
Edited by  

Tinka Vidovic and Petar Ozretić

Published in  

Frontiers in Aging

Application of bioinformatics, 
machine learning, and 
artificial intelligence to 
improve diagnosis, prognosis 
and treatment of cancer

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/research-topics/47661/application-of-bioinformatics-machine-learning-and-artificial-intelligence-to-improve-diagnosis-prognosis-and-treatment-of-cancer
https://www.frontiersin.org/research-topics/47661/application-of-bioinformatics-machine-learning-and-artificial-intelligence-to-improve-diagnosis-prognosis-and-treatment-of-cancer
https://www.frontiersin.org/research-topics/47661/application-of-bioinformatics-machine-learning-and-artificial-intelligence-to-improve-diagnosis-prognosis-and-treatment-of-cancer
https://www.frontiersin.org/research-topics/47661/application-of-bioinformatics-machine-learning-and-artificial-intelligence-to-improve-diagnosis-prognosis-and-treatment-of-cancer
https://www.frontiersin.org/research-topics/47661/application-of-bioinformatics-machine-learning-and-artificial-intelligence-to-improve-diagnosis-prognosis-and-treatment-of-cancer


January 2026

Frontiers in Aging 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public - 

and shape society; therefore, Frontiers only applies the most rigorous and 

unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-7402-7 
DOI 10.3389/978-2-8325-7402-7

Generative AI statement
Any alternative text (Alt text) provided 
alongside figures in the articles in 
this ebook has been generated by 
Frontiers with the support of artificial 
intelligence and reasonable efforts 
have been made to ensure accuracy, 
including review by the authors 
wherever possible. If you identify any 
issues, please contact us.

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


January 2026

Frontiers in Aging 2 frontiersin.org

Application of bioinformatics, 
machine learning, and artificial 
intelligence to improve diagnosis, 
prognosis and treatment of 
cancer

Topic editors

Tinka Vidovic — Moltech Innovations, Croatia

Petar Ozretić — Rudjer Boskovic Institute, Croatia

Citation

Vidovic, T., Ozretić, P., eds. (2026). Application of bioinformatics, machine learning, 

and artificial intelligence to improve diagnosis, prognosis and treatment of cancer. 

Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-7402-7

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-7402-7


January 2026

Frontiers in Aging 3 frontiersin.org

05	 Editorial: Application of bioinformatics, machine learning, 
and artificial intelligence to improve diagnosis, prognosis and 
treatment of cancer
Tinka Vidović and Petar Ozretić

08	 Radiomics model based on intratumoral and peritumoral 
features for predicting major pathological response in 
non-small cell lung cancer receiving neoadjuvant 
immunochemotherapy
Dingpin Huang, Chen Lin, Yangyang Jiang, Enhui Xin, Fangyi Xu, 
Yi Gan, Rui Xu, Fang Wang, Haiping Zhang, Kaihua Lou, Lei Shi and 
Hongjie Hu

21	 Construction and validation of a machine learning-based 
nomogram to predict the prognosis of HBV associated 
hepatocellular carcinoma patients with high levels of 
hepatitis B surface antigen in primary local treatment: a 
multicenter study
Yiqi Xiong, Wenying Qiao, Qi Wang, Kang Li, Ronghua Jin and 
Yonghong Zhang

34	 Mining bone metastasis related key genes of prostate cancer 
from the STING pathway based on machine learning
Guiqiang Li, Runhan Zhao, Zhou Xie, Xiao Qu, Yingtao Duan, 
Yafei Zhu, Hao Liang, Dagang Tang, Zefang Li and Weiyang He

47	 Pan-cancer analysis predict that FAT1 is a therapeutic target 
and immunotherapy biomarker for multiple cancer types 
including non-small cell lung cancer
Chen Ding, Hua Huang, Di Wu, Chen Chen, Yu Hua, Jinghao Liu, 
Yongwen Li, Hongyu Liu and Jun Chen

61	 Exploring the molecular and immune landscape of cellular 
senescence in lung adenocarcinoma
Kun Ru, Liang Cui, Cong Wu, Xin X. Tan, Wen T. An, Qiang Wu, 
Yu T. Ma, Yu Hao, Xiao Xiao, Jing Bai, Xiang Liu, Xue F. Xia and 
Miao Q. Zhao

77	 Machine learning to predict distant metastasis and 
prognostic analysis of moderately differentiated gastric 
adenocarcinoma patients: a novel focus on lymph node 
indicators
Kangping Yang, Jiaqiang Wu, Tian Xu, Yuepeng Zhou, Wenchun Liu 
and Liang Yang

98	 Machine learning based anoikis signature predicts 
personalized treatment strategy of breast cancer
Xiao Guo, Jiaying Xing, Yuyan Cao, Wenchuang Yang, Xinlin Shi, 
Runhong Mu and Tao Wang

Table of
contents

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/


January 2026

Frontiers in Aging 4 frontiersin.org

114	 Prediction of acute myeloid leukemia prognosis based on 
autophagy features and characterization of its immune 
microenvironment
Chaoqun Zhu, Xiangyan Feng, Lanxin Tong, Peizheng Mu, Fei Wang, 
Wei Quan, Yucui Dong and Xiao Zhu

131	 Construction of a risk prediction model for postoperative 
deep vein thrombosis in colorectal cancer patients based on 
machine learning algorithms
Xin Liu, Xingming Shu, Yejiang Zhou and Yifan Jiang

145	 Exploration and validation of a novel reactive oxygen 
species–related signature for predicting the prognosis and 
chemotherapy response of patients with bladder cancer
Yulei Li, Lulu Zhang, Gang Xu, Gang Xu, Jiajun Chen, Keyuan Zhao, 
Mengyao Li, Jing Jin, Chao Peng, Kaifang Wang, Shouhua Pan and 
Ke Zhu

167	 An immune-related signature based on molecular subtypes 
for predicting the prognosis and immunotherapy efficacy of 
hepatocellular carcinoma
Xuhui Sun, Wenlong Jia, Huifang Liang and Henghui Cheng

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/


Editorial: Application of 
bioinformatics, machine learning, 
and artificial intelligence to 
improve diagnosis, prognosis and 
treatment of cancer

Tinka Vidović1*†‡ and Petar Ozretić2*†‡

1Moltech Innovations, Zagreb, Croatia, 2Laboratory for Hereditary Cancer, Division of Molecular 
Medicine, Ruđer Bošković Institute, Zagreb, Croatia

KEYWORDS

cancer biomarkers, cancer diagnosis and therapy, cancer drug targets, computational 
cancer biology, computational drug discovery artificial intelligence, bioinformatics, 
machine learning

Editorial on the Research Topic 
Application of bioinformatics, machine learning, and artificial intelligence 
to improve diagnosis, prognosis and treatment of cancer

In recent years, omics approaches have yielded great advances in cancer research and 
have provided new in-depth insights into the processes involved in cancer development and 
progression. Practical use of the information contained within this huge amount of data 
requires computational approaches such as bioinformatics, machine learning (ML), and 
artificial intelligence (AI). These computational methods, together with omics data from 
large databases, such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO), can now be used to develop cancer biomarkers, novel anti-cancer drug targets, and 
both novel and repurposed treatment options for cancer. Considering the application of 
versatile computational methods in cancer research, we collected original research articles 
in this Research Topic to present the novel discovery of potential cancer drug targets, 
prognostic biomarkers, or therapeutic interventions.

Lower extremity deep vein thrombosis (DVT) is a frequent postoperative complication, 
occurring in up to 40% of patients with colorectal cancer. Liu et al. used an ML model 
optimized for predicting an individual’s risk of DVT in colorectal cancer patients. Given the 
prevalence of DVT and that traditional risk assessments may not be accurate indicators of 
true risk, they showed that the XGBoost model (Chen and Guestrin, 2016) has strong 
potential for improving early detection and treatment in clinical settings.

Identifying novel biomarkers for predicting patient survival time is of crucial practical 
clinical significance, since it could lead to better patient stratification and treatment 
decisions. Li et al. used the reactive oxygen species (ROS)-related signature genes, 
which they identified using the TCGA data, to predict the prognosis and chemotherapy 
response of patients with bladder cancer. They did not only identify 17 ROS-related genes 
that exhibited good overall survival in bladder cancer patients, but also 11 potential small 
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molecular drugs that target these ROS-related genes using the 
Connectivity Map (CMap) database (Lamb et al., 2006).

Using ML models to predict response to treatment could lead 
to the development of more personalized treatment, leading to 
significant improvement in patient outcomes. Guo et al.
developed the Artificial Intelligence-Derived Anoikis Signature 
(AIDAS), a novel machine learning-based prognostic tool for 
breast cancer. AIDAS identifies key gene expression patterns 
related to anoikis, a form of programmed cell death triggered 
by detachment from the extracellular matrix. Using AIDAS, the 
authors found they could more accurately predict breast cancer 
outcomes compared to existing prognostic models. They 
discovered that patients with low AIDAS levels may be more 
responsive to immunotherapy, while those with high AIDAS 
levels are more susceptible to certain chemotherapies like 
methotrexate.

Zhu et al. showed the crucial role of autophagy in acute myeloid 
leukemia (AML) prognosis, identifying essential autophagy genes 
that correlate with patient survival. Using ML, they developed a 
predictive model that aids risk stratification and suggested potential 
therapeutic targets. Their findings also reveal a link between 
autophagy and the immune microenvironment, offering insights 
for future research and clinical applications.

Due to the large difference in survival of patients with 
moderately differentiated gastric adenocarcinoma (MDGA) with 
distant metastases and without metastases, it becomes important to 
predict the occurrence of distant metastases after surgical treatment, 
after morphological examination of all removed lymph nodes, and 
after final staging of the disease. Yang et al. collected data from 
MDGA patients from the Surveillance, Epidemiology, and End 
Results (SEER) database from 2010 to 2019, as well as data from 
MDGA patients in China. Based on these data they conducted 
univariate and multivariate analyses, and factors were identified that 
contribute to the occurrence of distant metastases and worsen the 
prognosis of the disease.

Prostate cancer is a highly metastatic tumor, and it is estimated 
that about 50% of patients with advanced disease will develop bone 
metastases. Once bone metastasis occurs, it is incurable and is 
significantly associated with mortality. The STING signaling 
pathway is an important transduction mechanism in innate 
immunity and viral defense, and it has been demonstrated that 
this pathway plays a key role in tumorigenesis and metastasis (Wang 
et al., 2025). In their study, Li et al. extrapolated three key STING 
pathway genes related to bone metastasis based on a machine 
learning algorithm. After comprehensive analysis, it was verified 
that these three genes have key roles in prostate cancer development, 
metastasis, and tumor immunity, while RELA or transcription factor 
p65 is a highly potential therapeutic target.

Ding et al. explored the role of FAT1, which is crucial for cellular 
adhesion and cell signaling, in lung cancer cell lines. The authors 
identified FAT1 mutations in five out of thirty-seven individuals 
diagnosed with non-small cell lung cancer (NSCLC), using next- 
generation sequencing (NGS) technology. These mutations included 
four missense mutations and one splice variant. The frequency of 
FAT1 mutations was the third highest, following those in EGFR and 
TP53 genes. The study further demonstrated correlations between 
FAT1 expression and methylation with the malignancy of certain 
cancer types. Knockdown of FAT1 in A549 and H1299 lung cancer 

cell lines led to downregulated PD-L1 expression. Additionally, 
FAT1 knockdown significantly inhibited cell proliferation, colony 
formation, and migration. It also affected the cell cycle and the FAK- 
YAP/TAZ signaling pathway, ultimately inhibiting the proliferation 
of lung cancer cells in vivo.

In their retrospective study, Huang et al. developed a 
radiomics-clinical predictive model for the response to 
neoadjuvant chemoimmunotherapy in patients with NSCLC. 
Their model integrates clinical and radiomic data from two 
institutions, drawing from a training and internal validation 
cohort of 105 patients and a second external validation cohort 
of 43 patients.

Sun et al. conducted an in-depth study on immune-related 
genes in hepatocellular carcinoma (HCC) using extensive 
datasets and robust bioinformatics methods, leading to the 
development of the Subtype-specific and Immune-Related 
Prognostic Signatures (SIR-PS) model. The SIR-PS model 
effectively predicted survival outcomes and immunotherapy 
responses in HCC patients, providing meaningful guidance for 
personalized immunotherapy.

High serum levels of hepatitis B surface antigen (HBsAg) 
increase the risk of developing HCC and have a worse prognosis 
for patients who have already developed HCC. Xiong et al.
compared the effects of high and low levels of HBsAg in HCC 
patients undergoing transarterial chemoembolization (TACE) and 
sequential ablation and utilized propensity score matching to 
minimize selection bias. In addition, they created a nomogram to 
predict the prognosis of HCC patients with high levels of HBsAg 
after local treatment to more accurately guide the clinical decision.

Cancer incidence rises with aging, even though there are more 
senescent cells that have stopped dividing as we age. In their 
bioinformatics study, Ru et al. explored the molecular and immune 
landscape of cellular senescence in lung adenocarcinoma using 
publicly available TCGA and GEO datasets to gain deeper insights 
on the impact of cellular senescence on tumor progression. They 
showed that patients with low aging scores exhibited better survival, 
lower tumor mutation burden (TMB), lower somatic mutation 
frequency, lower tumor proliferation rate, and an immune-activated 
phenotype compared to patients with high aging scores.

Altogether, with this Research Topic, we primarily wanted to 
demonstrate that datasets from databases like TCGA and GEO, the 
former of which are being available and massively reanalyzed for 
more than a decade, are still relevant and useful for discovering new 
potential cancer drug targets, prognostic biomarkers, or therapeutic 
interventions, supported by new methods and ways of analyzing big 
data, especially now in the dawn of the development and application 
of AI models in basic cancer research. Even though such studies 
usually lack, at least in vitro, experimental validation, their results 
validated on external cohorts still present valuable and scientifically 
sound bases for further research and eventual translation into the 
clinical practice, while the amount of omics data continues to grow 
unstoppably. . .
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Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,
5Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd.,
Shanghai, China, 6Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of
Medicine, Hangzhou, Zhejiang, China, 7DUT-RU International School of Information Science and
Engineering, Dalian University of Technology, Dalian, Liaoning, China, 8DUT-RU Co-Research Center
of Advanced Information Computing Technology (ICT) for Active Life, Dalian University of
Technology, Dalian, Liaoning, China
Objective: To establish a radiomics model based on intratumoral and

peritumoral features extracted from pre-treatment CT to predict the major

pathological response (MPR) in patients with non-small cell lung cancer

(NSCLC) receiving neoadjuvant immunochemotherapy.

Methods: A total of 148 NSCLC patients who underwent neoadjuvant

immunochemotherapy from two centers (SRRSH and ZCH) were

retrospectively included. The SRRSH dataset (n=105) was used as the training

and internal validation cohort. Radiomics features of intratumoral (T) and

peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were

extracted from pre-treatment CT. Intra- and inter- class correlation coefficients

and least absolute shrinkage and selection operator were used to feature

selection. Four single ROI models mentioned above and a combined radiomics

(CR: T+P1+P2+P3) model were established by using machine learning

algorithms. Clinical factors were selected to construct the combined

radiomics-clinical (CRC) model, which was validated in the external center

ZCH (n=43). The performance of the models was assessed by DeLong test,

calibration curve and decision curve analysis.

Results: Histopathological type was the only independent clinical risk factor. The

model CRwith eight selected radiomics features demonstrated a good predictive

performance in the internal validation (AUC=0.810) and significantly improved
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than the model T (AUC=0.810 vs 0.619, p<0.05). Themodel CRC yielded the best

predictive capability (AUC=0.814) and obtained satisfactory performance in the

independent external test set (AUC=0.768, 95% CI: 0.62-0.91).

Conclusion: We established a CRC model that incorporates intratumoral and

peritumoral features and histopathological type, providing an effective approach

for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.
KEYWORDS

lung neoplasms, machine learning, immunotherapy, neoadjuvant therapy, peritumor
1 Introduction

Lung cancer has emerged as the leading cause of cancer-related

deaths worldwide (1). Among them, non-small cell lung cancer

(NSCLC) accounts for approximately 85% (2). The past decade of

lung cancer treatment history has demonstrated that preoperative

administration of antitumor drugs can reduce tumor size, leading to

downstaging and creating favorable conditions for surgery (3).

Additionally, research has indicated that neoadjuvant therapy can

help eliminate micrometastases and reduce the risk of post-

operative recurrence (4). With the advancement of lung cancer

treatment drugs, immune checkpoint inhibitors have emerged as a

novel and promising class of antitumor agents (5, 6). Studies have

shown that the addition of nivolumab to neoadjuvant

chemotherapy in lung cancer significantly improves pathological

response in patients compared to the use of chemotherapy

alone (7, 8).

However, only part of NSCLC patients can benefit from

neoadjuvant immunochemotherapy (7). In many cases, the tumor

did not shrink significantly following neoadjuvant therapy, and

these drugs can have notable side effects such as leukopenia and

immune-related pneumonitis (3, 9). Therefore, it is crucial to

identify patients who will truly benefit from neoadjuvant

immunochemotherapy before initiating treatment (10). In fact,

assessing the efficacy of neoadjuvant therapy in lung cancer poses

certain challenges, as studying the survival outcomes of patients

after neoadjuvant treatment typically requires a long time follow-up

(11). The International Association for the Study of Lung Cancer

(IASLC) in 2021 suggested that the major pathological response

(MPR) in postoperative specimens can be used as an evaluation

criterion for neoadjuvant therapy (12). MPR was defined as the

viable tumor is less than or equal to 10% in the tumor bed, which

provided a convenient approach to assessing treatment effectiveness

after neoadjuvant therapy.

Some clinical trials have explored the use of biomarkers such as

PD-L1 expression and tumor mutational burden (TMB) to predict

MPR. However, their predictive effectiveness remained

controversial and the detection of PD-L1 and TMB is invasive.

To date, there is no reliable biomarker available to predict MPR
029
following neoadjuvant immunochemotherapy in NSCLC. Thus,

there is an urgent need for a credible and non-invasive pre-

treatment assessment method.

Radiomics aims to capture the heterogeneity within tumors

non-invasively by extracting high-throughput features from images

for analysis (13). Numerous studies have demonstrated that

radiomics plays a valuable role in tumor diagnosis, treatment, and

prognosis assessment (14–16). Research has already utilized pre-

treatment CT tumor features to build radiomics model and predict

pathological response following neoadjuvant chemoradiation for

lung cancer, yielding promising results (17). In fact, the

microenvironment surrounding the tumor can also influence the

response to immunotherapy, such as the distribution of tumor-

infiltrating lymphocytes (TILs) (18). Studies have shown that the

distribution of TILs is associated with survival outcomes and

treatment response in various diseases (19, 20). Therefore, it is

also necessary to further investigate the impact of the specificity of

the tumor microenvironment on the effect iveness of

neoadjuvant immunochemotherapy.

In this study, we constructed models to predict MPR following

neoadjuvant immunochemotherapy for non-small cell lung cancer

by extracting radiomic features from both the intratumor and the

peritumor regions on CT images. Furthermore, the optimal

prediction model was validated in an independent external cohort.
2 Methods and materials

2.1 Study population

This study was granted ethical approval by the institutional

review board of Sir Run Run Shaw Hospital (SRRSH) and Zhejiang

Cancer Hospital (ZCH), which was performed in accordance with

the ethical standards of the 1964 Declaration of Helsinki. Informed

consent was waived due to the retrospective nature of this study.

This research retrospectively included patients diagnosed with

non-small cell lung cancer (NSCLC) who underwent neoadjuvant

immunochemotherapy between June 2019 and December 2022 at

two centers (SRRSH and ZCH). The inclusion criteria were as
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follows: 1) pathologically confirmed NSCLC through endoscopic

bronchoscopy or CT-guided needle puncture, 2) preoperative

neoadjuvant immunochemotherapy was received, and 3) pre-

treatment chest CT was performed. Patients were excluded if any

of the following conditions were met: 1) pre-treatment staging as

stage I or stage IV; 2) less than two cycles of neoadjuvant treatment

received; 3) unavailable enhanced chest CT; 4) time interval

between chest CT and treatment initiation exceeds one month; 5)

poor CT image quality. Patients from SRRSH were used as the

model training and internal validation set, while patients from ZCH

were used as the independent external test set. The detailed process

of patient inclusion and exclusion is shown in Figure 1.
2.2 Treatment method

All patients underwent standard preoperative evaluations and

tumor staging procedures before determining treatment, including

tumor biopsy (via bronchoscopy or CT-guided fine-needle

puncture), chest CT, abdominal ultrasound, head MRI, and

whole-body nuclear imaging. The thoracic surgeons assessed the

tumor staging of the patients according to the 8th edition of the

Lung Cancer TNM staging system, published by the Union for

International Cancer Control (UICC), and determined the

neoadjuvant treatment strategy. The standard neoadjuvant

immunochemotherapy regimen comprises 2 to 4 cycles of

immunotherapy in conjunct ion with plat inum-based

chemotherapy. Following the completion of neoadjuvant

treatment, comprehensive tumor resection is undertaken by the

thoracic surgeons.
2.3 Pathological evaluation

According to the multidisciplinary recommendations from the

IASLC regarding pathological assessment of lung cancer excision

specimens after neoadjuvant therapy (12), pathologists are

responsible for evaluating the pathological responses of surgical
Frontiers in Oncology 0310
specimens. All specimens were re-evaluated by an experienced

senior pathologist (Y. Gan) who has more than 10 years of

experience in accordance with IASLC. If the initial pathology

report is different from Dr. Gan’s, Dr. Gan’s opinion shall prevail.

MPR is defined as the percentage of viable tumor cells in the tumor

bed being less or equal to 10%. Non-MPR is defined as the

percentage of residual tumor cells in the tumor bed more than 10%.
2.4 Image acquisition

The CT scanning parameters in the two centers are shown in

Table 1. The contrast-enhanced scanning technique involved

intravenous injection of nonionic contrast material (Ultravist 300

or Ultravist 370, Bayer; or ioversol 320, Hengrui) at a rate of 2.2 to 3

ml/s, based on a dosage of 1.2 ml/kg body weight. Bolus tracking

technique was employed, with the arterial phase scan initiated 8

seconds after the descending aortic CT density reached 100 HU. All

CT scans were retrieved from the picture archiving and

communication system (PACS) for further feature extraction.
2.5 Radiomics procedures

The workflow of radiomics analysis consisted of five steps:

region of interest (ROI) segmentation, radiomics features

extraction and selection, model construction and evaluation.

Radiomics analysis was performed with uAI Research Portal

(United Imaging Intelligence, China) (21), which is a clinical

research platform implemented by Python programming language

(version 3.7.3), and widely used package PyRadiomics (https://

pyradiomics.readthedocs.io/en/latest/index.html).

All images were imported into an open-source software ITK-

SNAP (Version 3.8.0). The tumor ROI was manually segmented

slice-by-slice by an experienced radiologist with over 10 years (DP.

Huang), without knowledge of the pathological results. Then, the

uAI Research Portal was applied for morphological expansion of

intratumor ROI. Previous study showed that it would not reduce
FIGURE 1

Patient selection and distribution flowchart.
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the risk of recurrence when the tumor resection margin exceeded

15mm (22). Based on this, we performed peritumor expansion three

times, 5mm each time, for a total of 15mm. During the delineation

and dilation process of the ROIs, non-pulmonary regions were

excluded. The peritumoral area beyond the lung outline was

manually erased when the tumor located in paramediastinal,

subpleural and other special areas. Therefore, in this study, a total

of four ROIs were delineated showed in Figure 2, namely T

(intratumor), P1 (peritumoral 0-5mm), P2 (peritumoral 5-

10mm), and P3 (peritumoral 10-15mm). Subsequently, we

established a combined radiomics (CR: T+P1+P2+P3) model by

integrating intratumoral and three peritumoral ROI features.
Frontiers in Oncology 0411
In addition, to evaluate the reproducibility of image

segmentation, we randomly selected 20 patients to be re-

segmented by Dr. Huang and the other doctor (HP. Zhang, with

1 year of experience in imaging) one month later. Intra-observer

and inter-observer reproducibility of radiomics features were

assessed using intra- and inter- class correlation coefficient

(ICC). A value of ICC ≥ 0.85 was considered indicative of

good reproducibility. To eliminate index dimension difference,

the extracted radiomics features were standardized into

normal distributed z-scores. For feature selection, the least

absolute shrinkage and selection operator (LASSO) regression

was utilized.
A B

D E F

C

FIGURE 2

Region of interest (ROI) segmentation. (A) A mass showed in the upper lobe of the left lung. The ROIs of (B) intratumor(T), (C) peritumoral 0~5mm
(P1), (D) peritumoral 5~10mm(P2), (E) peritumoral 10~15mm(P3), and (F) T+P1+P2+P3(CR).
TABLE 1 Scanning parameters and CT specifications in both hospitals.

Sir Run Run Shaw Hospital Zhejiang Cancer Hospital

Brand Siemens Siemens Siemens GE GE Siemens GE Philips

Machine type SOMATOM
Definition
Flash

SOMATOM
Force

SOMATOM
go. Top

Lightspeed
VCT

Optima
CT620

SOMATOM
Definition
Flash

Optima
CT680

Ingenuity
CT

Tube voltage (KV) 120 100/120 120 120 120 120 120 120

Tube current (mAs) smart smart smart smart smart smart smart smart

Rotation time (s) 0.5 0.5 0.5 0.4、0.5 0.5 0.5 0.5 0.5

Image matrix 512×512 512×512 512×512 512×512 512×512 512×512 512×512 512×512

Field of view (mm) 350 350 350 350 350 350 350 350

Reconstruction slice thickness
and spacing

2mm/2mm 2mm/2mm 2mm/2mm 1.25mm/
1.25mm

2mm/2mm 2mm/2mm 5mm/5mm 1.25mm/
1.25mm

Reconstruction algorithm B41f B41f B41f Standard
resolution

Standard
resolution

B31f Standard
resolution

Standard
resolution
fr
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With the selected optimal feature sets, we built prediction

models for the MPR of neoadjuvant immunochemotherapy for

lung cancer by using five machine learning algorithms, including

decision tree, Gaussian process, logistic regression, random forest

and support vector machine, and the model with the best predictive

capability was reserved for external validation. The performance of

the different prediction models in internal dataset was assessed by

the cross-validation strategy to protect against overfitting due to the

limited amount data. In this study, we used five-fold cross-

validation (23): the feature set was split randomly, while, the

same ratio of positive and negative patients was kept in each

partition. Consequently, training on four-fifths of dataset and

validating on the remaining partition in each fold, the process

was repeated five times within different subgroups, and thus formed

five unlike training/validation sets and obtained an average result.
2.6 Statistics

SPSS (version 25.0) and Python (version 3.5.6) were used for

statistical analysis. Continuous data was presented as mean ±

standard deviation or median (interquartile range), and the

differences between groups were compared using independent

sample t-tests or non-parametric tests. Categorical data was

evaluated using chi-square tests or Fisher’s exact tests to assess
Frontiers in Oncology 0512
intergroup differences. Univariable and multivariable logistic

regression were used to identify clinical risk factors with odds

ratio (OR) and 95% confidence interval (CI). The performance of

the model was evaluated using receiver operating curves (ROC),

and the area under the curve (AUC), sensitivity, specificity and

accuracy were quantified. The DeLong test was used for the

performance comparison between different models. The LASSO

was utilized for the radiomics features selection. Calibration curve

was applied to determine whether the projected probability matches

the actual probability. Decision curve analysis was used to assess the

prediction models’ clinical viability. A P-value less than 0.05

(P-value < 0.05) was considered statistically significant.
3 Results

3.1 Clinical characteristics

A total of 148 patients were enrolled retrospectively, and their

baseline clinical characteristics were presented in Table 2. The

training and internal validation sets consisted of 105 patients

from SRRSH, of whom 76 achieved MPR (72.4%). The

independent external test set (ZCH) included 43 patients, with 22

achieving MPR (51.2%). The average age of the entire cohort was

63.8 ± 6.3 years, predominantly male (94.6%), and most patients
TABLE 2 Clinical factors of the entire dataset.

Clinical factor

Entire
Training and internal validation

(n=105)
External test

(n=43)

N=148
MPR
(n=76)

Non-
MPR
(n=29)

P value
MPR
(n=22)

Non-
MPR
(n=21)

P value

Age 63.8 ± 6.3 64.0 ± 6.3 63.1 ± 6.3 0.5 63.1 ± 6.9 64.7 ± 6.3 0.43

Gender 0.25 0.58

Male 140(94.6) 74(97.4) 26(89.7) 20(90.9) 20(95.2)

Female 8(5.4) 2(2.6) 3(10.3) 2(9.1) 1(4.8)

Smoking history 0.60 0.96

Current or before 88(59.5) 35(46.1) 15(51.7) 20(90.9) 18(85.7)

Never 60(40.5) 41(53.9) 14(48.3) 2(9.1) 3(14.3)

Histopathological type 0.02* 0.02*

Adenocarcinoma 17(11.5) 4(5.3) 7(24.1) 1(4.5) 5(23.8)

Squamous 115(77.7) 64(84.2) 20(69.0) 20(90.9) 11(52.4)

Others 16(10.8) 8(10.5) 2(6.9) 1(4.5) 5(23.8)

Pretreatment clinical stage 0.74 0.32

II 34(23.0) 18(23.7) 6(20.7) 7(31.8) 3(14.3)

III 114(77.0) 58(76.3) 23(79.3) 15(68.2) 18(85.7)

Clinical T stage 0.70 0.46

T1 18(12.2) 9(11.8) 2(6.9) 2(9.1) 5(23.8)

(Continued)
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had a history of smoking (59.5%). The majority of patients had

squamous cell carcinoma as the histopathological type (77.7%). In

both of the two cohorts, there was significant difference in

histopathological type between the MPR and non-MPR groups

(p < 0.05). In the entire cohort, the majority of patients undergoing

neoadjuvant treatment were assessed as stage III lung cancer

(77.0%). Moreover, T2 (41.2%) and N2 (58.1%) stage were

accounted for the most. The main types of immunotherapy

agents employed in the two hospitals include pembrolizumab,

tislelizumab, and camrelizumab (31.4%, 23.8%, 19.0% in SRRSH

and 23.2%, 37.2%, 34.9% in ZCH, respectively). There was no

significant difference in the treatment modality for neoadjuvant

therapy between the MPR and non-MPR groups in both cohorts.
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After performing univariable and multivariable logistic

regression analysis, the histopathological type was confirmed as

an independent risk factor and then included in the clinical model

(p = 0.026; OR = 3.328, 95% CI: 1.155-9.588) (Table 3).
3.2 Selection of the radiomics features

In total, 2264 radiomic features were extracted, including 104

original features grouped as: 18 first-order statistics, 72 texture and

14 shape, and other 2160 features based on images through 25

filters, such as boxmean, wavelet, laplacian, etc. A total of 1,067

features were retained after ICC analysis (Table 4). After the feature
TABLE 2 Continued

Clinical factor

Entire
Training and internal validation

(n=105)
External test

(n=43)

N=148
MPR
(n=76)

Non-
MPR
(n=29)

P value
MPR
(n=22)

Non-
MPR
(n=21)

P value

T2 61(41.2) 28(36.8) 13(44.8) 10(45.5) 10(47.6)

T3 43(29.1) 24(31.6) 7(24.1) 8(36.4) 4(19.0)

T4 26(17.6) 15(19.7) 7(24.1) 2(9.1) 2(9.5)

Clinical N stage 0.41 0.55

N0 18(12.2) 11(14.5) 1(3.4) 4(18.2) 2(9.5)

N1 34(23.0) 19(25.0) 8(27.6) 4(18.2) 3(14.3)

N2 86(58.1) 39(51.3) 18(62.1) 13(59.1) 16(76.2)

N3 10(6.8) 7(9.2) 2(6.9) 1(4.5) 0

Treatment cycle 0.37 0.13

2 117(79.1) 61(80.3) 22(75.9) 15(68.2) 19(90.5)

3 25(16.9) 12(15.8) 7(24.1) 4(18.2) 2(9.5)

4 6(4.1) 3(3.9) 0 3(13.6) 0

Platinum drugs 0.61 0.37

Carboplatin 82(55.4) 30(39.5) 14(48.3) 18(81.8) 20(95.2)

Cisplatin 65(43.9) 45(59.2) 15(51.7) 4(18.2) 1(4.8)

Nedaplatin 1(0.7) 1(1.3) 0 0 0

ICIs 0.84 0.10

Pembrolizumab 43(29.1) 21(27.6) 12(41.4) 7(31.8) 3(14.3)

Tislelizumab 41(27.7) 19(25.0) 6(20.7) 10(45.5) 6(28.6)

Camrelizumab 35(23.6) 15(19.7) 5(17.2) 5(22.7) 10(47.6)

Sintilimab 16(10.8) 10(13.2) 4(13.8) 0 2(9.5)

Toripalimab 11(7.4) 9(11.8) 2(6.9) 0 0

Durvalumab 1(0.7) 1(1.3) 0 0 0

Penpulimab 1(0.7) 1(1.3) 0 0 0
Data are presented as mean ± SD. Data in parentheses are percentages. *p<0.05.
MPR, major pathological response; ICIs, immune checkpoint inhibitors.
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selection processes as mentioned above, the top features of each

radiomics model were selected and presented in Table 5.

The CR model incorporated a total of eight radiomics features as

follows: 1) intratumor: glszm_wavelet-LLL-SZNUN; 2) peritumoral 0-

5mm: firstorder_Maximum, glrlm_log-sigma-4-0-mm-3D-LRHGLE;

3) peritumoral 5-10mm: gldm_wavelet-LLL-SDLGLE, glcm_wavelet-

LLH-Idmn; 4) peritumoral 10-15mm: Complexity, glrlm_log-sigma-4-

0-mm-3D-LRHGLE, gldm_SDLGLE.
3.3 Development and validation of the
prediction models

The predictive performance of each model was shown in

Table 6 and Figure 3.

The clinical model showed relatively poor predictive

performance in training and internal validation sets (AUC=0.612

and 0.563, respectively). The single ROI radiomics models based on

intratumor(T), peritumoral 0-5mm(P1), peritumoral 5-10mm(P2),

peritumoral 10-15mm(P3) showed higher AUCs (0.679, 0.882,

0.746, 0.777 and 0.619, 0.712, 0.662, 0.741, respectively) in

training and internal validation sets than the clinical model.

The model CR based on Gaussian process demonstrated an

AUC of 0.810 for MPR prediction in NSCLC neoadjuvant

immunochemotherapy, which is superior than the four single

ROI models and significantly improved than the model T

(AUC=0.810 vs 0.619, p<0.05). The Delong test showed that the

AUC of models CR and CRC was significantly improved compared

to models T and P2. However, pairwise comparisons among the

remaining models indicated no statistically significant differences in

performance (Figure 3C). We fused CR model with the clinical

model to create combined radiomics + clinical (CRC) model and

obtained optimal predictive capability, which achieved an AUC of

0.814, sensitivity of 0.947, specificity of 0.567, precision of 0.851,

and accuracy of 0.838 in the internal validation set (Table 6).
TABLE 3 Univariable and multivariable logistic regression analyses of clinical factors.

