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Editorial on the Research Topic
Application of bioinformatics, machine learning, and artificial intelligence
to improve diagnosis, prognosis and treatment of cancer

In recent years, omics approaches have yielded great advances in cancer research and
have provided new in-depth insights into the processes involved in cancer development and
progression. Practical use of the information contained within this huge amount of data
requires computational approaches such as bioinformatics, machine learning (ML), and
artificial intelligence (AI). These computational methods, together with omics data from
large databases, such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO), can now be used to develop cancer biomarkers, novel anti-cancer drug targets, and
both novel and repurposed treatment options for cancer. Considering the application of
versatile computational methods in cancer research, we collected original research articles
in this Research Topic to present the novel discovery of potential cancer drug targets,
prognostic biomarkers, or therapeutic interventions.

Lower extremity deep vein thrombosis (DVT) is a frequent postoperative complication,
occurring in up to 40% of patients with colorectal cancer. Liu et al. used an ML model
optimized for predicting an individual’s risk of DVT in colorectal cancer patients. Given the
prevalence of DVT and that traditional risk assessments may not be accurate indicators of
true risk, they showed that the XGBoost model (Chen and Guestrin, 2016) has strong
potential for improving early detection and treatment in clinical settings.

Identifying novel biomarkers for predicting patient survival time is of crucial practical
clinical significance, since it could lead to better patient stratification and treatment
decisions. Li et al. used the reactive oxygen species (ROS)-related signature genes,
which they identified using the TCGA data, to predict the prognosis and chemotherapy
response of patients with bladder cancer. They did not only identify 17 ROS-related genes
that exhibited good overall survival in bladder cancer patients, but also 11 potential small
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molecular drugs that target these ROS-related genes using the
Connectivity Map (CMap) database (Lamb et al., 2006).

Using ML models to predict response to treatment could lead
to the development of more personalized treatment, leading to
significant improvement in patient outcomes. Guo et al.
developed the Artificial Intelligence-Derived Anoikis Signature
(AIDAS), a novel machine learning-based prognostic tool for
breast cancer. AIDAS identifies key gene expression patterns
related to anoikis, a form of programmed cell death triggered
by detachment from the extracellular matrix. Using AIDAS, the
authors found they could more accurately predict breast cancer
outcomes compared to existing prognostic models. They
discovered that patients with low AIDAS levels may be more
responsive to immunotherapy, while those with high AIDAS
levels are more susceptible to certain chemotherapies like
methotrexate.

Zhu et al. showed the crucial role of autophagy in acute myeloid
leukemia (AML) prognosis, identifying essential autophagy genes
that correlate with patient survival. Using ML, they developed a
predictive model that aids risk stratification and suggested potential
therapeutic targets. Their findings also reveal a link between
autophagy and the immune microenvironment, offering insights
for future research and clinical applications.

Due to the large difference in survival of patients with
moderately differentiated gastric adenocarcinoma (MDGA) with
distant metastases and without metastases, it becomes important to
predict the occurrence of distant metastases after surgical treatment,
after morphological examination of all removed lymph nodes, and
after final staging of the disease. Yang et al. collected data from
MDGA patients from the Surveillance, Epidemiology, and End
Results (SEER) database from 2010 to 2019, as well as data from
MDGA patients in China. Based on these data they conducted
univariate and multivariate analyses, and factors were identified that
contribute to the occurrence of distant metastases and worsen the
prognosis of the disease.

Prostate cancer is a highly metastatic tumor, and it is estimated
that about 50% of patients with advanced disease will develop bone
metastases. Once bone metastasis occurs, it is incurable and is
significantly associated with mortality. The STING signaling
pathway is an important transduction mechanism in innate
immunity and viral defense, and it has been demonstrated that
this pathway plays a key role in tumorigenesis and metastasis (\Wang
et al,, 2025). In their study, Li et al. extrapolated three key STING
pathway genes related to bone metastasis based on a machine
learning algorithm. After comprehensive analysis, it was verified
that these three genes have key roles in prostate cancer development,
metastasis, and tumor immunity, while RELA or transcription factor
p65 is a highly potential therapeutic target.

Ding et al. explored the role of FAT1, which is crucial for cellular
adhesion and cell signaling, in lung cancer cell lines. The authors
identified FATI mutations in five out of thirty-seven individuals
diagnosed with non-small cell lung cancer (NSCLC), using next-
generation sequencing (NGS) technology. These mutations included
four missense mutations and one splice variant. The frequency of
FATI mutations was the third highest, following those in EGFR and
TP53 genes. The study further demonstrated correlations between
FATI expression and methylation with the malignancy of certain
cancer types. Knockdown of FATI in A549 and H1299 lung cancer
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cell lines led to downregulated PD-L1 expression. Additionally,
FATI knockdown significantly inhibited cell proliferation, colony
formation, and migration. It also affected the cell cycle and the FAK-
YAP/TAZ signaling pathway, ultimately inhibiting the proliferation
of lung cancer cells in vivo.

In their retrospective study, Huang et al. developed a
radiomics-clinical predictive model for the response to
neoadjuvant chemoimmunotherapy in patients with NSCLC.
Their model integrates clinical and radiomic data from two
institutions, drawing from a training and internal validation
cohort of 105 patients and a second external validation cohort
of 43 patients.

Sun et al. conducted an in-depth study on immune-related
genes in hepatocellular carcinoma (HCC) using extensive
datasets and robust bioinformatics methods, leading to the
development of the Subtype-specific and Immune-Related
Prognostic Signatures (SIR-PS) model. The SIR-PS model
effectively predicted survival outcomes and immunotherapy
responses in HCC patients, providing meaningful guidance for
personalized immunotherapy.

High serum levels of hepatitis B surface antigen (HBsAg)
increase the risk of developing HCC and have a worse prognosis
for patients who have already developed HCC. Xiong et al.
compared the effects of high and low levels of HBsAg in HCC
patients undergoing transarterial chemoembolization (TACE) and
sequential ablation and utilized propensity score matching to
minimize selection bias. In addition, they created a nomogram to
predict the prognosis of HCC patients with high levels of HBsAg
after local treatment to more accurately guide the clinical decision.

Cancer incidence rises with aging, even though there are more
senescent cells that have stopped dividing as we age. In their
bioinformatics study, Ru et al. explored the molecular and immune
landscape of cellular senescence in lung adenocarcinoma using
publicly available TCGA and GEO datasets to gain deeper insights
on the impact of cellular senescence on tumor progression. They
showed that patients with low aging scores exhibited better survival,
lower tumor mutation burden (TMB), lower somatic mutation
frequency, lower tumor proliferation rate, and an immune-activated
phenotype compared to patients with high aging scores.

Altogether, with this Research Topic, we primarily wanted to
demonstrate that datasets from databases like TCGA and GEO, the
former of which are being available and massively reanalyzed for
more than a decade, are still relevant and useful for discovering new
potential cancer drug targets, prognostic biomarkers, or therapeutic
interventions, supported by new methods and ways of analyzing big
data, especially now in the dawn of the development and application
of AI models in basic cancer research. Even though such studies
usually lack, at least in vitro, experimental validation, their results
validated on external cohorts still present valuable and scientifically
sound bases for further research and eventual translation into the
clinical practice, while the amount of omics data continues to grow
unstoppably. ..
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Engineering, Dalian University of Technology, Dalian, Liaoning, China, eDUT-RU Co-Research Center
of Advanced Information Computing Technology (ICT) for Active Life, Dalian University of
Technology, Dalian, Liaoning, China

Objective: To establish a radiomics model based on intratumoral and
peritumoral features extracted from pre-treatment CT to predict the major
pathological response (MPR) in patients with non-small cell lung cancer
(NSCLC) receiving neoadjuvant immunochemotherapy.

Methods: A total of 148 NSCLC patients who underwent neoadjuvant
immunochemotherapy from two centers (SRRSH and ZCH) were
retrospectively included. The SRRSH dataset (n=105) was used as the training
and internal validation cohort. Radiomics features of intratumoral (T) and
peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were
extracted from pre-treatment CT. Intra- and inter- class correlation coefficients
and least absolute shrinkage and selection operator were used to feature
selection. Four single ROl models mentioned above and a combined radiomics
(CR: T+P1+P2+P3) model were established by using machine learning
algorithms. Clinical factors were selected to construct the combined
radiomics-clinical (CRC) model, which was validated in the external center
ZCH (n=43). The performance of the models was assessed by Delong test,
calibration curve and decision curve analysis.

Results: Histopathological type was the only independent clinical risk factor. The
model CR with eight selected radiomics features demonstrated a good predictive
performance in the internal validation (AUC=0.810) and significantly improved
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than the model T (AUC=0.810 vs 0.619, p<0.05). The model CRC yielded the best
predictive capability (AUC=0.814) and obtained satisfactory performance in the
independent external test set (AUC=0.768, 95% Cl: 0.62-0.91).

Conclusion: We established a CRC model that incorporates intratumoral and
peritumoral features and histopathological type, providing an effective approach
for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.

KEYWORDS

lung neoplasms, machine learning, immunotherapy, neoadjuvant therapy, peritumor

1 Introduction

Lung cancer has emerged as the leading cause of cancer-related
deaths worldwide (1). Among them, non-small cell lung cancer
(NSCLC) accounts for approximately 85% (2). The past decade of
lung cancer treatment history has demonstrated that preoperative
administration of antitumor drugs can reduce tumor size, leading to
downstaging and creating favorable conditions for surgery (3).
Additionally, research has indicated that neoadjuvant therapy can
help eliminate micrometastases and reduce the risk of post-
operative recurrence (4). With the advancement of lung cancer
treatment drugs, immune checkpoint inhibitors have emerged as a
novel and promising class of antitumor agents (5, 6). Studies have
shown that the addition of nivolumab to neoadjuvant
chemotherapy in lung cancer significantly improves pathological
response in patients compared to the use of chemotherapy
alone (7, 8).

However, only part of NSCLC patients can benefit from
neoadjuvant immunochemotherapy (7). In many cases, the tumor
did not shrink significantly following neoadjuvant therapy, and
these drugs can have notable side effects such as leukopenia and
immune-related pneumonitis (3, 9). Therefore, it is crucial to
identify patients who will truly benefit from neoadjuvant
immunochemotherapy before initiating treatment (10). In fact,
assessing the efficacy of neoadjuvant therapy in lung cancer poses
certain challenges, as studying the survival outcomes of patients
after neoadjuvant treatment typically requires a long time follow-up
(11). The International Association for the Study of Lung Cancer
(TASLC) in 2021 suggested that the major pathological response
(MPR) in postoperative specimens can be used as an evaluation
criterion for neoadjuvant therapy (12). MPR was defined as the
viable tumor is less than or equal to 10% in the tumor bed, which
provided a convenient approach to assessing treatment effectiveness
after neoadjuvant therapy.

Some clinical trials have explored the use of biomarkers such as
PD-L1 expression and tumor mutational burden (TMB) to predict
MPR. However, their predictive effectiveness remained
controversial and the detection of PD-L1 and TMB is invasive.
To date, there is no reliable biomarker available to predict MPR
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following neoadjuvant immunochemotherapy in NSCLC. Thus,
there is an urgent need for a credible and non-invasive pre-
treatment assessment method.

Radiomics aims to capture the heterogeneity within tumors
non-invasively by extracting high-throughput features from images
for analysis (13). Numerous studies have demonstrated that
radiomics plays a valuable role in tumor diagnosis, treatment, and
prognosis assessment (14-16). Research has already utilized pre-
treatment CT tumor features to build radiomics model and predict
pathological response following neoadjuvant chemoradiation for
lung cancer, yielding promising results (17). In fact, the
microenvironment surrounding the tumor can also influence the
response to immunotherapy, such as the distribution of tumor-
infiltrating lymphocytes (TILs) (18). Studies have shown that the
distribution of TILs is associated with survival outcomes and
treatment response in various diseases (19, 20). Therefore, it is
also necessary to further investigate the impact of the specificity of
the tumor microenvironment on the effectiveness of
neoadjuvant immunochemotherapy.

In this study, we constructed models to predict MPR following
neoadjuvant immunochemotherapy for non-small cell lung cancer
by extracting radiomic features from both the intratumor and the
peritumor regions on CT images. Furthermore, the optimal
prediction model was validated in an independent external cohort.

2 Methods and materials
2.1 Study population

This study was granted ethical approval by the institutional
review board of Sir Run Run Shaw Hospital (SRRSH) and Zhejiang
Cancer Hospital (ZCH), which was performed in accordance with
the ethical standards of the 1964 Declaration of Helsinki. Informed
consent was waived due to the retrospective nature of this study.

This research retrospectively included patients diagnosed with
non-small cell lung cancer (NSCLC) who underwent neoadjuvant
immunochemotherapy between June 2019 and December 2022 at
two centers (SRRSH and ZCH). The inclusion criteria were as
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follows: 1) pathologically confirmed NSCLC through endoscopic
bronchoscopy or CT-guided needle puncture, 2) preoperative
neoadjuvant immunochemotherapy was received, and 3) pre-
treatment chest CT was performed. Patients were excluded if any
of the following conditions were met: 1) pre-treatment staging as
stage I or stage IV; 2) less than two cycles of neoadjuvant treatment
received; 3) unavailable enhanced chest CT; 4) time interval
between chest CT and treatment initiation exceeds one month; 5)
poor CT image quality. Patients from SRRSH were used as the
model training and internal validation set, while patients from ZCH
were used as the independent external test set. The detailed process
of patient inclusion and exclusion is shown in Figure 1.

2.2 Treatment method

All patients underwent standard preoperative evaluations and
tumor staging procedures before determining treatment, including
tumor biopsy (via bronchoscopy or CT-guided fine-needle
puncture), chest CT, abdominal ultrasound, head MRI, and
whole-body nuclear imaging. The thoracic surgeons assessed the
tumor staging of the patients according to the 8th edition of the
Lung Cancer TNM staging system, published by the Union for
International Cancer Control (UICC), and determined the
neoadjuvant treatment strategy. The standard neoadjuvant
immunochemotherapy regimen comprises 2 to 4 cycles of
immunotherapy in conjunction with platinum-based
chemotherapy. Following the completion of neoadjuvant
treatment, comprehensive tumor resection is undertaken by the
thoracic surgeons.

2.3 Pathological evaluation

According to the multidisciplinary recommendations from the
TASLC regarding pathological assessment of lung cancer excision
specimens after neoadjuvant therapy (12), pathologists are
responsible for evaluating the pathological responses of surgical

Patients diagnosed with non-small cell
lung cancer receiving
neoadjuvant immunochemotherapy and
with pre-treatment chest CT from 6/2019
to 12/2022 in SRRSH (n=139)

10.3389/fonc.2024.1348678

specimens. All specimens were re-evaluated by an experienced
senior pathologist (Y. Gan) who has more than 10 years of
experience in accordance with IASLC. If the initial pathology
report is different from Dr. Gan’s, Dr. Gan’s opinion shall prevail.
MPR is defined as the percentage of viable tumor cells in the tumor
bed being less or equal to 10%. Non-MPR is defined as the
percentage of residual tumor cells in the tumor bed more than 10%.

2.4 Image acquisition

The CT scanning parameters in the two centers are shown in
Table 1. The contrast-enhanced scanning technique involved
intravenous injection of nonionic contrast material (Ultravist 300
or Ultravist 370, Bayer; or ioversol 320, Hengrui) at a rate of 2.2 to 3
ml/s, based on a dosage of 1.2 ml/kg body weight. Bolus tracking
technique was employed, with the arterial phase scan initiated 8
seconds after the descending aortic CT density reached 100 HU. All
CT scans were retrieved from the picture archiving and
communication system (PACS) for further feature extraction.

2.5 Radiomics procedures

The workflow of radiomics analysis consisted of five steps:
region of interest (ROI) segmentation, radiomics features
extraction and selection, model construction and evaluation.
Radiomics analysis was performed with uAl Research Portal
(United Imaging Intelligence, China) (21), which is a clinical
research platform implemented by Python programming language
(version 3.7.3), and widely used package PyRadiomics (https://
pyradiomics.readthedocs.io/en/latest/index.html).

All images were imported into an open-source software ITK-
SNAP (Version 3.8.0). The tumor ROI was manually segmented
slice-by-slice by an experienced radiologist with over 10 years (DP.
Huang), without knowledge of the pathological results. Then, the
uAI Research Portal was applied for morphological expansion of
intratumor ROIL Previous study showed that it would not reduce

A

| Final patients(n=105) |

A
| Training and internal validation cohort:

five-fold cross validation

FIGURE 1
Patient selection and distribution flowchart.
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Exclusion:

1) Pre-treatment pathological staging as stage | or
stage IV(n=4)

2) Less than 2 cycles of neoadjuvant treatment
received(n=6)

3) Unavailable enhanced chest CT(n=16)

4) Time interval between chest CT and treatment
initiation exceeds 1 month(n=2)

5) Poor CT image quality(n=6)

—

External test cohort:
9/2021 to 3/2022 in ZCH(n=43)
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TABLE 1 Scanning parameters and CT specifications in both hospitals.

Sir Run Run Shaw Hospital

10.3389/fonc.2024.1348678

Zhejiang Cancer Hospital

NEIEIS Siemens | Siemens GE NEIEH GE Philips
Machine type SOMATOM SOMATOM SOMATOM Lightspeed Optima SOMATOM Optima Ingenuity

Definition Force go. Top VCT CT620 Definition CT680 CT

Flash Flash
Tube voltage (KV) 120 100/120 120 120 120 120 120 120
Tube current (mAs) smart smart smart smart smart smart smart smart
Rotation time (s) 0.5 0.5 0.5 04, 0.5 0.5 0.5 0.5 0.5
Image matrix 512x512 512x512 512x512 512x512 512x512 512x512 512x512 512x512
Field of view (mm) 350 350 350 350 350 350 350 350
Reconstruction slice thickness 2mm/2mm 2mm/2mm 2mm/2mm 1.25mm/ 2mm/2mm 2mm/2mm 5mm/5mm 1.25mm/
and spacing 1.25mm 1.25mm
Reconstruction algorithm B41f B41f B41f Standard Standard B31f Standard Standard

resolution resolution resolution resolution

the risk of recurrence when the tumor resection margin exceeded
15mm (22). Based on this, we performed peritumor expansion three
times, 5mm each time, for a total of 15mm. During the delineation
and dilation process of the ROIs, non-pulmonary regions were
excluded. The peritumoral area beyond the lung outline was
manually erased when the tumor located in paramediastinal,
subpleural and other special areas. Therefore, in this study, a total
of four ROIs were delineated showed in Figure 2, namely T
(intratumor), P1 (peritumoral 0-5mm), P2 (peritumoral 5-
10mm), and P3 (peritumoral 10-15mm). Subsequently, we
established a combined radiomics (CR: T+P1+P2+P3) model by
integrating intratumoral and three peritumoral ROI features.

In addition, to evaluate the reproducibility of image
segmentation, we randomly selected 20 patients to be re-
segmented by Dr. Huang and the other doctor (HP. Zhang, with
1 year of experience in imaging) one month later. Intra-observer
and inter-observer reproducibility of radiomics features were
assessed using intra- and inter- class correlation coefficient
(ICC). A value of ICC > 0.85 was considered indicative of
good reproducibility. To eliminate index dimension difference,
the extracted radiomics features were standardized into
normal distributed z-scores. For feature selection, the least
absolute shrinkage and selection operator (LASSO) regression
was utilized.

FIGURE 2

Region of interest (ROI) segmentation. (A) A mass showed in the upper lobe of the left lung. The ROIs of (B) intratumor(T), (C) peritumoral 0~5mm
(P1), (D) peritumoral 5~10mm(P2), (E) peritumoral 10~15mm(P3), and (F) T+P1+P2+P3(CR).
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With the selected optimal feature sets, we built prediction
models for the MPR of neoadjuvant immunochemotherapy for
lung cancer by using five machine learning algorithms, including
decision tree, Gaussian process, logistic regression, random forest
and support vector machine, and the model with the best predictive
capability was reserved for external validation. The performance of
the different prediction models in internal dataset was assessed by
the cross-validation strategy to protect against overfitting due to the
limited amount data. In this study, we used five-fold cross-
validation (23): the feature set was split randomly, while, the
same ratio of positive and negative patients was kept in each
partition. Consequently, training on four-fifths of dataset and
validating on the remaining partition in each fold, the process
was repeated five times within different subgroups, and thus formed
five unlike training/validation sets and obtained an average result.

2.6 Statistics

SPSS (version 25.0) and Python (version 3.5.6) were used for
statistical analysis. Continuous data was presented as mean *
standard deviation or median (interquartile range), and the
differences between groups were compared using independent
sample t-tests or non-parametric tests. Categorical data was
evaluated using chi-square tests or Fisher’s exact tests to assess

TABLE 2 Clinical factors of the entire dataset.

Training and internal validation

10.3389/fonc.2024.1348678

intergroup differences. Univariable and multivariable logistic
regression were used to identify clinical risk factors with odds
ratio (OR) and 95% confidence interval (CI). The performance of
the model was evaluated using receiver operating curves (ROC),
and the area under the curve (AUC), sensitivity, specificity and
accuracy were quantified. The DeLong test was used for the
performance comparison between different models. The LASSO
was utilized for the radiomics features selection. Calibration curve
was applied to determine whether the projected probability matches
the actual probability. Decision curve analysis was used to assess the
prediction models’ clinical viability. A P-value less than 0.05
(P-value < 0.05) was considered statistically significant.

3 Results
3.1 Clinical characteristics

A total of 148 patients were enrolled retrospectively, and their
baseline clinical characteristics were presented in Table 2. The
training and internal validation sets consisted of 105 patients
from SRRSH, of whom 76 achieved MPR (72.4%). The
independent external test set (ZCH) included 43 patients, with 22
achieving MPR (51.2%). The average age of the entire cohort was
63.8 = 6.3 years, predominantly male (94.6%), and most patients

External test

Entire (n=105) (n=43)
Clinical factor MPR Non- MPR Non-
N=148 (n=76) MPR P value (n=22) MPR P value
(n=29) (n=21)
Age 63.8+63 64.0 + 6.3 63.1+63 05 63.1+69 647+ 6.3 043
Gender 025 0.58
Male 140(94.6) 74(97.4) 26(89.7) 20(90.9) 20(95.2)
Female 8(5.4) 2(2.6) 3(10.3) 2(9.1) 1(4.8)
Smoking history 0.60 0.96
Current or before 88(59.5) 35(46.1) 15(51.7) 20(90.9) 18(85.7)
Never 60(40.5) 41(53.9) 14(48.3) 2(9.1) 3(14.3)
Histopathological type 0.02* 0.02*
Adenocarcinoma 17(11.5) 4(5.3) 7(24.1) 1(4.5) 5(23.8)
Squamous 115(77.7) 64(84.2) 20(69.0) 20(90.9) 11(52.4)
Others 16(10.8) 8(10.5) 2(6.9) 1(4.5) 5(23.8)
Pretreatment clinical stage 0.74 032
hi§ 34(23.0) 18(23.7) 6(20.7) 7(31.8) 3(14.3)
1 114(77.0) 58(76.3) 23(79.3) 15(68.2) 18(85.7)
Clinical T stage 0.70 0.46
Tl 18(12.2) 9(11.8) 2(6.9) 2(9.1) 5(23.8)
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TABLE 2 Continued

Training and internal validation
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External test

Entire (n=105) (n=43)
Clinical factor MPR Non- Non-
N=148 (n=76) MPR P value MPR P value
(n=29) (n=21)
T2 61(41.2) 28(36.8) 13(44.8) 10(45.5) 10(47.6)
T3 43(29.1) 24(31.6) 7(24.1) 8(36.4) 4(19.0)
T4 26(17.6) 15(19.7) 7(24.1) 2(9.1) 2(9.5)
Clinical N stage 0.41 055
NO 18(12.2) 11(14.5) 1(3.4) 4(18.2) 2(9.5)
N1 34(23.0) 19(25.0) 8(27.6) 4(18.2) 3(14.3)
N2 86(58.1) 39(51.3) 18(62.1) 13(59.1) 16(76.2)
N3 10(6.8) 7(9.2) 2(6.9) 1(4.5) 0
Treatment cycle 037 0.13
2 117(79.1) 61(80.3) 22(75.9) 15(68.2) 19(90.5)
3 25(16.9) 12(15.8) 7(24.1) 4(18.2) 2(9.5)
4 6(4.1) 3(3.9) 0 3(13.6) 0
Platinum drugs 0.61 037
Carboplatin 82(55.4) 30(39.5) 14(48.3) 18(81.8) 20(95.2)
Cisplatin 65(43.9) 45(59.2) 15(51.7) 4(18.2) 1(4.8)
Nedaplatin 1(0.7) 1(13) 0 0 0
ICIs 0.84 0.10
Pembrolizumab 43(29.1) 21(27.6) 12(41.4) 7(31.8) 3(14.3)
Tislelizumab 41(27.7) 19(25.0) 6(20.7) 10(45.5) 6(28.6)
Camrelizumab 35(23.6) 15(19.7) 5(17.2) 5(22.7) 10(47.6)
Sintilimab 16(10.8) 10(13.2) 4(13.8) 0 2(9.5)
Toripalimab 11(7.4) 9(11.8) 2(6.9) 0 0
Durvalumab 1(0.7) 1(1.3) 0 0 0
Penpulimab 1(0.7) 1(1.3) 0 0 0

Data are presented as mean + SD. Data in parentheses are percentages. *p<0.05.
MPR, major pathological response; ICIs, immune checkpoint inhibitors.

had a history of smoking (59.5%). The majority of patients had
squamous cell carcinoma as the histopathological type (77.7%). In
both of the two cohorts, there was significant difference in
histopathological type between the MPR and non-MPR groups
(p < 0.05). In the entire cohort, the majority of patients undergoing
neoadjuvant treatment were assessed as stage III lung cancer
(77.0%). Moreover, T2 (41.2%) and N2 (58.1%) stage were
accounted for the most. The main types of immunotherapy
agents employed in the two hospitals include pembrolizumab,
tislelizumab, and camrelizumab (31.4%, 23.8%, 19.0% in SRRSH
and 23.2%, 37.2%, 34.9% in ZCH, respectively). There was no
significant difference in the treatment modality for neoadjuvant
therapy between the MPR and non-MPR groups in both cohorts.

Frontiers in Oncology

After performing univariable and multivariable logistic
regression analysis, the histopathological type was confirmed as
an independent risk factor and then included in the clinical model
(p = 0.026; OR = 3.328, 95% CI: 1.155-9.588) (Table 3).

3.2 Selection of the radiomics features

In total, 2264 radiomic features were extracted, including 104
original features grouped as: 18 first-order statistics, 72 texture and
14 shape, and other 2160 features based on images through 25
filters, such as boxmean, wavelet, laplacian, etc. A total of 1,067
features were retained after ICC analysis (Table 4). After the feature

frontiersin.org


https://doi.org/10.3389/fonc.2024.1348678
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Huang et al.

10.3389/fonc.2024.1348678

TABLE 3 Univariable and multivariable logistic regression analyses of clinical factors.

Clinical factors Univariable Multivariable
OR (95% Cl) P value OR (95%Cl) P value

Age 1.024(0.956-1.098) 0.499

Gender 4.269(0.675-26.993) 0.123

Smoking history 0.797(0.338-1.877) 0.603

Histopathological type 3.328(1.155-9.588) 0.026* 3.328(1.155-9.588) 0.026*
Pretreatment clinical stage 0.841(0.296-2.384) 0.744

Clinical T stage 0.930(0.587-1.472) 0.756

Clinical N stage 0.758(0.435-1.321) 0.328

Treatment cycle 0.981(0.410-2.348) 0.966

Platinum drugs 0.794(0.349-1.810) 0.583

ICIs 1.127(0.900-1.411) 0.297

*p<0.05.

OR, odds ratio; CI, confidence interval; ICIs, immune checkpoint inhibitors.

selection processes as mentioned above, the top features of each
radiomics model were selected and presented in Table 5.

The CR model incorporated a total of eight radiomics features as
follows: 1) intratumor: glszm_wavelet-LLL-SZNUN; 2) peritumoral 0-
5mm: firstorder_Maximum, glrlm_log-sigma-4-0-mm-3D-LRHGLE;
3) peritumoral 5-10mm: gldm_wavelet-LLL-SDLGLE, glcm_wavelet-
LLH-Idmn; 4) peritumoral 10-15mm: Complexity, glrlm_log-sigma-4-
0-mm-3D-LRHGLE, gldm_SDLGLE.

3.3 Development and validation of the
prediction models

The predictive performance of each model was shown in
Table 6 and Figure 3.

The clinical model showed relatively poor predictive
performance in training and internal validation sets (AUC=0.612
and 0.563, respectively). The single ROI radiomics models based on
intratumor(T), peritumoral 0-5mm(P1), peritumoral 5-10mm(P2),
peritumoral 10-15mm(P3) showed higher AUCs (0.679, 0.882,
0.746, 0.777 and 0.619, 0.712, 0.662, 0.741, respectively) in
training and internal validation sets than the clinical model.

The model CR based on Gaussian process demonstrated an
AUC of 0.810 for MPR prediction in NSCLC neoadjuvant
immunochemotherapy, which is superior than the four single
ROI models and significantly improved than the model T
(AUC=0.810 vs 0.619, p<0.05). The Delong test showed that the
AUC of models CR and CRC was significantly improved compared
to models T and P2. However, pairwise comparisons among the
remaining models indicated no statistically significant differences in
performance (Figure 3C). We fused CR model with the clinical
model to create combined radiomics + clinical (CRC) model and
obtained optimal predictive capability, which achieved an AUC of
0.814, sensitivity of 0.947, specificity of 0.567, precision of 0.851,
and accuracy of 0.838 in the internal validation set (Table 6).

Frontiers in Oncology 14

TABLE 4 Radiomics features distribution (Total and after ICC analysis).

After ICC
Features Vel EREIVS
(n=2264)  (n-1067)
Original | First-order features 18 6
Original | Shape features 14 3
Original | GLCM based features 21 11
Original | GLRLM based features 16 6
Original | GLSZM based features 16 1
Original | GLDM based features 14 5
Original | NGTDM based features 5 2
Filtered | Box mean based features 90 35

. Additive Gaussian noise
Filtered 90 32
based features

Filtered Binomial blur image %0 B

based features

fl
Filtered | CUTVature flow 90 30
based features

Box sigma image

Filtered 90 64
Here based features
Filtered | Log based features 360 193
Filtered Wavelet based features 720 395
Filtered | Normalize based features 90 14
Laplacian sh; i
Filtered aplacian sharpening % "

based features

i Discrete Gaussian
Filtered 90 34
based features

Filtered Mean based features 90 34

(Continued)
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TABLE 4 Continued

After ICC
analysis
(n=1067)

Total
(n=2264)

Features

Speckle noise

Filtered 90 34
Hiere based features
. Recursive Gaussian
Filtered 90 34
based features
Filtered Shortnoise based features 90 61

GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray
level size zone matrix; GLDM, gray level dependence matrix; NGTDM, neighbourhood gray-
tone difference matrix.

Finally, the CRC model was validated in an independent
external test set and achieved favorable predictive performance,
with an AUC of 0.768 (95% CI, 0.62-0.91) (Figure 3D).

3.4 Calibration curve and decision curve
analysis of the prediction models

The calibration curve of the model CR showed that the
predicted probability had a good consistency in the internal
validation set. And the fusion model CRC had the smallest Brier
score loss, which means it has the best predictive performance
(Figures 4A, B).

TABLE 5 The selected radiomics features in different radiomics models.

10.3389/fonc.2024.1348678

Decision curve analysis showed that the fusion model CRC
provided a better net benefit than other radiomics models for the
most of the threshold range (Figures 4C, D).

4 Discussion

Neoadjuvant immunochemotherapy has emerged as a promising
therapeutic approach for non-small cell lung cancer (NSCLC) (7).
However, the evaluation of neoadjuvant treatment efficacy relies on
postoperative pathological assessment, leading to time delay.
Additionally, the effects of immune checkpoint inhibitors on tumors
are complex, and atypical responses such as hyperprogression or
pseudoprogression may occur (24, 25), making it challenging to
assess the efficacy of neoadjuvant immunochemotherapy through CT
follow-up during treatment. Our research showed that the combined
radiomics model based on intratumoral and peritumoral regions
derived from pre-treatment CT images can predict MPR to
neoadjuvant immunochemotherapy in NSCLC. After incorporating
the independent risk factor of histopathological type, the model
achieved the optimal predictive performance. Furthermore, its
predictive efficacy was validated in an external center, indicating
its robustness.

Squamous cell carcinoma was identified as an independent
clinical risk factor for predicting MPR in neoadjuvant
immunochemotherapy in our research, consistent with previous

Radiomics Models The selected Radiomics Features

T(Intratumor)
(n=5)

P1(Peritumoral 0-5mm)
(n=8)

boxsigmaimage_glrlm_LongRunHighGrayLevelEmphasis
wavelet_glem_wavelet-LHH-Idn
wavelet_gldm_wavelet-LHH-SmallDependenceLowGrayLevelEmphasis
wavelet_glszm_wavelet-LLL-SizeZoneNonUniformityNormalized
wavelet_glem_wavelet-HHL-Idn

log_firstorder_log-sigma-2-0-mm-3D-Skewness
log_glrlm_log-sigma-4-0-mm-3D-LongRunHighGrayLevelEmphasis
wavelet_gldm_wavelet-HHL-SmallDependenceHighGrayLevel Emphasis
boxsigmaimage_glszm_SmallAreaLowGrayLevelEmphasis
shotnoise_glem_Imcl

wavelet_glem_wavelet-LLH-Idn
wavelet_gldm_wavelet-LLH-SmallDependenceHighGrayLevelEmphasis
mean_firstorder_Maximum

P2(Peritumoral 5-10mm)
(n=4)

wavelet_gldm_wavelet-HLH-LargeDependenceEmphasis
shotnoise_glem_Idmn

wavelet_glem_wavelet-LLH-Idmn
wavelet_gldm_wavelet-LLL-SmallDependenceLowGrayLevelEmphasis

P3(Peritumoral 10-15mm)
(n=3)

laplaciansharpening_gldm_SmallDependenceLowGrayLevelEmphasis
shotnoise_ngtdm_Complexity
log_glrlm_log-sigma-4-0-mm-3D-LongRunHighGrayLevelEmphasis

T_wavelet_glszm_wavelet-LLL-SizeZoneNonUniformityNormalized
P1_mean_firstorder_Maximum

P1_log_glrlm_log-sigma-4-0-mm-3D-LongRunHighGrayLevelEmphasis
P2_wavelet_gldm_wavelet-LLL-SmallDependenceLowGrayLevelEmphasis
P2_wavelet_glem_wavelet-LLH-Idmn

P3_shotnoise_ngtdm_Complexity

CR (Combined radiomics)
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TABLE 6 The performance of different models in training and internal validation sets.

Training set Internal validation set
AUC [95%Cl] Sen Spe Acc AUC [95%Cl] Sen Spe Pre
Clinical 0.612[0.55, 0.67] 0.947 0.242 0.766 0.752 0.563[0.44, 0.69] 0.947 0.247 0.768 0.752
T 0.679[0.62, 0.74] 0.648 0.604 0.810 0.636 0.619[0.49, 0.74] 0.698 0.587 0.823 0.667
Pl 0.882[0.84, 0.92] 0.967 0.347 0.799 0.795 0.712[0.59, 0.83] 0.947 0.200 0.760 0.743
P2 0.746[0.69, 0.80] 0.687 0.655 0.840 0.679 0.662[0.54, 0.78] 0.670 0.660 0.834 0.667
P3 0.7770.72, 0.83] 0.937 0.293 0.777 0.760 0.741[0.63, 0.85] 0.934 0.273 0.775 0.752
CR 0.889[0.85, 0.93] 0.964 0.613 0.868 0.867 0.810[0.71, 0.91] 0921 0.533 0.840 0.810
CRC 0.897[0.86, 0.94] 0.977 0.630 0.874 0.881 0.814[0.71, 0.92] 0.947 0.567 0.851 0.838

AUC, area under the curve; CI, confidence interval, Sen Sensitivity; Spe, Specificity, Pre, Precision; Acc, Accuracy; T, intratumor; P1, peritumoral 0-5mm; P2, peritumoral 5-10mm, P3,

peritumoral 10-15mm; CR, combined radiomics; CRC, combined radiomics+clinical.

related research (26). A meta-analysis exploring the impact of
histopathology on the efficacy of immune checkpoint inhibitors
in treating NSCLC showed that immunotherapy can improve
overall survival (OS) and progression-free survival (PFS) in both
squamous cell carcinoma and non-squamous cell carcinoma, with
squamous cell carcinoma patients benefiting more significantly
(27). Studies have indicated that compared to non-squamous cell
carcinoma, lung squamous cell carcinoma exhibits higher PD-L1

expression, higher tumor mutational burden (TMB), and a greater
density of functional TILs in the tumor microenvironment, factors
that collectively contribute to the enhanced therapeutic effects of
immunotherapy in squamous cell carcinoma patients (28).

In this study, the radiomics model based on intratumoral region
had an AUC of only 0.619 (sensitivity of 0.698, specificity of 0.587)
in the internal validation group. The peritumoral models showed
improvement in AUC compared to the intratumoral model

A ROC curves of training set B ROC curves of internal validation set
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FIGURE 3
The predictive performance of different models. The AUCs of different models in (A) training and (B) internal validation sets. (C) Delong test showed
that the model CR was significantly better than model T. By adding clinical independent risk factor to the model CR, the fusion model (CRC)
obtained the best predictive performance [AUC=0.814 (0.71, 0.92)]. (D) Receiver operating characteristic (ROC) curve of the fusion model (CRC) in
the external test set [AUC=0.768 (0.62, 0.91)].
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The calibration curves and decision curve analysis for different models. The calibration curves for different models in (A) training and (B) internal
validation sets showed the fusion model CRC had the smallest Brier score loss, which means it has the best predictive performance. The decision
curve analysis for the different models in (C) training and (D) internal validation sets showed that the fusion model CRC provided a better net benefit

than other radiomics models for the most of the threshold range.

(ranging from 0.662 to 0.741) and higher sensitivity (ranging from
0.670 to 0.947) while their specificity was notably low (P1, P2,
P3 = 0.2, 0.273, 0.66, respectively). This pointed out that any
radiomics model based on single ROI either intratumoral region
or peritumoral region cannot achieve the ideal prediction ability in
predicting the effect of neoadjuvant immunochemotherapy
in NSCLC.

Prior studies, including one in which our center participated,
built prediction models focusing on intratumoral features to predict
MPR in NSCLC following neoadjuvant therapy and achieved
favorable results (26, 29). Considering that immune checkpoint
inhibitors exert their anti-tumor effects by influencing the tumor
and its surrounding immune microenvironment (30), it is crucial to
investigate the peritumoral microenvironment’s features and their
impact on immunotherapy. We extracted radiomics features from
both intratumoral and peritumoral regions in arterial-phase,
establishing a combined radiomics model with eight top-level
radiomics features (one feature from the intratumoral region and
the remaining seven from the peritumoral regions). Furthermore,
among the seven peritumoral top-level radiomic features, six were
texture features, including the common feature (log-glrlm-
LRHGLE) from P1 and P3. These results highly suggested that
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the heterogeneity of the peritumoral microenvironment plays a
crucial role in neoadjuvant immunochemotherapy for NSCLC.
Moreover, when combining the intratumoral and peritumoral
models, there was a significant increase in predicting MPR
(AUC=0.810), achieving a relative balance between sensitivity and
specificity (0.921 and 0.533, respectively), resulting in a satisfactory
accuracy of 0.810.

The tumor microenvironment is composed of fibroblasts,
immune and inflammatory cells, as well as interstitial
components and microvessels (31). Several studies indicated a
correlation between peritumoral texture features and tumor-
infiltrating lymphocyte (TIL) density, and higher TIL levels are
associated with immune system activation for tumor suppression,
indicating a greater likelihood of responding to immunotherapy
(32, 33). The distribution of blood vessels in the peritumoral
environment also influences the efficacy of chemotherapy and
immunotherapy (34). Research by Vaidya P et al. demonstrated
that peritumoral texture features can reflect biological pathways
such as tumor vascular invasion and neovascularization (35).
Disorganized and irregular peritumoral blood vessels promote
tumor growth, inhibit the anti-tumor effects of drugs, and are
often associated with more heterogeneous radiomic features (17,
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35). Additionally, it was demonstrated that different ranges of
peritumoral regions are associated with differences in treatment
response (36) and exhibit distinct texture feature expressions (37).
Our study confirmed a strong correlation between the peritumoral
microenvironment and neoadjuvant immunochemotherapy in
NSCLC. By incorporating different ranges of peritumoral
microenvironment texture features, the prediction model got
obvious improvement in predicting MPR.

Although the addition of independent clinical risk factor to
model CR resulted in a slight improvement in prediction
performance, there was no statistically significant difference in
AUC between CR and the best model CRC. This may suggest
that information contained within combined intratumoral and
peritumoral radiomics adequately capture the efficacy of
neoadjuvant immunochemotherapy for NSCLC, thus constraining
the representation of clinical factor in the model. However, this
requires further verification.

In addition, there is a clear difference in the proportion of MPR
patients between the two hospitals included in our study. Indeed,
according to a review on neoadjuvant therapy for non-small cell
lung cancer, the attainment of MPR varies significantly across
different studies, ranging approximately from 36.9% to 84.6%
after neoadjuvant immunochemotherapy (10). This variability
may be attributed to differences in the patient demographics,
disease stages at presentation, and the specific neoadjuvant
immunochemotherapy regimens. Based on the aforementioned
understanding, we consider the MPR proportions in both
hospitals in our study to still fall within a reasonable range. On
the other hand, despite the differences in patients and treatment
regimens at the two hospitals in our study, our research results still
demonstrate that the combined intratumoral and peritumoral
radiomics model achieves favorable predictive performance at
external center, possibly indicating the effectiveness and
robustness of this model.

Our research has several limitations. Firstly, the study was
retrospective and might be subject to selection bias. Secondly,
while the study included patients receiving neoadjuvant
immunochemotherapy, there were variations in the selection of
chemotherapy drugs and immune checkpoint inhibitors, as well as
differences in the treatment cycles. Therefore, it is essential to
unified treatment protocols or conduct a stratified study focusing
on different regimens in future research. Thirdly, the imaging data
from the two centers were obtained from different manufacturers
and multiple models of CT machines, which may introduce
inconsistencies in equipment parameters. Lastly, the sample size
of this study is limited, and it is necessary to further expand the
sample for future research.

In conclusion, our study constructed a CRC model comprising
intratumoral and peritumoral features and independent clinical risk
factors for predicting MPR in NSCLC patients receiving
neoadjuvant immunochemotherapy. The combined model
achieved an optimal predictive performance (AUC=0.814), and
successfully validated in an external center (AUC=0.768). This
provides a non-invasive and effective predictive approach for
clinical physicians to identify suitable NSCLC patients for
neoadjuvant immunochemotherapy.
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Background: Hepatitis B surface antigen (HBsAg) clearance is associated with
improved long-term outcomes and reduced risk of complications. The aim of
our study was to identify the effects of levels of HBsAg in HCC patients
undergoing TACE and sequential ablation. In addition, we created a nomogram
to predict the prognosis of HCC patients with high levels of HBsAg (>1000U/L)
after local treatment.

Method: This study retrospectively evaluated 1008 HBV-HCC patients who
underwent TACE combined with ablation at Beijing Youan Hospital and Beijing
Ditan Hospital from January 2014 to December 2021, including 334 patients with
low HBsAg levels and 674 patients with high HBsAg levels. The high HBsAg group
was divided into the training cohort (N=385), internal validation cohort (N=168),
and external validation cohort (N=121). The clinical and pathological features of
patients were collected, and independent risk factors were identified using
Lasso-Cox regression analysis for developing a nomogram. The performance
of the nomogram was evaluated by C-index, receiver operating characteristic
(ROCQ) curves, calibration curves, and decision curve analysis (DCA) curves in the
training and validation cohorts. Patients were classified into high-risk and low-
risk groups based on the risk scores of the nomogram.

Result: After PSM, mRFS was 28.4 months (22.1-34.7 months) and 21.9 months
(18.5-25.4 months) in the low HBsAg level and high HBsAg level groups
(P<0.001). The content of the nomogram includes age, BCLC stage, tumor
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size, globulin, GGT, and bile acids. The C-index (0.682, 0.666, and 0.740) and 1-,
3-, and 5-year AUCs of the training, internal validation, and external validation
cohorts proved good discrimination of the nomogram. Calibration curves and
DCA curves suggested accuracy and net clinical benefit rates. The nomogram
enabled to classification of patients with high HBsAg levels into low-risk and
high-risk groups according to the risk of recurrence. There was a statistically
significant difference in RFS between the two groups in the training, internal
validation, and external validation cohorts (P<0.001).

Conclusion: High levels of HBsAg were associated with tumor progression. The
nomogram developed and validated in the study had good predictive ability for

patients with high HBsAg levels.

KEYWORDS

hepatocellular carcinoma, hepatitis B surface antigen (HBsAg), TACE, ablation,

nomogram, recurrence

1 Introduction

Primary liver cancer is the sixth most common cancer and the
second leading cause of cancer death worldwide, which poses a huge
economic and disease burden worldwide due to its high morbidity
and mortality rates (1, 2). China is the country with the highest
hepatocellular carcinoma (HCC) occurrence and the overall
incidence of HCC is expected to continue to climb (3). HCC
occurs most often in the setting of chronic liver inflammation
and is mainly induced by hepatitis B virus (HBV) infection (4),
which is a key risk factor for liver cirrhosis and HCC, capable of
increasing the risk of HCC approximately 20-fold (5-7). For early
HCC, surgical resection, liver transplantation, and ablation are
recommended treatments. Studies have shown that ablation has
similar five-survival rates compared to surgical treatment, and fewer
complications than surgery (8, 9). However, the recurrence rate
after ablation remains high, with a five-year recurrence rate of 50-
70% (10). Transcatheter arterial chemoembolization (TACE) is the
only guideline-recommended global standard of care for
intermediate-stage HCC, and the median progression-free
survival time (mPFS) is only 5 months (11). Therefore, diagnosis
and treatment of HCC is an increasingly important public
health problem.

The first serologic marker of HBV infection is Hepatitis B
surface antigen (HBsAg), which can be detected from 2 to 12 weeks
after infection with HBV (12). HBsAg clearance, which is currently
regarded as the functional cure of chronic hepatitis (CHB), is
associated with improved long-term outcomes and reduced risk
of complications (13, 14). The decline in HBsAg during antiviral
therapy is relatively slow, and the seroclearance rate is faster at low
serum HBsAg expression (<1000U/L) (15, 16). Previous studies
revealed that high serum levels of HBsAg increase the risk of
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developing HCC and have a worse prognosis for patients who
have already developed HCC (17). Nevertheless, the prognostic
impact of serum HBsAg levels in patients after TACE sequential
ablation therapy needs to be further confirmed.

HBV-HCC prognosis is linked to several factors, including
tumor burden, AFP, disease stage, ALBI, and NLR (18, 19), and
there are also nomograms about HBV-HCC (20-22). However, no
nomogram for HCC patients with high HBsAg expression after
local treatment has been available to our knowledge. We compared
the effects of high levels of HBsAg (=1000U/L) and low levels of
HBsAg (<1000U/L) in HCC patients undergoing TACE and
sequential ablation and utilized propensity score matching to
minimize selection bias. In addition, we created a nomogram to
predict the prognosis of HCC patients with high levels of HBsAg
after local treatment to more accurately guide the clinical decision.

2 Materials and methods
2.1 Patient selection

This study retrospectively evaluated 1008 HBV-HCC patients
who underwent TACE combined with ablation at Beijing Youan
Hospital and Beijing Ditan Hospital from January 2014 to
December 2021. The diagnosis of HCC was based on the
guideline of the America Association for the Study of Liver
Diseases (ASSLD) (1, 23). The patients at Youan Hospital
consisted of 553 patients with a high level of HBsAg and 334
patients with a low level of HBsAg. In order to build a reliable
model, the patients from Youan Hospital were divided into the
training cohort (N=385) and the validation cohort (N=168).
Furthermore, 121 patients from Ditan Hospital were used as an
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independent external verification cohort to verify the external
applicability of the nomogram. The inclusion criteria of patients
were as follows (1): Aged 18-80 years (2). received TACE combined
ablation (3). Child-Pugh classification was class A or B (4). all
patients had not received any other therapeutics before ablation.
Exclusion criteria were listed as follows (1): with second primary
malignant tumors (2). clinical follow-up data incomplete (3).
advanced HCC. (Figure 1).

The study was approved by the Medical Ethics Committee of
Youan Hospital and Ditan Hospital and was performed in
compliance with the standards of the Helsinki Declaration. The
requirement for informed consent was waived because the study
was deemed to pose no additional risk to patients and the data
were deidentified.

2.2 Clinicopathologic characteristics

The demographic, clinical, and histopathologic data of patients
were collected. Demographics included age, sex, drinking history,
smoking history, hypertension and diabetes. Clinical and
pathological data was composed of tumor size, tumor number,
alpha-fetoprotein (AFP), aspartate aminotransferase (AST), alanine
aminotransferase (ALT), gamma glutamyl transferase (GGT),
albumin (ALB), neutrophil-to-lymphocyte ratio (NLR), platelet-
to-lymphocyte ratio (PLR), and gamma glutamyl transferase to
lymphocyte ratio (GLR).

2.3 Treatment received

2.3.1 TACE procedure

TACE was conducted by experienced interventional
radiologists. Under local anesthesia, percutaneous right femoral
artery puncture with a modified Seldinger technique was
performed. Angiography was conducted by the 5-F (Terumo,
Tokyo, Japan) catheter to identify arterial supply to tumors and

10.3389/fimmu.2024.1357496

to assess the patency of the portal vein. When applicable, a
microcatheter was inserted into the blood-supply artery of the
carcinoma to inject a mixture of doxorubicin (Pfizer Inc., New
York, NY, USA) and lipiodol (Guerbet, Villepinte, France), followed
by embolization using embolic materials, such as gelfoam or
polyvinyl alcohol particles. The blood flow was monitored until
complete vessel occlusion was observed. TACE was repeated
thereafter if the lesion is not completely necrotic and the active
portion exceeds 50% of the baseline value.

2.3.2 Ablation procedure

Performed under the guidance of computed tomography (CT)
and magnetic resonance imaging (MRI) by a qualified
interventionalist. The size of the tumor decided the number of
electrodes. Routine disinfection and intravenous anesthesia were
applied around the puncture points. During RFA, after measuring
the baseline impedance, the power was gradually increased from
80w to 200w to reach the maximum impedance. The electrode tip
temperature was kept below 20°C by the pump injected cold brine
into the electrode chamber. Moreover, to achieve complete ablation,
the safe margin for complete ablation of the tumor was 0.5cm. After
ablation, the needle track was ablated to prevent postoperative
bleeding and tumor implantation along the needle track.
Arteriography-enhanced CT was performed immediately after
treatment to evaluate the success of the procedure and
its complications.

2.3 Follow-up

All patients underwent regular follow-ups at the outpatient
clinics. Tumor responses were evaluated at approximately 4-6
weeks after ablation by using CT or MRI. For the follow-up
protocol, patients were examined every 3 months during the first
year and every 6 months thereafter. The contents of the follow-up
included blood tests, liver function, and imaging examination to
detect tumor recurrence. The study endpoint was recurrence-free

1878 Patients from Beijing Youan Hospital
January 2014 to December 2021

Exclusion
-Other ctiology (N=583)

-Loss to follow-up (N=167)

~Clinical data of patients were incomplete (N=136)
~Previous treated with locoregional treatment (N~105)

|

887 HBV-HCC Patients from
Beijing Youan Hospital

HBV-HCC paticnts of low HBV-HCC patients of high
levels of FIBsAg (N=334) levels of FIBsAg (N=553) Dt Hospitsl
PSM ratio 1:1
Intemal vafidation External validation

586 HBV-HCC patients ( High levels of HBsAg: 293 | | Training cohort
Low levels of HBsAg: 293) were analyzed

FIGURE 1
Screening flow chart of enrolled patients.
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survival (RFS), defined as the time from ablation to the
first recurrence.

2.4 Statistical analysis

Differences between the groups were compared through the t-
test, chi-square test, Mann-Whitney U test, and Kruskal-Wallis test,
with the purpose of providing median or counts and percentages to
summarize baseline variables. Survival and recurrence were
calculated using the Kaplan-Meier method, and the log-rank test
was used for comparison. Lasso regression was performed for risk
factor selection and identified independent risk factors for tumor
recurrence were used in Multivariate Cox regression analysis. A
nomogram based on independent risk factors to predict recurrence.
Subsequently, the performance of the nomogram was validated in
the internal validation and the external validation cohort.
According to the nomogram scores, the patients were classified as
low-risk and high-risk groups, and their recurrence rates were
predicted. The receiver operating characteristic (ROC) curves
were plotted and the area under the curves (AUCs) was
calculated to evaluate prognostic value. Calibration curves and the
Hosmer-Lemeshow test were conducted to assess the predictive
ability of the nomogram. To estimate the clinical utility of the
nomogram, decision curve analysis (DCA) was conducted by
calculating the net benefits for a range of threshold probabilities.

To reduce the potential selection bias, 1:1 propensity score
matching (PSM) was conducted, with a matching tolerance was 0.1.
Matches were made in baseline variables that were previously
considered clinically relevant in the literature, comprising age,
sex, Child-pugh classification, BCLC stage, tumor size, tumor
number, ALT, AST, and AFP.

TABLE 1 Demographics and clinical characteristics before and after PSM.

10.3389/fimmu.2024.1357496

All data were analyzed with SPSS (version 26.0, IBM, Armonk,
NY, USA) and R software (version 4.1.3) in this study, and a P-value
less than 0.05 was considered statistically significant (two-
tailed tests).

3 Result

A total of 1008 HBV-HCC patients from Beijing Youan
Hospital and Beijing Ditan Hospital were screened between
January 1, 2014, to December 31, 2021, including 334 patients
with low HBsAg levels and 674 patients with high HBsAg levels.
After PSM, 293 patients were included in each group (Figure 1). The
high levels of HBsAg groups were divided into the training cohort
(N=385), internal validation cohort (N=168), and external
validation cohort (N=121). The last follow-up until July 1, 2023,
and the median follow-up time was 4.05 years (25~75th percentiles,
2.68~7.05 years).

Before PSM, baseline data showed that compared to the low
HBsAg level group, the high HBsAg level group had a younger age
(55.9 +£9.03 VS. 58.3 + 8.34, P<0.001), lower levels of TBIL (18.64 +
9.42 VS. 20.84 + 11.37, P=0.002), and shorter TT (15.77 £ 2.12VS.
15.95 + 2.39, P=0.008). After PSM, all demographic and
clinicopathologic data were well balanced between the two
groups (Table 1).

The internal validation cohort and the external validation
cohort had similar baseline characteristics to the training cohort.
In the three cohorts, the majority of the patients were male (81.0%
VS. 77.4%VS. 76.9%, p=0.466), and the average age was over 50
years(56.1 + 9.10 VS. 56.6 + 8.46 VS. 57.9 + 8.57, P=0.466). Most
patients were Child-Pugh A (76.9%VS. 80.4% VS., P=0.427),
suggesting that the patients had good liver function. BCLC A had

Before PSM After PSM

Low HBsAg High HBsAg P Low HBsAg High HBsAg P

level (N=334) level (N=553) value level (N=293) level (N=293) value
Age 58.3 + 8.34 55.9 +9.03 <0.001 58.4 + 8.40 58.6 + 7.71 0.728
Sex 0.614 0.918
male 271 (81.1%) 439 (79.5%) 233 (79.5%) 235 (80.2%)
female 63 (18.9%) 114 (20.5%) 60 (20.5%) 58 (19.8%)
Diabetes 0.429 0.136
Yes 252 (75.4%) 479 (75.9%) 220 (75.1%) 236 (80.5%)
No 82 (24.6%) 74 (24.1%) 73 (24.9%) 57 (19.5%)
Child-Pugh 0.244 1
class
A 246 (73.7%) 427 (77.3%) 216 (73.7%) 216 (73.7%)
B 88 (26.3%) 126 (22.7%) 77 (26.3%) 77 (26.3%)
Cirrhosis 0.989 0.718
Yes 43 (12.9%) 72 (13.1%) 38 (13.0%) 42 (14.3%)
No 291 (87.1%) 481 (86.9%) 255 (87.0%) 251 (85.7%)
BCLC stage 0.604 0.315
0 97 (29.0%) 174 (31.4%) 86 (29.4%) 85 (29.0%)
A 187 (56.0%) 291 (52.6%) 168 (57.3%) 156 (53.2%)
B 50 (15.0%) 88 (16.0%) 39 (13.3%) 52 (17.7%)

(Continued)
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TABLE 1 Continued

Before PSM

Low HBsAg High HBsAg

level (N=334) level (N=553)
T.N
Single 237 (71.0%) 378 (68.3%)
Multiple 97 (29.0%) 175 (31.7%)
T.S
<30mm 215 (64.4%) 357 (64.5%)
>30mm 119 (35.6%) 196 (35.5%)
WBC (10A9/L) | 5.06+2.17 522+2.16
NLR 3.1742.62 3.28+2.84
MLR 0.38+0.23 0.37+0.21
Hb (g/L) 128420 13119
PLR 111.61+61.43 108.78:£54.90
TBIL (umol/L) | 20.84+11.37 18.64+9.42
GGT (U/L) 67.48+64.43 68.15+58.89
GLR 68.06:90.12 69.12:+84.74
Fib (g/L) 2.81+1.02 2.84+0.88
TT (s) 15.95+2.39 15.77+2.12
Alb (g/L) 37.19+4.78 37.21+4.88
Palb (g/L) 139.09+60.38 139.32+58.59
ALT (U/L) 29.28+16.95 32.55+19.96
AST (U/L) 31.51+14.09 32.27+15.66
AFP (umol/L) 382.96+1930.96 341.67+1871.85

10.3389/fimmu.2024.1357496

After PSM

Low HBsAg High HBsAg P

level (N=293) level (N=293) value
0.436 0.783

213 (72.7%) 209 (71.3%)

80 (27.3%) 84 (28.7%)
1 0.730

192 (65.5%) 187 (63.8%)

101 (34.5%) 106 (36.2%)
0.976 5.00 + 2.10 522 +222 0.208
0.850 321+ 2.67 3.43 +2.90 0.342
0.342 0.38 + 0.234 0.39 +0.216 0.711
0.073 129 + 204 131 + 194 0.268
0.283 113 + 626 108 +51.7 0.359
0.002 212+ 116 194 +9.26 0.046
0.617 65.6 + 58.7 63.5 + 53.7 0.651
0.928 67.5 + 90.8 64.0 + 60.7 0.582
0.064 2.78 +0.99 2.88 +0.92 0.236
0.008 16.0 +2.38 15.8 + 2.12 0.451
0.914 37.3 + 4.85 36.8 + 4.94 0.201
0.653 140 + 60.7 131 +56.8 0.081
0.111 294 £ 17.0 312 £19.6 0.228
0.247 316 + 13.9 324+ 154 0.515
0.495 337 + 1800 357 + 1730 0.895

ALD, alcoholic liver cancer; BCLC, Barcelona Clinic Liver Cancer; T.N, tumor number; T.S, tumor size; WBC, leukocyte; Hb, hemoglobin; NLR, neutrophil-to-lymphocyte ratio; MLR, monocyte-
to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; ALB, albumin; GGT, gamma glutamyl transferase;
GLR, gamma glutamyl transferase to lymphocyte ratio; Palb, prealbumin; Fib, fibrous protein; TT, thrombin time; AFP, alpha-fetoprotein.

the highest percentage of patients (51.7% VS. 55.4% VS. 71.7%,
P=0.182). Regarding tumor characteristics, most tumors were
solitary (70.6% vs.71.4% VS. 67.8%, P=0.780) and tumor size was
less than 3cm (70.6% vs. 69.0% VS. 67.8%, P=0.150) (Table 2).

3.1 Efficacy

After PSM, mRFS was 28.4 months (22.1-34.7 months) and 21.9
months (18.5-25.4 months) in the high HBsAg level and low HBsAg
level groups, respectively (Figure 2). Because mRFS were
significantly shorter in the high HBsAg level (P<0.001), a
nomogram for predicting recurrence needs to be developed for
the high HBsAg group in order to prompt clinical interventions.

3.2 The prediction model was built based
on the Lasso-Cox regression

3.2.1 Independent prognostic factors of RFS

The cohort in Beijing Youan Hospital was randomly split in a
7:3 ratio into the training (N=385) and internal validation (N=168)
sets. The external validation cohort consisted of patients from
Beijing Ditan Hospital. There were no statistical differences
between the three groups (P<0.05), which showed that the data
grouping was random and reasonable. Lasso regression was used to
screen parameters, and the variation characteristics of the
coefficient of these variables were shown in Figure 3A. The model
exhibited outstanding performance and the least number of
independent variables (Figure 3B). The screened variables
included age, BCLC stage, tumor size, ALB, Palb, GLB, GGT, and
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bile acids. Variables screened based on Lasso regression were
further subjected to multifactorial COX regression analysis to
screen independent risk factors associated with recurrence
(Table 3). The final results obtained were age (HR: 1.02, 95% CIL:
1.01-1.04), BCLC stage (HR: 1.53, 95% CI: 1.22-1.91), tumor size
(HR: 1.44, 95% CI: 1.06-1.94), globulin (HR: 1.02, 95% CI: 1-1.04),
GGT (HR: 1.01, 95% CI: 1-1.01), and bile acids (HR: 1, 95% CI:
1-1.01).

3.2.2 Develop the nomogram

The independent predictors found by the Lasso-Cox regression
analysis were used to construct a nomogram (Figure 4). In the
training cohort, the C-index was 0.682(95%CI: 0.639-0.725), and
the time-dependent ROC curve demonstrated that AUCs of 1-, 3-,
and 5-year were 0.741, 0.723, and 0.687 (Figure 5). It indicated the
good predicting ability of our nomogram. The calibration curves of 1-
, 3-, and 5-year demonstrated satisfactory accordance between the
nomogram prediction and actual observation. In addition, the clinical
value of the nomogram was evaluated using DCA, which provided
the net benefits in reasonable threshold probability (Figure 6).

Patients were classified into two groups according to the score
of the nomogram: low-risk group and high-risk group. In the
training cohort, there were apparent variances in RFS (Figure 7)
between the low-risk group (N=193) and high-risk group
(N=192) (P<0.001).

