based on the expression of 129 intersecting DEGs in LUAD,
cells were classified into three cuproptosis-related stemness
subtypes (Cluster 1-3) by unsupervised clustering. Additionally,
functional enrichment analysis showed that those subtypes were
enriched in cancer and immune-related pathways. Thus, we further
explored the association between the subtypes and immune
infiltration. Notably, most of the immune infiltrating cells like
activated B cells, CD4+ T cells, CD8+ T cells, MDSCs, and NK
cells were significantly lower in Cluster 1, indicating that patients in
Cluster 1 would be insensitive to immune treatment (55).
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Furthermore, we used CellChat to delineate intercellular
communication at the single-cell level, and a high-cluster had
more communication with immune cells such as fibroblasts, NK
cells, T lymphocytes, and B lymphocytes than a low-cluster. Further
potential ligand-receptor interactions including MIF-(CD74
+CXCR4), MIF-(CD74+CD44) and MDK-NCL have also been
found (56). The persistent upregulation of CD74 could impair
MHC class II antigen presentation, contributing to immune
escape and promoting tumor metastasis (57). Overall, cuproptosis
might bridge cancer stem cells and immunocyte infiltration to affect
LUAD progression.

More importantly, to quantify the prognosis of cuproptosis-
related stemness signature in each LUAD patient, we constructed a
risk score based on the 129 intersecting DEGs by LASSO and
univariate regression. Then, 8 prognostic genes with cuproptosis-
related stemness signature (KLF4, SCGB3Al, COL1Al, SPPI1,
C4BPA, TSPAN7, CAV2, and CTHRC1) were involved in the
novel prognostic model, which stratified LUAD patients into
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FIGURE 9

Immune landscape and stemness score based on prognostic signature. (A) The heatmap shows the correlation between CRSGs with prognostic
signature and immune cells. (B) The differences in immune cells between high- and low- risk groups. (C) Lollipop plot showing the correlation
between immune cells and the risk score. The size of the bubbles represents the strength of the correlation. (D) The correlation between prognostic
CRSGs and immune checkpoint genes. Red, positive correlation; blue, negative correlation. (E) Correlation analysis between stemness score and the
risk score (p=1.95e-10). (F) High- and low-risk groups’ stemness score were compared (p=3.3e-13). p values were shown as: *p<0.05; **p<0.01;
***n<0.001.

high- and low-risk groups. The K-M survival and ROC curves, as  fibroblasts treated with pancreatic cancer cells (62). Moreover,
expected, showed that patients in the high-risk group had a poor =~ SPP1 was also considered as a cuproptosis-related gene in similar
overall survival (OS), which was validated in both the TCGA  research based on database and learning algorithm (63). Our
internal cohort and the GSE 141569 external cohort. By  further in vitro experiments revealed that the silencing of SPP1
combining the risk signature with clinical information, a more inhibited the proliferation, migration, and stemness sphere-
accurate nomogram was constructed to predict the OS of LUAD  forming capacities of LUAD cells. Therefore, SPP1 might serve
patients. All the results indicated that cuproptosis-related stemness  as a novel therapeutic target for lung CSCs. Nevertheless, more

signature could serve as a solid predictive model for LUAD. research is needed to unravel the underlying mechanism of SPP1 to
Among the eight CRSGs with prognostic signature identified in ~ regulate cuproptosis in LUAD.
this study, COL1A1, SPP1, CAV2 and CTHRC1 were significantly Besides, we also analyzed the correlation between the prognostic

upregulated in A549 and SPC-A1, while KLF4 was downregulated  signature and the immune landscape and stemness score in each
in LUAD cells. SPP1 in particular was found to be highly expressed = LUAD patient. The results revealed that the risk score was
at both the mRNA and protein levels (p < 0.001). Secreted  significantly correlated with correlated with immune cell
phosphoprotein 1 (SPP1), also called osteopontin, has been infiltration. The high-risk group has more resting NK cells and
demonstrated overexpressed in many cancers including LUAD less activated NK cells. We did not observe a significant difference in
and was correlated with a poor OS (58). SPP1 can induces EMT  CD8+ T cells between risk scores and prognosis may be related to the
through the PI3K/Akt and MAPK/ERK1/2 pathways in lung  immune escape. A positive relationship was discovered between risk
cancer (59). It can enhance EGFR-TKI resistance by up-  score and stemness score, indicating that patients with a higher risk
regulating integrin atVB3 (60) and promote colorectal cancer  score had more stemness features. Moreover, the predictive effect of
stem cell-like properties by PI3K/AKT/GSK3 (61). Knockdown  the CRSGs with prognostic signature for immunotherapy was also
of SPP1 greatly decreased stemness features in cancer-associated  evaluated. In our study, KLF4, COL1A1, SPP1, CAV2, and CTHRC1
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Validation of cuproptosis-related stemness signature in LUAD cells. (A) The mRNA expression of CRSGs in LUAD cells A549 and SPC-A1 and normal
bronchial epithelial cells BEAS-2B was analyzed by qRT-PCR. (B) The mRNA expression level of DEGs with prognostic signature. (C) The protein
expression of SPP1 in A549, SPC-AL, and BEAS-2B by Western blot. (D) Western blot assay verified the efficiency of SPP1 knockdown in SPC-AL.

(E) CCK-8 assay was used to evaluate the effect of SPP1 on cell proliferation. (F) Transwell assay to assess the effect of SPP1 on the migration of
SPC-A1 cells (scale bar, 100um). And the corresponding statistical plot was displayed. (G) Representative images show the effect of SPP1 knockdown
on the tumorsphere formation ability of SPC-Al cells, which were cultured in stemness medium for 7 days (scale bar, 100um). Quantitative analysis
was counted by sphere diameters. p values were shown as: *p<0.05; **p<0.01; ***p<0.001.

had a high positive relationship with the immune checkpoint genes,
while TSPAN7, C4BPA, and PSMB9 showed a negative correlation.
Patients in the high-risk group were more susceptible to
chemotherapy and targeted therapy based on drug sensitivity
analysis. Taken together, we speculated that our model was
capable of reflecting the immune infiltration and immunotherapy
in LUAD.

Frontiers in Immunology

Nowadays, increasing studies of CRGs, IncRNAs, and their
prognostic value for lung cancer have been published. We for the
first time identified the CRGs combined with stemness signature
by integrating bulk and sc-RNAseq, and the prognosis and
immune landscape in LUAD were also investigated. Inevitably,
there were several limitations in this study. First, our research was
mainly based on public databases and was retrospective, though we
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have validated the prognostic signature in internal and external
cohorts, and further validations using prospective multi-center
studies are needed. Moreover, although we have verified the
expression of CRSGs and the functional roles of target gene by
cellular assays, the underlying cuproptosis mechanism of CRSGs in
LUAD needs to be further investigated, and more studies directly
connected to cuproptosis features of SPP1 (such as the elesclomol
concentration in different LUAD cell lines and the intensity of
intracellular cuproptosis at different expression levels of SPP1) in
vitro are required.

Conclusion

Taken together, we comprehensively identified the CRSGs in
LUAD and constructed a risk signature based on differentially
expressed CRSGs, which was closely associated with the prognosis,
immune infiltration, immunotherapy response, stemness features,
and drug sensitivity. Additionally, the expression and biological
function of CRSGs were also evaluated in vitro. These findings
highlight the clinical significance of CRSGs in LUAD patients, and
provide new insights for developing more effective therapeutic targets
for lung CSCs in the future.
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Introduction: Cuproptosis is a novel copper-dependent regulatory cell death
(RCD), which is closely related to the occurrence and development of multiple
cancers. However, the potential role of cuproptosis-related genes (CRGs) in the
tumor microenvironment (TME) of colon adenocarcinoma (COAD) remains unclear.

Methods: Transcriptome, somatic mutation, somatic copy number alteration
and the corresponding clinicopathological data of COAD were downloaded
from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database
(GEO). Difference, survival and correlation analyses were conducted to evaluate
the characteristics of CRGs in COAD patients. Consensus unsupervised
clustering analysis of CRGs expression profile was used to classify patients into
different cuproptosis molecular and gene subtypes. TME characteristics of
different molecular subtypes were investigated by using Gene set variation
analysis (GSVA) and single sample gene set enrichment analysis (ssGSEA). Next,
CRG Risk scoring system was constructed by applying logistic least absolute
shrinkage and selection operator (LASSO) cox regression analysis and
multivariate cox analysis. Real-time quantitative polymerase chain reaction
(RT-gPCR) and immunohistochemistry (IHC) were used to exam the
expression of key Risk scoring genes.

Results: Our study indicated that CRGs had relatively common genetic and
transcriptional variations in COAD tissues. We identified three cuproptosis
molecular subtypes and three gene subtypes based on CRGs expression
profile and prognostic differentially expressed genes (DEGs) expression profile,
and found that changes in multilayer CRGs were closely related to the clinical
characteristics, overall survival (OS), different signaling pathways, and immune
cell infiltration of TME. CRG Risk scoring system was constructed according to
the expression of 7 key cuproptosis-related risk genes (GLS, NOX1, HOXCS6,
TNNT1, GLS, HOXC6 and PLA2G12B). RT-gPCR and IHC indicated that the
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expression of GLS, NOX1, HOXC6, TNNT1 and PLA2G12B were up-regulated in
tumor tissues, compared with those in normal tissues, and all of GLS, HOXCS6,
NOX1 and PLA2G12B were closely related with patient survival. In addition, high
CRG risk scores were significantly associated with high microsatellite instability
(MSI-H), tumor mutation burden (TMB), cancer stem cell (CSC) indices, stromal
and immune scores in TME, drug susceptibility, as well as patient survival. Finally,
a highly accurate nomogram was constructed to promote the clinical application
of the CRG Risk scoring system.

Discussion: Our comprehensive analysis showed that CRGs were greatly
associated with TME, clinicopathological characteristics, and prognosis of
patient with COAD. These findings may promote our understanding of CRGs in
COAD, providing new insights for physicians to predict prognosis and develop
more precise and individualized therapy strategies.