Clinical factors Univariable Multivariable

OR (95% CI) P value OR (95%CI) P value

Age 1.024(0.956-1.098) 0.499

Gender 4.269(0.675-26.993) 0.123

Smoking history 0.797(0.338-1.877) 0.603

Histopathological type 3.328(1.155-9.588) 0.026* 3.328(1.155-9.588) 0.026*

Pretreatment clinical stage 0.841(0.296-2.384) 0.744

Clinical T stage 0.930(0.587-1.472) 0.756

Clinical N stage 0.758(0.435-1.321) 0.328

Treatment cycle 0.981(0.410-2.348) 0.966

Platinum drugs 0.794(0.349-1.810) 0.583

ICIs 1.127(0.900-1.411) 0.297
F
rontiers in Oncology
 0714
*p<0.05.
OR, odds ratio; CI, confidence interval; ICIs, immune checkpoint inhibitors.
TABLE 4 Radiomics features distribution (Total and after ICC analysis).

Features
Total
(n=2264)

After ICC
analysis
(n=1067)

Original First-order features 18 6

Original Shape features 14 3

Original GLCM based features 21 11

Original GLRLM based features 16 6

Original GLSZM based features 16 1

Original GLDM based features 14 5

Original NGTDM based features 5 2

Filtered Box mean based features 90 35

Filtered
Additive Gaussian noise
based features

90 32

Filtered
Binomial blur image
based features

90 32

Filtered
Curvature flow
based features

90 30

Filtered
Box sigma image
based features

90 64

Filtered Log based features 360 193

Filtered Wavelet based features 720 395

Filtered Normalize based features 90 14

Filtered
Laplacian sharpening
based features

90 41

Filtered
Discrete Gaussian
based features

90 34

Filtered Mean based features 90 34

(Continued)
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Finally, the CRC model was validated in an independent

external test set and achieved favorable predictive performance,

with an AUC of 0.768 (95% CI, 0.62-0.91) (Figure 3D).
3.4 Calibration curve and decision curve
analysis of the prediction models

The calibration curve of the model CR showed that the

predicted probability had a good consistency in the internal

validation set. And the fusion model CRC had the smallest Brier

score loss, which means it has the best predictive performance

(Figures 4A, B).
Frontiers in Oncology 0815
Decision curve analysis showed that the fusion model CRC

provided a better net benefit than other radiomics models for the

most of the threshold range (Figures 4C, D).
4 Discussion

Neoadjuvant immunochemotherapy has emerged as a promising

therapeutic approach for non-small cell lung cancer (NSCLC) (7).

However, the evaluation of neoadjuvant treatment efficacy relies on

postoperative pathological assessment, leading to time delay.

Additionally, the effects of immune checkpoint inhibitors on tumors

are complex, and atypical responses such as hyperprogression or

pseudoprogression may occur (24, 25), making it challenging to

assess the efficacy of neoadjuvant immunochemotherapy through CT

follow-up during treatment. Our research showed that the combined

radiomics model based on intratumoral and peritumoral regions

derived from pre-treatment CT images can predict MPR to

neoadjuvant immunochemotherapy in NSCLC. After incorporating

the independent risk factor of histopathological type, the model

achieved the optimal predictive performance. Furthermore, its

predictive efficacy was validated in an external center, indicating

its robustness.

Squamous cell carcinoma was identified as an independent

clinical risk factor for predicting MPR in neoadjuvant

immunochemotherapy in our research, consistent with previous
TABLE 4 Continued

Features
Total
(n=2264)

After ICC
analysis
(n=1067)

Filtered
Speckle noise
based features

90 34

Filtered
Recursive Gaussian
based features

90 34

Filtered Shortnoise based features 90 61
GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray
level size zone matrix; GLDM, gray level dependence matrix; NGTDM, neighbourhood gray-
tone difference matrix.
TABLE 5 The selected radiomics features in different radiomics models.

Radiomics Models The selected Radiomics Features

T(Intratumor)
(n=5)

boxsigmaimage_glrlm_LongRunHighGrayLevelEmphasis
wavelet_glcm_wavelet-LHH-Idn
wavelet_gldm_wavelet-LHH-SmallDependenceLowGrayLevelEmphasis
wavelet_glszm_wavelet-LLL-SizeZoneNonUniformityNormalized
wavelet_glcm_wavelet-HHL-Idn

P1(Peritumoral 0-5mm)
(n=8)

log_firstorder_log-sigma-2-0-mm-3D-Skewness
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CR (Combined radiomics)
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related research (26). A meta-analysis exploring the impact of

histopathology on the efficacy of immune checkpoint inhibitors

in treating NSCLC showed that immunotherapy can improve

overall survival (OS) and progression-free survival (PFS) in both

squamous cell carcinoma and non-squamous cell carcinoma, with

squamous cell carcinoma patients benefiting more significantly

(27). Studies have indicated that compared to non-squamous cell

carcinoma, lung squamous cell carcinoma exhibits higher PD-L1
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expression, higher tumor mutational burden (TMB), and a greater

density of functional TILs in the tumor microenvironment, factors

that collectively contribute to the enhanced therapeutic effects of

immunotherapy in squamous cell carcinoma patients (28).

In this study, the radiomics model based on intratumoral region

had an AUC of only 0.619 (sensitivity of 0.698, specificity of 0.587)

in the internal validation group. The peritumoral models showed

improvement in AUC compared to the intratumoral model
TABLE 6 The performance of different models in training and internal validation sets.

Model
Training set Internal validation set

AUC [95%CI] Sen Spe Pre Acc AUC [95%CI] Sen Spe Pre Acc

Clinical 0.612[0.55, 0.67] 0.947 0.242 0.766 0.752 0.563[0.44, 0.69] 0.947 0.247 0.768 0.752

T 0.679[0.62, 0.74] 0.648 0.604 0.810 0.636 0.619[0.49, 0.74] 0.698 0.587 0.823 0.667

P1 0.882[0.84, 0.92] 0.967 0.347 0.799 0.795 0.712[0.59, 0.83] 0.947 0.200 0.760 0.743

P2 0.746[0.69, 0.80] 0.687 0.655 0.840 0.679 0.662[0.54, 0.78] 0.670 0.660 0.834 0.667

P3 0.777[0.72, 0.83] 0.937 0.293 0.777 0.760 0.741[0.63, 0.85] 0.934 0.273 0.775 0.752

CR 0.889[0.85, 0.93] 0.964 0.613 0.868 0.867 0.810[0.71, 0.91] 0.921 0.533 0.840 0.810

CRC 0.897[0.86, 0.94] 0.977 0.630 0.874 0.881 0.814[0.71, 0.92] 0.947 0.567 0.851 0.838
fron
AUC, area under the curve; CI, confidence interval, Sen Sensitivity; Spe, Specificity, Pre, Precision; Acc, Accuracy; T, intratumor; P1, peritumoral 0-5mm; P2, peritumoral 5-10mm, P3,
peritumoral 10-15mm; CR, combined radiomics; CRC, combined radiomics+clinical.
A B

DC

FIGURE 3

The predictive performance of different models. The AUCs of different models in (A) training and (B) internal validation sets. (C) Delong test showed
that the model CR was significantly better than model T. By adding clinical independent risk factor to the model CR, the fusion model (CRC)
obtained the best predictive performance [AUC=0.814 (0.71, 0.92)]. (D) Receiver operating characteristic (ROC) curve of the fusion model (CRC) in
the external test set [AUC=0.768 (0.62, 0.91)].
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(ranging from 0.662 to 0.741) and higher sensitivity (ranging from

0.670 to 0.947) while their specificity was notably low (P1, P2,

P3 = 0.2, 0.273, 0.66, respectively). This pointed out that any

radiomics model based on single ROI either intratumoral region

or peritumoral region cannot achieve the ideal prediction ability in

predicting the effect of neoadjuvant immunochemotherapy

in NSCLC.

Prior studies, including one in which our center participated,

built prediction models focusing on intratumoral features to predict

MPR in NSCLC following neoadjuvant therapy and achieved

favorable results (26, 29). Considering that immune checkpoint

inhibitors exert their anti-tumor effects by influencing the tumor

and its surrounding immune microenvironment (30), it is crucial to

investigate the peritumoral microenvironment’s features and their

impact on immunotherapy. We extracted radiomics features from

both intratumoral and peritumoral regions in arterial-phase,

establishing a combined radiomics model with eight top-level

radiomics features (one feature from the intratumoral region and

the remaining seven from the peritumoral regions). Furthermore,

among the seven peritumoral top-level radiomic features, six were

texture features, including the common feature (log-glrlm-

LRHGLE) from P1 and P3. These results highly suggested that
Frontiers in Oncology 1017
the heterogeneity of the peritumoral microenvironment plays a

crucial role in neoadjuvant immunochemotherapy for NSCLC.

Moreover, when combining the intratumoral and peritumoral

models, there was a significant increase in predicting MPR

(AUC=0.810), achieving a relative balance between sensitivity and

specificity (0.921 and 0.533, respectively), resulting in a satisfactory

accuracy of 0.810.

The tumor microenvironment is composed of fibroblasts,

immune and inflammatory cells, as well as interstitial

components and microvessels (31). Several studies indicated a

correlation between peritumoral texture features and tumor-

infiltrating lymphocyte (TIL) density, and higher TIL levels are

associated with immune system activation for tumor suppression,

indicating a greater likelihood of responding to immunotherapy

(32, 33). The distribution of blood vessels in the peritumoral

environment also influences the efficacy of chemotherapy and

immunotherapy (34). Research by Vaidya P et al. demonstrated

that peritumoral texture features can reflect biological pathways

such as tumor vascular invasion and neovascularization (35).

Disorganized and irregular peritumoral blood vessels promote

tumor growth, inhibit the anti-tumor effects of drugs, and are

often associated with more heterogeneous radiomic features (17,
A B

DC

FIGURE 4

The calibration curves and decision curve analysis for different models. The calibration curves for different models in (A) training and (B) internal
validation sets showed the fusion model CRC had the smallest Brier score loss, which means it has the best predictive performance. The decision
curve analysis for the different models in (C) training and (D) internal validation sets showed that the fusion model CRC provided a better net benefit
than other radiomics models for the most of the threshold range.
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35). Additionally, it was demonstrated that different ranges of

peritumoral regions are associated with differences in treatment

response (36) and exhibit distinct texture feature expressions (37).

Our study confirmed a strong correlation between the peritumoral

microenvironment and neoadjuvant immunochemotherapy in

NSCLC. By incorporating different ranges of peritumoral

microenvironment texture features, the prediction model got

obvious improvement in predicting MPR.

Although the addition of independent clinical risk factor to

model CR resulted in a slight improvement in prediction

performance, there was no statistically significant difference in

AUC between CR and the best model CRC. This may suggest

that information contained within combined intratumoral and

peritumoral radiomics adequately capture the efficacy of

neoadjuvant immunochemotherapy for NSCLC, thus constraining

the representation of clinical factor in the model. However, this

requires further verification.

In addition, there is a clear difference in the proportion of MPR

patients between the two hospitals included in our study. Indeed,

according to a review on neoadjuvant therapy for non-small cell

lung cancer, the attainment of MPR varies significantly across

different studies, ranging approximately from 36.9% to 84.6%

after neoadjuvant immunochemotherapy (10). This variability

may be attributed to differences in the patient demographics,

disease stages at presentation, and the specific neoadjuvant

immunochemotherapy regimens. Based on the aforementioned

understanding, we consider the MPR proportions in both

hospitals in our study to still fall within a reasonable range. On

the other hand, despite the differences in patients and treatment

regimens at the two hospitals in our study, our research results still

demonstrate that the combined intratumoral and peritumoral

radiomics model achieves favorable predictive performance at

external center, possibly indicating the effectiveness and

robustness of this model.

Our research has several limitations. Firstly, the study was

retrospective and might be subject to selection bias. Secondly,

while the study included patients receiving neoadjuvant

immunochemotherapy, there were variations in the selection of

chemotherapy drugs and immune checkpoint inhibitors, as well as

differences in the treatment cycles. Therefore, it is essential to

unified treatment protocols or conduct a stratified study focusing

on different regimens in future research. Thirdly, the imaging data

from the two centers were obtained from different manufacturers

and multiple models of CT machines, which may introduce

inconsistencies in equipment parameters. Lastly, the sample size

of this study is limited, and it is necessary to further expand the

sample for future research.

In conclusion, our study constructed a CRC model comprising

intratumoral and peritumoral features and independent clinical risk

factors for predicting MPR in NSCLC patients receiving

neoadjuvant immunochemotherapy. The combined model

achieved an optimal predictive performance (AUC=0.814), and

successfully validated in an external center (AUC=0.768). This

provides a non-invasive and effective predictive approach for

clinical physicians to identify suitable NSCLC patients for

neoadjuvant immunochemotherapy.
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İnönü University, Türkiye
Dillip Kumar Bishi,
Rama Devi Women’s University, India

*CORRESPONDENCE

Yonghong Zhang

zhangyh@ccmu.edu.cn

Ronghua Jin

ronghuajin@ccmu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 18 December 2023
ACCEPTED 19 March 2024

PUBLISHED 27 March 2024

CITATION

Xiong Y, Qiao W, Wang Q, Li K, Jin R and
Zhang Y (2024) Construction and validation
of a machine learning-based nomogram to
predict the prognosis of HBV associated
hepatocellular carcinoma patients with high
levels of hepatitis B surface antigen in primary
local treatment: a multicenter study.
Front. Immunol. 15:1357496.
doi: 10.3389/fimmu.2024.1357496

COPYRIGHT

© 2024 Xiong, Qiao, Wang, Li, Jin and Zhang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 27 March 2024

DOI 10.3389/fimmu.2024.1357496
Construction and validation of a
machine learning-based
nomogram to predict the
prognosis of HBV associated
hepatocellular carcinoma
patients with high levels of
hepatitis B surface antigen in
primary local treatment: a
multicenter study
Yiqi Xiong1†, Wenying Qiao2,3†, Qi Wang4†, Kang Li5,
Ronghua Jin2,3* and Yonghong Zhang1*

1Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University,
Beijing, China, 2Research Center for Biomedical Resources, Beijing You’an Hospital Capital Medical
University, Beijing, China, 3National Center for Infectious Diseases, Beijing Ditan Hospital, Capital
Medical University, Beijing, China, 4Interventional Radiology Department, Beijing Friendship Hospital,
Capital Medical University, Beijing, China, 5Research Center for Biomedical Resources, Beijing You’an
Hospital, Capital Medical University, Beijing, China
Background: Hepatitis B surface antigen (HBsAg) clearance is associated with

improved long-term outcomes and reduced risk of complications. The aim of

our study was to identify the effects of levels of HBsAg in HCC patients

undergoing TACE and sequential ablation. In addition, we created a nomogram

to predict the prognosis of HCC patients with high levels of HBsAg (≥1000U/L)

after local treatment.

Method: This study retrospectively evaluated 1008 HBV-HCC patients who

underwent TACE combined with ablation at Beijing Youan Hospital and Beijing

Ditan Hospital from January 2014 to December 2021, including 334 patients with

low HBsAg levels and 674 patients with high HBsAg levels. The high HBsAg group

was divided into the training cohort (N=385), internal validation cohort (N=168),

and external validation cohort (N=121). The clinical and pathological features of

patients were collected, and independent risk factors were identified using

Lasso-Cox regression analysis for developing a nomogram. The performance

of the nomogram was evaluated by C-index, receiver operating characteristic

(ROC) curves, calibration curves, and decision curve analysis (DCA) curves in the

training and validation cohorts. Patients were classified into high-risk and low-

risk groups based on the risk scores of the nomogram.

Result: After PSM, mRFS was 28.4 months (22.1-34.7 months) and 21.9 months

(18.5-25.4 months) in the low HBsAg level and high HBsAg level groups

(P<0.001). The content of the nomogram includes age, BCLC stage, tumor
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size, globulin, GGT, and bile acids. The C-index (0.682, 0.666, and 0.740) and 1-,

3-, and 5-year AUCs of the training, internal validation, and external validation

cohorts proved good discrimination of the nomogram. Calibration curves and

DCA curves suggested accuracy and net clinical benefit rates. The nomogram

enabled to classification of patients with high HBsAg levels into low-risk and

high-risk groups according to the risk of recurrence. There was a statistically

significant difference in RFS between the two groups in the training, internal

validation, and external validation cohorts (P<0.001).

Conclusion: High levels of HBsAg were associated with tumor progression. The

nomogram developed and validated in the study had good predictive ability for

patients with high HBsAg levels.
KEYWORDS

hepatocellular carcinoma, hepatitis B surface antigen (HBsAg), TACE, ablation,
nomogram, recurrence
1 Introduction

Primary liver cancer is the sixth most common cancer and the

second leading cause of cancer death worldwide, which poses a huge

economic and disease burden worldwide due to its high morbidity

and mortality rates (1, 2). China is the country with the highest

hepatocellular carcinoma (HCC) occurrence and the overall

incidence of HCC is expected to continue to climb (3). HCC

occurs most often in the setting of chronic liver inflammation

and is mainly induced by hepatitis B virus (HBV) infection (4),

which is a key risk factor for liver cirrhosis and HCC, capable of

increasing the risk of HCC approximately 20-fold (5–7). For early

HCC, surgical resection, liver transplantation, and ablation are

recommended treatments. Studies have shown that ablation has

similar five-survival rates compared to surgical treatment, and fewer

complications than surgery (8, 9). However, the recurrence rate

after ablation remains high, with a five-year recurrence rate of 50-

70% (10). Transcatheter arterial chemoembolization (TACE) is the

only guideline-recommended global standard of care for

intermediate-stage HCC, and the median progression-free

survival time (mPFS) is only 5 months (11). Therefore, diagnosis

and treatment of HCC is an increasingly important public

health problem.

The first serologic marker of HBV infection is Hepatitis B

surface antigen (HBsAg), which can be detected from 2 to 12 weeks

after infection with HBV (12). HBsAg clearance, which is currently

regarded as the functional cure of chronic hepatitis (CHB), is

associated with improved long-term outcomes and reduced risk

of complications (13, 14). The decline in HBsAg during antiviral

therapy is relatively slow, and the seroclearance rate is faster at low

serum HBsAg expression (<1000U/L) (15, 16). Previous studies

revealed that high serum levels of HBsAg increase the risk of
0222
developing HCC and have a worse prognosis for patients who

have already developed HCC (17). Nevertheless, the prognostic

impact of serum HBsAg levels in patients after TACE sequential

ablation therapy needs to be further confirmed.

HBV-HCC prognosis is linked to several factors, including

tumor burden, AFP, disease stage, ALBI, and NLR (18, 19), and

there are also nomograms about HBV-HCC (20–22). However, no

nomogram for HCC patients with high HBsAg expression after

local treatment has been available to our knowledge. We compared

the effects of high levels of HBsAg (≥1000U/L) and low levels of

HBsAg (<1000U/L) in HCC patients undergoing TACE and

sequential ablation and utilized propensity score matching to

minimize selection bias. In addition, we created a nomogram to

predict the prognosis of HCC patients with high levels of HBsAg

after local treatment to more accurately guide the clinical decision.
2 Materials and methods

2.1 Patient selection

This study retrospectively evaluated 1008 HBV-HCC patients

who underwent TACE combined with ablation at Beijing Youan

Hospital and Beijing Ditan Hospital from January 2014 to

December 2021. The diagnosis of HCC was based on the

guideline of the America Association for the Study of Liver

Diseases (ASSLD) (1, 23). The patients at Youan Hospital

consisted of 553 patients with a high level of HBsAg and 334

patients with a low level of HBsAg. In order to build a reliable

model, the patients from Youan Hospital were divided into the

training cohort (N=385) and the validation cohort (N=168).

Furthermore, 121 patients from Ditan Hospital were used as an
frontiersin.org
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independent external verification cohort to verify the external

applicability of the nomogram. The inclusion criteria of patients

were as follows (1): Aged 18-80 years (2). received TACE combined

ablation (3). Child-Pugh classification was class A or B (4). all

patients had not received any other therapeutics before ablation.

Exclusion criteria were listed as follows (1): with second primary

malignant tumors (2). clinical follow-up data incomplete (3).

advanced HCC. (Figure 1).

The study was approved by the Medical Ethics Committee of

Youan Hospital and Ditan Hospital and was performed in

compliance with the standards of the Helsinki Declaration. The

requirement for informed consent was waived because the study

was deemed to pose no additional risk to patients and the data

were deidentified.
2.2 Clinicopathologic characteristics

The demographic, clinical, and histopathologic data of patients

were collected. Demographics included age, sex, drinking history,

smoking history, hypertension and diabetes. Clinical and

pathological data was composed of tumor size, tumor number,

alpha-fetoprotein (AFP), aspartate aminotransferase (AST), alanine

aminotransferase (ALT), gamma glutamyl transferase (GGT),

albumin (ALB), neutrophil-to-lymphocyte ratio (NLR), platelet-

to-lymphocyte ratio (PLR), and gamma glutamyl transferase to

lymphocyte ratio (GLR).
2.3 Treatment received

2.3.1 TACE procedure
TACE was conducted by experienced interventional

radiologists. Under local anesthesia, percutaneous right femoral

artery puncture with a modified Seldinger technique was

performed. Angiography was conducted by the 5-F (Terumo,

Tokyo, Japan) catheter to identify arterial supply to tumors and
Frontiers in Immunology 0323
to assess the patency of the portal vein. When applicable, a

microcatheter was inserted into the blood-supply artery of the

carcinoma to inject a mixture of doxorubicin (Pfizer Inc., New

York, NY, USA) and lipiodol (Guerbet, Villepinte, France), followed

by embolization using embolic materials, such as gelfoam or

polyvinyl alcohol particles. The blood flow was monitored until

complete vessel occlusion was observed. TACE was repeated

thereafter if the lesion is not completely necrotic and the active

portion exceeds 50% of the baseline value.

2.3.2 Ablation procedure
Performed under the guidance of computed tomography (CT)

and magnetic resonance imaging (MRI) by a qualified

interventionalist. The size of the tumor decided the number of

electrodes. Routine disinfection and intravenous anesthesia were

applied around the puncture points. During RFA, after measuring

the baseline impedance, the power was gradually increased from

80w to 200w to reach the maximum impedance. The electrode tip

temperature was kept below 20°C by the pump injected cold brine

into the electrode chamber. Moreover, to achieve complete ablation,

the safe margin for complete ablation of the tumor was 0.5cm. After

ablation, the needle track was ablated to prevent postoperative

bleeding and tumor implantation along the needle track.

Arteriography-enhanced CT was performed immediately after

treatment to evaluate the success of the procedure and

its complications.
2.3 Follow-up

All patients underwent regular follow-ups at the outpatient

clinics. Tumor responses were evaluated at approximately 4-6

weeks after ablation by using CT or MRI. For the follow-up

protocol, patients were examined every 3 months during the first

year and every 6 months thereafter. The contents of the follow-up

included blood tests, liver function, and imaging examination to

detect tumor recurrence. The study endpoint was recurrence-free
FIGURE 1

Screening flow chart of enrolled patients.
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survival (RFS), defined as the time from ablation to the

first recurrence.
2.4 Statistical analysis

Differences between the groups were compared through the t-

test, chi-square test, Mann-Whitney U test, and Kruskal-Wallis test,

with the purpose of providing median or counts and percentages to

summarize baseline variables. Survival and recurrence were

calculated using the Kaplan-Meier method, and the log-rank test

was used for comparison. Lasso regression was performed for risk

factor selection and identified independent risk factors for tumor

recurrence were used in Multivariate Cox regression analysis. A

nomogram based on independent risk factors to predict recurrence.

Subsequently, the performance of the nomogram was validated in

the internal validation and the external validation cohort.

According to the nomogram scores, the patients were classified as

low-risk and high-risk groups, and their recurrence rates were

predicted. The receiver operating characteristic (ROC) curves

were plotted and the area under the curves (AUCs) was

calculated to evaluate prognostic value. Calibration curves and the

Hosmer-Lemeshow test were conducted to assess the predictive

ability of the nomogram. To estimate the clinical utility of the

nomogram, decision curve analysis (DCA) was conducted by

calculating the net benefits for a range of threshold probabilities.

To reduce the potential selection bias, 1:1 propensity score

matching (PSM) was conducted, with a matching tolerance was 0.1.

Matches were made in baseline variables that were previously

considered clinically relevant in the literature, comprising age,

sex, Child-pugh classification, BCLC stage, tumor size, tumor

number, ALT, AST, and AFP.
Frontiers in Immunology 0424
All data were analyzed with SPSS (version 26.0, IBM, Armonk,

NY, USA) and R software (version 4.1.3) in this study, and a P-value

less than 0.05 was considered statistically significant (two-

tailed tests).
3 Result

A total of 1008 HBV-HCC patients from Beijing Youan

Hospital and Beijing Ditan Hospital were screened between

January 1, 2014, to December 31, 2021, including 334 patients

with low HBsAg levels and 674 patients with high HBsAg levels.

After PSM, 293 patients were included in each group (Figure 1). The

high levels of HBsAg groups were divided into the training cohort

(N=385), internal validation cohort (N=168), and external

validation cohort (N=121). The last follow-up until July 1, 2023,

and the median follow-up time was 4.05 years (25~75th percentiles,

2.68~7.05 years).

Before PSM, baseline data showed that compared to the low

HBsAg level group, the high HBsAg level group had a younger age

(55.9 ± 9.03 VS. 58.3 ± 8.34, P<0.001), lower levels of TBIL (18.64 ±

9.42 VS. 20.84 ± 11.37, P=0.002), and shorter TT (15.77 ± 2.12VS.

15.95 ± 2.39, P=0.008). After PSM, all demographic and

clinicopathologic data were well balanced between the two

groups (Table 1).

The internal validation cohort and the external validation

cohort had similar baseline characteristics to the training cohort.

In the three cohorts, the majority of the patients were male (81.0%

VS. 77.4%VS. 76.9%, p=0.466), and the average age was over 50

years(56.1 ± 9.10 VS. 56.6 ± 8.46 VS. 57.9 ± 8.57, P=0.466). Most

patients were Child-Pugh A (76.9%VS. 80.4% VS., P=0.427),

suggesting that the patients had good liver function. BCLC A had
TABLE 1 Demographics and clinical characteristics before and after PSM.

Before PSM After PSM

Low HBsAg
level (N=334)

High HBsAg
level (N=553)

P
value

Low HBsAg
level (N=293)

High HBsAg
level (N=293)

P
value

Age
Sex
male
female

58.3 ± 8.34

271 (81.1%)
63 (18.9%)

55.9 ± 9.03

439 (79.5%)
114 (20.5%)

<0.001
0.614

58.4 ± 8.40

233 (79.5%)
60 (20.5%)

58.6 ± 7.71

235 (80.2%)
58 (19.8%)

0.728
0.918

Diabetes
Yes
No

252 (75.4%)
82 (24.6%)

479 (75.9%)
74 (24.1%)

0.429
220 (75.1%)
73 (24.9%)

236 (80.5%)
57 (19.5%)

0.136

Child-Pugh
class
A
B
Cirrhosis
Yes
No
BCLC stage
0
A
B

246 (73.7%)
88 (26.3%)

43 (12.9%)
291 (87.1%)

97 (29.0%)
187 (56.0%)
50 (15.0%)

427 (77.3%)
126 (22.7%)

72 (13.1%)
481 (86.9%)

174 (31.4%)
291 (52.6%)
88 (16.0%)

0.244

0.989

0.604

216 (73.7%)
77 (26.3%)

38 (13.0%)
255 (87.0%)

86 (29.4%)
168 (57.3%)
39 (13.3%)

216 (73.7%)
77 (26.3%)

42 (14.3%)
251 (85.7%)

85 (29.0%)
156 (53.2%)
52 (17.7%)

1

0.718

0.315

(Continued)
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the highest percentage of patients (51.7% VS. 55.4% VS. 71.7%,

P=0.182). Regarding tumor characteristics, most tumors were

solitary (70.6% vs.71.4% VS. 67.8%, P=0.780) and tumor size was

less than 3cm (70.6% vs. 69.0% VS. 67.8%, P=0.150) (Table 2).
3.1 Efficacy

After PSM, mRFS was 28.4 months (22.1-34.7 months) and 21.9

months (18.5-25.4 months) in the high HBsAg level and low HBsAg

level groups, respectively (Figure 2). Because mRFS were

significantly shorter in the high HBsAg level (P<0.001), a

nomogram for predicting recurrence needs to be developed for

the high HBsAg group in order to prompt clinical interventions.
3.2 The prediction model was built based
on the Lasso-Cox regression

3.2.1 Independent prognostic factors of RFS
The cohort in Beijing Youan Hospital was randomly split in a

7:3 ratio into the training (N=385) and internal validation (N=168)

sets. The external validation cohort consisted of patients from

Beijing Ditan Hospital. There were no statistical differences

between the three groups (P<0.05), which showed that the data

grouping was random and reasonable. Lasso regression was used to

screen parameters, and the variation characteristics of the

coefficient of these variables were shown in Figure 3A. The model

exhibited outstanding performance and the least number of

independent variables (Figure 3B). The screened variables

included age, BCLC stage, tumor size, ALB, Palb, GLB, GGT, and
Frontiers in Immunology 0525
bile acids. Variables screened based on Lasso regression were

further subjected to multifactorial COX regression analysis to

screen independent risk factors associated with recurrence

(Table 3). The final results obtained were age (HR: 1.02, 95% CI:

1.01-1.04), BCLC stage (HR: 1.53, 95% CI: 1.22-1.91), tumor size

(HR: 1.44, 95% CI: 1.06-1.94), globulin (HR: 1.02, 95% CI: 1-1.04),

GGT (HR: 1.01, 95% CI: 1-1.01), and bile acids (HR: 1, 95% CI:

1-1.01).
3.2.2 Develop the nomogram
The independent predictors found by the Lasso-Cox regression

analysis were used to construct a nomogram (Figure 4). In the

training cohort, the C-index was 0.682(95%CI: 0.639-0.725), and

the time-dependent ROC curve demonstrated that AUCs of 1-, 3-,

and 5-year were 0.741, 0.723, and 0.687 (Figure 5). It indicated the

good predicting ability of our nomogram. The calibration curves of 1-

, 3-, and 5-year demonstrated satisfactory accordance between the

nomogram prediction and actual observation. In addition, the clinical

value of the nomogram was evaluated using DCA, which provided

the net benefits in reasonable threshold probability (Figure 6).

Patients were classified into two groups according to the score

of the nomogram: low-risk group and high-risk group. In the

training cohort, there were apparent variances in RFS (Figure 7)

between the low-risk group (N=193) and high-risk group

(N=192) (P<0.001).
3.2.3 Validate the nomogram
To further test the efficacy of the reliability and robustness of

our prognostic nomogram, internal and external validations were

conducted on the nomogram. In the internal and external
TABLE 1 Continued

Before PSM After PSM

Low HBsAg
level (N=334)

High HBsAg
level (N=553)

P
value

Low HBsAg
level (N=293)

High HBsAg
level (N=293)

P
value

T.N
Single
Multiple
T.S
<30mm
≥30mm
WBC (10^9/L)
NLR
MLR
Hb (g/L)
PLR
TBIL (umol/L)
GGT (U/L)
GLR
Fib (g/L)
TT (s)
Alb (g/L)
Palb (g/L)
ALT (U/L)
AST (U/L)
AFP (umol/L)

237 (71.0%)
97 (29.0%)

215 (64.4%)
119 (35.6%)
5.06±2.17
3.17±2.62
0.38±0.23
128±20
111.61±61.43
20.84±11.37
67.48±64.43
68.06±90.12
2.81±1.02
15.95±2.39
37.19±4.78
139.09±60.38
29.28±16.95
31.51±14.09
382.96±1930.96

378 (68.3%)
175 (31.7%)

357 (64.5%)
196 (35.5%)
5.22±2.16
3.28±2.84
0.37±0.21
131±19
108.78±54.90
18.64±9.42
68.15±58.89
69.12±84.74
2.84±0.88
15.77±2.12
37.21±4.88
139.32±58.59
32.55±19.96
32.27±15.66
341.67±1871.85

0.436

1

0.976
0.850
0.342
0.073
0.283
0.002
0.617
0.928
0.064
0.008
0.914
0.653
0.111
0.247
0.495

213 (72.7%)
80 (27.3%)

192 (65.5%)
101 (34.5%)
5.00 ± 2.10
3.21 ± 2.67
0.38 ± 0.234
129 ± 20.4
113 ± 62.6
21.2 ± 11.6
65.6 ± 58.7
67.5 ± 90.8
2.78 ± 0.99
16.0 ± 2.38
37.3 ± 4.85
140 ± 60.7
29.4 ± 17.0
31.6 ± 13.9
337 ± 1800

209 (71.3%)
84 (28.7%)

187 (63.8%)
106 (36.2%)
5.22 ± 2.22
3.43 ± 2.90
0.39 ± 0.216
131 ± 19.4
108 ± 51.7
19.4 ± 9.26
63.5 ± 53.7
64.0 ± 60.7
2.88 ± 0.92
15.8 ± 2.12
36.8 ± 4.94
131 ± 56.8
31.2 ± 19.6
32.4 ± 15.4
357 ± 1730

0.783

0.730

0.208
0.342
0.711
0.268
0.359
0.046
0.651
0.582
0.236
0.451
0.201
0.081
0.228
0.515
0.895
front
ALD, alcoholic liver cancer; BCLC, Barcelona Clinic Liver Cancer; T.N, tumor number; T.S, tumor size; WBC, leukocyte; Hb, hemoglobin; NLR, neutrophil-to-lymphocyte ratio; MLR, monocyte-
to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; ALB, albumin; GGT, gamma glutamyl transferase;
GLR, gamma glutamyl transferase to lymphocyte ratio; Palb, prealbumin; Fib, fibrous protein; TT, thrombin time; AFP, alpha-fetoprotein.
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TABLE 2 Demographics and clinical characteristics for training and
validation sets.