3.2.3 Validate the nomogram

To further test the efficacy of the reliability and robustness of
our prognostic nomogram, internal and external validations were
conducted on the nomogram. In the internal and external
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TABLE 2 Demographics and clinical characteristics for training and TABLE 2 Continued
validation sets.

o Internal External
Training P o
Training Internal External Cohort Validation = Validation P=
Cohort Validation = Validation P- (N=385) Cohort Cohort value
(N=385) Cohort Cohort value (N=168) (N=121)
(N=168) (N=121)
Age
Age
Mean + SD 331 +£293 3.19 £ 2.80 3.34 £3.10
Mean + SD 56.1 £ 9.10 56.6 + 8.46 57.9 + 8.57 0.150
MLR 0.124
Sex 0.466
0.377 0.41 +0.24
Mean + SD 0.355 £ 0.196
Male 312 (81.0%) | 130 (77.4%) 93 (76.9%) can +0.216
Female 73 (19.0%) 38 (22.6%) 28 (23.1%) PLR 0.173
Hypertension 0.617 Mean + SD 112 + 58.8 102 + 45.9 107 + 56.2
No 292 (75.8%) 129 (76.8%) 97 (80.2%) ALT (U/L) 0.101
Yes 93 (24.2%) 39 (23.2%) 24 (19.8%) Mean + SD 33.1 +£20.6 30.7 £ 17.7 29.3 £ 15.6
Diabetes 0.559 AST (U/L) 0.180
No 310 (80.5%) 141 (83.9%) 101 (83.5%) Mean + SD 33.0 £ 16.6 30.6 £ 13.0 33.5+ 14.6
Yes 75 (19.5%) 27 (16.1%) 20 (16.5%) TBIL
0.042
(umol/L)
Antiviral 0.137
Mean + SD 18.7 £ 9.59 18.6 + 9.04 212 £ 122
No 158 (41.0%) 71 (42.3%) 62 (51.2%)
DBIL 0777
Yes 227 (59.0%) 97 (57.7%) 59 (48.8%) (umol/L) :
Smoking 0467 Mean + SD | 6.41 + 4.56 6.58 + 4.40 6.19 + 4.82
No 234 (60.8%) 94 (56.0%) 68 (56.2%) TotalLalb s
(g/L) '
Yes 151 (39.2%) 74 (44.0%) 53 (43.8%)
. ) Mean + SD 65.0 £ 8.52 64.6 = 5.95 65.7 £ 6.74
Cirrhosis 0.434
Alb (g/L 0.887
No 48 (12.5%) 27 (16.1%) 14 (11.6%) (&L
Mean + SD 37.1 £5.11 37.3 £4.56 37.0 £ 4.72
Yes 337 (87.5%) 141 (83.9%) 107 (88.4%)
lobuli
ChildPugh 0.182 Globulin 0.041
(/L)
A 296 (76.9% 135 (80.4% 86 (71.1%
(76.9%) (80.4%) (71.1%) Mean + SD | 28.4 * 5.65 274+ 4.99 289 + 6.11
B 89 (23.1%) 33 (19.6%) 35 (28.9%) GGT oase
BCLC 0.288 (umol/L) '
0 119 (30.9%) 56 (33.3%) 31 (25.6%) Mean+SD | 69.8 603  70.0+67.6 77.7 £ 747
A 199 (51.7%) 93 (55.4%) 70 (57.9%) GLR 0.362
B 67 (17.4%) 19 (11.3%) 20 (16.5%) Mean + SD 69.8 + 90.6 70.5 £ 77.9 83.6 + 126
TN 0.780 Bile.acid 0.852
Single 272 (706%) 120 (71.4%) 82 (67.8%) Mean+SD | 218+302  20.5%26.0 222+239
Multiple 113 (29.4%) | 48 (28.6%) 39 (32.2%) Fib (g/L) 0.348
.S 0.150 Mean + SD | 2.85+0.889  2.83 +0.896 271+ 091
<3cm 234 (60.8%) | 116 (69.0%) 73 (60.3%) AFP
0.707
(umol/L)
>3cm 151 (39.2%) 52 (31.0%) 39 (32.2%)
Mean + SD 412 + 2240 266 £ 770 432 + 2531
WBC
(1079/1) 0.648 BCLC, Barcelona Clinic Liver Cancer; ALD, alcoholic liver cancer; BCLC, Barcelona Clinic
Liver Cancer; T.N, tumor number; T.S, tumor size; WBC, leukocyte; NLR, neutrophil-to-
Mean + SD 529 +2.22 5.15 + 2.00 510 +2.17 lymphocyfe rano'; MLR, monocyte-to—lymphocyte' ratio; PLR, platelet-to-lym.p'hocyte ratio;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; DBIL,
NLR 0.892 direct bilirubin; ALB, albumin; GGT, gamma glutamyl transferase; GLR, gamma glutamyl
) transferase to lymphocyte ratio; Fib, fibrous protein; AFP, alpha-fetoprotein.
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Frontiers in Immunology 26 frontiersin.org


https://doi.org/10.3389/fimmu.2024.1357496
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

FIGURE 3

-5 -4 -3 -2
Log(2)

Xiong et al. 10.3389/fimmu.2024.1357496
Strata ~ Low levels of HBsAg =i High levels of HBsAg
1.004
0.75
@
2
©
]
(%2
w
€ 0504
E 1 (o
k] : ‘M
E ' ' o
s R
0.25 , '
p =0.00037 ! ]
! ' kb s
P R
! '
0.00 ' '
0 24 36 48 60 72 84 9% 108 120
Time(months)
Number at risk
@ Lowlevels of HBsAg 1—283 231 146 88 57 38 25 12 7 2 0
o
P High levels of HBsAg { - 293 198 129 74 43 30 19 10 3 0 0
0 24 36 48 60 72 84 % 108 120
Time(months)
FIGURE 2
Kaplan-Meier plot of RFS for HBV-HCC after PSM.
A
40 37 31 26 9 5
< |
o
o
2 ©
8
]
=
g
(o]
o |
S
o
S -
T T T T T T
-7 -6 -5 -4 -3 -2
Log Lambda
B
40 39 37 37 36 34 32 31 30 30 29 22 20 14 9 8 8 87 55 3 30
-
© [ S
& T
8 T
s
& &1
3
2
3T
E I
21 J i
T
| 1L
© i
e T T T T T T

Screening of variables based on Lasso regression. (A) The variation characteristics of the coefficient of variables. (B) the selection process of the
optimum value of the parameter A in the Lasso regression model by cross-validation method.

Frontiers in Immunology

27

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1357496
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xiong et al.

TABLE 3 Cox proportional hazards regression to predict recurrence
based on Lasso regression.

Variables f HR
(95%Cl)
Age 0.025 3.51 1.02 <0.001
(1.01-1.04)
BCLC 0.423 3.69 153 <0.001
(122-191)
TS 0.364 237 1.4 (1.06- 0018
Alb -0.004 -0.25 1.94) 0.804
Palb -0.001 -0.895 0.99 (0.96- 0371
1.03)
0.99 (0.99-1)
Globulin 0.022 2.02 102 (1-1.04)  0.043
GGT 0.006 65 101 (1-1.01)  <0.001
Bile.acid 0.005 2.68 1.00 (1-1.01)  0.007

BCLC, Barcelona Clinic Liver Cancer; T.S, tumor size; Palb, prealbumin; GGT, gamma
glutamyl transferase.

validation cohorts, the C-indexes of the nomogram for predicting
the RFS were 0.666 (95%CI: 0.613-0.719) and 0.74 (95%CI: 0.696-
0.783). The time-dependent ROC revealed that the AUCs of 1-, 3-,
and 5-year were 0.702, 0.704, 0.684, 0.792, 0.734, and 0.770 in the
internal and external validation cohorts (Supplementary Figure S1).
The calibration curves also matched well (Supplementary Figure
S2), and the DCA curves of 1-, 3-, and 5-year had good clinical
practicability (Supplementary Figure S3).

The patients in two validation cohorts were also divided into
high-risk and low-risk groups. The recurrence rates in the high-risk
groups were significantly higher in the low-risk groups (P<0.001)
(Supplementary Figure S4).

10.3389/fimmu.2024.1357496

4 Discussion

HCC is one of the most common malignant tumors in the
world. In China, the major etiology of the HCC is the HBV
infection, which can promote the development and metastasis of
the HCC (10, 24, 25). With the use of 1:1 PSM, our study found that
the high level of HBsAg had a higher risk of recurrence than the low
level of HBsAg. Consequently, our study is the first to focus on the
high level of HBsAg patients who underwent TACE combined
ablation to develop and validate a nomogram, which will hopefully
predict the recurrence in H-HBsAg patients (High level of HBsAg).
At present, there is a lack of a recurrence prediction model for H-
HBsAg. We simultaneously created a nomogram by Lasso-Cox
regression to accurately predict the prognosis of H-HBsAg patients.

The nomogram contains seven factors to produce the
probability of an individual-specific clinical event, including age,
tumor size, BCLC stage, globulin, GGT, and bile acid. The scores of
the nomogram were obtained by drawing a vertical line at the
location of the corresponding total score so that it intersected the
three lines predicting the risk of recurrence, and the values shown at
the intersection were predicted RFS at 1, 3, and 5 years. The C-index
and AUCs of the training cohort and validation cohorts were
similar, demonstrating adequate discrimination ability. The
calibration curves presented the good prediction performance of
the nomogram. Moreover, the nomogram indicated reliable clinical
applicability by DCA curves. Patients were divided into two
different risk groups according to the nomogram, and RFS was
clearly different(P<0.001), which illustrated that our nomogram had
a better ability to distinguish H-HBsAg patients to determine the
risk of relapse after ablation therapy.
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20 30 40 50 60 70 80
=30 mm
TS
<30 mm
A
BCLC —_—
0 B
GGT r T T T T T T T T .
0 50 100 150 200 250 300 350 400 450
Globulin ——TT
10 20 30 40 50
Bile.acid T T T T T T
0 40 80 120 160 200 240
Total Points r T T T T T T T T T T !
0 20 40 60 80 100 120 140 160 180 200 220
1-Year Survival prob r — T — T d
09 08508 0.7 06 05040302 0.1
3-Year survival Prob — —
08508 07 0.6 05040302 0.1
5-Year survival prob r ——— T
08 0.7 06 05040302 0.1

FIGURE 4
Nomogram, including Age, tumor number, BCLC stage, Globulin, GGT, and

Bile acid for 1-, 3-, and 5- years recurrence free survival (RFS) in HCC

patients with high HBsAg levels in AFP. The nomogram is valued to obtain the probability of 1-, 3-, and 5- years recurrence by adding up the points
identified on the points scale for each variable. T.S, tumor size; BCLC, Barcelona Clinic Liver Cancer; GGT, gamma glutamy! transferase.
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The number and size of tumors suggested strong tumor
aggressiveness and poor prognosis of HCC, which was currently
uncontroversial and needed not to be described here. Liver weight
and portal blood flow velocity are reduced in the elderly, resulting in
less reparability of the young body. Elderly people have lower
immunity and faster tumor progression after treatment, leading to
higher recurrence rates and worse prognosis (26, 27). At present, the
BCLC system is regarded as an optimal staging system for tumor
stage, treatment regimens, and expected survival. The expected
survival rate is 50-70% for patients who are BCLC A at 5 years (28,
29). When we combined BCLC with other independent prognostic
factors, the predictive value for prognosis could improve. GGT may
be involved in the balance of oxidant and anti-oxidation, leading
to sustained oxidative stress in tumor cells, which can contribute to
the process of cancer (30, 31). Various proinflammatory proteins,
including immunoglobulins, C-reactive protein, 02 macroglobulin,
and fibrinogen are globulins (32, 33). Since human immunoglobulins
are mainly metabolized by the liver, patients with severe hepatic
dysfunction have a reduced ability to clear immunoglobulins, causing
hyperglobulinemia (34, 35). Bile acid synthesis occurs in liver cells
and is the end product of cholesterol metabolism (36). The Systemic
homeostasis of bile acid mainly depends on its enterohepatic
circulation process, which is of great significance for nutrient
absorption and distribution, metabolic regulation, and homeostasis
(37). Bile acid metabolism is implicated in tumor progression and
hydrophobic bile acids are promoters of HCC (38, 39). Besides,
reduced Farnesoid X (FXR) receptor signaling during hepatic
inflammation induces to decrease in bile acid transporter proteins,
resulting in elevated bile acids and persistent hepatic inflammation,
which promote the development of HCC (40, 41).

The presence of HBsAg is a serologic marker of HBV infection
and is used in clinical diagnosis (42, 43). HBsAg appears 1-2 weeks
after exposure to HBV and precedes the onset of clinical symptoms
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and other serologic biochemical indicators of infection. There are
still 257 million carriers of HBsAg despite the availability of
antiviral therapeutics (44, 45). Many studies showed that the
spontaneous HBsAg seroconversion rate was 1% and the presence
of persistent HBsAg was associated with a high risk of HCC and a
worse prognosis (46, 47). Previous studies by our team have also
reported that the prognosis of HCC patients with negative HBsAg
expression was better than that with positive HBsAg expression
(48). In our study, we investigated the role of HBsAg levels in the
recurrence of HCC after local treatment and used PSM to reduce
bias. The results revealed that HBV-HCC patients with high HBsAg
levels have worse prognosis than those with low HBsAg levels.

In the BCLC Guideline, TACE is recommended for BCLC
intermediate stage B HCC. For early-stage HCC, TACE can mark
the tumor and achieve tumor downstaging, thereby declining the time
and increasing the success rate of ablation (49). Foreign and domestic
studies have suggested that combination therapy by TACE and
ablation improved overall and progression-free survival compared
with TACE alone (50, 51). Unlike the conventional univariate analysis,
the LASSO regression that we used aimed to select variables for Cox
regression to avoid overfitting. Also, the nomogram can be validated
by both internal and external validation because our study was a
multicenter retrospective study. Simultaneous examination of
comprehensive patient features covering demographics, liver
function, tumor load, tumor markers, and inflammatory markers
was a major strength of our study. The consists of our nomogram are
simple and easy to obtain so that the clinicians are able to evaluate the
patient’s condition in a timely and effective manner.

Several limitations of our study should be addressed. The first one
of them is the retrospective nature and it is necessary to strengthen the
conclusions by further validations in large prospective studies. Because
as a retrospective study, there is inevitable selection bias. Although
internal and external validations were conducted by a larger
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multicenter sample, external validations from other centers are still
required in the future. Besides, the patients included in our study all
received TACE combined with ablation. Whether the nomogram
would be suitable for other treatments such as surgery and liver
transplantation requires further investigation. Lastly, the study was
conducted only in China, where hepatitis B virus is the principal cause
of HCC. Thus, generalizing to other populations in which HBV is not
a major causative factor for HCC must be carried out with caution.
Nevertheless, we used up to eight years of follow-up to create an
accurate and reliable nomogram to better guide clinical practice for
this group of HCC patients with high levels of HBsAg. In general,
high-risk patients needed more frequent clinical surveillance and
appropriate interventions to prevent recurrence and progression.

5 Conclusion

In summary, high levels of HBsAg were associated with tumor
progression and poor prognosis. For high levels of HBsAg patients,
we created an accurate and reliable nomogram to predict recurrence
based on the Lasso-Cox regression analysis. The nomogram,
including age, BCLC stage, tumor size, globulin, GGT, and bile
acids, demonstrated adequate discrimination ability, which could
better guide the clinical decisions.
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SUPPLEMENTARY FIGURE 1
A.1-, 3-,and 5-year ROC curves of the nomogram in the internal validation cohort.
B. 1-, 3-, and 5-year ROC curves of the nomogram in the external validation cohort.

SUPPLEMENTARY FIGURE 2

Calibration curves for recurrence of the nomogram in the validation cohorts.
(A) One-year calibration curve in the internal validation cohort. (B) Three-year
calibration curve in the internal validation cohort. (C) Five-year calibration
curve in the internal validation cohort. (D) One-year calibration curve in the
external validation cohort. (E) Three-year calibration curve in the external
validation cohort. (F) Five-year calibration curve in the external
validation cohort.

SUPPLEMENTARY FIGURE 3

Decision curves analysis for recurrence in the internal validation cohort
(A) Decision curve analysis for one-year RFS in the internal validation
cohort. (B) Decision curve analysis for three-year RFS in the internal
validation cohort. (C) Decision curve analysis for five- year RFS in the
internal validation cohort. (D) Decision curve analysis for one-year RFS in
the external validation cohort. (E) Decision curve analysis for three-year RFS
in the external validation cohort. (F) Decision curve analysis for five- year
RFS in the external validation cohort.

SUPPLEMENTARY FIGURE 4

(A) Kaplan-Meier plots of RFS for the low-risk group and high-risk group in
the internal validation cohort. (B) Kaplan-Meier plots of RFS for the low-risk
group and high-risk group in the external validation cohort.
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Background: Prostate cancer (PCa) is the second most prevalent malignant
tumor in male, and bone metastasis occurs in about 70% of patients with
advanced disease. The STING pathway, an innate immune signaling mechanism,
has been shown to play a key role in tumorigenesis, metastasis, and cancerous
bone pain. Hence, exploring regulatory mechanism of STING in PCa bone
metastasis will bring novel opportunities for treating PCa bone metastasis.

Methods: First, key genes were screened from STING-related genes (SRGs) based
on random forest algorithm and their predictive performance was evaluated.
Subsequently, a comprehensive analysis of key genes was performed to explore
their roles in prostate carcinogenesis, metastasis and tumor immunity. Next,
cellular experiments were performed to verify the role of RELA in proliferation
and migration in PCa cells, meanwhile, based on immunohistochemistry,
we verified the difference of RELA expression between PCa primary foci and
bone metastasis. Finally, based on the key genes to construct an accurate and
reliable nomogram, and mined targeting drugs of key genes.

Results: In this study, three key genes for bone metastasis were mined from
SRGs based on the random forest algorithm. Evaluation analysis showed
that the key genes had excellent prediction performance, and it also showed
that the key genes played a key role in carcinogenesis, metastasis and tumor
immunity in PCa by comprehensive analysis. In addition, cellular experiments
and immunohistochemistry confirmed that overexpression of RELA significantly
inhibited the proliferation and migration of PCa cells, and RELA was significantly
low-expression in bone metastasis. Finally, the constructed nomogram showed
excellent predictive performance in Receiver Operating Characteristic (ROC,
AUC =0.99) curve, calibration curve, and Decision Curve Analysis (DCA) curve;
and the targeted drugs showed good molecular docking effects.

Conclusion: In sum, this study not only provides a new theoretical basis for the
mechanism of PCa bone metastasis, but also provides novel therapeutic targets
and novel diagnostic tools for advanced PCa treatment.

KEYWORDS

prostate cancer, bone metastasis, random forest, STING, nomogram
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1 Introduction

Prostate cancer (PCa) is the second most prevalent malignant tumor
in the male population, with about 20% of male individuals developing
the disease at some point. As a highly aggressive tumor, most advanced
PCa patients are diagnosed with multiple metastasis throughout the
body, mainly in lymph nodes near the prostate, distal lymph nodes, bone,
as well as internal organs such as the liver, lungs, and brain (1, 2). Among
the distal metastasis of PCa, bone is most common site of colonization,
and approximately 70% of advanced PCa patients are diagnosed with
bone metastasis (3). Once bone metastasis occurs, the disease is incurable
and is significantly associated with mortality (4-6). Tumor growth in the
bone can cause pain, hypercalcemia, anemia, fracture, and other adverse
events, all of which severely impact the patient’s survival status and
quality oflife (7, 8). The tumor bone pain usually presents as a persistent
dull ache that increases in intensity over time and reaches a level not
relieved by opioids (9, 10). Neurological dysfunction, pain, anxiety and
depression due to bone metastasis are devastating for patients, severely
affecting their quality of life and significantly increasing mortality (7, 9,
11-13). With the continuous iterative updating of treatment regimens,
the median survival of PCa patients has been significantly prolonged,
leading to an elevated incidence of bone metastasis, making this
phenomenon even more clinically relevant (14). However, the current
detection of metastasis is minimal, and it is estimated that only about
0.02% of cancer cells entering the blood circulation will produce
clinically detectable metastasis (15). Once metastasis occurs, it is
responsible for approximately 90% of all deaths (16). Therefore, there is
an urgent need to increase our understanding of the cellular and
molecular mechanisms involved in PCa bone metastasis to improve the
prognosis of patients with bone metastasis.

As studies have progressed in recent years, researchers have found
a strong link between tumor immunity and bone metastasis. Due to
the strong similarities with inflammation, cancer has long been
described as a wound that cannot be healed (17, 18). During routine
wound healing, the body terminates the immune response in a timely
manner through various immune regulatory mechanisms (19),
whereas in tumors, the uncontrolled inflammatory response becomes
a powerful driver of tumorigenesis (20-22). The STING pathway is a
vital transduction mechanism in innate immunity and viral defense,
and it also plays a crucial role in carcinogenesis and development (23).
Substantial evidence that STING activators (DMXAA and ADU-S100)
can inhibit tumor progression and increase survival in an adaptive
immune cell-dependent manner (24-27). Studies have shown an
essential link between chromosomal instability and tumor metastasis
and that cell membrane dsDNA produced by persistent chromosome
segregation errors is sensed by the STING pathway (28, 29). In brain
metastasis from breast cancer, tumor cells communicate with adjacent
astrocytes by producing cAMP signals that activate the STING
signaling pathway to release inflammatory factors, leading to tumor
and metastasis progression (30). In addition, in prostate, breast, and
lung cancers, STING signaling can also promote or inhibit the onset
and progression of bone metastasis by modulating immune cells (31-
35). Based on synergistic effects on injury receptors, immune cells,
and osteoclasts, the STING pathway is also significant in regulating
cancerous bone pain (36). Since the STING pathway plays a critical
role in bone metastasis, exploring its regulatory mechanism in PCa
bone metastasis will bring novel opportunities for treating PCa
bone metastasis.
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In this study, we mined three key genes related to PCa bone
metastasis from STING-related genes (SRGs) based on the random
forest machine learning algorithm, constructed an accurate
nomogram, and discovered several targeted drugs for key genes. These
findings provide novel ideas to improve treatment strategies for
patients with advanced PCa.

2 Methods
2.1 Cell culture and transfection

The human PCa cell line (DU145 and PC3) was purchased from the
America Type Culture Collection (ATCC, United States). Meanwhile,
the cells were inoculated in 1640 medium (Saimikebio; China)
containing 10% FBS (ExCell Biology, Inc., Shanghai, China) and 1%
penicillin-streptomycin (1001U/mL; Hyclone; Cytiva), and then placed
in certain environments (37°C and 5% CO2) to culture. The RELA-
overexpression plasmid was purchased from YouBio Biotechnology Co.,
Ltd. (Hunan, China). Transfection was performed using lipofectamine
3000 (Invitrogen) according to the manufacturer’s instructions.

2.2 Cell proliferation assay

Cell proliferation was measured using the CCK-8 assay. Inoculate
DU145 and PC3 cells transfected with RELA-overexpression plasmid
and transfected with GFP control plasmid in 96-well plates (5,000
cells/well). After a period of incubation, 10ul of CCK-8 solution was
added to each well. Optical density (OD) value was evaluated using a
microplate reader at 450 nm 2 h later.

2.3 Cell migration assay

Cell migration was assessed by transwell assay. 2.5x 10* DU145
and PC3 cells transfected with RELA-overexpression plasmid and
transfected with GFP control plasmid were inoculated into the upper
chamber of the transwell. After 24 h of incubation in the incubator, use
a moistened cotton swab to carefully wipe off the cells that did not pass
through the holes, and then add crystal violet to stain the chamber and
take photographs.

Cell migration was also measured using wound healing assay.
DU145 and PC3 cells transfected with RELA-overexpression plasmid
and transfected with GFP control plasmid were inoculated in 6-well
culture plates. After the cell fusion rate reached 90%, the cell layer was
scratched using the tip of a sterile lance tip. Next, after washing with
PBS, the culture was continued with serum-free 1,640 medium, and
the fixed sites were photographed using a light microscope at 0, 12,
and 24h.

2.4 Immunohistochemistry

Paraffin sections of PCa primary foci and bone metastasis were
obtained from the Department of Pathology with the approval of the
Ethics Committee of our Medical Center. First, the paraffin sections
were dewaxed in an environmentally friendly dewaxing solution and
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hydrated in a gradient ethanol series, and heat-mediated antigenic
repair was performed on them in a microwave oven using the citric
acid antigen repair solution; next, the sections were incubated with an
endogenous peroxidase blocking agent (3% H,0,) for 25 min at room
temperature and protected from light; subsequently, circles were
drawn with a immunohistochemical pen, and section sealing was
operated with 3% BSA; Finally, immunohistochemical staining was
performed according to standard procedures.

As for the immunohistochemical staining operation. First,
paraffin sections were incubated with RELA primary antibody
(Servicebio, GB11997, 1:1,000) overnight at 4°C; next, sections were
incubated with secondary antibody (goat anti-rabbit IgG) for 50 min
at room temperature; subsequently, sections were stained sequentially
using DAB and hematoxylin; finally, the stained sections were
dehydrated in ethanol and xylene and sealed with neutral resin.
Immunohistochemical images were obtained based on a light
microscope (E100, Nikon, Japan).

2.5 Data collection and preprocessing

GEOQ' is a free and publicly available gene expression database
containing many diseases. We downloaded the gene expression
dataset (GSE32269) containing PCa primary foci and bone metastasis
from this database. Based on the annotation files of the corresponding
platforms, we matched probes to their gene symbols on the dataset.
Those with larger mean values were selected for retention when
duplicate probes existed. Subsequently, based on a clustering
algorithm, outlier samples were removed before subsequent analysis.
Finally, 103 SRGs were obtained from the GeneCards database.?

2.6 Identification and evaluation of key
genes

The SRGs were initially downscaled by a univariate logistic
regression algorithm, and the genes that satisfied the p-value < 0.05
were considered candidate genes. Next, the candidate genes were
assigned MDA and MDG values based on the random forest
algorithm. MDA and MDG are two key indicators for assessing the
importance of a variable by the random forest algorithm, and the
larger of these two indicates the higher importance of the
corresponding variable. Subsequently, genes ranked in the top 5 of
MDA and MDG were cross-analyzed to filter out key genes. Finally,
the predictive performance of the key genes was assessed by the
Receiver Operating Characteristic (ROC) curve and confusion matrix.

2.7 Biological function exploration of key
genes

First, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis, and Gene set enrichment analysis

1 www.ncbi.nlm.nih.gov/geo/

2 www.genecards.org
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(GSEA) analysis were performed to initially explore the key genes’
biological functions. Subsequently, correlation and differential
expression analyses were performed to explore the internal
connections of the key genes and their function in PCa with bone
metastasis. Then, based on the intOGen database’® and the Depmap
database,* we explored the role of key genes in PCa carcinogenesis.
Subsequently, through the Gene Set Cancer Analysis database
(GSCA),®> we explored the regulation of key genes by copy number
variation (CNV) and methylation. Finally, regulatory miRNAs for key
genes included in miRecords, miRTarBase, and TarBase databases
were obtained based on the “multiMiR” R package, and miRNA-
mRNA regulatory networks were mapped using the Cytoscape
software (V 3.9.1).

2.8 Immune analysis of key genes

Here, the single sample gene set enrichment analysis (ssGSEA)
algorithm was used to calculate the degree of infiltration for 28 types
of immune cells for each sample in the dataset. And by observing the
immune microenvironment differences between primary and bone
metastatic foci, the correlation between immune cells and metastasis,
and the correlation between key genes and immune cells, we aimed to
unearth the influence of key genes on PCa bone metastasis at the
immune level. Meanwhile, the differential expression of several
common immune checkpoints between primary and metastatic foci
and the correlation between key genes and immune checkpoints were
explored, aiming to explore the value of key genes in immunotherapy.

2.9 Molecular functional validation of RELA

Bioinformatic analysis showed that all three key genes play critical
roles in prostate cancer bone metastasis, among which RELA is of
particular attention. Therefore, in this study, the molecular function
of RELA in prostate cancer metastasis was verified based on cell
proliferation and migration assays after overexpression of RELA in
prostate cancer cells using the RELA plasmid. Finally, the protein
expression of RELA was explored by immunohistochemistry between
PCa primary foci and bone metastasis foci, aiming to validate the
differential expression of this gene between different pathological
tissues at the protein level.

2.10 Construction of nomogram and
prediction of targeted drugs

At the end of this study, we constructed a nomogram based on key
genes, aiming to provide a new diagnostic tool for clinicians.
Meanwhile, the accuracy and reliability of the nomogram were
evaluated and validated by ROC curve, Calibration curve, and
Decision Curve Analysis (DCA) curve. In addition, to further validate
the predictive performance of the three key genes and the nomogram,

3 www.intogen.org/search
4  www.depmap.org/portal/
5 https://guolab.wchscu.cn/GSCA/#/
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TABLE 1 Univariate logistic regression results of 24 candidate genes.

Gene (O] Cl (5-95%) P-value
XRCC6 0.03 0-0.47 0.01
TRIM56 0.1 0.02-0.44 0
TREX1 0 0-0.15 0
TRADD 0.08 0.01-0.56 0.01
STAT6 0.36 0.15-0.83 0.02
RELA 0 0-0.04 0
PRKDC 8.66 2.02-37.12 0
POLR3K 6.82 1.26-37.01 0.03
POLR3C 13.6 1.7-108.7 0.01
POLR2L 12.78 2.01-81.3 0.01
POLRID 3.03 1.04-8.83 0.04
NFKB2 381 1.06-13.76 0.04
NFKB1 0.01 0-0.23 0
MREI1 11.26 2.35-54.03 0
MAVS 8.79 1.58-48.96 0.01
IL6 0.07 0.01-0.44 0
IKBKE 5.05 1.32-19.24 0.02
IFNA7 371 1-13.81 0.05
IFNA21 35 1.18-10.4 0.02
IFNAIO 5.06 1.59-16.15 0.01
IFI16 3.49 1.32-9.19 0.01
DTX4 9.65 1.97-47.17 0.01
DHX9 253 1.25-5.11 0.01
CASP8 4.75 1.26-17.91 0.02

we performed 200 times 5-Fold cross-validation. Next, the targeted
drugs for the key genes were predicted based on the Enrichr database®
(37). Subsequently, molecular docking was performed between
targeted drugs and key genes with top 5 combined score using the
Ledock software. The 3D structure data of proteins and targeted drugs
were obtained from the RSCB-PDB database’ and the PubChem
database,® respectively. Finally, molecular docking was visualized
using the Pymol software.

3 Results

3.1 Identification and evaluation of key
genes

Here, we obtained gene expression data of 84 SRGs from
GSE32269 dataset. Meanwhile, 40 samples were included by cluster
analysis for this analysis (Supplementary Figure 1). Based on the
univariate logistic regression algorithm, we performed an initial

6 https://maayanlab.cloud/Enrichr/#
7 https://www.rcsb.org/
8 https://pubchem.ncbi.nlm.nih.gov/
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downscaling of the 84 SRGs and 24 genes with p-value < 0.05 were
identified as candidate genes (Table 1). Subsequently, the MDA and
MDG values of the 24 genes were calculated using the random forest
algorithm, and genes with negative MDA or MDG values were
excluded (Figure 1A). Then, we performed cross-tabulation analysis
on the genes ranked in the top five of MDA and MDG and finally
obtained three key genes (TREX1, RELA, and CASP8), which was
shown in Figure 1B.

Finally, we evaluated the prediction accuracy of the three key
genes based on the ROC and confusion matrix. The ROC curves
showed that the AUC values of the three key genes were 0.9123,
0.9023, and 0.7744, respectively, which indicated that the three key
genes had a high prediction accuracy (Figures 1C-E). In addition, as
shown in Figures 1F-H, the confusion matrix also indicated that the
key genes had good prediction performance.

3.2 Biological function exploration of key
genes

To explore the biological functions of the key genes,
we performed GO analysis, KEGG analysis, and GSEA analysis. As
shown in Figure 2A, GO analysis showed that the key genes were
mainly involved in response to tumor cell, regulation of T cell
receptor signaling pathway, regulation of innate immune response,
mismatch repair (BP, Biological Process); replication fork,
oligosaccharyltransferase complex, nuclear replication fork (CC,
Cell Component); tumor necrosis factor receptor superfamily
binding, mismatch repair complex binding, DNA binding, bending,
chromatin DNA binding (MF, Molecular Function). The results
suggest that key genes are involved in the regulation of tumors as
well as immune-related mechanisms. Furthermore, KEGG also
confirmed this result from another aspect. The KEGG analysis
showed that the key genes were mainly enriched in tumor and
immune-related signaling pathways, such as the TNF signaling
pathway, Viral carcinogenesis, p53 signaling pathway, Pancreatic
cancer, RIG—I—-like receptor signaling pathway, IL-17 signaling
pathway, etc. (Figure 2B). It is well known that Ecm-Receptor
Interaction, Cell Cycle, and Homologous Recombination are key
signaling pathways in tumorigenesis. And the Ecm-Receptor
Interaction also plays a crucial role in PCa bone metastasis (38-40).
Subsequent GSEA analysis showed that TREX1 and RELA inhibited
the activation of Ecm-Receptor Interaction, Cell Cycle, and
Homologous Recombination, while CASP8 was involved in the
activation of these three signaling pathways (Figures 2C-E).

Correlation analysis showed a strong internal correlation between
the three key genes and was closely associated with bone metastasis
(Figure 3A). Differential expression analysis showed that three key
genes had significant expression differences in primary foci and bone
metastatic foci tissues (Figures 3B-D), demonstrating that the key
genes play critical roles in developing PCa bone metastasis. Tumor
driver genes play a crucial role in tumorigenesis. Chronos Score is a
metric in the Depmap database to assess the degree of impact on cell
proliferation after gene knockdown, and a more negative value
indicates a greater impact of the gene on cell proliferation (41). As
shown in Figures 3E,F the three key genes were significantly correlated
with multiple PCa driver genes; and the Chronos Score of TREX1 and
RELA, except CASP8, were negative in prostate tumor cells. The above
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RELA, and CASP8; (F—H) Confusion matrix of TREX1, RELA, and CASP8.

Identification and evaluation of key genes. (A) MDA and MDG ordering of candidate genes; (B) Identification of key genes; (C—E) ROC curve of TREX1,

results demonstrated that the three key genes also play critical roles in
PCa development.

The CNV, methylation, and miRNA are critical parts of the gene
expression regulatory network, hence we also analyzed the effects of
CNYV, methylation, and miRNA on key genes. The results showed that
in CNV, the three key genes were significantly positively correlated
with CNV; while in methylation, TREX1 and RELA were significantly
negatively correlated with methylation, except for CASP8, which was
positively correlated with methylation (Figure 3G); meanwhile, the
miRNA-mRNA regulatory network showed that a total of 128
miRNAs were involved in the regulation of three key genes, and 9
miRNAs were involved in the regulation of several key genes, among
which has-miR-155-5P and has-miR-16-5P were noteworthy
(Figure 3H).

In conclusion, three key genes play an essential role in the
development and metastasis of PCa. And in the process of bone
metastasis, TREX1 and RELA are protective factors, while CASP8 is a
risk factor.

Frontiers in Medicine

3.3 Immune analysis of key genes

The above studies revealed that key genes were involved in the
immune regulation of tumors, so we explored the key genes in the
immune-related mechanisms of PCa bone metastasis. Analysis of
immune infiltration differences showed that 14 immune cells had
significant infiltration differences between primary and metastatic foci
(Figure 4A). Studies have shown that four types of immune cells,
Macrophage, Myeloid derived suppressor cell, Regulatory T cell, and
Plasmacytoid dendritic cell promote PCa bone metastasis (32, 42-44).
Meanwhile, correlation analysis showed that TREX1 was closely
associated with a variety of immune cells and was significantly
negatively correlated with three types of bone-metastasis-promoting
immune cells (Regulatory T cells, Myeloid derived suppressor cells,
and Plasmacytoid dendritic cells); RELA was significantly negatively
correlated with two types of bone-metastasis-promoting immune cells
(Regulatory T cells and Plasmacytoid dendritic cells); whereas CASP8
showed an opposite correlation trends (Figure 4B). Of course, tumor
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GO, KEGG and GSEA analysis of key genes. (A) GO analysis of key genes; (B) KEGG analysis of key genes; (C—E) GSEA analysis of key genes.

immunity is a very complex biological regulatory network, and a
variety of immune cells (CD8 T cells, Natural killer cells, and
Monocytes) have been also shown to play important roles in tumor
bone metastasis (45-47). The molecular mechanisms between the
three key genes and the four bone-metastasis-promoting immune cells
as well as other types of immune cells are complex and need to
be explored by subsequent in-depth studies.

Immune checkpoints have been a hot research topic in the field of
oncology, and in this study, we found that CD-200 and PD-1 were
significantly highly expressed in bone metastatic foci (Figure 4C);
TREX1 and RELA were negatively correlated with CD-200 and PD-1,
while CASP8 was positively correlated with CD-200 and CTLA-4
(Figure 4D). Thus, key genes also play a role in the immunoregulation
of bone metastasis in PCa.

3.4 Molecular functional validation of RELA

The results of several analyses indicate that RELA plays a crucial
role in the ontogenesis, progression, and metastasis of PCa. Hence,
we validated its molecular function in proliferation and metastasis.
Cell proliferation assay showed that the proliferation ability of DU145
and PC3 cells was significantly inhibited after overexpression of RELA
(Figure 5A). Meanwhile, cell migration assay showed the same trend.
As shown in Figures 5B,C, the migration of DU145 and PC3 cells were
also significantly inhibited after overexpression of RELA. In addition,
we verified the difference in RELA expression between primary foci
and bone metastasis by immunohistochemistry. The results showed
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that the expression of RELA was significantly lower in bone metastasis
compared with primary foci, which was consistent with the results of
our data analysis (Figure 5D). Hence, this greatly confirms the critical
role of RELA in PCa development and metastasis, and is most likely a
novel therapeutic target.

3.5 Construction of nomogram and
prediction of targeted drugs

Based on the three key genes, we constructed a nomogram
designed to help clinicians make clinical predictions (Figure 6A).
Subsequently, we evaluated the accuracy and reliability of the
nomogram. The results showed that the AUC value of the ROC curve
was 0.99, and both the Calibration curve and the DCA curve
performed well (Figures 6B-D). In addition, a 200 times 5-fold cross-
validation analysis suggested high AUC and C-Index values for all
three key genes and the nomogram (Supplementary Figure 2).
Therefore, the nomogram constructed in this study was accurate and
reliable. Next, based on the Enrichr database, we excavated 22
potential TREX1 and RELA targeted overexpression drugs (Figure 6E;
Supplementary File 1). Finally, molecular docking was performed
using the Ledock software for the targeted drugs with a top 5 ranked
TREX1 and RELA combined score. The results showed that the
targeting pockets of the 2 key genes were successfully occupied by the
drugs (Figure 6F). In conclusion, the nomogram constructed and the
new targeted drugs discovered in this study provided a new strategy
for the treatment of advanced PCa.
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FIGURE 3
Biological function exploration of key genes. (A) Internal correlation analysis of key genes; (B—D) Differential expression analysis of key genes (NT,
normal tissue; PF, primary foci; BM, bone metastasis); (E) Correlation analysis of key with PCa driver genes; (F) Chronos Score of key genes;
(G) Correlation analysis of key genes with CNV/methylation; (H) miRNA-mRNA regulatory network of key genes.

Discussion

Bone metastasis occur in more than 1.5 million cancer patients
worldwide, and the tumors most at risk for this complication are PCa
and breast cancer (48). Although there are well-established treatment
strategies for early-stage PCa, including surgical resection,
chemotherapy, and androgen deprivation (49), most PCa continues to
progress and develop bone metastasis. Studies have shown that the
incidence of bone metastasis in PCa is about 70%, and the most
common site is the vertebrae (50, 51). The development of bone
metastasis can be catastrophic for PCa patients, who often suffer from
fractures, spinal cord compression, and disability (9, 48), significantly
reducing survival quality. Unfortunately, there is no effective treatment
for PCa bone metastasis at this stage (52, 53). It is urgent to deeply
explore the molecular mechanisms of PCa bone metastasis and tap
new therapeutic targets.

It is well known that the immune system plays an indispensable
role in maintaining normal bone homeostasis and in various bone-
related diseases, mainly through inflammation. Recently, it has been
found that pro-inflammatory cytokines in tumors cause homeostatic
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abnormalities in osteoclasts and osteoblasts, leading to the
development of bone metastasis (54, 55). Furthermore, there is also
evidence that immune cells can influence the colonization and
progression of tumor cells in bone metastatic foci (56). The STING
pathway, as an innate immune regulatory mechanism in the human
body, has been shown to play an essential role in the development and
metastasis of various tumors by mediating inflammatory responses
(23, 30). Therefore, exploring the relevant molecular mechanisms of
the STING pathway in PCa bone metastasis will bring new
opportunities for the treatment of PCa bone metastasis.

The random forest algorithm is an excellent machine learning
algorithm that has been commonly used in the biosciences field. Three
key genes were finally screened in this study based on the MDA and
MDG values assigned to each gene by this algorithm. The MDA
indicates the extent to which model accuracy decreases when a
variable is excluded, and the MDG indicates the extent to which a
variable contributes to the reduction of the Gini in a random forest,
with a higher Gini indicating a higher prediction error rate for that
node (57). Therefore, the higher the two metrics are, the more critical
their corresponding genes are. The subsequent comprehensive analysis
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demonstrated that the three key genes play critical roles in PCa
development and metastasis.

TREXI (Three Prime Repair Exonuclease 1) is a major cytoplasmic
nuclease, prevalently expressed in mammalian cells, that acts primarily
on double-stranded DNA, specializing in the excision of
oligonucleotides that are mismatched at their 3’-ends. The enzyme is
mainly involved in immune regulation and DNA damage repair in the
body (58). Numerous studies have shown that loss-of-function
mutations in TREX1 lead to abnormal accumulation of cytoplasmic
DNA, which in turn over-activates the natural immune response and
ultimately leads to the development of autoimmune diseases,
including systemic lupus erythematosus and vascular diseases,
retinopathy, and cerebral leukoencephalopathy (59, 60). Recent
studies have shown that TREX1 also plays a key role in tumors (61).
In breast and colon cancers, high expression of TREXI leads to
blockage of type I IFN pathway activation, inhibiting the anti-tumor
immune response and the anti-tumor response of immune checkpoint
inhibitors (61, 62). However, this phenomenon seems to be reversed
in PCa, where it was shown that the expression level of TREX1 was
not associated with the degree of anti-tumor immune response to
Radiotherapy-induced activation of the type I IFN pathway in three
PCa cell lines (63). In this study, TREX1 was found to be negatively
correlated with the degree of infiltration of multiple PCa bone
metastasis-promoting immune cells (including Regulatory T cell,
Myeloid derived suppressor cell, and Plasmacytoid dendritic cell), and
was negatively correlated with PD-1 and CD-200. In addition, high
expression of TREX1 can prevent the activation of the Ecm-Receptor
Interaction pathway, which plays a crucial role in prostate bone
metastasis (38-40). Therefore, TREX1 is not only valuable in the
prediction of PCa bone metastasis but also has great potential in its
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immunotherapy. The related molecular mechanisms deserve to
be explored in depth.

RELA (RELA Proto-Oncogene, NF-KB Subunit) is a ubiquitous
transcription factor involved in a variety of biological processes.
Previous studies have shown that RELA plays a key role in the initial
stages of Pca (64), and this study found that RELA has an important
role in the carcinogenesis, development and metastasis of PCa.
Correlation analysis showed that RELA was strongly associated with
multiple prostate cancer driver genes (SPOP, AR, FOXA1, ATM, and
PTEN); the Depmap database results showed that RELA had a high
effect on the proliferation of PCa cell lines; bio-functional analyses
showed that RELA may hinder the occurrence of bone metastasis by
inhibiting the Ecm-Receptor Interaction pathway; subsequent cell and
tissue experiments have also demonstrated that overexpression of
RELA can significantly inhibited the proliferation and migration of
PCA cells (DU145 and PC3), as well as expression of RELA is
significantly decreased in bone metastasis; Immune analysis results
showed that RELA was significantly negatively correlated with 2 types
of bone metastasis-promoting immune cells (regulatory T cells and
plasmacytoid dendritic cells), and significantly negatively correlated
with PD-1 and CD-200. These results strongly suggest that RELA
plays a crucial role in prostate cancer occurrence, progression and
metastasis based on multiple molecular mechanisms. Therefore, RELA
is likely to be a new therapeutic target for advanced PCa, and its
complex biomolecular function is worthy of subsequent
in-depth study.

As for CASP8 (Caspase 8), this gene is a member of the cysteine-
aspartate protease (cysteinyl aspartate) family and plays a central role
in apoptosis and necroptosis (65). Studies have shown that this gene
is closely associated with PCa and its recurrence and can be used as a
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Construction and evaluation of nomogram. (A) Nomogram constructed based on key genes; (B) ROC curve of the nomogram; (C) Calibration curve of
the nomogram; (D) DCA curve of the nomogram; (E) 22 kinds of potential targeted drugs for TREX1 and RELA; (F) Molecular docking results for the
top 5 TREX1 and RELA-targeted drugs in the combined score.

biomarker for bone metastasis in high-risk PCa (66, 67). This study
found that CASP8 can activate three pathways, including
Cell
Recombination. In addition, CASP8 was positively associated with

Ecm-Receptor  Interaction, Cycle, and Homologous
three types of pro-bone metastatic cells (Myeloid derived suppressor
cell, Plasmacytoid dendritic cell, and Regulatory T cell) and two
immune checkpoints (CD-200 and CTLA-4). Therefore, this gene is
important in PCa risk prediction and bone metastasis prediction and
also deserves attention.

At the end of this study, we constructed a nomogram and verified
its reliability and accuracy in several approaches. This tool provides
a reliable diagnostic tool for clinicians’ diagnosis and treatment. In
addition, we also identified 22 potential targeted drugs of key genes
with satisfactory molecular docking effects. In conclusion, this study

mined three bone metastasis related key genes for PCa based on
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machine learning, explored their related molecular mechanisms,
constructed a reliable nomogram and discovered 22 kinds of
potential targeted drugs. This study can improve the treatment of
advanced PCa patients and provides a theoretical basis for
subsequent research.

Of course, this study has some limitations. First, this study is
essentially a retrospective analysis, which needs to be corroborated by
subsequent prospective studies; second, only one dataset was included
in this study to construct the nomogram, and the generalization ability
of the model performance needs to be validated by the subsequent
including of more datasets; third, this study did not perform more
in-depth basic experimental validation, which needs to
be supplemented in subsequent studies; and finally, it is difficult to
define a fixed threshold for the expression of various genes in the

clinic, which poses an obstacle to the popularization of diagnostic tools.
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5 Conclusion

In this study, we explored the relevant mechanisms of the STING
pathway in PCa bone metastasis based on bioinformatics analysis
techniques. Based on the random forest algorithm mined three key
genes, and the critical roles of the key genes in PCa development,
metastasis, and tumor immunity were explored by multiple analyses.
Finally, based on the key genes, a reliable nomogram was constructed
and potential targeted drugs were discovered. In conclusion, this study
provides new therapeutic targets and a reliable diagnostic tool for
clinical treatment and provides a theoretical basis for follow-up studies.
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Pan-cancer analysis predict that
FAT1 is a therapeutic target and
immunotherapy biomarker for
multiple cancer types including
non-small cell lung cancer

Chen Ding", Hua Huang", Di Wu", Chen Chen?, Yu Hua’,
Jinghao Liu®, Yongwen Li*, Hongyu Liu® and Jun Chen**

‘Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China,
2Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer
Institute, Tianjin Medical University General Hospital, Tianjin, China

FAT1, a substantial transmembrane protein, plays a pivotal role in cellular
adhesion and cell signaling. Numerous studies have documented frequent
alterations in FATL across various cancer types, with its aberrant expression
being linked to unfavorable survival rates and tumor progression. In the present
investigation, we employed bioinformatic analyses, as well as in vitro and in vivo
experiments to elucidate the functional significance of FAT1 in pan-cancer, with
a primary focus on lung cancer. Our findings unveiled FAT1 overexpression in
diverse cancer types, including lung cancer, concomitant with its association
with an unfavorable prognosis. Furthermore, FAT1 is intricately involved in
immune-related pathways and demonstrates a strong correlation with the
expression of immune checkpoint genes. The suppression of FATL in lung
cancer cells results in reduced cell proliferation, migration, and invasion. These
collective findings suggest that FAT1 has potential utility both as a biomarker and
as a therapeutic target for lung cancer.

KEYWORDS

FAT1, pan-cancer, prognosis, bioinformatics, immune

Introduction

Cancer stands as a prominent global cause of mortality. Among various cancer types,
lung cancer emerges as the primary contributor to cancer-related fatalities (1). Non-small
cell lung cancer (NSCLC) constitutes approximately 85% of all lung cancer cases, making it
the most prevalent histological subtype. Despite significant advancements in our
understanding of the biological foundations of NSCLC, the integration of predictive
biomarkers, and the refinement of treatment strategies, substantial progress has been
achieved over the past two decades, resulting in improved outcomes for numerous patients
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(2). However, individuals afflicted with advanced-stage disease still
confront a grim prognosis. Hence, the identification of novel
biomarkers and therapeutic targets capable of enhancing patient
outcomes represents an urgent imperative.

FAT atypical cadherin 1 (FAT1), a gene encoding
protocadherin, ranks among the most frequently mutated genes
in human cancer. As a transmembrane protein, FAT1 assumes a
pivotal role in cellular adhesion and signaling pathways (3). Located
on chromosome 4q35, it functions as a tumor-promoting gene,
exerting regulatory control over cell proliferation, migration, and
invasion (4-7). Notably, FAT1 undergoes frequent alterations in
various cancer types, including lung cancer, where its mutations
correlate with unfavorable survival rates and tumor progression (8,
9). In a prior study, our research unveiled the potential of FAT1
mutations as predictive biomarkers in NSCLC, aiding in the
identification of patients less likely to derive sustained clinical
benefits from immune checkpoint blockade (ICB). We proposed
an FAT1 mutation-based model for the screening of NSCLC
patients more suitable for ICB, thereby contributing to
individualized immunotherapy (10). Recent investigations have
further illuminated the role of FAT1 alterations in multiple
signaling pathways and critical cellular processes, such as the
Hippo and Wnt signaling pathways, along with epithelial-
mesenchymal transition (EMT), all of which play pivotal roles in
tumorigenesis (11). Studies exploring FAT1’s significance in cancer
have examined its prognostic value, association with immune
infiltration, and impact on the tumor microenvironment (12, 13).
However, the functional implications of FAT1 alterations across
various cancer types, as well as their potential as therapeutic
biomarkers, require further elucidation.

This study employs bioinformatic methodologies, as well as the
in vitro and in vivo experiments to explore the functional role of
FAT1 across NSCLC, aiming to elucidate its expression patterns,
genetic alterations, and functional networks. Our analysis provides
a comprehensive examination of FATI, aiming to elucidate the
potential mechanisms through which FAT1 mediates tumorigenesis
and assess its clinical relevance in a pan-cancer context. This
encompasses an in-depth exploration of FATI’s biological role in
non-small cell lung cancer, with a focus on investigating its impact
on cell proliferation and migration, revealing its potential
significance in the progression of NSCLC.

Materials and methods

NSCLC samples and next-
generation sequencing

We collected 37 fresh tumor tissues from patients who were
diagnosed with NSCLC at Tianjin Medical University General
Hospital. Tissues were collected by surgery, and routinely
processed with formalin fixation, embedded with paraffin. All
cases were confirmed postoperative histological pathology with
NSCLC. All patients provided written consent, and the research
was approved by the Institutional Ethics Committee of the General
Hospital of Tianjin Medical University. Tumor DNA was extracted
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from 5 to 10 10um FFPE curls, and DNA quantification was
performed using Qubit'™ dsDNA HS and BR Assay Kits
(Thermo Fisher Scientific, MA, USA). Target gene capture NGS
technology was employed to detect 1267 genes related to lung
cancer treatment plans, high-throughput sequencing data were
obtained, and somatic mutations were identified by comparing
with matched adjacent lung tissues. The NGS sequencing process
was completed by Yuce Biological Technology Co., Ltd.

Data sources and processing for FAT1
MRNA expression

FATI expression was analyzed in 34 different tumor types and
their corresponding normal tissues using a combination of The
Cancer Genome Atlas (TCGA) and GTEx cohorts. For this analysis,
SangerBox, a web-based tool (http://sangerbox.com/), was utilized
to obtain FAT1 expression levels in different pathological stages
(stages I-IV) of selected TCGA tumors through the “Pathological
Stage Plot” module of Gene Expression Profiling Interactive
Analysis. Violin plots were generated to depict the relationship
between FATI expression levels and pathological stages. Survival
analysis was performed using the Kaplan-Meier method and Cox
proportional hazards regression analysis. Furthermore, protein
expression levels were investigated using the UALCAN portal
(http://ualcan.path.uab.edu/index.html) (14), which offers an
interactive web resource for CPTAC analysis. The UALCAN
portal utilizes the CPTAC database and normalizes logged
expression values to standard deviations from the median in each
proteomic profile.

Genetic analysis

To explore FATI genetic alterations in various cancer types, we
analyzed somatic mutation data retrieved from cBioPortal
(available at https://www.cbioportal.org/) (15). Through this
analysis, information regarding the frequency and types of
mutations in FAT1 across cancer types was acquired.

FAT1-related gene enrichment analysis

To conduct gene enrichment analysis related to FATI, the
STRING website was utilized (available at https://string-db.org/)
(16).
GEPIA2 was employed to generate a list of the top 100 FATI-
associated genes in TCGA tumors. Subsequently, the correlation

Furthermore, the “Similar Gene Detection” module of

analysis module of GEPIA2 was employed to explore the correlation
between FAT1 and these top five FAT1-associated targeting genes.
To perform pathway and process enrichment analysis for the
identified top 100 FAT1-associated targeting genes, the Metascape
web-based tool (17) was utilized, and specific parameters were
selected, including P < 0.01, a minimum count of three for the
terms, and an enrichment factor > 1.5 for canonical pathways.
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Analysis of tumor immune and
immunosuppressive cell infiltration

By using the TIMER2 server, we examined the correlation
between FAT1 expression and the infiltration of various immune
cell types. To evaluate the effect of genetic and epigenetic alterations
of FAT1 on dysfunctional T-cell phenotypes, the QUERY module of
the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm
was utilized (18).

Epigenetic methylation analysis

To examine the differences in FAT1 methylation levels between
tumor and paired normal tissues across various TCGA cancer types,
the TCGA methylation module within the UALCAN interactive
web resource was employed (19, 20). Furthermore, the TIDE server
was utilized to investigate the effect of FAT1 methylation on
dysfunctional T-cell phenotypes and prognoses.

Analysis of gene expression correlations
with therapeutic responses

To assess the therapeutic potential of FAT1 as a target in various
cancers, the drug sensitivity data obtained from the ROC Plotter
was examined (http://www.rocplot.org/). The ROC Plotter is a
transcriptome-based tool that enables the prediction of
biomarkers by establishing connections between gene expressions
and responses to therapy among patients with cancer (21).

Cell culture and transfection

The human cancer cell lines OVCAR3, Hep3B, PANCI, H1299,
A549, as well as the embryonic kidney 293T were obtained from the
American Type Culture Collection. These cell lines were cultured in
DMEM supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin in a humidified incubator at 37°C with
5% CO,. To perform the transfection, siRNA specifically targeting
FAT]I or a negative control siRNA (Ribobio, China) was introduced
into the cells using Lipofectamine 2000 (Invitrogen, USA) following
the manufacturer’s instructions. The siRNAs targeting FAT1 were
sense: 5'-GCACCACAAUUUCGAGCAATT-3’, antisense: 5'-
UUGCUCGAAAUUGUGGUGCTT-3".

Real-time polymerase chain reaction

According to the manufacturer’s instructions, the cells were
digested down with trypsin, and the total RNA was extracted using
the SPARKeasy Cell RNA Rapid Extraction Kit (Sparkjade,
Shandong, China). RNA concentration was measured, and a total
of 2 ug of RNA was reverse-transcribed into complementary DNA
using a reverse-transcription kit (Takara, Beijing, China) according
to the manufacturer’s instructions. Real-time PCR used a fully
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automated PCR analyzer SLAN-96P, with GAPDH as the internal
reference. The mRNA primer sequences used were as follows: 5'-
GGAGCGAGATCCCTCCAAAAT-3" and 5- GGCTGTTGTCA
TACTTCTCATGG -3’ for GAPDH; 5'-CATCCTGTCAAGATGG
GTGTTT-3" and 5- TCCGAGAATGTACTCTTCAGCTT-3’
for FATI.

Cell proliferation assay

Cell proliferation was assessed using the Cell Counting Kit-8
(CCKB) assay. Briefly, cells were seeded into 96-well plates and
incubated for 24, 48, and 72 h. At each time point, 10 UL of the
CCKS solution was added to each well and incubated for 2 h. The
absorbance was measured at 450 nm using a microplate reader.

5-ethynyl-2'-deoxyuridine assay

Cell proliferation was also assessed using the EAU assay. Briefly,
the cells were subsequently stained with cell—LightTM EdU
Apollo567 In Vitro Kit (Ribobio, Guangzhou, China) following
the manufacturer’s instructions. The images were captured using a
fluorescence microscope, and the percentage of EdU-positive cells
was calculated using Image].

Colony formation assay

The cells were seeded into 6-well plates at a density of 500 cells
per well, cultured for 14 days, and fixed with 4% paraformaldehyde
and stained with crystal violet. The area of colonies was counted
using Image].

Transwell assay

Cell migration and invasion were evaluated using Transwell
chambers. For the migration assay, cells were seeded into the upper
chamber with a serum-free medium, whereas the lower chamber
was filled with a medium containing 10% fetal bovine serum. After
incubation for 24 h, the cells that migrated to the lower chamber
were fixed with 4% paraformaldehyde and stained with crystal
violet. For the invasion assay, Transwell chambers were coated with
20% Matrigel before cell seeding.

Scratch wound-healing assay

The cells were seeded into 6-well plates and cultured to
confluence. A scratch wound was created using a sterile 200 pL
pipette tip, and the cells were washed with phosphate-buffered
saline to remove the debris. Then, the cells were incubated in
serum-free medium, and wound closure was monitored at different

time points using an inverted microscope.
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Protein extraction and western
blot analysis

Total protein was extracted, and protein concentration was
measured by the BCA method. The proteins to be isolated were
separated with 8% to 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis, transferred to polyvinylidene fluoride
membrane, and incubated overnight at 4°C under the following
primary antibodies: anti-B-TUBULIN (66240-1-Ig, Proteintech),
anti-FAT1 (E95869, Sigma), anti-YAP (13584-1-AP, Proteintech),
anti-P-TAZ (AF4315, Affinity), Anti-FAK (12636-1-AP,
Proteintech), and anti-Src (11097-1-AP, Proteintech). Then, the
membrane was incubated with anti-rabbit/mouse IgG (Abclonal,
anti-rabbit: ASO14, anti-mouse: AS003) secondary antibody at
room temperature for 1 h, and bands developed on the
membrane using Syngene G-Box and GeneSnap software
(Syngene, Cambridge, UK).

Multicolor immunofluorescence

Formalin-fixed paraffin-embedded sections were fractionated
alcohol dewaxed and rehydrated, and EDTA antigen retrieval buffer
was subjected to antigen retrieval at 98°C for 8 min. Then the slides
were soaked in 3% hydrogen peroxide for 15 minutes. CD63,
CD168, o-SMA (Servicebio, Wuhan, Hubei, China) and FAT1
(Abcam, ab-190242) were applied at 4°C overnight, followed by
incubation with secondary antibodies for 90 min at 37°C. Digital
slide scanner (Pannoramic 250, 3DHistech, Hungary) were
performed to scan samples.

Animal xenograft tumor experiment

The animals used were 4-week-old female nude mice with
BALB/c (Hfkbio, Beijing, China). In a specific environment, nude
mice were randomly divided into two groups, control group and sh-
FATI group (n=5). A total of 2x10° cells were implanted
subcutaneously in the right groin of nude mice, and when the
tumor was clearly palpated, tumor volume measurement was
started, and thereafter, tumor volume was measured every 2 days,
and at the end of observation, the mouse subcutaneous tumor was
excised, peeled and resected and images were collected. The tumor
volume calculation formula used in this study is (L x wW2)/2.

Statistical analysis

R software was used in the statistical analysis. Student’s t-test
was used to compare the expression levels of FAT1 between
different groups, and the Wilcoxon rank-sum test was used to
analyze non-normally distributed data. Pearson correlation analysis
was employed to evaluate the correlation between FAT1 expression
and immune infiltration.
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Results

FAT1 is frequently mutated in
NSCLC tissues

Our research team previously established that FAT1 mutations
may serve as predictive biomarkers for identifying NSCLC patients
who may not derive sustained clinical benefits from ICB, thereby
laying the groundwork for the potential application of
individualized immunotherapy screening (10). In this present
study, we first evaluated FAT1 mutation status in NSCLC
patients. By collecting FFPE tumor tissues from 37 individuals
who diagnosed with NSCLC and utilizing NGS technology for
targeted gene capture, we analyzed a panel of 1267 genes for
those patients. Our analysis identified the presence of FATI
mutations in five out of thirty seven samples, constituting a
mutation frequency of 14%. Among these mutations, four were
missense mutations, while one was a splice variant (Figure 1A).
Notably, within the 1267 genes analyzed, FATI ranked third in
terms of mutation frequency, following EGFR and P53. This finding
suggests that FAT1 may play a significant role in the pathogenesis
and progression of NSCLC, warranting further in-
depth investigation.

FAT1 expression and its clinical significance
in pan-cancer

To further explore whether aberrant expression of FAT1
associated with clinical significance in pan-cancer, we conducted
an extensive analysis of FAT1 expression across various cancer
types, utilizing publicly available databases, including the TCGA
and GTEx databases. Our findings align with prior reports (22),
demonstrating a frequent upregulation of FAT1 expression in most
cancer types when compared to their normal counterparts,
including lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) (Figure 1B). Notably, protein expression
analysis revealed significant variations in FAT1 expression across
various tumors (Figure 1C), highlighting its potential role as a target
in tumorigenesis and development. Furthermore, our investigation
unveiled a substantial association between elevated FAT1
expression and adverse overall survival (OS) outcomes in patients
with several tumor types, including acute lymphocytic leukemia
(ALL), adenoid cystic carcinoma (ACC), mesothelioma (MESO),
LUAD, head and neck squamous cell carcinoma (HNSC), thyroid
carcinoma (THCA), pancreatic adenocarcinoma (PAAD), and
cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC) (Figure 2A; log-rank test, P < 0.05).
Additionally, we observed a positive correlation between FAT1
expression and advanced pathological stages in ACC and Skin
Cutaneous Melanoma (SKCM) (Figure 2B). Notably, metastatic
testicular germ cell tumors (TGCT) and ACC exhibited higher
FAT1 expression levels compared to their corresponding primary
tumors (Figure 2C).
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FIGURE 1

FAT1 expression in cancer. (A) Results of target gene capture second-generation sequencing in 37 lung cancer tissues. (B) FAT1 mRNA expression
levels in various cancer types based on TCGA data. (C) Protein expression level of FAT1 in pan-cancer. *P < 0.05,***P < 0.001,****P < 0.0001.