KEYWORDS

cuproptosis-related genes (CRGs), tumor microenvironment (TME), molecular subtypes,
prognosis model, colon adenocarcinoma

1 Introduction

Colon adenocarcinoma (COAD) is presently considered as one
of the most common malignancies and the leading cause for
mortality worldwide, resulting in more than 500,000 deaths every
year (1). Although surgery, adjuvant/neoadjuvant chemotherapy,
targeted therapy and immunotherapy have achieved certain
efficacy, some patients still have a poor prognosis due to high
recurrence and mortality rate (2). In recent years, more and more
studies have aimed to provide a more personalized and accurate
assessment of patient prognosis through a comprehensive analysis
of the genomic and clinicopathological characteristics of specific
tumors, with a view to potentially improving patient prognosis (3).
Nonetheless, present biomarkers or methods are far from
satisfactory to accurately predict outcome of patients with COAD.

Copper (Cu) is known as the third most abundant trace element
in human body (4). It is traditionally considered as a redox-active
transition metal which participated in the process from cellular
respiration to pigmentation, acting through cytochrome ¢ oxidase
and tyrosinase (5). However, in the last decade, metalloallostery, a
new form of protein regulation and nutrient sensing, has appeared
to extend the function of Cu beyond the catalytic proteins to
dynamic signaling molecules, which are the basis of cell biology
affecting pathophysiological processes (6). Blood concentrations of
Cu were significantly increased in multiple cancers, such as thyroid
cancer, lung cancer, breast cancer and pancreatic cancer (7-10). In
addition, Cu concentration was elevated in tissues of large bowel
and oesophageal cancer (11). However, the blood concentration of
Cu was decreased in patients with endometrial cancer (12). As a
result, researches started to pay attention to the specific underlying
mechanisms of Cu dys-homeostasis in cancers. Increasing evidence
indicated that Cu dys-homeostasis might induce cytotoxicity and
affect proliferation, apoptosis, and metastasis of tumors, thus
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resulting in cancer progression, partly through regulating kinases
activation, lipolysis, potassium channels, BRAF, NF-xB and TGF-f3
signaling pathways (13-18). Most importantly, Tsvetkov et al. (19)
recently claimed that cuproptosis was a kind of copper-dependent
death and different from all other known programmed cell death
(PCD). In terms of mechanics, Cu directly bound to the fatty
acylation component of the tricarboxylic acid (TCA) cycle, thus
leading to the accumulation of fatty acylation proteins and the
subsequent loss of iron-sulfur cluster proteins, which leaded to
protein-toxic stress and ultimately to cell death. Additionally, a total
of 10 cuproptosis-related genes (CRGs), including PDHB, MTF1,
FDX1, DLAT, PDHAI, LIAS, LIPT1, DLD, GLS and CDKN2A,
were identified in this study. Based on Tsvetkov et al.’s findings, a
growing number of researches have begun to investigate the
relationships between CRGs and typical cancers. For instance,
Zhang, Z., et al. (20) demonstrated prognostic features associated
with cuproptosis in patients with hepatocellular carcinoma (HCC).
Wang, W., et al. (21), identified a cuproptosis-related prognostic
signature (H19, CYTOR, IGFBP2, KLRC2, C50rf38 and CHI3L1)
for patients with glioma.

Tumor microenvironment (TME), which contains different
immune and stromal cells and their secreted factors, has been
recognized to cultivate a chronic inflammatory, immunosuppressive,
and pro-angiogenic intra-tumoral atmosphere and is closely
associated with patient outcomes and treatment efficacy (22).
Distinct cuproptosis-related signatures were also found to be
significantly associated with TME of kidney renal clear cell
carcinoma (KIRC) (23), triple-negative breast cancer (TNBC) (24)
and lung adenocarcinoma (LUAD) (25). However, due to tumor and
corresponding TME heterogeneity, CRGs characteristics vary across
cancers. In addition, studies of CRGs in COAD are limited.

In our study, we aimed to comprehensively analyze the
relationship between CRGs and TME in COAD and construct a
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CRGs Risk scoring system to accurately predict COAD patient
survival. The development of the scoring system provided
physicians with new insights to design more effective and
individualized treatment strategies.

2 Materials and methods

2.1 Data

Transcriptome and the corresponding clinicopathological data of
COAD were downloaded from The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/) and Gene Expression Omnibus
database (GEO) (https://www.ncbi.nlm.nih.gov/geo/). In detail, the
TCGA cohort included 480 COAD tissues and 41 normal tissues. The
GEO cohort containing GSE17536, GSE29623 and GSE39582,
included 827 COAD samples. The detailed clinicopathological data
of these COAD patients was presented in Table S1. The TCGA and
GEO cohorts were combined by using “Combat” algorithm in R to
eliminate batch effects before conducting subsequent analyses.
Principal component analysis (PCA) was applied to validate the
effect of batch effect removal by using the R package ggplot2. In order
to verified the accuracy of model, we also downloaded transcriptome
and the corresponding clinicopathological data of GSE40967 from
GEO database, which contained 585 COAD sampes.

Additionally, we downloaded somatic mutation data of 454
tumor samples and copy number variation (CNV) data of 506
tumor samples from TCGA.

2.2 Difference analyses, survival analyses
and correlation analyses of CRGs

A total of 10 CRGs (PDHAI1, PDHB, FDXI1, DLD, DLAT,
MTF1, LIAS, LIPT1, GLS and CDKN2A) were obtained from the
previous well-known publication of Tsvetkov et al. (19). Difference
analyses of CRGs were conducted between tumor and normal
tissues. Wilcoxon test was used to for statistical analysis. Survival
and survminer R packages were used for survival analysis, the same
as our previous study (26). Kaplan-Meier plot and cox regression
analyze were further applied to evaluate the relationships between
CRGs expression and patient overall survival (OS). Schoenfeld
residuals were used to check the proportional assumption of COX
model. Spearman correlation analyses were conducted to explore
the interactions among CRGs

2.3 Consensus clustering analysis of CRGs

ConsensusClusterPlus R package was applied for consensus
unsupervised clustering analysis. Patients were grouped into
distinct molecular subtypes according to the expression of CRGs,
and distinct gene subtypes according to the expression of prognostic
differentially expressed genes (DEGs), derived from different
molecular subtypes. The criteria included that the samples size in
each set was relatively consistent and the cumulative distribution
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function (CDF) curve increased gradually and smoothly. After
consensus clustering analysis, the intra-set association became
stronger, while the inter-set association became weaker.

2.4 Associations among molecular
subtypes, clinicopathological features
and prognosis

We applied Kaplan-Meier plot and log-rank test to evaluate the
associations between different molecular subtypes and patient
survival. Correlation analyses between molecular subtypes and
clinicopathological features were carried out to learn the clinical
values of distinct molecular subtypes by using Chi-square test. The
clinicopathological features contained age, gender, grade and tumor
node metastasis (TNM) stage.

2.5 Relationships between molecular
subtypes and TME

We downloaded the hallmark gene sets, including C2.CP.KEGG
(186 gene sets) and C5.GO.Gene Ontology (10561 gene sets), from the
Molecular Signatures Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb). Gene set variation analysis (GSVA) with
the above two gene sets was conducted to explore the TME
characteristics of different molecular subtypes. The adjusted P-value<
0.05 was considered statistically different. Additionally, the proportion
of tumor-infiltrating immune cells (TICs) in tumor samples was
calculated by using the deconvolution algorithm, which was also
known as CIBERSORT (27). The gene expression signature matrix
of TICs was downloaded from CIBERSORT platform (https://
cibersortx.stanford.edu/). P-value for the deconvolution of each
sample was obtained by using Monte Carlo sampling algorithm in R.
A CIBERSORT P-value< 0.05 was considered suitable for further
analysis. Single sample gene set enrichment analysis (ssGSEA) was
used to evaluate the infiltration of TICs in different molecular subtypes.

2.6 Acquisition of DEGs from distinct
molecular subtypes

DEGs of distinct molecular subtypes were acquired by applying
limma package in R. The fold change of 1.5 and the adjusted P-
value< 0.05 were considered qualified for searching DEGs. Gene
Ontology (GO) and Kyoto Encylopedia of Genes and Genomes
(KEGG) enrichment analysis of DEGs were carried out by using
org.Hs.eg.db, ClusterProfiler, enrichplot, and ggplot2 packages in R.
The adjusted P-value< 0.05 was deemed statistically significant.

2.7 Establishment of CRG Risk
scoring system

Firstly, cox regression analyses of DEGs, achieved from different
molecular subtypes, were carried out to seek those associated with
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patients’ prognosis. Secondly, patients were separated into different
gene subtypes via consensus clustering analysis of prognostic DEGs
expression. Thirdly, patients were randomly divided into the
training (n=603) and testing (n=603) sets at a ratio of 1:1. Lastly,
CRG Risk scoring system was established in the training set and
verified in the testing set, GSE29263, GSE17536, GSE39582 and the
combined set. Logistic least absolute shrinkage and selection
operator (LASSO) cox regression analysis was carried out by
applying Glmnet R package to decrease the risk of over-fitting.
Next, we analyzed and cross-validated the varied trajectory of each
independent variable. Multivariate Cox analysis was carried out to
screen prognostic DEGs in the training group. The Risk score was
calculated as follows:

CRG Riskscore = X(Expi * coefi)

In detail, Expi indicated key prognostic DEGs expression and
coefi indicated the coefficient of Risk. Correlation analysis between
CRG Risk score and distinct subtypes was also carried out. Survival
analysis between high- and low-risk sets was conducted by Kaplan-
Meier plot and log-rank test. Receiver operating characteristic
(ROC) curves were utilized to learn the sensitivity and specificity
of the scoring system. Similarly, all of the testing group, GSE29263,
GSE17536, GSE39582 and the combined group were classified into
high- and low-risk groups, respectively, and further analyzed by
Kaplan-Meier survival curves and ROC curves.