Training
Cohort
(N=385)

Internal
Validation
Cohort
(N=168)

External
Validation
Cohort
(N=121)

P-
value

Age

Mean ± SD 56.1 ± 9.10 56.6 ± 8.46 57.9 ± 8.57 0.150

Sex 0.466

Male 312 (81.0%) 130 (77.4%) 93 (76.9%)

Female 73 (19.0%) 38 (22.6%) 28 (23.1%)

Hypertension 0.617

No 292 (75.8%) 129 (76.8%) 97 (80.2%)

Yes 93 (24.2%) 39 (23.2%) 24 (19.8%)

Diabetes 0.559

No 310 (80.5%) 141 (83.9%) 101 (83.5%)

Yes 75 (19.5%) 27 (16.1%) 20 (16.5%)

Antiviral 0.137

No 158 (41.0%) 71 (42.3%) 62 (51.2%)

Yes 227 (59.0%) 97 (57.7%) 59 (48.8%)

Smoking 0.467

No 234 (60.8%) 94 (56.0%) 68 (56.2%)

Yes 151 (39.2%) 74 (44.0%) 53 (43.8%)

Cirrhosis 0.434

No 48 (12.5%) 27 (16.1%) 14 (11.6%)

Yes 337 (87.5%) 141 (83.9%) 107 (88.4%)

ChildPugh 0.182

A 296 (76.9%) 135 (80.4%) 86 (71.1%)

B 89 (23.1%) 33 (19.6%) 35 (28.9%)

BCLC 0.288

0 119 (30.9%) 56 (33.3%) 31 (25.6%)

A 199 (51.7%) 93 (55.4%) 70 (57.9%)

B 67 (17.4%) 19 (11.3%) 20 (16.5%)

T.N 0.780

Single 272 (70.6%) 120 (71.4%) 82 (67.8%)

Multiple 113 (29.4%) 48 (28.6%) 39 (32.2%)

T.S 0.150

<3cm 234 (60.8%) 116 (69.0%) 73 (60.3%)

≥3cm 151 (39.2%) 52 (31.0%) 39 (32.2%)

WBC
(10^9/L)

0.648

Mean ± SD 5.29 ± 2.22 5.15 ± 2.00 5.10 ± 2.17

NLR 0.892

(Continued)
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TABLE 2 Continued

Training
Cohort
(N=385)

Internal
Validation
Cohort
(N=168)

External
Validation
Cohort
(N=121)

P-
value

Age

Mean ± SD 3.31 ± 2.93 3.19 ± 2.80 3.34 ± 3.10

MLR 0.124

Mean ± SD
0.377
± 0.216

0.355 ± 0.196
0.41 ± 0.24

PLR 0.173

Mean ± SD 112 ± 58.8 102 ± 45.9 107 ± 56.2

ALT (U/L) 0.101

Mean ± SD 33.1 ± 20.6 30.7 ± 17.7 29.3 ± 15.6

AST (U/L) 0.180

Mean ± SD 33.0 ± 16.6 30.6 ± 13.0 33.5 ± 14.6

TBIL
(umol/L)

0.042

Mean ± SD 18.7 ± 9.59 18.6 ± 9.04 21.2 ± 12.2

DBIL
(umol/L)

0.777

Mean ± SD 6.41 ± 4.56 6.58 ± 4.40 6.19 ± 4.82

Total.alb
(g/L)

0.473

Mean ± SD 65.0 ± 8.52 64.6 ± 5.95 65.7 ± 6.74

Alb (g/L) 0.887

Mean ± SD 37.1 ± 5.11 37.3 ± 4.56 37.0 ± 4.72

Globulin
(g/L)

0.041

Mean ± SD 28.4 ± 5.65 27.4 ± 4.99 28.9 ± 6.11

GGT
(umol/L)

0.484

Mean ± SD 69.8 ± 60.3 70.0 ± 67.6 77.7 ± 74.7

GLR 0.362

Mean ± SD 69.8 ± 90.6 70.5 ± 77.9 83.6 ± 126

Bile.acid 0.852

Mean ± SD 21.8 ± 30.2 20.5 ± 26.0 22.2 ± 23.9

Fib (g/L) 0.348

Mean ± SD 2.85 ± 0.889 2.83 ± 0.896 2.71 ± 0.91

AFP
(umol/L)

0.707

Mean ± SD 412 ± 2240 266 ± 770 432 ± 2531
fron
BCLC, Barcelona Clinic Liver Cancer; ALD, alcoholic liver cancer; BCLC, Barcelona Clinic
Liver Cancer; T.N, tumor number; T.S, tumor size; WBC, leukocyte; NLR, neutrophil-to-
lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; DBIL,
direct bilirubin; ALB, albumin; GGT, gamma glutamyl transferase; GLR, gamma glutamyl
transferase to lymphocyte ratio; Fib, fibrous protein; AFP, alpha-fetoprotein.
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FIGURE 2

Kaplan-Meier plot of RFS for HBV-HCC after PSM.
A

B

FIGURE 3

Screening of variables based on Lasso regression. (A) The variation characteristics of the coefficient of variables. (B) the selection process of the
optimum value of the parameter l in the Lasso regression model by cross-validation method.
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validation cohorts, the C-indexes of the nomogram for predicting

the RFS were 0.666 (95%CI: 0.613-0.719) and 0.74 (95%CI: 0.696-

0.783). The time-dependent ROC revealed that the AUCs of 1-, 3-,

and 5-year were 0.702, 0.704, 0.684, 0.792, 0.734, and 0.770 in the

internal and external validation cohorts (Supplementary Figure S1).

The calibration curves also matched well (Supplementary Figure

S2), and the DCA curves of 1-, 3-, and 5-year had good clinical

practicability (Supplementary Figure S3).

The patients in two validation cohorts were also divided into

high-risk and low-risk groups. The recurrence rates in the high-risk

groups were significantly higher in the low-risk groups (P<0.001)

(Supplementary Figure S4).
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4 Discussion

HCC is one of the most common malignant tumors in the

world. In China, the major etiology of the HCC is the HBV

infection, which can promote the development and metastasis of

the HCC (10, 24, 25). With the use of 1:1 PSM, our study found that

the high level of HBsAg had a higher risk of recurrence than the low

level of HBsAg. Consequently, our study is the first to focus on the

high level of HBsAg patients who underwent TACE combined

ablation to develop and validate a nomogram, which will hopefully

predict the recurrence in H-HBsAg patients (High level of HBsAg).

At present, there is a lack of a recurrence prediction model for H-

HBsAg. We simultaneously created a nomogram by Lasso-Cox

regression to accurately predict the prognosis of H-HBsAg patients.

The nomogram contains seven factors to produce the

probability of an individual-specific clinical event, including age,

tumor size, BCLC stage, globulin, GGT, and bile acid. The scores of

the nomogram were obtained by drawing a vertical line at the

location of the corresponding total score so that it intersected the

three lines predicting the risk of recurrence, and the values shown at

the intersection were predicted RFS at 1, 3, and 5 years. The C-index

and AUCs of the training cohort and validation cohorts were

similar, demonstrating adequate discrimination ability. The

calibration curves presented the good prediction performance of

the nomogram. Moreover, the nomogram indicated reliable clinical

applicability by DCA curves. Patients were divided into two

different risk groups according to the nomogram, and RFS was

clearly different(P<0.001), which illustrated that our nomogram had

a better ability to distinguish H-HBsAg patients to determine the

risk of relapse after ablation therapy.
TABLE 3 Cox proportional hazards regression to predict recurrence
based on Lasso regression.

Variables b Z HR
(95%CI)

P value

Age 0.025 3.51 1.02
(1.01-1.04)

<0.001

BCLC 0.423 3.69 1.53
(1.22-1.91)

<0.001

T.S
Alb
Palb

0.364
-0.004
-0.001

2.37
-0.25
-0.895

1.44 (1.06-
1.94)
0.99 (0.96-
1.03)
0.99 (0.99-1)

0.018
0.804
0.371

Globulin
GGT
Bile.acid

0.022
0.006
0.005

2.02
6.5
2.68

1.02 (1-1.04)
1.01 (1-1.01)
1.00 (1-1.01)

0.043
<0.001
0.007
BCLC, Barcelona Clinic Liver Cancer; T.S, tumor size; Palb, prealbumin; GGT, gamma
glutamyl transferase.
FIGURE 4

Nomogram, including Age, tumor number, BCLC stage, Globulin, GGT, and Bile acid for 1-, 3-, and 5- years recurrence free survival (RFS) in HCC
patients with high HBsAg levels in AFP. The nomogram is valued to obtain the probability of 1-, 3-, and 5- years recurrence by adding up the points
identified on the points scale for each variable. T.S, tumor size; BCLC, Barcelona Clinic Liver Cancer; GGT, gamma glutamyl transferase.
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A

B

D

E

FC

FIGURE 6

Calibration curves and decision curves analysis for recurrence of the nomogram in the training cohort. (A) One-year calibration curve in the training
cohort. (B) Three-year calibration curve in the training cohort. (C) Five-year calibration curve in the training cohort. (D) One-year decision curve analysis
in the training cohort. (E) Three-year decision curve analysis in the training cohort. (F) Five-year decision curve analysis in the training cohort.
FIGURE 5

1-, 3-, and 5-year ROC curves of the nomogram in the training cohort.
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The number and size of tumors suggested strong tumor

aggressiveness and poor prognosis of HCC, which was currently

uncontroversial and needed not to be described here. Liver weight

and portal blood flow velocity are reduced in the elderly, resulting in

less reparability of the young body. Elderly people have lower

immunity and faster tumor progression after treatment, leading to

higher recurrence rates and worse prognosis (26, 27). At present, the

BCLC system is regarded as an optimal staging system for tumor

stage, treatment regimens, and expected survival. The expected

survival rate is 50-70% for patients who are BCLC A at 5 years (28,

29). When we combined BCLC with other independent prognostic

factors, the predictive value for prognosis could improve. GGT may

be involved in the balance of oxidant and anti-oxidation, leading

to sustained oxidative stress in tumor cells, which can contribute to

the process of cancer (30, 31). Various proinflammatory proteins,

including immunoglobulins, C-reactive protein, a2 macroglobulin,

and fibrinogen are globulins (32, 33). Since human immunoglobulins

are mainly metabolized by the liver, patients with severe hepatic

dysfunction have a reduced ability to clear immunoglobulins, causing

hyperglobulinemia (34, 35). Bile acid synthesis occurs in liver cells

and is the end product of cholesterol metabolism (36). The Systemic

homeostasis of bile acid mainly depends on its enterohepatic

circulation process, which is of great significance for nutrient

absorption and distribution, metabolic regulation, and homeostasis

(37). Bile acid metabolism is implicated in tumor progression and

hydrophobic bile acids are promoters of HCC (38, 39). Besides,

reduced Farnesoid X (FXR) receptor signaling during hepatic

inflammation induces to decrease in bile acid transporter proteins,

resulting in elevated bile acids and persistent hepatic inflammation,

which promote the development of HCC (40, 41).

The presence of HBsAg is a serologic marker of HBV infection

and is used in clinical diagnosis (42, 43). HBsAg appears 1-2 weeks

after exposure to HBV and precedes the onset of clinical symptoms
Frontiers in Immunology 1030
and other serologic biochemical indicators of infection. There are

still 257 million carriers of HBsAg despite the availability of

antiviral therapeutics (44, 45). Many studies showed that the

spontaneous HBsAg seroconversion rate was 1% and the presence

of persistent HBsAg was associated with a high risk of HCC and a

worse prognosis (46, 47). Previous studies by our team have also

reported that the prognosis of HCC patients with negative HBsAg

expression was better than that with positive HBsAg expression

(48). In our study, we investigated the role of HBsAg levels in the

recurrence of HCC after local treatment and used PSM to reduce

bias. The results revealed that HBV-HCC patients with high HBsAg

levels have worse prognosis than those with low HBsAg levels.

In the BCLC Guideline, TACE is recommended for BCLC

intermediate stage B HCC. For early-stage HCC, TACE can mark

the tumor and achieve tumor downstaging, thereby declining the time

and increasing the success rate of ablation (49). Foreign and domestic

studies have suggested that combination therapy by TACE and

ablation improved overall and progression-free survival compared

with TACE alone (50, 51). Unlike the conventional univariate analysis,

the LASSO regression that we used aimed to select variables for Cox

regression to avoid overfitting. Also, the nomogram can be validated

by both internal and external validation because our study was a

multicenter retrospective study. Simultaneous examination of

comprehensive patient features covering demographics, liver

function, tumor load, tumor markers, and inflammatory markers

was a major strength of our study. The consists of our nomogram are

simple and easy to obtain so that the clinicians are able to evaluate the

patient’s condition in a timely and effective manner.

Several limitations of our study should be addressed. The first one

of them is the retrospective nature and it is necessary to strengthen the

conclusions by further validations in large prospective studies. Because

as a retrospective study, there is inevitable selection bias. Although

internal and external validations were conducted by a larger
FIGURE 7

Kaplan-Meier plots of RFS for the low-risk group and high-risk group in the training cohort.
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multicenter sample, external validations from other centers are still

required in the future. Besides, the patients included in our study all

received TACE combined with ablation. Whether the nomogram

would be suitable for other treatments such as surgery and liver

transplantation requires further investigation. Lastly, the study was

conducted only in China, where hepatitis B virus is the principal cause

of HCC. Thus, generalizing to other populations in which HBV is not

a major causative factor for HCC must be carried out with caution.

Nevertheless, we used up to eight years of follow-up to create an

accurate and reliable nomogram to better guide clinical practice for

this group of HCC patients with high levels of HBsAg. In general,

high-risk patients needed more frequent clinical surveillance and

appropriate interventions to prevent recurrence and progression.
5 Conclusion

In summary, high levels of HBsAg were associated with tumor

progression and poor prognosis. For high levels of HBsAg patients,

we created an accurate and reliable nomogram to predict recurrence

based on the Lasso-Cox regression analysis. The nomogram,

including age, BCLC stage, tumor size, globulin, GGT, and bile

acids, demonstrated adequate discrimination ability, which could

better guide the clinical decisions.
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SUPPLEMENTARY FIGURE 1

A. 1-, 3-, and 5-year ROC curves of the nomogram in the internal validation cohort.
B. 1-, 3-, and 5-year ROCcurves of the nomogram in the external validation cohort.

SUPPLEMENTARY FIGURE 2

Calibration curves for recurrence of the nomogram in the validation cohorts.

(A)One-year calibration curve in the internal validation cohort. (B) Three-year
calibration curve in the internal validation cohort. (C) Five-year calibration

curve in the internal validation cohort. (D) One-year calibration curve in the
external validation cohort. (E) Three-year calibration curve in the external

validation cohort. (F) Five-year calibration curve in the external
validation cohort.

SUPPLEMENTARY FIGURE 3

Decision curves analysis for recurrence in the internal validation cohort.

(A) Decision curve analysis for one-year RFS in the internal validation
cohort. (B) Decision curve analysis for three-year RFS in the internal

validation cohort. (C) Decision curve analysis for five- year RFS in the
internal validation cohort. (D) Decision curve analysis for one-year RFS in

the external validation cohort. (E)Decision curve analysis for three-year RFS

in the external validation cohort. (F) Decision curve analysis for five- year
RFS in the external validation cohort.

SUPPLEMENTARY FIGURE 4

(A) Kaplan-Meier plots of RFS for the low-risk group and high-risk group in
the internal validation cohort. (B) Kaplan-Meier plots of RFS for the low-risk

group and high-risk group in the external validation cohort.
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Background: Prostate cancer (PCa) is the second most prevalent malignant 
tumor in male, and bone metastasis occurs in about 70% of patients with 
advanced disease. The STING pathway, an innate immune signaling mechanism, 
has been shown to play a key role in tumorigenesis, metastasis, and cancerous 
bone pain. Hence, exploring regulatory mechanism of STING in PCa bone 
metastasis will bring novel opportunities for treating PCa bone metastasis.

Methods: First, key genes were screened from STING-related genes (SRGs) based 
on random forest algorithm and their predictive performance was evaluated. 
Subsequently, a comprehensive analysis of key genes was performed to explore 
their roles in prostate carcinogenesis, metastasis and tumor immunity. Next, 
cellular experiments were performed to verify the role of RELA in proliferation 
and migration in PCa cells, meanwhile, based on immunohistochemistry, 
we verified the difference of RELA expression between PCa primary foci and 
bone metastasis. Finally, based on the key genes to construct an accurate and 
reliable nomogram, and mined targeting drugs of key genes.

Results: In this study, three key genes for bone metastasis were mined from 
SRGs based on the random forest algorithm. Evaluation analysis showed 
that the key genes had excellent prediction performance, and it also showed 
that the key genes played a key role in carcinogenesis, metastasis and tumor 
immunity in PCa by comprehensive analysis. In addition, cellular experiments 
and immunohistochemistry confirmed that overexpression of RELA significantly 
inhibited the proliferation and migration of PCa cells, and RELA was significantly 
low-expression in bone metastasis. Finally, the constructed nomogram showed 
excellent predictive performance in Receiver Operating Characteristic (ROC, 
AUC  =  0.99) curve, calibration curve, and Decision Curve Analysis (DCA) curve; 
and the targeted drugs showed good molecular docking effects.

Conclusion: In sum, this study not only provides a new theoretical basis for the 
mechanism of PCa bone metastasis, but also provides novel therapeutic targets 
and novel diagnostic tools for advanced PCa treatment.
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1 Introduction

Prostate cancer (PCa) is the second most prevalent malignant tumor 
in the male population, with about 20% of male individuals developing 
the disease at some point. As a highly aggressive tumor, most advanced 
PCa patients are diagnosed with multiple metastasis throughout the 
body, mainly in lymph nodes near the prostate, distal lymph nodes, bone, 
as well as internal organs such as the liver, lungs, and brain (1, 2). Among 
the distal metastasis of PCa, bone is most common site of colonization, 
and approximately 70% of advanced PCa patients are diagnosed with 
bone metastasis (3). Once bone metastasis occurs, the disease is incurable 
and is significantly associated with mortality (4–6). Tumor growth in the 
bone can cause pain, hypercalcemia, anemia, fracture, and other adverse 
events, all of which severely impact the patient’s survival status and 
quality of life (7, 8). The tumor bone pain usually presents as a persistent 
dull ache that increases in intensity over time and reaches a level not 
relieved by opioids (9, 10). Neurological dysfunction, pain, anxiety and 
depression due to bone metastasis are devastating for patients, severely 
affecting their quality of life and significantly increasing mortality (7, 9, 
11–13). With the continuous iterative updating of treatment regimens, 
the median survival of PCa patients has been significantly prolonged, 
leading to an elevated incidence of bone metastasis, making this 
phenomenon even more clinically relevant (14). However, the current 
detection of metastasis is minimal, and it is estimated that only about 
0.02% of cancer cells entering the blood circulation will produce 
clinically detectable metastasis (15). Once metastasis occurs, it is 
responsible for approximately 90% of all deaths (16). Therefore, there is 
an urgent need to increase our understanding of the cellular and 
molecular mechanisms involved in PCa bone metastasis to improve the 
prognosis of patients with bone metastasis.

As studies have progressed in recent years, researchers have found 
a strong link between tumor immunity and bone metastasis. Due to 
the strong similarities with inflammation, cancer has long been 
described as a wound that cannot be healed (17, 18). During routine 
wound healing, the body terminates the immune response in a timely 
manner through various immune regulatory mechanisms (19), 
whereas in tumors, the uncontrolled inflammatory response becomes 
a powerful driver of tumorigenesis (20–22). The STING pathway is a 
vital transduction mechanism in innate immunity and viral defense, 
and it also plays a crucial role in carcinogenesis and development (23). 
Substantial evidence that STING activators (DMXAA and ADU-S100) 
can inhibit tumor progression and increase survival in an adaptive 
immune cell-dependent manner (24–27). Studies have shown an 
essential link between chromosomal instability and tumor metastasis 
and that cell membrane dsDNA produced by persistent chromosome 
segregation errors is sensed by the STING pathway (28, 29). In brain 
metastasis from breast cancer, tumor cells communicate with adjacent 
astrocytes by producing cAMP signals that activate the STING 
signaling pathway to release inflammatory factors, leading to tumor 
and metastasis progression (30). In addition, in prostate, breast, and 
lung cancers, STING signaling can also promote or inhibit the onset 
and progression of bone metastasis by modulating immune cells (31–
35). Based on synergistic effects on injury receptors, immune cells, 
and osteoclasts, the STING pathway is also significant in regulating 
cancerous bone pain (36). Since the STING pathway plays a critical 
role in bone metastasis, exploring its regulatory mechanism in PCa 
bone metastasis will bring novel opportunities for treating PCa 
bone metastasis.

In this study, we  mined three key genes related to PCa bone 
metastasis from STING-related genes (SRGs) based on the random 
forest machine learning algorithm, constructed an accurate 
nomogram, and discovered several targeted drugs for key genes. These 
findings provide novel ideas to improve treatment strategies for 
patients with advanced PCa.

2 Methods

2.1 Cell culture and transfection

The human PCa cell line (DU145 and PC3) was purchased from the 
America Type Culture Collection (ATCC, United States). Meanwhile, 
the cells were inoculated in 1640 medium (Saimikebio; China) 
containing 10% FBS (ExCell Biology, Inc., Shanghai, China) and 1% 
penicillin–streptomycin (100 IU/mL; Hyclone; Cytiva), and then placed 
in certain environments (37°C and 5% CO2) to culture. The RELA-
overexpression plasmid was purchased from YouBio Biotechnology Co., 
Ltd. (Hunan, China). Transfection was performed using lipofectamine 
3000 (Invitrogen) according to the manufacturer’s instructions.

2.2 Cell proliferation assay

Cell proliferation was measured using the CCK-8 assay. Inoculate 
DU145 and PC3 cells transfected with RELA-overexpression plasmid 
and transfected with GFP control plasmid in 96-well plates (5,000 
cells/well). After a period of incubation, 10ul of CCK-8 solution was 
added to each well. Optical density (OD) value was evaluated using a 
microplate reader at 450 nm 2 h later.

2.3 Cell migration assay

Cell migration was assessed by transwell assay. 2.5 × 104 DU145 
and PC3 cells transfected with RELA-overexpression plasmid and 
transfected with GFP control plasmid were inoculated into the upper 
chamber of the transwell. After 24 h of incubation in the incubator, use 
a moistened cotton swab to carefully wipe off the cells that did not pass 
through the holes, and then add crystal violet to stain the chamber and 
take photographs.

Cell migration was also measured using wound healing assay. 
DU145 and PC3 cells transfected with RELA-overexpression plasmid 
and transfected with GFP control plasmid were inoculated in 6-well 
culture plates. After the cell fusion rate reached 90%, the cell layer was 
scratched using the tip of a sterile lance tip. Next, after washing with 
PBS, the culture was continued with serum-free 1,640 medium, and 
the fixed sites were photographed using a light microscope at 0, 12, 
and 24 h.

2.4 Immunohistochemistry

Paraffin sections of PCa primary foci and bone metastasis were 
obtained from the Department of Pathology with the approval of the 
Ethics Committee of our Medical Center. First, the paraffin sections 
were dewaxed in an environmentally friendly dewaxing solution and 
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hydrated in a gradient ethanol series, and heat-mediated antigenic 
repair was performed on them in a microwave oven using the citric 
acid antigen repair solution; next, the sections were incubated with an 
endogenous peroxidase blocking agent (3% H2O2) for 25 min at room 
temperature and protected from light; subsequently, circles were 
drawn with a immunohistochemical pen, and section sealing was 
operated with 3% BSA; Finally, immunohistochemical staining was 
performed according to standard procedures.

As for the immunohistochemical staining operation. First, 
paraffin sections were incubated with RELA primary antibody 
(Servicebio, GB11997, 1:1,000) overnight at 4°C; next, sections were 
incubated with secondary antibody (goat anti-rabbit IgG) for 50 min 
at room temperature; subsequently, sections were stained sequentially 
using DAB and hematoxylin; finally, the stained sections were 
dehydrated in ethanol and xylene and sealed with neutral resin. 
Immunohistochemical images were obtained based on a light 
microscope (E100, Nikon, Japan).

2.5 Data collection and preprocessing

GEO1 is a free and publicly available gene expression database 
containing many diseases. We  downloaded the gene expression 
dataset (GSE32269) containing PCa primary foci and bone metastasis 
from this database. Based on the annotation files of the corresponding 
platforms, we matched probes to their gene symbols on the dataset. 
Those with larger mean values were selected for retention when 
duplicate probes existed. Subsequently, based on a clustering 
algorithm, outlier samples were removed before subsequent analysis. 
Finally, 103 SRGs were obtained from the GeneCards database.2

2.6 Identification and evaluation of key 
genes

The SRGs were initially downscaled by a univariate logistic 
regression algorithm, and the genes that satisfied the p-value < 0.05 
were considered candidate genes. Next, the candidate genes were 
assigned MDA and MDG values based on the random forest 
algorithm. MDA and MDG are two key indicators for assessing the 
importance of a variable by the random forest algorithm, and the 
larger of these two indicates the higher importance of the 
corresponding variable. Subsequently, genes ranked in the top 5 of 
MDA and MDG were cross-analyzed to filter out key genes. Finally, 
the predictive performance of the key genes was assessed by the 
Receiver Operating Characteristic (ROC) curve and confusion matrix.

2.7 Biological function exploration of key 
genes

First, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis, and Gene set enrichment analysis 

1  www.ncbi.nlm.nih.gov/geo/

2  www.genecards.org

(GSEA) analysis were performed to initially explore the key genes’ 
biological functions. Subsequently, correlation and differential 
expression analyses were performed to explore the internal 
connections of the key genes and their function in PCa with bone 
metastasis. Then, based on the intOGen database3 and the Depmap 
database,4 we explored the role of key genes in PCa carcinogenesis. 
Subsequently, through the Gene Set Cancer Analysis database 
(GSCA),5 we explored the regulation of key genes by copy number 
variation (CNV) and methylation. Finally, regulatory miRNAs for key 
genes included in miRecords, miRTarBase, and TarBase databases 
were obtained based on the “multiMiR” R package, and miRNA-
mRNA regulatory networks were mapped using the Cytoscape 
software (V 3.9.1).

2.8 Immune analysis of key genes

Here, the single sample gene set enrichment analysis (ssGSEA) 
algorithm was used to calculate the degree of infiltration for 28 types 
of immune cells for each sample in the dataset. And by observing the 
immune microenvironment differences between primary and bone 
metastatic foci, the correlation between immune cells and metastasis, 
and the correlation between key genes and immune cells, we aimed to 
unearth the influence of key genes on PCa bone metastasis at the 
immune level. Meanwhile, the differential expression of several 
common immune checkpoints between primary and metastatic foci 
and the correlation between key genes and immune checkpoints were 
explored, aiming to explore the value of key genes in immunotherapy.

2.9 Molecular functional validation of RELA

Bioinformatic analysis showed that all three key genes play critical 
roles in prostate cancer bone metastasis, among which RELA is of 
particular attention. Therefore, in this study, the molecular function 
of RELA in prostate cancer metastasis was verified based on cell 
proliferation and migration assays after overexpression of RELA in 
prostate cancer cells using the RELA plasmid. Finally, the protein 
expression of RELA was explored by immunohistochemistry between 
PCa primary foci and bone metastasis foci, aiming to validate the 
differential expression of this gene between different pathological 
tissues at the protein level.

2.10 Construction of nomogram and 
prediction of targeted drugs

At the end of this study, we constructed a nomogram based on key 
genes, aiming to provide a new diagnostic tool for clinicians. 
Meanwhile, the accuracy and reliability of the nomogram were 
evaluated and validated by ROC curve, Calibration curve, and 
Decision Curve Analysis (DCA) curve. In addition, to further validate 
the predictive performance of the three key genes and the nomogram, 

3  www.intogen.org/search

4  www.depmap.org/portal/

5  https://guolab.wchscu.cn/GSCA/#/
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we performed 200 times 5-Fold cross-validation. Next, the targeted 
drugs for the key genes were predicted based on the Enrichr database6 
(37). Subsequently, molecular docking was performed between 
targeted drugs and key genes with top 5 combined score using the 
Ledock software. The 3D structure data of proteins and targeted drugs 
were obtained from the RSCB-PDB database7 and the PubChem 
database,8 respectively. Finally, molecular docking was visualized 
using the Pymol software.

3 Results

3.1 Identification and evaluation of key 
genes

Here, we  obtained gene expression data of 84 SRGs from 
GSE32269 dataset. Meanwhile, 40 samples were included by cluster 
analysis for this analysis (Supplementary Figure  1). Based on the 
univariate logistic regression algorithm, we  performed an initial 

6  https://maayanlab.cloud/Enrichr/#

7  https://www.rcsb.org/

8  https://pubchem.ncbi.nlm.nih.gov/

downscaling of the 84 SRGs and 24 genes with p-value < 0.05 were 
identified as candidate genes (Table 1). Subsequently, the MDA and 
MDG values of the 24 genes were calculated using the random forest 
algorithm, and genes with negative MDA or MDG values were 
excluded (Figure 1A). Then, we performed cross-tabulation analysis 
on the genes ranked in the top five of MDA and MDG and finally 
obtained three key genes (TREX1, RELA, and CASP8), which was 
shown in Figure 1B.

Finally, we evaluated the prediction accuracy of the three key 
genes based on the ROC and confusion matrix. The ROC curves 
showed that the AUC values of the three key genes were 0.9123, 
0.9023, and 0.7744, respectively, which indicated that the three key 
genes had a high prediction accuracy (Figures 1C–E). In addition, as 
shown in Figures 1F–H, the confusion matrix also indicated that the 
key genes had good prediction performance.

3.2 Biological function exploration of key 
genes

To explore the biological functions of the key genes, 
we performed GO analysis, KEGG analysis, and GSEA analysis. As 
shown in Figure 2A, GO analysis showed that the key genes were 
mainly involved in response to tumor cell, regulation of T cell 
receptor signaling pathway, regulation of innate immune response, 
mismatch repair (BP, Biological Process); replication fork, 
oligosaccharyltransferase complex, nuclear replication fork (CC, 
Cell Component); tumor necrosis factor receptor superfamily 
binding, mismatch repair complex binding, DNA binding, bending, 
chromatin DNA binding (MF, Molecular Function). The results 
suggest that key genes are involved in the regulation of tumors as 
well as immune-related mechanisms. Furthermore, KEGG also 
confirmed this result from another aspect. The KEGG analysis 
showed that the key genes were mainly enriched in tumor and 
immune-related signaling pathways, such as the TNF signaling 
pathway, Viral carcinogenesis, p53 signaling pathway, Pancreatic 
cancer, RIG−I−like receptor signaling pathway, IL-17 signaling 
pathway, etc. (Figure  2B). It is well known that Ecm-Receptor 
Interaction, Cell Cycle, and Homologous Recombination are key 
signaling pathways in tumorigenesis. And the Ecm-Receptor 
Interaction also plays a crucial role in PCa bone metastasis (38–40). 
Subsequent GSEA analysis showed that TREX1 and RELA inhibited 
the activation of Ecm-Receptor Interaction, Cell Cycle, and 
Homologous Recombination, while CASP8 was involved in the 
activation of these three signaling pathways (Figures 2C–E).

Correlation analysis showed a strong internal correlation between 
the three key genes and was closely associated with bone metastasis 
(Figure 3A). Differential expression analysis showed that three key 
genes had significant expression differences in primary foci and bone 
metastatic foci tissues (Figures 3B–D), demonstrating that the key 
genes play critical roles in developing PCa bone metastasis. Tumor 
driver genes play a crucial role in tumorigenesis. Chronos Score is a 
metric in the Depmap database to assess the degree of impact on cell 
proliferation after gene knockdown, and a more negative value 
indicates a greater impact of the gene on cell proliferation (41). As 
shown in Figures 3E,F, the three key genes were significantly correlated 
with multiple PCa driver genes; and the Chronos Score of TREX1 and 
RELA, except CASP8, were negative in prostate tumor cells. The above 

TABLE 1  Univariate logistic regression results of 24 candidate genes.

Gene OR CI (5–95%) P-value

XRCC6 0.03 0–0.47 0.01

TRIM56 0.1 0.02–0.44 0

TREX1 0 0–0.15 0

TRADD 0.08 0.01–0.56 0.01

STAT6 0.36 0.15–0.83 0.02

RELA 0 0–0.04 0

PRKDC 8.66 2.02–37.12 0

POLR3K 6.82 1.26–37.01 0.03

POLR3C 13.6 1.7–108.7 0.01

POLR2L 12.78 2.01–81.3 0.01

POLR1D 3.03 1.04–8.83 0.04

NFKB2 3.81 1.06–13.76 0.04

NFKB1 0.01 0–0.23 0

MRE11 11.26 2.35–54.03 0

MAVS 8.79 1.58–48.96 0.01

IL6 0.07 0.01–0.44 0

IKBKE 5.05 1.32–19.24 0.02

IFNA7 3.71 1–13.81 0.05

IFNA21 3.5 1.18–10.4 0.02

IFNA10 5.06 1.59–16.15 0.01

IFI16 3.49 1.32–9.19 0.01

DTX4 9.65 1.97–47.17 0.01

DHX9 2.53 1.25–5.11 0.01

CASP8 4.75 1.26–17.91 0.02
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results demonstrated that the three key genes also play critical roles in 
PCa development.

The CNV, methylation, and miRNA are critical parts of the gene 
expression regulatory network, hence we also analyzed the effects of 
CNV, methylation, and miRNA on key genes. The results showed that 
in CNV, the three key genes were significantly positively correlated 
with CNV; while in methylation, TREX1 and RELA were significantly 
negatively correlated with methylation, except for CASP8, which was 
positively correlated with methylation (Figure 3G); meanwhile, the 
miRNA-mRNA regulatory network showed that a total of 128 
miRNAs were involved in the regulation of three key genes, and 9 
miRNAs were involved in the regulation of several key genes, among 
which has-miR-155-5P and has-miR-16-5P were noteworthy 
(Figure 3H).

In conclusion, three key genes play an essential role in the 
development and metastasis of PCa. And in the process of bone 
metastasis, TREX1 and RELA are protective factors, while CASP8 is a 
risk factor.

3.3 Immune analysis of key genes

The above studies revealed that key genes were involved in the 
immune regulation of tumors, so we explored the key genes in the 
immune-related mechanisms of PCa bone metastasis. Analysis of 
immune infiltration differences showed that 14 immune cells had 
significant infiltration differences between primary and metastatic foci 
(Figure 4A). Studies have shown that four types of immune cells, 
Macrophage, Myeloid derived suppressor cell, Regulatory T cell, and 
Plasmacytoid dendritic cell promote PCa bone metastasis (32, 42–44). 
Meanwhile, correlation analysis showed that TREX1 was closely 
associated with a variety of immune cells and was significantly 
negatively correlated with three types of bone-metastasis-promoting 
immune cells (Regulatory T cells, Myeloid derived suppressor cells, 
and Plasmacytoid dendritic cells); RELA was significantly negatively 
correlated with two types of bone-metastasis-promoting immune cells 
(Regulatory T cells and Plasmacytoid dendritic cells); whereas CASP8 
showed an opposite correlation trends (Figure 4B). Of course, tumor 

FIGURE 1

Identification and evaluation of key genes. (A) MDA and MDG ordering of candidate genes; (B) Identification of key genes; (C–E) ROC curve of TREX1, 
RELA, and CASP8; (F–H) Confusion matrix of TREX1, RELA, and CASP8.
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immunity is a very complex biological regulatory network, and a 
variety of immune cells (CD8 T cells, Natural killer cells, and 
Monocytes) have been also shown to play important roles in tumor 
bone metastasis (45–47). The molecular mechanisms between the 
three key genes and the four bone-metastasis-promoting immune cells 
as well as other types of immune cells are complex and need to 
be explored by subsequent in-depth studies.

Immune checkpoints have been a hot research topic in the field of 
oncology, and in this study, we found that CD-200 and PD-1 were 
significantly highly expressed in bone metastatic foci (Figure 4C); 
TREX1 and RELA were negatively correlated with CD-200 and PD-1, 
while CASP8 was positively correlated with CD-200 and CTLA-4 
(Figure 4D). Thus, key genes also play a role in the immunoregulation 
of bone metastasis in PCa.

3.4 Molecular functional validation of RELA

The results of several analyses indicate that RELA plays a crucial 
role in the ontogenesis, progression, and metastasis of PCa. Hence, 
we validated its molecular function in proliferation and metastasis. 
Cell proliferation assay showed that the proliferation ability of DU145 
and PC3 cells was significantly inhibited after overexpression of RELA 
(Figure 5A). Meanwhile, cell migration assay showed the same trend. 
As shown in Figures 5B,C, the migration of DU145 and PC3 cells were 
also significantly inhibited after overexpression of RELA. In addition, 
we verified the difference in RELA expression between primary foci 
and bone metastasis by immunohistochemistry. The results showed 

that the expression of RELA was significantly lower in bone metastasis 
compared with primary foci, which was consistent with the results of 
our data analysis (Figure 5D). Hence, this greatly confirms the critical 
role of RELA in PCa development and metastasis, and is most likely a 
novel therapeutic target.