DNA methylation analysis of FAT1 in
pan-cancer

The promoter region of FAT1 displayed frequent
hypermethylation in various cancer types, including kidney renal
clear cell carcinoma (KIRC), LUAD, CESC, breast invasive carcinoma
(BRCA), and LUSC. In contrast, the levels of FAT1 promoter
methylation in Prostate adenocarcinoma (PRAD), liver
hepatocellular carcinoma (LIHC), and colon adenocarcinoma
(COAD) were lower when compared to their adjacent normal
tissues (Figure 3A). This suggests that epigenetic silencing of FAT1
may play a role in its expression regulation in cancer. We conducted
an in-depth analysis to examine the impact of FAT1 methylation on
different cancer types and made intriguing observations. We found a
correlation between FAT1 hypomethylation and dysfunctional T-cell
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phenotypes, as well as shorter survival in brain, lymphoma, and uveal
cancers (Figure 3B). However, it’s noteworthy that in the context of
kidney cancer, FAT1 hypomethylation was associated with a
favorable prognosis (Figure 3C).

Correlation analysis and pathway
enrichment of FAT1 in pan-cancer

We employed the STRING tool to systematically screen for
FAT1-binding proteins, aiming to uncover the potential role of
FAT1 in tumor pathogenesis. The interaction network reveals
associations with RXRA, PPARA, MYC, RELA, NFKR, NOS2,
SP1, NR2F1, TNF, and JUN (Figure 4A). To gain deeper insights
into FAT1’s potential functions in cancer, we conducted correlation
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(A) Correlation between FAT1 expression and prognosis in various types of cancer using SangerBox. (B) Association of FAT1 gene expression levels

with pathological stages and (C) metastasis. *P < 0.05,**P < 0.01

and pathway enrichment analyses using gene expression data from
TCGA. Our analysis identified the top five genes significantly
correlated with FAT1 expression: CARD10, CTTNBP2NL, F2RL1,
MYOI1E, and SPATS2L (Figure 4B). Additionally, an exploration of
the top 100 FAT1-associated genes revealed significant associations
with multiple cancer-related signaling pathways, encompassing
cell-cell junction organization, integrin-mediated signaling
pathways, and enzyme-linked receptor protein signaling
pathways (Figure 4C).
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Distinct immune microenvironment based
on FAT expression

Tumor-infiltrating immune cells wield a pivotal influence within
the tumor microenvironment, impacting cancer initiation,
progression, and metastasis (23, 24). In our prior study, we
unveiled the potential of FAT1 aberrant as predictive biomarkers in
NSCLC, indicating the potential role of FAT1 regulating immune
microenvironment. To explore the connection between FATI1
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Epigenetic methylation analysis. (A) Boxplots illustrate the differential FAT1 methylation levels (beta values) across TCGA. (B) Heatmap demonstrating
the effect of FAT1 methylation on cytotoxic T-cell levels (CTLs), dysfunctional T-cell phenotypes, and risk factors within TCGA cohorts. (C) FAT1
methylation levels at Kaplan-Meier survival curves. In kidney cancer, FAT1 hypomethylation is associated with a better prognosis, and in brain cancer,
lymphoma, and uveal cancer, FAT1 hypomethylation has a shorter survival. **P < 0.01,***P < 0.001,****P < 0.0001

expression and immune cell infiltration, we conducted a
comprehensive analysis across 39 cancer types. Our investigation
revealed a significant positive correlation between FAT1 expression
and the infiltration of six immune cell types—namely, B cells, CD8+
T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells—
in KIRC and Pheochromocytoma and Paraganglioma (PCPG)
(Supplementary Figure SI1A). Furthermore, we delved into the
relationship between FAT1 expression levels and the infiltration of
three immunosuppressive cell types known to promote T-cell
exclusion: myeloid-derived suppressor cells (MDSCs), cancer-
associated fibroblasts, and T-regulatory cells. Our findings indicated
a positive correlation between FAT1 expression and the infiltration of
MDSCs in several cancer types, including ACC, BRCA, BRCA-
LumA, BRCA-LumB, Glioblastoma (GBM), Head and Neck
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Squamous Cell Carcinoma-Human Papillomavirus, Kidney
Chromophobe, Kidney Renal Papillary Cell Carcinoma, and Low-
Grade Gliomas (Supplementary Figure S1B). In our quest to assess
FATY’s relevance as a biomarker, we compared it to established
biomarkers with regard to their ability to predict response outcomes
and OS in ICB subcohorts. Notably, FAT1 exhibited an area under
the receiver operating characteristic curve (AUC) exceeding 0.5 in 6
out of 18 ICB subcohorts (Supplementary Figure S1C). Additionally,
FAT1 expression displayed positive correlations with immune-
related gene signatures, encompassing immune cell infiltration,
immune checkpoint genes, and major histocompatibility complex
class I expression, suggestive of FAT1’s potential role in modulating
the immune microenvironment of tumors. We conducted extensive
correlation analyses between FAT1 expression and various genes,
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including chemokines and their receptors (e.g., CXC and CC family)
as well as major histocompatibility complex classes I and II
(Supplementary Figure S2). Among the 26 cancer types with high
FAT1 expression, we noted elevated expression of CD274 (PD-L1),
particularly in Diffuse Large B Cell Lymphoma (DLBCL), Uveal
Melanoma (UVM), GBM, and PAAD. Furthermore, FATI1
expression positively correlated with PD-L1 and CTLA-4
expression in LUAD, suggesting the potential involvement of FAT1
in regulating the expression of immune checkpoint genes in
lung cancer.

Prediction of therapeutic response based
on FAT1 expression

To explore the potential clinical utility of FAT1 as a biomarker,
we conducted an assessment of its predictive value in gauging
therapeutic responses among cancer patients. Our findings revealed
a notable correlation between high FAT1 expression and an
unfavorable survival to immune checkpoint inhibitors
(Figure 5A). This observation suggests that FAT1 holds promise
as a potential predictive biomarker for assessing responses to these
treatments. Further analysis showed that elevated FAT1 expression
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was associated with shorter OS in patients treated with ICB for
bladder and melanoma cancers. Moreover, heightened levels of
FAT1 expression exhibited a negative association with cytotoxic T
lymphocyte (CTL) (Figure 5B).

Altered FAT1 expression changes tumor
immune microenvironment

To explore the functional implications of FAT1 in the
regulation of the tumor immune microenvironment, we initiated
our investigation by assessing FAT1 expression levels across various
cell lines, including OVCAR3, Hep3B, PANCI, H1299, A549, and
293T, utilizing Western blot analysis. Our findings revealed the
highest expression of FAT1 in the A549 and H1299 cell lines, as
illustrated in Figure 6A. Subsequently, we focused our in vitro
experiments on these two lung cancer cell lines. To ensure the
specificity and efficacy of the siRNAs targeting FAT1, we employed
quantitative real-time polymerase chain reaction (QRT-PCR) and
Western blot analyses. As expected, the siRNAs demonstrated
significant reduction in FAT1 expression in both A549 and
H1299 cells compared to the control group (Figures 6B, C).
Cancer immunotherapy, with a particular emphasis on targeting
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FAT1 expression is associated with therapeutic responses in cancers. (A) Receiver operating characteristic curve plot of the association between FAT1
expression and responses to PD-L1 in cancers. (B) The Kaplan-Meier survival curve showed shorter OS with high FAT1 expression in bladder cancer
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the programmed death 1/programmed death ligand 1 (PD-1/PDL1)
pathway, has exhibited remarkable therapeutic efficacy in lung
cancer patients (25). The level of PD-L1 expression in tumor cells
has emerged as a pivotal indicator of the effectiveness of PD-1/PD-
L1 blockade (26), we elucidate the relationship between FAT1
expression and PD-L1. Our results indicated a substantial
decrease in PD-L1 expression following the knockdown of FATI
expression (Figure 6D). Flow cytometry analysis of PD-L1
expression also yielded similar results (Figures 6E, F).
Recognizing the pivotal role of the immune microenvironment in
tumor development (27), we further explored the correlation of
FATI expression with myeloid-derived suppressor cells (MDSC),
macrophage M1, macrophage M2, and cancer-associated fibroblasts
(CAF) in lung cancer patient tissues through immunofluorescence
assay. Intriguingly, our findings demonstrated a positive correlation
between FATI expression and the markers CD68, CD163, and o
SMA, indicative of the essential role of FAT1 in immune regulation
within NSCLC (Figure 6G). These results collectively underscore
the critical involvement of FATI1 in orchestrating immune
responses in the context of NSCLC.

FAT1 accelerated the proliferation and
migration of lung cancer cells in vitro

To explore the biological role of FAT1 in NSCLC, we focused on
investigating its effects on cell proliferation and migration. Employing
the CCK-8 assay, we observed a pronounced inhibition of cell
proliferation in both A549 and H1299 cells upon FATI1
knockdown, as evidenced by significantly reduced cell viability
compared to the control group (Figure 7A). This anti-proliferative
effect was further corroborated by the EdU assay, revealing a notable
decrease in the proportion of EdU-positive cells following FATI
knockdown, indicative of suppressed cell proliferation (Figure 7B).
Furthermore, our investigation extended to colony formation assays,
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where FAT1 knockdown exhibited a significant impediment to both
the number of colonies in both cell lines. These findings underscore
the pivotal role of FAT1 in promoting not only lung cancer cell
growth but also colony formation (Figure 7C). Delving into the realm
of cell migration and invasion, the Transwell assay demonstrated a
marked reduction in the number of migrating and invading cells in
both A549 and H1299 cell lines following FAT1 knockdown,
implicating FAT1 in the facilitation of lung cancer cell migration
and invasion (Figure 7D). This observation was further supported by
the cell scratch assay, where FAT1 knockdown attenuated the
wound-healing ability of cells, indicating a weakened capacity for
migration compared to the control group (Figure 7E). Moreover, our
exploration revealed that FAT1 knockdown induced GO/G1 phase
cell cycle arrest (Figure 8A). To shed light on the underlying
molecular mechanisms, Western blot experiments targeting
integrin-related pathways were conducted based on pathway
enrichment results. The outcomes suggested that knocking down
FATI may exert its effects on cell growth and proliferation through
the FAK-YAP/TAZ pathway (Figure 8B). To further validate the
impact of FAT1 on the FAK-YAP/TAZ pathway,
immunohistochemical staining was performed on mouse tumor
tissues, revealing consistent results (Figure 8E). This intricate
interplay emphasizes the multifaceted involvement of FAT1 in
orchestrating cellular processes crucial for the progression of NSCLC.

Knockdown of FAT1 inhibited the
proliferation of lung cancer cells in vivo

To further confirm the effect of inhibiting FAT1 expression on
cell proliferation observed in vitro, we conducted xenograft tumor
experiments to assess the effect of FAT1 knockdown on lung cancer
cell growth in vivo. The results demonstrated that knocking down
FAT1 inhibited the growth of lung cancer cells in vivo (Figures 8C,
D). These comprehensive findings collectively underscore the role
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of FAT1 as a tumor promoter in lung cancer cells, with its
downregulation leading to the inhibition of cell proliferation.

Discussion

FAT]1, a sizable transmembrane protein, plays a significant role
in diverse biological processes, encompassing cell adhesion,
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migration, and proliferation (28, 29). Extensive research has
unveiled frequent upregulation of FATI in numerous cancer
types, including lung cancer, suggesting its potential as a pivotal
contributor to tumorigenesis (30, 31). Consequently, FAT1 emerges
as a promising candidate for both therapeutic intervention and
prognostic assessment in cancer treatment. Under normal
circumstances, FAT1 functions as a molecular ‘brake’ on
mitochondrial respiration and serves as a receptor involved in the
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regulation of cell-cell contact interactions and planar cell polarity
(22, 29, 32). In several cancer types, the loss of FAT1 function
contributes to epithelial-mesenchymal transition (EMT) and the
emergence of cancer-initiating or stem-like cells (8, 33-35).
Conversely, in specific cancer types, FAT1 overexpression induces
EMT (30). However, the precise roles of FAT1 in cancer
progression remain intricate and contingent on the specific cancer
type. Consequently, further investigations are warranted to attain a
comprehensive understanding of FAT1’s function within distinct
cancer contexts. In this study, we conducted a comprehensive
investigation into the expression patterns and clinical
implications of FATI across a spectrum of cancer types
employing bioinformatics analysis. Additionally, we substantiated
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its pro-tumorigenic role through experimental validation in lung
cancer cells. Our findings, in alignment with prior research,
consistently demonstrated a prevalent upregulation of FAT1
expression in a majority of cancer types, including LUAD and
LUSC. Notably, we established a significant association between
elevated FAT1 expression and reduced OS in LUAD patients, thus
hinting at the potential prognostic utility of FAT1 in lung cancer.
Furthermore, our study revealed a positive correlation between
FAT1 expression and advanced pathological stage as well as
metastasis in various cancer types, providing additional
substantiation for the putative role of FAT1 in tumor progression
and metastasis. Additionally, we illuminated potential mechanisms
underpinning FAT1 upregulation in cancer, such as promoter
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hypermethylation—a phenomenon observed across multiple cancer
types. Interestingly, our investigation also unveiled a positive
correlation between FATI1 expression and immune-related gene
signatures, suggesting a potential involvement of FAT1 in
modulating the immune microenvironment within tumors.
Furthermore, our analysis revealed a distinctive set of genes and
signaling pathways that exhibited significant correlations with
FATI1 expression, thereby providing additional insights into the
potential functional roles of FAT1. Remarkably, our investigation
unveiled FATI’s association with pathways linked to tumor
occurrence and development, including cell-cell junction
organization, the integrin-mediated signaling pathway, and the
enzyme-linked receptor protein signaling pathway. Integrin-
mediated cell migration predominantly relies on the activation of
the FAK/Src signaling pathway, which, in turn, contributes to the
regulation of several key signaling cascades governing cell motility
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(36). Noteworthy, previous studies have identified YAP/TAZ as
downstream molecules of the Hippo signaling pathway, exerting
control over cell proliferation and apoptosis, thus playing a pivotal
role in tumor growth regulation. Integrin-FAK/Src activation has
been shown to enhance YAP activation, leading to the accumulation
and activation of YAP/TAZ, further promoting the proliferation
and metastasis of malignant tumors (37, 38). Additionally, our
assessment of the correlation between FAT1 expression and
immune checkpoint genes hints at the potential utility of FAT1 as
a predictive marker for immunotherapy efficacy. To gain deeper
insights into FAT1’s implications in cancer, we conducted in vitro
functional assays utilizing lung cancer cell lines. Targeting FAT1
expression through knockdown in these cells resulted in a notable
reduction in cell proliferation, migration, and invasion,
accompanied by cell cycle inhibition. These findings strongly
substantiate an oncogenic role for FAT1 in lung cancer and
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suggest that targeting FAT1 may hold promise in enhancing the
effectiveness of chemotherapy in lung cancer treatment.

In conclusion, our study conducted a comprehensive
bioinformatics analysis to investigate the functional role of FAT1
across diverse cancer types, with a particular focus on lung cancer.
The insights derived from our findings underscore the potential
utility of FAT1 as both a biomarker and a therapeutic target not
only in lung cancer but also in various other cancer types.
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Introduction: The connection between aging and cancer is complex. Previous
research has highlighted the association between the aging process of lung
adenocarcinoma (LUAD) cells and the immune response, yet there remains a gap
in confirming this through single-cell data validation. Here, we aim to develop a
novel aging-related prognostic model for LUAD, and verify the alterations in the
genome and immune microenvironment linked to cellular senescence.

Methods: We integrated a comprehensive collection of senescence genes from
the GenAge and CellAge databases and employed the least absolute shrinkage
and selection operator (LASSO) Cox analysis to construct and validate a novel
prognostic model for LUAD. This model was then utilized to examine the
relationship between aging, tumor somatic mutations, and immune cell
infiltration. Additionally, we explored the heterogeneity of senescence and
intercellular communication within the LUAD tumor microenvironment (TME)
through single-cell transcriptomic data analysis.

Results: By exploring the expression profiles of 586 cellular senescence-related
genes in 428 LUAD patients, we constructed an aging-related genes (ARGs) risk
model included 10 ARGs and validated it as an independent prognostic predictor

Abbreviations: ARGs, aging-related marker genes; ARKGs, aging-related key genes; ARRSs, aging-related
risk scores; CI, confidence interval; CNVs, copy number variations; DDR, DNA damage repair; DEGs,
differentially expressed genes; HR, hazard ratio; IQR, interquartile range; LUAD, lung adenocarcinoma;
SASP, senescence-associated secretory phenotype; SRS, senescence-related signature; TMB, tumor mutation

burden; TME, tumor microenvironment.
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for LUAD patients. Notably, patients with low aging scores (LAS group) exhibited
better survival, lower tumor mutation burden (TMB), lower somatic mutation
frequency, lower tumor proliferation rate, and an immune activated phenotype
compared to patients with high aging scores (HAS group). While the HAS group
was enriched in tumor cells and showed a lower infiltration of CD8-CCR7, CD8-
CXCL13, CD8-GNLY, FCGR3A NK cells, XCL1 NK cells, plasma cell (PC) and other
immune subsets. Furthermore, the SPP1 and TENASCIN pathways, associated
with tumor immune escape and tumor progression, were also enriched in the
HAS group. Additionally, our study also indicated that senescence levels were
heterogeneous in the LUAD tumor microenvironment (TME), especially with
tumor cells in the LAS group showing higher age scores compared to those in the
HAS group.

Conclusions: Collectively, our findings underscore that ARRS through ARGs

serves as a robust biomarker for the prognosis in LUAD.

KEYWORDS

cellular senescence, lung adenocarcinoma, tumor microenvironment, heterogeneity,

machine learning

1 Introduction

Cancer with complex molecular characteristics (1), remains a
significant global health challenge, accounting for a substantial
number of deaths and impacting life expectancy worldwide. Amid
the array of cancer types, lung cancer emerges as the second most
prevalent contributor to cancer-related mortality, marked by a
discouraging 5-year relative survival rate of just 23% (2). Lung
adenocarcinoma (LUAD), the predominant histological subtype
within non-small cell lung cancer, constitutes over 40% of all lung
cancer cases (3). Notably, LUAD continues to rise in incidence
among current smokers, former smokers, and even non-smokers,
and its five-year survival rate remains dishearteningly low at
approximately 15%, as a significant majority of patients are
typically diagnosed at advanced stages of the disease (4). Hence,
there is still a compelling need to formulate a novel prognostic
model for predicting the outcomes of LUAD to advance more
potent strategies for diagnosis and treatment.

Aging is a ubiquitous biological process that results in a progressive
and irreversible decline in physical function across all organ systems,
which presents with genomic instability, telomere attrition, epigenetic
alterations, loss of proteostasis, disabled macroautophagy, deregulated
nutrient-sensing, mitochondrial dysfunction, stem cell exhaustion,
chronic inflammation, altered intercellular communication, cellular
senescence, and dysbiosis (5-8). Cellular senescence refers to the
essentially irreversible arrest of cell proliferation (growth) that occurs
when cells experience potentially oncogenic stress (damage to DNA,
strong mitogenic signals, damage or disruptions to the epigenome, and
ectopic expression of certain tumor suppressors) (9, 10). Several
evidences have shown that cellular senescence plays a double-edged

Frontiers in Immunology

role in initiation, growth, and progression of tumor (11, 12). Senescent
tumor cells wield influence over the tumor microenvironment (TME)
via the senescence-associated secretory phenotype (SASP). On one
hand, by emitting pro-inflammatory cytokines, chemokines, growth
factors, and proteases like IL-6, IL-8, and TGF-f3, senescent cells can
trigger paracrine senescence, transforming neighboring non-senescent
cells into senescent counterparts. This process recruits and activates
immune cells within the TME, leading to outcomes that can either
hinder or foster tumor growth. M1 macrophages and natural killer
cells, for instance, can eliminate tumor cells and foster their senescence
through the secretion of IFN-y and TNF-a, thereby restraining tumor
expansion. On the other hand, senescent tumor cells may activate
myeloid-derived suppressor cells and M2 macrophages via SASP,
affecting the clearance of senescent tumor cells, in turn, driving
tumor progression and vascularization (9, 13, 14). Given the role of
cellular senescence in constraining tumor development, it emerges as a
potential target for tumor therapy. Hence, unraveling the impact of
senescence in tumorigenesis is paramount importance.

In recent years, several studies have focused on the role of
senescence in LUAD (15-20). For example, Lin et al. constructed a
cellular senescence-related signature (SRS) by leveraging senescence-
related genes. They found that SRS involved in the regulation of the
tumor immune microenvironment through SASP was a robust
biomarker for the immunotherapeutic response and prognosis in
LUAD (15). In a similar vein, another research by Lin et al. explored
cellular senescence patterns within LUAD by analyzing mRNA
expression profiles of 278 cellular senescence-related genes,
demonstrating the association between cellular senescence patterns
and tumor immune infiltration in LUAD (16). Besides, Liu et al.

developed a 12-gene signature for LUAD using 91 cancer-related
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senescence genes to assess survival outcome (19). Nonetheless, prior
investigations were marked by limitations. Firstly, all focused on only
a subset of senescence genes. Secondly, the assessment of the TME
was largely confined to the bulk transcriptomic level. As a result, the
role of senescence in LUAD has yet to undergo systematic evaluation,
and the intricate interplay between senescence and LUAD prognosis
has remained obscure.

This current study seeks to overcome these limitations by
integrating a comprehensive collection of 586 senescence genes
sourced from the GenAge and CellAge databases. Employing the
least absolute shrinkage and selection operator (LASSO) Cox
analysis, a novel prognostic model for LUAD was constructed
and validated. This model was further investigated the
relationship between aging and tumor somatic mutation or
immune cell infiltration. Furthermore, this study delved into the
senescent heterogeneity and intercellular communication of various
cells within the LUAD TME through the analysis of single-cell
transcriptomic data. In summary, this study enriches our
understanding of the profound impact of cell senescence on the
survival outcomes of patients with LUAD, which unravels the
complex associations between senescence, the immune landscape,
and the intricate genetic makeup of the tumor, ultimately
illuminating novel avenues for therapeutic interventions and
prognostic assessments.

2 Materials and methods
2.1 Data source and processing

In the training cohort, bulk RNA sequencing (RNA-seq) data,
somatic mutation data and clinical information for LUAD were
downloaded from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/) (21). After excluding non-primary
cases and patients with incomplete follow-up information, we
analyzed 428 patients from the TCGA dataset as the training set.
For the validation cohort (GSE31210, GSE50081, and GSE30219)
(22-25), transcriptome data were obtained from data series in the
Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) (26). Single-cell RNA-seq (scRNA-
seq) data (GSE189357) comprising nine patients with LUAD was
also download from the GEO database (27). Fragments per kilobase
million (FPKMs) values or raw gene expression counts were
normalized to transcripts per kilobase million (TPMs) in both the
training and validation cohorts. Genes that were not expressed in
more than half of the samples were excluded from the expression
profiles. The clinical features of 428 patients are listed in Table 1.

2.2 Aging gene set and screening

The set of aging-related marker genes (ARGs) was obtained
from two databases, GenAge and CellAge. Initially, 279 ARGs were
selected from CellAge (https://genomics.senescence.info/cells/)
(28), and an additional 307 ARGs were obtained from GenAge
(https://genomics.senescence.info/genes/index.html) (29)
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(Supplementary Table S1). Univariate Cox analysis was
conducted by survival (version 3.3-1) packages to preliminarily
identify ARGs associated with the overall survival (OS) of LUAD
patients in the TCGA cohort (30), resulting in a final gene set
comprising 102 ARGs (Supplementary Table S2).

2.3 Construction and validation of an ARGs
risk model

We utilized the “glmnet” (version 4.1-8) package in R software
(version 4.1.2) to perform the LASSO Cox regression analyses
(family="cox”) to screen out the prominent genes (31, 32). The
“lambda.1se” value, determined through tenfold cross-validation,
was employed as the lambda for model fitting. Ten genes were
ultimately selected to construct the risk model. The prognostic
capability of the ten genes was assessed using Kaplan-Meier survival
curves generated with the survminer (version 0.4.9) and survival
(version 3.3-1) R packages (30). Subsequently, we calculated a risk
score for each sample, as a linear combination of gene expression
levels within the signature set, weighted by their respective LASSO
Cox regression coefficients, using the following formula:

Aging — related risk scores (ARRSS)

= " Expre(gene;)»Coef (gene;)

Here, “Coef (gene;)”, signifies the LASSO Cox regression
coefficient, “Expre (gene;)”, represents the expression level of each

« »

gene, and “n” denotes the number of genes included in the model.
In addition, the R package “survival” (version 3.3-1) was used to
construct multiple multivariate Cox analysis to determine the
independent prognostic factor in LUAD patients (30).

In the TCGA training cohort, LUAD patients were classified into
high aging score group (HAS group) and low aging score group
(LAS group) based on the median value of ARRSs. The prognostic
capability of the risk model in terms of OS and progression-free
survival (PFS) was assessed using Kaplan-Meier survival curves
generated with the survminer (version 0.4.9) and survival
(version 3.3-1) R packages (30). Additionally, we also compared the
clinicopathological characteristics of TCGA-LUAD patients between
the HAS group and the LAS group using Fisher’s Exact Test.

To validate the ARGs Risk Model, we calculated the risk score
for patients in the validation cohort (GSE31210, GSE50081, and
GSE30219) using the same formula as applied to the TCGA-LUAD
cohort. Patients in the validation cohort were also categorized into
high and low-risk groups based on the median value of ARRS.
Kaplan-Meier curves were generated to assess the relationship
between ARRS and OS in the validation cohort.

2.4 Functional enrichment analysis of
differentially expressed genes based on
HAS and LAS groups

We used the “DESeq2” (version 1.36.0) R package to calculate
fold-changes and identify differentially expressed genes (DEGs)
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TABLE 1 Patient characteristics for TCGA_LUAD cohort.

HAS group LAS group Fisher's Exact
(n = 214) (n = 214) Test (P value)
<=65 206 111 95
Age >65 212 98 114 0.142
NA 10 5 5
female 238 111 127
Gender 0.144
male 190 103 87
american indian or
. 1 1 0
alaska native
asian 8 6 2
race black or african american 47 19 28 0154
white 330 168 162
NA 42 20 22
Alive 321 146 175
oS 0.002
Dead 107 68 39
1 245 105 140
11 103 59 44
AJCC 111 59 38 21 0.004
v 14 9 5
NA 7 3 4
T1 149 56 93
T2 231 130 101
T stage T3 36 22 14 0.002
T4 11 5 6
X 1 1 0
NO 292 130 162
N1 77 47 30
N2 50 35 15
N stage 0.001
N3 2 1 1
NX 6 1 5
NA 1 0 1
MO 286 147 139
M1 14 9 5
M stage 0.313
MX 124 56 68
NA 4 2 2

The “NA” represents sample with missing clinical information. Samples with missing clinical information were not considered in Fisher’s Exact Test statistics.

based on the two risk groups (false discovery rate (FDR) <0.05and| 2.5 |mmune infiltration between the HAS-

Log2FC| > 1) (33). Subsequently, we conducted Gene Ontology group and LAS-group from TCGA-
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) |LUAD cohort

analyses on these DEGs using the “clusterProfiler” (version

4.7.1.002) R package (34). Pathways with adjusted p-values less The “estimate” R package, a powerful tool for quantifying the
than 0.05 were considered significant. immune stromal, and ESTIMATE scores, which was based on the
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expression of related molecular biomarkers in immune and stromal
cells, to predict the TME (35). The “xCell” is a robust algorithm that
analyzes the infiltration levels of 64 immune and stroma cell types,
including extracellular matrix cells, epithelial cells, hematopoietic
progenitors, innate and adaptive immune cells (36). Herein, we
utilized the R package estimate (version 1.0.13) and xCell (version
1.1.0) to evaluate the immune infiltration score and immune cell
infiltration in each patient between HAS and LAS subgroups.
Additionally, the T cell-inflamed gene expression profile (GEP) was
calculated as a weighted sum of standardized expression values of 18
genes (CCL5, CD27, CD274, CD276, CDS8A, CMKLRI, CXCL9, CXCR6,
HLA-DQAI, HLA-DRBI1, HLA-E, IDO1, LAG3, NKG7, PDCDILG2,
PSMBI0, STATI, TIGIT) as described in previous literature (37-39).
The single sample gene set enrichment analysis (ssGSEA) algorithm in
“gsva” (version 1.42.0) R package was performed to compare
differences in 13 gene sets associated immune function and 4 gene
sets related to angiogenesis, matrix, matrix remodeling, and tumor
proliferation rate from previous studies (40-42). Box plots were
developed using ggplot2 software (version 3.4.3) in R to display the
differences between the two groups (43).

2.6 The genetic landscapes of HAS-group
and LAS-group

Genetic landscapes were analyzed and visualized using the
“maftools” (version 2.12.0) R package (44). Tumor Mutation
Burden (TMB) was defined as the number of somatic, non-silent,
protein-coding mutations in the coding regions per megabase (mut/
Mb) and counted using ‘maftools’ (version 2.12.0). The mutated
samples of tumor-related and DNA damage repair (DDR) pathways
in HAS and LAS groups were compared using Fisher’s exact test (with
p <0.05 indicates a significant difference) and visualized using
“ggradar” (version 2.12.0) and ggplot2 (version 3.4.3) R packages (43).

2.7 Single-cell RNA-seq analysis

Raw matrix data were obtained from the GEO database for
subsequent analysis (27). Initially, cells with low quality were filtered
out based on the following criteria: 1) fewer than 200 expressed genes,
2) total molecule count per cell less than 800, and 3) greater than 10%
of reads mapped to the mitochondrial genome. Additionally, the
“DoubletFinder” R package (45) was utilized to identify and remove
doublet cells using default parameters.

The “Seurat” package (version 4.3.0) (46) was employed to
normalize the single-cell gene expression data using the
“NormalizeData” and “ScaleData” functions, respectively.
Subsequently, the top 2,000 highly variable genes for each sample
were selected using the “FindVariableFeatures” function. Principal
component analysis (PCA) was performed using the “RunPCA”
function, and the first 20 principal components were used for
Uniform Manifold Approximation and Projection (UMAP)
analysis with the “RunUMAP” function. Following UMAP
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analysis, cells were clustered using an unsupervised method with
a resolution parameter of 1.5 employing the “FindNeighbors”
function. Differential expression analysis was conducted on the
original log-normalized data by comparing cells within each cluster
to all other clusters using the “FindAllMarkers” function. Clusters
were annotated based on the expression of well-known markers and
differentially highly expressed genes.

Subgroup analysis of each cell group, including T/NK cells, B
cells, and myeloid cells, was performed using the standard Seurat
pipeline. Specific markers were used for grouping and are listed in
Supplementary Table S3. Bar plots were generated to illustrate the
percentage of cells between the two groups. Additionally, cell
occupancy differences were assessed using Fisher’s exact test. The
cytotoxic and exhausted scores for T cell subgroups, as well as the
hallmark pathways compared between HAS and LAS groups, were
calculated using the ssGSEA algorithm in the “gsva” package
(version 1.42.0) based on different sets of genes (42).

2.8 ldentification of cancer cells

To identify cancer cells, we utilized the inferCNV (version
1.13.0) tool (https://github.com/broadinstitute/inferCNV), as
previously described in studies by Liu, He, et al. and Chen et al.
(47, 48). The inferCNV package compares gene expression profiles
of each cell to reference gene expression profiles from other cells.
Initially, raw count data and cell type annotations for all cells were
extracted from the Seurat object. Immune cells and stromal cells
were chosen as reference cells. A gene ordering file was generated
from the human GRCh38 assembly, containing chromosomal start
and end positions for each gene. These files were used to create an
inferCNV object using the “CreateInfercnvObject” function,
followed by running inferCNV with default parameters. The
calculated copy number variation (CNV) signal was defined as
the mean square of CNV estimates across all genomic locations.
CNV R-scores were calculated as the Pearson correlation coefficient
between each cell's CNV pattern and the average CNV pattern of
the top 5% of cells from the same tumor based on CNV signal. Cells
with CNV R-scores 20.3 were classified as tumor cells.

2.9 Aging-related risk scores based on
pseudo-bulks

The Seurat object was transformed into a “SingleCellExperiment”
object, followed by the computation of pseudo-bulks. Pseudo-bulks,
which represent the sum of counts, were calculated using
aggregation-based methods in the muscat (version 1.10.1) R
package (https://github.com/HelenaLC/muscat). The ARRSs were
then derived using the previously described formula based on the
pseudo-bulks. Patients were stratified into two groups, HAS and
LAS, based on the median value of ARRSs. Additionally, age scores
for each cell were calculated based on ten ARKGs at the single-cell
level using the ssGSEA algorithm.
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2.10 Cell-cell interactions

CellChat (version 1.5.0) is an open-source R package (https://
github.com/sqjin/CellChat) utilized for the analysis, comparison,
and visualization of single-cell RNA sequencing data intercellular
communication (49). In this study, CellChat was employed to infer
cell-cell interactions across 24 immune subgroups, fibroblasts,
normal epithelial cells, tumor cells, and endothelial cells for both
the HAS and LAS groups. Subsequently, major signaling changes
between the HAS and LAS groups were computed.

2.11 Statistical analysis

The Wilcoxon test was conducted to examine differences in
variables between two groups, while the Kruskal-Wallis test was
used to assess differences among groups greater than two. Gene
mutation differences between the HAS and LAS groups were
determined using Fisher’s exact test.

3 Results

3.1 Construction and validation of aging-
related risk score

The workflow of the whole study was graphically presented in
Figure 1A. We compiled a comprehensive list of 586 aging-associated
genes sourced from the CellAge and GenAge databases. Among these
genes, 102 were significantly associated with clinical survival (p <
0.05) based on univariate Cox analysis (detailed results shown in
Supplementary Table S2), conducted on the expression matrix and
clinical survival information of 428 LUAD samples obtained from the
TCGA dataset. Subsequently, to construct the ARGs risk model, we
performed LASSO Cox regression analysis on the aforementioned
102 genes and the gene expression profiles of the training cohort
(Figures 1B, C). Through this analysis, we successfully identified 10
aging-related key genes (ARKGs), including. BRCA2, CSNKIE,
EEFIEI, GAPDH, IGFBP3, ILIA, PSENI, XRCC5, XRCC6, and
YWHAZ. And low RNA expression for the 10 ARKGS was
correlated with longer survival time in LUAD (Supplementary
Figure S1). Utilizing these ten ARKGs and their corresponding risk
coefficients, we established an aging risk signature. The risk score of
every patient was calculated using this formula. Patients in the
training cohort were stratified into two groups: the high aging
score group (HAS group) and the low aging score group (LAS
group) based on median values of ARRSs. Upon investigating the
expression levels of the ten ARKGs, we found that they were
significantly higher in HAS group than LAS group (Supplementary
Figure S2, Supplementary Table $4).

We compared the clinicopathological characteristics, including
age, gender, race, OS, TNM tumor grade, and AJCC tumor grade, of
TCGA-LUAD patients between the HAS group and the LAS group
(Table 1). The results showed significant differences in OS status
(P = 0.002), T grade (P = 0.002), N grade (P = 0.001), and AJCC
tumor grade (P = 0.004) between the groups. Survival analysis
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demonstrated that the LAS-group exhibited significantly improved
overall survival (OS) (hazard ratio (HR) = 0.45, 95% confidence
interval (CI) = 0.31 - 0.66, P = 0.000044) and progression-free
survival (PES) (HR =55, 95% CI = 0.41 - 0.74, P = 0.000052)
compared to the HAS-group (Figures 1D, E). Upon integrating age,
gender, TNM tumor grade, and AJCC tumor grade into the
multivariate Cox regression analysis, ARRSs emerged as the sole
significant survival-related risk factor (HR = 9.32, 95% CI = 4.50 -
19.29, P = 0.0000000018) (Figure 1F), suggesting that ARRSs was an
independent prognostic factor for LUAD.

To validate the prognostic roles of the above risk model, we
applied the same stratification method to three independent
datasets form the GEO database. Consistent with the findings
from the training cohort, patients with in the high ARRSs group
displayed significantly worse survival outcomes compared with the
low ARRSs group in all three cohorts, namely GSE50081 (HR =
0.32, 95% CI = 0.18 - 0.56, P = 0.000081), GSE30219 (HR = 0.52,
95% CI = 0.29 - 0.95, P = 0.038), and GSE31210 (HR = 0.36, 95%
CI =0.19 - 0.71, P = 0.005) (Figures 1G-I).

3.2 The genetic characteristics of HAS-
group and LAS-group

To explore the genetic features in LUAD with different ARRSs,
we further investigated the genomic differences between the HAS
group and the LAS group based on somatic mutation data in the
TCGA-LUAD cohort (Figure 2A; Supplementary Figures S3A-C).
We observed that HAS group had a higher mutation frequency than
the LAS group, particularly in the top 20 genes such as, TP53, TTN,
CSMD3, ZFHX4, RYR3, CSMD2, SI, LRRC7, and PAPPA?2 (detailed
P values shown in Supplementary Table S5) between HAS and LAS
groups (Figure 2B). Additionally, the HAS group displayed a higher
tumor mutation burden (TMB) but a lower occurrence of co-
occurring mutations between genes, indicating distinct genomic
alteration patterns (Figure 2C; Supplementary Figure S3D). Further
analysis of ten tumor-related pathways revealed significantly higher
mutation frequencies in the Hippo (P = 0.011), NOTCH (P =
0.013), and TP53 (P = 0.011) pathways in the HAS-group compared
to the LAS-group (Figures 2D, F; Supplementary Figure S4B).
Similarly, higher mutation rates were observed in the HAS group
among the eight DDR pathways, with five of them being statistically
significant (Figures 2E, G; Supplementary Figure S4A).

3.3 ARRSs is associated with cell
proliferation and immune function

Differential expression analysis of gene expression data based on
the HAS group and LAS group identified a total of 1664 differentially
expressed genes (DEGs) under a threshold of adjusted p < 0.05,
comprising 707 up-regulated and 957 down-regulated genes
(Figure 3A). GO enrichment analysis for DEGs revealed that in the
HAS-group, biological processes were predominantly enriched in cell
cycle, cell division, and cell development, indicating a potential
involvement in regulating normal cell function and organismal
development (Figure 3B). Furthermore, based on gene sets from
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FIGURE 1
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Identification of ARKGs related to prognosis in the TCGA training cohort. (A) The workflow of the present study. (B) Selection of optimal candidate
genes in the LASSO model. (C) LASSO coefficients of prognosis-associated ARKGs. (D, E) Kaplan-Meier curves for overall survival (D) and progression
free survival (E) of the TCGA-LUAD cohort in the HAS and LAS groups. (F) Forest plots showing results of multivariate Cox regression analysis
between Risk score, clinical information and overall survival. (G-1) Kaplan-Meier curves for overall survival of validation cohorts in the high and low

groups: GSE50081 (G), GSE30219 (H), GSE31210 (1).

Bagaev, et al. (40), we found that the tumor proliferation rate, and
matrix remodeling of the HAS group were significantly higher than
those of the LAS group (Figure 3F, detailed P values were shown in the
Supplementary Table S4).

In contrast, the LAS-group exhibited enrichment in immune
response mechanisms, encompassing cell activation, signal
transduction, and production of immune mediators (Figure 3C).
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Based on another gene set related to immune functions (41), we
observed that nine of the 13 immune function gene sets had
significantly higher ssGSEA scores in all LAS groups than the
HAS group (Figure 3G, detailed P values were shown in the
Supplementary Table S4), especially type II IFN response, T cell
co-stimulation, and HLA. Immune estimations for LUAD patients
within the training set (TCGA-LUAD) showed notably increased
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FIGURE 2
Genomic alterations differences between the HAS and LAS group from the TCGA-LUAD cohort. (A) Genomic alterations landscape between the HAS
(left) and LAS (right) group. (B) Mutation frequency differences of the top 20 mutation genes in the HAS group compared to the LAS group. The
asterisk to the right of the gene indicates that the mutations in the gene were significantly different in the two groups, as determined by Fisher’s
exact test. (C) The TMB between HAS and LAS groups. The HAS group had a higher TMB (2.66 (IQR: 0.04, 11.985) compared to the LAS group (1.58
(IQR: 0.02, 6.9)) with P value = 0.000065 compared by the Wilcoxon test. The frequency of mutated genes in each tumor-related pathway (D, F)
and DDR pathway (E, G) difference between two groups. The asterisks in (D, E) denote significant differences of mutated genes in different pathways
identified by Fisher's exact test which showed in (F, G).

StromalScore, ImmuneScore, ESTIMATEScore, and GEP score in
the LAS group when compared to the HAS group (Figures 3D, E).
Xcell analysis revealed the immune infiltration of TME (36). The
results indicated that LAS group had an activated TME, with
significantly increased numbers of T cells, such as CD8+ T cells,
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CD8+ Tcm, CD4+ Tem, and CD4+ Tcm, and significantly
decreased numbers of Thl and Th2 (Figure 3H, detailed p values
were shown in the Supplementary Table S4). Additionally, B cells
such as plasma cells (Figure 3H), and myeloid cells such as Mast
cells, and various DCs (Figure 31, detailed p values were shown in
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FIGURE 3
Transcriptomic differences between the HAS and LAS group from the TCGA-LUAD cohort. (A) Volcano Plot of DEGs between the HAS and LAS
group. (B, C) Top 20 biological processes of GO enrichment results between the HAS (B) and LAS (C) group. (D) Stromal score, immune score and
ESTIMATE score between the two groups. (E) GEP score between the two groups. (F, G) Boxplots of gene sets related to tumor proliferation (F) and
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the Supplementary Table S4), were also significantly increased in ~ and Oxeiptosis in the HAS-group, whereas Autophagy,

the LAS group. Furthermore, we explored the relationship between =~ Lysosome-dependent cell death, Necroptosis, and Parthanatos

ARRSs and various cell death pathways. The findings revealed that  scores were markedly higher in the LAS-group (Figure 3J;

significantly elevated scores for Alkaliptosis, Cuproptosis,  Supplementary Table S4).
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3.4 The single cell alta of HAS-group and
LAS-group

To further investigate whether the ARRSs is heterogeneous in the
TME, we utilized a single-cell dataset (GSE189357) containing over
10,000 cells from 9 patients. Initially, the single-cell dataset was
converted to pseudo-bulks and then ARRSs were calculated.
Subsequently, the 9 patients were divided into HAS (n = 5) and
LAS (n = 4) groups based on the median value of ARRSs. Notably, two
of the three invasive adenocarcinoma (IAC) samples were categorized
into the HAS group, exhibiting significantly higher aging scores
compared to the LAS group (Figures 4A, B). Employing the
standard pipeline in Seurat (46), we identified six major cell types,
including T/NK cells, B cells, myeloid cells, fibroblasts, endothelial
cells, and epithelial cells (Figures 4C, D). Subsequently, the epithelial
cells were further subdivided into tumor cells and normal epithelial
cells (Figure 4E). Interestingly, we observed an enrichment of tumor
cells and endothelial cells in the HAS (P = 6.44E-66, odds ratio (95%
CI) = 1.57 (1.49, 1.66), Supplementary Table S6) and LAS (p = 0, odds
ratio (95% CI) = 4.56 (4.2, 4.95)) groups, respectively (Figure 4F).

Furthermore, we conducted subtype annotation specifically for
immune cells including T/NK cells, B cells, and myeloid cells
(Figures 4G-I; Supplementary Table S2). T/NK cells were
subdivided into eight T cell subpopulations and two NK cell
subpopulations (Figure 4G). Functional scoring of T-cell subsets
revealed that FCGR3A NK cells (T09) and CD8-GNLY (T08) had
the highest cytotoxic scores, while CD8-CXCL13 (T06) had the
highest exhausted score (Supplementary Figure S5). We compared
the cellular infiltration in the HAS and LAS groups and found that the
T and NK cell subpopulations were significantly differed between the
HAS and LAS groups (Supplementary Table S6). Specifically, CD4-
CCR?7 (T01, P = 1.53E-134, odds ratio (95% CI) = 1.81 (1.72, 1.9)),
and CD4-FOXP3 (T03, P = 4.55E-21, odds ratio (95% CI) = 1.41
(1.31, 1.52)) were enriched in the HAS group, whereas CD8-CCR7
(T05, P = 6.42E-14, 0dds ratio (95% CI) = 1.34 (1.24, 1.45)), CDS-
CXCL13 (T06, P = 2.35E-64, odds ratio (95% CI) = 5.66 (4.51,
7.16)), CD8-GNLY (T08, P = 2.94E-23, odds ratio (95% CI) = 1.39
(1.3, 1.48)), FCGR3A NK cells (T09, P = 4.29E-98, odds ratio (95%
CI) = 1.95 (1.83, 2.08)), and XCL1 NK cells (T10, P = 2.65E-34,
odds ratio (95% CI) = 2.02 (1.8, 2.27)) were enriched in the LAS
group. For B cell subsets, naive and memory B cells were more
prevalent in the HAS group, whereas plasma cell (PC) subsets (B03
P = 1.33E-24, odds ratio (95% CI) = 2.3 (1.96, 2.69); B04, P = 3.51E-
48, odds ratio (95% CI) = 2.96 (2.55, 3.43)) and stressed PC (B05,
P = 7.24E-13, odds ratio (95% CI) = 3.02 (2.21, 4.12)) were more
prevalent in the LAS group. The Mast cells (MO1, P = 7.44E-292,
odds ratio (95% CI) = 2.77 (2.62, 2.92)) showed a tendency to
increase in the LAS group compared to the HAS group, while
neutrophils (M02, P = 4.84E-164, odds ratio (95% CI) = 5.25 (4.55,
6.08)), S100B DC (MO06, P = 1.08E-66, odds ratio (95% CI) = 2.05
(1.88, 2.23)), TXN DC (M07, P = 9.61E-15, odds ratio (95% CI) =
2.47 (1.93, 3.19)), and proliferation myeloid cells (M09, P = 1.51E-
16, odds ratio (95% CI) = 1.87 (1.6, 2.2)) were significantly more
prevalent in the HAS group. These results provide further evidence
of heterogeneity in immune cell infiltration between groups with
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differing ARRs at the single-cell level, especially the LAS enriched
more cytotoxic T/NK cells and antibody-secreting B cells.

3.5 Inference of cell-cell interactions

Given that senescence alters intercellular communication, we
conducted a comparative analysis of intercellular communication
between the HAS and LAS groups for each cell subset based on
single-cell data. Significant differences were observed in several
signaling networks between the HAS and LAS group
(Supplementary Figure S6). Notably, SPP1 was exclusively present
in in the HAS group (Supplementary Figure S6; Figure 4J).
Especially, the interaction of SPP1-CD44 has been reported to
inhibit T-cell activation and promote tumor immune evasion (50,
51). Additionally, TENASCIN was frequently observed in the HAS
group, with tumor cells in this group interacting with other cells,
including tumor cells themselves, via TNC - SDC1/SDC4 or TNC -
ITGA8_ITGBI/ITGAV_ITGB6 (Supplementary Figure S6;
Figure 4K). TNC is an extracellular matrix glycoprotein known to
contribute to tumor progression, and increased TNC expression in
LUAD tissues correlates with an unfavorable clinical outcome for
patients (52). Conversely, certain pathways were exclusively or
more frequently observed in the LAS group (Supplementary
Figure S6). For example, the secreted signaling BAG, and CD70
pathways were uniquely found in the LAS group (Supplementary
Figure S6). The BAG6-NCR3 interaction targeting T09 might
trigger NK cell cytotoxicity (Figure 4L). Furthermore CD70-CD27
interaction was observed between B02 and PC or between B02 and
T cells. CD27 receptor activation provides a costimulatory signal
promoting T cell and B cell activity to enhance anti-tumor and anti-
infection immunity (Figure 4M) (53).

3.6 Cellular senescence heterogeneity in
the tumor microenvironment

Using single-cell data, we evaluated the senescence levels of
individual cells and compared the senescence levels among different
cell subpopulations (Figure 5A). We observed lower age scores in
B01, B03, B05, M02, and endothelial cell subpopulations, while M03
and MO5 exhibited higher age scores (Figure 5A). Subsequently, we
compared the senescence levels of cell subpopulations between the
HAS and LAS groups (Figure 5B). Most T cell subsets (e.g., T05,
T07) displayed higher age scores in the HAS group than in the LAS
group (Figures 5B, C). Moreover, endothelial and fibroblast cells
exhibited higher age scores in the HAS group, whereas normal
epithelial cells and tumor cells showed higher age scores in the LAS
group (Figures 5B, C). Age scores for different subpopulations of
myeloid and B cells varied between the HAS and LAS groups
(Figures 5B, C). For instance, the age scores of B01, B02, M05 and
MO06 were significantly lower in the HAS group than in the LAS
group, while B04 and M02 showed higher scores in the HAS group
(Figures 5B, C). As cellular damage caused by reactive oxygen
species (ROS) is a major trigger for senescence (54), we assessed and
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FIGURE 4

Single cell atlas and cell-cell interactions between the HAS (n = 5) and LAS (n = 4) group. (A) ARRSs based on single cell pseudo-bulks differed
between the HAS and LAS group. The HAS group had a higher ARRS 0.4496 (IQR: 0.4304, 0.463) compared to the LAS group 0.4147 (IQR: 0.3969,
0.4228) with P value = 0.0159 compared by the Wilcoxon test. (B) Alluvial diagram showed the grouping of the nine samples. (C) UMAP plot for cells
displaying the six major cell types from patients. (D) Dot plot depicting mean expression levels and percentage of cells expressing signature genes
across the six major cell types. (E) Distribution of normal and tumor cells in epithelial cells from LUAD. (F) The composition of the cell compartment,
displaying the average frequencies of cell subsets for HAS and LSA groups. (G-1) The UMAP plot and the average frequencies of different T cell, B cell
and myeloid cell subgroups. (J, K) Comparison of the significant ligand-receptor pairs of SPP1 signaling (J) and TENASCIN signaling (K) for the HAS
group. Dot color reflects communication probabilities and dot size represents computed p-values. Empty space means the communication
probability is zero. p-values are computed from one-sided permutation test. (L, M) Circle plot showed cell-cell communication mediated by CD70-
CD27 (L) and BAG6-NCR3 (M) in the LAS group. All abbreviations presented in Figure 4 showed as following: ARRS, aging related risk score; IQR,
interquartile range; AlS, lung adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; tumor, tumor cells;
normal, normal epithelial cells; Fib, fibroblasts; End, endothelial cells.
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Single cell age score. (A) The age score for each cell. (B) The medians of age scores for each cell type in the HAS and LAS groups. (C) The box plots
demonstrating between-group differences in the HAS and LAS groups for age scores for specific cell types. We used the following notation for
statistical significance: "ns” indicates p > 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and **** indicates p < 0.0001. The actual P determined
by the Wilcoxon test, and the medians (IQR) in (C) were all displayed in Supplementary Table S4. (D) Heatmap showed the activity of hallmarks
between the HAS and the LAS groups for different cell types. All abbreviations presented in Figure 5 showed as following: tumor, tumor cells;

normal, normal epithelial cells; Fib, fibroblasts; End, endothelial cells.

compared the “reactive oxygen species pathway”. Our results
revealed higher scores for this pathway in the HAS group for
BO1, B02, M05, M06, normal epithelial cells, and tumor cells,
whereas the HAS group for B04, M02, T05, T07, endothelial, and
fibroblast cells exhibited lower scores (Figure 5D), consistent with
the trend observed in age scores (Figure 5C).

4 Discussion

Cellular senescence involves the cessation of cell-cycle and the
release of inflammatory cytokines with autocrine, paracrine and
endocrine activities (55). The SASP represents a significant feature
of senescent cells, encompassing the release of various cytokines,
chemokines, growth factors and proteases (56). The impact of cellular
senescence on cancer is intricate, displaying both advantageous and
detrimental effects. Nevertheless, the extent to which the senescent
heterogeneity of immune infiltration cells within tumors, as well as
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the interplay between tumor senescence and immune infiltration in
LUAD, remains incompletely documented. In the current
investigation, we constructed an independent prognostic model
based on cellular senescence-related genes, and comprehensively
analyzed the role of aging in genomic alterations and immune
landscape in LUAD, which might hold the potential to facilitate the
development of personalized immunotherapy.

This study successfully identified a novel and independent
prognostic risk model incorporating ten significantly upregulated
genes in LUAD. Ten genes were selected from a comprehensive list
of 586 aging-associated genes obtained from the CellAge and
GenAge databases. These genes also have been previously
reported as positive regulators of tumor development. For
example, CSNKIE, a member of the serine/threonine protein
kinase family, controls circadian rhythms, which is closely related
to the animals longevity (57). Inhibition of CSNKIE has been show
to selectively inhibit tumor cell development (58), and elevated
CSNKIE expression is associated with poor prognosis in patients
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with ovarian cancer and malignant melanoma (59, 60). EEFIEI, a
tumor suppressor, plays a role in ATM/ATR-mediated p53
activation (61), and serves as a poor prognosis predictor in lung
cancer (62). Overexpression of EEFIE] in transgenic mice resulted
in a significantly shorter mean lifespan (63). GAPDH directly
participates in tumor progression, invasiveness, and metastasis
(64), and conditions such as oxidative stress impair GAPDH
catalytic activity, leading to cellular aging and apoptosis (65).
Increased expression of PSENI in colorectal cancer is associated
with enhanced tumor development through heightened EGFR
signaling via NOTCHI1 processing and activation of the COX-2-
PGE2 pathway (66). PSENI1-null mice die shortly after birth (67),
although PSENT’s role in human aging remains largely unknown.
YWHAZ is an adapter protein implicated in several signal
transduction pathways (68) and interacts with numerous proteins
associated with aging, such as the INS/IGF1 pathway (69, 70).
YWHAZ has also been shown to mediate lung cancer malignancy
and B-catenin protein through its complex with B-catenin (71).
ILIA, a pivotal inflammatory cytokine, is thought to be one of the
critical upstream regulators of other SASP-related genes (72, 73)
and drives tumor growth and metastasis (74). IGFBP3, a member of
the insulin-like growth factor-binding protein (IGFBP) family,
regulates IGF1 and IGF2 by altering the interaction of IGFs with
their cell surface receptors. Interestingly, the cell growth regulator
IGFBP3 exhibits a unique pattern, as elevated levels are associated
with a good prognosis in patients with advanced NSCLC (75).
BRCA2, XRCC5, and XRCC6 are all DDR related genes, involved in
DNA damage and repair. Mice deficient for BRCA2 and XRCC5
have a reduced lifespan (76, 77). XRCC5/6 are associated with poor
prognosis and can be used as diagnostic and prognostic biomarkers
for LUAD (78). BRCAZ2’s role in cancer well-established, as elevated
BRCA2 expression is associated with a significantly reduced number
of stromal cells and high infiltration of both beneficial and
detrimental immune cells in breast cancer (79). BRCA2 has also
been demonstrated to exhibit increased mRNA levels and poor
prognosis in lung cancer (80). These findings collectively provide
compelling evidence that this newly proposed prognostic risk model
has the potential to reflect LUAD prognosis by considering genomic
alterations and the immune landscape.

Genetic instability is a common characteristic of both aging and
cancer (81), encompassing changes in DNA damage, DNA damage
response and repair, mutations, replication stress, transposition,
chromosome aberrations, telomere shortening, micronuclei, and
DNA fragments (82). In our study, we found that the HAS group
exhibited more frequent gene mutations and higher TMB,
indication the presence of an unstable genome and immunogenic
potential in patients with HAS. Furthermore, the mutation
frequency of the Hippo, NOTCH, TP53, and DDR pathways in
the HAS group were also significantly increased. Hippo is an
important pathway regulating differentiation, stem cell renewal,
and oncogenic transformation (83). In cancer research, the
activated Hippo pathway is considered as a tumor suppressor
pathway due to its ability to impede cell proliferation and
facilitate apoptosis (84). Similarly, NOTCH (85) and TP53 (86)
pathway mutations have also been reported to associate with
unfavorable prognosis in lung cancer. DNA damage response
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plays a significant role in maintaining genomic integrity and
closely associated with lung cancer progression and treatment
(87, 88). These researches provide additional insights into our
observed outcomes that patients with HAS experience poorer
survival when compared to those with LAS patients.

Cellular senescence functions as a stress response characterized
by a halt in proliferation and heightened secretion of pro-
inflammatory cytokines (89). Senescent cells recruit immune cells,
facilitating their own immune clearance, thereby restoring tissue
homeostasis. In the context of cancer, various stressors such as
oncogenic signaling, replication stress, hypoxia, reactive oxygen
species, nutrient deprivation, and exposure to cytokines within the
tumor microenvironment can trigger senescence. This underscores
the significant link between tumor cell senescence and immune cell
infiltration. Through a bulk-transcriptome analysis, we observed
that senescence-associated genes exert a strong influence on the
immune microenvironment in LUAD. Specifically, the LAS group
showed an activated TME, this manifested as a noteworthy increase
in the quantities of CD8+ T cells, CD8+ Tcm, CD4+ Tem, CD4+
Tcm, plasma cells, mast cells and DC, alongside heightened
ImmuneScore, GEP score and type II IFN response, T cell co-
stimulation, and HLA scores, in addition to enriched immune
response pathways. These findings were further corroborated
though single-cell analysis, which revealed that CD8-CCR7 (T05),
CD8-CXCL13 (T06), CD8-GNLY (T08), FCGR3A NK cells (T09),
XCL1 NK cells (T10), plasma cell sets (B03, B04, B05), and mast
cells (M01) were more enriched in the LAS group (Figure 4). In
contrast, the HAS group displayed an immunosuppressive
microenvironment with lower immune function scores and a
higher tumor proliferation rate (Figure 4). Additionally, based on
the cellular communication results, we identified some signaling
pathways specific to the HAS group, such as SPP1 and TENASCIN
(Figure 4), which contribute to tumor immune escape and tumor
progression (50-52). These results suggest that the HAS group
might promote tumor cell invasion by evading immune
surveillance, enhancing proliferation and immune escape, leading
to poor prognosis in LUAD.

In addition to bulk-level senescence assessment, we also
compared senescence at the single-cell level and found significant
heterogeneity in cellular senescence. Interestingly, we found that the
age scores for tumor cells in the HAS group were significantly lower
than that in the LAS group (Figure 5C), suggesting that senescence
at the bulk-level is not the same as senescence at the cellular level.
Senescent tumor cells might augment the immune response against
tumors (90), which is entirely consistent with the highly senescent
tumor cells and activated immune microenvironment in the LAS
group. However, it’s worth noting that these senescent cells could
also reinforce the tumor’s resistance to immunotherapy through
potent immunosuppressive mechanisms (91, 92). Therefore, more
in-depth studies at the cellular level remain essential.

Herein, we also explore the relationship between senescence
and other modes of cell death. Patients in the HAS-group
demonstrated a propensity for Alkaliptosis and ROS cell death
mechanisms such as Oxeiptosis (93) and Cuproptosis. These
endogenous damages, coupled with certain exogenous factors,
induced a wide array of genetic injuries, including point
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mutations and deletions (94), ultimately leading to significantly
higher TMB in the HAS-group compared to the LAS-group. To
counteract DNA damage, the HAS-group employed a series of
intricate DNA repair and maintenance mechanisms associated with
cell proliferation and differentiation, ensuring the preservation of
proper chromosomal structure and stability (8, 94). Conversely, the
interactions among lysosome-dependent cell death, autophagy, and
apoptosis played a more significant role in the LAS-group.
Meanwhile, the LAS-group exhibited immunological functions in
response to cellular senescence, engaging in tissue repair through
immune cell recruitment and immune clearance of senescent cells.

More novel analyses were added to our study, although studies
related to senescence in LUAD have been reported (15-18, 20).
Firstly, although previous studies have also compared differences
between aging subgroups in terms of mutations, or TMB (15-18).
Patients with higher risk scores had noticeably increased TMB and
mutated more frequently for TP53 (15, 16, 18), which is consistent
with the results we found. Furthermore, our study was the first to
compare at the pathway level which showed significant differences
in patients with different ARRs. Second, existing researches related
to senescence in LUAD have found that the lower risk scores group
embodies an immune-activated microenvironment. Lin, et al., 2023
showed that the ASRS was positively correlated with most
immunomodulator-related mRNAs, including chemokines, and
immune inhibitors, and receptors (18). This study collected a
previously reported set of 13 immune-related gene sets (41) and
comprehensively compared the immunity of different subgroups.
We found that nine of the 13 immune function gene sets were
positively correlated with ARRS score, including APC to
stimulation, cytokine and cytokine receptor (CCR), Check-point,
cytolytic activity, inflammation-promoting, HLA, T cell co-
stimulation, T cell co-stimulation, and type II IFN response
(Figure 3). Thirdly, previous studies based on different datasets
and different methods have been performed to show the association
between immune infiltration and senescence. However, sometimes
inconsistent results were obtained by different software. Our study
evaluates the association between immune infiltration and
senescence for the first time at the single cell level, and using
scRNA-seq, this study compared cellular communication between
different senescence groups, revealing possible alterations in cellular
communication caused by senescence (Figure 4). Finally, we
assessed senescence at the cellular level for the first time and
found significant inter-cellular heterogeneity for senescence. In
particular, we found an opposite trend between the overall
senescence score and the tumor cell senescence score. This study
still had some limitations, the limited availability of single-cell
samples and immune cohort samples may introduce some bias in
our model validation. Although we validated the aging score model
using several external independent public datasets, prospective
clinical trials verification of our model is still necessary.
Nevertheless, we hope that this model can contribute to the
comprehension of the molecular mechanisms of cellular
senescence and TME in LUAD.

In conclusion, our study identified and validated a senescence-
related signature based on 10 senescence-related genes as an
independent prognostic significance for patients with LUAD,
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indicating that the senescence levels are heterogeneous in LUAD
immune microenvironment, and the HAS group might promote
tumor cell invasion by evading immune surveillance, enhancing
proliferation and immune escape, leading to poor prognosis in LUAD.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article.