2.8 Tissue samples acquisition, real-time
quantitative polymerase chain reaction
and immunohistochemistry

A total of 8 sets of COAD and paired normal tissues were
harvested from COAD patients at Nanjing Jiangning Hospital. The
study was permitted by the Ethics Committee of Nanjing Jiangning
Hospital (2021-03-048-K01). Total RNA extraction and RT-qPCR
were performed as our previous study (28). The primers used for
RT-qPCR are shown in Table S2. Slides (4um) of formalin-fixed
paraffin-embedded tissue sections were incubated with GLS (1:200;
Cell Signaling Technology), NOX1 (1:200; Proteintech), HOXC6
(1:50; Affinity Biosciences), TNNT1 antibody (1:100; Invitrogen).
The expression level was scored semiquantitatively based on
staining intensity and distribution using the immunoreactive
score (IRS) as described (29) and as following: IRS = SI (staining
intensity) x PP (percentage of positive cells). SI was determined as 0,
negative; 1, weak; 2, moderate; and 3, strong. PP was defined as 0,
negative; 1, 1-20% positive cells; 2, 21-50% positive cells; 3, 51-100%
positive cells. Ten visual fields from different areas of each sample
were selected randomly for the IRS evaluation and the average IRS
was calculated as final value.

2.9 Relationships between TME and
distinct Risk score groups

Difference analyses of CRGs expression levels were carried out
between high- and low- Risk groups. Wilcoxon test was used for
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comparison. We further conducted correlation analyses not only
between TICs and risk scores, but also TICs and key prognostic Risk
genes. An ESTIMATE algorithm was used to analyze the ratio of
immune/stromal components in TME. The Immune Score, Stromal
Score and ESTIMATE Score presented the ratio of immune
component, the stromal component and the sum of the both,
respectively. Difference analyses of Immune/Stromal/ESTIMATE
Score were conducted between high- and low- Risk score sets.
Wilcoxon test was used for comparison.

2.10 Microsatellite instability cancer stem
cell, tumor mutation burden and somatic
mutations in different Risk score sets

Difference and correlation analyses of MSI, TMB and CSC in
distinct CRG Risk score groups were conducted to study the
underlying associations. Maftools package in R was applied for
the comparison of mutation frequency in different Risk score sets.

2.11 Drug susceptibility analyses

In order to study effectiveness of drugs in different Risk groups,
pRRophetic package in R was used to calculate the semi-inhibitory
concentration (IC50) values of drugs.

2.12 Development of a nomogram

We applied Rms package in R to establish a nomogram, which
combined clinicopathological characteristics, patient survival and
CRG Risk score. In the nomogram, a variable matched a score and
the scores for all variables were added together to get an overall
score. Calibration maps of the nomogram were developed to
evaluate the consistency between predicted 1, 3, and 5-year
survival rates and actual outcomes. ROC curve was drawn to
understand the sensitivity and specificity of the scoring system.

2.13 Statistical analyses

All statistical analyses were conducted by using R version 4.2.1.
Statistical significance was set at P-value< 0.05.

3 Results
3.1 Identification of CRGs in COAD

We analyzed 10 CRGs in our study, including DLD, DLAT,
PDHB, MTF1, PDHA1, FDXI, LIAS, LIPT1, GLS and CDKN2A.
Difference analyses showed that 7 of 10 CRGs were dys-regulated in
tumor samples compared with those in normal samples, among
which LIPT1, PDHA1, GLS and CDKN2A were up-regulated, and
FDX1, DLD and MTF1 were down-regulated (Figure 1A).
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In order to further study the genetic and transcriptional
alterations of CRGs in COAD, we generally analyzed the somatic
mutation frequency of CRGs and found 10.13% mutation frequency
in tumor samples (Figure 1B). LIPT1, DLD, PDHA1 and LIAS
shared the highest mutation frequency (2%), followed by PDHB,
MTFI, DLAT and GLS (1%). Both FDX1 and CDKN2A had no
mutations in tumor tissues. We further examined CNV frequency
in CRGs, among which DLD, CDKN2A, FDX1, DLAT, PDHB and
LIAS had elevated copy number loss (Figure 1C). The detailed
locations of these CRGs on chromosomes were shown in Figure 1D.
As a result, we noted that CRGs had relatively common genetic and
transcriptional variations in COAD tissues, which might
affect oncogenesis.

3.2 Identification of cuproptosis-related
molecular subtypes

To learn the role of CRGs in oncogenesis of COAD, we
combined expression patterns of CRGs and clinicopathological
information of TCGA-COAD, GSE17536, GSE29623 and
GSE39582 by using “Combat” algorithm to eliminate batch
effects. PCA indicated that batch differences were well eliminated
(Figure 2A). Kaplan-Meier plot revealed 3 of 10 CRGs were closely
associated with patients’ OS, among which GLS and CDKN2A were
negatively related, while LIAS was positively related (Figures 2B-D).
Multivariate Cox regression analyses of CRGs also indicated that
both GLS and CDKN2A were closely related with the survival of
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COAD patients (Table 1). Cuproptosis network generally described
the complex interrelations among CRGs and the prognosis of
patients with COAD (Figure 2E; Table S3).

Considering the pervasive interrelations among CRGs, we used
consensus clustering algorithm to divide patients into three groups
based on the expression profile of CRGs. K=3 appeared to be an
optimal choice for grouping samples into 3 sets, including
molecular subtype A (n=511), B (n=444) and C (n=328)
(Figures 3A, SIA-I, Tables S4, 5). Survival analysis revealed that
patients in subtype C had the worst prognosis than those in subtype
A or B (Figure 3B). The heat-map exhibited the expression profile of
10 CRGs in distinct molecular subtypes (Figure 3C). CDKN2A was
obviously up-regulated in molecular subtype C, while PDHAI,
FDX1, DLAT, DLD and GLS were greatly elevated in subtype A
(Figure 3C). In addition, grade, N, M and stage were found to be
significantly associated with cuproptosis molecular
subtypes (Figure 3C).

3.3 Functional characteristics of TME in
distinct molecular subtypes

We further performed GSVA enrichment analyses to explore
the features of TME in different cuproptosis subtypes. GO GSVA
enrichment analysis revealed that molecular subtype A
was primarily enriched in messenger ribonucleoprotein complex,
regulation of translational initiation by eif2 alpha phosphorylation
and phosphatase activity, compared with subtype B (Figure 4A;
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Table S6). Subtype B was enriched in acyl coa binding, fatty acid
derivative binding and acylcoa dehydrogenase activity, compared
with subtype C (Figure 4B; Table S6). Subtype C was significantly
enriched in embryonic skeletal joint morphogenesis, gap junction
and connexin complex, compared with subtype A (Figure 4C;
Table S6). Several biological pathways, such as endoplasmic
reticulum tubular network organization, cellular response to zinc
ion and mrna methylation were recurrent in the comparisons of
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subtype A and B, A and C, and B and C (Table S7). KEGG GSVA
enrichment analysis indicated subtype A mainly participated in
TGF-B signaling pathway, riboflavin metabolism and RNA
degradation, compared with subtype B (Figure 5A; Table S8).
Subtype B was primarily enriched in metabolic related pathways,
including fatty acid metabolism, butanoate metabolism,
porphyrin and chlorophyll metabolism, compared with subtype
C (Figure 5B; Table S8). Subtype C was mainly enriched in
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TABLE 1 Multivariate Cox regression analyses of CRGs in COAD patients.

id HR HR.95L HR.95H P-value km
CDKN2A 1.198237 1.0668866 1.3457599 0.002266 0.002461
GLS 1.302257 1.0853925 1.562451 0.004488 0.002666
LIAS 0.856896 0.718415 1.0220694 0.085936 0.009963
PDHB 0.792502 0.5976615 1.0508627 0.106232 0.002516
DLD 0.853752 0.6900535 1.0562847 0.145449 0.063517
PDHAL1 0.887978 0.7283648 1.0825689 0.239915 0.066255
FDXI1 0.884588 0.683168 1.1453929 0.352246 0.063822
DLAT 0.960967 0.7880859 1.1717723 0.693977 0.048397
LIPT1 1.02602 0.8300225 1.2682982 0.812277 0.112617
MTF1 1.027758 0.7957044 1.3274861 0.833903 0.10872
glycosphingolipid biosynthesis globo series, glycosaminoglycan Regarding the complex functions of different molecular

biosynthesis chondroitin sulfate and glycosaminoglycan  subtypes in TME, we next conducted ssGSEA between TICs and
biosynthesis keratan sulfate, compared with subtype A  different subtypes to further identify tumor immune
(Figure 5C; Table S8). microenvironment (TIME) characteristics of COAD. The ratio of
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23 TICs in each tumor sample was presented in Table S9. The result
of ssGSEA suggested great difference between the infiltration of 19
TICs and distinct subtypes. In detail, the infiltration levels of
eosinophil and plasmacytoid dendritic cell were elevated in
subtype A, activated B cell, activated CD8 T cell, activated
dendritic cell, monocyte and neutrophil were up-regulated in
subtype B, and another 12 TICs were obviously raised in subtype
C (Figure 5D).

According to above analyses, we primarily speculated that
different subtypes took a different part in TME, especially TIME
of COAD.