3.5 Construction of nomogram and 
prediction of targeted drugs

Based on the three key genes, we  constructed a nomogram 
designed to help clinicians make clinical predictions (Figure 6A). 
Subsequently, we  evaluated the accuracy and reliability of the 
nomogram. The results showed that the AUC value of the ROC curve 
was 0.99, and both the Calibration curve and the DCA curve 
performed well (Figures 6B–D). In addition, a 200 times 5-fold cross-
validation analysis suggested high AUC and C-Index values for all 
three key genes and the nomogram (Supplementary Figure  2). 
Therefore, the nomogram constructed in this study was accurate and 
reliable. Next, based on the Enrichr database, we  excavated 22 
potential TREX1 and RELA targeted overexpression drugs (Figure 6E; 
Supplementary File 1). Finally, molecular docking was performed 
using the Ledock software for the targeted drugs with a top 5 ranked 
TREX1 and RELA combined score. The results showed that the 
targeting pockets of the 2 key genes were successfully occupied by the 
drugs (Figure 6F). In conclusion, the nomogram constructed and the 
new targeted drugs discovered in this study provided a new strategy 
for the treatment of advanced PCa.

FIGURE 2

GO, KEGG and GSEA analysis of key genes. (A) GO analysis of key genes; (B) KEGG analysis of key genes; (C–E) GSEA analysis of key genes.
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4 Discussion

Bone metastasis occur in more than 1.5 million cancer patients 
worldwide, and the tumors most at risk for this complication are PCa 
and breast cancer (48). Although there are well-established treatment 
strategies for early-stage PCa, including surgical resection, 
chemotherapy, and androgen deprivation (49), most PCa continues to 
progress and develop bone metastasis. Studies have shown that the 
incidence of bone metastasis in PCa is about 70%, and the most 
common site is the vertebrae (50, 51). The development of bone 
metastasis can be catastrophic for PCa patients, who often suffer from 
fractures, spinal cord compression, and disability (9, 48), significantly 
reducing survival quality. Unfortunately, there is no effective treatment 
for PCa bone metastasis at this stage (52, 53). It is urgent to deeply 
explore the molecular mechanisms of PCa bone metastasis and tap 
new therapeutic targets.

It is well known that the immune system plays an indispensable 
role in maintaining normal bone homeostasis and in various bone-
related diseases, mainly through inflammation. Recently, it has been 
found that pro-inflammatory cytokines in tumors cause homeostatic 

abnormalities in osteoclasts and osteoblasts, leading to the 
development of bone metastasis (54, 55). Furthermore, there is also 
evidence that immune cells can influence the colonization and 
progression of tumor cells in bone metastatic foci (56). The STING 
pathway, as an innate immune regulatory mechanism in the human 
body, has been shown to play an essential role in the development and 
metastasis of various tumors by mediating inflammatory responses 
(23, 30). Therefore, exploring the relevant molecular mechanisms of 
the STING pathway in PCa bone metastasis will bring new 
opportunities for the treatment of PCa bone metastasis.

The random forest algorithm is an excellent machine learning 
algorithm that has been commonly used in the biosciences field. Three 
key genes were finally screened in this study based on the MDA and 
MDG values assigned to each gene by this algorithm. The MDA 
indicates the extent to which model accuracy decreases when a 
variable is excluded, and the MDG indicates the extent to which a 
variable contributes to the reduction of the Gini in a random forest, 
with a higher Gini indicating a higher prediction error rate for that 
node (57). Therefore, the higher the two metrics are, the more critical 
their corresponding genes are. The subsequent comprehensive analysis 

FIGURE 3

Biological function exploration of key genes. (A) Internal correlation analysis of key genes; (B–D) Differential expression analysis of key genes (NT, 
normal tissue; PF, primary foci; BM, bone metastasis); (E) Correlation analysis of key with PCa driver genes; (F) Chronos Score of key genes; 
(G) Correlation analysis of key genes with CNV/methylation; (H) miRNA-mRNA regulatory network of key genes.
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demonstrated that the three key genes play critical roles in PCa 
development and metastasis.

TREX1 (Three Prime Repair Exonuclease 1) is a major cytoplasmic 
nuclease, prevalently expressed in mammalian cells, that acts primarily 
on double-stranded DNA, specializing in the excision of 
oligonucleotides that are mismatched at their 3′-ends. The enzyme is 
mainly involved in immune regulation and DNA damage repair in the 
body (58). Numerous studies have shown that loss-of-function 
mutations in TREX1 lead to abnormal accumulation of cytoplasmic 
DNA, which in turn over-activates the natural immune response and 
ultimately leads to the development of autoimmune diseases, 
including systemic lupus erythematosus and vascular diseases, 
retinopathy, and cerebral leukoencephalopathy (59, 60). Recent 
studies have shown that TREX1 also plays a key role in tumors (61). 
In breast and colon cancers, high expression of TREX1 leads to 
blockage of type I IFN pathway activation, inhibiting the anti-tumor 
immune response and the anti-tumor response of immune checkpoint 
inhibitors (61, 62). However, this phenomenon seems to be reversed 
in PCa, where it was shown that the expression level of TREX1 was 
not associated with the degree of anti-tumor immune response to 
Radiotherapy-induced activation of the type I IFN pathway in three 
PCa cell lines (63). In this study, TREX1 was found to be negatively 
correlated with the degree of infiltration of multiple PCa bone 
metastasis-promoting immune cells (including Regulatory T cell, 
Myeloid derived suppressor cell, and Plasmacytoid dendritic cell), and 
was negatively correlated with PD-1 and CD-200. In addition, high 
expression of TREX1 can prevent the activation of the Ecm-Receptor 
Interaction pathway, which plays a crucial role in prostate bone 
metastasis (38–40). Therefore, TREX1 is not only valuable in the 
prediction of PCa bone metastasis but also has great potential in its 

immunotherapy. The related molecular mechanisms deserve to 
be explored in depth.

RELA (RELA Proto-Oncogene, NF-KB Subunit) is a ubiquitous 
transcription factor involved in a variety of biological processes. 
Previous studies have shown that RELA plays a key role in the initial 
stages of Pca (64), and this study found that RELA has an important 
role in the carcinogenesis, development and metastasis of PCa. 
Correlation analysis showed that RELA was strongly associated with 
multiple prostate cancer driver genes (SPOP, AR, FOXA1, ATM, and 
PTEN); the Depmap database results showed that RELA had a high 
effect on the proliferation of PCa cell lines; bio-functional analyses 
showed that RELA may hinder the occurrence of bone metastasis by 
inhibiting the Ecm-Receptor Interaction pathway; subsequent cell and 
tissue experiments have also demonstrated that overexpression of 
RELA can significantly inhibited the proliferation and migration of 
PCA cells (DU145 and PC3), as well as expression of RELA is 
significantly decreased in bone metastasis; Immune analysis results 
showed that RELA was significantly negatively correlated with 2 types 
of bone metastasis-promoting immune cells (regulatory T cells and 
plasmacytoid dendritic cells), and significantly negatively correlated 
with PD-1 and CD-200. These results strongly suggest that RELA 
plays a crucial role in prostate cancer occurrence, progression and 
metastasis based on multiple molecular mechanisms. Therefore, RELA 
is likely to be a new therapeutic target for advanced PCa, and its 
complex biomolecular function is worthy of subsequent 
in-depth study.

As for CASP8 (Caspase 8), this gene is a member of the cysteine-
aspartate protease (cysteinyl aspartate) family and plays a central role 
in apoptosis and necroptosis (65). Studies have shown that this gene 
is closely associated with PCa and its recurrence and can be used as a 

FIGURE 4

Immune analysis of key genes. (A) Differential analysis of the degree of immune cell infiltration in primary foci and bone metastasis (PF, primary foci; 
BM, bone metastasis); (B) Correlation analysis of key genes and immune cells; (C) Differential expression analysis of immune checkpoints in primary 
foci and bone metastasis; (D) Correlation analysis of key genes and immune checkpoints.
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FIGURE 5

Molecular functional validation of RELA. (A) Cell proliferation assessment of DU145 and PC3 cells based on CCK-8 assay (RELA, PCa cells treated with 
RELA-overexpression plasmid; *p-value < 0.05; ***p-value < 0.001); (B) Cell migration assessment of DU145 and PC3 cells based on transwell assay; 
(C) Cell migration assessment of DU145 and PC3 cells based on wound healing assay; (D) Immunohistochemistry of RELA in the PCa primary foci (PF) 
and bone metastasis (BM).
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biomarker for bone metastasis in high-risk PCa (66, 67). This study 
found that CASP8 can activate three pathways, including 
Ecm-Receptor Interaction, Cell Cycle, and Homologous 
Recombination. In addition, CASP8 was positively associated with 
three types of pro-bone metastatic cells (Myeloid derived suppressor 
cell, Plasmacytoid dendritic cell, and Regulatory T cell) and two 
immune checkpoints (CD-200 and CTLA-4). Therefore, this gene is 
important in PCa risk prediction and bone metastasis prediction and 
also deserves attention.

At the end of this study, we constructed a nomogram and verified 
its reliability and accuracy in several approaches. This tool provides 
a reliable diagnostic tool for clinicians’ diagnosis and treatment. In 
addition, we also identified 22 potential targeted drugs of key genes 
with satisfactory molecular docking effects. In conclusion, this study 
mined three bone metastasis related key genes for PCa based on 

machine learning, explored their related molecular mechanisms, 
constructed a reliable nomogram and discovered 22 kinds of 
potential targeted drugs. This study can improve the treatment of 
advanced PCa patients and provides a theoretical basis for 
subsequent research.

Of course, this study has some limitations. First, this study is 
essentially a retrospective analysis, which needs to be corroborated by 
subsequent prospective studies; second, only one dataset was included 
in this study to construct the nomogram, and the generalization ability 
of the model performance needs to be validated by the subsequent 
including of more datasets; third, this study did not perform more 
in-depth basic experimental validation, which needs to 
be supplemented in subsequent studies; and finally, it is difficult to 
define a fixed threshold for the expression of various genes in the 
clinic, which poses an obstacle to the popularization of diagnostic tools.

FIGURE 6

Construction and evaluation of nomogram. (A) Nomogram constructed based on key genes; (B) ROC curve of the nomogram; (C) Calibration curve of 
the nomogram; (D) DCA curve of the nomogram; (E) 22 kinds of potential targeted drugs for TREX1 and RELA; (F) Molecular docking results for the 
top 5 TREX1 and RELA-targeted drugs in the combined score.
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5 Conclusion

In this study, we explored the relevant mechanisms of the STING 
pathway in PCa bone metastasis based on bioinformatics analysis 
techniques. Based on the random forest algorithm mined three key 
genes, and the critical roles of the key genes in PCa development, 
metastasis, and tumor immunity were explored by multiple analyses. 
Finally, based on the key genes, a reliable nomogram was constructed 
and potential targeted drugs were discovered. In conclusion, this study 
provides new therapeutic targets and a reliable diagnostic tool for 
clinical treatment and provides a theoretical basis for follow-up studies.
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Pan-cancer analysis predict that
FAT1 is a therapeutic target and
immunotherapy biomarker for
multiple cancer types including
non-small cell lung cancer
Chen Ding1†, Hua Huang1†, Di Wu1†, Chen Chen2, Yu Hua1,
Jinghao Liu1, Yongwen Li2*, Hongyu Liu2* and Jun Chen1,2*

1Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China,
2Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer
Institute, Tianjin Medical University General Hospital, Tianjin, China
FAT1, a substantial transmembrane protein, plays a pivotal role in cellular

adhesion and cell signaling. Numerous studies have documented frequent

alterations in FAT1 across various cancer types, with its aberrant expression

being linked to unfavorable survival rates and tumor progression. In the present

investigation, we employed bioinformatic analyses, as well as in vitro and in vivo

experiments to elucidate the functional significance of FAT1 in pan-cancer, with

a primary focus on lung cancer. Our findings unveiled FAT1 overexpression in

diverse cancer types, including lung cancer, concomitant with its association

with an unfavorable prognosis. Furthermore, FAT1 is intricately involved in

immune-related pathways and demonstrates a strong correlation with the

expression of immune checkpoint genes. The suppression of FAT1 in lung

cancer cells results in reduced cell proliferation, migration, and invasion. These

collective findings suggest that FAT1 has potential utility both as a biomarker and

as a therapeutic target for lung cancer.
KEYWORDS

FAT1, pan-cancer, prognosis, bioinformatics, immune
Introduction

Cancer stands as a prominent global cause of mortality. Among various cancer types,

lung cancer emerges as the primary contributor to cancer-related fatalities (1). Non-small

cell lung cancer (NSCLC) constitutes approximately 85% of all lung cancer cases, making it

the most prevalent histological subtype. Despite significant advancements in our

understanding of the biological foundations of NSCLC, the integration of predictive

biomarkers, and the refinement of treatment strategies, substantial progress has been

achieved over the past two decades, resulting in improved outcomes for numerous patients
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(2). However, individuals afflicted with advanced-stage disease still

confront a grim prognosis. Hence, the identification of novel

biomarkers and therapeutic targets capable of enhancing patient

outcomes represents an urgent imperative.

FAT atypical cadherin 1 (FAT1), a gene encoding

protocadherin, ranks among the most frequently mutated genes

in human cancer. As a transmembrane protein, FAT1 assumes a

pivotal role in cellular adhesion and signaling pathways (3). Located

on chromosome 4q35, it functions as a tumor-promoting gene,

exerting regulatory control over cell proliferation, migration, and

invasion (4–7). Notably, FAT1 undergoes frequent alterations in

various cancer types, including lung cancer, where its mutations

correlate with unfavorable survival rates and tumor progression (8,

9). In a prior study, our research unveiled the potential of FAT1

mutations as predictive biomarkers in NSCLC, aiding in the

identification of patients less likely to derive sustained clinical

benefits from immune checkpoint blockade (ICB). We proposed

an FAT1 mutation-based model for the screening of NSCLC

patients more suitable for ICB, thereby contributing to

individualized immunotherapy (10). Recent investigations have

further illuminated the role of FAT1 alterations in multiple

signaling pathways and critical cellular processes, such as the

Hippo and Wnt signaling pathways, along with epithelial–

mesenchymal transition (EMT), all of which play pivotal roles in

tumorigenesis (11). Studies exploring FAT1’s significance in cancer

have examined its prognostic value, association with immune

infiltration, and impact on the tumor microenvironment (12, 13).

However, the functional implications of FAT1 alterations across

various cancer types, as well as their potential as therapeutic

biomarkers, require further elucidation.

This study employs bioinformatic methodologies, as well as the

in vitro and in vivo experiments to explore the functional role of

FAT1 across NSCLC, aiming to elucidate its expression patterns,

genetic alterations, and functional networks. Our analysis provides

a comprehensive examination of FAT1, aiming to elucidate the

potential mechanisms through which FAT1 mediates tumorigenesis

and assess its clinical relevance in a pan-cancer context. This

encompasses an in-depth exploration of FAT1’s biological role in

non-small cell lung cancer, with a focus on investigating its impact

on cell proliferation and migration, revealing its potential

significance in the progression of NSCLC.
Materials and methods

NSCLC samples and next-
generation sequencing

We collected 37 fresh tumor tissues from patients who were

diagnosed with NSCLC at Tianjin Medical University General

Hospital. Tissues were collected by surgery, and routinely

processed with formalin fixation, embedded with paraffin. All

cases were confirmed postoperative histological pathology with

NSCLC. All patients provided written consent, and the research

was approved by the Institutional Ethics Committee of the General

Hospital of Tianjin Medical University. Tumor DNA was extracted
Frontiers in Immunology 0248
from 5 to 10 10mm FFPE curls, and DNA quantification was

performed using Qubit™ dsDNA HS and BR Assay Kits

(Thermo Fisher Scientific, MA, USA). Target gene capture NGS

technology was employed to detect 1267 genes related to lung

cancer treatment plans, high-throughput sequencing data were

obtained, and somatic mutations were identified by comparing

with matched adjacent lung tissues. The NGS sequencing process

was completed by Yuce Biological Technology Co., Ltd.
Data sources and processing for FAT1
mRNA expression

FAT1 expression was analyzed in 34 different tumor types and

their corresponding normal tissues using a combination of The

Cancer Genome Atlas (TCGA) and GTEx cohorts. For this analysis,

SangerBox, a web-based tool (http://sangerbox.com/), was utilized

to obtain FAT1 expression levels in different pathological stages

(stages I–IV) of selected TCGA tumors through the “Pathological

Stage Plot” module of Gene Expression Profiling Interactive

Analysis. Violin plots were generated to depict the relationship

between FAT1 expression levels and pathological stages. Survival

analysis was performed using the Kaplan–Meier method and Cox

proportional hazards regression analysis. Furthermore, protein

expression levels were investigated using the UALCAN portal

(http://ualcan.path.uab.edu/index.html) (14), which offers an

interactive web resource for CPTAC analysis. The UALCAN

portal utilizes the CPTAC database and normalizes logged

expression values to standard deviations from the median in each

proteomic profile.
Genetic analysis

To explore FAT1 genetic alterations in various cancer types, we

analyzed somatic mutation data retrieved from cBioPortal

(available at https://www.cbioportal.org/) (15). Through this

analysis, information regarding the frequency and types of

mutations in FAT1 across cancer types was acquired.
FAT1-related gene enrichment analysis

To conduct gene enrichment analysis related to FAT1, the

STRING website was utilized (available at https://string-db.org/)

(16). Furthermore, the “Similar Gene Detection” module of

GEPIA2 was employed to generate a list of the top 100 FAT1-

associated genes in TCGA tumors. Subsequently, the correlation

analysis module of GEPIA2 was employed to explore the correlation

between FAT1 and these top five FAT1-associated targeting genes.

To perform pathway and process enrichment analysis for the

identified top 100 FAT1-associated targeting genes, the Metascape

web-based tool (17) was utilized, and specific parameters were

selected, including P < 0.01, a minimum count of three for the

terms, and an enrichment factor > 1.5 for canonical pathways.
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Analysis of tumor immune and
immunosuppressive cell infiltration

By using the TIMER2 server, we examined the correlation

between FAT1 expression and the infiltration of various immune

cell types. To evaluate the effect of genetic and epigenetic alterations

of FAT1 on dysfunctional T-cell phenotypes, the QUERYmodule of

the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm

was utilized (18).
Epigenetic methylation analysis

To examine the differences in FAT1 methylation levels between

tumor and paired normal tissues across various TCGA cancer types,

the TCGA methylation module within the UALCAN interactive

web resource was employed (19, 20). Furthermore, the TIDE server

was utilized to investigate the effect of FAT1 methylation on

dysfunctional T-cell phenotypes and prognoses.
Analysis of gene expression correlations
with therapeutic responses

To assess the therapeutic potential of FAT1 as a target in various

cancers, the drug sensitivity data obtained from the ROC Plotter

was examined (http://www.rocplot.org/). The ROC Plotter is a

transcriptome-based tool that enables the prediction of

biomarkers by establishing connections between gene expressions

and responses to therapy among patients with cancer (21).
Cell culture and transfection

The human cancer cell lines OVCAR3, Hep3B, PANC1, H1299,

A549, as well as the embryonic kidney 293T were obtained from the

American Type Culture Collection. These cell lines were cultured in

DMEM supplemented with 10% fetal bovine serum and 1%

penicillin–streptomycin in a humidified incubator at 37°C with

5% CO2. To perform the transfection, siRNA specifically targeting

FAT1 or a negative control siRNA (Ribobio, China) was introduced

into the cells using Lipofectamine 2000 (Invitrogen, USA) following

the manufacturer’s instructions. The siRNAs targeting FAT1 were

sense: 5′-GCACCACAAUUUCGAGCAATT-3′, antisense: 5′-
UUGCUCGAAAUUGUGGUGCTT-3′.
Real-time polymerase chain reaction

According to the manufacturer’s instructions, the cells were

digested down with trypsin, and the total RNA was extracted using

the SPARKeasy Cell RNA Rapid Extraction Kit (Sparkjade,

Shandong, China). RNA concentration was measured, and a total

of 2 mg of RNA was reverse-transcribed into complementary DNA

using a reverse-transcription kit (Takara, Beijing, China) according

to the manufacturer’s instructions. Real-time PCR used a fully
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automated PCR analyzer SLAN-96P, with GAPDH as the internal

reference. The mRNA primer sequences used were as follows: 5′-
GGAGCGAGATCCCTCCAAAAT-3′ and 5′- GGCTGTTGTCA

TACTTCTCATGG -3′ for GAPDH; 5′-CATCCTGTCAAGATGG
GTGTTT-3′ and 5′- TCCGAGAATGTACTCTTCAGCTT-3′
for FAT1.
Cell proliferation assay

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK8) assay. Briefly, cells were seeded into 96-well plates and

incubated for 24, 48, and 72 h. At each time point, 10 mL of the

CCK8 solution was added to each well and incubated for 2 h. The

absorbance was measured at 450 nm using a microplate reader.
5-ethynyl-2’-deoxyuridine assay

Cell proliferation was also assessed using the EdU assay. Briefly,

the cells were subsequently stained with cell-Light™ EdU

Apollo567 In Vitro Kit (Ribobio, Guangzhou, China) following

the manufacturer’s instructions. The images were captured using a

fluorescence microscope, and the percentage of EdU-positive cells

was calculated using ImageJ.
Colony formation assay

The cells were seeded into 6-well plates at a density of 500 cells

per well, cultured for 14 days, and fixed with 4% paraformaldehyde

and stained with crystal violet. The area of colonies was counted

using ImageJ.
Transwell assay

Cell migration and invasion were evaluated using Transwell

chambers. For the migration assay, cells were seeded into the upper

chamber with a serum-free medium, whereas the lower chamber

was filled with a medium containing 10% fetal bovine serum. After

incubation for 24 h, the cells that migrated to the lower chamber

were fixed with 4% paraformaldehyde and stained with crystal

violet. For the invasion assay, Transwell chambers were coated with

20% Matrigel before cell seeding.
Scratch wound-healing assay

The cells were seeded into 6-well plates and cultured to

confluence. A scratch wound was created using a sterile 200 mL
pipette tip, and the cells were washed with phosphate-buffered

saline to remove the debris. Then, the cells were incubated in

serum-free medium, and wound closure was monitored at different

time points using an inverted microscope.
frontiersin.org

http://www.rocplot.org/
https://doi.org/10.3389/fimmu.2024.1369073
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2024.1369073
Protein extraction and western
blot analysis

Total protein was extracted, and protein concentration was

measured by the BCA method. The proteins to be isolated were

separated with 8% to 10% sodium dodecyl sulfate-polyacrylamide

gel electrophoresis, transferred to polyvinylidene fluoride

membrane, and incubated overnight at 4°C under the following

primary antibodies: anti-b-TUBULIN (66240–1-Ig, Proteintech),

anti-FAT1 (E95869, Sigma), anti-YAP (13584–1-AP, Proteintech),

anti-P-TAZ (AF4315, Affinity), Anti-FAK (12636–1-AP,

Proteintech), and anti-Src (11097–1-AP, Proteintech). Then, the

membrane was incubated with anti-rabbit/mouse IgG (Abclonal,

anti-rabbit: AS014, anti-mouse: AS003) secondary antibody at

room temperature for 1 h, and bands developed on the

membrane using Syngene G-Box and GeneSnap software

(Syngene, Cambridge, UK).
Multicolor immunofluorescence

Formalin-fixed paraffin-embedded sections were fractionated

alcohol dewaxed and rehydrated, and EDTA antigen retrieval buffer

was subjected to antigen retrieval at 98°C for 8 min. Then the slides

were soaked in 3% hydrogen peroxide for 15 minutes. CD63,

CD168, a-SMA (Servicebio, Wuhan, Hubei, China) and FAT1

(Abcam, ab-190242) were applied at 4°C overnight, followed by

incubation with secondary antibodies for 90 min at 37°C. Digital

slide scanner (Pannoramic 250, 3DHistech, Hungary) were

performed to scan samples.
Animal xenograft tumor experiment

The animals used were 4-week-old female nude mice with

BALB/c (Hfkbio, Beijing, China). In a specific environment, nude

mice were randomly divided into two groups, control group and sh-

FAT1 group (n=5). A total of 2×106 cells were implanted

subcutaneously in the right groin of nude mice, and when the

tumor was clearly palpated, tumor volume measurement was

started, and thereafter, tumor volume was measured every 2 days,

and at the end of observation, the mouse subcutaneous tumor was

excised, peeled and resected and images were collected. The tumor

volume calculation formula used in this study is (L × W2)/2.
Statistical analysis

R software was used in the statistical analysis. Student’s t-test

was used to compare the expression levels of FAT1 between

different groups, and the Wilcoxon rank-sum test was used to

analyze non-normally distributed data. Pearson correlation analysis

was employed to evaluate the correlation between FAT1 expression

and immune infiltration.
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Results

FAT1 is frequently mutated in
NSCLC tissues

Our research team previously established that FAT1 mutations

may serve as predictive biomarkers for identifying NSCLC patients

who may not derive sustained clinical benefits from ICB, thereby

laying the groundwork for the potential application of

individualized immunotherapy screening (10). In this present

study, we first evaluated FAT1 mutation status in NSCLC

patients. By collecting FFPE tumor tissues from 37 individuals

who diagnosed with NSCLC and utilizing NGS technology for

targeted gene capture, we analyzed a panel of 1267 genes for

those patients. Our analysis identified the presence of FAT1

mutations in five out of thirty seven samples, constituting a

mutation frequency of 14%. Among these mutations, four were

missense mutations, while one was a splice variant (Figure 1A).

Notably, within the 1267 genes analyzed, FAT1 ranked third in

terms of mutation frequency, following EGFR and P53. This finding

suggests that FAT1 may play a significant role in the pathogenesis

and progress ion of NSCLC, warrant ing fur ther in-

depth investigation.
FAT1 expression and its clinical significance
in pan-cancer

To further explore whether aberrant expression of FAT1

associated with clinical significance in pan-cancer, we conducted

an extensive analysis of FAT1 expression across various cancer

types, utilizing publicly available databases, including the TCGA

and GTEx databases. Our findings align with prior reports (22),

demonstrating a frequent upregulation of FAT1 expression in most

cancer types when compared to their normal counterparts,

including lung adenocarcinoma (LUAD) and lung squamous cell

carcinoma (LUSC) (Figure 1B). Notably, protein expression

analysis revealed significant variations in FAT1 expression across

various tumors (Figure 1C), highlighting its potential role as a target

in tumorigenesis and development. Furthermore, our investigation

unveiled a substantial association between elevated FAT1

expression and adverse overall survival (OS) outcomes in patients

with several tumor types, including acute lymphocytic leukemia

(ALL), adenoid cystic carcinoma (ACC), mesothelioma (MESO),

LUAD, head and neck squamous cell carcinoma (HNSC), thyroid

carcinoma (THCA), pancreatic adenocarcinoma (PAAD), and

cerv ica l squamous ce l l carc inoma and endocerv ica l

adenocarcinoma (CESC) (Figure 2A; log-rank test, P < 0.05).

Additionally, we observed a positive correlation between FAT1

expression and advanced pathological stages in ACC and Skin

Cutaneous Melanoma (SKCM) (Figure 2B). Notably, metastatic

testicular germ cell tumors (TGCT) and ACC exhibited higher

FAT1 expression levels compared to their corresponding primary

tumors (Figure 2C).
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DNA methylation analysis of FAT1 in
pan-cancer

The promoter region of FAT1 displayed frequent

hypermethylation in various cancer types, including kidney renal

clear cell carcinoma (KIRC), LUAD, CESC, breast invasive carcinoma

(BRCA), and LUSC. In contrast, the levels of FAT1 promoter

methylation in Prostate adenocarcinoma (PRAD), liver

hepatocellular carcinoma (LIHC), and colon adenocarcinoma

(COAD) were lower when compared to their adjacent normal

tissues (Figure 3A). This suggests that epigenetic silencing of FAT1

may play a role in its expression regulation in cancer. We conducted

an in-depth analysis to examine the impact of FAT1 methylation on

different cancer types and made intriguing observations. We found a

correlation between FAT1 hypomethylation and dysfunctional T-cell
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phenotypes, as well as shorter survival in brain, lymphoma, and uveal

cancers (Figure 3B). However, it’s noteworthy that in the context of

kidney cancer, FAT1 hypomethylation was associated with a

favorable prognosis (Figure 3C).
Correlation analysis and pathway
enrichment of FAT1 in pan-cancer

We employed the STRING tool to systematically screen for

FAT1-binding proteins, aiming to uncover the potential role of

FAT1 in tumor pathogenesis. The interaction network reveals

associations with RXRA, PPARA, MYC, RELA, NFKR, NOS2,

SP1, NR2F1, TNF, and JUN (Figure 4A). To gain deeper insights

into FAT1’s potential functions in cancer, we conducted correlation
A

B

C

FIGURE 1

FAT1 expression in cancer. (A) Results of target gene capture second-generation sequencing in 37 lung cancer tissues. (B) FAT1 mRNA expression
levels in various cancer types based on TCGA data. (C) Protein expression level of FAT1 in pan-cancer. *P < 0.05,***P < 0.001,****P < 0.0001.
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and pathway enrichment analyses using gene expression data from

TCGA. Our analysis identified the top five genes significantly

correlated with FAT1 expression: CARD10, CTTNBP2NL, F2RL1,

MYO1E, and SPATS2L (Figure 4B). Additionally, an exploration of

the top 100 FAT1-associated genes revealed significant associations

with multiple cancer-related signaling pathways, encompassing

cell–cell junction organization, integrin-mediated signaling

pathways, and enzyme-linked receptor protein signaling

pathways (Figure 4C).
Frontiers in Immunology 0652
Distinct immune microenvironment based
on FAT expression

Tumor-infiltrating immune cells wield a pivotal influence within

the tumor microenvironment, impacting cancer initiation,

progression, and metastasis (23, 24). In our prior study, we

unveiled the potential of FAT1 aberrant as predictive biomarkers in

NSCLC, indicating the potential role of FAT1 regulating immune

microenvironment. To explore the connection between FAT1
A

B

C

FIGURE 2

(A) Correlation between FAT1 expression and prognosis in various types of cancer using SangerBox. (B) Association of FAT1 gene expression levels
with pathological stages and (C) metastasis. *P < 0.05,**P < 0.01
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expression and immune cell infiltration, we conducted a

comprehensive analysis across 39 cancer types. Our investigation

revealed a significant positive correlation between FAT1 expression

and the infiltration of six immune cell types—namely, B cells, CD8+

T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells—

in KIRC and Pheochromocytoma and Paraganglioma (PCPG)

(Supplementary Figure S1A). Furthermore, we delved into the

relationship between FAT1 expression levels and the infiltration of

three immunosuppressive cell types known to promote T-cell

exclusion: myeloid-derived suppressor cells (MDSCs), cancer-

associated fibroblasts, and T-regulatory cells. Our findings indicated

a positive correlation between FAT1 expression and the infiltration of

MDSCs in several cancer types, including ACC, BRCA, BRCA-

LumA, BRCA-LumB, Glioblastoma (GBM), Head and Neck
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Squamous Cell Carcinoma-Human Papillomavirus, Kidney

Chromophobe, Kidney Renal Papillary Cell Carcinoma, and Low-

Grade Gliomas (Supplementary Figure S1B). In our quest to assess

FAT1’s relevance as a biomarker, we compared it to established

biomarkers with regard to their ability to predict response outcomes

and OS in ICB subcohorts. Notably, FAT1 exhibited an area under

the receiver operating characteristic curve (AUC) exceeding 0.5 in 6

out of 18 ICB subcohorts (Supplementary Figure S1C). Additionally,

FAT1 expression displayed positive correlations with immune-

related gene signatures, encompassing immune cell infiltration,

immune checkpoint genes, and major histocompatibility complex

class I expression, suggestive of FAT1’s potential role in modulating

the immune microenvironment of tumors. We conducted extensive

correlation analyses between FAT1 expression and various genes,
A

B C

FIGURE 3

Epigenetic methylation analysis. (A) Boxplots illustrate the differential FAT1 methylation levels (beta values) across TCGA. (B) Heatmap demonstrating
the effect of FAT1 methylation on cytotoxic T-cell levels (CTLs), dysfunctional T-cell phenotypes, and risk factors within TCGA cohorts. (C) FAT1
methylation levels at Kaplan-Meier survival curves. In kidney cancer, FAT1 hypomethylation is associated with a better prognosis, and in brain cancer,
lymphoma, and uveal cancer, FAT1 hypomethylation has a shorter survival. **P < 0.01,***P < 0.001,****P < 0.0001
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including chemokines and their receptors (e.g., CXC and CC family)

as well as major histocompatibility complex classes I and II

(Supplementary Figure S2). Among the 26 cancer types with high

FAT1 expression, we noted elevated expression of CD274 (PD-L1),

particularly in Diffuse Large B Cell Lymphoma (DLBCL), Uveal

Melanoma (UVM), GBM, and PAAD. Furthermore, FAT1

expression positively correlated with PD-L1 and CTLA-4

expression in LUAD, suggesting the potential involvement of FAT1

in regulating the expression of immune checkpoint genes in

lung cancer.
Prediction of therapeutic response based
on FAT1 expression

To explore the potential clinical utility of FAT1 as a biomarker,

we conducted an assessment of its predictive value in gauging

therapeutic responses among cancer patients. Our findings revealed

a notable correlation between high FAT1 expression and an

unfavorable survival to immune checkpoint inhibitors

(Figure 5A). This observation suggests that FAT1 holds promise

as a potential predictive biomarker for assessing responses to these

treatments. Further analysis showed that elevated FAT1 expression
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was associated with shorter OS in patients treated with ICB for

bladder and melanoma cancers. Moreover, heightened levels of

FAT1 expression exhibited a negative association with cytotoxic T

lymphocyte (CTL) (Figure 5B).
Altered FAT1 expression changes tumor
immune microenvironment

To explore the functional implications of FAT1 in the

regulation of the tumor immune microenvironment, we initiated

our investigation by assessing FAT1 expression levels across various

cell lines, including OVCAR3, Hep3B, PANC1, H1299, A549, and

293T, utilizing Western blot analysis. Our findings revealed the

highest expression of FAT1 in the A549 and H1299 cell lines, as

illustrated in Figure 6A. Subsequently, we focused our in vitro

experiments on these two lung cancer cell lines. To ensure the

specificity and efficacy of the siRNAs targeting FAT1, we employed

quantitative real-time polymerase chain reaction (qRT-PCR) and

Western blot analyses. As expected, the siRNAs demonstrated

significant reduction in FAT1 expression in both A549 and

H1299 cells compared to the control group (Figures 6B, C).

Cancer immunotherapy, with a particular emphasis on targeting
A
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C

FIGURE 4

Enrichment analysis of FAT1-related genes across pan-cancers. (A) Displayed here are the FAT1-binding proteins identified using the STRING tool.
(B) The top five FAT1-correlated genes are displayed across pan-cancers, and the relationships between FAT1 expression and these selected genes
are analyzed using the GEPIA2 website. (C) Enriched terms with a similarity >0.3 are connected by edges.
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the programmed death 1/programmed death ligand 1 (PD-1/PDL1)

pathway, has exhibited remarkable therapeutic efficacy in lung

cancer patients (25). The level of PD-L1 expression in tumor cells

has emerged as a pivotal indicator of the effectiveness of PD-1/PD-

L1 blockade (26), we elucidate the relationship between FAT1

expression and PD-L1. Our results indicated a substantial

decrease in PD-L1 expression following the knockdown of FAT1

expression (Figure 6D). Flow cytometry analysis of PD-L1

expression also yielded similar results (Figures 6E, F).