Author contributions

KR: Writing - original draft, Conceptualization. LC: Writing -
original draft, Conceptualization, Data curation. CW: Investigation,
Methodology, Software, Writing — original draft. XT: Data curation,
Investigation, Methodology, Software, Writing - original draft. WA:
Writing - review & editing, Methodology. QW: Writing — review &
editing. YM: Investigation, Methodology, Software, Writing -
original draft. YH: Project administration, Supervision, Writing —
original draft. XX: Writing - original draft. JB: Project
administration, Supervision, Writing - original draft. XL: Writing
- original draft. XFX: Supervision, Writing - original draft. MZ:
Supervision, Writing - original draft.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. National
Natural Science Foundation of China (No. 82071035,82371165).
Natural Science Foundation of Shandong Province (No.
ZR2022LZL001). Hunan Provincial Department of Science and
Technology Clinical Medical Technology Innovation Guidance
Project Foundation (No. 2021SK51711).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.
1347770/full#supplementary-material

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2024.1347770/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1347770/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1347770
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ru et al.

References

1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discovery. (2022)
12:31-46. doi: 10.1158/2159-8290.CD-21-1059

2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: Cancer |
Clin. (2023) 73:17-48. doi: 10.3322/caac.21763

3. Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology,
screening, diagnosis, and treatment. Mayo Clinic Proc. (2019) 94:1623-40. doi: 10.1016/
j.mayocp.2019.01.013

4. Spella M, Stathopoulos GT. Immune resistance in lung adenocarcinoma. Cancers.
(2021) 13:384. doi: 10.3390/cancers13030384

5. Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, et al. Aging and aging-related
diseases: from molecular mechanisms to interventions and treatments. Signal
Transduct Target Ther. (2022) 7:391. doi: 10.1038/s41392-022-01251-0

6. Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol. (2021)
22:687-98. doi: 10.1038/541590-021-00927-z

7. Cho §J, Stout-Delgado HW. Aging and lung disease. Annu Rev Physiol. (2020)
82:433-59. doi: 10.1146/annurev-physiol-021119-034610

8. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of
aging: An expanding universe. Cell. (2023) 186:243-78. doi: 10.1016/j.cell.2022.11.001

9. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. (2013)
75:685-705. doi: 10.1146/annurev-physiol-030212-183653

10. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to
good cells. Nat Rev Mol Cell Biol. (2007) 8:729-40. doi: 10.1038/nrm2233

11. Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic
opportunities. Nat Rev Clin Oncol. (2022) 19:619-36. doi: 10.1038/s41571-022-00668-4

12. Anczukow O, Airhart S, Chuang JH, Coussens LM, Kuchel GA, Korstanje R,
et al. Challenges and opportunities for modeling aging and cancer. Cancer Cell. (2023)
41:641-5. doi: 10.1016/j.ccell.2023.03.006

13. Hernandez-Segura A, Nehme ], Demaria M. Hallmarks of cellular senescence.
Trends Cell Biol. (2018) 28:436-53. doi: 10.1016/j.tcb.2018.02.001

14. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular
senescence: aging, cancer, and injury. Physiol Rev. (2019) 99:1047-78. doi: 10.1152/
physrev.00020.2018

15. Lin W, Wang X, Wang Z, Shao F, Yang Y, Cao Z, et al. Comprehensive analysis
uncovers prognostic and immunogenic characteristics of cellular senescence for lung
adenocarcinoma. Front Cell Dev Biol. (2021) 9:780461. doi: 10.3389/fcell.2021.780461

16. Lin W, Wang X, Xu Z, Wang Z, Liu T, Cao Z, et al. Identification and validation
of cellular senescence patterns to predict clinical outcomes and immunotherapeutic
responses in lung adenocarcinoma. Cancer Cell Int. (2021) 21:652. doi: 10.1186/s12935-
021-02358-0

17. Zhang W, Li Y, Lyu J, Shi F, Kong Y, Sheng C, et al. An aging-related signature
predicts favorable outcome and immunogenicity in lung adenocarcinoma. Cancer Sci.
(2022) 113:891-903. doi: 10.1111/cas.15254

18. Lin T, Wang H, Liu Y, Zhao F, He X. Gene set variation analysis-based aging and
senescence score as a prognostic indicator and therapeutic guide in lung
adenocarcinoma. Front Genet. (2023) 14:1176292. doi: 10.3389/fgene.2023.1176292

19. Liu X, Lin L, Cai Q, Sheng H, Zeng R, Zhao Y, et al. Construction and validation
of a prognostic model based on novel senescence-related genes in non-small cell lung
cancer patients with drug sensitivity and tumor microenvironment. Adv Biol (Weinh).
(2023) 7:¢2300190. doi: 10.1002/adbi.202300190

20. Xu Q, Chen Y. An aging-related gene signature-based model for risk
stratification and prognosis prediction in lung adenocarcinoma. Front Cell Dev Biol.
(2021) 9:685379. doi: 10.3389/fcell.2021.685379

21. Collisson EA, Campbell JD, Brooks AN, Berger AH, Lee W, Chmielecki J, et al.
Comprehensive molecular profiling of lung adenocarcinoma. Nature. (2014) 511:543—-
50. doi: 10.1038/nature13385

22. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, et al.
Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative
lung adenocarcinomas. Cancer Res. (2012) 72:100-11. doi: 10.1158/0008-5472.CAN-
11-1403

23. Yamauchi M, Yamaguchi R, Nakata A, Kohno T, Nagasaki M, Shimamura T,
et al. Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes
of stage I lung adenocarcinoma. PloS One. (2012) 7:¢43923. doi: 10.1371/
journal.pone.0043923

24. Der SD, Sykes J, Pintilie M, Zhu CQ, Strumpf D, Liu N, et al. Validation of a
histology-independent prognostic gene signature for early-stage, non-small-cell lung
cancer including stage IA patients. J Thorac Oncol: Off Publ Int Assoc Study Lung
Cancer. (2014) 9:59-64. doi: 10.1097/JT0O.0000000000000042

25. Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H,
et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-
prone lung cancers. Sci Trans Med. (2013) 5:186ra66. doi: 10.1126/
scitranslmed.3005723

26. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. (2013)
41:D991-5. doi: 10.1093/nar/gks1193

Frontiers in Immunology

75

10.3389/fimmu.2024.1347770

27. Zhu ], Fan Y, Xiong Y, Wang W, Chen J, Xia Y, et al. Delineating the dynamic
evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell
RNA sequencing and spatial transcriptomics. Exp Mol Med. (2022) 54:2060-76.
doi: 10.1038/s12276-022-00896-9

28. Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, et al. A
multidimensional systems biology analysis of cellular senescence in aging and
disease. Genome Biol. (2020) 21:91. doi: 10.1186/s13059-020-01990-9

29. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, et al.
Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res.
(2018) 46:D1083-d1090. doi: 10.1093/nar/gkx1042

30. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox
Model. New York: Springer. (2000).

31. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw. (2010) 33:1-22. doi: 10.18637/jss.v033.i01

32. Simon N, Friedman ], Hastie T, Tibshirani R. Regularization paths for cox’s
proportional hazards model via coordinate descent. J Stat Softw. (2011) 39:1-13.
doi: 10.18637/js5.v039.i05

33. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

34. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS. (2012) 16:284-7. doi: 10.1089/
omi.2011.0118

35. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612

36. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1

37. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al.
IFN-y-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest.
(2017) 127:2930-40. doi: 10.1172/JCI91190

38. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor
genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Sci. (2018)
362:eaar3593. doi: 10.1126/science.aar3593

39. Wang Y, Weng W, Liang R, Zhou Q, Hu H, Li M, et al. Predicting T cell-
inflamed gene expression profile in hepatocellular carcinoma based on dynamic
contrast-enhanced ultrasound radiomics. J Hepatocell Carcinoma. (2023) 10:2291-
303. doi: 10.2147/JHC.S437415

40. Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, et al.
Conserved pan-cancer microenvironment subtypes predict response to
immunotherapy. Cancer Cell. (2021) 39:845-865.e7. doi: 10.1016/j.ccell.2021.04.014

41. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers
based on Immunogenomic profiling. J Exp Clin Cancer Res: CR. (2018) 37:327.
doi: 10.1186/s13046-018-1002-1

42. Hinzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7

43. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-
Verlag. (2016).

44. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747-56.
doi: 10.1101/gr.239244.118

45. McGinnis CS, Murrow LM, Gartner Z]. DoubletFinder: doublet detection in
single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. (2019)
8:329-337.e4. doi: 10.1016/j.cels.2019.03.003

46. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al.
Comprehensive integration of single-cell data. Cell. (2019) 177:1888-1902 e21.
doi: 10.1016/j.cell.2019.05.031

47. LiuY, He S, Wang XL, Peng W, Chen QY, Chi DM, et al. Tumour heterogeneity
and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat
Commun. (2021) 12:741. doi: 10.1038/s41467-021-21043-4

48. Chen K, Wang Y, Hou Y, Wang Q, Long D, Liu X, et al. Single cell RNA-seq
reveals the CCL5/SDCI receptor-ligand interaction between T cells and tumor cells in
pancreatic cancer. Cancer Lett. (2022) 545:215834. doi: 10.1016/j.canlet.2022.215834

49. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

50. Klement JD, Paschall AV, Redd PS, Ibrahim ML, Lu C, Yang D, et al. An
osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor
immune evasion. J Clin Invest. (2018) 128:5549-60. doi: 10.1172/JCI123360

51. Nallasamy P, Nimmakayala RK, Karmakar S, Leon F, Seshacharyulu P,
Lakshmanan 1, et al. Pancreatic tumor microenvironment factor promotes cancer
stemness via SPP1-CD44 axis. Gastroenterology. (2021) 161:1998-2013.e7.
doi: 10.1053/j.gastro.2021.08.023

frontiersin.org


https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.3322/caac.21763
https://doi.org/10.1016/j.mayocp.2019.01.013
https://doi.org/10.1016/j.mayocp.2019.01.013
https://doi.org/10.3390/cancers13030384
https://doi.org/10.1038/s41392-022-01251-0
https://doi.org/10.1038/s41590-021-00927-z
https://doi.org/10.1146/annurev-physiol-021119-034610
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.1146/annurev-physiol-030212-183653
https://doi.org/10.1038/nrm2233
https://doi.org/10.1038/s41571-022-00668-4
https://doi.org/10.1016/j.ccell.2023.03.006
https://doi.org/10.1016/j.tcb.2018.02.001
https://doi.org/10.1152/physrev.00020.2018
https://doi.org/10.1152/physrev.00020.2018
https://doi.org/10.3389/fcell.2021.780461
https://doi.org/10.1186/s12935-021-02358-0
https://doi.org/10.1186/s12935-021-02358-0
https://doi.org/10.1111/cas.15254
https://doi.org/10.3389/fgene.2023.1176292
https://doi.org/10.1002/adbi.202300190
https://doi.org/10.3389/fcell.2021.685379
https://doi.org/10.1038/nature13385
https://doi.org/10.1158/0008-5472.CAN-11-1403
https://doi.org/10.1158/0008-5472.CAN-11-1403
https://doi.org/10.1371/journal.pone.0043923
https://doi.org/10.1371/journal.pone.0043923
https://doi.org/10.1097/JTO.0000000000000042
https://doi.org/10.1126/scitranslmed.3005723
https://doi.org/10.1126/scitranslmed.3005723
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1038/s12276-022-00896-9
https://doi.org/10.1186/s13059-020-01990-9
https://doi.org/10.1093/nar/gkx1042
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1172/JCI91190
https://doi.org/10.1126/science.aar3593
https://doi.org/10.2147/JHC.S437415
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1186/s13046-018-1002-1
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1038/s41467-021-21043-4
https://doi.org/10.1016/j.canlet.2022.215834
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1172/JCI123360
https://doi.org/10.1053/j.gastro.2021.08.023
https://doi.org/10.3389/fimmu.2024.1347770
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ru et al.

52. Schlensog M, Ruehlmann AC, Haeberle L, Opitz F, Becher AK, Goering W, et al.
Tenascin-C affects invasiveness of EGFR-mutated lung adenocarcinoma through a
putative paracrine loop. Biochim Biophys Acta Mol Basis Dis. (2023) 1869:166684.
doi: 10.1016/j.bbadis.2023.166684

53. Liu W, Maben Z, Wang C, Lindquist KC, Li M, Rayannavar V, et al. Structural
delineation and phase-dependent activation of the costimulatory CD27:CD70 complex.
J Biol Chem. (2021) 297:101102. doi: 10.1016/j.jbc.2021.101102

54. Liu H, Lv R, Song F, Yang Y, Zhang F, Xin L, et al. A near-IR ratiometric
fluorescent probe for the precise tracking of senescence: a multidimensional sensing
assay of biomarkers in cell senescence pathways. Chem Sci. (2024) 15:5681-93.
doi: 10.1039/D4SC00595C

55. Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the
good, the bad and the unknown. Nat Rev Nephrol. (2022) 18:611-27. doi: 10.1038/
541581-022-00601-z

56. Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, et al. A proteomic
atlas of senescence-associated secretomes for aging biomarker development. PloS Biol.
(2020) 18:€3000599. doi: 10.1371/journal.pbio.3000599

57. Hurd MW, Ralph MR. The significance of circadian organization for longevity in
the golden hamster. J Biol Rhythms. (1998) 13:430-6. doi: 10.1177/
074873098129000255

58. Yang WS, Stockwell BR. Inhibition of casein kinase 1-epsilon induces cancer-
cell-selective, PERIOD2-dependent growth arrest. Genome Biol. (2008) 9:R92.
doi: 10.1186/gb-2008-9-6-r92

59. Rodriguez N, Yang J, Hasselblatt K, Liu S, Zhou Y, Rauh-Hain JA, et al. Casein
kinase I epsilon interacts with mitochondrial proteins for the growth and survival of
human ovarian cancer cells. EMBO Mol Med. (2012) 4:952-63. doi: 10.1002/
emmm.201101094

60. Yang J, Jiang Q, Liu L, Peng H, Wang Y, Li S, et al. Identification of prognostic
aging-related genes associated with immunosuppression and inflammation in head and
neck squamous cell carcinoma. Aging. (2020) 12:25778-804. doi: 10.18632/
aging.v12i24

61. Park BJ, Kang JW, Lee SW, Choi SJ, Shin YK, Ahn YH, et al. The
haploinsufficient tumor suppressor pl18 upregulates p53 via interactions with ATM/
ATR. Cell. (2005) 120:209-21. doi: 10.1016/j.cell.2004.11.054

62. Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic
significance of eukaryotic translation elongation factors in different cancers. PloS One.
(2018) 13:¢0191377. doi: 10.1371/journal.pone.0191377

63. Oh YS, Kim DG, Kim G, Choi EC, Kennedy BK, Suh Y, et al. Downregulation of
lamin A by tumor suppressor AIMP3/p18 leads to a progeroid phenotype in mice.
Aging Cell. (2010) 9:810-22. doi: 10.1111/.1474-9726.2010.00614.x

64. Sirover MA. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer
Metastasis Rev. (2018) 37:665-76. doi: 10.1007/s10555-018-9764-7

65. Nicholls C, Li H, Liu JP. GAPDH: a common enzyme with uncommon
functions. Clin Exp Pharmacol Physiol. (2012) 39:674-9. doi: 10.1111/j.1440-
1681.2011.05599.x

66. Gamez-Belmonte R, Mahapatro M, Erkert L, Gonzalez- Acera M, Naschberger E,
Yu Y, et al. Epithelial presenilin-1 drives colorectal tumour growth by controlling
EGFR-COX2 signalling. Gut. (2023) 72:1155-66. doi: 10.1136/gutjnl-2022-327323

67. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. Skeletal and CNS
defects in Presenilin-1-deficient mice. Cell. (1997) 89:629-39. doi: 10.1016/S0092-8674
(00)80244-5

68. Yafte MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, et al. The
structural basis for 14-3-3:phosphopeptide binding specificity. Cell. (1997) 91:961-71.
doi: 10.1016/S0092-8674(00)80487-0

69. Ogihara T, Isobe T, Ichimura T, Taoka M, Funaki M, Sakoda H, et al. 14-3-3
protein binds to insulin receptor substrate-1, one of the binding sites of which is in the
phosphotyrosine binding domain. J Biol Chem. (1997) 272:25267-74. doi: 10.1074/
jbc.272.40.25267

70. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like
signals. Sci (New York NY). (2003) 299:1346-51. doi: 10.1126/science.1081447

71. Chen CH, Chuang SM, Yang MF, Liao JW, Yu SL, Chen JJ. A novel function of
YWHAZ/B-catenin axis in promoting epithelial-mesenchymal transition and lung
cancer metastasis. Mol Cancer Res. (2012) 10:1319-31. doi: 10.1158/1541-7786.MCR-
12-0189

72. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-
lalpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine

Frontiers in Immunology

76

10.3389/fimmu.2024.1347770

network. Proc Natl Acad Sci United States America. (2009) 106:17031-6.
doi: 10.1073/pnas.0905299106

73. Leon KE, Buj R, Lesko E, Dahl ES, Chen CW, Tangudu NK, et al. DOTIL
modulates the senescence-associated secretory phenotype through epigenetic
regulation of IL1A. J Cell Biol. (2021) 220:¢202008101. doi: 10.1083/jcb.202008101

74. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the
future. Immunity. (2013) 39:1003-18. doi: 10.1016/j.immuni.2013.11.010

75. Wang YA, Sun Y, Palmer ], Solomides C, Huang LC, Shyr Y, et al. IGFBP3
modulates lung tumorigenesis and cell growth through IGF1 signaling. Mol Cancer Res.
(2017) 15:896-904. doi: 10.1158/1541-7786.MCR-16-0390

76. Donoho G, Brenneman MA, Cui TX, Donoviel D, Vogel H, Goodwin EH, et al.
Deletion of Brca2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal
instability, and reduced life span in mice. Genes Chromosomes Cancer. (2003) 36:317—
31. doi: 10.1002/gcc.10148

77. Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P. Deletion of Ku86 causes
early onset of senescence in mice. Proc Natl Acad Sci United States America. (1999)
96:10770-5. doi: 10.1073/pnas.96.19.10770

78. Fan Y, Gao Z, Li X, Wei S, Yuan K. Gene expression and prognosis of x-ray
repair cross-complementing family members in non-small cell lung cancer.
Bioengineered. (2021) 12:6210-28. doi: 10.1080/21655979.2021.1964193

79. Satyananda V, Oshi M, Endo I, Takabe K. High BRCA2 gene expression is
associated with aggressive and highly proliferative breast cancer. Ann Surg Oncol.
(2021) 28:7356-65. doi: 10.1245/510434-021-10063-5

80. Yan B, Xie B, Huang M, Guo J, Sun ], Chen J, et al. Mutations and expressions of
breast cancer 1/2 in lung cancer. Thorac Cancer. (2023) 14:1753-63. doi: 10.1111/1759-
7714.14920

81. Lopez-Otin C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-
hallmarks of aging and cancer. Cell Metab. (2023) 35:12-35. doi: 10.1016/
j.cmet.2022.11.001

82. Bao H, CaoJ, Chen M, Chen M, Chen W, Chen X, et al. Biomarkers of aging. Sci
China Life Sci. (2023) 66:893-1066. doi: 10.1007/s11427-023-2305-0

83. Lian I, Kim J, Okazawa H, Zhao ], Zhao B, Yu J, et al. The role of YAP
transcription coactivator in regulating stem cell self-renewal and differentiation. Genes
Dey. (2010) 24:1106-18. doi: 10.1101/gad.1903310

84. Pan D. The hippo signaling pathway in development and cancer. Dev Cell.
(2010) 19:491-505. doi: 10.1016/j.devcel.2010.09.011

85. Wang CX, Yan J, Lin S, Ding Y, Qin YR. Mutant-allele dispersion correlates with
prognosis risk in patients with advanced non-small cell lung cancer. ] Cancer Res Clin
Oncol. (2023) 149:8545-55. doi: 10.1007/s00432-023-04801-3

86. Hernandez Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling
pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer. (2021)
1876:188556. doi: 10.1016/j.bbcan.2021.188556

87. Qin C, Fan X, Sai X, Yin B, Zhou S, Addeo A, et al. Development and validation
of a DNA damage repair-related gene-based prediction model for the prognosis of lung
adenocarcinoma. J Thorac Dis. (2023) 15:6928-45. doi: 10.21037/jtd

88. Zhao Y, Qing B, Xu C, Zhao J, Liao Y, Cui P, et al. DNA damage response gene-
based subtypes associated with clinical outcomes in early-stage lung adenocarcinoma.
Front Mol Biosci. (2022) 9:901829. doi: 10.3389/fmolb.2022.901829

89. Chen HA, Ho Y], Mezzadra R, Adrover JM, Smolkin R, Zhu C, et al. Senescence
rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discovery.
(2023) 13:432-53. doi: 10.1158/2159-8290.CD-22-0528

90. Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, et al. Cellular
senescence is immunogenic and promotes antitumor immunity. Cancer Discovery.
(2023) 13:410-31. doi: 10.1158/2159-8290.CD-22-0523

91. Shahbandi A, Chiu FY, Ungerleider NA, Kvadas R, Mheidly Z, Sun MJS, et al.
Breast cancer cells survive chemotherapy by activating targetable immune-modulatory
programs characterized by PD-L1 or CD80. Nat Cancer. (2022) 3:1513-33.
doi: 10.1038/543018-022-00466-y

92. Prieto LI, Sturmlechner I, Goronzy JJ, Baker DJ. Senescent cells as thermostats of
antitumor immunity. Sci Trans Med. (2023) 15:eadg7291. doi: 10.1126/
scitranslmed.adg7291

93. Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, et al.
Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway.
Nat Immunol. (2018) 19:130-40. doi: 10.1038/s41590-017-0013-y

94. Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer:
molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther.
(2023) 8:70. doi: 10.1038/s41392-023-01332-8

frontiersin.org


https://doi.org/10.1016/j.bbadis.2023.166684
https://doi.org/10.1016/j.jbc.2021.101102
https://doi.org/10.1039/D4SC00595C
https://doi.org/10.1038/s41581-022-00601-z
https://doi.org/10.1038/s41581-022-00601-z
https://doi.org/10.1371/journal.pbio.3000599
https://doi.org/10.1177/074873098129000255
https://doi.org/10.1177/074873098129000255
https://doi.org/10.1186/gb-2008-9-6-r92
https://doi.org/10.1002/emmm.201101094
https://doi.org/10.1002/emmm.201101094
https://doi.org/10.18632/aging.v12i24
https://doi.org/10.18632/aging.v12i24
https://doi.org/10.1016/j.cell.2004.11.054
https://doi.org/10.1371/journal.pone.0191377
https://doi.org/10.1111/j.1474-9726.2010.00614.x
https://doi.org/10.1007/s10555-018-9764-7
https://doi.org/10.1111/j.1440-1681.2011.05599.x
https://doi.org/10.1111/j.1440-1681.2011.05599.x
https://doi.org/10.1136/gutjnl-2022-327323
https://doi.org/10.1016/S0092-8674(00)80244-5
https://doi.org/10.1016/S0092-8674(00)80244-5
https://doi.org/10.1016/S0092-8674(00)80487-0
https://doi.org/10.1074/jbc.272.40.25267
https://doi.org/10.1074/jbc.272.40.25267
https://doi.org/10.1126/science.1081447
https://doi.org/10.1158/1541-7786.MCR-12-0189
https://doi.org/10.1158/1541-7786.MCR-12-0189
https://doi.org/10.1073/pnas.0905299106
https://doi.org/10.1083/jcb.202008101
https://doi.org/10.1016/j.immuni.2013.11.010
https://doi.org/10.1158/1541-7786.MCR-16-0390
https://doi.org/10.1002/gcc.10148
https://doi.org/10.1073/pnas.96.19.10770
https://doi.org/10.1080/21655979.2021.1964193
https://doi.org/10.1245/s10434-021-10063-5
https://doi.org/10.1111/1759-7714.14920
https://doi.org/10.1111/1759-7714.14920
https://doi.org/10.1016/j.cmet.2022.11.001
https://doi.org/10.1016/j.cmet.2022.11.001
https://doi.org/10.1007/s11427-023-2305-0
https://doi.org/10.1101/gad.1903310
https://doi.org/10.1016/j.devcel.2010.09.011
https://doi.org/10.1007/s00432-023-04801-3
https://doi.org/10.1016/j.bbcan.2021.188556
https://doi.org/10.21037/jtd
https://doi.org/10.3389/fmolb.2022.901829
https://doi.org/10.1158/2159-8290.CD-22-0528
https://doi.org/10.1158/2159-8290.CD-22-0523
https://doi.org/10.1038/s43018-022-00466-y
https://doi.org/10.1126/scitranslmed.adg7291
https://doi.org/10.1126/scitranslmed.adg7291
https://doi.org/10.1038/s41590-017-0013-y
https://doi.org/10.1038/s41392-023-01332-8
https://doi.org/10.3389/fimmu.2024.1347770
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

:' frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

Petar Ozretic,
Rudjer Boskovic Institute, Croatia

Somayah Abdullah Albaradei,

King Abdullah University of Science and
Technology, Saudi Arabia

Arkady Bedzhanyan,

Petrovsky National Research Center of
Surgery, Russia

Liang Yang
ncu_yangliang@163.com

These authors have contributed equally to
this work

10 March 2024
29 August 2024
19 September 2024

Yang K, Wu J, Xu T, Zhou Y, Liu W and Yang L
(2024) Machine learning to predict distant
metastasis and prognostic analysis of
moderately differentiated gastric
adenocarcinoma patients: a novel focus on
lymph node indicators.

Front. Immunol. 15:1398685.

doi: 10.3389/fimmu.2024.1398685

© 2024 Yang, Wu, Xu, Zhou, Liu and Yang. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

Original Research
19 September 2024
10.3389/fimmu.2024.1398685

Machine learning to predict
distant metastasis and
prognostic analysis of
moderately differentiated gastric
adenocarcinoma patients: a
novel focus on lymph

node indicators

H 1 H H 2 H 3 1

Kangping Yang™, Jiagiang Wu*', Tian Xu*', Yuepeng Zhou",
.4 . 1.

Wenchun Liu® and Liang Yang™
tDepartment of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang, Jiangxi, China, 2Department of General Surgery, First Medical Center
of the Chinese People's Liberation Army General Hospital, Beijing, China, sDepartment of
Gastroenterological Surgery, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine,

Nanchang, Jiangxi, China, “The Second Department of Internal Medicine, Anfu People’'s Hospital,
Anfu, Jiangxi, China

Background: Moderately differentiated gastric adenocarcinoma (MDGA) has a
high risk of metastasis and individual variation, which strongly affects patient
prognosis. Using large-scale datasets and machine learning algorithms for
prediction can improve individualized treatment. The specific efficacy of
several lymph node indicators in predicting distant metastasis (DM) and patient
prognosis in MDGA remains obscure.

Methods: We collected data from MDGA patients from the SEER database from
2010 to 2019. Additionally, we collected data from MDGA patients in China. We
used nine machine learning algorithms to predict DM. Subsequently, we used
Cox regression analysis to determine the risk factors affecting overall survival (OS)
and cancer-specific survival (CSS) in DM patients and constructed nomograms.
Furthermore, we used logistic regression and Cox regression analyses to assess
the specific impact of six lymph node indicators on DM incidence and
patient prognosis.

Results: We collected data from 5,377 MDGA patients from the SEER database
and 109 MDGC patients from hospitals. T stage, N stage, tumor size, primary site,
number of positive lymph nodes, and chemotherapy were identified as
independent risk factors for DM. The random forest prediction model had the
best overall predictive performance (AUC = 0.919). T stage, primary site,
chemotherapy, and the number of regional lymph nodes were identified as
prognostic factors for OS. Moreover, T stage, number of regional lymph nodes,
primary site, and chemotherapy were also influential factors for CSS. The
nomograms showed good predictive value and stability in predicting the 1-, 3-,
and 5-year OS and CSS in DM patients. Additionally, the log odds of a metastatic
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lymph node and the number of negative lymph nodes may be risk factors for DM,
while the regional lymph node ratio and the number of regional lymph nodes are
prognostic factors for OS.

Conclusion: The random forest prediction model accurately identified high-risk
populations, and we established OS and CSS survival prediction models for
MDGA patients with DM. Our hospital samples demonstrated different
characteristics of lymph node indicators in terms of distant metastasis

and prognosis.

moderately differentiated gastric adenocarcinoma, prognosis, nomogram, lymph node
indicators, distant metastasis, machine learning

1 Introduction

Gastric cancer, a very prevalent gastrointestinal tumor, is the fifth
most prevalent tumor worldwide (1). In 2020, there were more than
one million additional cases of gastric cancer (2). The histologic type
of gastric cancer is predominantly adenocarcinoma, and the
pathologic grade includes highly, moderately, and poorly
differentiated and undifferentiated (3, 4). Although progressive
gastric cancer is predominantly poorly differentiated, some
moderately differentiated gastric adenocarcinomas (MDGAs) still
have a high risk of metastasis and individual differences, which have
been reported in animal models and clinical studies (5-7). There is no
doubt that the occurrence of distant metastasis (DM) directly affects
patient prognosis (8). According to the latest eighth revision of the
UICC/AJCC TNM classification for gastric cancer, once DM occurs,
the disease has already entered stage IV, at which time the patient’s
survival chances are extremely poor (9). A retrospective study showed
that the median overall survival (OS) time for patients with liver
metastases from gastric cancer was 7 months and that for patients with
lung and brain metastases (10) was only 5 months. Timely and
accurate determination of the distant metastasis status of gastric
cancer patients has important positive implications for avoiding
missing opportunities for early and effective interventions and
improving patient survival.

Currently, tests to clarify the occurrence of DM mainly rely on
multidetector computed tomography (CT), positron emission
tomography-CT (PET/CT), and other imaging methods (11, 12).
However, all of these methods have the problem of insufficient
sensitivity in practical applications (13). For example, in PET/CT,
some poorly differentiated carcinomas, mucinous carcinomas, and
indolent cell carcinomas usually have low '*F-FDG uptake, which
often results in false-negative results and delayed therapy (14).
Therefore, there is an urgent need for an accurate, convenient, yet
affordable method for DM diagnosis and prediction. The use of
emerging machine learning (ML) algorithms and large-scale datasets
to construct predictive models is currently a popular solution (15-17).
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ML algorithms are able to accurately process raw data originating from
databases, analyze the relationships between important data, and
ultimately build and filter the best predictive models (18-21). This
prediction model, which integrates clinical manifestations and imaging
data to form a comprehensive assessment tool, can be used to diagnose
the presence or absence of DM early and accurately and can better
guide subsequent clinical diagnosis and treatment.

For patients with already occurring DM, the median OS after
performing conventional chemotherapy is approximately 12
months (22). With regard to cancer-specific survival (CSS), the 1-
and 3-year CSS rates for the younger group (<60 years of age) were
29.0% and 6.2%, respectively, compared with 22.8% and 4.8% for
the older group (>60 years of age), respectively (23). These findings
suggest that there are many factors that can influence DM patient
prognosis, and clarifying the effects of these factors and applying
them in a targeted manner are important ways to improve patient
prognosis. Many studies have demonstrated that factors such as age,
tumor size, sex, degree of differentiation, and primary site are
directly associated with DM patient prognosis (24-26). Moreover,
recent studies have demonstrated a strong association between
various lymph node indicators and DM and the prognosis of
moderately differentiated gastric adenocarcinoma patients. For
example, lymph node-specific indicators include the number of
positive lymph nodes (PLNs), the lymph node ratio (LNR), and the
log odds of metastatic LNs (LODDS) (27-29). However, the specific
efficacy of these lymph node indicators in predicting DM and
patient prognosis is unclear (30-33). This study explored these
prognostic factors in DM patients in the MDGA to provide strong
theoretical support for individualized treatment in this population.
Afterward, the above factors were combined to construct OS and
CSS prognostic nomograms at 1, 3, and 5 years for DM patients
with MDGA, which is a simplified visualization model for statistical
prediction in combination with independent factors.

Our goal was to formulate models for predicting DM in MDGA
patients and to ensure the stability and accuracy of these models
through both database validation and external validation. A
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prognostic analysis of DM patients was then performed to plot OS and
CSS prognostic nomograms for MDGA patients. Importantly, we
focused on exploring the relationships between various lymph node
indicators whose efficacy is still unclear and between DM and prognosis
to further promote the application of lymph node indicators in the
clinical practice of stomach cancer diagnosis.

2 Materials and methods
2.1 Sources of data and sample selection

The primary training dataset was obtained by collecting all 2010
2019 gastric cancer patient data from the Surveillance, Epidemiology,
and End Results (SEER) database. The SEER database is the most
detailed publicly available cancer database. Moreover, we collected
the clinical data of MDGA patients treated at the Second Affiliated
Hospital of Nanchang University between 2008 and 2010 as an
external validation dataset. The inclusion criteria were as follows: 1)
had a diagnosis of MDGA, 2) did not receive preoperative
radiotherapy or immunotherapy, and 3) had comprehensive and
searchable prognostic data. The exclusion criteria were as follows: 1)
patients whose primary tumor was not gastric cancer, 2) patients
whose tumor and lymph node status were not clear, and 3) patients
whose other basic information was incomplete. The specific data
selection steps are illustrated below in Figure 1.

2.2 Variable selection

Variables in the present study included age, TNM stage,
primary site, tumor size, sex (male or female), and two

10.3389/fimmu.2024.1398685

therapeutic variables (chemotherapy and radiation) obtained from
the diagnostic information, as well as several lymph node
indicators. Multiple lymph node indicators included the number
of Reg LNs, number of all LNs, number of Reg LNs, number of Neg
LNs, gross LN metastasis, LN positivity rate, log odds of metastatic
LNs, and lymph node ratio (number of metastatic LNs to total
number of LNs examined).

OS and CSS are the main outcomes for predicting the prognosis
of patients with DM. In OS, deaths due to any cause will be counted,
while in CSS analysis, only deaths due to MDGA will be considered
events, and deaths due to other factors as well as survival will
be excluded.

2.3 Statistical methods

The research procedure is illustrated in Figure 2. Heatmapping
was first developed to correlate the proposed study variables. We
use regression analysis and machine learning for dual validation of
risk factors; regression analysis is performed using the full SEER
data, and machine learning uses the training set, the test set, and the
external validation set to construct predictive models. Independent
risk factors influencing DM in moderately differentiated gastric
adenocarcinoma patients were screened by logistic regression
analysis. The outcomes are expressed as hazard ratios (HRs) and
95% confidence intervals (Cls). The patient data screened from the
SEER dataset were randomized 7:3 into a training set and a test set.
Then, the training set will be utilized to build the predictive model.
The constructed predictive models are then tested and evaluated
using the test set data. We constructed nine ML algorithms in the
training set, including RF (random forest), LR (logistic regression),
LASSO (least absolute shrinkage and selection operator), SVM

FIGURE 1
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Flowchart of the data screening process. The figure shows the process of filtering eligible patient data from the SEER database.
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FIGURE 2

Data analysis guide. The figure shows the procedure of this study for processing and analyzing the screened data.

(support vector machine), KNN (K-nearest neighbor), NBC (naive
Bayes classifier), and ANN (artificial neural network). The receiver
operating characteristic (ROC) curve, the area under the ROC curve
(AUCQ), sensitivity, specificity, F1 score, and accuracy were used to
compare the performance of the models. Additionally, the
predictive models were evaluated and validated using test set data.
Self-collected hospital patient data were used as an external
validation set to validate the best predictive model that assessed
the generalization ability of the model.

We used several R packages in R for data analysis and
visualization. The createDataPartition function of the caret
package was used for grouping the training and validation sets.
The imp function of randomForest package was used to construct
the importance scores of RF. The coords function of the pROC
package was used to construct the confusion matrix. The
randomForest package, the MASS package, the rms package, the
glmnet package, the e1071 package, the xgboost package, the adabag
package, and the neuralnet package were all used for machine
learning model construction. The MASS package, rms package,
glmnet package, 1071 package, xgboost package, adabag package,
and neuralnet package were used for the construction of machine
learning models. The ggplot package and pROC package were used
for the visualization of ROC curves and importance scores.

For survival prognostic analyses, single-variable Cox regression
analysis was first adopted to screen the relevant variables that could
influence the prognosis (P < 0.05), and then multifactorial analyses
were carried out on the screened variables. Moreover, we used the
Kaplan—Meier curves to assess the differences in survival prognosis
among patients stratified by different variables and compared the
results by means of the log-rank test. The independent risk factors
identified through Cox regression analysis were used to construct
the nomogram. Moreover, using multifactor Cox regression
analysis, the regression coefficients f (coe f) for each variable
were normalized and are displayed as risk scores on the
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nomograms. The accuracy and discriminatory power of the
generated nomograms were assessed with the AUC, calibration
curves, and consistency index (C-index). In addition, we evaluated
the clinical value of the nomograms by using decision curve analysis
(DCA). This is a commonly used measure to assess model validity
by quantitatively estimating the net effectiveness under the
exposure threshold.

Finally, the impact of multiple nuanced tumor-associated LN
indicators on the development of DM in MDGA patients was
investigated by logistic regression analysis of patient data
collected at our institution, as well as factors affecting patient
prognosis. For descriptive statistics, categorical variables were
compared using the chi-square test or Fisher’s exact probability
method. P <0.05 indicated statistical significance.

2.4 Ethics approval

The use of patient data in this research has been authorized. The
approval document from the Ethics Committee is shown in the
attachment. Patients from the SEER database provided consent for
open research in any scientific study worldwide.

3 Results
3.1 Basic features and patient subgroups

Altogether, 5,377 patients from the database were included in
this study; 749 (13.93%) had DM, and 4,628 (86.07%) had no DM.
The local patient dataset, which served as an external validation set,
included a total of 109 patients, of whom 15 (13.76%) had DM and
94 (86.24%) had no DM. The patient data screened from the SEER
dataset were randomized 7:3 into training and testing sets. The
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TABLE 1 Comparison of the general features of the training and TABLE 1 Continued
test sets.
Training Test set Validation
Training Test set Validation set (%) (VA set (%)
set (%) (%) set (%) Variable N =3764 N =1,613 N =109
Variable N =3764 N =1613 N =109 T
umor
Age (years) 0.800 size (cm) g
<40 42 (1.1%) 23 (1.4%) 4 5to8 766 (20.4%) 312 (19.3%) 23
40-60 675 (17.9%) 283 (17.5%) 35 >8 235 (6.2%) 100 (6.2%) 11
60-80 2,215 (58.8%) | 948 (58.8% 67
(58.8%) (58.8%) Number of 0.997
Reg LN
>80 832 (22.1%) 359 (22.3%) 3
None 1,204 (32.0%) 515 (31.9%) 47
Sex 0.443
1to3 167 (4.4%) 71 (44%) 22
Male 2,673 (71.0%) | 1,128 (69.9%) 83
4 or more 2,393 (63.6%) | 1,027 (63.7%) 40
Female 1,087 (29.0%) 489 (30.1%) 26
T stage 0.612 .
results of the analyses, as shown in Table 1, show the
1 1,364 (36.2%) | 573 (35.5%) 23 comprehensive demographic and clinical characteristics of the
2 561 (14.9%) 230 (14.3%) 17 three groups of MDGA patients. Additionally, there were no
statistically significant differences (P > 0.05) in any of the clinical
3 1,334 (35.4%) 573 (35.5%) 55 o ) ) .
characteristics analyzed, such as tumor size, primary site, TNM
4 505 (13.4%) | 237 (14.7%) 14 stage, or number of Reg LNs, between the patients in the training
N stage 0.997 and testing sets.
0 2,012 (53.5%) | 865 (53.6%) 45
1 976 (25.9%) | 417 (25.9%) 40 3.2 Comparison and analysis of
2 471 (12.5%) 199 (12.3%) 12 model variables
3 305 (8.1%) 132 (8.2%) 12 ) . )
Pearson correlation analysis was used to examine the
M stage 0.919 relationship between each variable (Figure 3A). Moreover, with
0 3238 (86.0%) | 1,390 (86.2%) 94 the comprehensive consideration of the type of data, distribution
characteristics, and other factors, all the variables are independent
1 526 (14.0%) 223 (13.8%) 15 o i . ) .
and well-distributed and can be included in the following statistical
Primary site 0.419 analysis. By multifactorial logistic regression analysis, this study
Body 303 (8.0%) 143 (8.9%) 7 revealed that six variables were statistically significant in predicting
the occurrence of DM in patients with MDGA (Table 2). These
Cardia 1,509 (40.1%) 650 (40.3%) 40 )
included the T and N stages, but the M stage seemed to be not
Fundus 134 (3.6%) 59 (3.7%) B significantly different. Other variables included primary site, tumor
Gastric 30 size, number of Reg LNs, and chemotherapy. In addition, the
817 21.7%) | 378 (23.4%) . o
antrum importance scores from the random forest model indicated
Greater 2 variable significance (as displayed in Figure 3B). The number of
141 (3.7%) 50 (3.1%) .
curvature Reg LNs, N stage, T stage, chemotherapy, age, tumor size, and
Lesser oo - s primary site were positively related to the occurrence of DM in
curvature ©.1%) (8.1%) MDGA patients. Specifically, the outcome was the same as the
. findings of the former correlation analyses, except for age. With
Overlapping o 12 . . . .
lesion 182 (4.8%) 77 (4.8%) distant metastasis as the outcome variable, we conducted single-
and multiple-factor logistic regression analyses on eight factors:
Pylorus 136 (3.6%) 43 (2.7%) 4 ) . ;
primary site, tumor size, age, sex, T stage, N stage, number of
Stomach 200 (5.3%) 82 (5.1%) 4 positive LNs, and chemotherapy. Multiple factor regression was
Tumor 0.280 performed, and step-forward analysis revealed that the P-values for
size (cm) ’ T stage, N stage, primary site, number of positive LNs, tumor size,
< 971 (258%) 457 (28.3%) ” and chemotherapy were less than 0.05 and were considered
statistically significant independent risk factors. The results of
2105 1792 (47.6%) | 744 (46.1%) o forward regression analysis indicated the meaningful impact of

(Continued)  six variables on distant metastasis: sex, T stage, N stage, primary
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FIGURE 3

Results of Pearson correlation analysis for each variable (A) and ranking of importance of predictive model characteristics (B). The results of Pearson
correlation analysis for each variable (A) showed that all variables existed independently of each other. The predictive model characteristics (B) were
the number of Reg LNs, N stage, T stage, chemotherapy, age, tumor size, and primary site, in order of importance.

site, tumor size, and number of positive LNs (the detailed results are  training set. The symptoms were finely tuned to stabilize the models
presented in the Supplementary Material). and prevent them from overfitting.

Table 3 and Figure 4A present the evaluation standards for each

model comparison, including ROC curves, specificity, sensitivity,

3.3 Establishment of predictive models for accuracy, recall, and F1 score. Based on the comparison results, it is

distant metastasis concluded that the random forest model has the highest predictive

value. Its AUC (0.913), specificity (0.891), and accuracy (0.880) were

This research used nine distinct machine learning models  the best among the nine models. The results in the testing set verified

individually to construct a distant metastasis prediction model for  this point again. The AUC of the ROC curve for the RF model was

MDGA patients. The built models were trained with data from the  0.848 (Figure 4B), which was noticeably superior to those of the other

TABLE 2 Multifactorial analysis of moderately differentiated distant metastatic gastric adenocarcinoma.

Variables Beta S.E z OR (95% Cl) P aBeta aS.E aZ aOR (95% Cl)
Age
<40 1.00 (reference)
40-60 -0.26 0.37 -0.71 0.77 (0.37-1.59) 0.478
60-80 —-0.60 0.36 -1.64 0.55 (0.27-1.12) 0.100
>80 -0.62 0.37 -1.67 0.54 (0.26-1.11) 0.094
Sex
Male 1.00 (reference)
Female -0.16 0.11 -1.53 0.85 (0.69-1.05) 0.125
T stage
1 1.00 (reference) 1.00 (reference)
2 —-0.55 0.19 -2.90 0.58 (0.40-0.84) 0.004 —-0.69 0.21 -3.27 0.50 (0.33-0.76) 0.001
3 0.25 0.12 2.12 1.28 (1.02-1.61) 0.034 -0.19 0.15 -1.25 0.82 (0.61-1.12) 0.210
4 1.25 0.13 9.72 3.49 (2.71-4.49) <0.001 0.68 0.17 3.94 1.97 (1.41-2.76) <0.001
N stage
0 1.00 (reference) 1.00 (reference)
1 1.12 0.11 10.19 3.08 (2.48-3.82) <0.001 1.00 0.14 7.16 2.73 (2.07-3.60) <0.001

(Continued)
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TABLE 2 Continued
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Variables Beta S.E z OR (95% CI) P  aBeta aS.E aZ aOR (95% ClI) aP

N stage

2 0.59 0.16 3.75 1.80 (1.32-2.44) <0.001 0.89 0.20 4.52 2.45 (1.66-3.60) <0.001

3 1.23 0.16 7.83 3.42 (2.52-4.66) <0.001 1.84 0.21 8.76 6.29 (4.17-9.49) <0.001
Primary site

Cardia 1.00 (reference) 1.00 (reference)

Gastric antrum -0.16 0.13 -1.22 0.85 (0.66-1.10) 0.222 0.58 0.17 3.49 1.78 (1.29-2.47) <0.001

Lesser curvature -0.29 0.19 -1.57 0.75 (0.52-1.07) 0.116 0.21 0.22 0.98 1.24 (0.81-1.89) 0.326

Pylorus —-0.85 0.35 -2.41 0.43 (0.21-0.85) 0.016 -0.11 0.40 -0.29 0.89 (0.41-1.94) 0.772

Body 0.14 0.17 0.84 1.15 (0.83-1.60) 0.400 0.58 0.20 2.88 1.79 (1.20-2.66) 0.004

Greater curvature 0.08 0.24 0.31 1.08 (0.67-1.74) 0.754 0.36 0.29 1.22 1.43 (0.81-2.52) 0.222

Stomach 0.30 0.20 1.54 1.35 (0.92-1.99) 0.124 0.83 0.24 3.52 2.29 (1.44-3.63) <0.001

Overlapping lesion 0.11 0.22 0.51 1.12 (0.73-1.70) 0.611 0.08 0.26 0.32 1.09 (0.65-1.81) 0.746

Fundus 0.13 0.23 0.56 1.14 (0.72-1.80) 0.579 0.13 0.28 0.45 1.13 (0.66-1.95) 0.649
Tumor size

<2 1.00 (reference) 1.00 (reference)

2to5 111 0.15 7.18 3.02 (2.23-4.09) <0.001 0.85 0.17 4.93 2.35 (1.67-3.30) <0.001

5t08 1.55 0.17 9.35 4.69 (3.39-6.49) <0.001 1.24 0.19 6.38 3.44 (2.36-5.04) <0.001

>8 1.75 0.20 8.68 5.75 (3.87-8.54) <0.001 1.15 0.24 4.78 3.15 (1.97-5.04) <0.001
Number of Reg LN

None 1.00 (reference) 1.00 (reference)

1to3 -1.18 0.24 —4.88 0.31 (0.19-0.49) <0.001 -1.38 0.27 -5.22 0.25 (0.15-0.42) <0.001

4 or more -2.08 0.11 -18.95 0.12 (0.10-0.15) <0.001 -2.75 0.14 -19.25 0.06 (0.05-0.08) <0.001
Chemotherapy

No/unknown 1.00 (reference) 1.00 (reference)

Yes 0.66 0.10 6.90 1.94 (1.61-2.35) <0.001 0.36 0.12 2.92 1.43 (1.13-1.82) 0.003

eight models. Finally, the RF models were externally validated using
our 109 hospital patients (AUC = 0.728) (Figure 4C). We also made an
aggregation of the previous ROC curves (Figure 4D). In summary, we
trained eight machine learning prediction models with data from the
training set. Through the experimental results of the test set and
validation set, it was determined that the RF model has a relatively
accurate ability to predict the risk of DM in MDGA patients and has
high clinical value.

4 Prognostic analysis and prediction
of MDGA patients with established DM

4.1 Patient baseline characteristics

The 749 eligible MDGA patients with DM were randomized
into two groups in the same 7:3 split. The training set included 524

Frontiers in Immunology

patients, while the testing set included 225 patients. In terms of
clinical characteristics, 40-60 years of age was the most common
age for distant metastasis according to the MDGA (55.41%
according to the SEER data), and the highest proportion of
distant metastases according to the MDGA originated in cardia
(42.86% according to the SEER data). Descriptions of other clinical
characteristics are summarized in the accompanying table (Table 4).
The results suggested that no statistically significant differences
were found between the basic information of the two datasets.

4.2 Analysis of prognosis-related factors
Using OS and CSS as prognostic endpoints, we performed
univariate and multivariate Cox regression analyses on data from

eligible patients screened from the SEER database. Nine variables
were included in the univariate analysis, and the detailed results are
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TABLE 3 Comparison of the predictive performance values of nine forecasting models in the training set.

Models Specificity Sensitivity Accuracy Precision Recall F1 score
RF 0913 0.891 0.811 0.880 0.548 0.811 0.654
LR 0.848 0.791 0.766 0.787 0372 0.766 0.501

LASSO 0.848 0.791 0.766 0.787 0372 0.766 0.501
SVM 0.872 0.834 0.760 0.823 0.425 0.760 0.545
XGBoost 0.989 0.792 0.836 0.798 0394 0.836 0536
KNN 0.885 0.740 0.853 0.756 0348 0.853 0.494
NBC 0.825 0.641 0.870 0.673 0.282 0.870 0.426
AdaBoost 0.900 0.811 0.823 0.813 0414 0.823 0.551
ANN 0.850 0.749 0.792 0.755 0338 0.792 0.474

RF, random forest; LR, logistic regression; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting; KNN, K-nearest
neighbor; NBC, naive Bayesian model; AdaBoost, adaptive boosting; ANN, artificial neural network.
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FIGURE 4

Receiver operating characteristic (ROC) curves for the training set, test set, and external validation set prediction models. (A) Training set; (B) test set;
(C) external validation set. The aggregation of the previous ROC curves for the RF model (D). AUC, area under the ROC curve; RF, random forest; LR,
logistic regression; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; KNN, K-nearest neighbor; NBC, naive
Bayes classifier; ANN, artificial neural network.
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TABLE 4 Basic information about MDGA patients with DM.

Variable Total (n = 749) e s 200 Statistic
Survival months, M
Qn Q) 8.00 (3.00-18.00) 9.00 (3.00-19.00) 7.00 (2.00-16.00) Z=1771 0.077
Age, n (%) 2 = 4450 0.217
<40 16 (2.14) 14 (2.67) 2 (0.89)
40-60 169 (22.56) 123 (23.47) 46 (20.44)
60-80 415 (55.41) 280 (53.44) 135 (60.00)
>80 149 (19.89) 107 (20.42) 42 (18.67)
Sex, n (%) 2 =0.022 0.882
Male 552 (73.7) 387 (73.85) 165 (73.33)
Female 197 (26.3) 137 (26.15) 60 (26.67)
T stage, n (%) 2 =0.592 0.898
1 214 (28.57) 152 (29.01) 62 (27.56)
2 59 (7.88) 43 (8.21) 16 (7.11)
3 257 (34.31) 179 (34.16) 78 (34.67)
4 219 (29.24) 150 (28.63) 69 (30.67)
N stage, n (%) X =3476 0.324
0 249 (33.24) 179 (34.16) 70 (31.11)
1 295 (39.39) 212 (40.46) 83 (36.89)
2 96 (12.82) 62 (11.83) 34 (15.11)
3 109 (14.55) 71 (13.55) 38 (16.89)
Primary site, n (%) X =6.002 0.647
Body 69 (9.21) 46 (8.78) 23 (10.22)
Cardia 321 (42.86) 221 (42.18) 100 (44.44)
Fundus 31 (4.14) 25 (4.77) 6 (2.67)
Gastric antrum 145 (19.36) 100 (19.08) 45 (20.00)
Greater curvature 27 (3.6) 20 (3.82) 7 (3.11)
Lesser curvature 51 (6.81) 34 (6.49) 17 (7.56)
Overlapping lesion 46 (6.14) 35 (6.68) 11 (4.89)
Pylorus 11 (1.47) 6 (1.15) 5(2.22)
Stomach 48 (6.41) 37 (7.06) 11 (4.89)
Tumor size, n (%) 2 =2719 0.437
<2 78 (10.41) 51 (9.73) 27 (12.00)
2to5 374 (49.93) 271 (51.72) 103 (45.78)
5to08 216 (28.84) 145 (27.67) 71 (31.56)
>8 81 (10.81) 57 (10.88) 24 (10.67)
Number of Reg LN, n (%) X =0619 0.734
None 528 (70.49) 372 (70.99) 156 (69.33)
1to3 27 (3.6) 20 (3.82) 7 (3.11)
4 or more 194 (25.9) 132 (25.19) 62 (27.56)
(Continued)
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TABLE 4 Continued
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Variable Total (n = 749) I;a;ngsz; X}al;disgg Statistic

Chemotherapy, n (%) 2 =0.584 0.445
No/unknown 294 (39.25) 201 (38.36) 93 (41.33)
Yes 455 (60.75) 323 (61.64) 132 (58.67)

Radiation, n (%) 2 =0.496 0.481
None/unknown 575 (76.77) 406 (77.48) 169 (75.11)
Beam radiation 174 (23.23) 118 (22.52) 56 (24.89)

Cause, 1 (%) 2 =0.291 0.590
:)\tl}l:z ::u(ie:d of 141 (18.83) 96 (18.32) 45 (20.00)
E:‘i:szt:bdt; ble to 608 (81.17) 428 (81.68) 180 (80.00)

Status, 1 (%) 2 =0.079 0.778
Alive 70 (9.35) 50 (9.54) 20 (8.89)
Dead 679 (90.65) 474 (90.46) 205 (91.11)
fg:ig) months, M 8.00 (3.00-18.00) 9.00 (3.00-19.00) 7.00 (2.00-16.00) Z=1771 0.077

shown in the left half of Tables 5 and 6. Afterward, according to the
outcome, statistically significant variables were included in the
multivariate analyses.

The Cox regression results for OS are shown in Table 5. The
detailed outcomes suggested that age, T stage, primary site,
chemotherapy, radiation, and the number of Reg LNs were
correlated with OS in MDGA patients. Multifactorial analysis for
OS revealed that only T stage (2 and 3), primary site, chemotherapy,
and number of Reg LNs were statistically significant independent
risk factors for MDGA patients with established DM. Moreover,
patients with higher T stages (T3 and 4) and without chemotherapy
had significantly shorter survival and worse outcomes. Patients with
superficial primary sites (gastric antrum and greater curvature) and
a greater number of Reg LNs could have improved outcomes. More
comprehensive OS analysis information, such as the analytical CIs
and P-values for each variable, is collated and displayed in Table 5.

The outcome of the Cox regression analysis using CSS as the
endpoint is presented in Table 6. The primary site, number of Reg LNs,
age, T stage, chemotherapy, and radiotherapy variables were integrated
into the multifactorial analysis. The analysis indicated that the number
of Reg LN, T stage, primary site, and chemotherapy were considered
statistically significant independent risk factors for CSS. The CIs and
the corresponding P-values are summarized in Table 6.

4.3 Nomogram

According to the outcomes obtained in the previous steps, this
study developed a visual nomogram to predict the survival time of
MDGA patients with established DM. The nomogram, derived
from the prognostically relevant risk factors that have been

Frontiers in Immunology

identified, provides a score based on the patient’s current
condition. Physicians can assess a patient’s probability of 1-, 3-,
and 5-year OS/CSS based on this nomogram (Figure 5). According
to the OS nomogram (Figure 5A), of the five independent risk
factors, chemotherapy had the greatest impact on survival, followed
by the primary tumor site, while T stage had the least impact.
According to the CSS nomogram (Figure 5B), the presence or
absence of chemotherapy was considered to be the most influential
factor for survival, followed by the lymph node positivity rate.

A simple example of how to use a nomogram is given below.
Suppose a 60-year-old patient with distant metastases from MDGA has
received conventional chemotherapy but no radiotherapy. At the same
time, the pathological findings suggest that the tumor originated in the
greater curvature, the current T stage is 3, and the number of regional
LNs reaches more than four. At this point, an approximate score can be
calculated based on the nomogram (age, 17.5 points; T stage 3, 2 points;
primary site, 17 points; number of regional LNs, 11 points; received
chemotherapy, 0; not received radiotherapy, 18 points). This hypothetical
patient would therefore have a total score of 65.5, and this score was
plotted against a scale of total scores. By plotting vertically on a straight
line of survival probability, one can derive the probability that the overall
survival available for reference is approximately 0.78, 0.55, and 0.45 for 1,
3, and 5 years, respectively. Similarly, the corresponding CSS for this
patient can be calculated using the same steps as above.

4.4 Evaluation and validation of
the nomograms

The predictive results and clinical value of the nomograms were
assessed and verified by the C-index, AUC, calibration curve, and
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TABLE 5 Cox regression analysis of OS in the SEER cohort.

Variables Beta S.E HR (95% ClI) m_Beta m_S.E m_Z aHR (95% Cl)
Age
<40 Ref Ref
40-60 0.19 | 029  0.66 0.506 1.21 (0.69-2.14) 0.13 0.29 0.45 0.655 1.14 (0.64-2.03)
60-80 036 | 028 127 0.204 1.43 (0.82-2.49) 0.18 0.29 0.63 0.526 1.20 (0.68-2.12)
>80 091 | 029 | 312 0.002 2.48 (1.40-4.38) 0.53 0.30 1.77 0.077 1.70 (0.94-3.07)
‘ Sex
Male Ref
Female -0.00 = 0.09 -0.05 0.960 1.00 (0.84-1.18)
‘ T stage
4 Ref Ref
2 -020 | 015 -132  0.187 0.82 (0.61-1.10) -0.33 0.16 -2.11  0.035 0.72 (0.53-0.98)
1 027 | 010 | 268 0.007 1.31 (1.08-1.60) -0.16 0.11 -141 0157 0.85 (0.69-1.06)
3 -0.19  0.10 -1.98 0.048 0.82 (0.68-0.99) -0.29 0.10 -2.90 0.004 0.75 (0.61-0.91)
N stage
3 Ref
1 008 | 012 0.64 0.523 1.08 (0.85-1.37)
0 021 | 012 | 170 0.089 1.23 (0.97-1.56)
2 0.08 0.15 0.55 0.586 1.08 (0.81-1.45)
Primary site
Lesser curvature Ref Ref
Cardia 004 016 025 0.800 1.04 (0.76-1.42) 0.16 0.17 0.93 0.351 1.17 (0.84-1.62)
Fundus 065 | 024 278 0.005 1.92 (1.21-3.05) 0.50 0.24 2.10 0.036 1.65 (1.03-2.63)
Stomach -0.14 022 —-0.65 0.516 0.87 (0.56-1.33) —0.44 0.22 -2.00 0.046 0.64 (0.41-0.99)
Gastric antrum —-0.00 | 0.17 -0.00 = 0.998 1.00 (0.71-1.40) —0.04 0.17 -0.25  0.805 0.96 (0.68-1.35)
Overlapping lesion 0.06 | 021 026 0.797 1.06 (0.69-1.61) -0.09 0.22 040  0.691 0.92 (0.60-1.41)
Body 007 | 019 | 037 0.710 1.08 (0.73-1.57) 0.10 0.20 0.49 0.626 1.10 (0.75-1.63)
Greater curvature -0.04 025 -0.15 0879 0.96 (0.59-1.58) -0.46 0.26 -1.78 0075 0.63 (0.38-1.05)
Pylorus -0.37 | 038 -097 = 0334 0.69 (0.33-1.46) -0.02 0.39 -0.05  0.959 0.98 (0.46-2.10)
Tumor size
<2 Ref
>8 002 | 017 | 0.10 0.923 1.02 (0.73-1.41)
2t05 020 013 151 0.131 1.22 (0.94-1.57)
5t08 011 | 014 080 0.426 1.12 (0.85-1.46)
Number of Reg LN
None Ref Ref
1to3 -024 | 021 -113 0257 0.79 (0.52-1.19) -0.60 0.22 -2.74  0.006 0.55 (0.35-0.84)
4 or more -0.59 | 0.09 = -6.49 | <0.001 0.55 (0.46-0.66) -0.78 0.10 -7.48  <0.001 0.46 (0.37-0.56)

(Continued)
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TABLE 5 Continued
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Variables Beta HR (95% ClI) m_Beta m_SE m_Z aP aHR (95% CI)
Chemotherapy
No/unknown Ref Ref
Yes -1.05 008 -13.00 <0.001 0.35 (0.30-0.41) -1.20 0.09 -12.76 = <0.001 0.30 (0.25-0.36)
Radiation
None/unknown Ref Ref
Beam radiation 023 009 -253 0011 0.79 (0.66-0.95) -0.17 0.10 -1.82  0.068 0.84 (0.70-1.01)

DCA. In the training set, the AUC values for predicting 1-, 3-, and
5-year OS were 0.797, 0.807, and 0.737, respectively (Figure 6A),
while in the validation set, they were 0.757, 0.737, and 0.718,
respectively (Figure 6B). The C-index of the nomograms was
0.726 (95% CI, 0.703-0.748) in the training set for OS and 0.703
(95% CI, 0.663-0.744) in the validation set. The fit of the 1-, 3-, and
5-year calibration curves for predicting OS was satisfactory
(Figures 6C-H). In the calibration curves of the nomograms in
the training and validation cohorts, the red curve fit line matches
the gray diagonal line (representing the predicted probability of the
ideal state) to a high degree, suggesting that the predicted

TABLE 6 Cox regression analysis of CSS according to the SEER data.

probability of survival via the nomograms remains generally
consistent with the observed probability of survival, with no
excessive overestimation or underestimation of risk. The DCA
curve presented graphically in Figures 6I-N suggests that this
nomogram for OS has excellent net clinical efficacy.