3.4 |dentification of cuproptosis-related
gene subtypes

As the potential role of different molecular subtypes in TME of
COAD, we further explore the underlying biological behavior of
different subtypes through seeking for DEGs. We identified 114
DEGs derived from subtype A and B, 90 DEGs from subtype A
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and C, 49 DEGs from subtype B and C (Table S10). Finally, a total of
186 DEGs were obtained for further analyses through combination
(Figure 6A; Table S11). GO enrichment analysis demonstrated that
186 DEGs mainly participated in signaling pathways associated with
digestion, such as maintenance of gastrointestinal epithelium and
digestive system process (Figures 6B, C; Table S12). Univariate Cox
regression analysis was performed to seek DEGs of prognostic value
and finally identified 86 DEGs associated with patients’ OS, which
were analyzed in the following section (Table S13). According to 86
prognostic DEGs expression, consensus clustering analysis was
carried out to separate patients into 3 sets, namely gene subtype A
(n=310), B (n=729) and C (n=244) (Figures 6D, S2A-I; Tables S14,
15). Distinct gene subtypes showed great differences in the expression
levels of both prognostic DEGs and 8 CRGs (FDXI1, LIPT1, DLD,
PDHAI1, PDHB, MTFI, GLS and CDKN2A) (Figures 6E, F; Tables
S§16, 17). In addition, cuproptosis gene subtypes were closely related
with age, gender, grade, and T and N stage of COAD patients
(Figure 6E). Survival analysis revealed that patients of gene subtype
B had a better prognosis, compared with those of subtype A or
C (Figure 6G).
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3.5 Construction and validation of CRG
Risk scoring system

To study the prognostic value of CRGs in COAD, we further
constructed CRG Risk scoring system based on different molecular
and gene subtypes. First, we applied “caret” package in R to randomly
separate COAD patients into the training (n=603) and testing (n=603)
groups at a ratio of 1:1. The clinicopathological characteristics of patients
in the training and testing group were consistent (Table S18). Second,
LASSO and multivariate Cox analyses were conducted to identify
optimum prognostic signature based on 86 DEGs expression (Figure
S3). Finally, CRG Risk scoring system was established through
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color indicated less enriched in pathways. Adjusted P-value<0.05 was
etween the infiltration levels of TICs and distinct molecular subtypes.
ue<0.05, *** indicated P-value<0.001.

multivariate Cox regression analysis in the training set, the formula
was as follow: Risk score = (0.30346935571892* expression of GLS) +
(0.285346929484159 * expression of CAB39L) + (-0.171967289741126*
expression of NOX1) + (0.149406405352724 * expression of HOXC6) +
(0.128828618079011 * expression of TNNT1) + (-0.305462961248901*
expression of ASRGL1) + (-0.142788274274145* expression of
PLA2GI12B). We classified patients into two groups, namely high- and
low-Risk score sets, according to the calculation of Risk score in each
tumor sample. Figure 7A presented the specific classifications of patients
in the training set, including three cuproptosis molecular subtypes, three
gene subtypes and two CRG Risk score sets. The detailed information of
7 key cuproptosis-related risk genes, Risk score and survival features in
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FIGURE 6

Identification of CRG gene subtypes based on 186 DEGs derived from different molecular subtypes. (A) The intersection of DEGs from the
comparison between molecular subtype A and B, B and C, A and C (B, C) GO enrichment analyses of 186 DEGs from distinct molecular subtypes.
Adjusted P-value<0.05 was considered to be statistically significant. (D) Identification of three gene subtypes (k = 3) and their correlation area
through consensus clustering analysis according to the expression of 86 prognosis-related DEGs. (E) The heat-map presented the gene profiles in
distinct gene subtypes, and the correlations between clinicopathologic characteristics and distinct gene subtypes. Chi-square test was used for the
comparison. P-value< 0.05 was considered to be statistically significant. (F) Difference analyses of CRGs expression in different gene subtypes.

Pvalue< 0.05 was considered to be statistically significant. (G) Survival analysi
conducted for survival analyses. P-value< 0.05 was considered to be statistic

training and testing groups was displayed in Tables S19, 20. The results of
difference analyses indicated that all of the expression of GLS, NOX1,
HOXC6, TNNT1 and PLA2GI12B were increased in tumor tissues,
compared with those in normal tissues (Figure S4). Among these five
genes, GLS and HOXC6 were negatively associated with patients’
survival, while NOX1 and PLA2G12B were positively related. RT-
gPCR and IHC indicated the same result (Figures 7B-G). Difference
analyses in the training set showed Risk score was extremely increased in
both molecular subtype C and gene subtype C and decreased in both
molecular subtype B and gene subtype B (Figures 7H, I). The heat-map
presented a great difference of 7 key Risk score gene expression profile
between high- and low-Risk score sets in the training group (Figure 77).
The scattergram of patients’ survival in different Risk score groups
revealed that COAD patients’ survival got worse, while Risk score
increased (Figure 7K), which was also proven by Kaplan-Meier
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s of three gene subtypes. Kaplan-Meier plot and log-rank tests were
ally significant. ** indicated P-value<0.01, *** indicated P-value<0.001.

survival curves (Figure 7L). In addition, area under the time-
concentration curve (AUC) values of 1-, 3-, and 5-year survival rates
of CRG Risk score in the training set were 0.693, 0.706, and 0.703,
respectively, signifying both relative high sensitivity and
specificity (Figure 6M).

To verify the accuracy of the scoring system, we further
calculated Risk score according to the above Risk score formula,
in the testing group, individual GSE17536, GSE29623, GSE39582,
GSE40967, respectively (Tables S21-24). Patients were
respectively divided into distinct cuproptosis molecular
subtypes, gene subtypes and Risk score sets, the same as which
in the training set (Figures S5-8A). Risk score showed a great
difference in both molecular subtypes and gene subtypes of the
testing group, individual GSE17536, GSE29623, GSE39582
(Figures S5-8B, C). The expressions of 7 key Risk scoring genes

frontiersin.org


https://doi.org/10.3389/fonc.2023.1152681
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wang et al. 10.3389/fonc.2023.1152681
A B C
» E=3 tumor B normal @8 tumor M normal
e —
3
¢ H
Fx g&
o
CRGcluster geneCluster Risk Fustat GLS  NOX1 HOXC6 TNNT1
D
F
H CRGcluster B3 A 98B B3 C ! geneCluster B3 A B3 B B3 C J
16e-11 p< e
° 0.0011 i 1.6e-05 e
2.8e-13
5 ' 3 il |
L 4 o4
P | } H ‘ \‘H ‘ | I
: : ‘ \H IOAN
LA RTA T
: 2 |
A B
geneCluster
K L M
w - @ High risk ' s Risk == Low risk === High risk o
® LowRisk t 1.00
2 o i H w
Z -~ ' I 2o
g 2°
_° £ 050 % .
E ° 02 p<0.001 By s —— AUC at 1 years: 0.693
5 & = AUC at 3 years: 0.706
H s 000 o1 F —— AUC at 5 years: 0.703
3 T o A B o W T 3 4 6 & 10 12 14 1 odo o2 o4 o8 o8 10
Patients (increasing risk socre) Time(years) Specificity
FIGURE 7
Construction of CRG Risk scoring system in the training group. (A) Alluvial diagram of patients’ distributions in groups with different molecular subtypes,
gene subtypes, Risk scores and survival outcomes. (B) The expression of 7 key genes between COAD and paired normal tissues. (C) Immunoreactive
score of key genes between tumor and normal tissues. (D) The expression of GLS in COAD tissues and normal tissues. (E) The expression of NOX1 in
COAD tissues and normal tissues. (F) The expression of HOXC6 in COAD tissues and normal tissues. (G) The expression of TNNTL in COAD tissues and
normal tissues. (H) Difference analysis of CRG Risk score in different molecular subtypes. (I) Difference analysis of CRG Risk score in different gene
subtypes. (J) Heat-map displayed five scoring genes expression profile in different risk sets of the training group. (K) Ranked dot and scatter plot of CRG
Risk score distribution and patient survival in the training group. (L) Survival analysis between high- and low-Risk score groups in the training set. Kaplan-
Meier plot and log-rank tests were conducted for survival analyses. (M) ROC curve predicted the sensitivity and specificity of 1-, 3-, and 5-year survival
according to CRG Risk score in the training group. P-value< 0.05 was considered to be statistically significant. * indicated P-value<0.05.

in different Risk group were shown in Figures S5-8 D; 9A,
respectively. Both scattergram and Kaplan-Meier survival curves
showed that high Risk score predicted poor survival in testing
group, individual GSE17536, GSE39582 and GSE40967 (Figures
S5E, F, §7-8E, F, S9B, C). However, in GSE29623, survival analysis
revealed that Risk score was not associated with patients’ survival,
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which might be related with the small sample size (Figure S6F).
We further plot ROC curves to confirm the sensitivity
and specificity of the scoring system and found relatively
high AUC values in the cohorts of validation, indicating the
system as an accurate predictor for patients’ survival (Figures
S5-8G, 9D).
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3.6 Associations between TME and the
CRG Risk score

Difference analyses of CRGs indicated that 6 CRGs showed a
great difference in distinct Risk score sets. To be specific, GLS and
CDKN2A expression were increased, while DLD, DLAT, PDHALI
and PDHB expression were decreased in high-Risk score group,
compared with those in low-Risk group (Figure 8A). In order to learn
the relationships between CRG Risk score and TICs in TME of
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COAD, correlation analyses were carried out and suggested that CRG
Risk score was positively associated with activated NK cells, memory
B cells, eosinophils, MO macrophages, M1 macrophages, M2
macrophages, and neutrophils, while negatively associated with
CD8 T cells, regulatory T cells (Tregs), naive B cells, resting
dendritic cells, plasma cells and CD4 memory resting T cells
(Figures 8B-N). Furthermore, all of immune, stromal and estimate
score were higher in high-Risk score set than those in low-Risk score
set (Figure 80). Most immune cells were greatly associated with seven
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prognostic genes (Figure 8P). Consequently, CRG Risk score might
be associated with TME of COAD.

3.7 Associations among MSI, CSC, TMB,
somatic mutations and CRG Risk score

Up to data, limited molecular markers are available to lead
therapeutic decisions for patients with COAD, among which MSI,
CSC, TMB and somatic mutations appeared to be the most
promising. An increasing number of research revealed that
patients with high microsatellite instability (MSI-H) tumor might
benefit from immune checkpoint inhibitors (ICIs) in COAD (30,
31). As a result, we assessed the MSI status and found that in the
low-risk group, 73% were MSS, 17% were low microsatellite
instability (MSI-L), and 10% were MSI-H, while in the high-risk
group, 59% were MSS, 20% were MSI-L, and 20% were MSI-H

10.3389/fonc.2023.1152681

(Figure 9A). The results indicated that patients with high-risk
shared a higher MSI-H frequency. Figure 9B suggested that
patients bearing MSI-H tumors appeared to have a higher Risk
score, compared with those with MSS. This might be related with
better treatment outcomes of ICIs. Additionally, crosstalk between
immune cells and CSCs, another important indicator of TIME,
takes a great part in tumor progression (32). As presented in
Figure 9C, CRG Risk score was negatively associated with CSC
index, indicating COAD cells with high CRG Risk scores had less
difference in stem cell properties and higher cell differentiation than
those with low-risk scores. TMB, as an indicator of the number of
tumor mutations, is known to be closely associated with patients’
immunotherapy benefits (33). Differential analysis indicated that
TMB in high-risk group was significantly higher than that in low-
risk group (Figure 9D). Correlation analysis also suggested that
TMB was positively associated CRG Risk score (Figure 9E).
Maftools of somatic mutations showed that the top 10 mutant
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genes in the high-risk and low-risk groups were APC, TP53, TTN,
KRAS, PIK3CA, SYNE1, MUCI16, FAT4, RYR2 and ZFHX4,
respectively (Figures 9F, G).