Recognizing the pivotal role of the immune microenvironment in

tumor development (27), we further explored the correlation of

FAT1 expression with myeloid-derived suppressor cells (MDSC),

macrophage M1, macrophage M2, and cancer-associated fibroblasts

(CAF) in lung cancer patient tissues through immunofluorescence

assay. Intriguingly, our findings demonstrated a positive correlation

between FAT1 expression and the markers CD68, CD163, and a-
SMA, indicative of the essential role of FAT1 in immune regulation

within NSCLC (Figure 6G). These results collectively underscore

the critical involvement of FAT1 in orchestrating immune

responses in the context of NSCLC.
FAT1 accelerated the proliferation and
migration of lung cancer cells in vitro

To explore the biological role of FAT1 in NSCLC, we focused on

investigating its effects on cell proliferation andmigration. Employing

the CCK-8 assay, we observed a pronounced inhibition of cell

proliferation in both A549 and H1299 cells upon FAT1

knockdown, as evidenced by significantly reduced cell viability

compared to the control group (Figure 7A). This anti-proliferative

effect was further corroborated by the EdU assay, revealing a notable

decrease in the proportion of EdU-positive cells following FAT1

knockdown, indicative of suppressed cell proliferation (Figure 7B).

Furthermore, our investigation extended to colony formation assays,
Frontiers in Immunology 0955
where FAT1 knockdown exhibited a significant impediment to both

the number of colonies in both cell lines. These findings underscore

the pivotal role of FAT1 in promoting not only lung cancer cell

growth but also colony formation (Figure 7C). Delving into the realm

of cell migration and invasion, the Transwell assay demonstrated a

marked reduction in the number of migrating and invading cells in

both A549 and H1299 cell lines following FAT1 knockdown,

implicating FAT1 in the facilitation of lung cancer cell migration

and invasion (Figure 7D). This observation was further supported by

the cell scratch assay, where FAT1 knockdown attenuated the

wound-healing ability of cells, indicating a weakened capacity for

migration compared to the control group (Figure 7E). Moreover, our

exploration revealed that FAT1 knockdown induced G0/G1 phase

cell cycle arrest (Figure 8A). To shed light on the underlying

molecular mechanisms, Western blot experiments targeting

integrin-related pathways were conducted based on pathway

enrichment results. The outcomes suggested that knocking down

FAT1 may exert its effects on cell growth and proliferation through

the FAK–YAP/TAZ pathway (Figure 8B). To further validate the

impa c t o f FAT1 on th e FAK-YAP /TAZ pa thway ,

immunohistochemical staining was performed on mouse tumor

tissues, revealing consistent results (Figure 8E). This intricate

interplay emphasizes the multifaceted involvement of FAT1 in

orchestrating cellular processes crucial for the progression of NSCLC.
Knockdown of FAT1 inhibited the
proliferation of lung cancer cells in vivo

To further confirm the effect of inhibiting FAT1 expression on

cell proliferation observed in vitro, we conducted xenograft tumor

experiments to assess the effect of FAT1 knockdown on lung cancer

cell growth in vivo. The results demonstrated that knocking down

FAT1 inhibited the growth of lung cancer cells in vivo (Figures 8C,

D). These comprehensive findings collectively underscore the role
A B

FIGURE 5

FAT1 expression is associated with therapeutic responses in cancers. (A) Receiver operating characteristic curve plot of the association between FAT1
expression and responses to PD-L1 in cancers. (B) The Kaplan-Meier survival curve showed shorter OS with high FAT1 expression in bladder cancer
and melanoma receiving immunotherapy. The lower panel displays the correlation between FAT1 expression and cytotoxic T lymphocytes.
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of FAT1 as a tumor promoter in lung cancer cells, with its

downregulation leading to the inhibition of cell proliferation.
Discussion

FAT1, a sizable transmembrane protein, plays a significant role

in diverse biological processes, encompassing cell adhesion,
Frontiers in Immunology 1056
migration, and proliferation (28, 29). Extensive research has

unveiled frequent upregulation of FAT1 in numerous cancer

types, including lung cancer, suggesting its potential as a pivotal

contributor to tumorigenesis (30, 31). Consequently, FAT1 emerges

as a promising candidate for both therapeutic intervention and

prognostic assessment in cancer treatment. Under normal

circumstances, FAT1 functions as a molecular ‘brake’ on

mitochondrial respiration and serves as a receptor involved in the
A B
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FIGURE 6

FAT1 knockdown effects in lung cancer cells. (A) Western blotting detects FAT1 expression in various cancer cell lines. (B, C) Western blot and qRT-
PCR confirming FAT1 knockdown efficiency in lung cancer cells. Two-sided t-tests. (D) Western blot results verified the relationship between FAT1
expression and PD-L1. (E, F) Flow cytometry analysis to investigate the relationship between FAT1 and PD-L1 expression. (G) Multicolor
immunofluorescence compared CD68, CD163 and a-SMA between FAT1 High (left) and Low (right) NSCLC tissue samples; ****P < 0.0001.
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regulation of cell–cell contact interactions and planar cell polarity

(22, 29, 32). In several cancer types, the loss of FAT1 function

contributes to epithelial-mesenchymal transition (EMT) and the

emergence of cancer-initiating or stem-like cells (8, 33–35).

Conversely, in specific cancer types, FAT1 overexpression induces

EMT (30). However, the precise roles of FAT1 in cancer

progression remain intricate and contingent on the specific cancer

type. Consequently, further investigations are warranted to attain a

comprehensive understanding of FAT1’s function within distinct

cancer contexts. In this study, we conducted a comprehensive

investigation into the expression patterns and clinical

implications of FAT1 across a spectrum of cancer types

employing bioinformatics analysis. Additionally, we substantiated
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its pro-tumorigenic role through experimental validation in lung

cancer cells. Our findings, in alignment with prior research,

consistently demonstrated a prevalent upregulation of FAT1

expression in a majority of cancer types, including LUAD and

LUSC. Notably, we established a significant association between

elevated FAT1 expression and reduced OS in LUAD patients, thus

hinting at the potential prognostic utility of FAT1 in lung cancer.

Furthermore, our study revealed a positive correlation between

FAT1 expression and advanced pathological stage as well as

metastasis in various cancer types, providing additional

substantiation for the putative role of FAT1 in tumor progression

and metastasis. Additionally, we illuminated potential mechanisms

underpinning FAT1 upregulation in cancer, such as promoter
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FIGURE 7

FAT1 knockdown effects in lung cancer cells. (A) CCK-8 assay measuring cell proliferation in FAT1-knockdown and control cells, two-sided t-tests.
(B) EdU assay measuring cell proliferation in FAT1-knockdown and control cells, two-sided t-tests. (C) Colony formation assay showed that FAT1
knockdown inhibits the colony formation ability of cells. Two-sided t-tests; (D) Transwell migration and invasion assays showing decreased
migration and invasion of FAT1-knockdown cells compared with control cells, two-sided t-tests. (E) Wound-healing experiments confirmed that
knocking down FAT1 inhibits cell wound-healing ability, two-sided t-tests. nsP >0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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hypermethylation—a phenomenon observed across multiple cancer

types. Interestingly, our investigation also unveiled a positive

correlation between FAT1 expression and immune-related gene

signatures, suggesting a potential involvement of FAT1 in

modulating the immune microenvironment within tumors.

Furthermore, our analysis revealed a distinctive set of genes and

signaling pathways that exhibited significant correlations with

FAT1 expression, thereby providing additional insights into the

potential functional roles of FAT1. Remarkably, our investigation

unveiled FAT1’s association with pathways linked to tumor

occurrence and development, including cell–cell junction

organization, the integrin-mediated signaling pathway, and the

enzyme-linked receptor protein signaling pathway. Integrin-

mediated cell migration predominantly relies on the activation of

the FAK/Src signaling pathway, which, in turn, contributes to the

regulation of several key signaling cascades governing cell motility
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(36). Noteworthy, previous studies have identified YAP/TAZ as

downstream molecules of the Hippo signaling pathway, exerting

control over cell proliferation and apoptosis, thus playing a pivotal

role in tumor growth regulation. Integrin-FAK/Src activation has

been shown to enhance YAP activation, leading to the accumulation

and activation of YAP/TAZ, further promoting the proliferation

and metastasis of malignant tumors (37, 38). Additionally, our

assessment of the correlation between FAT1 expression and

immune checkpoint genes hints at the potential utility of FAT1 as

a predictive marker for immunotherapy efficacy. To gain deeper

insights into FAT1’s implications in cancer, we conducted in vitro

functional assays utilizing lung cancer cell lines. Targeting FAT1

expression through knockdown in these cells resulted in a notable

reduction in cell proliferation, migration, and invasion,

accompanied by cell cycle inhibition. These findings strongly

substantiate an oncogenic role for FAT1 in lung cancer and
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FIGURE 8

FAT1 knockdown effects in lung cancer cells. (A) Cell cycle assay showed that FAT1 knockdown induced G0/G1 phase arrest. (B) Western blot results
verifying the effect of knockdown FAT1 on the FAK–YAP/TAZ signaling pathway. (C) Immunohistochemical validation of the effect of FAT1
knockdown on the FAK-YAP/TAZ signaling pathway. (D, E) Pictures of dissected mouse tumors and knocking down FAT1 inhibits tumor growth in
mice. **P < 0.01, ****P < 0.0001.
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suggest that targeting FAT1 may hold promise in enhancing the

effectiveness of chemotherapy in lung cancer treatment.

In conclusion, our study conducted a comprehensive

bioinformatics analysis to investigate the functional role of FAT1

across diverse cancer types, with a particular focus on lung cancer.

The insights derived from our findings underscore the potential

utility of FAT1 as both a biomarker and a therapeutic target not

only in lung cancer but also in various other cancer types.
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Introduction: The connection between aging and cancer is complex. Previous

research has highlighted the association between the aging process of lung

adenocarcinoma (LUAD) cells and the immune response, yet there remains a gap

in confirming this through single-cell data validation. Here, we aim to develop a

novel aging-related prognostic model for LUAD, and verify the alterations in the

genome and immune microenvironment linked to cellular senescence.

Methods: We integrated a comprehensive collection of senescence genes from

the GenAge and CellAge databases and employed the least absolute shrinkage

and selection operator (LASSO) Cox analysis to construct and validate a novel

prognostic model for LUAD. This model was then utilized to examine the

relationship between aging, tumor somatic mutations, and immune cell

infiltration. Additionally, we explored the heterogeneity of senescence and

intercellular communication within the LUAD tumor microenvironment (TME)

through single-cell transcriptomic data analysis.

Results: By exploring the expression profiles of 586 cellular senescence-related

genes in 428 LUAD patients, we constructed an aging-related genes (ARGs) risk

model included 10 ARGs and validated it as an independent prognostic predictor
Abbreviations: ARGs, aging-related marker genes; ARKGs, aging-related key genes; ARRSs, aging-related

risk scores; CI, confidence interval; CNVs, copy number variations; DDR, DNA damage repair; DEGs,

differentially expressed genes; HR, hazard ratio; IQR, interquartile range; LUAD, lung adenocarcinoma;

SASP, senescence-associated secretory phenotype; SRS, senescence-related signature; TMB, tumor mutation

burden; TME, tumor microenvironment.
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for LUAD patients. Notably, patients with low aging scores (LAS group) exhibited

better survival, lower tumor mutation burden (TMB), lower somatic mutation

frequency, lower tumor proliferation rate, and an immune activated phenotype

compared to patients with high aging scores (HAS group). While the HAS group

was enriched in tumor cells and showed a lower infiltration of CD8-CCR7, CD8-

CXCL13, CD8-GNLY, FCGR3A NK cells, XCL1 NK cells, plasma cell (PC) and other

immune subsets. Furthermore, the SPP1 and TENASCIN pathways, associated

with tumor immune escape and tumor progression, were also enriched in the

HAS group. Additionally, our study also indicated that senescence levels were

heterogeneous in the LUAD tumor microenvironment (TME), especially with

tumor cells in the LAS group showing higher age scores compared to those in the

HAS group.

Conclusions: Collectively, our findings underscore that ARRS through ARGs

serves as a robust biomarker for the prognosis in LUAD.
KEYWORDS

cellular senescence, lung adenocarcinoma, tumor microenvironment, heterogeneity,
machine learning
1 Introduction

Cancer with complex molecular characteristics (1), remains a

significant global health challenge, accounting for a substantial

number of deaths and impacting life expectancy worldwide. Amid

the array of cancer types, lung cancer emerges as the second most

prevalent contributor to cancer-related mortality, marked by a

discouraging 5-year relative survival rate of just 23% (2). Lung

adenocarcinoma (LUAD), the predominant histological subtype

within non-small cell lung cancer, constitutes over 40% of all lung

cancer cases (3). Notably, LUAD continues to rise in incidence

among current smokers, former smokers, and even non-smokers,

and its five-year survival rate remains dishearteningly low at

approximately 15%, as a significant majority of patients are

typically diagnosed at advanced stages of the disease (4). Hence,

there is still a compelling need to formulate a novel prognostic

model for predicting the outcomes of LUAD to advance more

potent strategies for diagnosis and treatment.

Aging is a ubiquitous biological process that results in a progressive

and irreversible decline in physical function across all organ systems,

which presents with genomic instability, telomere attrition, epigenetic

alterations, loss of proteostasis, disabled macroautophagy, deregulated

nutrient-sensing, mitochondrial dysfunction, stem cell exhaustion,

chronic inflammation, altered intercellular communication, cellular

senescence, and dysbiosis (5–8). Cellular senescence refers to the

essentially irreversible arrest of cell proliferation (growth) that occurs

when cells experience potentially oncogenic stress (damage to DNA,

strong mitogenic signals, damage or disruptions to the epigenome, and

ectopic expression of certain tumor suppressors) (9, 10). Several

evidences have shown that cellular senescence plays a double-edged
0262
role in initiation, growth, and progression of tumor (11, 12). Senescent

tumor cells wield influence over the tumor microenvironment (TME)

via the senescence-associated secretory phenotype (SASP). On one

hand, by emitting pro-inflammatory cytokines, chemokines, growth

factors, and proteases like IL-6, IL-8, and TGF-b, senescent cells can
trigger paracrine senescence, transforming neighboring non-senescent

cells into senescent counterparts. This process recruits and activates

immune cells within the TME, leading to outcomes that can either

hinder or foster tumor growth. M1 macrophages and natural killer

cells, for instance, can eliminate tumor cells and foster their senescence

through the secretion of IFN-g and TNF-a, thereby restraining tumor

expansion. On the other hand, senescent tumor cells may activate

myeloid-derived suppressor cells and M2 macrophages via SASP,

affecting the clearance of senescent tumor cells, in turn, driving

tumor progression and vascularization (9, 13, 14). Given the role of

cellular senescence in constraining tumor development, it emerges as a

potential target for tumor therapy. Hence, unraveling the impact of

senescence in tumorigenesis is paramount importance.

In recent years, several studies have focused on the role of

senescence in LUAD (15–20). For example, Lin et al. constructed a

cellular senescence-related signature (SRS) by leveraging senescence-

related genes. They found that SRS involved in the regulation of the

tumor immune microenvironment through SASP was a robust

biomarker for the immunotherapeutic response and prognosis in

LUAD (15). In a similar vein, another research by Lin et al. explored

cellular senescence patterns within LUAD by analyzing mRNA

expression profiles of 278 cellular senescence-related genes,

demonstrating the association between cellular senescence patterns

and tumor immune infiltration in LUAD (16). Besides, Liu et al.

developed a 12-gene signature for LUAD using 91 cancer-related
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1347770
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ru et al. 10.3389/fimmu.2024.1347770
senescence genes to assess survival outcome (19). Nonetheless, prior

investigations were marked by limitations. Firstly, all focused on only

a subset of senescence genes. Secondly, the assessment of the TME

was largely confined to the bulk transcriptomic level. As a result, the

role of senescence in LUAD has yet to undergo systematic evaluation,

and the intricate interplay between senescence and LUAD prognosis

has remained obscure.

This current study seeks to overcome these limitations by

integrating a comprehensive collection of 586 senescence genes

sourced from the GenAge and CellAge databases. Employing the

least absolute shrinkage and selection operator (LASSO) Cox

analysis, a novel prognostic model for LUAD was constructed

and validated. This model was further investigated the

relationship between aging and tumor somatic mutation or

immune cell infiltration. Furthermore, this study delved into the

senescent heterogeneity and intercellular communication of various

cells within the LUAD TME through the analysis of single-cell

transcriptomic data. In summary, this study enriches our

understanding of the profound impact of cell senescence on the

survival outcomes of patients with LUAD, which unravels the

complex associations between senescence, the immune landscape,

and the intricate genetic makeup of the tumor, ultimately

illuminating novel avenues for therapeutic interventions and

prognostic assessments.
2 Materials and methods

2.1 Data source and processing

In the training cohort, bulk RNA sequencing (RNA-seq) data,

somatic mutation data and clinical information for LUAD were

downloaded from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/) (21). After excluding non-primary

cases and patients with incomplete follow-up information, we

analyzed 428 patients from the TCGA dataset as the training set.

For the validation cohort (GSE31210, GSE50081, and GSE30219)

(22–25), transcriptome data were obtained from data series in the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/geo/) (26). Single-cell RNA-seq (scRNA-

seq) data (GSE189357) comprising nine patients with LUAD was

also download from the GEO database (27). Fragments per kilobase

million (FPKMs) values or raw gene expression counts were

normalized to transcripts per kilobase million (TPMs) in both the

training and validation cohorts. Genes that were not expressed in

more than half of the samples were excluded from the expression

profiles. The clinical features of 428 patients are listed in Table 1.
2.2 Aging gene set and screening

The set of aging-related marker genes (ARGs) was obtained

from two databases, GenAge and CellAge. Initially, 279 ARGs were

selected from CellAge (https://genomics.senescence.info/cells/)

(28), and an additional 307 ARGs were obtained from GenAge

(https://genomics.senescence.info/genes/index.html) (29)
Frontiers in Immunology 0363
(Supplementary Table S1). Univariate Cox analysis was

conducted by survival (version 3.3-1) packages to preliminarily

identify ARGs associated with the overall survival (OS) of LUAD

patients in the TCGA cohort (30), resulting in a final gene set

comprising 102 ARGs (Supplementary Table S2).
2.3 Construction and validation of an ARGs
risk model

We utilized the “glmnet” (version 4.1-8) package in R software

(version 4.1.2) to perform the LASSO Cox regression analyses

(family=“cox”) to screen out the prominent genes (31, 32). The

“lambda.1se” value, determined through tenfold cross-validation,

was employed as the lambda for model fitting. Ten genes were

ultimately selected to construct the risk model. The prognostic

capability of the ten genes was assessed using Kaplan-Meier survival

curves generated with the survminer (version 0.4.9) and survival

(version 3.3-1) R packages (30). Subsequently, we calculated a risk

score for each sample, as a linear combination of gene expression

levels within the signature set, weighted by their respective LASSO

Cox regression coefficients, using the following formula:

Aging� related risk scores (ARRSs)

=on
i Expre(genei)*Coef (genei)  

Here, “Coef (genei)”, signifies the LASSO Cox regression

coefficient, “Expre (genei)”, represents the expression level of each

gene, and “n” denotes the number of genes included in the model.

In addition, the R package “survival” (version 3.3-1) was used to

construct multiple multivariate Cox analysis to determine the

independent prognostic factor in LUAD patients (30).

In the TCGA training cohort, LUAD patients were classified into

high aging score group (HAS group) and low aging score group

(LAS group) based on the median value of ARRSs. The prognostic

capability of the risk model in terms of OS and progression-free

survival (PFS) was assessed using Kaplan-Meier survival curves

generated with the survminer (version 0.4.9) and survival

(version 3.3-1) R packages (30). Additionally, we also compared the

clinicopathological characteristics of TCGA-LUAD patients between

the HAS group and the LAS group using Fisher’s Exact Test.

To validate the ARGs Risk Model, we calculated the risk score

for patients in the validation cohort (GSE31210, GSE50081, and

GSE30219) using the same formula as applied to the TCGA-LUAD

cohort. Patients in the validation cohort were also categorized into

high and low-risk groups based on the median value of ARRS.

Kaplan-Meier curves were generated to assess the relationship

between ARRS and OS in the validation cohort.
2.4 Functional enrichment analysis of
differentially expressed genes based on
HAS and LAS groups

We used the “DESeq2” (version 1.36.0) R package to calculate

fold-changes and identify differentially expressed genes (DEGs)
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based on the two risk groups (false discovery rate (FDR) < 0.05 and |

Log2FC| > 1) (33). Subsequently, we conducted Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses on these DEGs using the “clusterProfiler” (version

4.7.1.002) R package (34). Pathways with adjusted p-values less

than 0.05 were considered significant.
Frontiers in Immunology 0464
2.5 Immune infiltration between the HAS-
group and LAS-group from TCGA-
LUAD cohort

The “estimate” R package, a powerful tool for quantifying the

immune stromal, and ESTIMATE scores, which was based on the
TABLE 1 Patient characteristics for TCGA_LUAD cohort.

Total
(n = 428)

HAS group
(n = 214)

LAS group
(n = 214)

Fisher’s Exact
Test (P value)

Age

<=65 206 111 95

0.142>65 212 98 114

NA 10 5 5

Gender
female 238 111 127

0.144
male 190 103 87

race

american indian or
alaska native

1 1 0

0.154

asian 8 6 2

black or african american 47 19 28

white 330 168 162

NA 42 20 22

OS
Alive 321 146 175

0.002
Dead 107 68 39

AJCC

I 245 105 140

0.004

II 103 59 44

III 59 38 21

IV 14 9 5

NA 7 3 4

T stage

T1 149 56 93

0.002

T2 231 130 101

T3 36 22 14

T4 11 5 6

TX 1 1 0

N stage

N0 292 130 162

0.001

N1 77 47 30

N2 50 35 15

N3 2 1 1

NX 6 1 5

NA 1 0 1

M stage

M0 286 147 139

0.313
M1 14 9 5

MX 124 56 68

NA 4 2 2
The “NA” represents sample with missing clinical information. Samples with missing clinical information were not considered in Fisher’s Exact Test statistics.
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expression of related molecular biomarkers in immune and stromal

cells, to predict the TME (35). The “xCell” is a robust algorithm that

analyzes the infiltration levels of 64 immune and stroma cell types,

including extracellular matrix cells, epithelial cells, hematopoietic

progenitors, innate and adaptive immune cells (36). Herein, we

utilized the R package estimate (version 1.0.13) and xCell (version

1.1.0) to evaluate the immune infiltration score and immune cell

infiltration in each patient between HAS and LAS subgroups.

Additionally, the T cell-inflamed gene expression profile (GEP) was

calculated as a weighted sum of standardized expression values of 18

genes (CCL5, CD27,CD274,CD276,CD8A,CMKLR1,CXCL9,CXCR6,

HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2,

PSMB10, STAT1, TIGIT) as described in previous literature (37–39).

The single sample gene set enrichment analysis (ssGSEA) algorithm in

“gsva” (version 1.42.0) R package was performed to compare

differences in 13 gene sets associated immune function and 4 gene

sets related to angiogenesis, matrix, matrix remodeling, and tumor

proliferation rate from previous studies (40–42). Box plots were

developed using ggplot2 software (version 3.4.3) in R to display the

differences between the two groups (43).
2.6 The genetic landscapes of HAS-group
and LAS-group

Genetic landscapes were analyzed and visualized using the

“maftools” (version 2.12.0) R package (44). Tumor Mutation

Burden (TMB) was defined as the number of somatic, non-silent,

protein-coding mutations in the coding regions per megabase (mut/

Mb) and counted using ‘maftools’ (version 2.12.0). The mutated

samples of tumor-related and DNA damage repair (DDR) pathways

in HAS and LAS groups were compared using Fisher’s exact test (with

p <0.05 indicates a significant difference) and visualized using

“ggradar” (version 2.12.0) and ggplot2 (version 3.4.3) R packages (43).
2.7 Single-cell RNA-seq analysis

Raw matrix data were obtained from the GEO database for

subsequent analysis (27). Initially, cells with low quality were filtered

out based on the following criteria: 1) fewer than 200 expressed genes,

2) total molecule count per cell less than 800, and 3) greater than 10%

of reads mapped to the mitochondrial genome. Additionally, the

“DoubletFinder” R package (45) was utilized to identify and remove

doublet cells using default parameters.

The “Seurat” package (version 4.3.0) (46) was employed to

normalize the single-cell gene expression data using the

“NormalizeData” and “ScaleData” functions, respectively.

Subsequently, the top 2,000 highly variable genes for each sample

were selected using the “FindVariableFeatures” function. Principal

component analysis (PCA) was performed using the “RunPCA”

function, and the first 20 principal components were used for

Uniform Manifold Approximation and Projection (UMAP)

analysis with the “RunUMAP” function. Following UMAP
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analysis, cells were clustered using an unsupervised method with

a resolution parameter of 1.5 employing the “FindNeighbors”

function. Differential expression analysis was conducted on the

original log-normalized data by comparing cells within each cluster

to all other clusters using the “FindAllMarkers” function. Clusters

were annotated based on the expression of well-known markers and

differentially highly expressed genes.

Subgroup analysis of each cell group, including T/NK cells, B

cells, and myeloid cells, was performed using the standard Seurat

pipeline. Specific markers were used for grouping and are listed in

Supplementary Table S3. Bar plots were generated to illustrate the

percentage of cells between the two groups. Additionally, cell

occupancy differences were assessed using Fisher’s exact test. The

cytotoxic and exhausted scores for T cell subgroups, as well as the

hallmark pathways compared between HAS and LAS groups, were

calculated using the ssGSEA algorithm in the “gsva” package

(version 1.42.0) based on different sets of genes (42).
2.8 Identification of cancer cells

To identify cancer cells, we utilized the inferCNV (version

1.13.0) tool (https://github.com/broadinstitute/inferCNV), as

previously described in studies by Liu, He, et al. and Chen et al.

(47, 48). The inferCNV package compares gene expression profiles

of each cell to reference gene expression profiles from other cells.

Initially, raw count data and cell type annotations for all cells were

extracted from the Seurat object. Immune cells and stromal cells

were chosen as reference cells. A gene ordering file was generated

from the human GRCh38 assembly, containing chromosomal start

and end positions for each gene. These files were used to create an

inferCNV object using the “CreateInfercnvObject” function,

followed by running inferCNV with default parameters. The

calculated copy number variation (CNV) signal was defined as

the mean square of CNV estimates across all genomic locations.

CNV R-scores were calculated as the Pearson correlation coefficient

between each cell’s CNV pattern and the average CNV pattern of

the top 5% of cells from the same tumor based on CNV signal. Cells

with CNV R-scores ≥0.3 were classified as tumor cells.
2.9 Aging-related risk scores based on
pseudo-bulks

The Seurat object was transformed into a “SingleCellExperiment”

object, followed by the computation of pseudo-bulks. Pseudo-bulks,

which represent the sum of counts, were calculated using

aggregation-based methods in the muscat (version 1.10.1) R

package (https://github.com/HelenaLC/muscat). The ARRSs were

then derived using the previously described formula based on the

pseudo-bulks. Patients were stratified into two groups, HAS and

LAS, based on the median value of ARRSs. Additionally, age scores

for each cell were calculated based on ten ARKGs at the single-cell

level using the ssGSEA algorithm.
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2.10 Cell-cell interactions

CellChat (version 1.5.0) is an open-source R package (https://

github.com/sqjin/CellChat) utilized for the analysis, comparison,

and visualization of single-cell RNA sequencing data intercellular

communication (49). In this study, CellChat was employed to infer

cell-cell interactions across 24 immune subgroups, fibroblasts,

normal epithelial cells, tumor cells, and endothelial cells for both

the HAS and LAS groups. Subsequently, major signaling changes

between the HAS and LAS groups were computed.
2.11 Statistical analysis

The Wilcoxon test was conducted to examine differences in

variables between two groups, while the Kruskal-Wallis test was

used to assess differences among groups greater than two. Gene

mutation differences between the HAS and LAS groups were

determined using Fisher’s exact test.
3 Results

3.1 Construction and validation of aging-
related risk score

The workflow of the whole study was graphically presented in

Figure 1A. We compiled a comprehensive list of 586 aging-associated

genes sourced from the CellAge and GenAge databases. Among these

genes, 102 were significantly associated with clinical survival (p <

0.05) based on univariate Cox analysis (detailed results shown in

Supplementary Table S2), conducted on the expression matrix and

clinical survival information of 428 LUAD samples obtained from the

TCGA dataset. Subsequently, to construct the ARGs risk model, we

performed LASSO Cox regression analysis on the aforementioned

102 genes and the gene expression profiles of the training cohort

(Figures 1B, C). Through this analysis, we successfully identified 10

aging-related key genes (ARKGs), including. BRCA2, CSNK1E,

EEF1E1, GAPDH, IGFBP3, IL1A, PSEN1, XRCC5, XRCC6, and

YWHAZ. And low RNA expression for the 10 ARKGS was

correlated with longer survival time in LUAD (Supplementary

Figure S1). Utilizing these ten ARKGs and their corresponding risk

coefficients, we established an aging risk signature. The risk score of

every patient was calculated using this formula. Patients in the

training cohort were stratified into two groups: the high aging

score group (HAS group) and the low aging score group (LAS

group) based on median values of ARRSs. Upon investigating the

expression levels of the ten ARKGs, we found that they were

significantly higher in HAS group than LAS group (Supplementary

Figure S2, Supplementary Table S4).

We compared the clinicopathological characteristics, including

age, gender, race, OS, TNM tumor grade, and AJCC tumor grade, of

TCGA-LUAD patients between the HAS group and the LAS group

(Table 1). The results showed significant differences in OS status

(P = 0.002), T grade (P = 0.002), N grade (P = 0.001), and AJCC

tumor grade (P = 0.004) between the groups. Survival analysis
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demonstrated that the LAS-group exhibited significantly improved

overall survival (OS) (hazard ratio (HR) = 0.45, 95% confidence

interval (CI) = 0.31 – 0.66, P = 0.000044) and progression-free

survival (PFS) (HR =55, 95% CI = 0.41 – 0.74, P = 0.000052)

compared to the HAS-group (Figures 1D, E). Upon integrating age,

gender, TNM tumor grade, and AJCC tumor grade into the

multivariate Cox regression analysis, ARRSs emerged as the sole

significant survival-related risk factor (HR = 9.32, 95% CI = 4.50 –

19.29, P = 0.0000000018) (Figure 1F), suggesting that ARRSs was an

independent prognostic factor for LUAD.

To validate the prognostic roles of the above risk model, we

applied the same stratification method to three independent

datasets form the GEO database. Consistent with the findings

from the training cohort, patients with in the high ARRSs group

displayed significantly worse survival outcomes compared with the

low ARRSs group in all three cohorts, namely GSE50081 (HR =

0.32, 95% CI = 0.18 – 0.56, P = 0.000081), GSE30219 (HR = 0.52,

95% CI = 0.29 – 0.95, P = 0.038), and GSE31210 (HR = 0.36, 95%

CI = 0.19 – 0.71, P = 0.005) (Figures 1G-I).
3.2 The genetic characteristics of HAS-
group and LAS-group

To explore the genetic features in LUAD with different ARRSs,

we further investigated the genomic differences between the HAS

group and the LAS group based on somatic mutation data in the

TCGA-LUAD cohort (Figure 2A; Supplementary Figures S3A-C).

We observed that HAS group had a higher mutation frequency than

the LAS group, particularly in the top 20 genes such as, TP53, TTN,

CSMD3, ZFHX4, RYR3, CSMD2, SI, LRRC7, and PAPPA2 (detailed

P values shown in Supplementary Table S5) between HAS and LAS

groups (Figure 2B). Additionally, the HAS group displayed a higher

tumor mutation burden (TMB) but a lower occurrence of co-

occurring mutations between genes, indicating distinct genomic

alteration patterns (Figure 2C; Supplementary Figure S3D). Further

analysis of ten tumor-related pathways revealed significantly higher

mutation frequencies in the Hippo (P = 0.011), NOTCH (P =

0.013), and TP53 (P = 0.011) pathways in the HAS-group compared

to the LAS-group (Figures 2D, F; Supplementary Figure S4B).

Similarly, higher mutation rates were observed in the HAS group

among the eight DDR pathways, with five of them being statistically

significant (Figures 2E, G; Supplementary Figure S4A).
3.3 ARRSs is associated with cell
proliferation and immune function

Differential expression analysis of gene expression data based on

the HAS group and LAS group identified a total of 1664 differentially

expressed genes (DEGs) under a threshold of adjusted p < 0.05,

comprising 707 up-regulated and 957 down-regulated genes

(Figure 3A). GO enrichment analysis for DEGs revealed that in the

HAS-group, biological processes were predominantly enriched in cell

cycle, cell division, and cell development, indicating a potential

involvement in regulating normal cell function and organismal

development (Figure 3B). Furthermore, based on gene sets from
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Bagaev, et al. (40), we found that the tumor proliferation rate, and

matrix remodeling of the HAS group were significantly higher than

those of the LAS group (Figure 3F, detailed P values were shown in the

Supplementary Table S4).

In contrast, the LAS-group exhibited enrichment in immune

response mechanisms, encompassing cell activation, signal

transduction, and production of immune mediators (Figure 3C).
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Based on another gene set related to immune functions (41), we

observed that nine of the 13 immune function gene sets had

significantly higher ssGSEA scores in all LAS groups than the

HAS group (Figure 3G, detailed P values were shown in the

Supplementary Table S4), especially type II IFN response, T cell

co-stimulation, and HLA. Immune estimations for LUAD patients

within the training set (TCGA-LUAD) showed notably increased
FIGURE 1

Identification of ARKGs related to prognosis in the TCGA training cohort. (A) The workflow of the present study. (B) Selection of optimal candidate
genes in the LASSO model. (C) LASSO coefficients of prognosis-associated ARKGs. (D, E) Kaplan-Meier curves for overall survival (D) and progression
free survival (E) of the TCGA-LUAD cohort in the HAS and LAS groups. (F) Forest plots showing results of multivariate Cox regression analysis
between Risk score, clinical information and overall survival. (G-I) Kaplan-Meier curves for overall survival of validation cohorts in the high and low
groups: GSE50081 (G), GSE30219 (H), GSE31210 (I).
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StromalScore, ImmuneScore, ESTIMATEScore, and GEP score in

the LAS group when compared to the HAS group (Figures 3D, E).