Similarly, the results for evaluating the CSS nomograms show a
positive applicability. The C-index was 0.727 (95% CI, 0.703-0.751)
for the training set and 0.705 (95% CI, 0.663-0.748) for the
validation set. In addition, the AUCs of the nomograms were
0.747, 0.737, and 0.699 for 1-, 3-, and 5-year CSS, respectively, in
the training cohort (Figure 7A), and in the validation cohort, the

Variables Beta S.E HR (95% Cl) m_Beta m_S.EE m_Z aHR (95% Cl)

Age

<40 Ref Ref

40-60 0.10 0.29 0.36 0.721 1.11 (0.63-1.96) 0.04 0.30 0.15 0.884 1.04 (0.58-1.86)

60-80 0.22 0.28 0.79 0.432 1.25 (0.72-2.18) 0.06 0.29 0.22 0.828 1.06 (0.60-1.88)

>80 0.75 0.29 2.55 0.011 2.11 (1.19-3.74) 0.39 0.30 1.28 0.201 1.48 (0.81-2.68)
Sex

Male Ref

Female 0.00 0.09 0.04 0.965 1.00 (0.84-1.20)
T stage

4 Ref Ref

2 -0.22 0.16 -1.37 0.172 0.80 (0.58-1.10) -0.38 0.17 -2.28 0.023 0.68 (0.49-0.95)

1 0.29 0.11 2.70 0.007 1.33 (1.08-1.65) -0.17 0.12 -1.44 0.150 0.84 (0.67-1.06)

3 -0.14 0.10 -1.39 0.166 0.87 (0.71-1.06) -0.25 0.11 -2.29 0.022 0.78 (0.63-0.96)
N stage

3 Ref

1 0.08 0.13 0.65 0.519 1.09 (0.85-1.39)

0 0.20 0.13 1.56 0.119 1.22 (0.95-1.58)

2 0.13 0.15 0.83 0.407 1.14 (0.84-1.54)
Primary site

Lesser curvature Ref ‘ ‘ ‘ Ref

(Continued)
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TABLE 6 Continued

Variables HR (95% Cl) m_Beta m_S.E aHR (95% ClI)

Primary site

Cardia 0.02 0.16 0.11 0.916 1.02 (0.74-1.40) 0.11 0.17 0.65 0.516 1.12 (0.80-1.57)

Fundus 0.61 0.25 2.49 0.013 1.84 (1.14-2.99) 0.45 0.25 1.79 0.073 1.56 (0.96-2.55)

Stomach -0.18 0.23 -0.79 0.428 0.83 (0.53-1.31) -0.47 0.23 -2.01 0.045 0.63 (0.40-0.99)

Gastric antrum -0.09 0.18 -0.50 0.616 0.91 (0.64-1.30) -0.12 0.18 -0.67 0.500 0.88 (0.62-1.27)

Overlapping lesion 0.07 0.22 0.33 0.744 1.07 (0.70-1.66) -0.08 0.22 -0.36 0.717 0.92 (0.59-1.43)

Body 0.02 0.20 0.09 0.932 1.02 (0.68-1.52) 0.02 0.21 0.12 0.908 1.02 (0.68-1.54)

Greater curvature -0.38 0.29 -1.31 0.192 0.68 (0.38-1.21) -0.81 0.30 -2.74 0.006 0.44 (0.25-0.79)

Pylorus -0.30 0.39 -0.77 0.439 0.74 (0.35-1.58) 0.07 0.39 0.18 0.854 1.07 (0.50-2.32)
Tumor size

<2 Ref

>8 0.06 0.18 0.35 0.725 1.07 (0.75-1.51)

2t05 0.26 0.14 1.86 0.062 1.30 (0.99-1.70)

5t08 0.12 0.15 0.81 0.419 1.13 (0.84-1.51)
Number of Reg LN

None Ref Ref

1to3 -0.23 0.22 -1.07 0.287 0.79 (0.52-1.22) -0.61 0.23 -2.65 0.008 0.54 (0.35-0.85)

4 or more -0.68 0.10 -6.83 <0.001 0.51 (0.42-0.62) -0.88 0.11 -7.82 <0.001 0.42 (0.33-0.52)
Chemotherapy

No/unknown Ref Ref

Yes -1.04 0.09 -12.28 <0.001 0.35 (0.30-0.42) -1.24 0.10 -12.46 <0.001 0.29 (0.24-0.35)
Radiation

None/unknown Ref Ref

Beam radiation -0.22 0.10 -2.33 0.020 0.80 (0.66-0.97) -0.16 0.10 -1.61 0.108 0.85 (0.70-1.04)

AUCs were 0.661, 0.713, and 0.892, respectively (Figure 7B).
Moreover, both the calibration curves and DCA curves used for
the 1-, 3-, and 5-year CSS forecasts also exhibited satisfactory fits
and net gains (Figures 7C-N). In summary, the nomograms
produced to predict the prognosis of MDGA patients with DM
had considerable discriminatory and calibrating power.

5 Analysis of the impact of more
detailed LN indicators on the
occurrence of DM and prognosis
of MDGA

The above studies have suggested a strong association between
multiple lymph node indices and DM and the prognosis of MDGA.
Although good predictive efficacy can be achieved by categorizing
the number of positive LNs (0, 1 to 3, 3+), 70% of patients in the
database had a positive lymph node clearance of 0. This suggests
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that the existing lymph node indices may not describe a patient’s
prognosis specifically; thus, more diversified ways of evaluating the
metastasis and immune mechanisms of patients are needed. Lymph
node positivity, the specific number of negative/positive lymph
nodes, and visualization of LN metastasis may be better
indicators of DM risk and survival; therefore, we collected more
detailed data from our institution and performed a logistic analysis
to identify risk factors associated with DM.

We collected data from 109 patients with moderately
differentiated gastric adenocarcinoma in our hospital. Data such
as LODDS and the number of Neg LNs were analyzed and
calculated, followed by logistic regression to explore the risk
factors for distant metastasis in patients with MDGA and Cox
regression to analyze the risk factors affecting the prognosis of
patients with MDGA. Our univariate logistic regression results
showed that the number of negative LNs and the LODDS were
considered to be influential factors for the occurrence of DM in
MDGA (Table 7). However, it is noteworthy that in regard to our
multifactor logistic regression analysis of the variables of interest,
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FIGURE 5

Nomograms for 1-, 3-, and 5-year OS (A) and CSS (B) in MDCA patients with DM.

our results lacked statistical significance. We conducted single- and ~ number of Reg LNs in groups 1-3 were considered protective

multivariate Cox analyses of our patient data. As shown in Table 8,  factors. More specific data are shown in Tables 7 and 8.

15 variables were included. The results of the univariate analysis
revealed that nine variables, including the number of Reg LNs, LNR,
age >80 years, TNM stage, tumor size, gross LN metastasis, and 6 DI
number of Reg LNs, had an impact on the prognosis of MDGA

scussion

patients (P < 0.05). These findings were subsequently incorporated Moderately differentiated gastric adenocarcinoma is common

into a multifactorial analysis, which indicated that the LNR, T stage  in clinical practice and has a high risk of metastasis and individual

(1 and 2), and gross LN metastasis 3 cm away from the tumor were  variability (34). Once a patient develops DM, the prognosis

independent risk factors, whereas the number of Reg LNs and the ~ becomes extremely poor (35, 36). The OS of MDGA patients
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Evaluation of the ability of the nomogram to predict OS. ROC curves validating the OS prediction nomogram for 1-, 3-, and 5-year OS in the training
set (A) and validation set (B). Calibration curves validating the OS prediction nomograms for 1-, 3-, and 5-year OS in the training set (C-E) and
validation set (F—H). Decision curve analysis validating the OS prediction nomogram for 1-, 3-, and 5-year OS in the training set (I-K) and validation

set (L—N).

without DM is generally considered to be more than 22.3 months
after surgical treatment (37). However, after the onset of DM,
survival decreases in patients receiving conventional
chemotherapy, with a median overall survival of just under 12
months (22, 38). Determining whether a patient has distant
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metastases is therefore particularly important and is vital for
providing individualized prevention and treatment strategies in
the clinic. In addition, the current prognostic method for patients
with DM is relatively limited, and some DM-related indices,
especially lymph node indices such as the LNR and LODDS, are
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Evaluation of the ability of the nomogram to predict CSS. ROC curves validating the CSS prediction nomogram for 1-, 3-, and 5-year RFS in the
training set (A) and validation set (B). Calibration curves validating the CSS prediction nomograms for 1-, 3-, and 5-year survival in the training cohort
(C—E) and validation cohort (F—H). Decision curve analysis validating the CSS prediction nomogram for 1-, 3-, and 5-year RFS in the training set

(I-K) and validation set (L—N).

considered to be important indicators of prognosis (39, 40).
However, its specific clinical effects have still not been extensively
and comprehensively tested.

Our major objectives for the investigation were to develop a
forecasting system to predict the development of DM in persons
with MDGA and to analyze the risk factors influencing the
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prognosis of persons with DM. In addition, this study analyzed
the specific ability of six lymph node indicators in our patients to
predict DM and prognosis using logistic and Cox regression. Nine
machine learning samples were utilized for predicting distant
metastases, with the RF model considered the most effective.
Multivariate Cox regression analysis for MDGA patients who
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TABLE 7 The risk factors for developing DM in MDGA patients were analyzed by logistic regression based on our data.

10.3389/fimmu.2024.1398685

Variables Beta S.E V4 OR (95% CI) P aBeta aS.E V4 aOR (95% Cl) aP
Number of all LNs -0.03 0.02 -1.27 0.97 (0.93-1.02) 0.203
Number of Reg LN 0.05 0.04 1.50 1.06 (0.98-1.13) 0.135
Number of Neg LN -0.06 0.03 -2.00 0.94 (0.89-0.99) 0.046 —-0.04 0.03 —-1.48 0.96 (0.90-1.01) 0.138
LODDS -3.08 1.48 -2.09 0.05 (0.00-0.83) 0.037 -1.68 1.59 -1.05 0.19 (0.01-4.24) 0.292
LNR 0.94 1.18 0.80 2.57 (0.25-25.89) 0.423
‘ Number of Reg LN_group
None 1.00 (reference)
1to3 -0.10 0.74 -0.14 0.90 (0.21-3.88) 0.890
4 or more -0.20 0.63 -0.32 0.82 (0.24-2.80) 0.747
‘ Gross LN metastasis
None 1.00 (reference)
3 cm away from
the tumor 0.69 0.68 1.02 2.00 (0.52-7.62) 0.310
Within 3 cm of the tumor -1.11 0.81 -1.38 0.33 (0.07-1.60) 0.169
Age
<40 1.00 (reference)
40-60 -0.95 1.27 -0.75 0.39 (0.03-4.67) 0.455
60-80 -0.76 1.21 -0.63 0.47 (0.04-4.98) 0.527
>80 0.41 1.68 0.24 1.50 (0.06-40.63) 0.810
‘ Sex
Male 1.00 (Reference)
Female -0.26 0.69 —-0.38 0.77 (0.20-2.98) 0.707
‘ T stage
1 1.00 (reference) 1.00 (reference)
2 0.27 1.45 0.19 1.31 (0.08-22.62) 0.851 0.24 1.48 0.16 1.27 (0.07-23.15) 0.872
3 1.25 1.09 1.15 3.50 (0.41-29.78) 0.251 1.27 1.12 1.13 3.56 (0.39-32.31) 0.259
4 2.46 117 2.11 11.67 (1.19-114.57) 0.035 2.34 121 1.93 10.40 (0.97-111.50) 0.053
N stage
0 1.00 (reference)
1 1.06 0.73 1.45 2.88 (0.69-12.00) 0.146
2 1.54 0.90 1.72 4.67 (0.81-26.98) 0.085
3 113 0.98 115 3.11 (0.45-21.40) 0.249
Primary site
Body 1.00 (reference)
Cardia 16.83 | 246533 0.01 20408610.53 0.995
’ (0.00-Inf)
Gastric antrum 15.93 2,465.33 0.01 8,260,628.07 (0.00-Inf) 0.995
Lesser curvature 18.06 | 246533 0.01 69,389,275.80 0.994
(0.00-Inf)
(Continued)
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TABLE 7 Continued

10.3389/fimmu.2024.1398685

Variables OR (95% Cl) P aBeta aS.E aZ aOR (95% ClI) aP
Primary site
Greater curvature 18.57 | 2,465.33 0.01 115,648,792.99 0.994
(0.00-Inf)
Overlapping lesion 16.17  2,465.33 0.01 10,513,526.64 0.995
(0.00-Inf)
Stomach 1747 246533 0.01 38,549,597.66 0.994
(0.00-Inf)
Pylorus 0.00 4,088.28 0.00 1.00 (0.00-Inf) 1.000
115,648,792.
Fundus 18.57 2,465.33 0.01 foi):_ii 699 0.994
Tumor size
<2 1.00 (reference)
2t05 ~0.04 0.90 -0.05 0.96 (0.16-5.63) 0.961
5t0 8 1.06 0.89 1.19 2.89 (0.50-16.67) 0.234
>8 1.84 0.97 1.90 6.29 (0.94-41.96) 0.058
Chemotherapy
No/unknown 1.00 (reference)
Yes 0.39 0.56 0.69 1.47 (0.49-4.42) 0.488

LODDS, log odds of metastatic lymph nodes; LNR, lymph node ratio.

TABLE 8 Cox regression analysis of risk factors affecting patient OS based on our data.

Variables Beta HR (95% Cl) m_Beta m_S.E aHR (95% ClI)
Number of all LNs -0.02 0.01 -135 0.179 0.98 (0.96-1.01)
Number of Reg LN 0.05 0.02 2.95 0.003 1.05 (1.02-1.08) -0.12 0.05 -2.68 0.007 0.89 (0.81-0.97)
Number of Neg LN -0.06 1.02 -0.06 0.950 0.94 (0.13-6.91)
LODDS 0.25 033 0.78 0.436 1.29 (0.68-2.44)
LNR 1.94 0.52 3.76 <0.001 6.93 (2.53-19.01) 5.09 1.67 3.04 0.002 | 162.60 (6.12-4,318.06)
Age
<40 Ref Ref
40-60 0.24 1.04 0.23 0.816 1.28 (0.16-9.88) -1.36 127 -1.07 0.285 0.26 (0.02-3.10)
60-80 0.64 1.02 0.63 0.528 1.90 (0.26-13.92) —0.48 1.23 -0.39 0.698 0.62 (0.06-6.93)
>80 2.46 1.16 2.12 0.034 11.71 (1.20-114.06) 1.59 1.47 1.08 0.279 4.92 (0.28-88.06)
‘ Sex
Male Ref
Female ~0.04 035 -0.11 0.910 0.96 (0.49-1.89)
‘ T stage
1 Ref Ref
2 ~1.49 1.10 -1.36 0.173 0.22 (0.03-1.92) 221 117 -1.90 0.058 0.1 (0.01-1.07)
3 115 0.48 2.38 0.017 3.15 (1.22-8.13) -0.08 0.60 ~0.14 0.890 0.92 (0.28-3.00)
4 1.36 0.56 243 0.015 3.89 (1.30-11.66) -0.41 0.66 -0.63 0.532 0.66 (0.18-2.42)
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TABLE 8 Continued

Variables

HR (95% CI)

m_Beta

m_SE m_Z

10.3389/fimmu.2024.1398685

aP

aHR (95% Cl)

0 Ref Ref
1 1.23 0.38 3.20 0.001 3.42 (1.61-7.26) 1.72 0.74 231 0.021 5.56 (1.30-23.90)
2 211 0.48 4.41 <0.001 8.25 (3.23-21.08) 213 0.88 242 0.016 8.42 (1.50-47.32)
3 1.00 0.55 1.82 0.069 2.72 (0.93-7.99) 1.37 1.03 133 0.183 3.94 (0.52-29.61)
‘ M stage
0 Ref Ref
1 1.04 0.35 299 0.003 2.82 (1.43-5.58) 0.79 0.50 1.56 0.120 2.19 (0.82-5.90)
‘ Primary site
Body Ref
Cardia 0.16 0.62 0.27 0.791 1.18 (0.35-3.97)
Gastric antrum -0.16 0.65 —-0.24 0.809 0.86 (0.24-3.03)
Lesser curvature 0.12 0.76 0.16 0.875 1.13 (0.25-5.05)
Greater curvature 133 0.92 1.45 0.148 3.78 (0.62-22.84)
Overlapping lesion -1.02 0.91 -1.11 0.266 0.36 (0.06-2.17)
Stomach 0.11 0.91 0.12 0.901 1.12 (0.19-6.72)
Pylorus —-0.64 1.16 -0.55 0.582 0.53 (0.05-5.10)
Fundus -16.30 3,293.13 —-0.00 0.996 0.00 (0.00-Inf)
Tumor size
<2 Ref Ref
2to5 1.83 0.74 248 0.013 6.25 (1.47-26.61) 1.60 0.92 1.75 0.081 4.94 (0.82-29.73)
5to8 233 0.76 3.08 0.002 10.30 (2.34-45.40) 143 0.91 1.57 0.116 4.19 (0.70-24.97)
>8 238 0.79 3.01 0.003 10.78 (2.29-50.84) 1.62 0.92 1.77 0.077 5.08 (0.84-30.76)
‘ Chemotherapy
No/unknown Ref
Yes -0.10 0.31 -0.32 0.747 0.91 (0.50-1.65)
‘ Gross LN metastasis
None Ref Ref
3 cm away from
the tumor 1.40 0.47 299 0.003 4.04 (1.62-10.09) 1.96 0.66 297 0.003 7.11 (1.95-25.99)
Within 3 cm of
the tumor 0.72 0.47 1.54 0.124 2.05 (0.82-5.13) 1.21 0.64 1.88 0.060 3.36 (0.95-11.90)
Number of Reg LN group
None Ref Ref
1to3 0.98 0.40 243 0.015 2.66 (1.21-5.87) -1.67 0.80 -2.08 0.038 0.19 (0.04-0.91)
4 or more 1.06 0.36 299 0.003 2.90 (1.44-5.82) —1.45 0.88 -1.65 0.098 0.23 (0.04-1.31)
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already had DM indicated that higher T stage (2 and 3), primary
site, chemotherapy, and number of Reg LNs were independent risk
factors for prognosis. Moreover, specialized nomograms created
from our analysis results were evaluated and tested to show
convincing prognostic discrimination and calibration capabilities.

Notably, the categorization of the number of positive LNs (0, 1 to 3,4
or more) in the SSER database may achieve good predictive efficacy.
However, nearly 70% of the patients in the database had a positive lymph
node clearance of 0. This suggests that our single reliance on lymph node
clearance results may not be effective in characterizing the prognosis of
patients, and more diverse classifications and metrics are needed to
evaluate a patient’s metastatic and prognostic condition. In this study,
based on our patient data, we revealed that the LNR, gross LN metastasis,
and the number of Reg LNs were found to be independent factors
influencing the prognosis of MDGA patients with DM.

It is worth noting that the AUC of the validation set in this
paper is generally slightly lower than that of the training set, which
is a relatively common phenomenon, and the possible reasons are
that the training set adopts the U.S. population samples from the
SEER database, and extrapolation is not strong enough in the
Chinese population, or the sample size of the validation set is not
sufficient. In future research, we will further consider the
extrapolation of the population and the adequacy of the samples
to deepen and improve the prediction ability of the validation set.

Nevertheless, it must be noted that the research has been limited
by its retrospective nature. Although the SEER database is very
detailed and reliable, there are some more exhaustive data that it is
unable to provide (41). For example, data on some noteworthy
laboratory tests were not included, and some of the more nuanced
pictures of the lymph nodes, as previously mentioned, were lacking.
Furthermore, for the practical application of the nomogram,
additional clinical information must be considered, including the
ethnicity of the patient, their geographical location, and other
pertinent factors. These data, which are absent from the database
and not included in the study, have an impact on the results, and
more information is required to enhance the nomogram. For our
data, because of the sample size and other reasons, it is not as
effective as it should be in carrying out some statistical studies, and
in the future, it is necessary to collect more case and patient
information for more in-depth analysis and studies.

7 Conclusion

In conclusion, this research investigated the variables linked to
the development of DM in MDGA, including T stage, N stage,
primary site, tumor size, number of positive LNs, and
chemotherapy. Then, we investigated the prognostic factors,
including T stage, primary location, chemotherapy, and number
of Reg LNs, in MDGA patients with DM. Additionally, based on the
prognostic analysis, separate nomograms of OS and CSS were
produced for relevant influencing factors. Finally, the effect of
multiple lymph node indicators on the metastasis and prognosis
of MDGA patients was investigated. This study provides a reference
for subsequent clinical studies and further suggests the importance
of lymph node indicators.

Frontiers in Immunology

10.3389/fimmu.2024.1398685

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by The Ethics
Committee of the Second Affiliated Hospital of Nanchang
University (examination and approval no. review (2019) no. (105)).
The studies were conducted in accordance with the local legislation
and institutional requirements. The human samples used in this study
were acquired from primarily isolated samples as part of your previous
study for which ethical approval was obtained. Written informed
consent for participation was not required from the participants or the
participants’ legal guardians/next of kin in accordance with the
national legislation and institutional requirements.

Author contributions
KY: Writing - original draft. JW: Writing — original draft. TX:

Writing - original draft. YZ: Writing - original draft. WL: Writing -
original draft. LY: Writing - review & editing.

Funding

The present research is funded by grants from the National
Natural Science Foundation of China (81960103 to LY).

Acknowledgments

The graphical abstracts were created with BioRender software
(BioRender.com).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.
1398685/full#supplementary-material

frontiersin.org


https://www.BioRender.com
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1398685/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1398685/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1398685
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yang et al.

References

1. Lin Y, Zheng Y, Wang HL, Wu J. Global patterns and trends in gastric cancer
incidence rates (1988-2012) and predictions to 2030. Gastroenterology. (2021) 161:116-
27.e8. doi: 10.1053/j.gastro.2021.03.023

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: Cancer ] Clin. (2021) 71:209-49. doi: 10.3322/
caac.21660

3. Lopez Sala P, Leturia Etxeberria M, Inchausti Iguiniz E, Astiazaran Rodriguez A,
Aguirre Oteiza MI, Zubizarreta Etxaniz M. Gastric adenocarcinoma: A review of the
TNM classification system and ways of spreading. Radiologia. (2023) 65:66-80.
doi: 10.1016/j.rxeng.2022.10.011

4. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, et al.
The 2019 WHO classification of tumours of the digestive system. Histopathology.
(2020) 76:182-8. doi: 10.1111/his.13975

5. Xiang Y, Yao L. Retrospective analysis of diagnosis and treatment of gastric cancer
at Huzhou central hospital. Altern Ther Health Med. (2023) 29:302-9.

6. Liao B, Lee HP, Fu HT, Lee HS. Assessment of EGFR and ERBB2 (HER2) in
gastric and gastroesophageal carcinomas: EGFR amplification is associated with a
worse prognosis in early stage and well to moderately differentiated carcinoma. Appl
Immunohistochem Mol Morphol. (2018) 26:374-82. doi: 10.1097/
PAI0000000000000437

7. Li H, Zhang YC, Tsuchihashi Y. Invasion and metastasis of SY86B human gastric
carcinoma cells in nude mice. Jpn J Cancer Res. (1988) 79:750-6. doi: 10.1111/j.1349-
7006.1988.tb02232.x

8. Lord AC, D'Souza N, Shaw A, Rokan Z, Moran B, Abulafi M, et al. MRI-diagnosed
tumor deposits and EMVI status have superior prognostic accuracy to current clinical
TNM staging in rectal cancer. Ann Surg. (2022) 276:334-44. doi: 10.1097/
SLA.0000000000004499

9. Guan WL, He Y, Xu RH. Gastric cancer treatment: recent progress and future
perspectives. ] Hematol Oncol. (2023) 16:57. doi: 10.1186/s13045-023-01451-3

10. Lin Z, Wang R, Zhou Y, Wang Q, Yang CY, Hao BC, et al. Prediction of distant
metastasis and survival prediction of gastric cancer patients with metastasis to the liver,
lung, bone, and brain: research based on the SEER database. Ann Trans Med. (2022)
10:16. doi: 10.21037/atm-21-6295

11. Young JJ, Pahwa A, Patel M, Jude CM, Nguyen M, Deshmukh M, et al.
Ligaments and lymphatic pathways in gastric adenocarcinoma. Radiographics: Rev
Publ Radiological Soc North America Inc. (2019) 39:668-89. doi: 10.1148/
rg.2019180113

12. Lim JS, Yun MJ, Kim MJ, Hyung WJ, Park MS, Choi JY, et al. CT and PET in
stomach cancer: preoperative staging and monitoring of response to therapy.
Radiographics: Rev Publ Radiological Soc North America Inc. (2006) 26:143-56.
doi: 10.1148/rg.261055078

13. Kwee RM, Kwee TC. Modern imaging techniques for preoperative detection of
distant metastases in gastric cancer. World ] Gastroenterol. (2015) 21:10502-9.
doi: 10.3748/wjg.v21.i37.10502

14. Lordick F, Carneiro F, Cascinu S, Fleitas T, Haustermans K, Piessen G, et al.
Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-
up. Ann oncology: Off J Eur Soc Med Oncol. (2022) 33:1005-20. doi: 10.1016/
j.annonc.2022.07.004

15. Xiang R, Song W, Ren J, Wu J, Fu J, Fu T. Identification of stem cell-related
subtypes and risk scoring for gastric cancer based on stem genomic profiling. Stem Cell
Res Ther. (2021) 12:563. doi: 10.1186/s13287-021-02633-x

16. Pai RK, Hartman D, Schaefter DF, Rosty C, Shivji S, Kirsch R, et al. Development
and initial validation of a deep learning algorithm to quantify histological features in
colorectal carcinoma including tumour budding/poorly differentiated clusters.
Histopathology. (2021) 79:391-405. doi: 10.1111/his.14353

17. Liu X, Zhang D, Liu Z, Li Z, Xie P, Sun K, et al. Deep learning radiomics-based
prediction of distant metastasis in patients with locally advanced rectal cancer after
neoadjuvant chemoradiotherapy: A multicentre study. EBioMedicine. (2021)
69:103442. doi: 10.1016/j.ebiom.2021.103442

18. Tian H, Liu Z, Liu J, Zong Z, Chen Y, Zhang Z, et al. Application of machine
learning algorithm in predicting distant metastasis of T1 gastric cancer. Sci Rep. (2023)
13:5741. doi: 10.1038/s41598-023-31880-6

19. Allespe RL, Thompson WK, Bybjerg-Grauholm J, Hougaard DM, Nordentoft M,
Werge T, et al. Deep learning for cross-diagnostic prediction of mental disorder
diagnosis and prognosis using danish nationwide register and genetic data. JAMA
Psychiatry. (2023) 80:146-55. doi: 10.1001/jamapsychiatry.2022.4076

20. van der Vliet R, Selles RW, Andrinopoulou ER, Nijland R, Ribbers GM, Frens
MA, et al. Predicting upper limb motor impairment recovery after stroke: A mixture
model. Ann Neurol. (2020) 87:383-93. doi: 10.1002/ana.25679

Frontiers in Immunology

97

10.3389/fimmu.2024.1398685

21. Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for
evidence for prediction: A review. JAMA Psychiatry. (2020) 77:534-40. doi: 10.1001/
jamapsychiatry.2019.3671

22. Shitara K. Chemotherapy for advanced gastric cancer: future perspective in
Japan. Gastric cancer: Off ] Int Gastric Cancer Assoc Japanese Gastric Cancer Assoc.
(2017) 20:102-10. doi: 10.1007/s10120-016-0648-7

23. LiX, Wang W, Ruan C, Wang Y, Wang H, Liang X, et al. Age-specific impact on
the survival of gastric cancer patients with distant metastasis: an analysis of SEER
database. Oncotarget. (2017) 8:97090-100. doi: 10.18632/oncotarget.21350

24. Yeoh KG, Tan P. Mapping the genomic diaspora of gastric cancer. Nat Rev
Cancer. (2022) 22:71-84. doi: 10.1038/s41568-021-00412-7

25. LiH, Wang C, Lan L, Behrens A, Tomaschko M, Ruiz J, et al. High expression of
vinculin predicts poor prognosis and distant metastasis and associates with influencing
tumor-associated NK cell infiltration and epithelial-mesenchymal transition in gastric
cancer. Aging (Albany NY). (2021) 13:5197-225. doi: 10.18632/aging.202440

26. Guo S, Shang MY, Dong Z, Zhang ], Wang Y, Zheng ZC, et al. Clinicopathological
features and prognostic analysis of signet ring cell gastric carcinoma: a population-based
study. Transl Cancer Res. (2019) 8:1918-30. doi: 10.21037/tcr.2019.09.06

27. Zhu YF, Liu K, Zhang WH, Song XH, Peng BQ, Liao XL, et al. Is no. 12a lymph
node dissection compliance necessary in patients who undergo D2 gastrectomy for
gastric adenocarcinomas? A population-based retrospective propensity score matching
study. Cancers (Basel). (2023) 15(3):749. doi: 10.3390/cancers15030749

28. Matsushima J, Sato T, Yoshimura Y, Mizutani H, Koto S, Matsusaka K, et al.
Clinical utility of artificial intelligence assistance in histopathologic review of lymph
node metastasis for gastric adenocarcinoma. Int J Clin Oncol. (2023) 28:1033-42.
doi: 10.1007/s10147-023-02356-4

29. Zhou R, Zhang J, Sun H, Liao Y, Liao W. Comparison of three lymph node
classifications for survival prediction in distant metastatic gastric cancer. Int J Surg.
(2016) 35:165-71. doi: 10.1016/j.ijsu.2016.09.096

30. Feng X, Hong T, Liu W, Xu C, Li W, Yang B, et al. Development and validation of a
machine learning model to predict the risk of lymph node metastasis in renal carcinoma.
Front Endocrinol (Lausanne). (2022) 13:1054358. doi: 10.3389/fend0.2022.1054358

31. Wang X, Chen Y, Gao Y, Zhang H, Guan Z, Dong Z, et al. Predicting gastric
cancer outcome from resected lymph node histopathology images using deep learning.
Nat Commun. (2021) 12:1637. doi: 10.1038/s41467-021-21674-7

32. Sun Y, Wu X, Lin H, Lu X, Huang Y, Chi P. Lymph node regression to
neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer:
prognostic implication and a predictive model. J Gastrointest Surg. (2021) 25:1019—
28. doi: 10.1007/s11605-020-04566-x

33. Gao P, Zhu T, Gao J, Li H, Liu X, Zhang X. Impact of examined lymph node
count and lymph node density on overall survival of penile cancer. Front Oncol. (2021)
11:706531. doi: 10.3389/fonc.2021.706531

34. Feng F, Liu J, Wang F, Zheng G, Wang Q, Liu S, et al. Prognostic value of
differentiation status in gastric cancer. BMC Cancer. (2018) 18:865. doi: 10.1186/
$12885-018-4780-0

35. Willmann J, Vlaskou Badra E, Adilovic S, Christ SM, Ahmadsei M, Mayinger M,
et al. Distant metastasis velocity as a novel prognostic score for overall survival after
disease progression following stereotactic body radiation therapy for oligometastatic
disease. Int J Radiat Oncol Biol Phys. (2022) 114:871-82. doi: 10.1016/
j.ijrobp.2022.06.064

36. ChenJ, WuL, Zhang Z, Zheng S, Lin Y, Ding N, et al. A clinical model to predict
distant metastasis in patients with superficial gastric cancer with negative lymph node
metastasis and a survival analysis for patients with metastasis. Cancer Med. (2021)
10:944-55. doi: 10.1002/cam4.v10.3

37. Lazar D, Téaban S, Sporea I, Dema A, Cornianu M, Lazdr E, et al. Gastric cancer:
correlation between clinicopathological factors and survival of patients. II. Rom ]
Morphol Embryol. (2009) 50:185-94.

38. Sato Y, Okamoto K, Kawano Y, Kasai A, Kawaguchi T, Sagawa T, et al. Novel
biomarkers of gastric cancer: current research and future perspectives. J Clin Med.
(2023) 12(14):4646. doi: 10.3390/jcm12144646

39. Spolverato G, Capelli G, Mari V, Lorenzoni G, Gregori D, Poultsides G, et al.
Very early recurrence after curative-intent surgery for gastric adenocarcinoma. Ann
Surg Oncol. (2022) 29:8653-61. doi: 10.1245/s10434-022-12434-y

40. Kim J, Park ], Park H, Choi MS, Jang HW, Kim TH, et al. Metastatic lymph node
ratio for predicting recurrence in medullary thyroid cancer. Cancers (Basel). (2021) 13
(22):5842. doi: 10.3390/cancers13225842

41. Charlton ME, Kahl AR, McDowell BD, Miller RS, Komatsoulis G, Koskimaki JE,
et al. Cancer registry data linkage of electronic health record data from ASCO's
cancerLinQ: evaluation of advantages, limitations, and lessons learned. JCO Clin
Cancer Inform. (2022) 6:¢2100149. doi: 10.1200/CCIL.21.00149

frontiersin.org


https://doi.org/10.1053/j.gastro.2021.03.023
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.rxeng.2022.10.011
https://doi.org/10.1111/his.13975
https://doi.org/10.1097/PAI.0000000000000437
https://doi.org/10.1097/PAI.0000000000000437
https://doi.org/10.1111/j.1349-7006.1988.tb02232.x
https://doi.org/10.1111/j.1349-7006.1988.tb02232.x
https://doi.org/10.1097/SLA.0000000000004499
https://doi.org/10.1097/SLA.0000000000004499
https://doi.org/10.1186/s13045-023-01451-3
https://doi.org/10.21037/atm-21-6295
https://doi.org/10.1148/rg.2019180113
https://doi.org/10.1148/rg.2019180113
https://doi.org/10.1148/rg.261055078
https://doi.org/10.3748/wjg.v21.i37.10502
https://doi.org/10.1016/j.annonc.2022.07.004
https://doi.org/10.1016/j.annonc.2022.07.004
https://doi.org/10.1186/s13287-021-02633-x
https://doi.org/10.1111/his.14353
https://doi.org/10.1016/j.ebiom.2021.103442
https://doi.org/10.1038/s41598-023-31880-6
https://doi.org/10.1001/jamapsychiatry.2022.4076
https://doi.org/10.1002/ana.25679
https://doi.org/10.1001/jamapsychiatry.2019.3671
https://doi.org/10.1001/jamapsychiatry.2019.3671
https://doi.org/10.1007/s10120-016-0648-7
https://doi.org/10.18632/oncotarget.21350
https://doi.org/10.1038/s41568-021-00412-7
https://doi.org/10.18632/aging.202440
https://doi.org/10.21037/tcr.2019.09.06
https://doi.org/10.3390/cancers15030749
https://doi.org/10.1007/s10147-023-02356-4
https://doi.org/10.1016/j.ijsu.2016.09.096
https://doi.org/10.3389/fendo.2022.1054358
https://doi.org/10.1038/s41467-021-21674-7
https://doi.org/10.1007/s11605-020-04566-x
https://doi.org/10.3389/fonc.2021.706531
https://doi.org/10.1186/s12885-018-4780-0
https://doi.org/10.1186/s12885-018-4780-0
https://doi.org/10.1016/j.ijrobp.2022.06.064
https://doi.org/10.1016/j.ijrobp.2022.06.064
https://doi.org/10.1002/cam4.v10.3
https://doi.org/10.3390/jcm12144646
https://doi.org/10.1245/s10434-022-12434-y
https://doi.org/10.3390/cancers13225842
https://doi.org/10.1200/CCI.21.00149
https://doi.org/10.3389/fimmu.2024.1398685
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Petar Ozretic,
Rudjer Boskovic Institute, Croatia

REVIEWED BY
Antonio Giovanni Solimando,
University of Bari Aldo Moro, Italy
Sreeram Vallabhaneni,

Harvard Medical School, United States

*CORRESPONDENCE

Runhong Mu
murunhong@126.com

Tao Wang
wangtaoGPPH@gzu.edu.cn

"These authors have contributed equally to
this work

RECEIVED 05 September 2024
ACCEPTED 06 November 2024
PUBLISHED 22 November 2024

CITATION

Guo X, Xing J, Cao Y, Yang W, Shi X, Mu R
and Wang T (2024) Machine learning based
anoikis signature predicts personalized
treatment strategy of breast cancer.

Front. Immunol. 15:1491508.

doi: 10.3389/fimmu.2024.1491508

COPYRIGHT

© 2024 Guo, Xing, Cao, Yang, Shi, Mu and
Wang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

TvPE Original Research
PUBLISHED 22 November 2024
po110.3389/fimmu.2024.1491508

Machine learning based anoikis
signhature predicts personalized
treatment strategy of

breast cancer

Xiao Guo™, Jiaying Xing™, Yuyan Cao*', Wenchuang Yang®,
Xinlin Shi*, Runhong Mu®* and Tao Wang*
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Background: Breast cancer remains a leading cause of mortality among women
worldwide, emphasizing the urgent need for innovative prognostic tools to
improve treatment strategies. Anoikis, a form of programmed cell death critical
in preventing metastasis, plays a pivotal role in breast cancer progression.

Methods: This study introduces the Artificial Intelligence-Derived Anoikis
Signature (AIDAS), a novel machine learning-based prognostic tool that
identifies key anoikis-related gene patterns in breast cancer. AIDAS was
developed using multi-cohort transcriptomic data and validated through
immunohistochemistry assays on clinical samples to ensure robustness and
broad applicability.

Results: AIDAS outperformed existing prognostic models in accurately
predicting breast cancer outcomes, providing a reliable tool for personalized
treatment. Patients with low AIDAS levels were found to be more responsive to
immunotherapies, including PD-1/PD-L1 inhibitors, while high-AIDAS patients
demonstrated greater susceptibility to specific chemotherapeutic agents, such
as methotrexate.

Conclusions: These findings highlight the critical role of anoikis in breast cancer
prognosis and underscore AIDAS's potential to guide individualized treatment
strategies. By integrating machine learning with biological insights, AIDAS offers a
promising approach for advancing personalized oncology. Its detailed
understanding of the anoikis landscape paves the way for the development of
targeted therapies, promising significant improvements in patient outcomes.
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Introduction

Breast cancer (BC) is the most common malignant tumor in
women in the world, and its incidence rate has gradually increased in
recent years (1). The diagnosis, treatment and prognosis of BC have a
great impact on the health, lifestyle and work of individuals as well as
their family life (2). With the continuous development of biomedical
technology, the research on the prognosis of BC has also made much
progress, and people’s awareness of personalized treatment is
increasing (3). Multiple sets of data have been integrated to predict
the prognosis of BC. For example, prediction models based on
genomics, transcriptomics and proteomics data can be used to
predict the survival rate and recurrence of BC patients (4). In recent
years, artificial intelligence technology has also been widely used in
predicting the prognosis of BC, and the prediction model based on
machine learning can more accurately evaluate the prognosis by
integrating a large number of clinical data and bioinformatics data (5).

Anoikis is a specialized form of programmed cell death
triggered by the loss of cellular attachment to the extracellular
matrix and neighboring cells, playing a pivotal role in tumor
development and metastasis (6). While anoikis is crucial in tumor
invasion and infiltration, there are limited studies systematically
evaluating and predicting BC prognosis based on anoikis.

We conducted a comprehensive analysis to elucidate the
importance of anoikis. Leveraging bulk and single-cell sequencing
techniques, we evaluated anoikis activity across various cell types.
Machine learning algorithms were employed to identify anoikis
genes associated with BC prognosis, allowing us to construct
predictive models. These models demonstrated the efficacy of
anoikis in predicting BC patient outcomes, immune status,
responsiveness to immune checkpoint inhibitors (ICIs) and
chemotherapy, as well as in identifying potential therapeutic
targets and drugs. Through rigorous evaluations, anoikis emerged
as a promising tool for precise prognostication and treatment
stratification in BC patients.

Methods
Data acquisition

We retrospectively collected data from 12 distinct breast cancer
cohorts derived from The Cancer Genome Atlas (TCGA), Gene
Expression Omnibus (GEO), and Metabric (7). These cohorts
included samples with comprehensive survival information,
enabling thorough analysis. Our study encompassed a total of
11,033 patients across the 12 cohorts for prognostic evaluation.
The patient distribution was as follows: TCGA-BRCA (n = 1076),
GSE202203 (n = 3206), GSE96058 (n = 3409), GSE20685 (n = 327),
GSE58812 (n = 107), GSE21653 (n = 244), GSE7390 (n = 198),
GSE11121 (n = 200), GSE86166 (n = 330), GSE88770 (n = 108),
GE48391 (n = 81), and Metabric (n = 1747). Genes implicated in the
anoikis process were obtained from the Molecular Signature
Database on the GSEA website (8).

Frontiers in Immunology

10.3389/fimmu.2024.1491508

Machine learning derived anoikis signature

To develop a breast cancer-specific anoikis signature, we employed
the methodology established in our previous research (9). Our
approach involved utilizing ten diverse computational Survival
algorithms: Random Survival Forest (RSF), Least Absolute Shrinkage
and Selection Operator (LASSO), Gradient Boosting Machine (GBM),
Survival Support Vector Machine (Survival-SVM), Supervised
Principal Component (SuperPC), Ridge Regression, Partial Least
Squares Cox Regression (plsRcox), CoxBoost, Stepwise Cox
regression, and Elastic Net (Enet). Among these, RSF, LASSO,
CoxBoost, and Stepwise Cox were chosen for their ability to reduce
dimensionality and identify relevant variables. These techniques were
combined into 108 unique configurations to construct a predictive
signature. By evaluating all cohorts, including TCGA and other
datasets, we identified the most robust prognostic model through the
calculation of the average Concordance index (C-index). This iterative
process culminated in the creation of an anoikis-specific signature
designed to predict outcomes in breast cancer.

Genomic alteration analysis

To elucidate genetic disparities between the two AIDAS groups,
we analyzed genetic mutation levels and Copy Number Alterations
(CNA) using the TCGA-BRCA database. The Tumor Mutation
Burden (TMB) for both high- and low-AIDAS breast cancer
patients was derived from the raw mutation data. Utilizing the
maftools landscape, we depicted the most frequently mutated genes
(mutation rate > 5%). Patient-specific mutational signatures were
identified using the deconstructSigs package (10), emphasizing four
prominent mutational signatures (SBS3, SBS1, SB12, SBS11) that
exhibited elevated mutation frequencies in the TCGA-BRCA
dataset. We identified the five most common regions of
amplification and deletion, with a specific focus on the four
predominant genes in chromosomal regions 3q26.32 and 5q21.3.

Single-cell data processing

We applied Seurat (v4.0) to process the single-cell data from
GSE161529 (11). This involved filtering out genes with zero
expression and retaining those with nonzero expression levels. The
expression matrix was normalized using Seurat’s “SCTransform”
function. Dimensionality reduction was performed using principal
component analysis (PCA) and UMAP techniques. To identify
distinct cellular groupings, we employed Seurat’s “FindNeighbors”
and “FindClusters” functions. To ensure dataset integrity, the
DoubletFinder package was used to eliminate potential doublets
(12). Cells failing to meet quality standards, such as those with
mitochondrial gene content exceeding 15% or fewer than 500 genes,
were excluded. Following stringent quality control measures, 64,308
cells were retained for analysis. Cell types were determined by
manual annotation based on established marker genes.
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Inference of regulons and their activity

We utilized the Single-Cell rEgulatory Network Inference
(SCENIC) approach to construct gene regulatory networks
(GRNs) from single-cell RNA sequencing data. SCENIC involves
a three-step process: first, it identifies co-expression modules
between transcription factors (TFs) and their potential target
genes. Next, it identifies the direct target genes for each module,
prioritizing those enriched with the motif of the associated TF,
thereby defining a regulon comprising a TF and its direct targets.
Finally, the regulatory activity score (RAS) is computed for each cell
by evaluating the area under the recovery curve.

To address the conventional SCENIC protocol’s challenges with
scalability for extensive datasets and its susceptibility to sequencing
depth variations, we modified it to enhance both scalability and
robustness. This involved partitioning the data into metacells before
applying SCENIC to these gene expression profiles (13). This
adjustment significantly improved data quality and reduced
computational demands, representing a notable advancement in
the application of SCENIC to single-cell RNA-seq data analysis.

Regulon clustering

We employed a robust computational method to dissect the
regulatory relationships between transcription factors (TFs) and
their target genes, with a focus on TF clustering. The process began
by filtering TF-target interaction data to isolate pairs exceeding a
significance threshold (>1), prioritizing the most critical regulatory
interactions. We then identified key regulatory TFs by assessing
their influence on target gene regulation, highlighting them as
central nodes in the regulatory network for detailed analysis.

To visualize the intricate network of TF-target interactions, we
constructed a graph model. A force-directed algorithm was used to
refine the spatial layout of the graph, intuitively representing the
network’s structure and the interplay between TFs and their targets.
For an enhanced understanding of the network’s architecture, the
Leiden algorithm was applied for community detection. This
revealed the modular organization of TFs based on their
regulatory connections, assigning each TF to a specific cluster.
This approach allowed for a detailed analysis of the regulatory
landscape, providing insights into the functional organization of
TFs within the network.

Cell-cell communication analysis

Using the “CellChat” R package, we generated CellChat objects
from the UMI count matrices for each group (14). The
“CellChatDB.human” database was used as the reference for
ligand-receptor interactions. Intercellular communication was
interpreted using the default settings of the package. To compare
interaction counts and intensities, we merged CellChat objects from
each group with the “mergeCellChat” function. Differences in
interaction numbers and intensities among specific cell types were
visualized using the “netVisual_diffInteraction” function. Changes
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in signaling pathways were identified using the “rankNet” function,
and the distribution of signaling gene expression among groups was
displayed with the “netVisual bubble” and “netVisual_aggregate”
functions.

Additionally, we employed the NicheNet package to analyze
intercellular communication from the perspective of ligand activity
and the expression patterns of specific downstream targets
regulated by these key ligands (15). This method provided a
detailed understanding of the signaling processes underlying cell-
cell interactions, using ligand-target relationships to infer
communication pathways within the cellular microenvironment.

Evaluation of TME disparities and
immunotherapy response

To comprehensively and accurately assess immune cell
infiltration levels, we analyzed adverse infiltrated immune cells
using multiple algorithms, including MCPcounter, EPIC, xCell,
CIBERSORT, quanTIseq, and TIMER, among patients stratified
by the AIDAS (16-22). Additionally, to precisely depict the immune
landscape and architecture within the tumor microenvironment
(TME), we evaluated the ESTIMATE and TIDE indices. These
metrics provide critical insights into the potential for
immunotherapy and offer prognostic implications for breast
cancer patients.

Moreover, we quantified immune checkpoints, which serve as
indicators of the immune state and offer preliminary predictions of
patient responsiveness to ICI therapy. This comprehensive
evaluation of the immune profile within the TME is crucial for
advancing personalized medicine and refining treatment strategies
for breast cancer patients.

Determination of therapeutic targets and
drugs for high AIDAS patients

We identified therapeutic targets and drugs for high-AIDAS
patients from the Drug Repurposing Hub and dropped out
duplicate compounds, resulting in a refined list of 6,125
compounds. We established the selection of therapeutic targets
associated with breast cancer outcomes through Spearman
correlation analysis. Specifically, we assessed the relationship
between the AIDAS and gene expression levels, selecting genes
with a correlation coefficient greater than 0.3 and a P-value less than
0.05. Additionally, genes with a correlation coefficient below -0.3
and a P-value below 0.05 were identified as linked to poor
prognosis. The significance of these genes was further evaluated
by examining the relationship between CERES scores from the
Cancer Cell Line Encyclopedia (CCLE) and model value (23).

To enhance predictions regarding drug responsiveness, we
utilized data from the Cancer Therapeutics Response Portal
(CTRP) and the PRISM project, both of which offer extensive
drug screening and molecular data across diverse cancer cell lines.
Differential expression analysis was conducted between bulk
samples and cell lines. Subsequently, we employed the
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pRRophetic package to implement a ridge regression model for
predicting drug response. This model, trained using expression data
and drug response metrics from solid Cancer Cell Lines (CCLs),
demonstrated excellent predictive accuracy, validated through 10-
fold cross-validation (24).

Furthermore, to identify the most promising therapeutic drugs
for breast cancer, we performed a Connectivity Map (CMap)
analysis. This entailed comparing gene expression profiles across
different risk subgroups and submitting the top 300 genes (150 up-
regulated and 150 down-regulated) to the CMap website. A negative
CMap score indicated a higher therapeutic potential against breast
cancer, suggesting an inverse relationship between the CMap score
and a compound’s effectiveness as a potential treatment.

Patient stratification

To evaluate gene expression in breast cancer specimens, RNA
extraction was conducted using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). This was followed by cDNA synthesis and quantitative
reverse transcription PCR (qRT-PCR) using GoScript reverse
transcriptase and Master Mix (Promega), adhering to the
manufacturer’s instructions. Data acquisition was performed with
the CFX96 Touch Real-Time PCR Detection System (BioRad,
Hercules, CA, USA). Gene expression levels were quantified using
the 2229 method, with GAPDH serving as the normalization control.
Patients were subsequently categorized based on their gene expression
profiles using a predefined formula derived from the AIDAS. This
stratification was crucial in identifying patients with distinct risk
profiles, thus facilitating tailored therapeutic interventions.

Immunohistochemistry experiment

Tissue samples were collected from 30 breast cancer patients
undergoing surgery at Guizhou Provincial People’s Hospital. These
samples were subjected to Hematoxylin and Eosin (H&E) staining
following established protocols (25, 26), with diagnoses
independently confirmed by two pathologists.

For immunohistochemistry (IHC) analysis, paraffin-embedded
samples were processed according to procedures outlined in
previous studies. Protein expression levels were evaluated
independently by two pathologists, adhering to standardized
protocols and scoring systems consistent with methodologies
from prior research (26).

Results

Construction of an anoikis model using
artificial intelligence

The comprehensive evaluation of the anoikis model was

conducted using a combination of 108 machine learning
algorithms with ten-fold cross-validation (Figure 1A). The
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performance of the models was assessed by calculating the
average C-index across various cohorts, with the Random
Survival Forest (RSF) algorithm demonstrating the highest
average C-index (0.632). The key anoikis genes were identified
based on the point with the lowest error rate of RSF in 1000 tests
(Figures 1B, C). These genes underwent univariate Cox regression
analysis to calculate the hazard ratio (HR) across nine enrolled
cohorts (Figure 1D). Finally, four genes (PTK2, coef = 0.278;
NOTCHI1, coef = 0.145; PKD4, coef = -0.169; BCL2, coef =
-0.236) were selected to construct an artificial intelligence-derived
anoikis signature (AIDAS) (Figure 1E). The evaluation of AIDAS
across the nine cohorts revealed that the binary classification model
effectively classified patients into high and low-AIDAS groups
(Supplementary Figure S1).

Assessment of AIDAS with 83
published models

We further conducted both univariate and multivariate Cox
analysis to assess the independence of AIDAS and other clinical
indices (Supplementary Figure S2A). Three significant indices,
namely AIDAS, stage, and age, were chosen to develop a
nomogram aimed at predicting patients’ survival rates in clinical
practice (Supplementary Figure S2B). The overall survival (OS) of
breast cancer patients with different conditions was predicted, and
the OS curve demonstrated a good fit with the standard curve,
indicating the model’s accuracy (Supplementary Figures S2C, D).
Through comparisons with other factors, it was observed that
AIDAS could provide more accurate predictions of patients’
conditions (Supplementary Figure S2F).

The stability of the predictive model of the AIDAS was
evaluated by collecting and assessing 83 published signatures in
BC across 9 independent cohorts. It was demonstrated that only the
AIDAS exhibited consistent statistical significance across all cohorts
(Figure 2A). The predictive power of the AIDAS was compared with
the 83 models across the 9 cohorts using the C-index (Figure 2B).
The AIDAS showed significantly better accuracy than the others in
almost all cohorts, ranking first in seven cohorts, fifth in one cohort,
and seventh in one cohort, thereby revealing the stability of our
model (Figure 2B).

Multi-omics analysis of genomic alterations
based on AIDAS

Gene variations between the AIDAS groups were analyzed
using multi-omics integration analysis. We observed a significant
increase in TMB in high-AIDAS patients, accompanied by
multigene mutation characteristics (Figures 3A, C). When
considering 10 oncogenic signaling pathways together, classic
tumor suppressor genes like TP53, RB1, and AXIN1/2 were
found to mutate more frequently in the high-AIDAS group, while
oncogenic genes such as RET, PIK3CA/B, and RPTOR mutated less
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FIGURE 1

Construction of an anoikis model using artificial intelligence. (A) C-indexes of the 108 machine learning algorithm combinations in the nine cohorts.
(B) Error rate of RSF after 1000 tests. (C) Key anoikis genes selected by RSF. (D) Prognostic value of key genes in nine BC cohorts. (E) Final selection
of 4 anoikis genes based on an exhaustive search, with patient risk scores calculated according to the expression levels of these genes and their

regression coefficients.

(Figures 3A, B). Further analysis of CNV between these subgroups
revealed that amplifications and deletions at the level of
chromosome arms were more pronounced in the high-AIDAS
group, including amplifications of 3q26.32, 6p23, 6q21, 8q24.21,
and 10p15.1, as well as deletions of 5ql1.2, 5q21.3, 14q24.1,
14q32.12, and 19p13.3 (Figures 3A, D). These results suggest that
the poor prognosis for high-AIDAS patients may be related to
significant increases in the amplification of 3q26.32 and multiple
oncogenes genes (ASAP1, PVT1, TMEM75, and MYC), as well as
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deletions of multiple tumor suppressor genes of 5q21.3 (GPBP1,
RAB3C, DDX4, and ITGA1) (Figure 3A).

Deciphering the AIDAS at the single-
cell level

The expression characteristics of different immune infiltrating cells
were revealed at the single-cell level. The distribution of cells from 8 BC
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Assessment of AIDAS with 83 published models. (A) The stability of AIDAS was compared with 83 published models. (B) C-index values of AIDAS and

83 published models in 9 different datasets.

patients was analyzed, and the distribution of tumor and normal tissues
(Supplementary Figures S3A, B), 17 cell clusters were identified and
divided into 6 cell types (Figures 4A, B). The number of cells in these 6
types was statistically analyzed, and then their proportion in the bodies
of these 8 tumor patients was calculated (Supplementary Figures S3C,
D). The representative markers in these 6 types of cells, as well as their
actual distribution in the cells (Figure 4C; Supplementary Figure S3E)
were observed. The results showed that epithelial cells and
macrophages accounted for a larger proportion of the tumor tissue,
while fibroblasts, T cells, Pericytes, and endothelial cells accounted for a
larger proportion in the normal tissue (Figure 4D).

Next, the AIDAS was incorporated into the single-cell
distribution map (Figure 4E). All cells were divided into low- and
high-AIDAS groups based on their peak of epithelial cells
(Figure 4F), and then differential gene expression analysis and
functional clustering were performed to elucidate potential
functional pathways (Supplementary Figures S3F, G).
Subsequently, copyKat analysis was performed to observe the
CNV for distinguishing the normal cells and tumor cells
(Figure 4G). We observed a higher AIDAS score in tumor-
aneuploid than in tumor-diploid, implying the significance of
AIDAS in breast cancer progression (Figure 4H).

Frontiers in Immunology

Specific regulons for AIDAS and
cell recognition

To comprehensively construct a GRNs of AIDAS, a SCENIC
pipeline was applied to analyze single-cell RNA seq data with cis-
regulatory sequence information (Figures 5A, B). PCA and variance
analyses were performed on different cell types and AIDAS. PCA1
explained the specific transcription factors of different cell types,
while PCA2 was associated with the regulons of AIDAS (Figures 5C,
D). The key transcription factors for cell recognition were
identified, and the regulon specificity score (RSS) of these specific
transcription factors in different types of cells was evaluated
(Figure 5E). The regulatory factors with higher RSS scores were
selected from these six types of cells, and GATA3, SPDEF, and
PITX1 were identified as the most relevant specific regulators to
epithelial cells (Figure 5F). Similarly, the most relevant specific
regulators to the other five types of cells were analyzed
(Supplementary Figure S4A).

Understanding that TFs often collaborate to modulate gene
expression, we systematically explored the combinatory patterns of
these regulatory elements. Based on the Leiden algorithm, the
similarity of RAS scores for each TF was compared, and the cluster
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Multi-omics analysis of genomic alterations based on AIDAS. (A) Overview of genomic variations based on AIDAS. (B) Mutation atlas of 10 oncogenic
pathways. (C) Difference of TMB values. (D) Comparison of copy number load between the two AIDAS groups. *P < 0.05; **P < 0.01; ***P < 0.001;

***xp < 0.0001.

analysis of TFs was conducted to find 12 clusters of transcription
factors, of which the contribution rate of transcription factor sets B
and E to the development of AIDAS was greater than that of the other
11 clusters, so only transcription factors B and E were displayed
(Figures 5G, H, Supplementary Figure S4B). We next focused on the
exact TFs that drive epithelial cells’ transcriptomic changes by
AIDAS. Multiple pathways were identified by GSEA analysis. For
example, collagen degradation was activated in epithelial cells in the
high-AIDAS cells, while interference alpha beta signaling was
inhibited (Figures 51, J). Transcription factors contributing to these
pathways were identified by further analysis (Figure 5K). The
network diagrams of regulatory relationships among transcription
factors were shown (Figure 5L).

Intercellular communications for AIDAS

Intercellular communication among six cell types was evaluated
by CellChat analysis. We observed that the number and intensity of

Frontiers in Immunology

cell-cell interactions were stronger in the low-AIDAS cells, and the
intercellular communication between epithelial cells and
endothelial cells was elevated (Figures 6A, B). Some signaling
pathways involved in intercellular communication were analyzed,
and the results showed that most of them had stronger intercellular
communications in the low-AIDAS cells (Figure 6C). By comparing
changes in outgoing and incoming signals among different cells, it
was found that incoming interactions of epithelial cells were
stronger in the low-AIDAS cells, indicating that incoming
interactions of epithelial cells in the low-AIDAS group may be
enhanced after they receive signals from other cells (Figure 6D).
Potential ligands of epithelial cells in the different groups were
speculated using nichenetr analysis. We inferred potential ligands
that may regulate epithelial cells from other cells based on the
AIDAS group. The potential ligand-receptor pairs were further
evaluated (Figure 6F). A high degree of interaction between THBSI-
SDC4 and CNN1-SDC4 was observed, indicating that fibroblasts
are the main sending cells affecting changes in the epithelial cell
pathway (Figure 6G). THBSI ligand and CNNT1 ligand could reach
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the SDC4 through other receptors or transcription factors, in which
high mutation rates of transcription factors such as TP53, MYC,
and RACI in high-AIDAS (Figure 6H).

Personalized immunotherapy for low-
AIDAS patients

Immune microenvironment is involved in breast cancer
progression, six algorithms were applied to evaluate the immune
infiltration of different AIDAS patients. A higher proportion of
memory T cells, Tregs, M1 macrophages, and CD8" T cells were
observed in the high-AIDAS patients (Figure 7A), and some ICIs
were also overexpressed, such as PD-L1, CTLA4, and LAG3
(Figure 7B). IHC was performed to support the above results
using the representative cell markers and clinical ICIs (Figure 7C).

Further analysis revealed that TIDE and Dysfunction values in
the low-AIDAS group were higher than those in the high-AIDAS
group, and there was no significant difference in the Exclusion value
between the two groups (Figure 8A). There was a longer survival
time in patients with a low-AIDAS and high-TIDE than in other
combinations (Figure 8B). The correlation of AIDAS with the
immune cycle and signaling showed that the anti-tumor immune
activity of low-AIDAS patients was higher than that of high-AIDAS
patients (Figure 8C).

ICIs have emerged as a transformative approach in cancer
immunotherapy over the past several decades, yet their
effectiveness in solid tumors, including breast cancer, remains
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limited. We sought to explore the predictive capability of AIDAS
levels regarding the efficacy of immune checkpoint blockade therapies
in the IMvigor210 (anti-PD-L1) and GSE78220 (anti-PD-1) cohorts.

Patients from low-AIDAS presented remarkable clinical
benefits and better survival rates than the high-AIDAS in anti-
PD-L1 response (Figures 8D-G). Prior benefits for low-AIDAS
patients were also observed in anti-PD1 response (Figures 8H-L).
Utilizing SubMap algorithms, we confirmed the response to
immunotherapy, which was significantly more likely to benefit
from treatments with anti-PD-L1 and CTLA4 treatments
(Figure 8M). Based on the above research results, patients with
the low-AIDAS can achieve better results in the treatment with ICIs.

Identification of therapeutic drugs for
high-AIDAS patients

Chemotherapy is the standard treatment for anti-cancer, and
data from multiple datasets have been used to develop potential
drugs for BC patients with high-AIDAS. Seven therapeutic targets
were identified using Spearman correlation analysis, and the results
showed that high-AIDAS patients were positively correlated with
the abundance of seven genes (MDH2, LIMK1, S100A2, TYRO3,
COX7B, and ESRRA), and significantly negatively correlated with
their CERES scores, suggesting that these seven genes can serve as a
potential therapeutic target (Figure 9A). Potential drug targets were
further analyzed based on drug sensitivity ratios, and it was revealed
that these 7 genes had a high sensitivity to the drugs, so they were
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considered the key therapeutic targets for high-AIDAS patients

(Figure 9B). Thirteen compounds were screened out from CTPR
(CR-1-31B, SB-743921, BI2536, GSK461364, methotrexate,
vincristine, paclitaxel, and leptomycin B) and PRISM datasets

(docetaxel, vincristine, ispinesib, gemcitabine, and LY2606368),

for evaluating candidate therapeutic drugs. The AUC values of
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the different compounds in the two groups were compared, and the
results showed that lower AUC values were identified in high-
AIDAS patients, indicating that these compounds may be suitable
for the drug treatment of high-AIDAS patients (Figures 9C, D). The
promising therapeutic agents were identified by CMap analysis, in
which methotrexate, with a CMAP value of -99.82, was ultimately
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Intercellular communications for AIDAS. (A) Comparison of the number and intensity of cell interactions between two AIDAS groups. (B) Detail of
cell communications among each cell type. (C) Differences of signaling pathways involved in the intercellular communication. (D) Intensity of
incoming and outgoing interactions among different cells. (E) Specificity of incoming and outgoing signals of different signaling pathways.

(F) Specific regulatory of ligands and receptors in cells. (G) Expression levels of ligands and receptors in different cells. (H) Route diagram of reaching
target receptor SDC4 of CCN1 and THBS1 ligands through other receptors or transcription factors.

identified as the best potential therapeutic drug for high-AIDAS
patients (Figure 9E).