3.8 Drugs susceptibility analysis in distinct
Risk score groups

To investigate the predictive value of CRG Risk score in drug
sensitivity, we used pRRophetic R package to calculate the IC50
values of various drugs (Figures S10, 11; Table 2). Both drugs under
clinical use and clinical trials were included in our analyses. Various
drugs were divided into different groups, such as AKT inhibitor,
AMPK activator, Bcr-Abl inhibitor, BTK inhibitor, EGFR inhibitor,
MAPK inhibitor, mTOR inhibitor, TrkA inhibitor, Topoisomerase
inhibitor, Microtubule assosiated inhibitor, XIAP inhibitor,
TNF inhibitor and so on. In particular, patients of low-Risk score
set showed increased IC50 value for AMPK activator (AICAR), Bcl-2

TABLE 2 Drug susceptibility in patients of the low- and high-score groups.

10.3389/fonc.2023.1152681

inhibitor (TW.37, Obatoclax.Mesylate and ABT.263), BRAF inhibitor
(PLX4720), c-Kit inhibitor (AMG.706), DNA Synthesis
inhibitor (Cytarabine, Bleomycin and Gemcitabine), HSP90
inhibitor (AUY922), ITK inhibitor (BMS.509744), MEK inhibitor
(CI.1040 and RDEA119), PARP inhibitor (AG.014699 and
AZD.2281) and ROCK inhibitor (GSK269962A). In addition,
patients of high-Risk score set showed increased IC50 value for
AKT inhibitor (AKT.inhibitor.VIIT and A.443654), CDK inhibitor
(Roscovitine), Raf/VEGFR/c-Kit inhibitor (Sorafenib), Her-2
inhibitor (Lapatinib) and EGFR inhibitor (Erlotinib and BIBW2992).

However, drugs that target the same site may have opposite
effects in different risk groups. For example, patients with low CRG
risk scores had increased IC50 values for Aurora kinase inhibitors
(ZM.447439) and decreased IC50 values for aurora kinase
inhibitors (VX.680). HDAC inhibitors (Vorinostat) had increased
IC50 values and HDAC inhibitors (MS.275) had decreased IC50
values in the low-risk score set. mTOR inhibitors (Temsirolimus,
NVP.BEZ235 and AZD8055) presented better drug sensitivity in

Frontiers in Oncology

105

Drugs Low-score group High-score group
AKT inhibitor AKT.inhibitor.VIIT +
A.443654 +
AMPK activator AICAR +
Aurora Kinase inhibitor ZM.447439 +
VX.680 +
Bcl-2 inhibitor TW.37 +
Obatoclax.Mesylate +
ABT.263 +
Ber-Abl inhibitor Nilotinib +
AP.24534 +
Dasatinib +
Imatinib +
BRAF inhibitor PLX4720 +
BTK inhibitor LFM.A13 +
CDK inhibitor Roscovitine +
CHK inhibitor AZD7762 +
c-Kit inhibitor AMG.706 +
Raf/VEGFR/c-Kit inhibitor Sorafenib +
DNA Synthesis inhibitor Cytarabine +
Bleomycin +
Gemcitabine +
DNA crosslinker/apoptosis inducer Cisplatin +
EGER inhibitor Erlotinib +
BIBW2992 +
(Continued)
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TABLE 2 Continued

Low-score group High-score group

FAK inhibitor PF.562271 +

FGEFR inhibitor PD.173074 +

FTase inhibitor FT1.277 +

Proteosome inhibitor Z.LLNle.CHO +

GSK-3 inhibitor CHIR.99021 +

SB.216763 +

HDAC inhibitor Vorinostat +
MS.275 +

Hedgehog inhibitor GDC.0449 +
Her-2 inhibitor Lapatinib +

HSP90 inhibitor AUY922 +

ITK inhibitor BMS.509744 +

JNK inhibitor JNK.Inhibitor.VIII +

JNK.OL +

AS601245 +

MAPK inhibitor VX.702 +

MDM2 inhibitor JNJ.26854165 +

MEK inhibitor CIL.1040 +

RDEAI119 +

mTOR inhibitor Temsirolimus +
Rapamycin +

NVP.BEZ235 +

AZD8055 +

PAK inhibitor IPA.3 +

PARP inhibitor AG.014699 +

AZD.2281 +

TBK1 and PDKI1 inhibitor BX.795 +

PI3K inhibitor AZD6482 +

GDC0941 +

NVP.BEZ235 +

PKC inhibitor Midostaurin +
PLK inhibitor BI.2536 +
GW843682X +

PPAR inhibitor FH535 +
Rac inhibitor EHT.1864 +

Raf inhibitor AZ628 +

ROCK inhibitor GSK269962A +

RPTK inhibitor CEP.701 +

RSK inhibitor BL.D1870 +

(Continued)
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TABLE 2 Continued

10.3389/fonc.2023.1152681

Drugs Low-score group High-score group
PF.4708671 +
CMK +
RXR activator Bexarotene +
Src inhibitor A.770041 +
AZD.0530 +
Bosutinib +
Syk inhibitor BAY.61.3606 +
TNF inhibitor Lenalidomide +
TrkA inhibitor GW.441756 +
VEGEFR inhibitor Axitinib +
Pazopanib +
PPM1D/Wipl inhibitor CCT007093 +
XIAP inhibitor Embelin +
Topoisomerase I inhibitor Camptothecin +
Topoisomerase II inhibitor Doxorubicin +
Etoposide +
Microtubule Assosiated inhibitor Docetaxel +
Vinblastine +
Microtubule stabilizer Paclitaxel +
SER Ca2+-ATPase inhibitor Thapsigargin +
Metformin +
Cuproptosis inducer Elesclomol +
ARFGAP1 inhibitor QS11 +
Chloride Channel inhibitor Shikonin +
elF2a. Dephosphorylation inhibitor Salubrinal +
SHP PTP inhibitor NSC.87877 +
DNA-PK inhibitor NU.7441 +

«, »

+”: Indicated up-regulated sensitivity.

low-risk score set, while mTOR inhibitor (rapamycin) had the
opposite. RSK inhibitors (BI. D1870 and CMK) and PF.4708671.
RSK inhibitor (B1.D1870 and CMK) and PF.4708671 also showed
the opposite drug susceptibility between different risk score sets.

3.9 Construction of a nomogram for the
prediction of COAD patient’s survival

Regarding the important role of Risk score in patients’ survival,
we constructed a nomogram combining CRG Risk scores and
clinicopathological characteristics to predict 1, 3, and 5-year
survival rates of COAD patients (Figure 10A). The calibration
graph showed that the nomogram functioned well in predicting
patients’ survival compared to an ideal model (Figure 10B). The
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AUC values of 1, 3, and 5-year survival rates of nomogram were
0.873, 0.798, and 0.804, respectively, suggesting both relatively high
sensitivity and specificity (Figure 10C).

4 Discussion

COAD is a global health problem. Despite continuous
improvement of early screening and treatment strategies, the
survival of patients with advanced COAD remains poor (1).
Previous research suggested genomic susceptibility contributed to
the occurrence and development of COAD (34-37). For example,
BRAF V600E and KRAS mutations were significantly related with
poor prognosis of patients with microsatellite-stable COAD (38).
However, risk factors affecting patients’ survival varied and the
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Construction and validation of a nomogram in COAD patients. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of COAD patients.
(B) Calibration curves of the nomogram. (C) ROC curves for predicting the 1-, 3-, and 5-year OS of COAD patients.

above risk factors predicting the prognosis of patients were not
yet satisfactory.

TME is a highly complex ecosystem (39). The subtle interactions
between tumor cells and co-existing immune cells in TME determine
tumor’s natural history. Based on pioneer studies on TME, the two
most widely applied ICIs, blocking cytotoxic-T-lymphocyte-
associated protein 4 (CTLA-4) and targeting programmed cell
death 1 (PD-1) or programmed cell death ligand 1 (PD-L1),
emerged as exciting treatment strategies across various
malignancies in the last decade (40). ICIs showed impressive anti-
tumor efficacy in COAD patients bearing tumors with the expression
of PD-L1, deficient mismatch repair (dMMR), MSI-H, or high TMB
(41, 42). Whereas the number of COAD patients who benefit from
ICIs is limited due to primary and acquired resistance. Therefore,
comprehensive knowledge of changes in genomic, transcriptome and
somatic mutations in TME is of great significance for the prevention,
treatment and prognosis assessment of COAD.

PCD, also termed as RCD, is a form of cell death that can be
regulated by multiple biomacromolecules, thus leading to
biochemical and morphological alterations which are depend on
energy (43). Increasing evidence has indicated that RCD is the key
features of tumorigenesis, which may ultimately affect therapeutic
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strategies in cancers (44). RCD subroutines containing apoptosis,
necroptosis, autophagy, pyroptosis, ferroptosis, lysosome-dependent
cell death (LCD), alkaliptosis and NETosis have been identified and
are being extensively investigated in a variety of malignancies (45).
For instance, interactions between specific pyroptosis-related
subtypes and TME greatly influenced patients’ prognosis (46).
Dividing cancer patients into different subtypes according to their
genomic features allows us to more accurately predict drug
susceptibility and patient outcome, helping physicians design more
precise and individualized treatment strategies (47-49).