Xcell analysis revealed the immune infiltration of TME (36). The

results indicated that LAS group had an activated TME, with

significantly increased numbers of T cells, such as CD8+ T cells,
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CD8+ Tcm, CD4+ Tem, and CD4+ Tcm, and significantly

decreased numbers of Th1 and Th2 (Figure 3H, detailed p values

were shown in the Supplementary Table S4). Additionally, B cells

such as plasma cells (Figure 3H), and myeloid cells such as Mast

cells, and various DCs (Figure 3I, detailed p values were shown in
FIGURE 2

Genomic alterations differences between the HAS and LAS group from the TCGA-LUAD cohort. (A) Genomic alterations landscape between the HAS
(left) and LAS (right) group. (B) Mutation frequency differences of the top 20 mutation genes in the HAS group compared to the LAS group. The
asterisk to the right of the gene indicates that the mutations in the gene were significantly different in the two groups, as determined by Fisher’s
exact test. (C) The TMB between HAS and LAS groups. The HAS group had a higher TMB (2.66 (IQR: 0.04, 11.985) compared to the LAS group (1.58
(IQR: 0.02, 6.9)) with P value = 0.000065 compared by the Wilcoxon test. The frequency of mutated genes in each tumor-related pathway (D, F)
and DDR pathway (E, G) difference between two groups. The asterisks in (D, E) denote significant differences of mutated genes in different pathways
identified by Fisher’s exact test which showed in (F, G).
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the Supplementary Table S4), were also significantly increased in

the LAS group. Furthermore, we explored the relationship between

ARRSs and various cell death pathways. The findings revealed that

significantly elevated scores for Alkaliptosis, Cuproptosis,
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and Oxeiptosis in the HAS-group, whereas Autophagy,

Lysosome-dependent cell death, Necroptosis, and Parthanatos

scores were markedly higher in the LAS-group (Figure 3J;

Supplementary Table S4).
FIGURE 3

Transcriptomic differences between the HAS and LAS group from the TCGA-LUAD cohort. (A) Volcano Plot of DEGs between the HAS and LAS
group. (B, C) Top 20 biological processes of GO enrichment results between the HAS (B) and LAS (C) group. (D) Stromal score, immune score and
ESTIMATE score between the two groups. (E) GEP score between the two groups. (F, G) Boxplots of gene sets related to tumor proliferation (F) and
immune-related functions (G). (H, I) Box plot of T cells (H), B cells (H), and myeloid cells (I) infiltration in “Xcell” between the two groups. (J) Box plot
of cell death between the two groups. "ns" indicates p > 0.05, * indicates p ≤ 0.05, ** indicates p ≤ 0.01, *** indicates p ≤ 0.001, and **** indicates p
≤ 0.0001. The actual P determined by the Wilcoxon test, and the medians (IQR) in Figures 2D-F were all displayed in Supplementary Table S4. All
abbreviations presented in Figure 3 showed as following: GEP, T cell-inflamed gene expression profile; CCR, cytokine and cytokine receptor; HLA,
human leukocyte antigen; MHC, major histocompatibility complex.
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3.4 The single cell alta of HAS-group and
LAS-group

To further investigate whether the ARRSs is heterogeneous in the

TME, we utilized a single-cell dataset (GSE189357) containing over

10,000 cells from 9 patients. Initially, the single-cell dataset was

converted to pseudo-bulks and then ARRSs were calculated.

Subsequently, the 9 patients were divided into HAS (n = 5) and

LAS (n = 4) groups based on the median value of ARRSs. Notably, two

of the three invasive adenocarcinoma (IAC) samples were categorized

into the HAS group, exhibiting significantly higher aging scores

compared to the LAS group (Figures 4A, B). Employing the

standard pipeline in Seurat (46), we identified six major cell types,

including T/NK cells, B cells, myeloid cells, fibroblasts, endothelial

cells, and epithelial cells (Figures 4C, D). Subsequently, the epithelial

cells were further subdivided into tumor cells and normal epithelial

cells (Figure 4E). Interestingly, we observed an enrichment of tumor

cells and endothelial cells in the HAS (P = 6.44E-66, odds ratio (95%

CI) = 1.57 (1.49, 1.66), Supplementary Table S6) and LAS (p = 0, odds

ratio (95% CI) = 4.56 (4.2, 4.95)) groups, respectively (Figure 4F).

Furthermore, we conducted subtype annotation specifically for

immune cells including T/NK cells, B cells, and myeloid cells

(Figures 4G-I; Supplementary Table S2). T/NK cells were

subdivided into eight T cell subpopulations and two NK cell

subpopulations (Figure 4G). Functional scoring of T-cell subsets

revealed that FCGR3A NK cells (T09) and CD8-GNLY (T08) had

the highest cytotoxic scores, while CD8-CXCL13 (T06) had the

highest exhausted score (Supplementary Figure S5). We compared

the cellular infiltration in the HAS and LAS groups and found that the

T and NK cell subpopulations were significantly differed between the

HAS and LAS groups (Supplementary Table S6). Specifically, CD4-

CCR7 (T01, P = 1.53E-134, odds ratio (95% CI) = 1.81 (1.72, 1.9)),

and CD4-FOXP3 (T03, P = 4.55E-21, odds ratio (95% CI) = 1.41

(1.31, 1.52)) were enriched in the HAS group, whereas CD8-CCR7

(T05, P = 6.42E-14, odds ratio (95% CI) = 1.34 (1.24, 1.45)), CD8-

CXCL13 (T06, P = 2.35E-64, odds ratio (95% CI) = 5.66 (4.51,

7.16)), CD8-GNLY (T08, P = 2.94E-23, odds ratio (95% CI) = 1.39

(1.3, 1.48)), FCGR3A NK cells (T09, P = 4.29E-98, odds ratio (95%

CI) = 1.95 (1.83, 2.08)), and XCL1 NK cells (T10, P = 2.65E-34,

odds ratio (95% CI) = 2.02 (1.8, 2.27)) were enriched in the LAS

group. For B cell subsets, naive and memory B cells were more

prevalent in the HAS group, whereas plasma cell (PC) subsets (B03

P = 1.33E-24, odds ratio (95% CI) = 2.3 (1.96, 2.69); B04, P = 3.51E-

48, odds ratio (95% CI) = 2.96 (2.55, 3.43)) and stressed PC (B05,

P = 7.24E-13, odds ratio (95% CI) = 3.02 (2.21, 4.12)) were more

prevalent in the LAS group. The Mast cells (M01, P = 7.44E-292,

odds ratio (95% CI) = 2.77 (2.62, 2.92)) showed a tendency to

increase in the LAS group compared to the HAS group, while

neutrophils (M02, P = 4.84E-164, odds ratio (95% CI) = 5.25 (4.55,

6.08)), S100B DC (M06, P = 1.08E-66, odds ratio (95% CI) = 2.05

(1.88, 2.23)), TXN DC (M07, P = 9.61E-15, odds ratio (95% CI) =

2.47 (1.93, 3.19)), and proliferation myeloid cells (M09, P = 1.51E-

16, odds ratio (95% CI) = 1.87 (1.6, 2.2)) were significantly more

prevalent in the HAS group. These results provide further evidence

of heterogeneity in immune cell infiltration between groups with
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differing ARRs at the single-cell level, especially the LAS enriched

more cytotoxic T/NK cells and antibody-secreting B cells.
3.5 Inference of cell-cell interactions

Given that senescence alters intercellular communication, we

conducted a comparative analysis of intercellular communication

between the HAS and LAS groups for each cell subset based on

single-cell data. Significant differences were observed in several

signaling networks between the HAS and LAS group

(Supplementary Figure S6). Notably, SPP1 was exclusively present

in in the HAS group (Supplementary Figure S6; Figure 4J).

Especially, the interaction of SPP1-CD44 has been reported to

inhibit T-cell activation and promote tumor immune evasion (50,

51). Additionally, TENASCIN was frequently observed in the HAS

group, with tumor cells in this group interacting with other cells,

including tumor cells themselves, via TNC - SDC1/SDC4 or TNC -

ITGA8_ITGB1/ITGAV_ITGB6 (Supplementary Figure S6;

Figure 4K). TNC is an extracellular matrix glycoprotein known to

contribute to tumor progression, and increased TNC expression in

LUAD tissues correlates with an unfavorable clinical outcome for

patients (52). Conversely, certain pathways were exclusively or

more frequently observed in the LAS group (Supplementary

Figure S6). For example, the secreted signaling BAG, and CD70

pathways were uniquely found in the LAS group (Supplementary

Figure S6). The BAG6-NCR3 interaction targeting T09 might

trigger NK cell cytotoxicity (Figure 4L). Furthermore CD70-CD27

interaction was observed between B02 and PC or between B02 and

T cells. CD27 receptor activation provides a costimulatory signal

promoting T cell and B cell activity to enhance anti-tumor and anti-

infection immunity (Figure 4M) (53).
3.6 Cellular senescence heterogeneity in
the tumor microenvironment

Using single-cell data, we evaluated the senescence levels of

individual cells and compared the senescence levels among different

cell subpopulations (Figure 5A). We observed lower age scores in

B01, B03, B05, M02, and endothelial cell subpopulations, while M03

and M05 exhibited higher age scores (Figure 5A). Subsequently, we

compared the senescence levels of cell subpopulations between the

HAS and LAS groups (Figure 5B). Most T cell subsets (e.g., T05,

T07) displayed higher age scores in the HAS group than in the LAS

group (Figures 5B, C). Moreover, endothelial and fibroblast cells

exhibited higher age scores in the HAS group, whereas normal

epithelial cells and tumor cells showed higher age scores in the LAS

group (Figures 5B, C). Age scores for different subpopulations of

myeloid and B cells varied between the HAS and LAS groups

(Figures 5B, C). For instance, the age scores of B01, B02, M05 and

M06 were significantly lower in the HAS group than in the LAS

group, while B04 and M02 showed higher scores in the HAS group

(Figures 5B, C). As cellular damage caused by reactive oxygen

species (ROS) is a major trigger for senescence (54), we assessed and
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FIGURE 4

Single cell atlas and cell-cell interactions between the HAS (n = 5) and LAS (n = 4) group. (A) ARRSs based on single cell pseudo-bulks differed
between the HAS and LAS group. The HAS group had a higher ARRS 0.4496 (IQR: 0.4304, 0.463) compared to the LAS group 0.4147 (IQR: 0.3969,
0.4228) with P value = 0.0159 compared by the Wilcoxon test. (B) Alluvial diagram showed the grouping of the nine samples. (C) UMAP plot for cells
displaying the six major cell types from patients. (D) Dot plot depicting mean expression levels and percentage of cells expressing signature genes
across the six major cell types. (E) Distribution of normal and tumor cells in epithelial cells from LUAD. (F) The composition of the cell compartment,
displaying the average frequencies of cell subsets for HAS and LSA groups. (G-I) The UMAP plot and the average frequencies of different T cell, B cell
and myeloid cell subgroups. (J, K) Comparison of the significant ligand-receptor pairs of SPP1 signaling (J) and TENASCIN signaling (K) for the HAS
group. Dot color reflects communication probabilities and dot size represents computed p-values. Empty space means the communication
probability is zero. p-values are computed from one-sided permutation test. (L, M) Circle plot showed cell–cell communication mediated by CD70-
CD27 (L) and BAG6-NCR3 (M) in the LAS group. All abbreviations presented in Figure 4 showed as following: ARRS, aging related risk score; IQR,
interquartile range; AIS, lung adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; tumor, tumor cells;
normal, normal epithelial cells; Fib, fibroblasts; End, endothelial cells.
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compared the “reactive oxygen species pathway”. Our results

revealed higher scores for this pathway in the HAS group for

B01, B02, M05, M06, normal epithelial cells, and tumor cells,

whereas the HAS group for B04, M02, T05, T07, endothelial, and

fibroblast cells exhibited lower scores (Figure 5D), consistent with

the trend observed in age scores (Figure 5C).
4 Discussion

Cellular senescence involves the cessation of cell-cycle and the

release of inflammatory cytokines with autocrine, paracrine and

endocrine activities (55). The SASP represents a significant feature

of senescent cells, encompassing the release of various cytokines,

chemokines, growth factors and proteases (56). The impact of cellular

senescence on cancer is intricate, displaying both advantageous and

detrimental effects. Nevertheless, the extent to which the senescent

heterogeneity of immune infiltration cells within tumors, as well as
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the interplay between tumor senescence and immune infiltration in

LUAD, remains incompletely documented. In the current

investigation, we constructed an independent prognostic model

based on cellular senescence-related genes, and comprehensively

analyzed the role of aging in genomic alterations and immune

landscape in LUAD, which might hold the potential to facilitate the

development of personalized immunotherapy.

This study successfully identified a novel and independent

prognostic risk model incorporating ten significantly upregulated

genes in LUAD. Ten genes were selected from a comprehensive list

of 586 aging-associated genes obtained from the CellAge and

GenAge databases. These genes also have been previously

reported as positive regulators of tumor development. For

example, CSNK1E, a member of the serine/threonine protein

kinase family, controls circadian rhythms, which is closely related

to the animals longevity (57). Inhibition of CSNK1E has been show

to selectively inhibit tumor cell development (58), and elevated

CSNK1E expression is associated with poor prognosis in patients
FIGURE 5

Single cell age score. (A) The age score for each cell. (B) The medians of age scores for each cell type in the HAS and LAS groups. (C) The box plots
demonstrating between-group differences in the HAS and LAS groups for age scores for specific cell types. We used the following notation for
statistical significance: “ns” indicates p > 0.05, ** indicates p ≤ 0.01, *** indicates p ≤ 0.001, and **** indicates p ≤ 0.0001. The actual P determined
by the Wilcoxon test, and the medians (IQR) in (C) were all displayed in Supplementary Table S4. (D) Heatmap showed the activity of hallmarks
between the HAS and the LAS groups for different cell types. All abbreviations presented in Figure 5 showed as following: tumor, tumor cells;
normal, normal epithelial cells; Fib, fibroblasts; End, endothelial cells.
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with ovarian cancer and malignant melanoma (59, 60). EEF1E1, a

tumor suppressor, plays a role in ATM/ATR-mediated p53

activation (61), and serves as a poor prognosis predictor in lung

cancer (62). Overexpression of EEF1E1 in transgenic mice resulted

in a significantly shorter mean lifespan (63). GAPDH directly

participates in tumor progression, invasiveness, and metastasis

(64), and conditions such as oxidative stress impair GAPDH

catalytic activity, leading to cellular aging and apoptosis (65).

Increased expression of PSEN1 in colorectal cancer is associated

with enhanced tumor development through heightened EGFR

signaling via NOTCH1 processing and activation of the COX-2-

PGE2 pathway (66). PSEN1-null mice die shortly after birth (67),

although PSEN1’s role in human aging remains largely unknown.

YWHAZ is an adapter protein implicated in several signal

transduction pathways (68) and interacts with numerous proteins

associated with aging, such as the INS/IGF1 pathway (69, 70).

YWHAZ has also been shown to mediate lung cancer malignancy

and b-catenin protein through its complex with b-catenin (71).

IL1A, a pivotal inflammatory cytokine, is thought to be one of the

critical upstream regulators of other SASP-related genes (72, 73)

and drives tumor growth and metastasis (74). IGFBP3, a member of

the insulin-like growth factor-binding protein (IGFBP) family,

regulates IGF1 and IGF2 by altering the interaction of IGFs with

their cell surface receptors. Interestingly, the cell growth regulator

IGFBP3 exhibits a unique pattern, as elevated levels are associated

with a good prognosis in patients with advanced NSCLC (75).

BRCA2, XRCC5, and XRCC6 are all DDR related genes, involved in

DNA damage and repair. Mice deficient for BRCA2 and XRCC5

have a reduced lifespan (76, 77). XRCC5/6 are associated with poor

prognosis and can be used as diagnostic and prognostic biomarkers

for LUAD (78). BRCA2’s role in cancer well-established, as elevated

BRCA2 expression is associated with a significantly reduced number

of stromal cells and high infiltration of both beneficial and

detrimental immune cells in breast cancer (79). BRCA2 has also

been demonstrated to exhibit increased mRNA levels and poor

prognosis in lung cancer (80). These findings collectively provide

compelling evidence that this newly proposed prognostic risk model

has the potential to reflect LUAD prognosis by considering genomic

alterations and the immune landscape.

Genetic instability is a common characteristic of both aging and

cancer (81), encompassing changes in DNA damage, DNA damage

response and repair, mutations, replication stress, transposition,

chromosome aberrations, telomere shortening, micronuclei, and

DNA fragments (82). In our study, we found that the HAS group

exhibited more frequent gene mutations and higher TMB,

indication the presence of an unstable genome and immunogenic

potential in patients with HAS. Furthermore, the mutation

frequency of the Hippo, NOTCH, TP53, and DDR pathways in

the HAS group were also significantly increased. Hippo is an

important pathway regulating differentiation, stem cell renewal,

and oncogenic transformation (83). In cancer research, the

activated Hippo pathway is considered as a tumor suppressor

pathway due to its ability to impede cell proliferation and

facilitate apoptosis (84). Similarly, NOTCH (85) and TP53 (86)

pathway mutations have also been reported to associate with

unfavorable prognosis in lung cancer. DNA damage response
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plays a significant role in maintaining genomic integrity and

closely associated with lung cancer progression and treatment

(87, 88). These researches provide additional insights into our

observed outcomes that patients with HAS experience poorer

survival when compared to those with LAS patients.

Cellular senescence functions as a stress response characterized

by a halt in proliferation and heightened secretion of pro-

inflammatory cytokines (89). Senescent cells recruit immune cells,

facilitating their own immune clearance, thereby restoring tissue

homeostasis. In the context of cancer, various stressors such as

oncogenic signaling, replication stress, hypoxia, reactive oxygen

species, nutrient deprivation, and exposure to cytokines within the

tumor microenvironment can trigger senescence. This underscores

the significant link between tumor cell senescence and immune cell

infiltration. Through a bulk-transcriptome analysis, we observed

that senescence-associated genes exert a strong influence on the

immune microenvironment in LUAD. Specifically, the LAS group

showed an activated TME, this manifested as a noteworthy increase

in the quantities of CD8+ T cells, CD8+ Tcm, CD4+ Tem, CD4+

Tcm, plasma cells, mast cells and DC, alongside heightened

ImmuneScore, GEP score and type II IFN response, T cell co-

stimulation, and HLA scores, in addition to enriched immune

response pathways. These findings were further corroborated

though single-cell analysis, which revealed that CD8-CCR7 (T05),

CD8-CXCL13 (T06), CD8-GNLY (T08), FCGR3A NK cells (T09),

XCL1 NK cells (T10), plasma cell sets (B03, B04, B05), and mast

cells (M01) were more enriched in the LAS group (Figure 4). In

contrast, the HAS group displayed an immunosuppressive

microenvironment with lower immune function scores and a

higher tumor proliferation rate (Figure 4). Additionally, based on

the cellular communication results, we identified some signaling

pathways specific to the HAS group, such as SPP1 and TENASCIN

(Figure 4), which contribute to tumor immune escape and tumor

progression (50–52). These results suggest that the HAS group

might promote tumor cell invasion by evading immune

surveillance, enhancing proliferation and immune escape, leading

to poor prognosis in LUAD.

In addition to bulk-level senescence assessment, we also

compared senescence at the single-cell level and found significant

heterogeneity in cellular senescence. Interestingly, we found that the

age scores for tumor cells in the HAS group were significantly lower

than that in the LAS group (Figure 5C), suggesting that senescence

at the bulk-level is not the same as senescence at the cellular level.

Senescent tumor cells might augment the immune response against

tumors (90), which is entirely consistent with the highly senescent

tumor cells and activated immune microenvironment in the LAS

group. However, it’s worth noting that these senescent cells could

also reinforce the tumor’s resistance to immunotherapy through

potent immunosuppressive mechanisms (91, 92). Therefore, more

in-depth studies at the cellular level remain essential.

Herein, we also explore the relationship between senescence

and other modes of cell death. Patients in the HAS-group

demonstrated a propensity for Alkaliptosis and ROS cell death

mechanisms such as Oxeiptosis (93) and Cuproptosis. These

endogenous damages, coupled with certain exogenous factors,

induced a wide array of genetic injuries, including point
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mutations and deletions (94), ultimately leading to significantly

higher TMB in the HAS-group compared to the LAS-group. To

counteract DNA damage, the HAS-group employed a series of

intricate DNA repair and maintenance mechanisms associated with

cell proliferation and differentiation, ensuring the preservation of

proper chromosomal structure and stability (8, 94). Conversely, the

interactions among lysosome-dependent cell death, autophagy, and

apoptosis played a more significant role in the LAS-group.

Meanwhile, the LAS-group exhibited immunological functions in

response to cellular senescence, engaging in tissue repair through

immune cell recruitment and immune clearance of senescent cells.

More novel analyses were added to our study, although studies

related to senescence in LUAD have been reported (15–18, 20).

Firstly, although previous studies have also compared differences

between aging subgroups in terms of mutations, or TMB (15–18).

Patients with higher risk scores had noticeably increased TMB and

mutated more frequently for TP53 (15, 16, 18), which is consistent

with the results we found. Furthermore, our study was the first to

compare at the pathway level which showed significant differences

in patients with different ARRs. Second, existing researches related

to senescence in LUAD have found that the lower risk scores group

embodies an immune-activated microenvironment. Lin, et al., 2023

showed that the ASRS was positively correlated with most

immunomodulator-related mRNAs, including chemokines, and

immune inhibitors, and receptors (18). This study collected a

previously reported set of 13 immune-related gene sets (41) and

comprehensively compared the immunity of different subgroups.

We found that nine of the 13 immune function gene sets were

positively correlated with ARRS score, including APC to

stimulation, cytokine and cytokine receptor (CCR), Check-point,

cytolytic activity, inflammation-promoting, HLA, T cell co-

stimulation, T cell co-stimulation, and type II IFN response

(Figure 3). Thirdly, previous studies based on different datasets

and different methods have been performed to show the association

between immune infiltration and senescence. However, sometimes

inconsistent results were obtained by different software. Our study

evaluates the association between immune infiltration and

senescence for the first time at the single cell level, and using

scRNA-seq, this study compared cellular communication between

different senescence groups, revealing possible alterations in cellular

communication caused by senescence (Figure 4). Finally, we

assessed senescence at the cellular level for the first time and

found significant inter-cellular heterogeneity for senescence. In

particular, we found an opposite trend between the overall

senescence score and the tumor cell senescence score. This study

still had some limitations, the limited availability of single-cell

samples and immune cohort samples may introduce some bias in

our model validation. Although we validated the aging score model

using several external independent public datasets, prospective

clinical trials verification of our model is still necessary.

Nevertheless, we hope that this model can contribute to the

comprehension of the molecular mechanisms of cellular

senescence and TME in LUAD.

In conclusion, our study identified and validated a senescence-

related signature based on 10 senescence-related genes as an

independent prognostic significance for patients with LUAD,
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indicating that the senescence levels are heterogeneous in LUAD

immune microenvironment, and the HAS group might promote

tumor cell invasion by evading immune surveillance, enhancing

proliferation and immune escape, leading to poor prognosis in LUAD.
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prognostic analysis of
moderately differentiated gastric
adenocarcinoma patients: a
novel focus on lymph
node indicators
Kangping Yang1†, Jiaqiang Wu2†, Tian Xu3†, Yuepeng Zhou1,
Wenchun Liu4 and Liang Yang1*

1Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College,
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Gastroenterological Surgery, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine,
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Background: Moderately differentiated gastric adenocarcinoma (MDGA) has a

high risk of metastasis and individual variation, which strongly affects patient

prognosis. Using large-scale datasets and machine learning algorithms for

prediction can improve individualized treatment. The specific efficacy of

several lymph node indicators in predicting distant metastasis (DM) and patient

prognosis in MDGA remains obscure.

Methods: We collected data from MDGA patients from the SEER database from

2010 to 2019. Additionally, we collected data from MDGA patients in China. We

used nine machine learning algorithms to predict DM. Subsequently, we used

Cox regression analysis to determine the risk factors affecting overall survival (OS)

and cancer-specific survival (CSS) in DM patients and constructed nomograms.

Furthermore, we used logistic regression and Cox regression analyses to assess

the specific impact of six lymph node indicators on DM incidence and

patient prognosis.

Results: We collected data from 5,377 MDGA patients from the SEER database

and 109 MDGC patients from hospitals. T stage, N stage, tumor size, primary site,

number of positive lymph nodes, and chemotherapy were identified as

independent risk factors for DM. The random forest prediction model had the

best overall predictive performance (AUC = 0.919). T stage, primary site,

chemotherapy, and the number of regional lymph nodes were identified as

prognostic factors for OS. Moreover, T stage, number of regional lymph nodes,

primary site, and chemotherapy were also influential factors for CSS. The

nomograms showed good predictive value and stability in predicting the 1-, 3-,

and 5-year OS and CSS in DM patients. Additionally, the log odds of a metastatic
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lymph node and the number of negative lymph nodes may be risk factors for DM,

while the regional lymph node ratio and the number of regional lymph nodes are

prognostic factors for OS.

Conclusion: The random forest prediction model accurately identified high-risk

populations, and we established OS and CSS survival prediction models for

MDGA patients with DM. Our hospital samples demonstrated different

characteristics of lymph node indicators in terms of distant metastasis

and prognosis.
KEYWORDS

moderately differentiated gastric adenocarcinoma, prognosis, nomogram, lymph node
indicators, distant metastasis, machine learning
1 Introduction

Gastric cancer, a very prevalent gastrointestinal tumor, is the fifth

most prevalent tumor worldwide (1). In 2020, there were more than

one million additional cases of gastric cancer (2). The histologic type

of gastric cancer is predominantly adenocarcinoma, and the

pathologic grade includes highly, moderately, and poorly

differentiated and undifferentiated (3, 4). Although progressive

gastric cancer is predominantly poorly differentiated, some

moderately differentiated gastric adenocarcinomas (MDGAs) still

have a high risk of metastasis and individual differences, which have

been reported in animal models and clinical studies (5–7). There is no

doubt that the occurrence of distant metastasis (DM) directly affects

patient prognosis (8). According to the latest eighth revision of the

UICC/AJCC TNM classification for gastric cancer, once DM occurs,

the disease has already entered stage IV, at which time the patient’s

survival chances are extremely poor (9). A retrospective study showed

that the median overall survival (OS) time for patients with liver

metastases from gastric cancer was 7months and that for patients with

lung and brain metastases (10) was only 5 months. Timely and

accurate determination of the distant metastasis status of gastric

cancer patients has important positive implications for avoiding

missing opportunities for early and effective interventions and

improving patient survival.

Currently, tests to clarify the occurrence of DM mainly rely on

multidetector computed tomography (CT), positron emission

tomography-CT (PET/CT), and other imaging methods (11, 12).

However, all of these methods have the problem of insufficient

sensitivity in practical applications (13). For example, in PET/CT,

some poorly differentiated carcinomas, mucinous carcinomas, and

indolent cell carcinomas usually have low 18F-FDG uptake, which

often results in false-negative results and delayed therapy (14).

Therefore, there is an urgent need for an accurate, convenient, yet

affordable method for DM diagnosis and prediction. The use of

emerging machine learning (ML) algorithms and large-scale datasets

to construct predictive models is currently a popular solution (15–17).
0278
ML algorithms are able to accurately process raw data originating from

databases, analyze the relationships between important data, and

ultimately build and filter the best predictive models (18–21). This

prediction model, which integrates clinical manifestations and imaging

data to form a comprehensive assessment tool, can be used to diagnose

the presence or absence of DM early and accurately and can better

guide subsequent clinical diagnosis and treatment.

For patients with already occurring DM, the median OS after

performing conventional chemotherapy is approximately 12

months (22). With regard to cancer-specific survival (CSS), the 1-

and 3-year CSS rates for the younger group (≤60 years of age) were

29.0% and 6.2%, respectively, compared with 22.8% and 4.8% for

the older group (>60 years of age), respectively (23). These findings

suggest that there are many factors that can influence DM patient

prognosis, and clarifying the effects of these factors and applying

them in a targeted manner are important ways to improve patient

prognosis. Many studies have demonstrated that factors such as age,

tumor size, sex, degree of differentiation, and primary site are

directly associated with DM patient prognosis (24–26). Moreover,

recent studies have demonstrated a strong association between

various lymph node indicators and DM and the prognosis of

moderately differentiated gastric adenocarcinoma patients. For

example, lymph node-specific indicators include the number of

positive lymph nodes (PLNs), the lymph node ratio (LNR), and the

log odds of metastatic LNs (LODDS) (27–29). However, the specific

efficacy of these lymph node indicators in predicting DM and

patient prognosis is unclear (30–33). This study explored these

prognostic factors in DM patients in the MDGA to provide strong

theoretical support for individualized treatment in this population.

Afterward, the above factors were combined to construct OS and

CSS prognostic nomograms at 1, 3, and 5 years for DM patients

with MDGA, which is a simplified visualization model for statistical

prediction in combination with independent factors.

Our goal was to formulate models for predicting DM in MDGA

patients and to ensure the stability and accuracy of these models

through both database validation and external validation. A
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prognostic analysis of DM patients was then performed to plot OS and

CSS prognostic nomograms for MDGA patients. Importantly, we

focused on exploring the relationships between various lymph node

indicators whose efficacy is still unclear and between DM and prognosis

to further promote the application of lymph node indicators in the

clinical practice of stomach cancer diagnosis.
2 Materials and methods

2.1 Sources of data and sample selection

The primary training dataset was obtained by collecting all 2010–

2019 gastric cancer patient data from the Surveillance, Epidemiology,

and End Results (SEER) database. The SEER database is the most

detailed publicly available cancer database. Moreover, we collected

the clinical data of MDGA patients treated at the Second Affiliated

Hospital of Nanchang University between 2008 and 2010 as an

external validation dataset. The inclusion criteria were as follows: 1)

had a diagnosis of MDGA, 2) did not receive preoperative

radiotherapy or immunotherapy, and 3) had comprehensive and

searchable prognostic data. The exclusion criteria were as follows: 1)

patients whose primary tumor was not gastric cancer, 2) patients

whose tumor and lymph node status were not clear, and 3) patients

whose other basic information was incomplete. The specific data

selection steps are illustrated below in Figure 1.
2.2 Variable selection

Variables in the present study included age, TNM stage,

primary site, tumor size, sex (male or female), and two
Frontiers in Immunology 0379
therapeutic variables (chemotherapy and radiation) obtained from

the diagnostic information, as well as several lymph node

indicators. Multiple lymph node indicators included the number

of Reg LNs, number of all LNs, number of Reg LNs, number of Neg

LNs, gross LN metastasis, LN positivity rate, log odds of metastatic

LNs, and lymph node ratio (number of metastatic LNs to total

number of LNs examined).

OS and CSS are the main outcomes for predicting the prognosis

of patients with DM. In OS, deaths due to any cause will be counted,

while in CSS analysis, only deaths due to MDGA will be considered

events, and deaths due to other factors as well as survival will

be excluded.
2.3 Statistical methods

The research procedure is illustrated in Figure 2. Heatmapping

was first developed to correlate the proposed study variables. We

use regression analysis and machine learning for dual validation of

risk factors; regression analysis is performed using the full SEER

data, and machine learning uses the training set, the test set, and the

external validation set to construct predictive models. Independent

risk factors influencing DM in moderately differentiated gastric

adenocarcinoma patients were screened by logistic regression

analysis. The outcomes are expressed as hazard ratios (HRs) and

95% confidence intervals (CIs). The patient data screened from the

SEER dataset were randomized 7:3 into a training set and a test set.

Then, the training set will be utilized to build the predictive model.

The constructed predictive models are then tested and evaluated

using the test set data. We constructed nine ML algorithms in the

training set, including RF (random forest), LR (logistic regression),

LASSO (least absolute shrinkage and selection operator), SVM
FIGURE 1

Flowchart of the data screening process. The figure shows the process of filtering eligible patient data from the SEER database.
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(support vector machine), KNN (K-nearest neighbor), NBC (naive

Bayes classifier), and ANN (artificial neural network). The receiver

operating characteristic (ROC) curve, the area under the ROC curve

(AUC), sensitivity, specificity, F1 score, and accuracy were used to

compare the performance of the models. Additionally, the

predictive models were evaluated and validated using test set data.

Self-collected hospital patient data were used as an external

validation set to validate the best predictive model that assessed

the generalization ability of the model.

We used several R packages in R for data analysis and

visualization. The createDataPartition function of the caret

package was used for grouping the training and validation sets.

The imp function of randomForest package was used to construct

the importance scores of RF. The coords function of the pROC

package was used to construct the confusion matrix. The

randomForest package, the MASS package, the rms package, the

glmnet package, the e1071 package, the xgboost package, the adabag

package, and the neuralnet package were all used for machine

learning model construction. The MASS package, rms package,

glmnet package, e1071 package, xgboost package, adabag package,

and neuralnet package were used for the construction of machine

learning models. The ggplot package and pROC package were used

for the visualization of ROC curves and importance scores.

For survival prognostic analyses, single-variable Cox regression

analysis was first adopted to screen the relevant variables that could

influence the prognosis (P < 0.05), and then multifactorial analyses

were carried out on the screened variables. Moreover, we used the

Kaplan−Meier curves to assess the differences in survival prognosis

among patients stratified by different variables and compared the

results by means of the log-rank test. The independent risk factors

identified through Cox regression analysis were used to construct

the nomogram. Moreover, using multifactor Cox regression

analysis, the regression coefficients b (coe b) for each variable

were normalized and are displayed as risk scores on the
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nomograms. The accuracy and discriminatory power of the

generated nomograms were assessed with the AUC, calibration

curves, and consistency index (C-index). In addition, we evaluated

the clinical value of the nomograms by using decision curve analysis

(DCA). This is a commonly used measure to assess model validity

by quantitatively estimating the net effectiveness under the

exposure threshold.

Finally, the impact of multiple nuanced tumor-associated LN

indicators on the development of DM in MDGA patients was

investigated by logistic regression analysis of patient data

collected at our institution, as well as factors affecting patient

prognosis. For descriptive statistics, categorical variables were

compared using the chi-square test or Fisher’s exact probability

method. P <0.05 indicated statistical significance.
2.4 Ethics approval

The use of patient data in this research has been authorized. The

approval document from the Ethics Committee is shown in the

attachment. Patients from the SEER database provided consent for

open research in any scientific study worldwide.
3 Results

3.1 Basic features and patient subgroups

Altogether, 5,377 patients from the database were included in

this study; 749 (13.93%) had DM, and 4,628 (86.07%) had no DM.

The local patient dataset, which served as an external validation set,

included a total of 109 patients, of whom 15 (13.76%) had DM and

94 (86.24%) had no DM. The patient data screened from the SEER

dataset were randomized 7:3 into training and testing sets. The
FIGURE 2

Data analysis guide. The figure shows the procedure of this study for processing and analyzing the screened data.
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results of the analyses, as shown in Table 1, show the

comprehensive demographic and clinical characteristics of the

three groups of MDGA patients. Additionally, there were no

statistically significant differences (P > 0.05) in any of the clinical

characteristics analyzed, such as tumor size, primary site, TNM

stage, or number of Reg LNs, between the patients in the training

and testing sets.
3.2 Comparison and analysis of
model variables

Pearson correlation analysis was used to examine the

relationship between each variable (Figure 3A). Moreover, with

the comprehensive consideration of the type of data, distribution

characteristics, and other factors, all the variables are independent

and well-distributed and can be included in the following statistical

analysis. By multifactorial logistic regression analysis, this study

revealed that six variables were statistically significant in predicting

the occurrence of DM in patients with MDGA (Table 2). These

included the T and N stages, but the M stage seemed to be not

significantly different. Other variables included primary site, tumor

size, number of Reg LNs, and chemotherapy. In addition, the

importance scores from the random forest model indicated

variable significance (as displayed in Figure 3B). The number of

Reg LNs, N stage, T stage, chemotherapy, age, tumor size, and

primary site were positively related to the occurrence of DM in

MDGA patients. Specifically, the outcome was the same as the

findings of the former correlation analyses, except for age. With

distant metastasis as the outcome variable, we conducted single-

and multiple-factor logistic regression analyses on eight factors:

primary site, tumor size, age, sex, T stage, N stage, number of

positive LNs, and chemotherapy. Multiple factor regression was

performed, and step-forward analysis revealed that the P-values for

T stage, N stage, primary site, number of positive LNs, tumor size,

and chemotherapy were less than 0.05 and were considered

statistically significant independent risk factors. The results of

forward regression analysis indicated the meaningful impact of

six variables on distant metastasis: sex, T stage, N stage, primary
TABLE 1 Comparison of the general features of the training and
test sets.