Discussion

Considering the unique clinical characteristics of BC patients, it
is necessary to customize specialized prognostic plans for these
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patients, and it is crucial to develop an accurate prognostic model.
Anoikis is a specific form of programmed apoptosis caused by the
disruption of cell-cell or cell-extracellular matrix attachment, and
eliminating displaced or displaced cells can help maintain the
dynamic balance of tissues (27), Anoikis is a term that describes
the process of apoptosis that triggered by the detachment of cells
from the extracellular matrix (28). It has been confirmed that
anoikis is the first line of defense against cancer cell metastasis
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Differential expression and immunohistochemical analysis of immune markers in tumor microenvironments between AIDAS subgroups. (A) Heatmap
provides a comparative view of immune cell infiltration in tumor samples with low and high AIDAS, utilizing various computational algorithms for
quantification. Each row represents a different type of immune cell, with the color intensity reflecting the level of infiltration. (B) Box plots illustrate
the distribution of gene expression levels for ICls across low vs. high AIDAS conditions, with statistical significance denoted by ns for not significant;
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (C) Representative immunohistochemistry images showcase the staining intensity of various
immune markers between high and low expression conditions, visually depicting the differential expression of these markers in correlation with
AIDAS levels.

and an early intervention measure for preventing cancer metastasis
(29). However, there is a limited prognostic model based on anoikis
for predicting the prognosis and personalized treatment of BC.

By focusing on the process of anoikis—programmed cell death
triggered by cellular detachment—AIDAS provides novel insights
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into how resistance to anoikis is linked to cancer aggressiveness and
metastasis. Here, we discuss the clinical implications, biological
rationale, and limitations of AIDAS, and outline directions for
future research that could further enhance its utility as a
personalized medicine tool.
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Personalized immunotherapy for low-AIDAS patients. (A) Differences in TIDE, Dysfunction, and Exclusion between patients in the low- and high-
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immune pathways. (D) Correlation analysis of AIDAS value with anti-PD-L1 response. (E) KM survival curves of AIDAS after anti-PD-L1 treatment.
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analysis of AIDAS value with anti-PD-1 response. (I) KM survival curves of AIDAS after anti-PD-1 treatment. (J) Accuracy of AIDAS and TMB in
anti-PD-1 treatment. (K) Proportion of CR/PR and SD/PD of anti-PD-1 in ADIAS subgroups. (L) Distribution of ADIAS score of different patients after
anti-PD-1 treatment. (M) Heatmap demonstrating the predictive power of ADIAS for responsiveness to different ICls treatment.

By focusing on the process of anoikis—programmed cell death
triggered by cellular detachment—AIDAS provides novel insights
into how resistance to anoikis is linked to cancer aggressiveness and
metastasis. Here, we discuss the clinical implications, biological
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rationale, and limitations of AIDAS, and outline directions for
future research that could further enhance its utility as a
personalized medicine tool. AIDAS leverages machine learning to
capture complex interactions among anoikis-related genes, enabling
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Identification of therapeutic drugs for high-AIDAS patients. (A) Spearman correlation of 7 potential therapeutic targets, where red and blue represent
positive and negative correlations, respectively. (B) Network analysis highlighting the connections between the 7 therapeutic targets and their related

drug action pathways. (C) AUC values of identified compounds from CTRP database. (D) AUC values of identified compounds from PRISM database.
(E) Analysis from multiple perspectives based on the clinical status, experimental evidence, mRNA expression, and CMap score of 13 compounds.

***P < 0.001.

us to explore how gene expression patterns associated with anoikis
resistance influence breast cancer prognosis. Anoikis resistance is a
critical step in metastasis, and understanding its molecular
underpinnings could provide pathways for intervention in cancer
progression. By identifying gene clusters and pathways linked to
anoikis resistance, AIDAS deepens our understanding of this
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biological process and its role in breast cancer outcomes,
highlighting potential targets for future therapeutic strategies that
could re-sensitize tumor cells to anoikis. This mechanistic insight
underscores the value of combining molecular biology with
advanced computational techniques to address complex questions

in cancer biology.
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Immunotherapy is found to be more beneficial for low-AIDAS
patients by studying the immune cell infiltration score and immune
checkpoint count of patients in two AIDAS subgroups. To effectively
examine which patient would be more sensitive to immunotherapy,
multiple analyses were utilized, and it was concluded that low-AIDAS
populations have greater advantages in the treatment of IClIs,
especially in response to PD-1, PD-L1, and CTLA4 drugs. For
aggressive subtypes like triple-negative breast cancer (TNBC), which
frequently exhibit poor responses to chemotherapy, AIDAS could be a
valuable tool for tailoring immunotherapy. By stratifying TNBC
patients based on AIDAS and PD-L1 expression, clinicians may be
able to identify those more likely to benefit from PD-1-targeted
therapies, potentially improving outcomes in this difficult-to-treat
population. Enhancing the patient’s immune response to tumors by
blocking the inhibitory signals of the human anti-tumor response is
recognized as the most promising new cancer immunotherapy
currently. CTLA-4 and PD-1 are considered two important
checkpoints of the immune system, playing a negative regulatory
role in the immune response of T cells. In vivo mouse experiments
indicate that CTLA-4-dependent antibodies bind to Fc receptors
rather than blocking the action of CTLA-4/B7, demonstrating the
anti-tumor effect of CTLA-4 antibodies (30). Nikhil Joshi stated that
PD-1 plays a crucial role in preventing T cells from attacking normal
tissues in healthy individuals, and this finding may help look for a way
to reduce or prevent the side effects of immunotherapy (31). Our study
observed that patients in the low-AIDAS group tend to have lower
PD-L1 expression, correlating with a less immunosuppressive tumor
microenvironment. This reduced immune suppression may explain
their improved responses to PD-1/PD-L1 inhibitors, as these therapies
rely on reactivating the immune system to recognize and target cancer
cells. Beyond PD-L1 expression levels, differences in the immune cell
landscape and functional activity within the tumor microenvironment
likely contribute to these divergent responses. Studies have shown that
functional characteristics, such as T-cell activation and the presence of
regulatory T-cells, can significantly impact immunotherapy
effectiveness (32). Techniques such as leukosome isolation and
single-cell profiling could further elucidate the immune cell
dynamics within AIDAS groups, providing deeper insights into how
these functional immune variations drive therapeutic responses.

Chemotherapy plays an important role in the treatment of
tumors in the clinic. To study the chemotherapy efficacy among
different patients, therapeutic targets and drugs were screened. After
a series of analyses, it was found that BC patients with high-AIDAS
are more suitable for chemotherapy. Finally, seven therapeutic
targets and one drug were identified to improve the prognosis.
These studies have demonstrated the effectiveness of methotrexate.
For example, Methotrexate chemotherapy can induce the
dysregulation of three types of glial cells, which forms the basis
for chemotherapy-related cognitive impairment (33). Shen Y et al.
reported that patients showed a good prognosis after they received
four courses of methotrexate chemotherapy (34). Thomas S et al.
believe that methotrexate is a promising drug for treating
myeloproliferative tumors (35). Overall, the therapeutic potential
of methotrexate has been repeatedly verified.

The genomic alterations identified in high-AIDAS tumors provide
a biologically plausible explanation for the poorer prognosis associated
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with high anoikis resistance. High-AIDAS tumors frequently exhibit
amplification of known oncogenes, such as MYC, and deletions in
tumor suppressor genes, linking AIDAS with oncogenic pathways that
drive tumor progression and therapeutic resistance. These findings add
credibility to AIDAS as a prognostic tool, as they align with established
mechanisms of cancer progression. Further exploration of these genetic
drivers, within the context of AIDAS, could yield new insights into
specific molecular targets, particularly for therapies aimed at reversing
anoikis resistance.

Compared to other prognostic models, AIDAS offers a unique
focus on anoikis-related gene expression patterns, which are
particularly relevant in the context of metastasis and therapeutic
resistance. Existing models tend to emphasize overall survival
predictors or molecular subtypes without specifically addressing
the role of anoikis and immune markers in treatment selection.
AIDAS fills this gap by providing actionable insights that could
directly influence treatment planning, such as recommending
chemotherapy for high-AIDAS patients and immunotherapy for
low-AIDAS patients. This targeted approach enhances the
individualization of breast cancer treatment, which could improve
outcomes by reducing unnecessary treatments and optimizing
therapeutic choices based on tumor biology.

Despite the potential of AIDAS, several limitations need to be
addressed. Firstly, the study’s retrospective and observational design
restricts our findings to associations, without the ability to infer
causality. Prospective studies with standardized, long-term follow-
up would be essential to confirm AIDAS’s clinical relevance over
time. Additionally, our IHC validation was conducted on a limited
sample size of 30 tissue samples, which, although consistent with
broader dataset findings, may not fully capture population-level
heterogeneity. Expanding THC validation to larger, multi-cohort
studies would strengthen the generalizability of our results.

Our study also integrated data from multiple cohorts, each with
potential variations in sample processing. Although we applied
normalization and batch correction, residual technical variability
may influence the findings. Future studies with harmonized, single-
cohort data could provide a more uniform validation. Finally, while
our bioinformatics analysis identified potential therapeutic targets
through in silico drug screening, wet lab validation is essential to
confirm these findings. Future research should incorporate in vitro
and in vivo experiments to validate AIDAS-predicted drug responses
and explore the efficacy of novel anoikis-targeting therapies.

Furthermore, the integration of AIDAS with PD-L1 expression
and other immune markers offers a promising approach for precision
oncology. For instance, stratifying TNBC patients by AIDAS and PD-
L1 levels could help personalize immunotherapy choices, optimizing
patient selection for anti-PD-1/L1 treatments. By combining
molecular and immune landscape data, AIDAS represents a step
towards fully personalized breast cancer management, offering a
comprehensive molecular profile to guide treatment.

AIDAS exemplifies the potential of combining mechanistic
understanding with machine learning to advance personalized
medicine. By linking anoikis resistance with breast cancer
prognosis and therapy response, AIDAS provides an actionable
framework for individualized treatment selection in clinical settings.
Future studies integrating multi-omics data, single-cell immune
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profiling, and in vivo validation will be crucial to refine AIDAS and
maximize its clinical impact. These steps could ultimately lead to
new therapeutic avenues, including anoikis-targeting agents and
immunotherapy combinations, further expanding the clinical utility
of AIDAS in breast cancer care.

Conclusion

In conclusion, this study advocates for a more nuanced
understanding of the TME, suggesting that the interrelationships and
functional states of different immune components can significantly
influence the efficacy of immunotherapy. It underscores the potential of
integrating comprehensive immune profiling into clinical decision-
making to tailor immunotherapeutic strategies more precisely. The
differential response to immunotherapy in breast cancer groups
highlights the importance of considering qualitative and functional
aspects of immune cells, beyond their numerical abundance. This
approach could lead to more personalized and effective therapeutic
interventions, particularly in the realm of immunotherapy.
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Background: Autophagy promotes the survival of acute myeloid leukemia (AML)
cells by removing damaged organelles and proteins and protecting them from
stress-induced apoptosis. Although many studies have identified candidate
autophagy genes associated with AML prognosis, there are still great
challenges in predicting the survival prognosis of AML patients. Therefore, it is
necessary to identify more novel autophagy gene markers to improve the
prognosis of AML by utilizing information at the molecular level.

Methods: In this study, the Random Forest, SVM and XGBoost algorithms were
utilized to identify autophagy genes linked to prognosis, respectively.
Subsequently, six autophagy genes (TSC2, CALCOCO2, BAG3, UBQLN4, ULK1
and DAPK1) that were significantly associated with patients’ overall survival (OS)
were identified using Lasso-Cox regression analysis. A prediction model
incorporating these autophagy genes was then developed. In addition, the
immunological microenvironment analysis of autophagy genes was performed
in this study.

Results: The experimental results showed that the predictive model had good
predictive ability. After adjusting for clinicopathologic parameters, this feature
proved an independent prognostic predictor and was validated in an external
AML sample set. Analysis of differentially expressed genes in patients in the high-
risk and low-risk groups showed that these genes were enriched in immune-
related pathways such as humoral immune response, T cell differentiation in
thymus and lymphocyte differentiation. Then immune infiltration analysis of
autophagy genes in patients showed that the cellular abundance of T cells
CD4+ memory activated, NK cells activated and T cells CD4+ in the high-risk
group was significantly lower than that in the low-risk group.
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Conclusion: This study systematically analyzed autophagy-related genes (ARGs)
and developed prognostic predictors related to OS for patients with AML, thus
more accurately assessing the prognosis of AML patients. This not only helps to
improve the prognostic assessment and therapeutic outcome of patients, but
may also provide new help for future research and clinical applications.

autophagy gene, immune infiltration, random forest, acute myeloid leukemia, prognosis

Introduction

Acute myeloid leukemia (AML) is a complex and diverse blood
cancer triggered by abnormal proliferation and immature
differentiation of hematopoietic stem cells in the bone marrow
(1-3). Despite previous studies on the role of autophagy in AML (4-
6), the specific functions of ARGs and their interaction with
immune infiltration have not been thoroughly explored. This gap
not only makes the biological functions of ARGs unclear, but also
limits their potential application in AML therapy. Therefore, this
study aimed to reveal the key autophagy genes associated with the
prognosis of AML and their role in relation to the immune
microenvironment through comprehensive bioinformatics
analysis, providing new targets and strategies for AML treatment.

Autophagy is an important cellular self-regulatory mechanism
that maintains cellular and organismal homeostasis (7) and adapts
to changes in the external environment by disassembling and
removing damaged proteins and organelles inside the cell.
Autophagy gene (ARG) mutations linked to cancer and other
diseases (8). For example, autophagy levels are strongly associated
with the prognosis of ovarian cancer patients (9). Recent studies
have indicated that autophagy is closely linked to progression of
leukemia, including AML. However, the exact mechanism of
autophagy in AML and the expression and function of autophagy
genes in AML are still limited.

Certain immune cells play an immunoregulatory role in the
tumor microenvironment (TME) and are linked to the immune
escape of tumor cells, thereby influencing tumor progression (10).
Bansal et al. showed that the number of regulatory T cells was
significantly higher in patients with AML than in the healthy
population, and that the increased number of Tregs may be
strongly associated with poor prognosis (11). Wan et al. further
noted that Tregs contribute to immune escape of AML cells in the
tumor microenvironment by enhancing the inhibitory effect on
effector T cells (12). The study by Romee et al. demonstrates the
potential of using cytokines to induce memory-like NK cells for
immunotherapy in AML patients (13). Bioinformatics analysis of
immune infiltration is a powerful approach that allows in-depth
study of immune cell infiltration in TME and its relationship with
tumor development by integrating multi-omics data. Although
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there have been several studies on immune infiltration in AML,
the interaction between ARGs and immune infiltration has not been
thoroughly investigated.

In this research, AML transcriptome data obtained from the
GEO database was used to screen for AML-related ARGs (14-16).
Then functional enrichment analyses were conducted to obtain the
biological meaning and functional features of these ARGs. In
addition, the autophagy genes obtained in this experiment were
analyzed by protein—protein interaction (PPI) network to obtain the
interactions between these autophagy genes and their regulatory
mechanisms inside the cell. After that, Random Forest (17), SVM-
RFE (18) and XGBoost were used in combination to identify key
autophagy genes associated with AML. Lasso-Cox analysis was then
conducted to identify six autophagy-related genes and construct a
survival prediction model. After that, AML high and low risk
groups divided according to the survival prediction model and
differential expression analysis was performed. The genes obtained
with significant differences were then analyzed for functional
enrichment. The results indicated that these ARGs were primarily
enriched in immune-related pathways such as T cell differentiation
in thymus and lymphocyte differentiation. Accordingly, the
autophagy genes were analyzed for immune infiltration.
Moreover, the link between ARGs and immune infiltration was
investigated. This study reveals the critical role of autophagy genes
in acute myeloid leukemia and their interaction with the immune
microenvironment, which is of great clinical significance. By
constructing a survival prediction model, it can provide AML
patients with prognostic assessment and personalized treatment
plans. In addition, autophagy genes are expected to be used as
potential targets for novel therapeutic strategies, especially showing
great potential in combination with immunotherapy. The basic flow
of this experiment is shown in Figure 1.

Methods
Data set acquisition

In this study, the original microarray dataset of GSE37642 (19)
was downloaded from the GEO database, including transcriptome
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The general analytical flow of this experimental design.

data of GPL96 and GPL570 platforms. The data were first quality
checked for missing values, outliers and distribution. Subsequently,
the data were normalized using the robust multi-array average
(RMA) algorithm in the affy package to normalize gene expression
levels across arrays. To eliminate the batch effect due to different
platforms, the Combat algorithm from the sva package was used for
correction (20). Clinical information was then collated and
integrated to remove samples lacking relevant clinical
information, resulting in 553 usable acute myeloid leukemia
samples. Clinical information on these samples is presented in
Supplementary Table S1. The dataset GSE12417 was processed in
the same way, resulting in a total of 237 samples with clinical
information. The available clinical information for the samples used
was shown in Supplementary Table S2. AML RNA-seq datasets
were downloaded from the UCSC Xena database (https://
xenabrowser.net/datapages/). Available clinical information for
the samples used in this study is shown in Supplementary Table S3.

Acquisition of autophagy genes

Autophagy-related genes were obtained from the Human
Autophagy Database (HADB, http://www.autophagy.lu/
index.html) and from the GO_AUTOPHAGY gene set in GSEA
website (http://software.broadinstitute.org/gsea/index.jsp). The
Human Autophagy Database (HADD) is an authoritative database
dedicated to autophagy-related genes, covering a large number of
experimentally validated autophagy genes, which ensures the
breadth and comprehensiveness of the data. The collection of
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GO_AUTOPHAGY genes on the GSEA website is based on the
autophagy biological process as defined by Gene Ontology (GO),
and these genes are strictly classified according to the GO
classification criteria division, ensuring consistency in biological
function and annotation. This enables the autophagy genes selected
during the study to have a clear functional orientation and
ensures their relevance to the autophagy process. The two
obtained autophagy gene sets were combined to obtain 531
related ARGs (Supplementary Table S4). 392 ARGs were screened
from GSE37642.

Random forest identifies overall survival-
related ARGs

In this study, survival time and survival state information were
extracted from AML patient data, and a random forest model with
1000 decision trees was constructed to predict patient survival. The
model used multiple samples, each containing feature genes and
their corresponding survival information. To build the decision
trees, the random forest employed the log-rank split rule, which
assessed the survival differences between two subsets. At each
candidate split point, the log-rank statistic was calculated to
measure the difference between two survival curves, using the

_E
M, where

formula x*= 3% : O; was the observed number of
events at timgupoiﬁt i, E; was the expected number of events at i,
and m was the total number of time points. The split point with the
highest log-rank statistic is selected as the optimal point, as it

maximizes the distinction between the survival curves of the
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resulting subsets. This process continues recursively, splitting the
data at the best split points until a stopping condition is met.

SVM identifies ARGs

In this study, a SVM model was used to identify the most
important features for the classification task. The importance of
each feature was determined by looking at how much influence it
had on the model’s decisions. This was done by calculating the
absolute value of the product of the feature’s weight and the
corresponding support vector. In simpler terms, the importance
of a feature depends on how much its weight, when multiplied by
the support vector, affects the classification. After calculating these
importance scores, they were sorted from highest to lowest to
identify the most important features.

XGBoost Identifies ARGs

Firstly, the training data were preprocessed, including
extracting the autophagy gene expression data from the
transcriptome data, and also collecting clinical information such
as the survival time and survival status of the patients. Handle
missing and abnormal values to ensure complete autophagy gene
expression data for each sample and remove abnormal or
incomplete samples. Generate labels by combining survival time
and survival status. Next, the data are converted to DMatrix format
for XGBoost and the model parameters are set, where the objective
function is Cox proportional risk model and the evaluation metric is
negative log likelihood. The objective function of Cox proportional
risk model (21) is defined as:

logL(B) = EieE(xiﬁ - log(EjeR(Ti)eXP(xjﬂ))) (1)

where E denotes the set of events, i.e., all samples of observed
deaths, R(T;) denotes the set of samples at risk at time T;. x; dentes
the eigenvector of sample i, and f3 is a parameter of the model. The
model is trained through 100 rounds of iterations, setting the
learning rate to 0.1, and recording the negative log-likelihood
value and training error for each round as a function of the
number of iterations. The model is then used to calculate the
importance of the features. Feature importance (22) (Gain)
indicates the contribution of each feature to the model with the
following formula:

Gain(j) = EteTjAGt (2)

where AG; denotes the gain of feature j in tree t and T; denotes
the set of all trees in which feature j appears.

Permutation test

To further assess the impact of the identified ARGs on survival,
a permutation test was conducted. This test aims to verify the
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reliability of the model’s predictions by randomly shuffling the
survival labels, as described below.

1. Randomly disrupt survival state labels to generate a new set
of labels.

2. Retrain the Cox regression model using the disrupted data
and record the C-index of the model each time.

3. Repeat the above process a certain number of times to
generate a C-index replacement distribution.

4. The C-index of the original model was compared with the
C-index distribution of the replacement and the p-value
was calculated to assess the significance of the
original model.

Functional enrichment analysis and PPI
molecular interactions

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses of key autophagy genes were performed
using clusterProfiler (version 3.14.3) to reveal the primary functions
of these genes. We will apply the Benjamini & Hochberg correction
method and use a corrected P value of less than 0.05 as the criterion
for statistical significance.

To study the interactions between these key ARGs, a PPI will be
constructed using the STRING database. Subsequently, the
MCODE plugin was used in Cytoscape (v3.10.0) (23) to extract
densely connected modules with default parameters “degree cutoff
=27, “node score cutoff = 0.2”, “K-core = 2”, and “Maximum depth
= 100” to extract densely connected modules.

Construction and validation of survival
prediction models

To avoid overfitting of prognostic risk features, we performed
the following steps on the training set to construct survival
prediction models.

1. A Cox regression method based on the least absolute
shrinkage and selection operator (LASSO) was applied to
the training dataset to identify significant features of ARGs
associated with OS.

2. Subsequently, we performed multivariate Cox proportional
risk regression on these candidate genes and stepwise
variable selection using the Akaike information criterion.

3. Ultimately, risk scores for optimized prognostic markers
were calculated.

Risk score = '} Coef; x A; (3)

where Coef; represents the regression coefficient of the i gene,
indicating the degree of influence of the expression level of the gene
on the risk. A; denotes the expression level of the i gene, and n
denotes the total number of genes selected for characterization.
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Differences in patient OS were assessed by Kaplan-Meier analysis
and log-rank tests. The predictive power of ARG-based
characteristics was assessed using time-dependent ROC curves (24).

To test the accuracy of the survival prediction model, external
validation was performed using the GSE12417 (n=242) dataset and
AML cohorts-TCGA-LAML (n=129). First, the risk scores of
patients in each external validation dataset were calculated using
the survival prediction model from the training set. Then, patients
were categorized into high-risk and low-risk groups based on their
risk scores. Next, the survival distribution of the model in the high-
and low-risk groups was assessed using Kaplan-Meier curves, and
the survival differences were compared to validate the predictive
performance of the model.

Identification of differentially
expressed genes

Differential expression analysis was performed on samples from
the high-risk and low-risk groups using the limma package, setting
the criteria of [log2FC| > 2 and a P-value < 0.05 to screen for DEGs.
Next, volcano maps of DEGs were plotted using the
EnhancedVolcano (25) function in the EnhancedVolcano package.

Immune infiltration analysis

The analysis of 22 immune cell types is of great importance
during the progression of AML. These immune cells, including T
cells, B cells, NK cells, T cells gamma delta and macrophages, are
known to play a key immunomodulatory role in the tumor
microenvironment (26). Ge Jiang et al. demonstrated that a
significant elevation in the abundance of NK cells and
macrophage infiltration was strongly associated with a poor
prognosis in AML (27). Another study by Moore et al.
demonstrated that macrophage reduction promoted AML cell
growth in vivo (28).

To further investigate the relationship between immune cell
infiltration and AML, the CIBERSORT algorithm was used to
calculate the infiltration abundance of 22 immune cell types in
gene expression data from AML patients. Subsequently, the
association between hub genes and the abundance of 22 immune
cells was detected and then visualized using the software package
“ggcorrplot”, and gene-immune cell correlations greater than 0.28
were considered significant.

Results

Using machine learning to select OS-
related ARGs

Three hundred and ninety-two ARGs were screened from the
gene expression matrix and screened for autophagy genes
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associated with survival prognosis using Random Forest, Support
Vector Machine (SVM) and XGBoost (29) algorithms, respectively.

First, in the random forest model, 1000 decision trees were
constructed and the variables were partitioned using the log-rank
rule. The model assessed the relationship between gene expression
and survival prognosis by calculating the importance of each
variable and the proximity of the samples (30). The OBB error
plot of the model showed a gradual decrease in error and improved
performance as the number of trees increased (Figure 2A). The
variable importance plot showed the importance of each gene
(Figure 2B), and 146 genes with significant effects on survival
analysis were screened (Supplementary Table S5). Meanwhile, the
performance of the model was assessed by the C-index (consistency
index), and a C-index value of 0.88 was obtained, indicating that the
model was predicted relatively well.

Next, the XGBoost algorithm was employed for survival
analysis. XGBoost used the Cox proportional risk model as the
objective function and evaluated the model by optimizing the Cox
negative log-likelihood ratio (cox-nloglik). Survival states and
survival times were converted into a labelled format suitable for
the Cox model, and the number of iterations of the model was set to
100 with a learning rate of 0.1. Figure 2C shows the trend of Cox
negative log-likelihood value during the training process. From the
figure, it can be seen that the model gradually converges and the
performance of the model gradually improves as the number of
iterations increases. The top 180 genes that had a significant effect
on survival analysis were screened by feature importance analysis
(Supplementary Table S6) and the performance of the model was
assessed with a C-index of 0.99. The top 10 ranked important
features are shown in Table 1. Figure 2D visualizes the top 10
ranked genes and their corresponding importance scores. These
features had the highest importance scores in the model and
significantly influenced survival prediction.

In addition, a support vector machine (SVM) was used for
survival analysis, and a linear kernel function (31) and epsilon
regression type were used for model training. The coefficients and
support vectors of the model were used to calculate the importance
scores of each feature, and the top 180 feature genes that had a
significant effect on survival prediction were filtered out
(Supplementary Table S7), and the top 10 features with the
highest importance scores were visualized by bar graphs to show
the importance scores of these feature genes (Figure 2E). The model
has a C-index of 0.17. Table 2 demonstrates the top 10 significant
feature genes and their importance scores. A total of 45 overlapping
genes common to all three algorithms were screened by the above
algorithm (32) (Figure 2F).

By comparing the importance scores of the top 10 genes
screened by the three algorithms (Supplementary Figure 1), it was
found that genes such as ITGB1, ANXA7, and ULK1 scored higher
across all algorithms, suggesting a significant association of these
genes with survival prognosis in AML. In model performance
comparisons, XGBoost showed the best performance, while SVM
performed relatively poorly. However, although XGBoost leads in
prediction, it is too dependent on parameter tuning in the case of
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Screening for prognostically relevant autophagy genes using machine learning methods. (A) The OBB error plot of the random forest algorithm is
used to estimate the generalization performance of the model. The graph shows that as the number of trees increases, the errors of model become
smaller. (B) VIMP plot showing the importance scores of each variable to help identify the most important feature genes. (C) Plot of the number of
iterations of the training process of the XGBoost algorithm versus the Cox negative log-likelihood value. (D) Bar chart of the top 10 genes and their
corresponding importance scores screened by the XGBoost algorithm (E) Bar chart of the top 10 genes and their corresponding importance scores
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small samples and is prone to overfitting if the parameters are not
adjusted properly. SVM, on the other hand, is more suitable for
handling high-dimensional data with small samples, and although
its overall performance is not as good as that of XGBoost, it has a
unique advantage in handling data dimensions.

In order to improve the stability and consistency of the
screened genes, we adopted a combination strategy of multiple
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algorithms. By using SVM, Random Forest and XGBoost
algorithms to identify prognostic genes from different angles, we
further screened the overlapping genes that showed significance in
all three algorithms. Finally, we screened 45 overlapping genes in
total (Figure 2F).

To further validate the impact of the screened ARGs on the
survival prognosis of AML patients, we used the replacement test to
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TABLE 1 The top 10 important genes of XGBoost and their
importance scores.

ID Feature Gain

1 SLCIA3 0022978235
2 YIPF1 0014842549
3 PACS2 0014716427
4 CDKN2A 0.014447571
5 DAPKI 0013909943
6 MYHI1 0.011887605
7 DDIT3 0011406339
8 ULKI1 0.010654985
9 BAG3 0.00985662
10 ATG2B 0.009385788

assess their statistical significance. The results showed that the C-
index of the original model was significantly higher than that of
most of the replacement models, and was located at the rightmost
end of the replacement distribution (Supplementary Figure 2). By
comparing the C-index of the original model with that of the
replacement models, a p-value of 0.0429 was calculated,
indicating that the original model was statistically significant in
predicting the survival of AML patients, further confirming the
importance of the screened ARGs in survival prediction.

Enrichment analysis of ARGs

In order to better study the biological features in the autophagy
gene data so as to understand the functions and regulatory
mechanisms of the biological systems, GO and KEGG analyses
were conducted. For GO enrichment analysis of autophagy genes,
the genes related to total survival were analyzed in terms of
biological processes (BP), cellular components (CC), and
molecular functions (MF), respectively. BP analysis revealed that
these genes were primarily associated with cytolytic metabolic
processes, autophagy, and the regulation of processes that utilize
autophagic mechanisms (Figure 3A). CC analysis indicated that
these ARGs were predominantly distributed in cellular components
of vesicle, cytoplasmic vesicle and bounding membrane of organelle
(Figure 3B). MF analysis showed that most of these genes act
together on a protein and enzyme with catalytic effects
(Figure 3C). KEGG revealed that these ARGs were primarily
enriched in the pathways of autophagy animal, AMPK signaling
and longevity regulation in animals (Figure 3D). To gain insight
into the interactions between these autophagy genes associated with
overall survival, STRING (33) was utilized to construct the PPI
network and identify two important modules: the HSP90ABI
module and the BECN1 module (Figure 3E). The BECN1 module
contains 12 nodes and 29 edges, while the CASP3 module consists
of 4 nodes and 6 edges. HSPA5, VDACI, and BAG3 are the other 3
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TABLE 2 SVM top 10 significant genes and their importance scores.

1D Feature Gain

1 CASP4 0.514479265
2 VPS37C 0.48390987
3 EIF2AK3 0.454698135
4 KIF5B 0.441155029
5 HSP90ABI 0.426529294
6 TSC2 0.416280361
7 VAMP7 0.410471634
8 NFE2L2 0.410017974
9 ANXA7 0.40822591
10 ITGB1 0.40279245

nodes of the CASP3 module. These ARGs may be important for the
pathogenesis of AML.

Modelling survival predictions

In this study, survival data were systematically analyzed, and
feature genes significantly associated with survival were screened by
Lasso-Cox regression and used for modelling. First, the optimal
lambda value (lambda.lse) of 0.09393562 was selected by 10-fold
cross-validation, and the lambda plot and LASSO regression were
plotted (Figures 4A, B). Next, the non-zero coefficients were
extracted and the six characterized autophagy genes and their
regression coefficients selected by LASSO were saved. Cox
stepwise regression (34) analysis was then conducted to optimize
the selection of feature genes (Table 3). The resulting risk score
model for the patients was as follows:

Risk score = (0.14747 x BAG3) — (0.14437 x TSC2)
- (0.32652 x CALCOCO2) + (0.32410
x UBQLN4) — (0.24254 x ULK1) + (0.23913

x DAPK1) (4)

Risk scores were subsequently calculated for each sample, and
the samples were divided into high and low risk groups based on the
median risk score. An increase in the risk score was correlated with
a higher number of patient deaths (Figures 4C, D). Among the
characterized genes screened, DAPK1, UBQLN4, and BAG3 were
highly expressed in high risk, and ULK1, ALCOCO2, and TSC2
were highly expressed in low risk (Figure 4E).

To assess the difference in survival time, the Kaplan-Meier
survival curves were used (35). The results showed that patients in
the high-risk group had a shorter OS than those in the low-risk
group (P< 0.0001, Figure 5A). The accuracy of the constructed
survival prediction model was evaluated, and the results showed
that the AUCs of 1-year, 3-year, and 5-year OS were 0.660, 0.733,
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FIGURE 3

Functional enrichment analysis and PPl analysis of ARGs associated with survival. The gene functional enrichment analysis of key modules (A) BP; (B) CC;
(C) MF; (D) KEGG pathways. (E) HSP90AB1 and BECN1 modules were identified by PPI analysis of ARGs. Darker node colors represent greater node degrees.

and 0.739, respectively (Figure 5B), which indicated that the
survival prediction model constructed by using the prognostic
genes screened in this experiment had high predictive ability.

To quantify the relative importance of the screened autophagy
genes in the survival prediction model, we employed a game theory-
based SHAP value (SHapley Additive exPlanations) technique. By
using the SHAP values calculated by the iml package, we provided a
quantitative relative importance score for each gene. Analysis of
each gene in the model by SHAP value visually demonstrates the
contribution of these genes to the prediction of AML survival
(Supplementary Figure 3). The average contribution of each gene
in the model to the prediction is summarized in Table 4. As shown
in Table 4, these autophagy genes have high contribution values in
the model, further supporting their key role in AML
survival prognosis.

Univariate Cox regression analysis (UCRA) and multivariate
Cox regression analysis (MCRA) were conducted to validate the
independence of prognosis-related autophagy gene survival
prediction. UCRA revealed that age, runxl mutation, and risk
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score were significantly associated with patients’ OS (Figure 5C).
MCRA indicated that age and risk score were independent
predictors for AML patients, respectively (Figure 5D).

To more precisely evaluate the survival prediction model’s
effectiveness, nomogram plot integrating risk scores and other
survival information was constructed. (Figure 5E) The calibration
curves demonstrated accurate predictions OS in AML patients
(Figures 5F-H). This suggests that that integrating our risk score
with clinical information can enhance the prediction of OS.

External validation set validation of survival
prediction models

This study evaluated the diagnostic performance of the models
in two external independent validation groups, GSE12417 and
TCGA-LAML. Comparison of OS using Kaplan-Meier curves
(36) and the log-rank test revealed that in the GSE12417 group,
patients in the high-risk group had significantly shorter OS
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compared to those in the low-risk group (P<0.0001, Figure 6A).
Similarly, in the TCGA-LAML group, the prognosis of patients in
the high-risk group was significantly worse than that in the low-risk
group (P=0.015, Figure 6B).

To further evaluate the classification performance of the model
for patient survival on different datasets, ROC curves for patient
survival were plotted based on the model risk score. In the
GSE12417 group, the area under the curve (AUC) for 1-year and
3-year OS was 0.633 and 0.651, respectively (Figure 6C). In the
TCGA-LAML group, the AUC values for 1-, 3- and 5-year OS were
0.632, 0.612 and 0.704, respectively (Figure 6D). These results
demonstrated the strong predictive power of the model in
predicting survival in AML patients. Additionally, this study
analyzed the distribution of patients’ risk scores and OS, and
found that the mortality rate in the high-risk group was higher
than that in the low-risk group. In terms of gene expression, the
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validation group showed that DAPK1, UBQLN4, and BAG3 were
significantly up-regulated in the high-risk group, whereas ULK1,

TABLE 3 Survival prediction models for acute myeloid leukemia.

Gene Coefficients  Exp(coef) P-value
TSC2 -0.14437 0.86556 0.128973
CALCOCO2 -0.32652 0.72143 0.000299
BAG3 0.14747 1.15890 3.70e-05
UBQLN4 032410 1.38278 0.009121
ULK1 -0.24254 0.78463 0.020660
DAPK1 0.23913 1.27015 3.26¢-06

Coefficients was the regression coefficient for each variable, indicating the direction and
magnitude of the variable's effect on survival time. Se(coef) was the standard error of the
regression coefficient for each variable, indicating the uncertainty in the estimation.

122 frontiersin.org


https://doi.org/10.3389/fimmu.2024.1489171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhu et al.

ALCOCO?2, and TSC2 were significantly down-regulated in the
low-risk group (Figures 6E, F), which was consistent with the risk
score calculation. Overall, the validation results indicated that the
proportional risk model has reasonable accuracy and discriminative
ability for independently predicting OS in AML patients.

Identification and enrichment of DEGs

Differential expression analysis of transcriptome data from
patients in the high- and low-risk groups using the limma package
identified 63 DEGs, including 47 up-regulated genes and 16 down-

10.3389/fimmu.2024.1489171

regulated genes (Figure 7A). The expression patterns of the
differential genes are shown in Figure 7B. GO enrichment analysis
revealed that these DEGs were mainly associated with BP such as T
cell differentiation in thymus and lymphocyte differentiation. In
terms of cellular components, these genes are predominantly found
in the tertiary granule lumen, actin filament bundle, and platelet
alpha granule. They are involved in molecular functions such as
chemokine activity and cytokine receptor binding (Figure 7C).
KEGG pathway analysis indicated that these DEGs were
primarily enriched in the IL-17 signaling pathway and Thl and
Th2 cell differentiation (Figure 7D). High and low risk group
differential genes enriched in lymphocyte differentiation, humoral
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Solid lines indicate ideal performance.
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TABLE 4 Relative importance ranking of autophagy genes based on
SHAP values.

ID Feature Mean(|SHAP|)
1 BAG3 0.23646
2 TSC2 0.12995
3 UBQLN4 0.04845
4 DAPK1 0.04821
5 ULK1 0.01969
6 CALCOCO2 0.01892

Mean(|SHAP|) denotes the mean of the absolute value of the SHAP value for the gene or trait,
i.e., the mean of the gene's contribution to the significance predicted by the model.
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immune response and T cell differentiation in thymus associated
with immune GO terms were TPD52, ZFP36L1 and GATA3
(Figure 7E). Figure 7F shows DEGs enriched in KEGG pathways
such as IL-17 signaling pathway and so on.

In addition to these genes such as BAG3, DAPK1 and GATA3
are enriched in multiple other GO pathways (Supplementary
Figure 4), and genes such as CXCL2, CXCL3 and CYP1BI are
also present in multiple other KEGG pathways (Supplementary
Figure 5). This suggests that these genes play important roles in
biological processes. In addition, by analyzing the relationships
between the enriched pathways, the GO term network relationship
map showed significant correlations between chemokine receptors
and term such as activity, humoral immune response, and myeloid
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leukocyte migration (Supplementary Figure 6). The KEGG pathway
showed that the IL-17 signaling pathway, Chemokine signaling
pathway, and TNF signaling pathway also interacted with multiple
other pathways (Supplementary Figure 7). The enrichment analysis
results suggest that these DEGs may play a role in the prognosis and
immune response in AML.

Immune infiltration and
immune interactions

There are complex interactions and associations between leukemia
and immune infiltration. The immune system was crucial in regulating
the development of leukemia. The experiment used the CIBERSORT
(37) algorithm to identify 22 subtypes of immune infiltrating cells in
AML samples and investigated the interactions of different immune cell
subpopulations in AML patients (Figure 8A).
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Supplementary Figure 8 shows the ratio of each type of immune
cell in AML patients, from which it can be seen that immune cells
such as Mast cells activated and Macrophages MO have a higher
ratio in AML. The immune infiltration results indicated that the
abundance of immune cells, including T cells CD4" memory
activated, NK cells activated and T cells CD4" naive was higher
in patients in the low-risk group of AMLs than in the high-risk
group (Figure 8B). Additionally, the relationship between six key
ARGs and immune infiltration was investigated in this experiment.
The results showed that these six key ARGs were associated with T
cells CD4" naive, T cells CD8", and Macrophages M1, respectively,
and immune cells, and changes in the abundance of these immune
cells may influence the pathogenesis of AML (Figure 8C). The above
results suggest that key autophagy genes may affect the abundance
of immune cells in AML patients, thereby attenuating the control of
leukemia by the immune system and consequently affecting
leukemia survival.
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Analysis of leukemia autophagy gene immune infiltration and correlation with hub gene. (A) Heatmap of correlation of abundance of different
immune cells. (B) Violin plots of immune cell abundance. Red represents the high-risk group and dark blue represents the low-risk group.
(C) Heatmap of the correlation between six prognosis-related genes and immune cell.

Discussion

Despite significant progress in recent years in the study of
prognostic markers for acute myeloid leukemia, the role of
autophagy genes in AML is still understudied (38). In this
experiment, machine learning methods such as XGBoost,
Random Forest and SVM were used to identify potential
prognostic markers associated with overall survival in AML (39).
Lasso-Cox was then used to further screen for prognostic markers
and a survival prediction model consisting of six genes was
constructed. The model can predict the overall survival of
patients with some generalization ability. In addition, an immune
infiltration analysis of autophagy genes in transcriptomic data from
AML patients was performed using the CIBERSORT algorithm, and
the relationship between identified prognostic markers and immune
cell infiltration was analyzed. These analyses have deepened our
understanding of TME in AML patients and its impact on disease
progression and prognosis.

AML is a severe blood cancer triggered by abnormal
proliferation and differentiation of hematopoietic stem cells in the
bone marrow. The role of autophagy genes in AML remains under-
explored, despite significant progress in the study of AML
prognostic markers in recent years. Since AML is a highly
heterogeneous disease with multiple molecular features and
significant biological differences between patients, it is difficult for
a single prognostic marker to accurately predict the prognosis of all
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patients. Existing studies have mostly focused on common genetic
prognostic markers, while studies on autophagy genes are more
limited. However, the key role of autophagy in cell survival and
death suggests that it may be an important factor influencing
AML progression.

The role of autophagy in AML is dual, on the one hand helping
AML cells to survive in a hostile environment by removing
damaged organelles and proteins (7). On the other hand,
autophagy can promote apoptosis in AML cells under certain
circumstances (40). In recent years, some studies have begun to
explore the role of autophagy in AML. For example, the study by
Nan et al. demonstrated that FAT1 inhibited AML cell proliferation
by reducing autophagy levels (41), but the study did not delve into
the mechanism of the role of specific autophagy genes in AML
prognosis. In contrast, Fu et al. used univariate Cox regression to
initially screen autophagy genes associated with AML overall
survival and further constructed a survival prediction model by
Lasso-Cox regression (42). However, univariate Cox regression has
limited predictive power when dealing with the complex effects of
multivariate on survival. In this study, we conducted a more
detailed molecular-level analysis of the relationship between
autophagy genes and AML prognosis. We used a screening
approach combining three machine learning algorithms, SVM,
XGBoost, and Random Forest, which are capable of dealing with
complex interactions of multivariate variables and generally provide
higher prediction accuracy.
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In this study, 45 autophagy genes associated with OS in patients
with acute myeloid leukemia were screened using three machine
algorithms, SVM, XGBoost and Random Forest algorithm. Among
these genes, PDK4 regulates glucose metabolism by inhibiting
pyruvate dehydrogenase complex and promotes glycolytic
metabolism in tumor cells, an altered metabolism that is a typical
feature of cancer cells. Low expression or mutation of BECN1 is
closely associated with tumorigenesis. ULK1 plays a crucial role in
regulating autophagy in cancer cells. These genes are clinically
important as prognostic markers or potential therapeutic targets in
cancers such as AML. These autophagy genes were subjected to PPI
analysis and then the PPI network was further analyzed using
MCODE. As a result, two important modules were identified,
namely the HSP90AB1 module and the BECN1 module. It was
shown that these ARGs modules have an important impact on OS
in AML patients. For example, low expression of BECN1 was
associated with poor prognosis in AML patients (43). High
expression of ULKI is associated with better prognosis and it may
inhibit tumor growth by promoting autophagy to remove abnormal
proteins and damaged organelles from AML cells (4). In addition,
genes such as HSP90AB1, CALCOCO2, DNAJBI1, and WDFY3
have not yet been extensively studied in the regulation of autophagy
in AML. However, these genes are correlated in other cancers (44—
46), and they may serve as important prognostic markers in AML.
Further pathway enrichment analysis showed that these autophagy
genes were mainly enriched in the AMPK signaling pathway,
animal autophagy and longevity. It was shown that the activation
of AMPK could inhibit the mTOR signaling pathway, promote
autophagy and maintain cellular energy homeostasis. By inhibiting
lipid and protein synthesis (47), AMPK can limit AML cell
proliferation. In terms of GO term these genes are mainly
associated with cytolytic metabolic processes, autophagy and the
regulation of processes that utilize the autophagic machinery.
Decreased cytolytic function is thought to correlate with
immunosuppressive status and poor prognosis in AML. For
example, Coles et al. showed that upregulation of the
immunosuppressive glycoprotein CD200 significantly inhibited
the cytolytic capacity of natural killer (NK) cells in AML patients,
and that this inhibition reduced the efficiency of the immune
system in the clearance of tumor cells, thereby worsening patient
prognosis (48). In addition, autophagy, as a key metabolic
regulatory mechanism, is closely related to drug resistance in
AML cells. a study by Chen et al. indicated that autophagy not
only helps leukemia cells to obtain energy and nutrients for
metabolism, but also slows down the damage of drugs on AML cells
by maintaining intracellular homeostasis under chemotherapeutic
stress conditions through metabolic reprogramming (49). Therefore,
over-activation of autophagy may make AML cells more resistant to
drugs, which in turn affects the prognostic outcome of patients. In
summary, cytolysis and autophagy regulation play key roles in the
pathogenesis and prognosis of AML, providing a new entry point for
the development of future targeted therapeutic strategies.

After Lasso-Cox regression analysis of 45 potential prognostic
genes, 6 potential prognostic markers independently affecting AML
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survival were further screened. Kaplan-Meier analysis showed that the
survival rate of the low-risk group was significantly better than that of
the high-risk group on both the training. To assess the robustness of
the model on different datasets, we validated the constructed survival
prediction model using the GSE12417 dataset TCGA-LAML dataset
combined with patients’ survival information, respectively. The AUC
values for 1-year and 3-year were 0.633 and 0.651, respectively, in the
validation set GSE12417.In the validation set TCGA-LAML, the AUC
values for 1-year, 3-year, and 5-year OS were 0.632, 0.612, and 0.704,
respectively. These results indicate the robustness of the model.
Differential expression analysis of patients in the high-risk and low-
risk groups showed that these DEGs were mainly enriched in terms
such as humoral immune response, T cell differentiation in thymus
and lymphocyte differentiation. To investigate the relationship
between immune cell abundance and autophagy genes and AML
prognosis, an immune infiltration analysis of AML autophagy genes
was performed using the CIBERSORT algorithm. The results showed
that the abundance of T cells CD4" memory activated, NK cells
activated and T cells CD4" naive was higher in patients in the AML
low-risk group compared with the high-risk group. This suggests that
alterations in the immune microenvironment may make the high-risk
group less able to fight cancer. Further investigation of the relationship
between these prognostic markers and immune cell abundance
showed that ULK1 was positively associated with macrophage
subtypes, whereas BAG3 was significantly negatively associated with
Mast cells resting, and DAPK1 was negatively associated with multiple
immune cell subtypes. DAPK1 was negatively associated with multiple
immune cell subtypes. The results suggest that these autophagy genes
may regulate AML progression by influencing immune cell
infiltration. The underlying mechanisms may involve the central
role of autophagy in regulating immune function, with ULK1
promoting anti-tumor immune responses by enhancing macrophage
phagocytic activity, BAG3 inhibiting mast cell activity to weaken the
immune response, and DAPKI down-regulation inhibiting the
activity of a variety of immune cells, resulting in difficulties for the
immune system to recognize and destroy AML cells, which in turn
drives tumor progression. In terms of clinical treatment, by targeting
the autophagy pathway, it is possible to enhance the activity of specific
immune cell subtypes or inhibit the autophagy escape mechanism of
cancer cells. For example, activation of ULKI may enhance the anti-
tumor effect of macrophages, whereas by inhibiting BAG3, the control
of AML by immune cells may be enhanced. In addition, DAPK1-
associated negative regulatory effects could also serve as potential
therapeutic targets aimed at restoring the immune system’s ability to
recognize and kill AML cells.

In this study, these gene-enriched pathways revealed the
critical roles of autophagy and metabolic regulation in the
pathogenesis of AML. Autophagy not only helps leukemia cells
to meet their metabolic demands, but may also enable AML cells
to better adapt to environmental stresses through inter-regulation
with, for example, the AMPK signaling pathway. Therefore,
targeting these aberrant pathways may provide new strategies
for the treatment of AML. Survival prediction models constructed
on the basis of these autophagy genes provide more
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comprehensive and precise prognostic information for
personalized treatment of AML patients, helping clinicians to
better assess the prognosis of patients and develop personalized
treatment plans. In addition, autophagy genes play a key role in
regulating immune cell infiltration and its prognostic impact on
AML, which provides a research direction to further explore the
complex relationship between autophagy and the immune
microenvironment. Overall, the study of these pathways is
important for an in-depth understanding of the prognostic
mechanisms of AML and provides new targets for
clinical treatment.

Although this study constructed a prognostic prediction model
for AML based on autophagy genes, there are still some limitations.
Firstly, although the joint screening of prognosis-related genes by
three algorithms, SVM, Random Forest and XGBoost, can combine
their respective advantages and improve the stability and
consistency of the screening results, XGBoost and Random Forest
are susceptible to overfitting when the sample sizes are small,
especially when the parameters are not precisely adjusted. In
addition, although SVM usually performs better on small sample
data, the risk of overfitting may be further amplified when
combining these three algorithms. Therefore, special attention
needs to be paid to model tuning and validation when applying
this combination strategy, especially when dealing with small-
sample data, in order to reduce the potential overfitting problem.
Secondly, this study mainly relied on transcriptomics data and did
not address protein expression or functional status, thus some key
biological processes may be missed. Although the model performed
well in the validation set, further functional validation and
experimental evaluation are needed for its clinical application
prospects. Compared with other AML prognostic models, such as
Guo et al. (19). who constructed models with common genetic
markers or mutation information, our model, although
incorporating the specific mechanism of autophagy genes, is
slightly deficient in predictive ability, especially the low AUC
value in the independent validation set, suggesting that the
model’s predictive performance needs to be further improved. In
addition, the relatively small sample size of the 2 external validation
datasets used in the study may not cover the diversity of AML
patients. This limits the ability of the model to generalize to a wider
patient population.

Therefore, future studies should further validate the robustness
and accuracy of the model in larger and more diverse AML patient
cohorts. Meanwhile, in addition to traditional transcriptomics data,
multi-omics data such as proteomics and metabolomics can be
integrated to provide a more comprehensive biological perspective
and avoid missing biological processes that may play a key role in
disease development. In addition, functional experiments should be
performed on the screened autophagy genes to delve into the
specific mechanisms of these genes in AML and to assess their
impact on disease progression. In order to gain a deeper
understanding of the complexity of the AML tumor immune
microenvironment, future studies should be expanded to cover
the analysis of more types and subpopulations of immune cells.
Finally, based on the importance of these key autophagy genes,
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precision therapeutic strategies targeting these genes or their
associated pathways could be explored in the future, thus
promoting further development of personalized treatment for
AML patients.

Conclusion

In this study, we screened six potential autophagy gene
prognostic markers for AML (TSC2, CALCOCO2, BAGS3,
UBQLN4, ULK1, and DAPK1) and constructed a survival
prediction model of eight autophagy genes for predicting the
survival of AML patients. The model was validated by two
validation sets, and the results showed that the survival prediction
model had strong validity. In addition, autophagy gene pathway
enrichment analysis as well as immune infiltration and immune
correlation analysis of ARGs were performed to investigate the
biological functions of autophagy genes and the prognostic markers
of ARGs in correlation with many immune cells. However, although
potential prognostic markers and correlations can be identified
from transcriptomic data, the biological significance and clinical
application of these results have not been fully confirmed due to the
lack of further clinical validation. More medically relevant
experiments are needed in the future to validate the potential
molecular mechanisms of these genes to better understand their
role and application value in AML.
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Background: Colorectal cancer is a prevalent malignancy of the digestive
system, with an increasing incidence. Lower extremity deep vein thrombosis
(DVT) is a frequent postoperative complication, occurring in up to 40% of cases.

Objective: This research aims to develop and validate a machine learning model
(ML) to predict the risk of lower limb deep vein thrombosis in patients with
colorectal cancer, facilitating preventive and therapeutic measures to enhance
recovery and ensure safety.

Methods: In this retrospective cohort study, we collected data from 429
colorectal cancer patients from January 2021 to January 2024. The medical
records included age, blood test results, body mass index, underlying diseases,
clinical staging, histological typing, surgical methods, and postoperative
complications. We employed the Synthetic Minority Oversampling Technique
to address imbalanced data and split the dataset into training and validation sets
in a 7:3 ratio. Feature selection was performed using Random Forest (RF),
XGBoost, and Least Absolute Shrinkage and Selection Operator algorithms
(LASSO). We then trained six machine learning models: Logistic Regression
(LR), Naive Bayes (NB), Gaussian Process (GP), Random Forest, XGBoost, and
Multilayer Perceptron (MLP). The model's performance was evaluated using
metrics such as area under the Receiver Operating Characteristic curve,
accuracy, sensitivity, specificity, F1 score, and confusion matrix. Additionally,
SHAP and LIME were used to enhance the interpretability of the results.

Results: The study combined Random Forest, XGBoost algorithms, and LASSO
regression with univariate regression analysis to identify significant predictive
factors, including age, preoperative prealbumin, preoperative albumin,
preoperative hemoglobin, operation time, PIKVA2, CEA, and preoperative
neutrophil count. The XGBoost model outperformed other ML algorithms,
achieving an AUC of 0.996, an accuracy of 0.9636, a specificity of 0.9778, and
an F1 score of 0.9576. Moreover, the SHAP method identified age and
preoperative prealbumin as the primary determinants influencing ML model
predictions. Finally, the study employed LIME for more precise prediction and
interpretation of individual predictions.
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Conclusion: The machine learning algorithms effectively predicted
postoperative lower limb deep vein thrombosis in colorectal cancer patients.
The XGBoost model demonstrated strong potential for improving early detection
and treatment in clinical settings.

colorectal cancer, venous thrombosis, machine learning, prediction model,
postoperative complications

1 Introduction

Colorectal cancer is among the most prevalent malignant
tumors of the digestive system globally, ranking third in both
incidence and mortality rates among malignant tumors (1).
Currently, surgical treatment is the primary approach for
colorectal cancer. However, ostoperative lower limb deep vein
thrombosis has consistently been an issue that cannot be
overlooked. Literature reports that the incidence of lower limb
deep vein thrombosis after abdominal surgery is 15%-19%.
Alarmingly, the incidence in colorectal cancer patients post-
surgery is 40% (2). Additionally, since only 50% of patients with
lower limb deep vein thrombosis exhibit symptoms and signs
such as swelling and tenderness, many cases are overlooked
postoperatively (3). Without timely diagnosis and intervention,
the clot may detach and move through the veins to the lungs,
leading to a life-threatening pulmonary embolism (4). However,
lower limb deep vein thrombosis can be prevented in advance.
Research suggests that prophylactic anticoagulant treatment can be
suitably applied to bedridden patients in the perioperative phase
(5, 6). Currently, the Caprini risk assessment model is the most
widely used model in surgery. However, all colorectal cancer
patients stratified postoperatively according to the Caprini model
are considered high risk. Therefore, the Caprini model may not be a
completely accurate indicator for DVT occurrence and intervention
in colorectal cancer patients (7).

Additionally, most existing studies utilize traditional statistical
methods rather than advanced machine learning algorithms, which
often limits the models’ ability to handle nonlinear relationships
and multivariable interactions, thereby affecting their predictive
performance and applicability (8). The purpose of this study is to
integrate these common high-risk factors using machine learning
by selecting shared features through three different machine
learning algorithms and constructing multiple models to identify
the optimal deep vein thrombosis risk prediction model for
colorectal cancer patients. This model will assist clinicians in
more accurately identifying high-risk patients and providing
personalized, precise guidance for the prevention and treatment
of deep vein thrombosis.

Frontiers in Oncology

2 Materials and methods

2.1 Study design

The aim of this research is to develop a machine learning-based
model to predict the risk of lower limb deep vein thrombosis in
postoperative colorectal cancer patients. A retrospective study was
conducted, including 429 colorectal cancer patients who underwent
surgical treatment. Data were extracted from the hospital’s
electronic medical record system, which included demographic
details, medical history, treatment information, disease severity,
blood test results, and postoperative complications. The SMOTE
algorithm was employed to address the issue of class imbalance.
LASSO regression, Xgboost, and random forest were applied for
feature selection to identify the features most associated with the
risk of lower limb deep vein thrombosis. Following this, a range of
ML models, such as LR, RF, GB, MLP, XGB, and KNN, were
developed and optimized using the 10-fold cross-validation
approach. The performance of these models was assessed through
a range of metrics, including accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, F1 score,
Kappa score, AUC, calibration curve, clinical impact curve, and
confusion matrix. To enhance the transparency and interpretability
of the model, SHAP and LIME methods were used to explain the
prediction results, clarifying the impact of each feature on the
predictions and thereby offering useful references for clinicians.
Figure 1 illustrates the overall workflow of the proposed system
more clearly.

2.2 Study data

We retrospectively selected 429 colorectal cancer patients who
visited the Department of Gastrointestinal Surgery at the First
Affiliated Hospital of Southwest Medical University from January
2022 to January 2024. Exclusion criteria include: patients with a
history of prolonged bed rest or restricted activity; patients with a
history of venous thrombosis; patients with a history of coagulation
disorders; patients using drugs affecting coagulation function;
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surgical treatment ai the affilated hospital of Southwest Medical University
between June2021 and June 2024
Exclusion Criteria:
1.Patients with incomplete pathological diagnosis and clinical data.
2.Patients with a history of prolonged bed rest or restricted activity.
3.Patients with a history of venous thrombosis.
4.Patients with a history of coagulation disorders.
5.Patients using medications affecting coagulation function.
6.Patients with malignant diseases outside the gastrointestinal tract.
7.Patients diagnosed with deep vein thrombosis of the lower limbs before surgery.
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agnostic Explanations (LIME) Visualization
|
FIGURE 1

Research process.

patients with malignancies outside the gastrointestinal tract; and
patients preoperatively diagnosed with lower extremity deep vein
thrombosis. (Exclusion criteria are shown in Figure 1). As this study
is retrospective, patients are exempt from providing informed
consent according to the ethics review board’s policy. The ethics
committee has encrypted all personal information of patients
involved in this study to prevent any leaks.
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2.3 Study variables

The study includes 44 variables related to demographic factors
(gender, age), medical history (history of diabetes, hypertension,
coronary artery disease, chronic obstructive pulmonary disease),
physical characteristics (BMI), disease severity (clinical stage,
histological grade, presence of cancer embolus, nerve invasion,
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vascular invasion), treatment information (surgical method, surgery
duration, use of specific cancer treatments), laboratory values
(white blood cell count, neutrophil count, lymphocyte count,
monocyte count, NLR, hemoglobin, prealbumin, albumin,
creatinine clearance, platelet count, prothrombin time PT,
fibrinogen, thrombin time TT, D-dimer), and postoperative
complications (postoperative high fever, anastomotic leak).
Venous blood samples were collected within 24 hours of admission.

2.4 Diagnosis

Patients were tested within 14 days postoperatively according to
the diagnostic criteria for lower limb deep vein thrombosis.
Specifically, color Doppler ultrasound showed an uneven echo
solid mass in the lower limb, reduced or absent color blood flow
and spectral signals, non-collapse of the venous lumen after
compression, and venous incompressibility (9).

2.5 Data preprocessing

The structured database initially included 44 clinical variables.
First, clinical variables with more than 30% missing data (n = 2)
were excluded. The missing data were handled using 10-fold
crossvalidation combined with the KNN imputation method.
Subsequently, to prevent bias during later model training and
improve interpretability, the Variance Inflation Factor (VIF) was
employed to examine multicollinearity among the chosen features,
ensuring all features’ VIF values were less than 10. Additionally, we
also removed variables with nearly zero variance to simplify the
model and enhance its robustness. In the end, 39 clinical features of
patients were chosen to construct the predictive model. The
SMOTE algorithm was used to address the class imbalance issue,
balancing the dataset and avoiding bias. Subsequently, patient data
were randomly divided into two datasets: (1) a training dataset
(70%) for feature selection and model training, and (2) a testing
dataset (30%) for model performance evaluation.

2.6 Feature selection

For predicting postoperative DVT occurrence in colorectal cancer
patients, features were selected using training group samples through
three machine learning models: LASSO regression, random forest, and
XGboost. The results showed that 29, 15, and 15 feature vectors were
selected in the three models, Ultimately, we selected 8 common feature
variables from the three models: age, preoperative prealbumin,
preoperative albumin, preoperative hemoglobin, CEA, PIKVA2,
surgery time, and preoperative white blood cell count.

2.7 Model development and evaluation

The machine learning task is to predict the probability
distribution of patients developing lower extremity deep vein
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thrombosis based on these clinical variables. Model development
involves experimenting with six machine learning algorithms:
Logistic Regression (LR), Multilayer Perceptron (MLP), Extreme
Gradient Boosting (XGBoost), Gaussian Process (GP), Random
Forest (RF), and Naive Bayes (NB). During the training phase, we
employed the 10-fold cross-validation method to train the models
in order to achieve optimal predictive performance. To evaluate the
predictive performance of each model, we primarily measured the
Receiver Operating Characteristic (ROC) curve. In addition, we
calculated sensitivity, specificity, accuracy, false positive (FP) rate,
positive predictive value (PPV), negative predictive value (NPV),
Brier score, F1 score, Decision Curve Analysis (DCA) curve,
calibration curve, and Clinical Impact Curve (CIC) for a
comprehensive assessment of the model’s performance.

2.8 Statistical analysis

All data analyses in this study were carried out using SPSS (27.0)
and R language (version 4.3.3). Preliminary analysis of the dataset
used descriptive statistics. Data points that followed a normal
distribution were represented by mean * standard deviation,
whereas data points deviating from a normal distribution were
shown as median (interquartile range). Subsequently, an
independent samples t-test was employed to compare two groups
of normally distributed data. In contrast, the Mann-Whitney U test
was used for comparing two groups of non-normally distributed
data. We resolved the sample imbalance problem by oversampling
the minority classes using the SMOTE function from the DMwR2
package in R. To build the predictive model, the dataset was
randomly split into a training subset comprising 70% of the total
data and a testing subset making up 30% of the total data.
Subsequently, various machine learning methods were executed
using R, including logistic regression (glm package), Gaussian
model (el071 package), random forest (randomForest package),
XGBoost (XGBoost package), feedforward neural network (nnet
package), and naive Bayes model (e1071 package). Models were
trained using the training subset data with these six ML algorithms.
During the model training, a 10-fold cross-validation method was
adopted to optimize the model parameters, aiming to prevent
overfitting. Statistical significance was defined at the level of P<0.05.

2.9 Feature interpretation

We used the Shapley Additive Explanations (SHAP) algorithm
and the Local Interpretable ModelAgnostic Explanations (LIME)
algorithm to interpret the main feature contributions after
machine learning model training. In particular, the SHAP
algorithm assesses the average contribution of each feature value
by computing its Shapley value within all possible combinations of
features. By taking the weighted average of each feature value’s
Shapley value, we can assess the impact of that feature on the
overall prediction. Meanwhile, the LIME algorithm analyzes the
model from a local perspective to explain the feature importance
of specific predictions, providing an additional layer of
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interpretation and transparency. The combination of these two
methods provides us with a multidimensional understanding of
model interpretability.