Cu is an essential micronutrient participated in multiple
fundamental biological processes (50). Aberrant Cu homeostasis
(ACH) is associated with tumor growth, metastasis, and drug
resistance due to its role in oxidative stress and chronic
inflammation (51). A higher Cu level indicated a higher risk of
colorectal cancer (52). In addition, Cu chelator exhibited great
antitumor activity in various cancers, such as esophageal cancer,
triple-negative breast cancer and COAD (53-57). For example, the
disulfiram (DSF), a well-known antialcohol drug, combined with
Cu triggered autophagic cell death and inhibited cell viability in
colorectal cancer by targeting ULK1 (55). Tetrathiomolybdate (TM)
and TPEN, specific Cu chelators, also showed obvious anti-tumor
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activity in COAD (58-60). In addition, quite a few novel Cu
compounds were developed to investigate their antitumor
mechanisms and therapeutic effect in COAD. For instance, the
copper-imidazo[1,2-a] pyridines induced COAD apoptosis (61). Cu
(dmp),(CH3CN)]*" exhibited anti-proliferative activity in human
colorectal cancer cells (62). Cu(qmbn)(q)(Cl) triggered
mitochondrion-mediated apoptotic cell death via activating the
caspases-3 and 9 proteins (63). Moreover, nanoparticles
combining Cu were designed to investigate the anticancer
potential in COAD. Cu nanoparticles (CuNPs and Cu-Cy) shed a
good insight for COAD treatment (64, 65). Cu,0@CaCOs;
nanocomposites inhibited CRC distant metastasis and recurrence
by immunotherapy through inducing an immunologically favorable
TME and intensing the immune responses of anti-CD47 antibodies
(66). The Bi : Cu,O@HA nanoparticles exhibited excellent targeting
ability and photothermal therapeutic effect (67). Cuproptosis, a
novel RCD, was recently identified as copper-dependent death,
which occurred through directly binding Cu to TCA cycle (19).
However, the role of cuproptosis in COAD is unclear, and the
prognostic value of CRGs has not been thoroughly evaluated.
Thanks to the large public database such as TCGA and GEO, we
are able to access and analyze the transcriptome profiles of a variety of
malignancies to gain a comprehensive understanding of genetic
landscape, screen potential biomarkers, develop therapy strategies
and predict patient outcome (68, 69). Several studies have described
cuproptosis-related molecular patterns and the characterization of
TME in colorectal cancer and found that cuproptosis patterns were
closely associated with TME and served to predicted survival of
patients with colorectal cancer (70-74). D. Hou, et al. (75) developed
a risk model of 11-cuproptosis-related IncRNAs to predict clinical
and therapeutic implications of CRC patients. However, colon and
rectal cancer were quite different in their biological characteristics,
surgical protocol, treatment strategy and prognosis (76). Previously,
Luo, B, et al. (77) identified two clusters based on 30 differentially
expressed CRGs of 963 COAD samples from TCGA-COAD and
GSE39582 databases. However, the OS between the two clusters
showed no statistical difference and the accuracy of risk model was
not verified. Xu, C., et al. (78) classified COAD samples from TCGA-
COAD and GSE39582 databases into two groups according to 9
cuproptosis-related DEGs and further constructed a risk model.
Whereas, ROC curves of the model showed that AUC values for
the 1-year, 2-year, and 3-year survival were 0.575, 0.577 and 0.571
respectively, signifying the moderate predictive power of the model.
In addition, Yang, G., et al. (79) grouped 623 COAD patients from
TCGA-COAD and GSE17536 databases into 2 sets based on 12
CRGs expression profiles and established nomogram pattern based
on risk model to predict patient prognosis. However, the sensitivity
and specificity of the nomogram was not verified. As a result, we
aimed to establish a more accurate risk model to predict survival
through comprehensively integrating CRGs expression patterns of
1307 COAD samples from TCGA-COAD, GSE17536, GSE29623 and
GSE39582 databases. In our study, 7 of 10 CRGs were found to be
dys-regulated in tumor samples compared with those in normal
samples, and a relatively high mutation frequency and CNV of CRGs
was observed in COAD samples. Survival analysis and univariate Cox
regression analysis of patients from TCGA (TCGA-COAD) and
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GEO database (GSE17536, GSE29623 and GSE39582) suggested
both GLS and CDKN2A were significantly related with patients’
survival. The cuproptosis network demonstrated the complex
interrelations among CRGs and prognosis of cancer patients.
Considering the relatively common genetic and transcriptional
variation and the potential prognostic value of CRGs in COAD, we
speculated cuproptosis may be a new therapeutic target and that
CRGs characteristics might play an important role in predicting
therapeutic response and patient outcome, providing new insights
into the role of Cu in COAD. We further categorized patients into
three cuproptosis related molecular subtype, including subtype A, B
and C, based on CRGs expression profile. Distinct molecular subtypes
differed in both the CRGs expression profile, and the survival and
clinicopathological features of COAD patients. GO and KEGG GSVA
enrichment analyses suggested that different molecular subtypes
enriched in different signaling pathways. Given the indispensable
role of immunotherapy in colorectal adenocarcinoma, TIME-
associated indicators such as TICs, MSI, CSC, TMB, somatic
mutations, etc., were investigated to study the relationship between
CRGs and TIME of colorectal adenocarcinoma. TICs profile revealed
great difference in the infiltration of 19 TICs among distinct subtypes.
GO enrichment analysis of 186 DEGs, obtained from the comparison
between subtype A and B, A and C, and B and C, revealed that DEGs
mainly enriched in signaling pathways associated with digestion.
Univariate Cox regression analysis identified 86 prognostic DEGs
from the above 186 genes. Based on 86 prognostic DEGs expression
profile, we once again classified patients into 3 sets, namely gene
subtype A, B and C, which were differed in the expressions of both
prognostic DEGs and 8 CRGs. Additionally, cuproptosis gene
subtypes were closely associated with the survival and
clinicopathological characteristics (age, sex, grade, T and N stage)
of COAD patients. In view of the important role of CRGs in COAD,
the risk scoring system of CRG was further constructed in the
training set according to prognostic DEGs expression, and verified
in the testing set and the combined set. Risk scores of molecular
subtype C and gene subtype C were significantly increased, while risk
scores of molecular subtype B and gene subtype B were significantly
decreased. The higher the risk score, the lower the survival rate. In
addition, CRGs, TICs, CSC, TMB, MSI, somatic mutations, and drug
sensitivity were closely associated with distinct risk score sets. Finally,
a nomogram integrating risk scores and clinicopathological
characteristics was established to predict OS rates of COAD
patients. AUC values of 1-, 3-, and 5-year survival rates of
nomogram were 0.873, 0.798, and 0.804, respectively, which was
higher than previous nomogram established by Zhong, L., et al. (80).
However, our study of the relationships between CRGs and TME in
COAD were primarily based on the bioinformatics analysis. The
specific mechanism of CRGs affecting TME needs to be further
studied in vitro and in vivo, which may be crucial for the treatment
of COAD.

5 Conclusion

CRGs were significantly correlated with clinicopathologic
features, TME and immunoinfiltration of COAD. The higher the
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Risk score, the higher the MSI and TMB, and the lower the CSC. In
addition, the CRGs Risk scoring system showed good ability to
predict patient survival and drug sensitivity.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and
approved by the Ethics Committee of Nanjing Jiangning Hospital.
The patients/participants provided their written informed consent
to participate in this study.

Author contributions

(I) Conception and design: JW; ZT; (II) Administrative support:
JW; ZT; BW; XH (III) Provision of study materials or patients: JW;
XQ; DQ (IV) Collection and assembly of data: JW; YW; BL; DQ (V)
Data analysis and interpretation: JW; YX; JC (VI) Manuscript
writing: JW; (VII) All authors contributed to the article and
approved the submitted version.

Funding

This research was funded by the National Nature Science
Foundation of China, grant number 82103032, Medical Research
Grant of Jiangsu Commission of Health, grant number M2020010,
the Medical Science and Technology Development Foundation of
Nanjing, grant number YKK21224.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Oncology

10.3389/fonc.2023.1152681

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1152681/
full#supplementary-material

SUPPLEMENTARY FIGURE 1

Unsupervised clustering of CRGs and consensus matrix heat-maps for k = 2,
4-9 through consensus clustering analysis in COAD samples from TCGA and
GEO database.

SUPPLEMENTARY FIGURE 2

Unsupervised clustering of prognostic genes and consensus matrix heat-
maps for k = 2, 4-9 through consensus clustering analysis in COAD samples
from TCGA and GEO database.

SUPPLEMENTARY FIGURE 3

Identification of optimum prognostic genes in COAD samples. (A, B) The
LASSO regression analysis and partial likelihood deviance analysis on 86
subtype-related prognostic DEGs.

SUPPLEMENTARY FIGURE 4

Difference, paired difference and survival analyses of 7 key Risk scoring genes
(GLS, NOX1, HOXC6, TNNT1, PLA2G12B, CAB39L and ASRGL1) in
COAD patients.

SUPPLEMENTARY FIGURE 5

Validation of CRG Risk score in the testing group. (A) Alluvial diagram of
patients’ distributions in testing groups with different molecular subtypes,
gene subtypes, Risk scores and survival outcomes. (B) Differential analysis of
CRG Risk score in different molecular subtypes of the testing group. (C)
Differential analysis of CRG Risk score in different gene subtypes of the testing
group. (D) The heat-map of seven scoring genes expression in different risk
sets of the testing group. (E) Ranked dot and scatter plot of CRG Risk score
distribution and patient survival in the testing group. (F) Survival analysis of
high- and low- CRG Risk score in the testing group. Kaplan—Meier plot and
log-rank tests were conducted for survival analyses. P-value < 0.05 was
considered to be statistically significant. (G) ROC curve predicted the
sensitivity and specificity of 1-, 3-, and 5-year survival according to CRG
Risk score in the testing group.

SUPPLEMENTARY FIGURE 6

Validation of CRG Risk score in GSE29623. (A) Alluvial diagram of patients’
distributions in testing groups with different molecular subtypes, gene
subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE29623. (C) Differential
analysis of CRG Risk score in different gene subtypes of GSE29623. (D) The
heat-map of seven scoring genes expression in different risk sets of
GSE29623. (E) Ranked dot and scatter plot of CRG Risk score distribution
and patient survival in GSE29623. (F) Survival analysis of high- and low- CRG
Risk score in GSE29623. Kaplan—Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be
statistically significant. (G) ROC curve predicted the sensitivity and
specificity of 1-, 3-, and 5-year survival according to CRG Risk score
in GSE29623.