Variable

Training
set (%)

N = 3,764

Test set
(%)

N = 1,613
P

Validation
set (%)
N = 109

Age (years) 0.800

<40 42 (1.1%) 23 (1.4%) 4

40–60 675 (17.9%) 283 (17.5%) 35

60–80 2,215 (58.8%) 948 (58.8%) 67

>80 832 (22.1%) 359 (22.3%) 3

Sex 0.443

Male 2,673 (71.0%) 1,128 (69.9%) 83

Female 1,087 (29.0%) 489 (30.1%) 26

T stage 0.612

1 1,364 (36.2%) 573 (35.5%) 23

2 561 (14.9%) 230 (14.3%) 17

3 1,334 (35.4%) 573 (35.5%) 55

4 505 (13.4%) 237 (14.7%) 14

N stage 0.997

0 2,012 (53.5%) 865 (53.6%) 45

1 976 (25.9%) 417 (25.9%) 40

2 471 (12.5%) 199 (12.3%) 12

3 305 (8.1%) 132 (8.2%) 12

M stage 0.919

0 3,238 (86.0%) 1,390 (86.2%) 94

1 526 (14.0%) 223 (13.8%) 15

Primary site 0.419

Body 303 (8.0%) 143 (8.9%) 7

Cardia 1,509 (40.1%) 650 (40.3%) 40

Fundus 134 (3.6%) 59 (3.7%) 2

Gastric
antrum

817 (21.7%) 378 (23.4%)
30

Greater
curvature

141 (3.7%) 50 (3.1%)
2

Lesser
curvature

342 (9.1%) 131 (8.1%)
8

Overlapping
lesion

182 (4.8%) 77 (4.8%)
12

Pylorus 136 (3.6%) 43 (2.7%) 4

Stomach 200 (5.3%) 82 (5.1%) 4

Tumor
size (cm)

0.280

<2 971 (25.8%) 457 (28.3%) 24

2 to 5 1792 (47.6%) 744 (46.1%) 51

(Continued)
TABLE 1 Continued

Variable

Training
set (%)

N = 3,764

Test set
(%)

N = 1,613
P

Validation
set (%)
N = 109

Tumor
size (cm)

0.280

5 to 8 766 (20.4%) 312 (19.3%) 23

>8 235 (6.2%) 100 (6.2%) 11

Number of
Reg LN

0.997

None 1,204 (32.0%) 515 (31.9%) 47

1 to 3 167 (4.4%) 71 (4.4%) 22

4 or more 2,393 (63.6%) 1,027 (63.7%) 40
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site, tumor size, and number of positive LNs (the detailed results are

presented in the Supplementary Material).
3.3 Establishment of predictive models for
distant metastasis

This research used nine distinct machine learning models

individually to construct a distant metastasis prediction model for

MDGA patients. The built models were trained with data from the
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training set. The symptoms were finely tuned to stabilize the models

and prevent them from overfitting.

Table 3 and Figure 4A present the evaluation standards for each

model comparison, including ROC curves, specificity, sensitivity,

accuracy, recall, and F1 score. Based on the comparison results, it is

concluded that the random forest model has the highest predictive

value. Its AUC (0.913), specificity (0.891), and accuracy (0.880) were

the best among the nine models. The results in the testing set verified

this point again. The AUC of the ROC curve for the RF model was

0.848 (Figure 4B), which was noticeably superior to those of the other
FIGURE 3

Results of Pearson correlation analysis for each variable (A) and ranking of importance of predictive model characteristics (B). The results of Pearson
correlation analysis for each variable (A) showed that all variables existed independently of each other. The predictive model characteristics (B) were
the number of Reg LNs, N stage, T stage, chemotherapy, age, tumor size, and primary site, in order of importance.
TABLE 2 Multifactorial analysis of moderately differentiated distant metastatic gastric adenocarcinoma.

Variables Beta S.E Z OR (95% CI) P aBeta aS.E aZ aOR (95% CI) aP

Age

<40 1.00 (reference)

40–60 −0.26 0.37 −0.71 0.77 (0.37–1.59) 0.478

60–80 −0.60 0.36 −1.64 0.55 (0.27–1.12) 0.100

>80 −0.62 0.37 −1.67 0.54 (0.26–1.11) 0.094

Sex

Male 1.00 (reference)

Female −0.16 0.11 −1.53 0.85 (0.69–1.05) 0.125

T stage

1 1.00 (reference) 1.00 (reference)

2 −0.55 0.19 −2.90 0.58 (0.40–0.84) 0.004 −0.69 0.21 −3.27 0.50 (0.33–0.76) 0.001

3 0.25 0.12 2.12 1.28 (1.02–1.61) 0.034 −0.19 0.15 −1.25 0.82 (0.61–1.12) 0.210

4 1.25 0.13 9.72 3.49 (2.71–4.49) <0.001 0.68 0.17 3.94 1.97 (1.41–2.76) <0.001

N stage

0 1.00 (reference) 1.00 (reference)

1 1.12 0.11 10.19 3.08 (2.48–3.82) <0.001 1.00 0.14 7.16 2.73 (2.07–3.60) <0.001

(Continued)
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eight models. Finally, the RF models were externally validated using

our 109 hospital patients (AUC = 0.728) (Figure 4C). We also made an

aggregation of the previous ROC curves (Figure 4D). In summary, we

trained eight machine learning prediction models with data from the

training set. Through the experimental results of the test set and

validation set, it was determined that the RF model has a relatively

accurate ability to predict the risk of DM in MDGA patients and has

high clinical value.
4 Prognostic analysis and prediction
of MDGA patients with established DM

4.1 Patient baseline characteristics

The 749 eligible MDGA patients with DM were randomized

into two groups in the same 7:3 split. The training set included 524
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patients, while the testing set included 225 patients. In terms of

clinical characteristics, 40–60 years of age was the most common

age for distant metastasis according to the MDGA (55.41%

according to the SEER data), and the highest proportion of

distant metastases according to the MDGA originated in cardia

(42.86% according to the SEER data). Descriptions of other clinical

characteristics are summarized in the accompanying table (Table 4).

The results suggested that no statistically significant differences

were found between the basic information of the two datasets.
4.2 Analysis of prognosis-related factors

Using OS and CSS as prognostic endpoints, we performed

univariate and multivariate Cox regression analyses on data from

eligible patients screened from the SEER database. Nine variables

were included in the univariate analysis, and the detailed results are
TABLE 2 Continued

Variables Beta S.E Z OR (95% CI) P aBeta aS.E aZ aOR (95% CI) aP

N stage

2 0.59 0.16 3.75 1.80 (1.32–2.44) <0.001 0.89 0.20 4.52 2.45 (1.66–3.60) <0.001

3 1.23 0.16 7.83 3.42 (2.52–4.66) <0.001 1.84 0.21 8.76 6.29 (4.17–9.49) <0.001

Primary site

Cardia 1.00 (reference) 1.00 (reference)

Gastric antrum −0.16 0.13 −1.22 0.85 (0.66–1.10) 0.222 0.58 0.17 3.49 1.78 (1.29–2.47) <0.001

Lesser curvature −0.29 0.19 −1.57 0.75 (0.52–1.07) 0.116 0.21 0.22 0.98 1.24 (0.81–1.89) 0.326

Pylorus −0.85 0.35 −2.41 0.43 (0.21–0.85) 0.016 −0.11 0.40 −0.29 0.89 (0.41–1.94) 0.772

Body 0.14 0.17 0.84 1.15 (0.83–1.60) 0.400 0.58 0.20 2.88 1.79 (1.20–2.66) 0.004

Greater curvature 0.08 0.24 0.31 1.08 (0.67–1.74) 0.754 0.36 0.29 1.22 1.43 (0.81–2.52) 0.222

Stomach 0.30 0.20 1.54 1.35 (0.92–1.99) 0.124 0.83 0.24 3.52 2.29 (1.44–3.63) <0.001

Overlapping lesion 0.11 0.22 0.51 1.12 (0.73–1.70) 0.611 0.08 0.26 0.32 1.09 (0.65–1.81) 0.746

Fundus 0.13 0.23 0.56 1.14 (0.72–1.80) 0.579 0.13 0.28 0.45 1.13 (0.66–1.95) 0.649

Tumor size

<2 1.00 (reference) 1.00 (reference)

2 to 5 1.11 0.15 7.18 3.02 (2.23–4.09) <0.001 0.85 0.17 4.93 2.35 (1.67–3.30) <0.001

5 to 8 1.55 0.17 9.35 4.69 (3.39–6.49) <0.001 1.24 0.19 6.38 3.44 (2.36–5.04) <0.001

>8 1.75 0.20 8.68 5.75 (3.87–8.54) <0.001 1.15 0.24 4.78 3.15 (1.97–5.04) <0.001

Number of Reg LN

None 1.00 (reference) 1.00 (reference)

1 to 3 −1.18 0.24 −4.88 0.31 (0.19–0.49) <0.001 −1.38 0.27 −5.22 0.25 (0.15–0.42) <0.001

4 or more −2.08 0.11 −18.95 0.12 (0.10–0.15) <0.001 −2.75 0.14 −19.25 0.06 (0.05–0.08) <0.001

Chemotherapy

No/unknown 1.00 (reference) 1.00 (reference)

Yes 0.66 0.10 6.90 1.94 (1.61–2.35) <0.001 0.36 0.12 2.92 1.43 (1.13–1.82) 0.003
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TABLE 3 Comparison of the predictive performance values of nine forecasting models in the training set.

Models AUC Specificity Sensitivity Accuracy Precision Recall F1 score

RF 0.913 0.891 0.811 0.880 0.548 0.811 0.654

LR 0.848 0.791 0.766 0.787 0.372 0.766 0.501

LASSO 0.848 0.791 0.766 0.787 0.372 0.766 0.501

SVM 0.872 0.834 0.760 0.823 0.425 0.760 0.545

XGBoost 0.989 0.792 0.836 0.798 0.394 0.836 0.536

KNN 0.885 0.740 0.853 0.756 0.348 0.853 0.494

NBC 0.825 0.641 0.870 0.673 0.282 0.870 0.426

AdaBoost 0.900 0.811 0.823 0.813 0.414 0.823 0.551

ANN 0.850 0.749 0.792 0.755 0.338 0.792 0.474
F
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RF, random forest; LR, logistic regression; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting; KNN, K-nearest
neighbor; NBC, naive Bayesian model; AdaBoost, adaptive boosting; ANN, artificial neural network.
FIGURE 4

Receiver operating characteristic (ROC) curves for the training set, test set, and external validation set prediction models. (A) Training set; (B) test set;
(C) external validation set. The aggregation of the previous ROC curves for the RF model (D). AUC, area under the ROC curve; RF, random forest; LR,
logistic regression; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; KNN, K-nearest neighbor; NBC, naive
Bayes classifier; ANN, artificial neural network.
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TABLE 4 Basic information about MDGA patients with DM.

Variable Total (n = 749)
Train_set
(n = 524)

Valid_set
(n = 225)

Statistic P

Survival months, M
(Q1, Q3)

8.00 (3.00–18.00) 9.00 (3.00–19.00) 7.00 (2.00–16.00) Z = 1.771 0.077

Age, n (%) c² = 4.450 0.217

<40 16 (2.14) 14 (2.67) 2 (0.89)

40–60 169 (22.56) 123 (23.47) 46 (20.44)

60–80 415 (55.41) 280 (53.44) 135 (60.00)

>80 149 (19.89) 107 (20.42) 42 (18.67)

Sex, n (%) c² = 0.022 0.882

Male 552 (73.7) 387 (73.85) 165 (73.33)

Female 197 (26.3) 137 (26.15) 60 (26.67)

T stage, n (%) c² = 0.592 0.898

1 214 (28.57) 152 (29.01) 62 (27.56)

2 59 (7.88) 43 (8.21) 16 (7.11)

3 257 (34.31) 179 (34.16) 78 (34.67)

4 219 (29.24) 150 (28.63) 69 (30.67)

N stage, n (%) c² = 3.476 0.324

0 249 (33.24) 179 (34.16) 70 (31.11)

1 295 (39.39) 212 (40.46) 83 (36.89)

2 96 (12.82) 62 (11.83) 34 (15.11)

3 109 (14.55) 71 (13.55) 38 (16.89)

Primary site, n (%) c² = 6.002 0.647

Body 69 (9.21) 46 (8.78) 23 (10.22)

Cardia 321 (42.86) 221 (42.18) 100 (44.44)

Fundus 31 (4.14) 25 (4.77) 6 (2.67)

Gastric antrum 145 (19.36) 100 (19.08) 45 (20.00)

Greater curvature 27 (3.6) 20 (3.82) 7 (3.11)

Lesser curvature 51 (6.81) 34 (6.49) 17 (7.56)

Overlapping lesion 46 (6.14) 35 (6.68) 11 (4.89)

Pylorus 11 (1.47) 6 (1.15) 5 (2.22)

Stomach 48 (6.41) 37 (7.06) 11 (4.89)

Tumor size, n (%) c² = 2.719 0.437

<2 78 (10.41) 51 (9.73) 27 (12.00)

2 to 5 374 (49.93) 271 (51.72) 103 (45.78)

5 to 8 216 (28.84) 145 (27.67) 71 (31.56)

>8 81 (10.81) 57 (10.88) 24 (10.67)

Number of Reg LN, n (%) c² = 0.619 0.734

None 528 (70.49) 372 (70.99) 156 (69.33)

1 to 3 27 (3.6) 20 (3.82) 7 (3.11)

4 or more 194 (25.9) 132 (25.19) 62 (27.56)

(Continued)
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shown in the left half of Tables 5 and 6. Afterward, according to the

outcome, statistically significant variables were included in the

multivariate analyses.

The Cox regression results for OS are shown in Table 5. The

detailed outcomes suggested that age, T stage, primary site,

chemotherapy, radiation, and the number of Reg LNs were

correlated with OS in MDGA patients. Multifactorial analysis for

OS revealed that only T stage (2 and 3), primary site, chemotherapy,

and number of Reg LNs were statistically significant independent

risk factors for MDGA patients with established DM. Moreover,

patients with higher T stages (T3 and 4) and without chemotherapy

had significantly shorter survival and worse outcomes. Patients with

superficial primary sites (gastric antrum and greater curvature) and

a greater number of Reg LNs could have improved outcomes. More

comprehensive OS analysis information, such as the analytical CIs

and P-values for each variable, is collated and displayed in Table 5.

The outcome of the Cox regression analysis using CSS as the

endpoint is presented in Table 6. The primary site, number of Reg LNs,

age, T stage, chemotherapy, and radiotherapy variables were integrated

into the multifactorial analysis. The analysis indicated that the number

of Reg LNs, T stage, primary site, and chemotherapy were considered

statistically significant independent risk factors for CSS. The CIs and

the corresponding P-values are summarized in Table 6.
4.3 Nomogram

According to the outcomes obtained in the previous steps, this

study developed a visual nomogram to predict the survival time of

MDGA patients with established DM. The nomogram, derived

from the prognostically relevant risk factors that have been
Frontiers in Immunology 1086
identified, provides a score based on the patient’s current

condition. Physicians can assess a patient’s probability of 1-, 3-,

and 5-year OS/CSS based on this nomogram (Figure 5). According

to the OS nomogram (Figure 5A), of the five independent risk

factors, chemotherapy had the greatest impact on survival, followed

by the primary tumor site, while T stage had the least impact.

According to the CSS nomogram (Figure 5B), the presence or

absence of chemotherapy was considered to be the most influential

factor for survival, followed by the lymph node positivity rate.

A simple example of how to use a nomogram is given below.

Suppose a 60-year-old patient with distant metastases from MDGA has

received conventional chemotherapy but no radiotherapy. At the same

time, the pathological findings suggest that the tumor originated in the

greater curvature, the current T stage is 3, and the number of regional

LNs reaches more than four. At this point, an approximate score can be

calculated based on the nomogram (age, 17.5 points; T stage 3, 2 points;

primary site, 17 points; number of regional LNs, 11 points; received

chemotherapy, 0; not received radiotherapy, 18 points). This hypothetical

patient would therefore have a total score of 65.5, and this score was

plotted against a scale of total scores. By plotting vertically on a straight

line of survival probability, one can derive the probability that the overall

survival available for reference is approximately 0.78, 0.55, and 0.45 for 1,

3, and 5 years, respectively. Similarly, the corresponding CSS for this

patient can be calculated using the same steps as above.
4.4 Evaluation and validation of
the nomograms

The predictive results and clinical value of the nomograms were

assessed and verified by the C-index, AUC, calibration curve, and
TABLE 4 Continued

Variable Total (n = 749)
Train_set
(n = 524)

Valid_set
(n = 225)

Statistic P

Chemotherapy, n (%) c² = 0.584 0.445

No/unknown 294 (39.25) 201 (38.36) 93 (41.33)

Yes 455 (60.75) 323 (61.64) 132 (58.67)

Radiation, n (%) c² = 0.496 0.481

None/unknown 575 (76.77) 406 (77.48) 169 (75.11)

Beam radiation 174 (23.23) 118 (22.52) 56 (24.89)

Cause, n (%) c² = 0.291 0.590

Alive or dead of
other cause

141 (18.83) 96 (18.32) 45 (20.00)

Dead (attributable to
this cancer dx)

608 (81.17) 428 (81.68) 180 (80.00)

Status, n (%) c² = 0.079 0.778

Alive 70 (9.35) 50 (9.54) 20 (8.89)

Dead 679 (90.65) 474 (90.46) 205 (91.11)

Survival months, M
(Q1, Q3)

8.00 (3.00–18.00) 9.00 (3.00–19.00) 7.00 (2.00–16.00) Z = 1.771 0.077
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TABLE 5 Cox regression analysis of OS in the SEER cohort.

Variables Beta S.E Z P HR (95% CI) m_Beta m_S.E m_Z aP aHR (95% CI)

Age

<40 Ref Ref

40–60 0.19 0.29 0.66 0.506 1.21 (0.69–2.14) 0.13 0.29 0.45 0.655 1.14 (0.64–2.03)

60–80 0.36 0.28 1.27 0.204 1.43 (0.82–2.49) 0.18 0.29 0.63 0.526 1.20 (0.68–2.12)

>80 0.91 0.29 3.12 0.002 2.48 (1.40–4.38) 0.53 0.30 1.77 0.077 1.70 (0.94–3.07)

Sex

Male Ref

Female −0.00 0.09 −0.05 0.960 1.00 (0.84–1.18)

T stage

4 Ref Ref

2 −0.20 0.15 −1.32 0.187 0.82 (0.61–1.10) −0.33 0.16 −2.11 0.035 0.72 (0.53–0.98)

1 0.27 0.10 2.68 0.007 1.31 (1.08–1.60) −0.16 0.11 −1.41 0.157 0.85 (0.69–1.06)

3 −0.19 0.10 −1.98 0.048 0.82 (0.68–0.99) −0.29 0.10 −2.90 0.004 0.75 (0.61–0.91)

N stage

3 Ref

1 0.08 0.12 0.64 0.523 1.08 (0.85–1.37)

0 0.21 0.12 1.70 0.089 1.23 (0.97–1.56)

2 0.08 0.15 0.55 0.586 1.08 (0.81–1.45)

Primary site

Lesser curvature Ref Ref

Cardia 0.04 0.16 0.25 0.800 1.04 (0.76–1.42) 0.16 0.17 0.93 0.351 1.17 (0.84–1.62)

Fundus 0.65 0.24 2.78 0.005 1.92 (1.21–3.05) 0.50 0.24 2.10 0.036 1.65 (1.03–2.63)

Stomach −0.14 0.22 −0.65 0.516 0.87 (0.56–1.33) −0.44 0.22 −2.00 0.046 0.64 (0.41–0.99)

Gastric antrum −0.00 0.17 −0.00 0.998 1.00 (0.71–1.40) −0.04 0.17 −0.25 0.805 0.96 (0.68–1.35)

Overlapping lesion 0.06 0.21 0.26 0.797 1.06 (0.69–1.61) −0.09 0.22 −0.40 0.691 0.92 (0.60–1.41)

Body 0.07 0.19 0.37 0.710 1.08 (0.73–1.57) 0.10 0.20 0.49 0.626 1.10 (0.75–1.63)

Greater curvature −0.04 0.25 −0.15 0.879 0.96 (0.59–1.58) −0.46 0.26 −1.78 0.075 0.63 (0.38–1.05)

Pylorus −0.37 0.38 −0.97 0.334 0.69 (0.33–1.46) −0.02 0.39 −0.05 0.959 0.98 (0.46–2.10)

Tumor size

<2 Ref

>8 0.02 0.17 0.10 0.923 1.02 (0.73–1.41)

2 to 5 0.20 0.13 1.51 0.131 1.22 (0.94–1.57)

5 to 8 0.11 0.14 0.80 0.426 1.12 (0.85–1.46)

Number of Reg LN

None Ref Ref

1 to 3 −0.24 0.21 −1.13 0.257 0.79 (0.52–1.19) −0.60 0.22 −2.74 0.006 0.55 (0.35–0.84)

4 or more −0.59 0.09 −6.49 <0.001 0.55 (0.46–0.66) −0.78 0.10 −7.48 <0.001 0.46 (0.37–0.56)

(Continued)
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DCA. In the training set, the AUC values for predicting 1-, 3-, and

5-year OS were 0.797, 0.807, and 0.737, respectively (Figure 6A),

while in the validation set, they were 0.757, 0.737, and 0.718,

respectively (Figure 6B). The C-index of the nomograms was

0.726 (95% CI, 0.703–0.748) in the training set for OS and 0.703

(95% CI, 0.663–0.744) in the validation set. The fit of the 1-, 3-, and

5-year calibration curves for predicting OS was satisfactory

(Figures 6C–H). In the calibration curves of the nomograms in

the training and validation cohorts, the red curve fit line matches

the gray diagonal line (representing the predicted probability of the

ideal state) to a high degree, suggesting that the predicted
Frontiers in Immunology 1288
probability of survival via the nomograms remains generally

consistent with the observed probability of survival, with no

excessive overestimation or underestimation of risk. The DCA

curve presented graphically in Figures 6I–N suggests that this

nomogram for OS has excellent net clinical efficacy.

Similarly, the results for evaluating the CSS nomograms show a

positive applicability. The C-index was 0.727 (95% CI, 0.703–0.751)

for the training set and 0.705 (95% CI, 0.663–0.748) for the

validation set. In addition, the AUCs of the nomograms were

0.747, 0.737, and 0.699 for 1-, 3-, and 5-year CSS, respectively, in

the training cohort (Figure 7A), and in the validation cohort, the
TABLE 5 Continued

Variables Beta S.E Z P HR (95% CI) m_Beta m_S.E m_Z aP aHR (95% CI)

Chemotherapy

No/unknown Ref Ref

Yes −1.05 0.08 −13.00 <0.001 0.35 (0.30–0.41) −1.20 0.09 −12.76 <0.001 0.30 (0.25–0.36)

Radiation

None/unknown Ref Ref

Beam radiation −0.23 0.09 −2.53 0.011 0.79 (0.66–0.95) −0.17 0.10 −1.82 0.068 0.84 (0.70–1.01)
TABLE 6 Cox regression analysis of CSS according to the SEER data.

Variables Beta S.E Z P HR (95% CI) m_Beta m_S.E m_Z aP aHR (95% CI)

Age

<40 Ref Ref

40–60 0.10 0.29 0.36 0.721 1.11 (0.63–1.96) 0.04 0.30 0.15 0.884 1.04 (0.58–1.86)

60–80 0.22 0.28 0.79 0.432 1.25 (0.72–2.18) 0.06 0.29 0.22 0.828 1.06 (0.60–1.88)

>80 0.75 0.29 2.55 0.011 2.11 (1.19–3.74) 0.39 0.30 1.28 0.201 1.48 (0.81–2.68)

Sex

Male Ref

Female 0.00 0.09 0.04 0.965 1.00 (0.84–1.20)

T stage

4 Ref Ref

2 −0.22 0.16 −1.37 0.172 0.80 (0.58–1.10) −0.38 0.17 −2.28 0.023 0.68 (0.49–0.95)

1 0.29 0.11 2.70 0.007 1.33 (1.08–1.65) −0.17 0.12 −1.44 0.150 0.84 (0.67–1.06)

3 −0.14 0.10 −1.39 0.166 0.87 (0.71–1.06) −0.25 0.11 −2.29 0.022 0.78 (0.63–0.96)

N stage

3 Ref

1 0.08 0.13 0.65 0.519 1.09 (0.85–1.39)

0 0.20 0.13 1.56 0.119 1.22 (0.95–1.58)

2 0.13 0.15 0.83 0.407 1.14 (0.84–1.54)

Primary site

Lesser curvature Ref Ref

(Continued)
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AUCs were 0.661, 0.713, and 0.892, respectively (Figure 7B).

Moreover, both the calibration curves and DCA curves used for

the 1-, 3-, and 5-year CSS forecasts also exhibited satisfactory fits

and net gains (Figures 7C–N). In summary, the nomograms

produced to predict the prognosis of MDGA patients with DM

had considerable discriminatory and calibrating power.
5 Analysis of the impact of more
detailed LN indicators on the
occurrence of DM and prognosis
of MDGA

The above studies have suggested a strong association between

multiple lymph node indices and DM and the prognosis of MDGA.

Although good predictive efficacy can be achieved by categorizing

the number of positive LNs (0, 1 to 3, 3+), 70% of patients in the

database had a positive lymph node clearance of 0. This suggests
Frontiers in Immunology 1389
that the existing lymph node indices may not describe a patient’s

prognosis specifically; thus, more diversified ways of evaluating the

metastasis and immune mechanisms of patients are needed. Lymph

node positivity, the specific number of negative/positive lymph

nodes, and visualization of LN metastasis may be better

indicators of DM risk and survival; therefore, we collected more

detailed data from our institution and performed a logistic analysis

to identify risk factors associated with DM.

We collected data from 109 patients with moderately

differentiated gastric adenocarcinoma in our hospital. Data such

as LODDS and the number of Neg LNs were analyzed and

calculated, followed by logistic regression to explore the risk

factors for distant metastasis in patients with MDGA and Cox

regression to analyze the risk factors affecting the prognosis of

patients with MDGA. Our univariate logistic regression results

showed that the number of negative LNs and the LODDS were

considered to be influential factors for the occurrence of DM in

MDGA (Table 7). However, it is noteworthy that in regard to our

multifactor logistic regression analysis of the variables of interest,
TABLE 6 Continued

Variables Beta S.E Z P HR (95% CI) m_Beta m_S.E m_Z aP aHR (95% CI)

Primary site

Cardia 0.02 0.16 0.11 0.916 1.02 (0.74–1.40) 0.11 0.17 0.65 0.516 1.12 (0.80–1.57)

Fundus 0.61 0.25 2.49 0.013 1.84 (1.14–2.99) 0.45 0.25 1.79 0.073 1.56 (0.96–2.55)

Stomach −0.18 0.23 −0.79 0.428 0.83 (0.53–1.31) −0.47 0.23 −2.01 0.045 0.63 (0.40–0.99)

Gastric antrum −0.09 0.18 −0.50 0.616 0.91 (0.64–1.30) −0.12 0.18 −0.67 0.500 0.88 (0.62–1.27)

Overlapping lesion 0.07 0.22 0.33 0.744 1.07 (0.70–1.66) −0.08 0.22 −0.36 0.717 0.92 (0.59–1.43)

Body 0.02 0.20 0.09 0.932 1.02 (0.68–1.52) 0.02 0.21 0.12 0.908 1.02 (0.68–1.54)

Greater curvature −0.38 0.29 −1.31 0.192 0.68 (0.38–1.21) −0.81 0.30 −2.74 0.006 0.44 (0.25–0.79)

Pylorus −0.30 0.39 −0.77 0.439 0.74 (0.35–1.58) 0.07 0.39 0.18 0.854 1.07 (0.50–2.32)

Tumor size

<2 Ref

>8 0.06 0.18 0.35 0.725 1.07 (0.75–1.51)

2 to 5 0.26 0.14 1.86 0.062 1.30 (0.99–1.70)

5 to 8 0.12 0.15 0.81 0.419 1.13 (0.84–1.51)

Number of Reg LN

None Ref Ref

1 to 3 −0.23 0.22 −1.07 0.287 0.79 (0.52–1.22) −0.61 0.23 −2.65 0.008 0.54 (0.35–0.85)

4 or more −0.68 0.10 −6.83 <0.001 0.51 (0.42–0.62) −0.88 0.11 −7.82 <0.001 0.42 (0.33–0.52)

Chemotherapy

No/unknown Ref Ref

Yes −1.04 0.09 −12.28 <0.001 0.35 (0.30–0.42) −1.24 0.10 −12.46 <0.001 0.29 (0.24–0.35)

Radiation

None/unknown Ref Ref

Beam radiation −0.22 0.10 −2.33 0.020 0.80 (0.66–0.97) −0.16 0.10 −1.61 0.108 0.85 (0.70–1.04)
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our results lacked statistical significance. We conducted single- and

multivariate Cox analyses of our patient data. As shown in Table 8,

15 variables were included. The results of the univariate analysis

revealed that nine variables, including the number of Reg LNs, LNR,

age >80 years, TNM stage, tumor size, gross LN metastasis, and

number of Reg LNs, had an impact on the prognosis of MDGA

patients (P < 0.05). These findings were subsequently incorporated

into a multifactorial analysis, which indicated that the LNR, T stage

(1 and 2), and gross LN metastasis 3 cm away from the tumor were

independent risk factors, whereas the number of Reg LNs and the
Frontiers in Immunology 1490
number of Reg LNs in groups 1–3 were considered protective

factors. More specific data are shown in Tables 7 and 8.
6 Discussion

Moderately differentiated gastric adenocarcinoma is common

in clinical practice and has a high risk of metastasis and individual

variability (34). Once a patient develops DM, the prognosis

becomes extremely poor (35, 36). The OS of MDGA patients
FIGURE 5

Nomograms for 1-, 3-, and 5-year OS (A) and CSS (B) in MDCA patients with DM.
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without DM is generally considered to be more than 22.3 months

after surgical treatment (37). However, after the onset of DM,

survival decreases in patients receiving conventional

chemotherapy, with a median overall survival of just under 12

months (22, 38). Determining whether a patient has distant
Frontiers in Immunology 1591
metastases is therefore particularly important and is vital for

providing individualized prevention and treatment strategies in

the clinic. In addition, the current prognostic method for patients

with DM is relatively limited, and some DM-related indices,

especially lymph node indices such as the LNR and LODDS, are
FIGURE 6

Evaluation of the ability of the nomogram to predict OS. ROC curves validating the OS prediction nomogram for 1-, 3-, and 5-year OS in the training
set (A) and validation set (B). Calibration curves validating the OS prediction nomograms for 1-, 3-, and 5-year OS in the training set (C–E) and
validation set (F–H). Decision curve analysis validating the OS prediction nomogram for 1-, 3-, and 5-year OS in the training set (I–K) and validation
set (L–N).
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considered to be important indicators of prognosis (39, 40).

However, its specific clinical effects have still not been extensively

and comprehensively tested.

Our major objectives for the investigation were to develop a

forecasting system to predict the development of DM in persons

with MDGA and to analyze the risk factors influencing the
Frontiers in Immunology 1692
prognosis of persons with DM. In addition, this study analyzed

the specific ability of six lymph node indicators in our patients to

predict DM and prognosis using logistic and Cox regression. Nine

machine learning samples were utilized for predicting distant

metastases, with the RF model considered the most effective.

Multivariate Cox regression analysis for MDGA patients who
FIGURE 7

Evaluation of the ability of the nomogram to predict CSS. ROC curves validating the CSS prediction nomogram for 1-, 3-, and 5-year RFS in the
training set (A) and validation set (B). Calibration curves validating the CSS prediction nomograms for 1-, 3-, and 5-year survival in the training cohort
(C–E) and validation cohort (F–H). Decision curve analysis validating the CSS prediction nomogram for 1-, 3-, and 5-year RFS in the training set
(I–K) and validation set (L–N).
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TABLE 7 The risk factors for developing DM in MDGA patients were analyzed by logistic regression based on our data.

Variables Beta S.E Z OR (95% CI) P aBeta aS.E aZ aOR (95% CI) aP

Number of all LNs −0.03 0.02 −1.27 0.97 (0.93–1.02) 0.203

Number of Reg LN 0.05 0.04 1.50 1.06 (0.98–1.13) 0.135

Number of Neg LN −0.06 0.03 −2.00 0.94 (0.89–0.99) 0.046 −0.04 0.03 −1.48 0.96 (0.90–1.01) 0.138

LODDS −3.08 1.48 −2.09 0.05 (0.00–0.83) 0.037 −1.68 1.59 −1.05 0.19 (0.01–4.24) 0.292

LNR 0.94 1.18 0.80 2.57 (0.25–25.89) 0.423

Number of Reg LN_group

None 1.00 (reference)

1 to 3 −0.10 0.74 −0.14 0.90 (0.21–3.88) 0.890

4 or more −0.20 0.63 −0.32 0.82 (0.24–2.80) 0.747

Gross LN metastasis

None 1.00 (reference)

3 cm away from
the tumor

0.69 0.68 1.02 2.00 (0.52–7.62) 0.310

Within 3 cm of the tumor −1.11 0.81 −1.38 0.33 (0.07–1.60) 0.169

Age

<40 1.00 (reference)

40–60 −0.95 1.27 −0.75 0.39 (0.03–4.67) 0.455

60–80 −0.76 1.21 −0.63 0.47 (0.04–4.98) 0.527

>80 0.41 1.68 0.24 1.50 (0.06–40.63) 0.810

Sex

Male 1.00 (Reference)

Female −0.26 0.69 −0.38 0.77 (0.20–2.98) 0.707

T stage

1 1.00 (reference) 1.00 (reference)

2 0.27 1.45 0.19 1.31 (0.08–22.62) 0.851 0.24 1.48 0.16 1.27 (0.07–23.15) 0.872

3 1.25 1.09 1.15 3.50 (0.41–29.78) 0.251 1.27 1.12 1.13 3.56 (0.39–32.31) 0.259

4 2.46 1.17 2.11 11.67 (1.19–114.57) 0.035 2.34 1.21 1.93 10.40 (0.97–111.50) 0.053

N stage

0 1.00 (reference)

1 1.06 0.73 1.45 2.88 (0.69–12.00) 0.146

2 1.54 0.90 1.72 4.67 (0.81–26.98) 0.085

3 1.13 0.98 1.15 3.11 (0.45–21.40) 0.249

Primary site

Body 1.00 (reference)

Cardia 16.83 2,465.33 0.01
20,408,610.53
(0.00–Inf)

0.995

Gastric antrum 15.93 2,465.33 0.01 8,260,628.07 (0.00–Inf) 0.995

Lesser curvature 18.06 2,465.33 0.01
69,389,275.80
(0.00–Inf)

0.994

(Continued)
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TABLE 7 Continued

Variables Beta S.E Z OR (95% CI) P aBeta aS.E aZ aOR (95% CI) aP

Primary site

Greater curvature 18.57 2,465.33 0.01
115,648,792.99
(0.00–Inf)

0.994

Overlapping lesion 16.17 2,465.33 0.01
10,513,526.64
(0.00–Inf)

0.995

Stomach 17.47 2,465.33 0.01
38,549,597.66
(0.00–Inf)

0.994

Pylorus 0.00 4,088.28 0.00 1.00 (0.00–Inf) 1.000

Fundus 18.57 2,465.33 0.01
115,648,792.99
(0.00–Inf)

0.994

Tumor size

<2 1.00 (reference)

2 to 5 −0.04 0.90 −0.05 0.96 (0.16–5.63) 0.961

5 to 8 1.06 0.89 1.19 2.89 (0.50–16.67) 0.234

>8 1.84 0.97 1.90 6.29 (0.94–41.96) 0.058

Chemotherapy

No/unknown 1.00 (reference)

Yes 0.39 0.56 0.69 1.47 (0.49–4.42) 0.488
F
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LODDS, log odds of metastatic lymph nodes; LNR, lymph node ratio.
TABLE 8 Cox regression analysis of risk factors affecting patient OS based on our data.