3 Results
3.1 Characteristics of patients

This study encompassed 429 colorectal cancer patients who
underwent surgical treatment. The median age of the patients was 67
years (range: 16-91), with 258 males (60.24%) and 171 females
(39.76%). The original data from 429 cases includes 267 cases
without lower extremity deep vein thrombosis (62.23%) and 162
cases with lower extremity deep vein thrombosis (37.77%). The
baseline characteristics comparison of the two patient groups in the
original data reveals that age, preoperative white blood cell count,
preoperative lymphocyte count, preoperative hemoglobin, preoperative
albumin, preoperative prealbumin count, preoperative glomerular
filtration rate, gender, preoperative acute complete intestinal
obstruction, and surgical method are all statistically significant (refer
to Table 1).

3.2 Prediction factor screening

A total of 1134 patients with colorectal cancer receiving surgical
treatment were involved after data imbalance. Patients were split into
a training group with 796 cases and a test group with 338 cases in a
7:3 ratio. LASSO regression, as a shrinkage estimation method,
achieves variable selection and complexity adjustment by
formulating an optimization objective function with a penalty term.
This study utilized LASSO regression to identify features including
age, surgical procedure, acute intestinal obstruction, nerve invasion,
preoperative lymphocyte count, preoperative fibrinogen, preoperative
prothrombin time, coronary artery disease, and diabetes (Figure 2A).
Random forest builds multiple decision trees through the random
selection of data subsets and features. Each feature’s importance
score reflects its contribution to the model’s predictions, allowing the
extraction of the most predictive features and the identification of
characteristic factors. Features including age, preoperative
prealbumin, preoperative albumin, preoperative hemoglobin,
CA724, CEA, and CA242 were selected (Figure 2B). Xgboost
improves prediction performance by constructing multiple weak
learners and using an additive model approach. The importance of
features is assessed by calculating gain, coverage, and frequency for
each one, identifying factors like age, preoperative prealbumin,
preoperative white blood cell count, preoperative hemoglobin,
preoperative glomerular filtration rate, BMI, and preoperative
prothrombin time (Figure 2C). By comparing the selection results
of LASSO regression, Xgboost algorithm, and random forest
algorithm, we identified the common subset of features selected by
these three methods. These selected features were eventually used to
construct the model, including age, preoperative prealbumin,
preoperative albumin, preoperative hemoglobin, operation time,
PIKVA2, CEA, and preoperative neutrophil count (Figure 2D).
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3.3 Model performance

In the training dataset, the RF model demonstrated excellent
predictive performance with an AUC of 1.00, indicating very high
prediction accuracy. In comparison, the AUC values for the
remaining five models are as follows: XGB’s AUC is 0.996 (95%
CI [0.994, 0.999]), GP’s AUC is 0.950 (95% CI [0.935, 0.966]),
MLP’s AUC is 0.938 (95% CI [0.918, 0.958]), NB’s AUC is 0.882
(95% CI [0.859, 0.905]), and LR’s AUC is 0.814 (95% CI [0.785,
0.844]) (Figure 3A). The F1 scores of these models are as follows: RF
1.0, XGB 0.976, GP 0.878, MLP 0.889, NB 0.740, LR 0.720. In the
testing dataset, the AUC values for XGB, GP, MLP, NB, LR, and RF
are 0.936 (95% CI [0.907, 0.966]), 0.919 (95% CI [0.890, 0.949]),
0.884 (95% CI [0.843, 0.925]), 0.826 (95% CI [0.781, 0.871]), 0.806
(95% CI [0.760, 0.853]), and 0.973 (95% CI [0.959, 0.986]),
respectively (Figure 3B). The F1 scores for XGB, GP, MLP, NB,
LR, and RF are respectively 0.853, 0.816, 0.825, 0.693, 0.696, and
0.881. In this research, the accuracy, sensitivity, specificity, positive
predictive value, negative predictive value, and kappa value of each
model were computed and compared (Figures 3C, D). The RF
model performed excellently in the training dataset. Due to
concerns about potential overfitting, the XGB model was
ultimately selected as the optimal model.

3.4 Model performance evaluation

In our study, we evaluated the predictive accuracy and
calibration of the model by analyzing calibration curves for the
training and test sets. The calibration curve results showed that the
model in the training set had high predictive accuracy, with a
Somers’ D coefficient of 0.992 and an area under the ROC curve of
0.996, indicating good discriminatory power (Figure 4A).
Additionally, the regression calibration slope of the training set
model is 0.9934, close to the ideal value of 1.000, and the intercept
is -0.0175, demonstrating excellent calibration ability. The Brier
score is 0.038, reflecting the high reliability of the model’s
predictions. In contrast, the model’s discriminatory power in the
test set decreased but still maintained a high level, with an area
under the ROC curve of 0.936 and a Somers’ D coefficient of 0.873
(Figure 4B). Decision curves for the training set (Figure 4C) indicate
that the model’s net benefit is significantly above the baseline
strategy. On the test set (Figure 4D), the model likewise exhibits
good net benefit, particularly in the threshold probability range of
0.1 to 0.95, where it maintains a high level of net benefit. The
confusion matrix results show the performance differences of
the model across different datasets. In the training set (Figure 4E),
the model correctly identified 440 true negatives and 327 true
positives, with 10 false positives and 19 false negatives, the true
positive rate is 85.0%, and the true negative rate is 89.7%.In the test
set (Figure 4F), the model correctly identified 119 true negatives and
178 true positives, misidentifying 20 false positives and 21 false
negatives, with a true positive rate of 85.0% and a true negative rate
of 89.7%. During the model development process, we considered
applying a penalty to the confusion matrix to reduce Type II errors
(false negatives). Specifically, we explored methods such as
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TABLE 1 Raw data in Three-Baseline table.

Variables

Total (n=429)

Missing Value (%)

10.3389/fonc.2024.1499794

Deep Vein Thrombosis Occurrence
After Colorectal Surgery

NO (n=267) YES (n=162)

age 67 (57-73) 0 61 (54-71) 71 (65-74) <0.01
prewbc 6.57 (5.25-8.08) 0  6.51 (5.34-7.58) 6.72 (5.12-8.89) <0.01
prene 4.31 (3.27-5.77) 0  4.27 (3.28-5.35) 4.44 (3.26-6.38) <0.01
prelym 1.37 (1.07-1.75) 0.7 | 1.39 (1.12-1.79) 1.32 (1.02-1.72) 0.06
premon 0.39 (0.3-0.51) 0.7 | 0.37 (0.3-0.5) 0.4 (0.31-0.53) 0.48
preNLR 68.3 (61.2-75.08) 0 67.4(60.1-73.7) 70.25 (63.25-76.95) 0.08
prehb 126 (111-140) 0 | 131 (115-143) 120 (103-129) <0.01
prepab 194.9 (156.3-230.2) 0.2 | 207.3 (176.32-242.95) 165.3(136.12-201.9) <0.01
prealb 41.5 (38.6-44.1) 0 | 423 (39.95-44.9) 39.75 (37.23-42.5) <0.01
precrci 93.05 (82.77-102.2) 0.2 | 95.9 (84.65-105.35) 90.8 (80.9-98) <0.01
preplt 235 (194.75-304) 0.2 | 230 (191.5-299.75) 246 (198.25-318) 0.1
AFP 2.93 (2.14-3.96) 14 299 (2.21-4.08) 2.82 (2.02-3.66) 0.12
CEA 5.64 (3.08-15.25) 1.2 5.25(3.07-13.88) 6.05 (3.18-19.52) 0.08
FER 64.18 (21.79129.28) 2.6 | 74.44 (26.35128.98) 45.53 (15.5-130.88) 0.91
CA50 8.92 (4.54-18.37) 2.8 | 892 (4.19-15.6) 8.91 (4.83-23.03) 0.13
CA242 5.66 (2.9-14.61) 2.8 | 5.66 (3.05-13.57) 5.67 (2.63-18.53) 0.3
CA724 2.83 (1.29-7.97) 2.8 | 2.82(1.27-8.13) 2.96 (1.38-6.49) 0.46
CA199 12.03 (3.91-24.02) 2.1 | 11.5(3.78-21.81) 14.68 (4.34-26.86) 0.03
PIVKA2 23.69 (18.37-31.35) 2.6 | 24.52 (18.72-31.68) 22.99 (18.26-30.52) 0.46
prept 11.3 (10.9-12) 14 | 11.3(10.9-11.9) 11.4 (11-12.12) 0.14
prefib 3.69 (3.02-4.27) 14 | 3.58 (3-4.16) 3.83 (3.13-4.49) <0.01
prett 17 (16.15-17.8) 14 17.1 (16.3-17.8) 16.8 (16.1-17.6) 0.08
pred2 0.4 (0.3-0.6) 534 0.37 (0.27-0.55) 0.46 (0.33-0.8) 0.95
time 225 (195-265) 0.7 | 220 (185.5-260) 234 (200-270) 0.01
Blood 50 (20-50) 4 50 (20-50) 50 (20-50) 0.08
BMI 22.77 (20.72-24.97) 49 | 22.77 (20.96-24.84) 22.83 (20.4-25.11) 0.94

‘ Gender <0.01
Female 171 (39.86%) 0 | 86 (32.21%) 85 (52.47%)
Male 258 (60.14%) 181 (67.79%) 77 (47.53%)

‘ Region 0.04
Ascending Colon 85 (19.81%) 0 47 (17.60%) 38 (23.46%)

Transverse Colon

28 (6.53%)

11 (4.12%)

17 (10.49%)

Descending and Sigmoid Colon

89 (20.75%)

60 (22.47%)

29 (17.90%)

Upper-middle Rectum

154 (35.90%)

101 (37.83%)

53 (32.72%)

Lower rectum

73 (17.02%)

48 (17.98%)

25 (15.43%)
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TABLE 1 Continued

Variables Total (n=429) Missing Value (%) Deep Vein Thrombosis Occurrence
After Colorectal Surgery
NO (n=267) YES (n=162)
Obstruction <0.01
No 379 (88.34%) 0 248 (92.88%) 131 (80.86%)
Yes 50 (11.66%) 19 (7.12%) 31 (19.14%)
‘ Specialreatment ‘ 1
No 312 (72.73%) 0 | 194 (72.66%) 118 (72.84%)
Yes 117 (27.27%) 73 (27.34%) 44 (27.16%)
‘ stag ‘ 0.1
Stag0 11 (2.56%) 0 9(3.37%) 2 (1.23%)
Stagl 30 (6.99%) 22 (8.24%) 8 (4.94%)
Stagll 174 (40.56%) 110 (41.20%) 64 (39.51%)
StaglIl 155 (36.13%) 97 (36.33%) 58 (35.80%)
StagIV 59 (13.75%) 29 (10.86%) 30 (18.52%)
tissue 0.82
Intramucosal 6 (1.40%) 0.2 5(1.88%) 1 (0.62%)
Carcinoma
Highly 46 (10.75%) 29 (10.90%) 17 (10.49%)
Differentiated
Adenocarcinoma
Moderately 293 (68.46%) 183 (68.80%) 110 (67.90%)
Differentiated
Adenocarcinoma
Poorly 24 (5.61%) 14 (5.26%) 10 (6.17%)
Differentiated
Adenocarcinoma
undifferentiated carcinoma 59 (13.79%) 35 (13.16%) 24 (14.81%)
‘ Tumor Embolus ‘ 0.71
No 349 (81.92%) 0.7 | 216 (81.20%) 133 (83.12%)
Yes 77 (18.08%) 50 (18.80%) 27 (16.88%)
Vascular Invasion 0.05
No 323 (75.64%) 0.5 | 211 (79.03%) 112 (70.00%)
Yes 104 (24.36%) 56 (20.97%) 48 (30.00%)
‘ Perineural Invasion ‘ 0.76
No 325 (76.11%) 0.5 | 205 (76.78%) 120 (75.00%)
Yes 102 (23.89%) 62 (23.22%) 40 (25.00%)
‘ Microsatellites ‘ 0.16
Stable 244 (93.13%) 389 | 156 (95.12%) 88 (89.80%)
Unstable 18 (6.87%) 8 (4.88%) 10 (10.20%)
‘ Hypertension ‘ 0.23
No 322 (75.41%) 0.5 | 207 (77.53%) 115 (71.88%)
Yes 105 (24.59%) 60 (22.47%) 45 (28.12%)

(Continued)
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TABLE 1 Continued

Variables Total (n=429)

Missing Value (%)

10.3389/fonc.2024.1499794

Deep Vein Thrombosis Occurrence
After Colorectal Surgery

NO (n=267) YES (n=162)
Diabetes 0.31
No 372 (87.32%) 0.7 | 237 (88.76%) 135 (84.91%)
Yes 54 (12.68%) 30 (11.24%) 24 (15.09%)
CAD ‘ ‘ 0.39
No 402 (94.59%) 0.9 | 255 (95.51%) 147 (93.04%)
Yes 23 (5.41%) 12 (4.49%) 11 (6.96%)
Pneumonia ‘ ‘ 0.09
No 387 (90.85%) 0.7 | 248 (92.88%) 139 (87.42%)
Yes 39 (9.15%) 19 (7.12%) 20 (12.58%)
Approach ‘ ‘ <0.01
Laparotomy 78 (18.22%) 0.2 | 36 (13.48%) 42 (26.09%)
Laparoscopic 350 (81.78%) 231 (86.52%) 119 (73.91%)
Surgery
Fever ‘ ‘ 0.87
No 336 (78.50%) 0.2 | 210 (78.95%) 126 (77.78%)
Yes 92 (21.50%) 56 (21.05%) 36 (22.22%)
Leak ‘ ‘ 1
No 290 (97.97) 31 | 180 (97.83) 110 (98.21)
Yes 6 (2.03) 4 (2.17) 2 (1.79)

adjusting the classification threshold and using weighted loss
functions to impose a higher penalty on false negatives during
model training. However, after several experiments, we found that
while these adjustments could reduce false negatives, they also led to
an increase in false positives, which in turn affected the overall
performance metrics of the model (such as AUC and accuracy).
Therefore, we ultimately decided not to apply such penalties to
maintain the overall balanced performance of the model. Finally, we
plotted Clinical Impact Curves (CICs) to evaluate the net benefit of
the model with the highest diagnostic value in terms of clinical
utility and applicability. Clinical Impact Curves (Figures 4G, H)
offer insights into the model’s capability to predict high-risk
patients at various cost-benefit ratio thresholds. The test set’s
curve indicates that when prediction score probabilities exceed
65%, the model’s predictions for postoperative colorectal cancer
patients align closely with those who actually develop lower
extremity deep vein thrombosis, confirming the model’s high
clinical efficacy.

3.5 Model-based interpretability analysis
This study evaluated the relative importance of various factors

affecting the susceptibility of colorectal cancer patients to
developing lower extremity deep vein thrombosis post-surgery.
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Figure 5A visually represents this ranking, with each point
indicating a sample and the color gradient from purple to yellow
indicates the magnitude of sample feature values. The vertical axis
shows the importance ranking of features alongside the correlation
and distribution of feature values with SHAP values. Figure 5B
illustrates the hierarchical significance of features in the XGB model.
The vertical axis shows individual features ranked in descending
order of importance, and the horizontal axis represents the average
SHAP values. The analysis shows that age, preoperative albumin,
preoperative white blood cell count, surgery duration, and
preoperative hemoglobin are the top five ranked features in terms
of importance, indicating their critical impact on the occurrence of
DVT. To better understand the model’s decision-making process at
the individual level, we performed detailed interpretability analyses
using LIME on two representative samples(As illustrated in
Figures 5C, D). Through model visualization, we can discern the
impact of each feature on the model predictions for these
specific instances.

4 Discussion

The migration of deep vein thrombosis from the lower
extremities into the pulmonary artery through the circulatory
system is a major trigger for fatal pulmonary embolism (10).
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FIGURE 2

(A) AUC curve, path diagram, and importance ranking of selected feature variables from univariate combined with LASSO regression. 1. Penalization
process of variables in LASSO. 2. Evaluation of predictive performance of LASSO model in testing set. 3. Feature importance ranking in LASSO model.
(B) AUC curve, OOB plot, and importance ranking of selected feature variables from random forest. 1. Evaluation of predictive performance of RF
model in testing set. 2.Feature importance ranking in RF model. 3. Relationship between number of trees and OOB (Out-of-Bag) error. (C) AUC
curve, feature importance ranking, and SHAP visualization for XGBOOST model evaluation. 1. Evaluation of predictive performance of XGBOOST
model in testing set. 2.Feature importance ranking in XGBOOST model. 3.SHAP value visualization for XGBOOST variables. (D) Eight common feature

variables selected by three predictive models.
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The differences in disease onset and progression characteristics
across various specialties result in varying incidence rates of lower
extremity DVT (11). Literature reports indicate that the incidence
of lower extremity deep vein thrombosis in colorectal cancer
patients post-surgery is 40% (2). At present, there is a lack of
effective evidence-based research on the risk factors, clinical
characteristics, and targeted prevention and treatment measures
for lower extremity DVT following gastrointestinal surgery. The
American College of Chest Physicians Guidelines define cancer
surgery as a high-risk factor for venous thromboembolism and
recommend the use of intermittent pneumatic compression and
certain medications (such as low molecular weight heparin, low-
dose unfractionated heparin, and Xa inhibitors) to prevent the
occurrence of venous thromboembolism (7). Caprini, Geneva, and
Rapt scores are commonly used tools for assessing DVT, but they
are limited in their applicability to colorectal cancer patients. The
Caprini assessment rates all colorectal cancer patients undergoing
abdominal surgery as high-risk, therefore, current risk assessment
models are insufficient to identify patients truly at risk of DVT post-
surgery. Many studies have examined the risk factors for
postoperative DVT in colorectal cancer patients, such as open
surgery, age, D-dimer, pulmonary disease, hemoglobin, and more
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(12, 13). Although many risk factors have been identified, the
available assessment systems are still limited and unable to
accurately predict the occurrence of postoperative DVT.

With the continuous advancement of surgical techniques for
colorectal cancer, the differences in intraoperative factors are
becoming less apparent. Therefore, we aim to develop a
preoperative risk assessment tool similar to the Caprini score to
facilitate early diagnosis and prevention of postoperative DVT in
colorectal cancer patients.

Traditional approaches to identifying risk factors usually
depend on developing risk models through univariate or
multivariate regression, yet these models often ignore the
interactions among variables and nonlinear relationships. In
contrast, machine learning models are flexible enough to handle
nonlinear and complex data structures, and can effectively address
the challenges of high dimensional data and missing values. By
training models on large datasets and continuously optimizing their
performance, they improve prediction and classification accuracy
(14-18). The SHAP algorithm utilizes the Shapley value concept
from game theory, calculating the average contribution of each
feature to the prediction. This approach enables us to thoroughly
quantify each feature’s influence on the model’s overall predictions,
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(A) Comparison of AUC models in the training set. (B) Comparison of AUC models in the testing set. (C) Comparison of F1 score, accuracy,
sensitivity, specificity, positive predictive value, negative predictive value, and kappa value in the training set. (D) Comparison of F1 score, accuracy,
sensitivity, specificity, positive predictive value, negative predictive value, and kappa value in the testing set.

thus providing a deeper understanding of the model’s workings
(19). On the other hand, the LIME algorithm provides localized and
transparent explanations by analyzing the feature importance of
individual predictions. This local interpretability allows us to
understand the reasons behind specific predictions in detail (20).
The combination of these two approaches provides us a
multidimensional model interpretation framework, capable of
capturing global feature impacts and providing thorough insights
into specific predictions.

In this study, we first used three machine learning models to
construct a prediction model for DVT in patients with gastrointestinal
tumors among postoperative colorectal cancer patients. Lasso, Xgboost,
and Random Forest each filtered out 29, 15, and 15 feature vectors,
respectively. In the end, we selected 8 common feature variables among
the three models. During the feature selection process, we adopted a
model-based feature selection method. This approach selects the most
relevant features by evaluating each feature’s contribution to the
model’s performance. Specifically, we employed algorithms such as
Lasso regression, Xgboost, and Random Forest, which effectively
handle high-dimensional data and identify features that most
significantly impact the prediction results. Existing studies have
shown that feature selection plays an important role in cancer
prediction models; for example, Sun Tao employed LASSO
regression combined with the Boruta algorithm for feature selection,
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thereby enhancing the accuracy of predicting the risk of pulmonary
infection in lung cancer patients post-chemotherapy (21). The ROC
curve constructed from these feature vectors indicates that the AUC
values for Xgboost and Decision Tree are both greater than 0.900, and
the AUC value for Lasso regression is 0.823. The findings indicate that
the Lasso, Xgboost, and Decision Tree models have high clinical value
in predicting postoperative DVT occurrence in colorectal cancer
patients. In contrast, in the research conducted by Xiuying L et al.
(22) the DVT model developed through the Caprini Risk Assessment
Model exhibited an AUC value of merely 0.701, with a sensitivity of
80.6% and specificity of 56.3%. These comparative results highlight the
superiority of the machine learning models in this study, providing
powerful tools for accurately predicting postoperative DVT in
colorectal cancer patients, indicating that machine learning
technology has high potential for application in clinical research. We
utilized six machine learning models to build and compare prediction
models, from which we selected the optimal model. Through
comparison, we found that the XGBOOST model has extremely
high prediction accuracy, with an area under the ROC curve larger
than 0.99. Additionally, the internally validated DCA and calibration
curve confirmed the model’s consistency in net clinical benefit and
prediction probability, indicating its high predictive value. Literature
has shown that the Xgboost model has a higher predictive value for
DVT prediction in gastrointestinal tumors, with an AUC value
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FIGURE 4

(A) XGBOOST model calibration curve in the training set. (B) XGBOOST model calibration curve in the testing set. (C) XGBOOST model clinical
decision curve in the training set. (D) XGBOOST model clinical decision curve in the testing set. (E) XGBOOST model confusion matrix in the training
set. (F) XGBOOST model confusion matrix in the testing set. (G) XGBOOST Model Clinical Impact Curve (CIC) in the training set. (H) XGBOOST

model Clinical Impact Curve (CIC) in the testing set.

significantly higher than that of nomograms (23). Additionally,
RuifengD et al. (24) constructed a model using the Xgboost model to
predict early postoperative DVT in patients after hip surgery. In their
study, the Xgboost model achieved an AUC of 0.991 + 0.012 in the
training cohort and an AUC of 0.982 in the validation cohort, with a
sensitivity of 0.913 and a specificity of 0.998.The calibration and DCA
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curves in the validation cohort indicated good performance by the
Xgboost model. Our study showed similar performance on these
evaluation metrics, validating the model’s effectiveness and reliability.

Consistent with some studies (25), advanced age is a predictive
factor for VTE occurrence. In our predictive model, SHAP feature
importance ranking shows that advanced age is the most important
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predictive factor. This indicates that age plays a crucial role in
predicting the risk of VTE occurrence. As age increases, reduced
vascular elasticity and changes in coagulation mechanisms can
increase the risk of thrombosis. Additionally, reduced activity and
the presence of multiple comorbidities in the elderly also increase
the likelihood of VTE occurrence.

Prealbumin is a protein synthesized in the liver, commonly used
to assess nutritional status and liver function. Its levels can reflect a
person’s nutritional state and inflammatory response (26, 27). Low
levels of prealbumin are often associated with malnutrition, which
may increase the risk of DVT (28). Malnutrition can lead to
increased blood viscosity and endothelial dysfunction, thereby
promoting thrombosis. Meanwhile, prealbumin levels decrease
during acute inflammation or infection. The inflammatory
response is a crucial mechanism in thrombosis as it can lead to
endothelial damage and activation of coagulation factors (29, 30).

Studies have shown that there is a complex relationship between
leukocyte activity and venous thrombosis, and the activity of
inflammatory cells may play an important role in the natural
history of thrombosis (31). Furthermore, research points out that
when hematocrit is controlled, an increased white blood cell count
(>12) is significantly correlated with the risk of thrombotic events
(32). These discoveries highlight the significance of including white
blood cell count as a factor in managing VTE, particularly among
high-risk groups like surgical and cancer patients.

Frontiers in Oncology

Our diagnostic tools encompass several additional features,
including preoperative hemoglobin, preoperative albumin, CEA,
and PIKVA2, all of which are essential preoperative laboratory
checks. Additionally, we included surgery duration as a history-
related feature. Some features in the tool have SHAP values that are
inconsistent with clinical knowledge. However, it is important to
consider that these features contribute differently to the overall
model and should be viewed as a whole.

Our study has some limitations. Due to the limitations of
retrospective studies, we were unable to include some highly valuable
data that could be crucial and closely related to colorectal cancer.
Despite extensive literature indicating that DD values might be closely
linked to the occurrence of postoperative DVT (6, 33), unfortunately,
due to a large number of missing values in preoperative DD, it was
removed during preprocessing. We anticipate that with the
advancements in genetics and bioinformatics, more predictive
biomarkers will be identified and utilized, such as tumor genomic
features in the Tic-ONCO model (34), among others. Additionally, due
to limitations of the constraints of the data system, we could not
perform extended observations on patients who were moved to
rehabilitation facilities approximately 10 days after surgery. Finally,
due to the lack of external validation, it is unclear whether our results
are applicable to other populations, necessitating further research on
more groups. In summary, these limitations hinder the clinical
application of this predictive model, requiring further prospective
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studies with larger samples and meticulous design. As an initial
exploration of this research theme, we hope this study offers some
guidance for future prospective research.
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Background: Reactive Oxygen Species (ROS), a hallmark of cancer, is related to
prognosis, tumor progression, and treatment response. Nevertheless, the
correlation of ROS-based molecular signature with clinical outcome and
immune cell infiltration has not been thoroughly studied in bladder cancer
(BLCA). Accordingly, we aimed to thoroughly examine the role and prognostic
value of ROS-related genes in BLCA.

Methods: We obtained RNA sequencing and clinical data from The Cancer
Genome Atlas (TCGA) for bladder cancer (BLCA) patients and identified ROS-
associated genes using the GeneCards and Molecular Signatures Database
(MSigDB). We then analyzed differential gene expression between BLCA and
normal tissues and explored the functions of these ROS-related genes through
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Protein-Protein Interaction (PPI) analysis. Prognostic ROS-related genes were
identified using Univariate Cox regression (UCR) and LASSO analyses, which were
further refined in a Multivariate Cox Regression (MCR) analysis to develop a
Prognostic Signature (PS). This PS was validated in the GSE13507 cohort,
assessing its predictive power with Kaplan-Meier survival and time-dependent
ROC curves. To forecast BLCA outcomes, we constructed a nomogram
integrating the PS with clinical variables. We also investigated the signature’s
molecular characteristics through Gene Set Enrichment Analysis (GSEA), Immune
Cell Infiltration (ICl), and Tumor Mutational Burden (TMB) analyses. The
Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict
chemotherapy responses based on the PS. Additionally, we screened for Small-
Molecule Drugs (SMDs) targeting ROS-related genes using the CMAP database.
Finally, we validated our findings by checking protein levels of the signature
genes in the Human Protein Atlas (HPA) and confirmed the role of Aldo—keto
reductase family 1 member B1 (AKR1B1) through in vitro experiments.
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Results: The constructed and validated PS that comprised 17 ROS-related genes
exhibited good performance in predicting overall survival (OS), constituting an
independent prognostic biomarker in BLCA patients. Additionally, we
successfully established a nomogram with superior predictive capacity, as
indicated by the calibration plots. The bioinformatics analysis findings
showcased the implication of PS in several oncogenic pathways besides tumor
ICl regulation. The PS was negatively associated with the TMB. The high-risk
group patients had greater chemotherapy sensitivity in comparison to low-risk
group patients. Further, 11 candidate SMDs were identified for treating BLCA. The
majority of gene expression exhibited a correlation with the protein expression.
In addition, the expression of most genes was consistent with protein expression.
Furthermore, to test the gene reliability we constructed, AKR1B1, one of the
seventeen genes identified, was used for in-depth validation. In vitro experiments
indicate that siRNA-mediated AKR1B1 silencing impeded BLCA cell viability,
migration, and proliferation.

Conclusions: We identified a PS based on 17 ROS-related genes that represented
independent OS prognostic factors and 11 candidate SMDs for BLCA treatment,
which may contribute to the development of effective individualized therapies
for BLCA.

bladder cancer, reactive oxygen species, prognostic signature, chemotherapy response,

overall survival, AKR1B1

1 Introduction

Bladder cancer (BLCA) has the sixth worldwide prevalence of
new cases and the ninth-highest number of fatalities among male
cancer patients globally. In 2020, there were nearly 573,000 new
cases and nearly 213,000 deaths caused by BLCA (1, 2). Based on
the depth of muscle invasion, BLCA can be mainly classified into
non-muscle-invasive BLCA (NMIBC) and muscle-invasive BLCA
(MIBC) (3). Despite remarkable advancements in treatments,
including adjuvant chemotherapy, immune checkpoint inhibitor
therapy, robot-assisted surgery systems, and targeted therapy, the
overall survival (OS) of BLCA patients remains unfavorable (4-6).
In addition, BLCA is a cancerous malignancy with notable and
substantial heterogeneity, and conventional clinical predictive
factors, including tumor grade and TNM stage, can be utilized for
predicting BLCA patient prognosis accurately (7). Hence,
identifying novel biomarkers for predicting the BLCA patient
survival time is of crucial practical clinical significance.

Reactive oxygen species (ROS), characterized by molecules that
contain oxygen with oxidizing properties, are the reduction
products of oxidative metabolism and consist of nonradicals,
mainly hydrogen peroxide (H202), hypochlorous acid (HOCI),
and organoid hydroperoxides (ROOH), and free radicals, mainly
hydroxyl and superoxide anion radicals (8). Mitochondria,
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peroxisomes, the endoplasmic reticulum (ER), metabolic
enzymes, and the Warburg effect are the main endogenous
sources of ROS (9). ROS can also be produced by physical agent
exposure (ultraviolet rays and heat), chemotherapy, and
radiotherapy (10, 11). ROS has been indicated to be crucial
secondary messengers governing various cellular biological
processes, including proliferation, angiogenesis, differentiation,
metastasis, autophagy, drug resistance, immune response, and
cancer stem cells (12). Moderate ROS levels are believed to be
essential for cell growth and differentiation. Nevertheless, the
excessive accumulation of ROS is involved in multiple diseases
(13), particularly malignant tumors (14, 15). Recent studies have
indicated that an imbalance in ROS is closely related to BLCA
development and progression (16, 17). Therefore, comprehensively
investigating the functions of ROS-related genes and identifying
ROS-related biomarkers to accurately predict BLCA patients’ OS is
highly important.

The relationship between genes and reactive oxygen species
(ROS) is multifaceted, including the regulation of ROS production
and clearance by genes, and the influence of ROS on gene
expression (18). Here are some key points that outline the
interaction between genes and ROS: (1) Regulation of ROS by
Genes. Genes such as p53 play a critical role in maintaining
genomic integrity and orchestrating cellular responses to stress,
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including the modulation of ROS activity. ROS can act as signaling
molecules to initiate p53 activation in response to DNA damage,
leading to transcriptional regulation of genes involved in cell cycle
arrest, DNA repair, and apoptosis (19, 20). (2) ROS Influence on
Gene Expression. The Keap1-Nrf2-ARE signaling pathway is a well-
studied regulatory system that preserves cellular redox homeostasis
(21, 22). ROS act as central players in this mechanism, providing a
dynamic balance between Nrf2 activation and its inhibition by
Keapl. When cellular ROS levels rise, certain cysteine residues in
Keapl are oxidized, disrupting its ability to ubiquitinate Nrf2,
leading to the accumulation of Nrf2 in the nucleus and the
transcriptional activation of antioxidant and detoxification genes
(22). (3) ROS and Chromatin. ROS influence the activity of
epigenetic modulators, such as histone deacetylases (HDACs) or
DNA methyltransferases (DNMTs), affecting the expression of
target genes. They also oxidize DNA, particularly adenine and
guanine, which can lead to mutations and contribute to
tumorigenesis (23, 24). (4) ROS and Cancer. In cancer therapy,
ROS can either activate or suppress NF-kB signaling involved in the
control of cellular processes such as embryogenesis, cell
proliferation and death, and responses to stress stimuli (21).
Additionally, ROS can induce DNA hypermethylation, potentially
affecting tumor phenotype when promoter regions of tumor
suppressor genes are involved (25).

Our study comprehensively investigated the functions and
prognostic values of ROS-associated genes in BLCA by accessing
a public database via bioinformatics methods, aiming at
constructing and validating a novel Prognostic Signature (PS)
relying on ROS-related genes in BLCA through LASSO and Cox
regression analyses. We also explored the associations between PS
and Immune Cell Infiltration (ICI), Tumor Mutational Burden
(TMB), and chemosensitivity. A nomogram was established by
combining the Risk Scores (RSs) based on the seventeen prognostic
ROS-associated genes and clinical characteristics. Additionally, we
identified 11 candidate Small-Molecule Drugs (SMDs) for BLCA
treatment. To verify the authenticity of the data, in vitro
experiments revealed that siRNA-mediated AKR1BI1 silencing
impeded BLCA cell viability, migration, and proliferation,
aligning with our expectations and demonstrating the constructed
ROS-related gene reliability. We identified a PS based on 17 ROS-
related genes that represented independent OS prognostic factors
and 11 candidate SMDs for BLCA treatment, which may contribute
to the development of effective individualized therapies for BLCA.

Abbreviations: BLCA, Bladder Cancer; ROS, Reactive Oxygen Species; MSigDB,
Molecular Signature Database; TCGA, The Cancer Genome Atlas; GEO, Gene
Expression Omnibus; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR,
False Discovery Rate; FC, Fold Change; GO, Gene Ontology; PPI, Protein-Protein
Interaction; UCR, Univariate Cox Regression; MCR, Multivariate Cox
Regression; PS, Prognostic Signature; GSEA, Gene Set Enrichment Analysis;
ICI, Immune Cell Infiltration; TMB, Tumor Mutational Burden; GDSC, The
Genomics of Drug Sensitivity in Cancer; SMDs, Small-Molecule Drugs; HPA,
Human Protein Atlas; AKR1B1, Aldo-keto reductase family 1 member B1.
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2 Methods and methods
2.1 Data acquisition

We first obtained ROS-related genes from the GeneCards
database (https://www.genecards.org/) and Molecular Signature
Database v7.1 (MSigDB; https://www.gsea-msigdb.org/gsea/
msigdb). Then, we downloaded the level-three transcriptome
RNA sequencing information and clinicopathological features of
BLCA patients by accessing The Cancer Genome Atlas (TCGA)
(https://gdc-portal.ncinih.gov/). Further, we utilized the GSE13507
acquired from the Gene Expression Omnibus database (GEO,
https://www.ncbi.nlm.nih.gov/geo/) as the validation set.

2.2 Identification of ROS-associated
differentially expressed genes

Employing the R edge package (version R 4.0.5, https://
bioconductor.org/packages/release/bioc/), the ROS-related DEGs
between BLCA and normal bladder samples were screened,
setting the cutoff criteria as a False Discovery Rate (FDR) < 0.05
and a |log2-fold change (FC)| > 1.

2.3 Enrichment analysis of ROS-
related DEGs

Gene Ontology (GO) analysis that includes molecular function
(MF), cell component (CC), and biological process (BP) analyses
was implemented to explore the possible molecular mechanisms
behind ROS-related DEGs via the clusterProfiler package of R,
utilizing the same approach for Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis (26-28) and considering P < 0.05 as
significant enrichment.

2.4 Protein-protein interactions

ROS-related DEGs were uploaded to the STRING database
(http://www.string-db.org/) to obtain PPI information. The PPI
network establishment and visualization were conducted via
Cytoscape software, using the MCODE plug-in to screen the
considerable PPI network modules.

2.5 ldentification of potential small-
molecule drugs

The Connectivity Map (CMAP) database (http://
www.broadinstitute.org) could be beneficial for researchers in the
identification of probable molecular drugs closely associated with
diseases, including cancer. The enrichment scores were -1-1, with a
negative score showing that BLCA patients could benefit from
this drug.
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2.6 Construction and validation of the
prognostic signature of ROS

The prognosis-associated ROS-related genes were identified via
Univariate Cox regression (UCR) analysis (survival package) and
least absolute shrinkage and selection operator (LASSO) regression
analysis (glmnet and survival package) with P < 0.05 in the TCGA
dataset, followed by incorporating the results into the Multivariate
Cox Regression (MCR) analysis. Finally, a ROS-correlated gene
signature related, to OS was constructed based on MCR analysis
results. The Risk Score (RS) was generated by this formula: RS =
(Coefl*expression mRNAI) + (Coef2*expression mRNA2) + (Coef
n * expression mRNA n), where Coef represents the MCR model
coefficient of relevant mRNA. Based on the RS mean, patients were
classified into high-risk group (HRG) and low-risk group (LRG),
employing the Kaplan-Meier (K-M) method to compare the
survival outcomes between different groups. Our study deployed
time-related ROC analysis to determine the predictive prognostic
value of the PS. Both T-distributed stochastic neighbor embedding
(t-SNE) analysis alongside principal component analysis (PCA)
were implemented to examine the risk signature classification
capacity with the R packages “Rtsne” and “ggplot2”, employing
the same approach to calculate the RS and then validated the ROS-
related gene signature in the GSE13507 dataset.

2.7 Development of a nomogram

We explored the relationships between the PS and clinical
features (age, sex, T/N/TNM stages, and tumor grade) in the
TCGA dataset via the chi-squared test. Then, stratified analysis
was performed to further examine the PS reliability and stability of
ROS in the prediction of BLCA patients’ OS. Additionally, we
implemented UCR and MCR analyses to explore whether the RS
was of independent prognostic value. Both RS and clinical features
were incorporated to establish an OS-related nomogram, estimating
the nomogram’s predictive capability by generating a
calibration curve.

2.8 Gene set enrichment analysis and
immune cell infiltration and tumor
mutational burden analyses

GSEA was implemented to investigate the latent mechanisms
among different groups based on GSEA software (version 4.1.0).
Then, we acquired mutation information for BLCA patients by
accessing the TCGA database, calculated the total mutation number
for each sample, and analyzed the top mutational genes among
different risk groups using the maftools package. The TIMER,
CIBERSORT, CIBERSORT-ABS, XCELL, QUANTISEQ, EPIC,
and MCP-counter methods were utilized for the analysis of the
ICI levels of 22 distinct leukocyte subsets in both groups. P < 0.05
indicated statistically significant.
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2.9 Chemotherapeutic response analysis

The Genomics of Drug Sensitivity in Cancer (GDSC, http://
www.cancerrxgene.org) database was accessed to predict BLCA
patients’ response in both groups to chemotherapy drugs.
Eventually, we assessed chemosensitivity by calculating the half-
maximal inhibitory concentration (IC50) through the R package
pRRophetic, with P < 0.05 indicating statistical significance.

2.10 Patient sample

Between 2022 and 2024, 20 BLCA tissue and their
corresponding non-tumor tissue specimens were collected from
Shaoxing People’s Hospital for immunohistochemical staining
(THC) and western blot. No patient in this study had received
radiation therapy, adjuvant therapy, or preoperative chemotherapy.
The samples from Shaoxing People’s Hospital were collected with
informed consent, and the use of the stored cancer specimens and
clinical data was granted clearance by the Academic Ethical
Committee of Shaoxing People’s Hospital (ethical approval
number: 2022-K-Y-054-01). The study was executed in a way that
aligned with the Declaration of Helsinki.

2.11 Immunohistochemistry

IHC images of key genes in BLCA and normal tissue samples
were acquired through the Human Protein Atlas (HPA) database
while evaluating the staining intensity following the HPA database
standard (https://www.proteinatlas.org/). Use anti-AKR1Bl
(1:1000; Proteintech,15439-1-AP). Rabbit monoclonal antibody
was used for immunohistochemistry of paraffin-embedded human
and nude mouse BLCA specimens. In short, samples were
processed using dewaxing, hydration, antigen extraction, IHC
labeling, and pathology scores.

2.12 Cell culture, treatments, and
siRNA transfection

Human BLCA cells (T24 and 5637) were procured from Procell
Life Science & Technology Company (Hubei, China). Herein, we
grouped the logarithmic growth phase cells into the control,
siAKR1B1-negative control (NC), and siAKR1B1 groups. The two
cell lines were cultured in MCCOY’S 5A (Gibco, USA) and 1640
(Gibco, USA) medium supplemented with 10% fetal bovine serum
(FBS, Gibco, USA) and 1% penicillin/streptomycin at 37°C and 5%
CO,. The cells went through treatment with 5 pl of siAKR1BI, using
Lipofectamine 2000 to dilute the solution in Opti-MEM for 5 min.
The solution was thereafter mixed and allowed to incubate at ambient
temperature for a duration of 20 min, followed by introducing the
composite into the cell culture plate. After a 48-h period of
transfection, the cells were gathered for additional assessments.
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2.13 Western blot analysis

Proteins were subjected to extraction using RIPA buffers and
quantification by BCA Kkits. The protein eluate went through
separation utilizing 10% SDS-PAGE and transferred to a PVDF
membrane that was blocked and then incubated with primary and
secondary antibodies. AKR1B1 (Proteintech, 15439-1-AP) and f3-
catenin (Abcam, ab32572) were detected by imaging with enhanced
chemiluminescence reagents (Merck Millipore, Billerica, MA).

2.14 CCKS8 assay

100 uL of suspension containing 5000 transfected cells was
dispensed into each well of a 96-well plate along with 10 uL of
CCKa8 solution (MCE, HY-K0301). The plate was then placed in a
cell culture incubator for 1 hour, following which absorbance
readings were taken at 450 nm and recorded.

2.15 Colony formation assay

3600 BLCA cells were equally distributed into six-well plates
and incubated at 37°C with 5% CO, for 14 days with regular
medium changes. Post-incubation, the cells were fixed and stained
using 4% paraformaldehyde and 0.1% crystal violet for 20 minutes
each, after which images were captured and data documented.

2.16 Edu assay

5-ethynyl-2'-deoxyuridine (EdU) assay kit (MCE, China) was
used as instructed by the manufacturer. In this experiment, BLCA
cells were cultured in 96-well plates, with a seeding density of 4,000
cells per well, after incubation at 37°C for 72 hours. Next, BLCA cells
were exposed to 10 uM EdU for 2 hours at 37°C. Subsequently, the
cells were fixed using 4% paraformaldehyde and permeabilized with
0.5% Triton X-100 for 15minutes at room temperature. After
removing the fixatives, the cells were washed with PBS containing
1% BSA. Lastly, the cells were incubated in Click Additive Solution,
protected from light, for 30 minutes and then stained with Hoechst to
label the nucleus. Microscopic images were captured to observe the
EdU detection samples. The proliferation of cells was further assessed
by calculating the ratio of EdU-positive cells to the overall cell count.

2.17 Transwell assay

The transfected HOS and 143B cell lines were cultured with the
serum-free DMEM and serum-free 1640, respectively, in a
Transwell upper chamber. Corresponding culture medium
containing 10% FBS was added to the lower chamber. The cells
were incubated at 37°C with 5% CO2 for 48 hours, fixed with
formaldehyde, stained with crystal violet, and visualized under a
microscope for analysis.
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2.18 Statistical analysis

Statistical analysis was conducted using the R software (version
4.0.5). The significance of differential gene expression was
ascertained using adjusted p-value to correct for the multiple
testing phenomenon, with a significance threshold set at p-value
< 0.05. Another statistical analysis was conducted with SPSS
Statistics software version 20. The values were compared by one-
way ANOVA or independent-samples Student’s t test. Statistical
significance was determined at *p < 0.05, **p < 0.01, or **p < 0.001.
Values are presented as the mean + SEM. Error bars indicate the
SEM unless otherwise noted.

3 Results

3.1 Identification of ROS-related genes
in BLCA

Supplementary Figure 1 illustrates the workflow diagram of this
study. In total, we obtained 1749 ROS-related genes with relevance
scores > 0.5 from the Gene Cards database and 70 ROS-related
genes from the MSigDB database, acquiring 1767 genes after
removing the overlapping genes. However, from the 1,767 genes,
we eventually extracted the expression profiles of 1,719 ROS-
associated genes identical to those in 412 and 19 BLCA and
normal bladder tissue samples, respectively, in the TCGA dataset.
By applying cutoff criteria of FDR < 0.05 and [log2 FC| > 1, 308
ROS-related Differentially Expressed Genes (DEGs) were identified;
of them, 138 were downregulated, and 170 were upregulated.
Moreover, GO, KEGG, and PPI analyses were deployed to
explore the possible roles of ROS-associated genes. Both
Univariate Cox regression (UCR) and LASSO analyses were
performed to screen for prognostic ROS-related genes, and 71
genes were included in subsequent analyses (p<0.05). As a means
to guarantee the clinical outcomes’ stability and reliability based on
the 71 genes, we conducted LASSO analysis to further screen for
prognostic ROS-related genes, identifying 31 genes related to OS.
The MCR analysis identified 17 ROS-related genes (JUN, CALR,
P4HB, ELN, MYC, FASN, REV3L, VHL, NID1, SLC38A1, TERC,
AKRI1B1, ITGA3, CGB5, HLA-G, FADSI1, and ORM]1) that were
utilized to construct a PS, which was subsequently validated in the
GSE13507 cohort. Both K-M survival and time-dependent receiver
operating characteristic (ROC) curves were employed to evaluate
the prognostic value of the PS. A nomogram was constructed,
aiming at predicting the outcomes of BLCA patients in combination
with the PS and clinical factors. GSEA, ICI, and TMB analysis were
implemented for the exploration of the molecular characteristics of
the PS. The GDSC database was accessed for the prediction of
chemotherapy response according to the PS. Candidate SMDs
targeting ROS-related genes were screened against the CMAP
database. To verify the authenticity of the data, the PS protein
expression levels were detected through the HPA. AKRIBI was
selected for in vitro experimental validation, demonstrating the
reliability of the ROS-related genes we constructed.
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3.2 Functional assays of the selected
prognostic genes and Protein-protein
interaction network construction

The GO analysis findings represented that ROS-associated genes
were involved in multiple biological processes, including the response
to toxic substances, aging, metal ions, oxidative stress, and ROS, besides
cell cycle arrest and the cellular response to drugs (Figure 1A). The
KEGG analysis findings showcased that these genes exhibited main
involvement in multiple pathways, including the p53, platinum drug
resistance, cell cycle, ErbB, PI3K-Akt, TNF, cellular senescence, IL-17,
MAPK, HIF-1, and cGMP-PKG signaling pathways (Figure 1B) (26—
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28). For better comprehension of the involvements of ROS-associated
genes in BLCA, a PPI network was established and visualized through
the utilization of STRING database and Cytoscape software, which
included 298 nodes and 2859 edges (Figure 2A). The MCODE plugin
identified three crucial modules of target genes, and the critical
modules consisted of 39 nodes and 321 edges, 29 nodes and 250
edges, and 31 nodes and 123 edges (Figures 2B-D).

3.3 Small-molecule drugs

Using the CMAP database, candidate SMDs for BLCA were
identified based on ROS-related DEGs, identifying eleven SMDs

ID
G0:0009636
G0:0007568
G0:0010038
GO0:0046677
GO:0006979
GO0:0048545
G0:0035690
G0:0043062
G0:0000302
G0:0007050

Description
response to toxic substance
aging

response to metal ion

response to antibiotic
response to oxidative stress
response to steroid hormone

cellular response to drug
extracellular structure organization
response to reactive oxygen species
cell cycle arrest

PI3K-Akt signaling pathway 1

MAPK signaling pathway 1

Cellular senescence 4

p53 signaling pathway 4

Focal adhesion 4

Calcium signaling pathway 4

TNF signaling pathway 4

Platinum drug resistance 4

Cell cycle

Phagosome 4

IL-17 signaling pathway 4

Parathyroid hormone synthesis, secretion and action 4
FoxO signaling pathway 1

cGMP-PKG signaling pathway 1
AGE-RAGE signaling pathway in diabetic complications 4
Oxytocin signaling pathway 4

Cushing syndrome 1

JAK-STAT signaling pathway -

Endocrine resistance 4

Serotonergic synapse 1

Apoptosis 1

EGFR tyrosine kinase inhibitor resistance 1
HIF-1 signaling pathway 4

ErbB signaling pathway 4

Aldosterone synthesis and secretion A
Ovarian steroidogenesis 4

Arachidonic acid metabolism 1

Cortisol synthesis and secretion 1
Apoptosis — multiple species 4

p.adjust

0.01
0.02

0.03
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Enrichment analysis of ROS-related differentially expressed genes (DEGs) and PPI. (A) GO and (B) KEGG analyses.
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FIGURE 2

Protein-protein interaction (PPI) network. (A) Protein-protein interaction (PPI) network of differentially expressed ROS-related genes. (B-D) Key

models of PPl networks.

(0297417-0002B, 5248896, puromycin, blebbistatin, anisomycin,
STOCKI1N-35215, methylergometrine, clofilium tosylate,
verteporfin, withaferin A, and rottlerin) with anticancer functions
in BLCA progression with enrichment scores < -0.8, p < 0.01, and n
> 2 as the screening criteria (Table 1).

3.4 Construction and validation of the
ROS-based prognostic signature

Our study conducted UCR analysis to identify ROS-related
DEGs notably correlated with OS, and 71 genes were included in
subsequent analyses (p<0.05) (Figure 3A). Aiming to ensure the
clinical outcomes stability and reliability based on the 71 genes,
LASSO analysis was conducted to further screen for prognostic
ROS-related genes, and we identified 31 genes related to OS
(Figures 3B, C). Multivariate Cox Regression (MCR) analysis
identified 17 ROS-related genes (JUN, CALR, P4HB, ELN, MYC,
FASN, REV3L, VHL, NID1, SLC38A1, TFRC, AKR1B1, ITGA3,
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CGB5, HLA-G, FADS1, and ORM1) that were used to construct a
PS (Figure 3D). A ROS-based RS was established depending on
the coefficient of 17 genes according to this formula: risk score =
(0.3078 x FASN expression) + (0.305 x CALR expression) + (0.3832
x P4HB expression) + (0.1599 x ELN expression) + (0.2941 x MYC
expression) + (0.3702 x REV3L expression) + (-0.4548 x
VHL expression) +(0.147 x NIDI expression) + (-0.2213 X
SLC38A1 expression) + (0.1687 x TFRC expression) +(0.123
x AKRIBI expression) + (-0.1371 x ITGA3 expression) +(0.1762
x CGB5 expression) + (-0.1483 x HLA-G expression) +(0.1368 x
FADSI expression) + (-0.252 x ORM1 expression) + (0.1274 x JUN
expression). Subsequently, we classified patients into HRG and LRG
in accordance with the median RS. The LRG patients had longer OS
than those in the HRG (p < 0.05) (Figures 4A, C). Time-dependent
ROC analysis depicted that the signature AUC in the TCGA cohort
was 0.78 at 5 years (Figure 4B). A heatmap was generated to show
the differences in 17 ROS-related genes between the different groups
(Figure 4D). PCA and t-SNE analyses indicated the signature’s good
classification ability (Figures 4E, F). Additionally, the prognostic
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TABLE 1 The 11 small molecule drugs of CMP dataset analyses results.
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cmap name mean n enrichment p-value percent non-null
0297417-0002B -0.779 3 -0.979 0.00004 100
puromycin -0.765 4 -0.952 0 100
5248896 -0.668 2 -0.948 0.00594 100
blebbistatin -0.679 2 -0.936 0.00861 100
anisomycin -0.662 4 -0.933 0.00002 100
STOCKIN-35215 -0.691 3 -0.926 0.00062 100
methylergometrine -0.64 4 -0.863 0.00064 100
verteporfin -0.607 3 -0.844 0.00757 100
rottlerin 0.68 3 -0.84 0.00817 100
withaferin A -0.569 4 -0.832 0.00145 100
clofilium tosylate -0.597 3 -0.832 0.00937 100

capacity of our constructed PS was validated in the GSE13507
dataset. The results in GSE13507 (Supplementary Figure 2) were
consistent with previous results, which demonstrated the good
performance of the PS in predicting OS.

3.5 Establishment and validation of the risk
scores model

We first compared the ROS-based RSs among various
subgroups classified by clinicopathological characteristics (TNM
stage, sex, grade, age, T stage, and N stage). The RSs exhibited a
significant correlation with clinicopathological factors and were
markedly elevated in the following subgroups: >65 years of age,
advanced T stage (T3/4), N stage (N1/2/3), pathological grade
(High), and TNM stage (Stage III-IV) (Figure 5). Subsequently,
stratification analysis was conducted relying upon the clinical
characteristics (age, sex, grade, and TNM/T/N stages). Male or
female sex, age (>65 years) or (<=65 years), T stage (T3-T4), N stage
(NO), pathological grade (High), and TNM stage (Stage III-IV)
were associated with inferior OS in the high-risk subgroup (P <
0.05) (Supplementary Figure 2), with no difference in OS in the T
stage (T1/2), N stage (N1/2/3), or TNM stage (Stage I-II) subgroup
(Figure 6). Furthermore, to evaluate whether the RS was an
autocephalous prognostic indicator for BLCA patients, univariate
and multivariate Cox proportional hazard models were
implemented. According to UCR analysis results, age, TNM/T/N
stages, and RS were related to unfavorable OS (Figure 7A).
According to the multivariate analysis, age, N stage, and RS were
still associated with unfavorable OS (Figure 7B). Multiparameter
ROC curve analyses also revealed that the AUC of the RS was 0.769
(Figure 7C), indicating that compared with traditional clinical
prognostic indicators, the ROS-based RS exhibited remarkable
performance in predicting prognosis. Collectively, the ROS-based
RS was an autocephalous prognostic factor. A nomogram including
RS, age, and N stage we established to predict the outcomes of
BLCA patients (Figure 8A), with the calibration curve elucidating
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the nomogram’s good performance in predicting patient prognosis
(Figures 8B, C).

3.6 GSEA

The GSEA results demonstrated that carcinogenic signaling
pathways, such as calcium, focal adhesion, ECM receptor
interaction, MAPK, BLCA, GAP junction, Wnt, Hedgehog,
cancer, and TGF-B signaling pathways, exhibited main
enrichment in the HRG (Figure 9). Several metabolism-associated
signaling pathways, including autophagy regulation, peroxisomes,
and oxidative phosphorylation, were highly enriched in the LRG.

3.7 Immune cell infiltration

A heatmap of the ICI data obtained via CIBERSORT,
MCPcounter, XCELL, TIMER, CIBERSORT-ABS, QUANTISEQ,
and EPIC analyses (Figure 10) suggested that the RS was correlated
with ICI in BLCA. Additionally, significant differences were
observed in the fractions of distinct leukocyte subsets between
both groups. The proportions of naive B cells and M0/M2
macrophages were lower in the HRG, whereas the proportions of
CD8+/CD4+T cells/were greater in the LRG.

3.8 Tumor mutational burden analysis

The mutation profile results among different risk groups in the
TCGA dataset revealed somatic mutations in 93.53% (118) and 94.55%
(191) of the BLCA patients in the HRG (Figure 11A) and LRG
(Figure 11B), respectively. TP53, TTN, KMT2D, MUCI16, ARIDIA,
KDMS6A, PIK3CA, SYNEL, RB1, and KMT2C were the top 10 mutated
genes in the HRG. TP53, TTN, KMT2D, MUCI16, ARID1A, KDM6A,
PIK3CA, SYNEL, RBI, and FGFR3 were the top 10 mutated genes in
the LRG. Furthermore, the proportions of somatic mutations in
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Identification of prognostic ROS-related genes in TCGA dataset. (A) Screening prognostic ROS-associated genes through univariate Cox regression
analysis; (B) Incorporating the prognostic ROS-associated genes into the LASSO regression analysis; (C)The prognostic ROS-related genes were
incorporated into the LASSO regression analysis. (D) Screening prognostic ROS-related genes through multivariate Cox regression analysis.

KDM6A and FGFR3 significantly differed between both groups.
Additionally, the LRG patients had more mutation events than the
HRG (Figure 11C). Patients having a high TMB appeared to possess a
better prognosis than those with a low TMB (Figure 11D). Further, we
investigated the collaborative interaction effect of the ROS-based RS
and TMB on prognosis (Figure 11E). We found that the HRG patients
having a high TMB had shorter OS than those in the LRG with a high
TMB, and the LRG patients having a low TMB had longer OS than
those in the HRG with a low TMB. Interestingly, patients having a high
TMB exhibited better OS than those having a low TMB in the HRG,
and patients having a low TMB displayed worse OS than those having
a high TMB in the LRG. Patients possessing high TMB in the LRG had
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a greater OS than patients in the other three patient groups, and
patients having low TMB in the HRG tended to have a significantly
worse OS than patients in the other three patient groups. Collectively,
the ROS-based RS might be a probable biomarker for predicting OS in
BLCA patients.

3.9 Chemotherapeutic response analysis
The GDSC database analysis findings depicted that the IC50

values of chemotherapy drugs, including GSK269962A, BMS.536924,
JNJ.26854165, docetaxel, temsirolimus, cisplatin, thapsigargin,
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FIGURE 4

Prognostic ROS-based signature construction in TCGA dataset. (A) Kaplan-Meier survival analysis of BLCA patients between different groups;
(B) Survival status distribution relying on the median risk score; (C)Time-independent ROC analysis of 5-year survival risk scores; (D) Heatmap
showing the differences of 17 ROS-related genes between different groups. (E) PCA analysis; (F) t-SNE analysis.

sunitinib, rapamycin, and paclitaxel, were greater in LRG patients
than in those the HRG. In comparison, the IC50 values of BIBW2992
and gefitinib were greater in HRG patients than in those at
LRG (Figure 12).

3.10 Expression analysis of nine genes in
the Human Protein Atlas database

THC was utilized to additionally investigate the nine gene
protein expression in the HPA database between BLCA and
normal control tissues (Figure 13). In line with the RNA
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sequencing data, P4BH, FASN, AKR1B1, and CBG5 proteins,
which have a high prognostic risk, were upregulated in tumor
tissues, and MYC proteins, which have a low prognostic risk, were
downregulated in tumor tissues compared with normal controls.

3.11 AKR1B1 affected BLCA cell viability,
migration, and proliferation
While AKR1B1 has been documented in other types of cancer (29—

31), its impact on BLCA remains unreported. Therefore, AKR1BI was
selected for further analysis. IHC and WB analyses elucidated AKR1B1
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The risk score and clinicopathological factor correlation in the TCGA dataset. (A) The heatmap (*
(B) Boxplot show the risk score and clinicopathological factor correlation.
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overexpression in BLCA tissues (Figure 14A). To understand the role
of AKRIBI in BLCA, we further investigated the effect of increased
AKRI1B1 levels in BLCA cell lines (T24 and 5637) via in vitro
experiments. siRNA transfection successfully interfered with the
mRNA expression of AKR1B1, which was confirmed by WB
(Figure 14B). To further understand the effect of AKRI1BI, colony
formation analysis was also performed (Figure 14C), which showed
that BLCA cell viability was significantly hindered after AKRIB1 was
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silenced by siRNA. The CCK-8 assay showcased that cell viability was
impeded after the silencing of AKR1BI1 expression (Figure 14D). In
addition, an EdU proliferation assay showed that inhibiting AKR1B1
significantly lowered the percentage of EdU-positive BLCA cells
(Figure 14E). To further test whether AKR1BI affects BLCA cell
metastasis, a Transwell assay was performed (Figure 14F), revealing
that siRNA-mediated silencing of AKRIBI1 inhibited BLCA cell
migration and invasion.

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1493528
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

age>65 == high risk == |Ow risk

10.3389/fimmu.2024.1493528

female == high risk == |ow risk NO == high risk == |Ow risk
1.00 1.00 1.00
2075 2075 2075
8 8 8
[ o [}
4 0.50 4 0.50 s 0.50
2 2 K
c c 2
@ 025 @025 e B 025
p<0.001 p=0.008 p<0.001
0.00 0.00 0.00
0123456 7 8 9101112131415 0123456 7 8 9101112131415 0123458678 9101112131415
Time(years) Time(years) Time(years)
age<=65 == high risk == |ow risk male == high risk == |ow risk N1-N2-N3 == high risk == Jow risk
1.00 1.00 1.00
2075 2075 2075
© © ©
o -] 2
[} [ [}
S.0.50 G050 S 0.50
g K S
3 & 2
@ 025 @ 025 3025
p<0.001 p<0.001 p=0.075
0.00 0.00 0.00
0123458678 9101112131415 012345678 9101112131415 012345678 9101112131415
Time(years) Time(years) Time(years)
I-1l == high risk == Jow risk T1-T2 == high risk == Jow risk high == high risk == |ow risk
1.00 1.00 1.00
2075 2075 2075
3 3 3
© @ ©
o =2 =3
[} < [}
s 0.50 s 0.50 S 0.50
s s s
g s g
h—
» 025 » 025 » 025
p=0.088 p=0.123 p<0.001
0.00 0.00 0.00
0O 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 012345678 9101112131415
Time(years) Time(years) Time(years)
1I-IV == high risk == |ow risk T3-T4 == high risk( == |ow risk
1.00 1.00
2075 2075
3 3
© ©
2 2
[ [
4 0.50 4 0.50
© ©
2 2
< c
@025 3 025
p<0.001 p<0.001
0.00 0.00

012345678 9101112131415
Time(years)

FIGURE 6

01234586 7 8 9101112131415
Time(years)

Kaplan-Meier curves stratification of OS by gender, age, grade, or N/T/TNM stages between both risk groups.

4 Discussion

Reactive Oxygen Species (ROS) include hydroxyl radicals
(-OH), superoxide anions radicals (-O2-), and hydrogen peroxide
(H202), are considered a double-edged sword (32). Physiologically,
ROS play a crucial role in organisms. Excessive ROS can damage
proteins and DNA through oxidative damage, causing many
diseases, including cancer. ROS can cause cancer cells to die in
high concentrations (33, 34). However, the possible mechanisms
and prognostic value of ROS-associated genes in BLCA remain
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indefinite. Our study systematically explored the expression
patterns and correlations of ROS-associated genes with outcomes
in BLCA. Furthermore, we established a prognosis-correlated novel
signature relying on 17 ROS-related genes. Here, the ROS-based
signature was associated with CD8+ T cells and chemotherapy
responses. Eleven drugs were screened for treating BLCA patients.
Our results offer novel insights into ROS involvement in BLCA
development and progression.