SUPPLEMENTARY FIGURE 7

Validation of CRG Risk score in GSE17536. (A) Alluvial diagram of patients’
distributions in testing groups with different molecular subtypes, gene
subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE17536. (C) Differential
analysis of CRG Risk score in different gene subtypes of GSE17536. (D) The
heat-map of seven scoring genes expression in different risk sets of
GSE17536. (E) Ranked dot and scatter plot of CRG Risk score distribution
and patient survival in GSE17536. (F) Survival analysis of high- and low- CRG
Risk score in GSE17536. Kaplan—Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be
statistically significant. (G) ROC curve predicted the sensitivity and
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specificity of 1-, 3-, and 5-year survival according to CRG Risk score
in GSE17536.

SUPPLEMENTARY FIGURE 8

Validation of CRG Risk score in GSE39582. (A) Alluvial diagram of patients’
distributions in testing groups with different molecular subtypes, gene
subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE39582. (C) Differential
analysis of CRG Risk score in different gene subtypes of GSE39582. (D) The
heat-map of seven scoring genes expression in different risk sets of
GSE39582. (E) Ranked dot and scatter plot of CRG Risk score distribution
and patient survival in GSE39582. (F) Survival analysis of high- and low- CRG
Risk score in GSE39582. Kaplan—Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be
statistically significant. (G) ROC curve predicted the sensitivity and
specificity of 1-, 3-, and 5-year survival according to CRG Risk score
in GSE39582.
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Purpose: Cuproptosis is a newly discovered type of cell death. Little is known
about the roles that cuproptosis related genes (CRGs) play in colorectal cancer
(CRC). The aim of this study is to evaluate the prognostic value of CRGs and their
relationship with tumor immune microenvironment.

Methods: TCGA-COAD dataset was used as the training cohort. Pearson
correlation was employed to identify CRGs and paired tumor-normal samples
were used to identify those CRGs with differential expression pattern. A risk score
signature was constructed using LASSO regression and multivariate Cox stepwise
regression methods. Two GEO datasets were used as validation cohorts for
confirming predictive power and clinical significance of this model. Expression
patterns of seven CRGs were evaluated in COAD tissues. In vitro experiments
were conducted to validate the expression of the CRGs during cuproptosis.

Results: A total of 771 differentially expressed CRGs were identified in the training
cohort. A predictive model termed riskScore was constructed consisting of 7
CRGs and two clinical parameters (age and stage). Survival analysis suggested
that patients with higher riskScore showed shorter OS than those with lower
(P<0.0001). ROC analysis revealed that AUC values of cases in the training cohort
for 1-, 2-, and 3-year survival were 0.82, 0.80, 0.86 respectively, indicating its
good predictive efficacy. Correlations with clinical features showed that higher
riskScore was significantly associated with advanced TNM stages, which were
further confirmed in two validation cohorts. Single sample gene set enrichment
analysis (ssGSEA) showed that high-risk group presented with an immune-cold
phenotype. Consistently, ESTIMATE algorithm analysis showed lower immune
scores in riskScore-high group. Expressions of key molecules in riskScore model
are strongly associated with TME infiltrating cells and immune checkpoint
molecules. Patients with a lower riskScore exhibited a higher complete
remission rate in CRCs. Finally, seven CRGs involved in riskScore were
significantly altered between cancerous and paracancerous normal tissues.
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Elesclomol, a potent copper ionophore, significantly altered expressions of seven
CRGs in CRCs, indicating their relationship with cuproptosis.

Conclusions: The cuproptosis-related gene signature could serve as a potential
prognostic predictor for colorectal cancer patients and may offer novel insights
into clinical cancer therapeutics.

KEYWORDS

cuproptosis, prognosis, immune infiltration, elesclomol, colorectal cancer

Introduction

Colorectal cancer (CRC) is the third most common cancer and
the second leading cause of cancer-related deaths worldwide, with
more than 1.85 million cases and 850,000 deaths annually occurred
(1). Among people diagnosed with CRC, 20% have metastatic CRC,
and 40% patients with localized disease will have a relapsing
metastasis after curative surgical resection. The 5-year survival rate
for those diagnosed with metastatic CRC is less than 20% (1, 2). To
improve the prognosis of patients with CRC, there is an urgent need
to develop more efficient prognostic models and targeted therapy
against CRC.

Regulated cell death (RCD) is generally regulated by signaling
molecules and has unique biochemical, morphological, and
immunological characteristics (3). Different forms of RCD,
including apoptosis, necroptosis, autophagy, ferroptosis,
pyroptosis, alkaliptosis, and etc., have been identified to be
involved in diverse pathological processes, including
tumorigenesis (4). Certain RCD forms are regarded as targets of
almost all treatment strategies. Resistance to these RCDs are
common causes for failure of cancer treatment. Different forms of
RCDs can be alternative therapeutics to each other to conquer
treatment resistance (5). Therefore, finding new forms of RCD will
bring novel therapeutics for refractory cancer cases.

Copper is an essential cofactor for all organisms, and yet it
becomes toxic if concentrations exceed a threshold maintained by
evolutionally conserved mechanisms (6). Accumulating evidence
suggests that organic chelators of copper, e.g., elesclomol, can
induce cellular copper overload and restrain malignant behaviors
across various cancer types, including CRC (7). However, detained
mechanisms underlying copper-related anticancer effects remain
poorly understood. Different publications raised contradictory
opinions, including either induction of ferroptosis (7), autophagy
(8), apoptosis (9), or inhibition of the aerobic glycolysis pathway
(10). Recently, Tsvetkov et al. established that copper induced
death, namely cuproptosis, was a totally distinct RCD form from
previous identified ones, e.g., apoptosis, ferroptosis, and
necroptosis. They also showed that cuproptosis occurs by means
of direct binding of copper to lipoylated components of the
tricarboxylic acid cycle. Ten pivotal genes were identified involved
in cuproptosis through whole-genome CRISPR-Cas9 selection
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screen, including seven genes (FDXI, LIAS, LIPT1, DLD, DLAT,
PDHA1 and PDHB) conferred resistance to cuproptosis, while
three genes (MTF1, GLS and CDKN2A) sensitized the cells to
cuproptosis. Mounting evidence showed that those cuproptosis
associated molecules, including noncoding genes, exhibited strong
association with prognosis and immune infiltration levels.

In current study, we defined a list of cuproptosis associated
genes (CRGs) as candidate molecules, and further developed a
predictive model through LASSO regression and multivariate Cox
stepwise regression in TCGA dataset. We further evaluated its
associations with a list of clinical parameters, e.g., TNM stages,
overall survival, treatment response, immune infiltration levels, and
etc., to test its predictive efficacy and relationship with immune
microenvironment features. An overview of the research design was
presented in Figure 1.

Material and methods
Data collection and preprocessing

Gene expression data and clinical feature of colon cancer
samples were collected from publicly available datasets of the
NCBI GEO database and TCGA. A total of three colon cancer
expression profile cohorts were included in our study, including
GSE17536, GSE39582 and TCGA-COAD cohorts. We downloaded
the normalized matrix files of each GEO cohort for further analyses
(https://www.ncbi.nlm.nih.gov/geo/). For RNA sequencing data
from TCGA, we downloaded the read counts of gene expression
from the Xena Genomic Data Commons (http://xena.ucsc.edu/),
including 471 tumor and 41 normal samples. Study participants
with incomplete clinical information were excluded for further

survival analysis.
Identification of differentially
expressed genes
Differential expression analysis was carried out using R package

DESeq2 (11) on the 41 paired samples. Genes that showed significantly
differential expression (P<0.05 and |log, fold-change| >1) between
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FIGURE 1
The flowchart shows the overall analytical process of this study.

paired tumor and normal samples were selected for
downstream analysis.

Identification of cuproptosis-related genes

We then assessed the correlation of DEGs with 10 key
cuproptosis regulators (CDKN2A, DLAT, DLD, FDX1, GLS,
LIAS, LIPT1, MTF1, PDHAIl and PDHB) by Pearson’s
correlation analysis. In order to identify cuproptosis-related
genes, absolute Pearson’s correlation coefficients higher than 0.4
and P values less than 0.05 were required.

Functional annotation and gene set
enrichment analysis

To explore potential biological processes related to the obtained
cuproptosis-related DEGs, we performed gene ontology (GO) and
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KEGG enrichment analysis using the ClusterProfiler R package (12).
The GO enrichment analysis was conducted based on three aspects
including biological process (BP), molecular functions (MF) and cellular
components (CC). We also identified the activated or inactivated
biological pathways among patients with low- and high-riskScore by
running the gene set enrichment analysis (GSEA) of the adjusted
expression data for all transcripts. The used gene sets were
downloaded from MSigDB database, and the “c5.go.bp.v7.5
.l.symbols” gene sets were used to quantify the activity of biological
pathways, which was represented by the enrichment score.

Survival analysis

Survival analysis was performed using univariate and
multivariate Cox regression hazard analysis and survival curves
derived from Kaplan-Meier survival analysis by using the packages
survival and survminer. The receiver operating characteristic curve
(ROC) were performed with the timeROC packages.
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CRG-related risk signature construction
and validation

TCGA-COAD dataset was set as the training cohort to screen
for those survival-related genes in COAD. Univariate Cox
regression analysis was performed to screen out OS-related DEGs.
LASSO regression analysis was further applied to refine DEGs, and
multivariate Cox regression hazard analysis (backward stepwise)
was eventually used to establish a predictive model, performance of
which was ultimately validated in two independent GEO datasets.

Risk score was computed with the following equation:

n
riskScore = >'(Coef; x x;)
=1

Establishment and validation of a
nomogram scoring system

We later created a hybrid nomogram using the regplot R
package that incorporates the mRNA signature and
clinicopathological features of COAD patients to predict their OS
(1-, 3-, and 5-year). For determining the predictive power of a
nomogram, calibration curves and consistency indices (C-index)
were used.

Evaluation of intratumoral immune
cell infiltration

ssGSEA was used to quantify the abundance of each TME cell
infiltration based on the gene sets obtained from the study of
Charoentong (13). To control the bias resulted by the tumor
purity, we adjusted the enrichment scores of each TME cell
subtype by calculating the tumor purity using ESTIMATE
algorithm. The adjusted enrichment scores calculated by ssGSEA
analyses were used to represent the abundance of each TME
infiltration cell.

Mutation analysis

Somatic mutation data of COAD from whole exome/genome
sequencing (WXS/WGS) were downloaded from the GDC TCGA-
COAD project on the UCSC Xena server. Oncoplot was drawn
according to the descending order of mutations using the R package
“ maftools” (14).

Cell culture

HCT116 and SW480 were cultured in Dulbecco’s modified
Eagle medium which was supplemented with 100 U*mL-1
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penicillin and streptomycin as well as 10% fetal bovine serum in a
humidified atmosphere of 5% CO, at 37°C.

Reagents and drug treatment in vitro

Elesclomol was purchased from Master of Bioactive Molecules
(MCE). When cells were adherent and had morphologically spread,
Colon cancer cell lines (HCT116 and SW480) were treated with
2uUM copper chloride and/or 40nM elesclomol for 24 hours,
respectively. Cells were harvested after treatment and RNA was
collected via the following extraction method.

RNA extraction and quantitative real-time
polymerase chain reaction

Total cellular RNA was extracted using a total RNA extraction
kit (220010, Shanghai Feijie) according to standard protocol. The
RNA was used to synthesize complementary DNA (cDNA) with a
cDNA Synthesis SuperMix (RR036A, TaKaRa). The cDNA was
used as a template and the seven cuproptosis related genes (GRGs)
expression was quantified with the Roche LightCycler 480 using TB
Green Premix Ex Taq II (RR820A, TaKaRa). GAPDH was used as
an endogenous control. Primers were synthesized by Sangon
Biotech (Sangon, Shanghai). The primer sequences are shown
in Table 1.

Statistical analyses

The data were analyzed with R software version 4.2.0. For
comparisons, data conforming to normal and nonnormal
distributions were assessed using the unpaired/paired Student’s t-
test and the Wilcoxon test, respectively. The difference significance
test for three or more groups was performed using One-way
ANOVA and Kruskal-Wallis tests. All statistical P value were
two-side, with P< 0.05 as statistically significance.

Results

Identification of CRGs in
TCGA-COAD cohort

As the sample size of normal cases is relatively small (41 out of
512 cases), we employed paired tumor vs. normal samples to
improve detection rate for differentially expressed genes (DEGs).
Principal component analysis (PCA) of the full transcriptomes
identified differential grouping between two cohorts (Figure 2A).
Differential expression analysis identified 4319 significantly
upregulated and 4398 significantly downregulated transcripts in
CRC tissues compared with paired normal tissues (Figures 2B, C) at
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TABLE 1 PCR primer sequences of target genes.

10.3389/fonc.2023.1083956

a P<0.05 and a |log2 fold-change| >1. Of note, seven out of ten
pivotal CRGs, which were identified in Science article (6), showed

Primer Sequence (5' to 3')
significantly altered expression patterns, with CDKN2A exhibited
DPP7-F GGACCACTTCAACTICGAGC higher and DLAT, DLD, FDXI, LIAS, MTF1, PDHB exhibited
DPP7-R GCCCTCGTTCCCAGTGTAG lower expression in tumor tissues (Supplementary Figure 1A,
GPRASPLE AGGAGGAGACCAATATGGGGT P<0.05). Correlations across these seven molecules in CRCs were
shown in Figure 2D. Survival analysis showed that five out of seven
GPRASP1-R GOACCTAGACATGGTATTAGCCT molecules were significantly associated with overall survival
UNC5C-F TGGGACTGGGATACTTGCTG (P<0.05, Supplementary Figure 1B).
UNC5C-R ACAGTACAGGTTCACAGGCTTAT As the concept of Cuproptosis has just recently been proposed
(6) and no database are available to download the full picture of
CDR2L-F TGGGCTGACGGAGACCATT .
CRGs, here we used coexpression strategy (15) to define mRNAs
CDR2L-R TGTAGGCGGAAAGCATCCTTG with 7 reported CRGs absolute coefficients values >0.4 and P
RAB3B-F CCGCTATGCTGATGACACGTT values<0.05 as the standard of CRGs. A total of 7946 genes were
identified CRGs. Further Venn diagram showed 771 overlapping
RAB3B-R ACGGTAGACTGTCTTCACCTTG . . . .
genes in DEGs and CRGs (Figure 3A), which we select as candidates
PCDHY-F CTGCTCTGATTGCCTGTTTAAGG for constructing a prognosis predictive signature. Functional
PCDHO-R ACCAGTCTGTAGACAAGGCTG annotations of GO enrichment indicated these genes were
significantly associated with TME immune related biological
SLC18A2-F CGGAAGCTCATCCTGTTCATC . .
processes such as B cell receptor signaling pathway, humoral
SLCI8A2-R CCTGGCCGTCTGGATTTCTG immune response, production of molecular mediator of immune
GAPDH.F GGAGCGAGATCCCTCCAAAAT response, positive regulation of B cell activation, leukocyte
migration, suggesting these CRGs could be significantly correlated
GAPDH-R GGCTGTTGTCATACTTCTCATGG . . . . . .
with TME immune cell infiltration (Figures 3B-D). Consistently,
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FIGURE 2

Identification of DEGs between paired normal and tumor cases in TCGA-COAD cohort. (A) PCA of the global transcriptome in tumor (red) and
paired normal (blue) cases. A heatmap (B) and volcano plot (C) of significantly (P<0.05) upregulated (log2 fold-change >1, red) and downregulated
(log2 fold-change<—-1, blue) genes in tumor vs. normal cases. (D) Seven out of ten reported CRGs were differentially expressed between tumor and

paired normal cases (P<0.05).
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Functional annotation of differentially expressed CRGs. (A) Venn diagram analysis demonstrated genes appeared both in DEGs and CRGs. (B-D) Gene
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(D) Molecular function enrichment. (E) KEGG pathway enrichment analyses for differentially expressed CRGs. All enriched pathways were significant.

The color depth represented enriched adjusted P value.

KEGG pathway analysis also demonstrated that these genes were
correlated with immune related signaling pathways (Figure 3E).

Establishment of risk model for prognosis
prediction based on CRGs

Considering the markedly differential expression patterns of
these CRGs, we set TCGA-COAD dataset as the training cohort to
screen for those survival-related genes (n = 44, P<0.05 both in log-
rank test and in univariate Cox regression analysis). We used
LASSO Cox regression to distinguish those most informative
prognostic mRNA biomarkers for prognosis. Regression
coefficients of the 44 DEGs were evaluated (Figure 4A;
Supplementary Table 1). It was finally verified through cross-
validation that 20 (Supplementary Table 1) DEGs could achieve a
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better effect in the model (Figure 4B). Eventually, multivariate Cox
stepwise regression method was used to establish several
multivariate regression models. A risk model consisting of 7
DEGs (DPP7, GPRASP1, UNC5C, CDR2L, RAB3B, PCDHY,
SLC18A2), as well as two clinical parameters (age and stage), was
at last identified (Figure 4C). DPP7, CDR2L exhibited higher and
UNCS5C, RAB3B, SLC18A2, GPRASP1, PCDHY exhibited lower
expression in tumor tissues (Supplementary Figure 2A, P<0.05).
Survival analysis showed that UNC5C, RAB3B, SLC18A2 were low-
risk genes, while DPP7, GPRASP1, CDR2L, PCDHY, were high-risk
genes (P<0.05, Supplementary Figure 2B). The correlation analysis
was performed to investigate the similarities among seven key
molecules, and the results are visually displayed in Figure 4D.
Somatic mutation profiles of 7 key genes for 406 CRC patients
were retrieved from the TCGA dataset. The waterfall plot was used
to present the mutation data for each gene in every sample
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FIGURE 4

Construction of the riskScore signature and mutation analysis of seven riskScore-associated molecules. (A) Least absolute shrinkage and selection
operator (LASSO) coefficient profiles of the 45 key molecules. (B) Tuning parameter selection by tenfold cross-validation in the LASSO model. The
partial likelihood deviance was plotted against log(Lambda/A), and A was the tuning parameter. The partial likelihood deviance values were shown
and error bars represented s.e. The dotted vertical lines showing the optimal values through minimum criteria and 1 -s.e. criteria. (C) Multivariate Cox
regression analysis of seven CRGs and two clinical parameters (D) Correlation between seven riskScore-associated molecules. Blue, negative
correlation; Red, positive correlation. (E) The mutation landscape of key molecules in 406 samples of TCGA-COAD cohort. (F-H) the CNV and
mutation frequency and classification of seven prognosis-related CRGs in Colorectal cancer. *P<0.05, **P<0.01, ***P<0.001.

(Figure 4E), Further, mutations were grouped based on various
categories. In the grouping, missense mutation was the most
common (Figure 4F), while single nucleotide polymorphisms
(SNP) is more common than other kinds of mutations
(Figure 4G). Regarding single nucleotide variants, C>A and C>G
are two most common kinds (Figure 4H).
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Evaluation of the predictive efficacy of the
riskScore for prognosis in TCGA-COAD

We further evaluated the predictive efficacy of riskScore for
prognosis. Based on the model, cases in the training cohort were
scored and divided into high- and low- risk group with the median
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riskScore as the cutoff. Survival analysis showed that cases with
higher riskScore had a significant shorter OS compared with those
with lower riskScore (P< 0.0001) (Figure 5A). ROC analysis
revealed that AUC values of cases in the training cohort for 1-, 2-
, and 3-year survival were 0.82, 0.80, 0.86 respectively, indicating
good predictive efficacy of this model (Figure 5B). As the values of
riskScore increased, mortality of those cases correspondingly
increased (Figure 5C). Hierarchical clustering showed di<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>