In BLCA, 308 ROS-related genes were identified as
Differentially Expressed Genes (DEGs); of them, 138 and 170
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The risk signature as an independent BLCA prognostic factor in the TCGA dataset. (A) The OS risk score and clinicopathological factor correlations
by univariate and (B) multivariate Cox regression analysis. (C) ROC curves of the clinical characteristics and risk score.

were downregulated and upregulated genes, respectively. Then, we
explore the ROS-related DEGs’ functions through GO and KEGG
analyses. According to GO analysis, these genes exhibited main
enrichment in response to toxic substances, aging, metal ions,
oxidative stress, and ROS, besides cellular response to drugs.
KEGG analysis showcased that these genes were closely associated
with cancer-, immune-, and drug resistance-correlated pathways,
such as the p53, platinum drug resistance, PI3K-Akt, TNF, IL-17,
MAPK, HIF-1, and ¢cGMP-PKG pathways, suggesting that ROS-
related genes are involved in tumorigenesis. Subsequently,
according to the results of differential expression analyses, a PS
consisting of 17 ROS-related genes (JUN, CALR, P4HB, ELN, MYC,
FASN, REV3L, VHL, NID1, SLC38A1, TFRC, AKR1B1, ITGA3,
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CGB5, HLA-G, FADS1, and ORM1) was constructed and validated
via LASSO and Cox regression analyses.

Among the seventeen ROS-related genes in our established
signature, calreticulin (CALR), an ER protein with high Ca2
+-binding activity, is crucial in maintaining cell homeostasis and
initiating the anticancer immune response to immunogenic cell
death (35, 36). Elevated CALR was correlated with favorable
prognosis in distinct tumor types (36-39). CALR overexpression
was linked to worse OS in natural-killer T-cell lymphoma patients
(40). CALR silencing suppressed BLCA cell proliferation,
migration, and lung metastasis (41). FASN can serve as an
oncogene by regulating AKT signaling pathways in BLCA (42,
43). Overexpression of PAHB was notably associated with inferior
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The nomogram construction. (A) Nomogram predicting 3- or 5-year OS. (

outcomes, and knocking down P4HB impeded cell proliferation and
enhanced GEM sensitivity via the PERK/elF20/ATF4/CHOP
signaling pathways in BLCA (44). ITGA3 downregulation
hindered tumor cell invasion and proliferation by regulating the
FAK/PI3K/AKT pathway and epithelial-mesenchymal transition
(45, 46). SLC38A1, a vital transporter of glutamine, has been
implicated in tumorigenesis (47, 48). The expression of TFRC, a
crucial member involved in ferroptosis, was significantly elevated in
BLCA and promoted the tumorigenic phenotype of BLCA cells by
inducing EMT (49). Aldo-keto reductase family 1 member Bl
(AKR1BI) is closely implicated in cancer development and
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progression through various mechanisms, including EMT, ERK1/
2, Ras, and PI3K-AKT signaling pathways (50). Additionally,
ARKIB1 was also related to chemotherapeutic resistance and
cancer stem cells (51, 52). REV3L is highly overexpressed in
several cancers and facilitates cancer cell proliferation, metastasis,
and insensitivity to cisplatin (53, 54). Elastin (ELN), a crucial
member of the extracellular matrix family, has been documented
to contribute to cancer cell invasion (55, 56). Orosomucoid 1
(ORM1), an essential immune system regulator in acute-phase
reactions, might facilitate cancer cell immune evasion (57, 58).
Nidogenl (NID1), a vital component of the basement membrane,
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Tumor mutational burden (TMD) analysis. (A) Demonstrating the top 20 mutational genes within the high- and (B) low-risk groups. (C) TMB
difference in both risk groups. (D) Kaplan-Meier (K-M) survival analysis of BLCA patients with high or low TMB. (E) K-M curve analysis stratification of

OS by TMB and the prognostic signature.

serves as an oncogene in several tumors (59-62). Chorionic
gonadotropin beta polypeptide 5 (CGB5) can accelerate cancer
growth and vasculogenic mimicry formation by activating
the LHR signaling pathway (63). Jun represents a critical
transcription factor implicated in various biological processes,
including autophagy, proliferation, apoptosis, metastasis, and
inflammation (64, 65). FADSI silencing reduced cell growth by
arresting the cell cycle in the G1 phase (66).

Our Univariate Cox regression (UCR) and Multivariate Cox
Regression (MCR) analyses results demonstrated that the RS was a
negative prognostic factor of OS in BLCA patients. Further, ROC
analysis suggested that the RS outbalanced the conventional clinical
characteristics in OS prediction of BLCA patients. Herein, BLCA
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patients with advanced clinical features (III-IV stage, Grade high,
T3/4 stage, and N1/2/3 stage) had elevated RSs in comparison with
patients with early clinical features (I-II stage, Grade low, T1/2
stage, and NO stage). The RS was also related to age. Stratification
analyses revealed that the RS could effectively predict BLCA patient
outcomes in most subgroups other than subgroups (N1/2/3 stage,
T1/2 stage, and I-II stage). Finally, we constructed a ROS-related
nomogram to evaluate 3- and 5-year OS comprehensively. The
calibration curve results implied that the nomogram showed
excellent performance in predicting BLCA patient prognosis.

To deeply understand the potential mechanisms behind ROS-
mediated differential outcomes in BLCA patients, we implemented
GSEA analyses for different groups relying upon the ROS-based PS.
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GDSC database-based chemotherapy response prediction.

The findings demonstrated that the HRG exhibited enrichment in
cancer-associated pathways, including calcium, focal adhesion,
ECM receptor interaction, MAPK, Wnt, Hedgehog, cancer, and
TGF- pathways, implying the existence of an immunosuppressive
microenvironment. Meanwhile, the LRG genes exhibited main
involvement in the regulation of autophagy, peroxisomes, and
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oxidative phosphorylation. Altogether, OS was inferior in the
HRG patients than those in the LRG. The ICI is related to the
malignant biological phenotypes and prognosis of cancer patients,
which indicates that immunotherapy, particularly immune
checkpoint inhibitor treatment, has become crucial for treating
advanced tumors (67). CD8+ T cells are strongly correlated with the
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Sectional images of the differential expression of the above genes from the Human Protein Atlas. (A—I) representative images of P4HB (A), ELN (B),
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effectiveness of cancer immunotherapy (68). An elevated CD8+ T
cell infiltration level indicated a superior prognosis in BLCA
patients (69), aligning with our finding that the LRG patients
possessed a greater CD8+ T cell proportion and favorable
outcomes. Previous research has shown that patients having a
high TMB appear to possess a prolonged survival time and an
improved immunotherapy response (70). However, the TMB and
immunotherapy response correlation remains controversial (71).
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Herein, the HRG patients exhibited a lower TMB and an inferior
prognosis and might benefit from cisplatin, docetaxel, temsirolimus,
thapsigargin, BMS.536924, GSK269962A, JNJ.26854165, sunitinib,
rapamycin, and paclitaxel. Meanwhile, LRG patients might benefit
from BIBW2992 and gefitinib.

Our study had various constraints. The ROS-based signature we
developed and validated was generated via retrospective research
and requires confirmation through a prospective trial. However, it is
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(A) IHC representation chart and western blot (WB) showed AKR1B1 expression in normal bladder tissue and BLCA tissue. Scale bar: 100um. (B) WB
detection of AKR1BL1 relative expression in control, NC, and siAKR1B1 groups. (C) Colony formation experiment results with AKR1B1 expression.

(D) Results of silencing AKR1B1 expression at different time points of CCK-8:24, 48, 72, 96h. (E) Edu assay showing proliferating cells (T24 and 5637);
Edu (red) and DAPI (blue) staining. Scale bar: 50um. (F) Transwell assay results in control, NC, and siAKR1B1 groups. Scale bar: 100um. *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001, ns p > 0.05.

necessary to conduct more experimental validation to confirm the
probable molecular mechanisms behind the PS in BLCA.

5 Conclusions

Conclusively, we conducted a thorough investigation of the
possible functions and prognostic value of ROS-associated genes in
BLCA through integrated bioinformatics analyses. In addition, a ROS-
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dependent PS we constructed and validated with the ability to predict
the outcome and chemotherapy response of BLCA patients. Moreover,
we constructed a nomogram including a ROS-based PS with clinical
characteristics for 3- and 5-year OS, which could aid clinicians in
clinical decision-making. To verify the authenticity of the data, we
detected the signature protein expression levels through HPA. In vitro,
siRNA-mediated AKR1BI1 silencing impeded BLCA cell viability,
migration, and proliferation, consistent with our projections and
demonstrating the constructed ROS-related gene reliability.
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Background: Immunotherapy has emerged as a pivotal therapeutic modality for
a multitude of malignancies, notably hepatocellular carcinoma (HCC). This
research endeavors to construct a prognostic signature based on immune-
related genes between different HCC molecular subtypes, offer guidance for
immunotherapy application, and promote its clinical practical application
through immunohistochemistry.

Methods: Distinguishing HCC subtypes through Gene set variation analysis and
Consensus clustering analysis using the Kyoto Encyclopedia of Genes and
Genome (KEGG) pathway. In the TCGA-LIHC cohort, univariate, Lasso, and
multivariate Cox regression analyses were applied to construct a novel
immune relevant prognostic signature. The Subtype-specific and Immune-
Related Prognostic Signatures (SIR-PS) were validated in three prognostic
cohorts, one immunotherapy cohort, different HCC cell lines and tissue chips.
Further possible mechanism on immunotherapy was explored by miRNA-mRNA
interactions and signaling pathway.

Results: This prognostic model, which was based on four critical immune-
related genes, STC2, BIRC5, EPO and GLPIR, was demonstrated excellent
performance in both prognosis and immune response prediction of HCC.
Clinical pathological signature, tumor microenvironment and mutation analysis
also proved the effective prediction of this model. Spatial transcriptome analysis
shows that STC2 and BIRC5 are mainly enriched in liver cancer cells and their
MRNA and protein expression levels were greater in higher malignant HCC cell
lines than in the lower ones. Further validation on HCC tissue chips of this model
also showed good correlation with cancer prognosis. The risk score of each
patient demonstrated that the SIR-PS exhibited excellent 1 and 3-year survival
prediction performance.
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Conclusions: Our analysis demonstrates that the SIR-PS model serves as a robust
prognostic and predictive tool for both the survival outcomes and the response
to immunotherapy in hepatocellular carcinoma patients, which may shed light on
promoting the individualized immunotherapy against hepatocellular carcinoma.

hepatocellular carcinoma, immune-related genes, prognosis, immunotherapy,
immunohistochemistry, biomarker

1 Introduction

According to the 2020 Global Cancer Statistics, liver cancer is the
sixth most common human malignancy and the third leading cause of
cancer related deaths worldwide, in which liver hepatocellular
carcinoma (HCC) accounts for the vast majority (75%-85%) (1).
Characterized by nonspecific symptoms and pronounced
heterogeneity in the early phases, HCC is often diagnosed at
advanced stages, precluding the possibility of curative surgery for the
majority of patients (2). Even with the emergence of
immunotherapeutic and targeted therapies, the 5-year survival rate for
HCC patients remains below 20% (3). The prognosis of patients with
HCC is highly variable, which is attributable to its inherent
heterogeneity (4). Consequently, there is a pressing need for a novel
signature that leverages tumor heterogeneity to predict patient
prognosis and select immunotherapy candidates for precision medicine.

Cancer immunotherapy activates the immune system to induce the
death of cancer cells (5). The tumor microenvironment (TME), which
includes immune cells, stromal cells, the extracellular matrix, and
peripheral blood vessels, significantly influences tumor proliferation,
metabolic processes, and metastatic potential (6). What’s more, TME
plays a vital role in response to cancer immunotherapy in patients with
HCC. Amidst the rapid advancements in immunotherapy, its role in
HCC treatment is increasingly pivotal.

High-throughput transcriptome sequencing has been widely used
in recent years for both clinical and research purposes. However,
stringent requirements, intricate procedures and elevated costs
impeded its widespread adoption. Immunohistochemistry (IHC)
offers a practical and economical alternative for determining
protein expression via antibody-mediated staining. Currently, the
majority of studies rely on RNA-Seq data for prognostic assessments,
whereas models utilizing IHC are limited. If gene-guided predictions

Abbreviations: HCC, hepatocellular carcinoma; IHC, immunohistochemistry;
OS, overall survival; GSVA, Gene set variation analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; SDEGs, the differentially expressed genes
among the two subtypes; SIRDEGs, immune-related differentially expressed
genes among HCC subtypes; IRGs, immune-related genes; LASSO, least
absolute shrinkage and selection operator; SIR-PS, Subtype-specific and
Immune-Related Prognostic Signatures; t-ROC, time-dependent receiver
operating characteristic curves; qQPCR, quantitative Polymerase Chain Reaction;
97H, MHCC-97H.
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can ultimately be validated and applicated through IHC, that will
provide a more convenient and cost-effective option.

Therefore, in this study, we established a prognostic model
based on HCC subtypes and immune related genes. This model was
also proofed by the immunohistochemical score to facilitate clinical
prognosis and treatment. Figure 1 illustrates the methodological
steps undertaken in this study. The findings might provide insights
for future IHC-based studies and contribute to advanced
individualized immune therapies for HCC.

2 Materials and methods
2.1 Data resources

This investigation procured RNA -Seq, clinical, and SNP data from
HCC patients through the TCGA (https://portal.gdc.cancer.gov/) and
ICGC (https://dcc.icgc.org/) databases, with the exclusion of
subjects lacking complete overall survival (OS) data or having
survival durations of less than 30 days. The GSE54236 dataset
and GSE202069 dataset, sourced from the GEO (https://
www.ncbi.nlm.nih.gov/geo/) database, were incorporated into this
analysis. The complete TCGA-LIHC cohort served as the training
set, while the ICGC- LIRI-JP, GSE54236 and GSE202069 cohorts
were utilized as validation datasets.

2.2 Gene set variation analysis and
consensus clustering

The GSVA algorithm, implemented in the “GSVA” package (7),
was employed to derive the relative enrichment scores for the entirety
of Kyoto Encyclopedia of Genes and Genome (KEGG) pathways that
referenced from the MSigDB (c2.cp kegg.v2023.1.Hs.symbols) for the
comprehensive TCGA cohort (8, 9).

Unsupervised hierarchical clustering of all HCC patients from
the TCGA cohort was conducted using the “ConsensusClusterPlus”
package (10) to discern distinct HCC subtypes. This procedure
entailed 1000 iterations, sampling 80% of the dataset per iteration,
to ascertain the stability and reliability of the resulting clusters. The
optimal cluster number was determined through the application of
the proportion of ambiguous clustering algorithm (11, 12).
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Flow diagram of the analysis procedure: data collection, preprocessing, analysis and validation.

2.3 Differential and enrichment analysis of
the subtypes

Using the “DESeq2” software package for differential analysis,
screening differential expressed genes between the two subtypes
(SDEGs) based on adjusted P value<0.05 and absolute value of
logFC>1 as criteria (13, 14). Utilizing the “clusterProfiler” R package
(15), we performed enrichment analysis on above differential genes
using gene sets from diverse databases, including OMIM disease gene
set, OMIM expanded gene set, ClinVar 2019 gene set, and Rare
Diseases GeneRIF Gene Lists gene sets (16-18).

2.4 |dentification of immune-related
differentially expressed genes among HCC
subtypes (SIRDEGs)

Immune-related genes (IRGs) were identified from the
Immunology Database and Analysis Portal (ImmPort, https://
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immport.niaid.nih.gov/). Intersection of SDEGs and IRGs to
obtain SIRDEGs.

2.5 Construction and validation of a
prognostic signature based on the
SIRDEGs

The TCGA-LIHC Cohort was utilized as the training set for
model development. Validation was conducted using the ICGC-
LIRI Cohort, the GSE54236 and GSE202069 datasets. Univariate
and least absolute shrinkage and selection operator (LASSO) Cox
regression analyses were performed using the “survival” and
“glmnet” packages to identify the modeling genes. Subtype-
specific and Immune-Related Prognostic Signatures, designated
the SIR-PS, were identified through multivariate Cox regression.
The computational formula for SIR-PS is given by SIR-PS = >'"co
ef#mRNA;. The R packages “survivalROC” and “survminer” were
used to generate time-dependent receiver operating characteristic
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curves (t-ROC) and Kaplan-Meier survival curves, respectively.
The samples were stratified into high-risk and low-risk groups
based on the median risk score derived from the TCGA-LIHC
The associations between the SIR-PS and
clinicopathological parameters were assessed using the chi-square

cohort.

test and graphically depicted using the “ComplexHeatmap” package
(19). Significant clinical parameters were further represented
through a stacked bar plot.

2.6 Exploration of the tumor immune
microenvironment and immunotherapy
response

This study utilized the CIBERSORT algorithms for a
quantitative assessment of immune cell infiltration, thereby
elucidating immunological variations across different groups.
Additionally, we scrutinized the expression profiles of immune
checkpoint molecules, conducting a comparative analysis to
delineate the distinctions between the high-risk and low-risk
groups. Furthermore, we leveraged the HCC Immunotherapy
Cohort (RNA-Seq data from Li et al’s study) to substantiate the
predictive efficacy of the SIR-PS in forecasting responses to
immunotherapy (20).

2.7 Mutation analysis

The mutational data of patients in the TCGA-LIHC cohort were
obtained from the TCGA database. The “maftools” R package was
utilized to evaluate the mutational landscape and compare the
mutational spectra between high-risk and low-risk groups of
HCC patients (21).

2.8 Spatial transcriptome analysis

The spatial transcriptomics data were obtained from Liu et al.’s
study (22). According to the authors’ provided data, we calculated
the model score for each cell using SIR-PS. We then used the Seurat
package to visualize cell types and their corresponding scores.

2.9 Quantitative real-time reverse
transcriptase polymerase chain reaction in
cell lines

Hep3B, Huh7, MHCC-97H (97H), and SNU-449 cell lines
(ATCC Cell Bank, United States) were cultured to verify the
expression levels of these signature genes. Total RNA was isolated
from the aforementioned cell lines utilizing FreeZol Reagent
(Vazyme, China) followed by the synthesis of cDNA using a
reverse transcription kit (Vazyme, China). qPCR was conducted
with SYBR Green Mix (Q711, Vazyme) and a C1000 thermal cycler
from Bio-Rad (Hercules, CA). The sequences of the primers used
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for the signature genes are detailed in Table 1. The relative
expression levels were normalized to those of the housekeeping
gene GAPDH.

2.10 Western blotting

Cellular lysates were prepared using RIPA lysis buffer. Equal
amounts of proteins were subjected to SDS-PAGE and then
transferred to polyvinylidene fluoride membranes. The
membranes were blocked with a protein-free rapid blocking
solution (PS108P, Epizyme) for 20 minutes to prevent nonspecific
antibody binding. Primary antibodies (10314, 10508, 26196 from
Proteintech, A5663 from ABclonal) were diluted according to the
manufacturer’s instructions and incubated at 4°C for 12 hours to
allow for antibody-antigen binding. After washing with Tris-
Buffered Saline with Tween, secondary antibodies (SA00001 from
Proteintech) were applied and incubated for 1 h at room
temperature to facilitate signal detection. After washing, the
immunoreactive bands on the membranes were visualized using
an enhanced chemiluminescence chromogenic substrate.

2.11 Validation of SIR-PS in HCC tissue
chips

Two HCC tissue chips were obtained from the Department of
Liver Surgery at Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology. Patients with
incomplete clinical data or tissue loss excluded from the analysis.
The immunohistochemistry staining was performed as described
previously (23). The slides were incubated with primary antibodies
(anti-STC2 ab255610, Abcam, anti-GLPIR 26196, Proteintech, anti-
EPO ZRB1366, Sigma, and anti-BIRC5 ZA0530, ZSGB-BIO).
Semiquantitative scores were assigned according to the staining
intensity and the proportion of positively stained cells, with the
following categories and corresponding scores: no staining (0), light
yellow (1), medium yellow (2), dark yellow (3), and heavy yellow
(4); multiple with the corresponding positive percentage of stained
cells relative to the total number of cells > The composite score for
each specimen was calculated as the sum of the products of the
staining intensity and the percentage of positively stained cells.
Immunohistochemical staining was independently evaluated by two
pathologists in a double-blinded manner via microscopy. The HCC

TABLE 1 The sequences of the primers used in qPCR.

Gene Forward primer sequence Reverse primer sequence
name
GAPDH | TCCAAAATCAAGTGGGGCGA TGATGACCCTTTTGGCTCCC
STC2 TGAAATGTAAGGCCCACGCT ACTGTTCGTCTTCCCACTCG
BIRC5 TCAAGGACCACCGCATCTCT CCAAGTCTGGCTCGTTCTCA
EPO AGGCCGAGAATATCACGACG CAGACTTCTACGGCCTGCTG

GLPIR = AGTCCAAGCGAGGGGAAAGA | GAGGCGATAACCAGAGCAGAG
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tissue chip cohort was stratified into High-risk and Low-risk groups
utilizing “surv_cutpoint” from the “survminer” package. The
prognostic predictive efficacy of the SIR-PS was confirmed using
Kaplan—Meier analysis and t-ROC curves. In the HCC tissue chip
cohort, use the “compactGroups” package to generate a three line
table to statistically analyze the distribution of clinical pathologica 1
parameters between different groups for each indicator (24).

2.12 Exploring the potential mechanisms of
SIR-PS regulating immunotherapy efficacy

Analyze the relationship between modeling genes and PDL1
expression in the TCGA-LIHC cohort. Based on the above results,
miRNAs targeting PDL1 and modeling genes correlated with PDLI
expression that have been experimentally validated in the TarBase
database were screened using the MultiMiR package. Take the
intersection of the miRNA results of the modeling genes
mentioned above with the miRNAs targeting PDL1.

2.13 Statistical analysis

All the statistical tests and bioinformatics analyses were
performed with R software, version 4.0.1. The Wilcoxon rank
sum test, Pearson chi-square test, t test and log-sum test were
included. P <0.05 was considered to indicate statistical significance.

3 Results

3.1 Identification and enrichment analysis
of subtypes based on KEGG pathway in
HCC

Utilizing the enrichment scores of KEGG gene sets based on the
GSVA algorithm, we conducted unsupervised hierarchical
clustering to classify the samples into two distinct subtypes,
which were validated by the examination of the cluster heatmap,
the consensus CDF plot, the average silhouette width, and the
Proportion of Ambiguous Clustering algorithm (Figures 2A-C).
Consequently, the patients of TCGA-LIHC cohort was stratified
into two distinct molecular subtypes (Supplementary Table 1).
Subsequently, a comparative analysis of the clinical factors across
different subtypes was conducted, employing heatmap for
visualization (Figure 2D). Additionally, stacked bar charts were
utilized to highlight factors exhibiting significant inter-subtype
disparities (Figure 2E). Compared to Sub2, Subl is characterized
by elevated levels of AFP, a higher GRADE, advanced path stage
and T stage, a greater proportion of female patients, and a lower
median age. As indicated by the Kaplan-Meier analysis, patients
classified into Sub2 exhibited a more favorable prognosis than those
classified into Subl (Figure 2F). In light of the observed disparities
in survival outcomes, we employed the “DESeq2” package to
perform a differential analysis between the two identified
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subtypes. Employing LogFC>1 as the criterion, Subl and Sub2
were found to harbor 2284 and 751 differentially expressed genes,
respectively. The enrichment analysis conducted on Subl disclosed
that in the gene sets of the four databases, OMIM disease, OMIM
Expanded, ClinVar2019, and Rare Disease GeneRIF GeneLists, the
genes enriched by Subl are unanimously associated with
immunodeficiency diseases (Figure 2G). Additionally, an analysis
of immune checkpoint expression levels among the subtypes was
performed. This analysis indicated that the expression levels of
immune checkpoint genes in Subl were, on the whole, markedly
elevated compared to those in Sub2 (Figure 2H).

3.2 Development and validation of the
SIR-PS

In the TCGA-LIHC cohort we obtained 3035 SDEGs
(Supplementary Figure 1). Then, SDEGs were intersected with
1,509 immune-related genes obtained from the ImmPort
database, yielding a total of 239 immune-related SDEGs
(SIRDEGs) (Figure 3A). Univariate Cox regression analysis
revealed 67 SIRDEGs with significant prognostic potential
(Supplementary Table 2). Then, LASSO regression analysis was
performed, and five SIRDEGs were further identified for modeling
(Figures 3B, C). Four genes, STC2, BIRC5, EPO, and GLPIR, were
identified for their substantial influence on the prognostic model.
The group with high expression levels of these genes exhibited a
markedly poorer prognosis than the group with low expression
(Supplementary Figures 2A-D). These genes were subsequently
utilized to construct a prognostic model (called SIR-PS) through
multivariate Cox regression analysis, resulting in the following risk
score formula: risk score = (STC2 x 0.22344) + (BIRC5 x 0.19238) +
(EPO x 0.11058) + (GLPIR x 0.24472). The four-gene model
demonstrated a prediction performance closely comparable to
that of the five-gene model (Supplementary Figures 2E, F).
Subsequently, 343 TCGA-LIHC patients were stratified into low-
risk and high-risk groups based on the median risk score. In
addition, we plotted ensemble plots of survival status and four
signature gene expression profiles as the risk score increased
(Figures 3D, E). There was a progressive increase in both
mortality rates and the expression levels of the four signature
genes concomitant with increasing risk scores. Kaplan-Meier
analysis revealed that patients in the high-risk group experienced
a more adverse clinical prognosis than did those in the low-risk
group (Figure 3F). The AUC value at 1 and 3 years were 0.771 and
0.727 respectively, which is indicative of the model’s robust
predictive capability (Figure 3I). Leveraging the SIR-PS, we
computed individual risk scores for all HCC patients within the
ICGC cohort. These scores were then stratified to distinguish
between high-risk and low-risk groups based on the median value
of the risk scores. Consistent with the findings in the TCGA-LIHC
cohort, the Kaplan-Meier analysis demonstrated that the OS of
patients in the high-risk group was significantly inferior to that of
patients in the low-risk group in ICGC-LIRI-JP cohort (Figure 3G).
The AUCs for the ICGC-LIRI-JP cohort at 1 and 3 years were 0.791
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Identification and differential analysis of HCC Subtypes based on KEGG pathways. (A) Heatmap of sample clustering at consensus k=2. (B)
Consensus clustering CDF for k= 2 to 9. (C) The Average Silhouette width Plot. (D) Heatmap of and (E) Stacked bar chart of multiple

clinicopathological features between Subtypes. (F) Kaplan-Meier survival plots between Subtypes for Overall Survival (0S). (G) Enrichment analysis of

diseases associated with Subl enrichment genes. (H) Immune Checkpoint genes’ expression between Subtypes. *p<0.05, **p<0.01,

**5p<0.001, ****p<0.0001.

and 0.751, respectively (Figure 3]). In the GSE54236 cohort and the
GSE202069 cohort, the Kaplan-Meier analysis revealed that
patients in the high-risk group experienced significantly shorter
OS than those in the low-risk group (p<0.0001 and p=0.08,

Frontiers in Immunology

172

respectively) (Figure 3H, Supplementary Figure 3A). The AUCs
for the GSE54236 cohort and the GSE202069 cohort at the 1-year
were 0.838 and 0.818, respectively, while at the 3-year they were
0.67 and 0.866, respectively (Figure 3K, Supplementary Figure 3B).
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In addition, we compared the three-year survival prediction
performance of SIR-PS with nine other prognostic models in four
datasets (25-33). The results showed that the AUC value of SIR-PS
had the best predicted performance in these datasets

Frontiers in Immunology

Sun et al.
(A) (B) (€)
Subtypes DEGs 0 24 41 51 57 6666646057 52433827 21125 4
© ' HE
=] o ot
- 59
3 >
2° &«
8 3R
ce ]
E £
[ =] 3
3° xe
s g
Eud
S
6
Immune genes L1 Norm
(D) (E)
) . 06 .
§10.0 Riskgroup § Riskgroup
23 ¢ | High a4 -High
% 25 — - Lo
o 0.0 - - ° 0
£ %100 e = Event £ 560 Event
ol o . =1
TE IS ¥ D T £40 .
> 5 50 . . LR - eath gt Death
22 25 v.w.}r..f-, R N -;,,;&, ,,,\,;; ‘Aive 23 20 + Alive
n 0 @ 0
] 100 300 0
RiSKGroUp ms————— I1 RISKGroUp mm———
STC2 ’ { “ v 05 STC2 | t | I0 5
BIRCS 1l [l BIRCS [l
GLP1R L s OLP
PO 0 A ) EPO (0 IIIIIIIIIIIIIIII '0 5
(F) . (G)
Overall survival Overall survival Overall survival
1.00: 1.00
0.75 0.75
0.50 0.50] =====mmmmmebpeeeeet
025 Log-rank Log-rank 025 Log-rank
0.00{P <0-0001; _ 0.00/P <0.0001 : 0.00] P 00001 i
0 24 48 72 9 120 0 24 48 72 0 24 48
Number at risk Numberat risk Number at risk
High171 64 24 10 3 1 Hight117 58 6 1 High140 12 0
Low{i72 80 41 17 3 0 Low{117 78 13 0 Low{41 30 3
0 24_ 48 72 96 120 0 24 48 72 0 .24 48
Time in Months Time in Months Time in Months
(U] () (K)
] ] B
@] @] @
o o o
20 2©, 20©,
=9 29 =0
< < <
% o] o] % o]
N N N
o ’ o P o
,2 —1-years (AUC=0.771) s —1-years (AUC=0.791) —1-years (AUC=0.838)
g. —3-years (AUC= 0.727 ) g. —3-years (AUC=0.751) g- —3-years (AUC=0.670)
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1-Specificity 1-Specificity 1-Specificity
FIGURE 3
Construction and Validation of SIR-PS. (A) Venn plot showed 239 immune-related DEGs among subtypes. (B) LASSO coefficient profiles of 67 prognostic
genes of HCC. (C) 10-fold cross validated lasso regression identified five prognostic genes with minimal A. (D, E) Riskscore distribution, survival status, and
expression of four SIR-PS signature genes of patients in the Low-risk and High-risk group of TCGA Cohort and ICGC Cohort, respectively. (F-H) Kaplan-
Meier survival plots of High-risk and Low-risk group for Overall Survival in the TCGA Cohort, the ICGC Cohort and the GSE54236 Cohort. (I-K) Time-
dependent ROC curves of SIR-PS for Overall Survival in the TCGA Cohort, the ICGC Cohort and the GSE54236 Cohort.

173

(Supplementary Figure 3C). Taking the average AUC value at 1
and 3 year of four datasets, the AUC value of SIR-PS ranked the
second and first respectively, which also proofed its comprehensive

prediction value.
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3.3 Exploration of the clinical significance
and tumor microenvironment of the
SIR-PS

To investigate the association between the SIR-PS and a range
of clinicopathological characteristics, the correlation analysis was
conducted and revealed significant associations between the risk
groups and various HCC features (Figure 4A). The high-risk group
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exhibited increased levels of AFP, a greater percentage of patients
within Subl and female patients, more advanced GRADE, and
higher pathological stage and T stage than did the low-risk group
(Figure 4A). Subsequently, leveraging the CIBERSORT algorithm,
we quantified the infiltration levels of various immune cells across
samples and delineated the comparative immune landscape
between the high-risk and low-risk groups within the TCGA
cohort. The analysis delineated that the high-risk group was
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distinguished by an enhanced infiltration of B cells memory, T cells
regulatory, Dendritic cells resting, Neutrophils, T cells CD4
memory activated and T cells CD8 and a diminished presence of
NK cells activated, Mast cells activated and resting, Macrophages
M1, Dendritic cells activated (Figure 4B). Further analysis of
immune checkpoint gene expression between risk groups within
the TCGA database revealed that the high-risk group displayed
elevated expression levels for the majority of these genes, in contrast
to the low-risk group (Figure 4B). Concurrently, we assessed the
predictive efficacy of SIR-PS concerning the response to
immunotherapy within the HCC Immunotherapy Cohort, with
results indicating a higher response rate among patients in the
high-risk group as per the median risk score (Figure 4C). The t-
ROC curve analysis revealed that the AUC value for predicting
treatment responsiveness based on the risk score was
0.787 (Figure 4D).

3.4 Mutation landscape analysis of SIR-PS

Initially, we scrutinized the 10 genes exhibiting the highest
mutation frequencies within the low-risk and high-risk group.
Oncoplots revealed that within the TCGA database, the genes
exhibiting the highest mutation frequencies in the high-risk and
low-risk groups were TP53, with a 40% mutation frequency, and
CTNNBI1, with a 33% mutation frequency, respectively
(Figures 5A, B).

3.5 Spatial transcriptome analysis of SIR-PS

To determine the cell types in which our model is active, we
analyzed spatial transcriptomics data from HCC patients. Our
analysis revealed that the riskscores highest in HCC cells,
indicating that the SIR-PS’s riskscore in patients is predominantly
determined by its riskscore in these cancer cells (Figure 5C).
Concurrently, STC2 and BIRC5 exhibit predominant expression
within HCC cells.

3.6 qPCR and Western blotting in HCC cell
lines

In light of the spatial transcriptome analysis findings, we chose
HCC cell lines, including SNU-449, 97H, Hep3B and Huh7, to
conduct cellular-level validation studies. The SNU-449 and 97H cell
lines exhibited a greater degree of malignancy or transfer ability
than the Hep3B and Huh7 cell lines, which commonly means a
worse prognosis (34, 35). No matter in the qPCR or the western
blotting detection, the expression levels of STC2 and BIRC5 were
higher in the SNU-449 and 97H cell lines than in the Huh7 and
Hep3B cell lines (Figures 5D, E), which were in accordance with
their malignancies. However EPO and GLPIR showed not obvious
trends in the mRNA and protein levels.
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3.7 Validation of the SIR-PS based on iHC
staining of the HCC tissue chips

Owing to the remarkable prognostic potential of the four
signature genes, we conducted THC staining on tissue chips
sourced from HCC patients and subsequently scored the
expression of these genes. Post-IHC staining revealed that STC2,
BIRCS5, EPO, and GLPIR exhibited increased expression in HCC
tissues relative to normal controls (Figures 6A-D). Utilizing the
“surv_cutpoint” function from the “survminer” package, the THC
scores for each gene were stratified into high-THC and low-IHC
groups. Kaplan-Meier analysis demonstrated that Patients in the
high-THC group for STC2, BIRC5, EPO and GLPIR exhibited a
markedly poorer prognosis than did those in the low-IHC group
(Figures 6E-H). Subsequently, we calculated the riskscore of each
patient of HCC tissue chips using SIR-PS based on the IHC score of
four genes. The riskscores of patients were subsequently categorized
into high-risk and low-risk group using “surv_cutpoint” function of
“survminer” package. Based on the calculated risk scores, patient
stratification into high-risk and low-risk groups was determined
using a cutoff value of 0.6115285. Kaplan-Meier analysis indicated
that across the entire HCC tissue chip cohort, the high-risk group
had a significantly worse prognosis than did the low-risk group
(Figure 7A). ROC curve analysis revealed that the AUC value for the
entire HCC tissue chip cohort at the 1 and 3-year was 0.711 and
0.795, respectively (Figure 7B). Furthermore, given that GPC3 and
CK19 are commonly used prognostic markers in clinical liver
cancer diagnostics, we also conducted IHC staining for these
markers on HCC tissue chips and scored them accordingly.
Subsequent to their score, these two prognostic indicators were
evaluated independently to predict patient outcomes. Kaplan-Meier
analysis revealed no significant survival disparity between the high-
IHC and low-IHC groups for CKI19 and GPC3 across the entire
HCC tissue chips cohort (Figures 7C, E). Correspondingly, the 1-
year AUC values of their respective t-ROC curves were 0.664 and
0.504, while the 3-year AUC values were 0.571 and 0.585,
respectively (Figures 7D, F).

3.8 Exploration of clinical information
between high-risk and low-risk group of
patients with HCC tissue chips data

A comparative analysis of the clinical characteristics between
different groups was conducted. Summary descriptives table of
general clinical factors of all patients and riskgroup is shown in
Table 2, while the different indicators groups are shown in
Supplementary Table 3. Based on the clinical data and varying
classifications of staining and risk groups, we conducted both
univariate and multivariate Cox regression analysis (Table 3). The
results of univariate Cox regression analysis showed that there were
significant differences in survival between AST, childpugh, tumor
size, vascular invasion, BIRC5, EPO and risk groups. STC2 and
GLPI1R cannot be subjected to Cox regression analysis due to the
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FIGURE 5
Mutational and spatial transcriptome analysis of SIR-PS risk groups and ¢
and low-risk group, respectively. (C) Spatial expression pattern of SIR-PS

ell experiment of different cell lines. (A, B) Oncoplot analysis of the high-risk
(including BIRC5, STC2, EPO and GLP1R). (D) gPCR and (E) Western Blotting

result of Hep3B, Huh7, 97H and SNU-449 (compare with Hep3B cell lines). *p<0.05, ***p<0.001, ****p<0.0001.

fact that the number of deceased patients in one of the high and low
THC groups is less than 3. Given that risk group are determined by
the expression levels of STC2, BIRC5, GLPIR, and EPO, we
prioritized risk group, and other factors exhibiting significant
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intergroup survival differences for inclusion in the multivariate Cox
regression analysis. In the multivariate Cox regression analysis, the
risk group remained the sole significant predictor, with a
p-value<0.05.
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(G), GLP1R (H) in HCC tissue chip Cohort, respectively. ****p<0.0001.

3.9 Exploration of the mechanism by which
prognostic models affect immunotherapy

Due to the good predictive effect of risk scores in the liver cancer
immunotherapy queue treated with anti-PD1/PDL1, SIR-PS may
affect the efficacy of immunotherapy by affecting PDL1 expression.
In the TCGA-LIHC cohort, the expression levels and risk scores of
STC2 and BIRC5 were positively correlated with the expression
level of PDL1 (Figures 8A, B, E, F), indicated that both STC2 and
BIRCS5 can promote the expression of PDL1 on cancer cells, thereby
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promoting tumor immune escape. However, there is no obvious
correlation between EPO or GLPIR and PDL1 (Figures 8C, D).
Further exploration on the potential mechanism of STC2 and
BIRCS5 regulating PDL1 was conducted. Since the potential
mutual influence of gene expression through miRNAs, the
multiMIiR package was used to screen miRNAs in the TarBase
database that have been experimentally validated to bind to STC2,
BIRCS, and PDLI. There are a total of 87 miRNAs targeting PDLI,
with 61 shared miRNAs between PDL1 and STC2, and 48 shared
miRNAs between PDL1 and BIRC5 (Figures 8G, H, Table 4).
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tissue chip Cohort.

Discussion

Currently, nonsurgical therapeutic interventions are
instrumental in the management of HCC, as the majority of
patients present with advanced disease stages that preclude
surgical intervention (2). As immunotherapy continues to evolve,
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the role of immunotherapies in the management of HCC has
become increasingly pivotal, exerting a profound influence on
patient prognosis. In this study, we constructed a prognostic and
immunotherapy efficacy prediction model SIR-PS based on two
distinct HCC molecular subtypes. This model consists of four genes:
STC2, BIRCS, EPO, and GLPIR. Using a group of genes to build the
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TABLE 2 Summary descriptives table of all patients and riskgroup in the
tissue chips cohort.

IHC Riskgroup

10.3389/fimmu.2025.1481366

TABLE 2 Continued

IHC Riskgroup

Low High  p.overall
Low High p.overall
Tumor size: 1
80
N: ) 33 (41.2%) 47 (58.8%)
(100%) <=5cm (383;% 13 (39.4%) 18 (38.3%)
Gender: 0.233
49
6 sem gy | 20 (606%) 29 (61.7%)
Female |0 0o0) 4 (12.1%) 12 (25.5%)
Vascular 1
Male 29 (87.9%) | 35 (74.5%) [0S
(80.0%) o o
66
Age: 0.79 No (82.5%) 27 (81.8%) 39 (83.0%)
=50 N 15 (45.5%) 24 (51.1%) Y b 6 (1829 09
<= (48.8%) 5% 1% es (17.5%) (18.2%) 8 (17.0%)
41 o o Differentiation: 0.389
>50 | 510 18 (54.5%) 23 (48.9%)
ALT: 1 Moderate or High (675:‘V) 20 (60.6%) 34 (72.3%)
61 o N Low or 26 N o
Sy | B 758%) 36 (76.6%) Moderately low | (32.5%) 13 (39.4%) 13 (27.7%)
19 o o BCLC.stage: 0.981
4 380 8 (24.2%) 11 (23.4%)
52
AST- 0.234 A o | 22(667%) 30 (63.8%)
56 28
<40 oowy | 26 788%) 30 (63.8%) BorC oo om) 11 (33.3%) 17 (36.2%)
24 o o TNM:.stage: 0.475
40 | 30.0%) 7 (21.2%) 17 (36.2%)
61
AFP: 1 Lor2  ocimy | 27 (BL8%) 34 (72.3%)
=20 20 8 (24.2%) 12 (26.1%) Y 9 9
<= (25.3%) 2% 1% 3ord ) 6 (18.2%) 13 (27.7%)
>20 > 25 (75.8%) 34 (73.9%)
(74.7%) o o
Child-Pugh: 0.139 prognostic model was successfully used in some solid tumors, such
as breast cancer (36, 37). But to our knowledge, this is the first-time
76
(95.0%) 33 (100%) 43 (91.5%) using SIR-PS to predict the prognosis and give suggestion of
immune therapy in HCC.
5 0‘;0/) 0 (0.00%) 4(8.51%) Further validation on HCC cell lines revealed distinct RNA or
protein expression levels of STC2 and BIRC5 in different malignant
Cirrhosis: 0.707 HCC cell lines, which were correspondence with these cells’
26 malignances. STC2 has been revealed a marked increased
No 5 12 (36.4%) 14 (29.8%) o ) )
(32.5%) expression in HCC tissues compared to normal tissues (38).
54 Additionally, STC2 has also been implicated in promoting tumor
Yes 21 (63.6%) 33 (70.2%) L . o .
(67.5%) cell invasion and metastasis while concurrently inhibiting apoptosis
TR in numerous tumor types (39). This heightened expression was
number: 0.933 positively correlated with an adverse patient prognosis, et al. which
5 was consistent with our results. There was also been reported a
73g%) 280 34(723%) significant overexpression of BIRC5 in HCC tissues, contrast to its
" near undetectability in tissues affected by cirrhosis (40). The
> 262%) 8 (24.2%) 13 (27.7%) expression of BIRC5 appears to be correlated with the metastatic
: potential of HCC, which is aligns with the findings of this study.
Tumor size: ! However, same trends didn’t been observed on EPO and GLPIR in
(Continued)  different HCC cells. In this study, we found that EPO and GLPIR could
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TABLE 3 Cox Univariate and Multivariable regression analysis between cumulative overall survival rate and clinicopathological variables of all patients

in the HCC tissue chip.

Univariate analysis

Multivariable analysis

Variables HR (95% CI) P-value HR (95% CI) P-value
Gender (Male/Female) 1.69 (0.385-7.41) 0.487

Age (>50/<=50) 1.42 (0.55-3.68) 0.467

ALT (>41/<=41) 1.33 (0.473-3.76) 0.586

AST (>40/<=40) 44 (1.7-11.4) 0.00229 232 (0.777-6.9) 0.132
ALP (>130/<=130) 1.8 (0.589-5.48) 0.303

AFP (>20/<=20) 0.656 (0.245-1.75) 0.401

ChildPugh (B/A) 8.95 (2.36-34) 0.00129 2.81 (0.679-11.6) 0.154
Cirrhosis (Yes/No) 1.08 (0.403-2.87) 0.884

Tumornumber (>1/1) 1.6 (0.596-4.3) 0.351

Tumorsize (>5cm/<=5cm) 3.75 (1.08-13) 0.0371 2.5 (0.663-9.4) 0.176
Vascularinvasion (Yes/No) 3.66 (1.25-10.7) 0.0181 1.95 (0.584-6.52) 0.278
Differentiation (Low or Moderately low/Moderate or High) = 1.64 (0.63-4.25) 0.312

BCLCstage (B or C/A) 2.54 (0.994-6.49) 0.0514

TNMstage (3 or 4/1 or 2) 2.39 (0.917-6.24) 0.0747

STC2group (High/Low) 7.45e+08 (0-Inf) 0.997

BIRC5group (High/Low) 7.99 (1.74-36.8) 0.00763

GLP1Rgroup (High/Low) 2.71e+08 (0-Inf) 0.998

EPOgroup (High/Low) 4.41 (1.48-13.1) 0.0076

RiskGroup (High/Low) 22.8 (2.85-182) 0.0032 23.8 (2.74-207) 0.00405

promote HCC development and coincident with worse prognosis by
bioinformation data and the validated results on HCC cohorts.
However, the validation in different HCC cell lines didn’t show
obvious relationship with their corresponding malignances. The
protein levels of EPO and GLPIR were even no statistical differences.
Further exploration on the expression of these genes in HCC cell
cohorts was taken out by spatial transcriptome analysis. Differ from
STC2 and BIRC5 which were mainly expressed in liver cancer cells,
EPO and GLPIR did not exhibit specific expression in a certain cell
type, which could potentially be attributed to the fact that EPO and
GLPIR may not predominantly expressed in HCC cell lines.
Analysis of the mutational landscape of genes between low-risk
and high-risk groups of HCC revealed significant differences in
TP53 and CTNNBI. TP53 mutations are correlated with an
unfavorable prognosis in HCC patients, and are predictive of
potential responsiveness to immunotherapy (41). In various cell
lines, TP53 mutations or knockdown lead to increased PDLI
expression (42, 43). Conversely, CTNNBI mutations, while
indicative of a favorable prognosis, are linked to reduced efficacy
of immunotherapy in HCC patients (44, 45). And patients with
CTNNBI1 mutations exhibit lower PDL1 expression (46, 47).
Therefore, TP53 and CTNNBI may influence the efficacy of
immunotherapy by affecting PDLI expression. These findings
supported SIR-PS as the predictive model for HCC prognosis and
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immunotherapy efficacy. Meanwhile, validation on external HCC
cohorts and gathering the corresponding clinical characteristics
proofed SIR-PS as an apt prognostic model for HCC patients,
demonstrating robust predictive accuracy in forecasting clinical
outcomes. Patients categorized in the high-risk group by SIR-PS
exhibited significantly adverse prognosis.

Moreover, microenvironment analysis showed this model could
serves as an excellent and dependable tool for the prediction of
treatment responses to immunotherapy. CD8+ T cells were the
primary immune cells that exert anti-tumor effects (48). The
expression of PDL1 on tumor cells often led to the exhaustion or
reduced function of CD8+ T cells (49, 50). The mechanism of anti-
PD-1 therapy is to restore the function of exhausted CD8 T cells and
promote their proliferation (51, 52). In this study, a higher
infiltration level of CD8+ T cell was observed within the high risk
group. High CD8 T cells pave the way for anti-PD-1 therapy to
restore those exhausted T cell function and finally killed the tumor
cells. Meanwhile, we also detected the immune checkpoint gene
expressions between risk groups which revealed that in contrast to
the low-risk group, the high-risk group displayed elevated
expression levels for most of these genes. This should be a direct
clue for anti-PD-1/PDLI efficiency.

In order to explain the potential mechanisms of prognostic
models on the efficacy of immunotherapy, especially on the
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Exploration of the mechanism by which prognostic models affect immunotherapy. (A—D) Correlation diagram between PDL1 and STC2, BIRC5, EPO,
GLP1R, respectively. (E) Boxplot between PDL1 and riskgroup. (F) Correlation diagram between PDL1 and riskscore. (G, H) Venn diagram of miRNAs
targeting PDL1 with targeting STC2 and BIRCS5, respectively.

expression of PDLI1, we further explored STC2 and BIRC5 form
endogenous competitive RNAs with PDL1 through multiple
miRNAs, which affect the expression of PDL1. STC2 and PDLI
mRNAs can compete with each other for binding to miR-17-5p,
miR-33a, miR-34a, miR-138-5p, miR-140, miR-152, miR-155, miR-
197, miR-200, and miR-424 (53-68). Additionally, BIRC5 and
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PDL1 mRNAs also compete with each other for binding to miR-
17-5p, miR-34a, miR-140, miR-142-5p, miR-152, miR-200, and
miR-424 (53, 54, 56, 58, 59, 63-66, 69, 70). Consequently, an
increase in the expression level of one mRNA enhances its
competitive binding with miRNAs, which in turn can lead to an
increase in the expression level of another mRNA to a certain

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1481366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

TABLE 4 The miRNAs targeting STC2, BIRCS, and PDL1.

STC2
hsa-miR-106a-5p

hsa-miR-335-5p

BIRC5
hsa-miR-15a-5p

hsa-miR-424-5p

PDL1
hsa-let-7a-5p

hsa-let-7f-5p

hsa-miR-15b-5p

hsa-miR-218-5p

hsa-miR-15a-5p

hsa-miR-20b-5p
hsa-miR-424-5p
hsa-miR-15a-5p
hsa-miR-708-5p

hsa-miR-125b-5p

hsa-miR-550a-3p
hsa-miR-219a-5p
hsa-miR-21-5p
hsa-miR-33b-5p

hsa-miR-320d

hsa-miR-424-5p
hsa-miR-182-5p
hsa-miR-15b-5p
hsa-miR-374a-5p

hsa-miR-16-5p

hsa-miR-103a-3p

hsa-miR-223-3p

hsa-miR-195-5p

hsa-miR-130a-3p
hsa-miR-16-5p
hsa-miR-374b-5p

hsa-miR-106b-5p

hsa-miR-219a-1-3p
hsa-miR-16-5p
hsa-miR-195-5p

hsa-miR-34a-5p

hsa-miR-17-5p
hsa-miR-155-5p
hsa-miR-302¢-3p

hsa-miR-106a-5p

hsa-miR-576-5p

hsa-miR-20a-5p

hsa-miR-20b-5p

hsa-let-7g-5p

hsa-miR-15b-3p

hsa-miR-106b-5p

hsa-miR-17-5p
hsa-miR-124-3p
hsa-miR-302a-3p
hsa-miR-302d-3p

hsa-miR-30e-5p

hsa-miR-452-5p
hsa-miR-181b-5p
hsa-miR-129-2-3p
hsa-miR-1225-5p

hsa-miR-671-5p

hsa-let-7b-5p
hsa-miR-20a-5p
hsa-miR-107
hsa-miR-1246

hsa-miR-1292-5p

hsa-miR-876-3p

hsa-miR-30c-2-3p

hsa-miR-24-3p

hsa-miR-887-3p

hsa-miR-106a-5p

hsa-miR-34a-5p

hsa-miR-545-5p
hsa-miR-30a-5p
hsa-miR-34a-5p

hsa-miR-301b-3p

hsa-miR-30a-5p
hsa-miR-17-5p
hsa-miR-182-5p

hsa-miR-106b-5p

hsa-miR-142-5p
hsa-miR-9-3p
hsa-miR-130a-3p

hsa-miR-150-3p

hsa-miR-454-3p

hsa-miR-194-5p

hsa-miR-3928-3p

TABLE 4 Continued

STC2
hsa-miR-27b-3p
hsa-miR-449b-5p
hsa-let-7a-5p

hsa-let-7¢-5p

BIRCS
hsa-miR-301b-3p
hsa-miR-454-3p
hsa-miR-10a-5p

hsa-miR-10b-5p

10.3389/fimmu.2025.1481366

PDL1
hsa-miR-2278
hsa-miR-183-5p
hsa-miR-25-3p

hsa-miR-138-5p

hsa-let-7d-5p

hsa-miR-497-5p

hsa-miR-185-5p

hsa-let-7e-5p

hsa-miR-181a-5p

hsa-miR-301a-3p

hsa-let-7f-5p
hsa-let-7g-5p
hsa-let-7i-5p

hsa-miR-196a-5p

hsa-miR-142-5p
hsa-let-7b-5p
hsa-miR-140-3p

hsa-miR-148b-3p

hsa-miR-374b-5p
hsa-miR-30e-3p
hsa-miR-23c¢

hsa-miR-877-5p

hsa-miR-425-5p

hsa-miR-205-5p

hsa-miR-320b

hsa-miR-7-5p
hsa-miR-3140-3p
hsa-miR-625-5p
hsa-miR-18a-5p

hsa-miR-18b-5p

hsa-miR-1180-3p
hsa-miR-181d-5p
hsa-miR-200a-3p
hsa-miR-30d-3p

hsa-miR-30e-3p

hsa-miR-23b-3p
hsa-miR-32-5p
hsa-miR-7-5p
hsa-miR-3934-5p

hsa-miR-92a-3p

hsa-miR-671-5p

hsa-miR-320b

hsa-miR-18b-5p

hsa-miR-4306
hsa-miR-3177-3p
hsa-miR-1827
hsa-miR-135b-3p
hsa-miR-378a-3p

hsa-miR-28-5p

hsa-miR-542-3p
hsa-miR-93-5p
hsa-let-7d-5p
hsa-miR-15b-3p
hsa-miR-139-5p

hsa-miR-141-3p

hsa-miR-590-5p
hsa-miR-92b-3p
hsa-miR-320d

hsa-miR-19a-3p
hsa-miR-19b-3p

hsa-miR-5000-3p

hsa-miR-19b-3p
hsa-miR-182-5p
hsa-miR-423-5p

hsa-miR-147b-3p

hsa-miR-27a-3p
hsa-miR-877-5p
hsa-miR-25-5p

hsa-let-7¢-5p

hsa-miR-29¢-3p
hsa-miR-30a-5p
hsa-miR-30d-5p

hsa-miR-26a-5p

hsa-miR-155-5p

hsa-miR-576-3p

hsa-miR-93-5p

hsa-miR-193b-5p

hsa-miR-671-3p

hsa-miR-26b-5p

hsa-miR-130b-3p
hsa-miR-181b-5p
hsa-miR-132-3p

hsa-miR-181a-5p

hsa-miR-203a-3p
hsa-miR-7-5p
hsa-miR-30a-3p

hsa-miR-20a-5p

hsa-miR-103a-3p
hsa-miR-301b-3p
hsa-miR-33a-5p

hsa-miR-30c-1-3p

hsa-miR-4491

hsa-miR-130b-3p

hsa-miR-23a-3p

hsa-miR-181d-5p

hsa-miR-124-3p

hsa-miR-320a-3p

hsa-miR-191-5p

hsa-miR-4677-3p

hsa-miR-29b-3p

hsa-miR-92a-3p
hsa-miR-15b-3p
hsa-miR-218-5p
hsa-miR-98-5p

hsa-miR-19a-3p

hsa-miR-1307-5p
hsa-miR-196a-5p
hsa-miR-423-5p
hsa-miR-22-3p

hsa-miR-26b-5p

hsa-miR-194-5p
hsa-miR-29¢-5p
hsa-miR-584-5p
hsa-miR-4677-3p

hsa-let-7d-5p

hsa-miR-101-3p
hsa-miR-139-5p
hsa-miR-24-3p

hsa-miR-27a-3p

hsa-miR-135a-5p
hsa-miR-130a-3p
hsa-miR-148a-3p

hsa-miR-301a-3p

hsa-miR-20b-5p
hsa-miR-320c
hsa-miR-18a-5p

hsa-miR-363-3p

hsa-miR-449c-5p

hsa-miR-375-3p

hsa-let-7¢c-5p

hsa-miR-30a-3p

hsa-miR-149-5p

hsa-miR-148b-3p

hsa-miR-576-3p

hsa-miR-10a-5p

hsa-miR-96-5p

hsa-miR-151b

hsa-let-7e-5p

hsa-let-7i-5p
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TABLE 4 Continued

STC2
hsa-miR-152-3p
hsa-miR-183-5p
hsa-miR-135b-5p

hsa-miR-96-5p

BIRC5
hsa-miR-101-3p
hsa-let-7i-5p
hsa-miR-484

hsa-miR-152-3p

PDL1
hsa-miR-221-3p
hsa-miR-302a-3p
hsa-miR-196a-5p

hsa-miR-148a-3p

TABLE 4 Continued

STC2

hsa-miR-30d-5p
hsa-miR-324-5p
hsa-miR-489-3p

hsa-miR-203a-3p

BIRC5
hsa-miR-1343-3p
hsa-miR-218-1-3p
hsa-miR-26a-5p

hsa-miR-147a

10.3389/fimmu.2025.1481366

PDL1

hsa-miR-877-5p

hsa-miR-182-3p

hsa-miR-222-3p

hsa-miR-26b-5p

hsa-miR-345-5p

hsa-miR-628-5p

hsa-miR-450a-5p

hsa-miR-335-3p

hsa-miR-33a-5p

hsa-miR-1296-5p

hsa-let-7b-5p
hsa-miR-107
hsa-miR-195-5p

hsa-miR-503-5p

hsa-miR-99b-5p
hsa-miR-1234-3p
hsa-miR-3184-3p

hsa-miR-328-3p

hsa-miR-191-5p
hsa-miR-1271-5p
hsa-miR-340-5p

hsa-miR-34b-5p

hsa-miR-33b-5p
hsa-miR-1266-5p
hsa-miR-181c-5p

hsa-miR-23a-3p

hsa-miR-335-5p

hsa-miR-128-3p

hsa-miR-411-3p hsa-miR-320a-3p hsa-miR-1-3p hsa-miR-25-3p
hsa-miR-193a-3p hsa-miR-203b-5p hsa-miR-326
hsa-miR-193b-3p hsa-miR-27b-3p hsa-miR-92b-3p
hsa-miR-205-5p hsa-miR-19a-3p hsa-miR-30d-3p
hsa-miR-21-5p hsa-miR-183-5p hsa-miR-197-3p
hsa-miR-497-5p hsa-miR-103a-3p hsa-miR-3620-3p
hsa-miR-125b-2-3p hsa-miR-15b-5p hsa-miR-340-3p
hsa-miR-186-5p hsa-miR-107 hsa-miR-4728-3p
hsa-miR-320a-3p hsa-miR-148b-5p hsa-miR-769-5p
hsa-miR-4677-3p hsa-miR-29a-3p hsa-let-7f-2-3p
hsa-miR-93-5p hsa-miR-19b-3p hsa-miR-516b-5p
hsa-miR-29¢c-3p hsa-miR-423-3p hsa-miR-185-5p
hsa-miR-196b-5p hsa-miR-486-3p hsa-miR-182-3p
hsa-miR-29a-3p hsa-miR-29¢-3p hsa-miR-340-5p
hsa-miR-641 hsa-miR-30d-5p hsa-miR-23b-3p
hsa-miR-589-3p hsa-miR-132-3p hsa-miR-4709-5p
hsa-miR-429 hsa-miR-103b hsa-miR-148a-5p
hsa-miR-1301-3p hsa-miR-17-3p hsa-miR-548e-3p
hsa-miR-320b hsa-miR-760 hsa-miR-454-5p
hsa-miR-577 hsa-miR-199a-3p hsa-miR-4429
hsa-miR-532-5p hsa-miR-199b-3p hsa-miR-143-3p
hsa-miR-140-3p hsa-let-7f-5p hsa-miR-30c-1-3p
hsa-miR-148a-3p hsa-miR-185-5p hsa-miR-1225-5p
hsa-miR-30b-3p hsa-let-7a-5p hsa-miR-3652
hsa-miR-194-5p hsa-miR-210-3p hsa-miR-1910-5p
hsa-miR-3909 hsa-miR-340-5p hsa-miR-26a-5p
hsa-miR-4446-3p hsa-miR-708-5p hsa-miR-3184-5p
hsa-miR-200a-5p hsa-miR-1-3p hsa-miR-197-5p
(Continued) (Continued)
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TABLE 4 Continued

STC2

hsa-miR-378i

BIRC5 PDL1
hsa-let-7d-3p

hsa-miR-103b

hsa-miR-320d

hsa-miR-455-5p

hsa-miR-30e-3p
hsa-miR-423-3p
hsa-miR-574-5p
hsa-miR-1271-5p

hsa-miR-21-3p

hsa-miR-27a-5p

hsa-miR-147a
hsa-miR-494-3p
hsa-miR-941

hsa-miR-138-5p

extent. The elevated expression of STC2 and BIRCS5, can promote
the binding with those competed miRNA of PDL1, which in turn
upregulated the PDL1 expression. Simultaneously, the activation of
the PI3K/AKT pathway is known to promote PD-L1 expression
(71-73). Li and Zhu et al.’s research demonstrates that STC2 can
facilitate the activation of the PI3K/AKT pathway (74, 75).
Additionally, Shang et al’s research have shown that BIRC5
expression is regulated by the PI3K/AKT pathway (76). Thus,
elevated BIRC5 expression may serve as an indicator of PI3K/
AKT pathway activation.

Further validation of the prognostic predictive ability of SIR-PS
on HCC tissues of our own center were taken out, and the
consistent results were collected. In addition, we creatively
combined SIR-PS with THC, which is more extensively utilized
and offers greater convenience in clinical application in comparison
to RNA-Seq technology. HCC tissue chips were performed for IHC
staining and the results were scored. Utilizing these scores, we
employed the SIR-PS to calculate individual patient risk scores,
thereby evaluating the clinical utility of it. The SIR-PS exhibited a
high degree of accuracy in prognostically assessing the 1 and 3 year
survival for the HCC tissue chips’ patients, with the low-risk group
exhibiting a markedly more favorable prognosis than the high-risk
group. In comparison to other immunohistochemical indicators,
such as GPC3 and CK19, the SIR-PS demonstrates superior
predictive capabilities. This study has to some extent filled the
gap in clinical pathological work that lacks specific IHC prognostic
indicators for HCC. However, there are still limitation and
deficiency in our study. Firstly, due to the lack of immune
therapy results in tissue chips, we were unable to validate the
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predictive ability of this model for immune therapy efficacy in
tissue chips through IHC. Secondly, although the datasets we
included cover a wide range of ethnicities, they are still not
comprehensive. Finally, as the datasets only include samples from
patients who can undergo surgery, the applicability to samples from
patients who cannot undergo surgery is uncertain, especially in
clinical pathology work, where liver biopsy samples from non-
resectable patients may not be applicable.

Taken together, the present investigation identified a novel
prognostic model (SIR-PS) based on the KEGG pathway and
focused on immune related genes. This model demonstrates
potential as an effective tool for predicting prognosis of HCC and
for assessing the efficacy of immunotherapeutic interventions.
Utilizing the SIR-PS to calculate the risk score of each patient
with HCC has showed a favorable efficacy in the 1 and 3 year
survival rate prognostication. Given the absence of specific
biomarkers for the prognostic evaluation of HCC in clinical,
combination of SIR-PS with THC promoted the clinical
application of prognostic models and broadening the approach of
prognostic models from databases to clinical practice.
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