Variables Beta S.E Z P HR (95% CI) m_Beta m_S.E m_Z aP aHR (95% CI)

Number of all LNs −0.02 0.01 −1.35 0.179 0.98 (0.96–1.01)

Number of Reg LN 0.05 0.02 2.95 0.003 1.05 (1.02–1.08) −0.12 0.05 −2.68 0.007 0.89 (0.81–0.97)

Number of Neg LN −0.06 1.02 −0.06 0.950 0.94 (0.13–6.91)

LODDS 0.25 0.33 0.78 0.436 1.29 (0.68–2.44)

LNR 1.94 0.52 3.76 <0.001 6.93 (2.53–19.01) 5.09 1.67 3.04 0.002 162.60 (6.12–4,318.06)

Age

<40 Ref Ref

40–60 0.24 1.04 0.23 0.816 1.28 (0.16–9.88) −1.36 1.27 −1.07 0.285 0.26 (0.02–3.10)

60–80 0.64 1.02 0.63 0.528 1.90 (0.26–13.92) −0.48 1.23 −0.39 0.698 0.62 (0.06–6.93)

>80 2.46 1.16 2.12 0.034 11.71 (1.20–114.06) 1.59 1.47 1.08 0.279 4.92 (0.28–88.06)

Sex

Male Ref

Female −0.04 0.35 −0.11 0.910 0.96 (0.49–1.89)

T stage

1 Ref Ref

2 −1.49 1.10 −1.36 0.173 0.22 (0.03–1.92) −2.21 1.17 −1.90 0.058 0.11 (0.01–1.07)

3 1.15 0.48 2.38 0.017 3.15 (1.22–8.13) −0.08 0.60 −0.14 0.890 0.92 (0.28–3.00)

4 1.36 0.56 2.43 0.015 3.89 (1.30–11.66) −0.41 0.66 −0.63 0.532 0.66 (0.18–2.42)

(Continued)
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TABLE 8 Continued

Variables Beta S.E Z P HR (95% CI) m_Beta m_S.E m_Z aP aHR (95% CI)

N stage

0 Ref Ref

1 1.23 0.38 3.20 0.001 3.42 (1.61–7.26) 1.72 0.74 2.31 0.021 5.56 (1.30–23.90)

2 2.11 0.48 4.41 <0.001 8.25 (3.23–21.08) 2.13 0.88 2.42 0.016 8.42 (1.50–47.32)

3 1.00 0.55 1.82 0.069 2.72 (0.93–7.99) 1.37 1.03 1.33 0.183 3.94 (0.52–29.61)

M stage

0 Ref Ref

1 1.04 0.35 2.99 0.003 2.82 (1.43–5.58) 0.79 0.50 1.56 0.120 2.19 (0.82–5.90)

Primary site

Body Ref

Cardia 0.16 0.62 0.27 0.791 1.18 (0.35–3.97)

Gastric antrum −0.16 0.65 −0.24 0.809 0.86 (0.24–3.03)

Lesser curvature 0.12 0.76 0.16 0.875 1.13 (0.25–5.05)

Greater curvature 1.33 0.92 1.45 0.148 3.78 (0.62–22.84)

Overlapping lesion −1.02 0.91 −1.11 0.266 0.36 (0.06–2.17)

Stomach 0.11 0.91 0.12 0.901 1.12 (0.19–6.72)

Pylorus −0.64 1.16 −0.55 0.582 0.53 (0.05–5.10)

Fundus −16.30 3,293.13 −0.00 0.996 0.00 (0.00–Inf)

Tumor size

<2 Ref Ref

2 to 5 1.83 0.74 2.48 0.013 6.25 (1.47–26.61) 1.60 0.92 1.75 0.081 4.94 (0.82–29.73)

5 to 8 2.33 0.76 3.08 0.002 10.30 (2.34–45.40) 1.43 0.91 1.57 0.116 4.19 (0.70–24.97)

>8 2.38 0.79 3.01 0.003 10.78 (2.29–50.84) 1.62 0.92 1.77 0.077 5.08 (0.84–30.76)

Chemotherapy

No/unknown Ref

Yes −0.10 0.31 −0.32 0.747 0.91 (0.50–1.65)

Gross LN metastasis

None Ref Ref

3 cm away from
the tumor

1.40 0.47 2.99 0.003 4.04 (1.62–10.09) 1.96 0.66 2.97 0.003 7.11 (1.95–25.99)

Within 3 cm of
the tumor

0.72 0.47 1.54 0.124 2.05 (0.82–5.13) 1.21 0.64 1.88 0.060 3.36 (0.95–11.90)

Number of Reg LN group

None Ref Ref

1 to 3 0.98 0.40 2.43 0.015 2.66 (1.21–5.87) −1.67 0.80 −2.08 0.038 0.19 (0.04–0.91)

4 or more 1.06 0.36 2.99 0.003 2.90 (1.44–5.82) −1.45 0.88 −1.65 0.098 0.23 (0.04–1.31)
F
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already had DM indicated that higher T stage (2 and 3), primary

site, chemotherapy, and number of Reg LNs were independent risk

factors for prognosis. Moreover, specialized nomograms created

from our analysis results were evaluated and tested to show

convincing prognostic discrimination and calibration capabilities.

Notably, the categorization of the number of positive LNs (0, 1 to 3, 4

or more) in the SSER database may achieve good predictive efficacy.

However, nearly 70% of the patients in the database had a positive lymph

node clearance of 0. This suggests that our single reliance on lymph node

clearance results may not be effective in characterizing the prognosis of

patients, and more diverse classifications and metrics are needed to

evaluate a patient’s metastatic and prognostic condition. In this study,

based on our patient data, we revealed that the LNR, gross LNmetastasis,

and the number of Reg LNs were found to be independent factors

influencing the prognosis of MDGA patients with DM.

It is worth noting that the AUC of the validation set in this

paper is generally slightly lower than that of the training set, which

is a relatively common phenomenon, and the possible reasons are

that the training set adopts the U.S. population samples from the

SEER database, and extrapolation is not strong enough in the

Chinese population, or the sample size of the validation set is not

sufficient. In future research, we will further consider the

extrapolation of the population and the adequacy of the samples

to deepen and improve the prediction ability of the validation set.

Nevertheless, it must be noted that the research has been limited

by its retrospective nature. Although the SEER database is very

detailed and reliable, there are some more exhaustive data that it is

unable to provide (41). For example, data on some noteworthy

laboratory tests were not included, and some of the more nuanced

pictures of the lymph nodes, as previously mentioned, were lacking.

Furthermore, for the practical application of the nomogram,

additional clinical information must be considered, including the

ethnicity of the patient, their geographical location, and other

pertinent factors. These data, which are absent from the database

and not included in the study, have an impact on the results, and

more information is required to enhance the nomogram. For our

data, because of the sample size and other reasons, it is not as

effective as it should be in carrying out some statistical studies, and

in the future, it is necessary to collect more case and patient

information for more in-depth analysis and studies.
7 Conclusion

In conclusion, this research investigated the variables linked to

the development of DM in MDGA, including T stage, N stage,

primary site, tumor size, number of positive LNs, and

chemotherapy. Then, we investigated the prognostic factors,

including T stage, primary location, chemotherapy, and number

of Reg LNs, in MDGA patients with DM. Additionally, based on the

prognostic analysis, separate nomograms of OS and CSS were

produced for relevant influencing factors. Finally, the effect of

multiple lymph node indicators on the metastasis and prognosis

of MDGA patients was investigated. This study provides a reference

for subsequent clinical studies and further suggests the importance

of lymph node indicators.
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3. López Sala P, Leturia Etxeberria M, Inchausti Iguıñ́iz E, Astiazaran Rodrıǵuez A,
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Background: Breast cancer remains a leading cause of mortality among women

worldwide, emphasizing the urgent need for innovative prognostic tools to

improve treatment strategies. Anoikis, a form of programmed cell death critical

in preventing metastasis, plays a pivotal role in breast cancer progression.

Methods: This study introduces the Artificial Intelligence-Derived Anoikis

Signature (AIDAS), a novel machine learning-based prognostic tool that

identifies key anoikis-related gene patterns in breast cancer. AIDAS was

developed using multi-cohort transcriptomic data and validated through

immunohistochemistry assays on clinical samples to ensure robustness and

broad applicability.

Results: AIDAS outperformed existing prognostic models in accurately

predicting breast cancer outcomes, providing a reliable tool for personalized

treatment. Patients with low AIDAS levels were found to be more responsive to

immunotherapies, including PD-1/PD-L1 inhibitors, while high-AIDAS patients

demonstrated greater susceptibility to specific chemotherapeutic agents, such

as methotrexate.

Conclusions: These findings highlight the critical role of anoikis in breast cancer

prognosis and underscore AIDAS’s potential to guide individualized treatment

strategies. By integrating machine learning with biological insights, AIDAS offers a

promising approach for advancing personalized oncology. Its detailed

understanding of the anoikis landscape paves the way for the development of

targeted therapies, promising significant improvements in patient outcomes.
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Introduction

Breast cancer (BC) is the most common malignant tumor in

women in the world, and its incidence rate has gradually increased in

recent years (1). The diagnosis, treatment and prognosis of BC have a

great impact on the health, lifestyle and work of individuals as well as

their family life (2). With the continuous development of biomedical

technology, the research on the prognosis of BC has also made much

progress, and people’s awareness of personalized treatment is

increasing (3). Multiple sets of data have been integrated to predict

the prognosis of BC. For example, prediction models based on

genomics, transcriptomics and proteomics data can be used to

predict the survival rate and recurrence of BC patients (4). In recent

years, artificial intelligence technology has also been widely used in

predicting the prognosis of BC, and the prediction model based on

machine learning can more accurately evaluate the prognosis by

integrating a large number of clinical data and bioinformatics data (5).

Anoikis is a specialized form of programmed cell death

triggered by the loss of cellular attachment to the extracellular

matrix and neighboring cells, playing a pivotal role in tumor

development and metastasis (6). While anoikis is crucial in tumor

invasion and infiltration, there are limited studies systematically

evaluating and predicting BC prognosis based on anoikis.

We conducted a comprehensive analysis to elucidate the

importance of anoikis. Leveraging bulk and single-cell sequencing

techniques, we evaluated anoikis activity across various cell types.

Machine learning algorithms were employed to identify anoikis

genes associated with BC prognosis, allowing us to construct

predictive models. These models demonstrated the efficacy of

anoikis in predicting BC patient outcomes, immune status,

responsiveness to immune checkpoint inhibitors (ICIs) and

chemotherapy, as well as in identifying potential therapeutic

targets and drugs. Through rigorous evaluations, anoikis emerged

as a promising tool for precise prognostication and treatment

stratification in BC patients.
Methods

Data acquisition

We retrospectively collected data from 12 distinct breast cancer

cohorts derived from The Cancer Genome Atlas (TCGA), Gene

Expression Omnibus (GEO), and Metabric (7). These cohorts

included samples with comprehensive survival information,

enabling thorough analysis. Our study encompassed a total of

11,033 patients across the 12 cohorts for prognostic evaluation.

The patient distribution was as follows: TCGA-BRCA (n = 1076),

GSE202203 (n = 3206), GSE96058 (n = 3409), GSE20685 (n = 327),

GSE58812 (n = 107), GSE21653 (n = 244), GSE7390 (n = 198),

GSE11121 (n = 200), GSE86166 (n = 330), GSE88770 (n = 108),

GE48391 (n = 81), andMetabric (n = 1747). Genes implicated in the

anoikis process were obtained from the Molecular Signature

Database on the GSEA website (8).
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Machine learning derived anoikis signature

To develop a breast cancer-specific anoikis signature, we employed

the methodology established in our previous research (9). Our

approach involved utilizing ten diverse computational Survival

algorithms: Random Survival Forest (RSF), Least Absolute Shrinkage

and Selection Operator (LASSO), Gradient Boosting Machine (GBM),

Survival Support Vector Machine (Survival-SVM), Supervised

Principal Component (SuperPC), Ridge Regression, Partial Least

Squares Cox Regression (plsRcox), CoxBoost, Stepwise Cox

regression, and Elastic Net (Enet). Among these, RSF, LASSO,

CoxBoost, and Stepwise Cox were chosen for their ability to reduce

dimensionality and identify relevant variables. These techniques were

combined into 108 unique configurations to construct a predictive

signature. By evaluating all cohorts, including TCGA and other

datasets, we identified the most robust prognostic model through the

calculation of the average Concordance index (C-index). This iterative

process culminated in the creation of an anoikis-specific signature

designed to predict outcomes in breast cancer.
Genomic alteration analysis

To elucidate genetic disparities between the two AIDAS groups,

we analyzed genetic mutation levels and Copy Number Alterations

(CNA) using the TCGA-BRCA database. The Tumor Mutation

Burden (TMB) for both high- and low-AIDAS breast cancer

patients was derived from the raw mutation data. Utilizing the

maftools landscape, we depicted the most frequently mutated genes

(mutation rate > 5%). Patient-specific mutational signatures were

identified using the deconstructSigs package (10), emphasizing four

prominent mutational signatures (SBS3, SBS1, SB12, SBS11) that

exhibited elevated mutation frequencies in the TCGA-BRCA

dataset. We identified the five most common regions of

amplification and deletion, with a specific focus on the four

predominant genes in chromosomal regions 3q26.32 and 5q21.3.
Single-cell data processing

We applied Seurat (v4.0) to process the single-cell data from

GSE161529 (11). This involved filtering out genes with zero

expression and retaining those with nonzero expression levels. The

expression matrix was normalized using Seurat’s “SCTransform”

function. Dimensionality reduction was performed using principal

component analysis (PCA) and UMAP techniques. To identify

distinct cellular groupings, we employed Seurat’s “FindNeighbors”

and “FindClusters” functions. To ensure dataset integrity, the

DoubletFinder package was used to eliminate potential doublets

(12). Cells failing to meet quality standards, such as those with

mitochondrial gene content exceeding 15% or fewer than 500 genes,

were excluded. Following stringent quality control measures, 64,308

cells were retained for analysis. Cell types were determined by

manual annotation based on established marker genes.
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Inference of regulons and their activity

We utilized the Single-Cell rEgulatory Network Inference

(SCENIC) approach to construct gene regulatory networks

(GRNs) from single-cell RNA sequencing data. SCENIC involves

a three-step process: first, it identifies co-expression modules

between transcription factors (TFs) and their potential target

genes. Next, it identifies the direct target genes for each module,

prioritizing those enriched with the motif of the associated TF,

thereby defining a regulon comprising a TF and its direct targets.

Finally, the regulatory activity score (RAS) is computed for each cell

by evaluating the area under the recovery curve.

To address the conventional SCENIC protocol’s challenges with

scalability for extensive datasets and its susceptibility to sequencing

depth variations, we modified it to enhance both scalability and

robustness. This involved partitioning the data into metacells before

applying SCENIC to these gene expression profiles (13). This

adjustment significantly improved data quality and reduced

computational demands, representing a notable advancement in

the application of SCENIC to single-cell RNA-seq data analysis.
Regulon clustering

We employed a robust computational method to dissect the

regulatory relationships between transcription factors (TFs) and

their target genes, with a focus on TF clustering. The process began

by filtering TF-target interaction data to isolate pairs exceeding a

significance threshold (>1), prioritizing the most critical regulatory

interactions. We then identified key regulatory TFs by assessing

their influence on target gene regulation, highlighting them as

central nodes in the regulatory network for detailed analysis.

To visualize the intricate network of TF-target interactions, we

constructed a graph model. A force-directed algorithm was used to

refine the spatial layout of the graph, intuitively representing the

network’s structure and the interplay between TFs and their targets.

For an enhanced understanding of the network’s architecture, the

Leiden algorithm was applied for community detection. This

revealed the modular organization of TFs based on their

regulatory connections, assigning each TF to a specific cluster.

This approach allowed for a detailed analysis of the regulatory

landscape, providing insights into the functional organization of

TFs within the network.
Cell-cell communication analysis

Using the “CellChat” R package, we generated CellChat objects

from the UMI count matrices for each group (14). The

“CellChatDB.human” database was used as the reference for

ligand-receptor interactions. Intercellular communication was

interpreted using the default settings of the package. To compare

interaction counts and intensities, we merged CellChat objects from

each group with the “mergeCellChat” function. Differences in

interaction numbers and intensities among specific cell types were

visualized using the “netVisual_diffInteraction” function. Changes
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in signaling pathways were identified using the “rankNet” function,

and the distribution of signaling gene expression among groups was

displayed with the “netVisual_bubble” and “netVisual_aggregate”

functions.

Additionally, we employed the NicheNet package to analyze

intercellular communication from the perspective of ligand activity

and the expression patterns of specific downstream targets

regulated by these key ligands (15). This method provided a

detailed understanding of the signaling processes underlying cell-

cell interactions, using ligand-target relationships to infer

communication pathways within the cellular microenvironment.
Evaluation of TME disparities and
immunotherapy response

To comprehensively and accurately assess immune cell

infiltration levels, we analyzed adverse infiltrated immune cells

using multiple algorithms, including MCPcounter, EPIC, xCell,

CIBERSORT, quanTIseq, and TIMER, among patients stratified

by the AIDAS (16–22). Additionally, to precisely depict the immune

landscape and architecture within the tumor microenvironment

(TME), we evaluated the ESTIMATE and TIDE indices. These

metrics provide critical insights into the potential for

immunotherapy and offer prognostic implications for breast

cancer patients.

Moreover, we quantified immune checkpoints, which serve as

indicators of the immune state and offer preliminary predictions of

patient responsiveness to ICI therapy. This comprehensive

evaluation of the immune profile within the TME is crucial for

advancing personalized medicine and refining treatment strategies

for breast cancer patients.
Determination of therapeutic targets and
drugs for high AIDAS patients

We identified therapeutic targets and drugs for high-AIDAS

patients from the Drug Repurposing Hub and dropped out

duplicate compounds, resulting in a refined list of 6,125

compounds. We established the selection of therapeutic targets

associated with breast cancer outcomes through Spearman

correlation analysis. Specifically, we assessed the relationship

between the AIDAS and gene expression levels, selecting genes

with a correlation coefficient greater than 0.3 and a P-value less than

0.05. Additionally, genes with a correlation coefficient below -0.3

and a P-value below 0.05 were identified as linked to poor

prognosis. The significance of these genes was further evaluated

by examining the relationship between CERES scores from the

Cancer Cell Line Encyclopedia (CCLE) and model value (23).

To enhance predictions regarding drug responsiveness, we

utilized data from the Cancer Therapeutics Response Portal

(CTRP) and the PRISM project, both of which offer extensive

drug screening and molecular data across diverse cancer cell lines.

Differential expression analysis was conducted between bulk

samples and cell lines. Subsequently, we employed the
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pRRophetic package to implement a ridge regression model for

predicting drug response. This model, trained using expression data

and drug response metrics from solid Cancer Cell Lines (CCLs),

demonstrated excellent predictive accuracy, validated through 10-

fold cross-validation (24).

Furthermore, to identify the most promising therapeutic drugs

for breast cancer, we performed a Connectivity Map (CMap)

analysis. This entailed comparing gene expression profiles across

different risk subgroups and submitting the top 300 genes (150 up-

regulated and 150 down-regulated) to the CMap website. A negative

CMap score indicated a higher therapeutic potential against breast

cancer, suggesting an inverse relationship between the CMap score

and a compound’s effectiveness as a potential treatment.
Patient stratification

To evaluate gene expression in breast cancer specimens, RNA

extraction was conducted using TRIzol reagent (Invitrogen, Carlsbad,

CA, USA). This was followed by cDNA synthesis and quantitative

reverse transcription PCR (qRT-PCR) using GoScript reverse

transcriptase and Master Mix (Promega), adhering to the

manufacturer’s instructions. Data acquisition was performed with

the CFX96 Touch Real-Time PCR Detection System (BioRad,

Hercules, CA, USA). Gene expression levels were quantified using

the 2-DDCqmethod, withGAPDH serving as the normalization control.

Patients were subsequently categorized based on their gene expression

profiles using a predefined formula derived from the AIDAS. This

stratification was crucial in identifying patients with distinct risk

profiles, thus facilitating tailored therapeutic interventions.
Immunohistochemistry experiment

Tissue samples were collected from 30 breast cancer patients

undergoing surgery at Guizhou Provincial People’s Hospital. These

samples were subjected to Hematoxylin and Eosin (H&E) staining

following established protocols (25, 26), with diagnoses

independently confirmed by two pathologists.

For immunohistochemistry (IHC) analysis, paraffin-embedded

samples were processed according to procedures outlined in

previous studies. Protein expression levels were evaluated

independently by two pathologists, adhering to standardized

protocols and scoring systems consistent with methodologies

from prior research (26).
Results

Construction of an anoikis model using
artificial intelligence

The comprehensive evaluation of the anoikis model was

conducted using a combination of 108 machine learning

algorithms with ten-fold cross-validation (Figure 1A). The
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performance of the models was assessed by calculating the

average C-index across various cohorts, with the Random

Survival Forest (RSF) algorithm demonstrating the highest

average C-index (0.632). The key anoikis genes were identified

based on the point with the lowest error rate of RSF in 1000 tests

(Figures 1B, C). These genes underwent univariate Cox regression

analysis to calculate the hazard ratio (HR) across nine enrolled

cohorts (Figure 1D). Finally, four genes (PTK2, coef = 0.278;

NOTCH1, coef = 0.145; PKD4, coef = -0.169; BCL2, coef =

-0.236) were selected to construct an artificial intelligence-derived

anoikis signature (AIDAS) (Figure 1E). The evaluation of AIDAS

across the nine cohorts revealed that the binary classification model

effectively classified patients into high and low-AIDAS groups

(Supplementary Figure S1).
Assessment of AIDAS with 83
published models

We further conducted both univariate and multivariate Cox

analysis to assess the independence of AIDAS and other clinical

indices (Supplementary Figure S2A). Three significant indices,

namely AIDAS, stage, and age, were chosen to develop a

nomogram aimed at predicting patients’ survival rates in clinical

practice (Supplementary Figure S2B). The overall survival (OS) of

breast cancer patients with different conditions was predicted, and

the OS curve demonstrated a good fit with the standard curve,

indicating the model’s accuracy (Supplementary Figures S2C, D).

Through comparisons with other factors, it was observed that

AIDAS could provide more accurate predictions of patients’

conditions (Supplementary Figure S2F).

The stability of the predictive model of the AIDAS was

evaluated by collecting and assessing 83 published signatures in

BC across 9 independent cohorts. It was demonstrated that only the

AIDAS exhibited consistent statistical significance across all cohorts

(Figure 2A). The predictive power of the AIDAS was compared with

the 83 models across the 9 cohorts using the C-index (Figure 2B).

The AIDAS showed significantly better accuracy than the others in

almost all cohorts, ranking first in seven cohorts, fifth in one cohort,

and seventh in one cohort, thereby revealing the stability of our

model (Figure 2B).
Multi-omics analysis of genomic alterations
based on AIDAS

Gene variations between the AIDAS groups were analyzed

using multi-omics integration analysis. We observed a significant

increase in TMB in high-AIDAS patients, accompanied by

multigene mutation characteristics (Figures 3A, C). When

considering 10 oncogenic signaling pathways together, classic

tumor suppressor genes like TP53, RB1, and AXIN1/2 were

found to mutate more frequently in the high-AIDAS group, while

oncogenic genes such as RET, PIK3CA/B, and RPTOR mutated less
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(Figures 3A, B). Further analysis of CNV between these subgroups

revealed that amplifications and deletions at the level of

chromosome arms were more pronounced in the high-AIDAS

group, including amplifications of 3q26.32, 6p23, 6q21, 8q24.21,

and 10p15.1, as well as deletions of 5q11.2, 5q21.3, 14q24.1,

14q32.12, and 19p13.3 (Figures 3A, D). These results suggest that

the poor prognosis for high-AIDAS patients may be related to

significant increases in the amplification of 3q26.32 and multiple

oncogenes genes (ASAP1, PVT1, TMEM75, and MYC), as well as
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deletions of multiple tumor suppressor genes of 5q21.3 (GPBP1,

RAB3C, DDX4, and ITGA1) (Figure 3A).
Deciphering the AIDAS at the single-
cell level

The expression characteristics of different immune infiltrating cells

were revealed at the single-cell level. The distribution of cells from 8 BC
FIGURE 1

Construction of an anoikis model using artificial intelligence. (A) C-indexes of the 108 machine learning algorithm combinations in the nine cohorts.
(B) Error rate of RSF after 1000 tests. (C) Key anoikis genes selected by RSF. (D) Prognostic value of key genes in nine BC cohorts. (E) Final selection
of 4 anoikis genes based on an exhaustive search, with patient risk scores calculated according to the expression levels of these genes and their
regression coefficients.
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patients was analyzed, and the distribution of tumor and normal tissues

(Supplementary Figures S3A, B), 17 cell clusters were identified and

divided into 6 cell types (Figures 4A, B). The number of cells in these 6

types was statistically analyzed, and then their proportion in the bodies

of these 8 tumor patients was calculated (Supplementary Figures S3C,

D). The representative markers in these 6 types of cells, as well as their

actual distribution in the cells (Figure 4C; Supplementary Figure S3E)

were observed. The results showed that epithelial cells and

macrophages accounted for a larger proportion of the tumor tissue,

while fibroblasts, T cells, Pericytes, and endothelial cells accounted for a

larger proportion in the normal tissue (Figure 4D).

Next, the AIDAS was incorporated into the single-cell

distribution map (Figure 4E). All cells were divided into low- and

high-AIDAS groups based on their peak of epithelial cells

(Figure 4F), and then differential gene expression analysis and

functional clustering were performed to elucidate potential

functional pathways (Supplementary Figures S3F, G).

Subsequently, copyKat analysis was performed to observe the

CNV for distinguishing the normal cells and tumor cells

(Figure 4G). We observed a higher AIDAS score in tumor-

aneuploid than in tumor-diploid, implying the significance of

AIDAS in breast cancer progression (Figure 4H).
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Specific regulons for AIDAS and
cell recognition

To comprehensively construct a GRNs of AIDAS, a SCENIC

pipeline was applied to analyze single-cell RNA seq data with cis-

regulatory sequence information (Figures 5A, B). PCA and variance

analyses were performed on different cell types and AIDAS. PCA1

explained the specific transcription factors of different cell types,

while PCA2 was associated with the regulons of AIDAS (Figures 5C,

D). The key transcription factors for cell recognition were

identified, and the regulon specificity score (RSS) of these specific

transcription factors in different types of cells was evaluated

(Figure 5E). The regulatory factors with higher RSS scores were

selected from these six types of cells, and GATA3, SPDEF, and

PITX1 were identified as the most relevant specific regulators to

epithelial cells (Figure 5F). Similarly, the most relevant specific

regulators to the other five types of cells were analyzed

(Supplementary Figure S4A).

Understanding that TFs often collaborate to modulate gene

expression, we systematically explored the combinatory patterns of

these regulatory elements. Based on the Leiden algorithm, the

similarity of RAS scores for each TF was compared, and the cluster
FIGURE 2

Assessment of AIDAS with 83 published models. (A) The stability of AIDAS was compared with 83 published models. (B) C-index values of AIDAS and
83 published models in 9 different datasets.
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analysis of TFs was conducted to find 12 clusters of transcription

factors, of which the contribution rate of transcription factor sets B

and E to the development of AIDAS was greater than that of the other

11 clusters, so only transcription factors B and E were displayed

(Figures 5G, H, Supplementary Figure S4B). We next focused on the

exact TFs that drive epithelial cells’ transcriptomic changes by

AIDAS. Multiple pathways were identified by GSEA analysis. For

example, collagen degradation was activated in epithelial cells in the

high-AIDAS cells, while interference alpha beta signaling was

inhibited (Figures 5I, J). Transcription factors contributing to these

pathways were identified by further analysis (Figure 5K). The

network diagrams of regulatory relationships among transcription

factors were shown (Figure 5L).
Intercellular communications for AIDAS

Intercellular communication among six cell types was evaluated

by CellChat analysis. We observed that the number and intensity of
Frontiers in Immunology 07104
cell-cell interactions were stronger in the low-AIDAS cells, and the

intercellular communication between epithelial cells and

endothelial cells was elevated (Figures 6A, B). Some signaling

pathways involved in intercellular communication were analyzed,

and the results showed that most of them had stronger intercellular

communications in the low-AIDAS cells (Figure 6C). By comparing

changes in outgoing and incoming signals among different cells, it

was found that incoming interactions of epithelial cells were

stronger in the low-AIDAS cells, indicating that incoming

interactions of epithelial cells in the low-AIDAS group may be

enhanced after they receive signals from other cells (Figure 6D).

Potential ligands of epithelial cells in the different groups were

speculated using nichenetr analysis. We inferred potential ligands

that may regulate epithelial cells from other cells based on the

AIDAS group. The potential ligand-receptor pairs were further

evaluated (Figure 6F). A high degree of interaction between THBS1-

SDC4 and CNN1-SDC4 was observed, indicating that fibroblasts

are the main sending cells affecting changes in the epithelial cell

pathway (Figure 6G). THBS1 ligand and CNN1 ligand could reach
FIGURE 3

Multi-omics analysis of genomic alterations based on AIDAS. (A) Overview of genomic variations based on AIDAS. (B) Mutation atlas of 10 oncogenic
pathways. (C) Difference of TMB values. (D) Comparison of copy number load between the two AIDAS groups. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001.
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the SDC4 through other receptors or transcription factors, in which

high mutation rates of transcription factors such as TP53, MYC,

and RAC1 in high-AIDAS (Figure 6H).
Personalized immunotherapy for low-
AIDAS patients

Immune microenvironment is involved in breast cancer

progression, six algorithms were applied to evaluate the immune

infiltration of different AIDAS patients. A higher proportion of

memory T cells, Tregs, M1 macrophages, and CD8+ T cells were

observed in the high-AIDAS patients (Figure 7A), and some ICIs

were also overexpressed, such as PD-L1, CTLA4, and LAG3

(Figure 7B). IHC was performed to support the above results

using the representative cell markers and clinical ICIs (Figure 7C).

Further analysis revealed that TIDE and Dysfunction values in

the low-AIDAS group were higher than those in the high-AIDAS

group, and there was no significant difference in the Exclusion value

between the two groups (Figure 8A). There was a longer survival

time in patients with a low-AIDAS and high-TIDE than in other

combinations (Figure 8B). The correlation of AIDAS with the

immune cycle and signaling showed that the anti-tumor immune

activity of low-AIDAS patients was higher than that of high-AIDAS

patients (Figure 8C).

ICIs have emerged as a transformative approach in cancer

immunotherapy over the past several decades, yet their

effectiveness in solid tumors, including breast cancer, remains
Frontiers in Immunology 08105
limited. We sought to explore the predictive capability of AIDAS

levels regarding the efficacy of immune checkpoint blockade therapies

in the IMvigor210 (anti-PD-L1) and GSE78220 (anti-PD-1) cohorts.

Patients from low-AIDAS presented remarkable clinical

benefits and better survival rates than the high-AIDAS in anti-

PD-L1 response (Figures 8D–G). Prior benefits for low-AIDAS

patients were also observed in anti-PD1 response (Figures 8H–L).

Utilizing SubMap algorithms, we confirmed the response to

immunotherapy, which was significantly more likely to benefit

from treatments with anti-PD-L1 and CTLA4 treatments

(Figure 8M). Based on the above research results, patients with

the low-AIDAS can achieve better results in the treatment with ICIs.
Identification of therapeutic drugs for
high-AIDAS patients

Chemotherapy is the standard treatment for anti-cancer, and

data from multiple datasets have been used to develop potential

drugs for BC patients with high-AIDAS. Seven therapeutic targets

were identified using Spearman correlation analysis, and the results

showed that high-AIDAS patients were positively correlated with

the abundance of seven genes (MDH2, LIMK1, S100A2, TYRO3,

COX7B, and ESRRA), and significantly negatively correlated with

their CERES scores, suggesting that these seven genes can serve as a

potential therapeutic target (Figure 9A). Potential drug targets were

further analyzed based on drug sensitivity ratios, and it was revealed

that these 7 genes had a high sensitivity to the drugs, so they were
FIGURE 4

Deciphering the AIDAS at the single-cell level. (A) Distribution of 20 cell clusters. (B) Seven cell types identified by the established marker genes. (C)
Representative markers of each cell type. (D) Proportion of seven types of cells between tumor patients and normal tissues; (E) Distribution of AIDAS
value. (F) AIDAS value across cell types. (G) CNV evaluation using copyKat algorithm. (H) Comparison of the AIDAS value between diploid and
aneuploid cells within the epithelial cells. ****P<0.0001.
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considered the key therapeutic targets for high-AIDAS patients

(Figure 9B). Thirteen compounds were screened out from CTPR

(CR-1-31B, SB-743921, BI2536, GSK461364, methotrexate,

vincristine, paclitaxel, and leptomycin B) and PRISM datasets

(docetaxel, vincristine, ispinesib, gemcitabine, and LY2606368),

for evaluating candidate therapeutic drugs. The AUC values of
Frontiers in Immunology 09106
the different compounds in the two groups were compared, and the

results showed that lower AUC values were identified in high-

AIDAS patients, indicating that these compounds may be suitable

for the drug treatment of high-AIDAS patients (Figures 9C, D). The

promising therapeutic agents were identified by CMap analysis, in

which methotrexate, with a CMAP value of -99.82, was ultimately
FIGURE 5

Specific regulons for AIDAS and cell recognition. (A) Distribution of cell types based on RAS. (B) Distribution of AIDAS value based on RAS. (C)
Variance analysis highlights the impact of cell types and AIDAS on transcription factor activity, using color mapping to PC1 to emphasize the primary
variance influenced by these factors. (D) Variance analysis with color mapped to PC2. (E) Scores of specific transcription factors in different types of
cells. (F) Specific distribution of the most relevant specific regulators in epithelial cells. (G) Network of each transcription factor based on Leiden
algorithm. (H) Specific transcription factor groups with higher scores in AIDAS. (I) GSEA identifies pathway variations linked to AIDAS in epithelial
cells. (K) Transcription factors that could contribute to the collagen degradation. (L) Network of the regulatory relationship related to
collagen degradation.
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identified as the best potential therapeutic drug for high-AIDAS

patients (Figure 9E).
Discussion

Considering the unique clinical characteristics of BC patients, it

is necessary to customize specialized prognostic plans for these
Frontiers in Immunology 10107
patients, and it is crucial to develop an accurate prognostic model.

Anoikis is a specific form of programmed apoptosis caused by the

disruption of cell-cell or cell-extracellular matrix attachment, and

eliminating displaced or displaced cells can help maintain the

dynamic balance of tissues (27), Anoikis is a term that describes

the process of apoptosis that triggered by the detachment of cells

from the extracellular matrix (28). It has been confirmed that

anoikis is the first line of defense against cancer cell metastasis
FIGURE 6

Intercellular communications for AIDAS. (A) Comparison of the number and intensity of cell interactions between two AIDAS groups. (B) Detail of
cell communications among each cell type. (C) Differences of signaling pathways involved in the intercellular communication. (D) Intensity of
incoming and outgoing interactions among different cells. (E) Specificity of incoming and outgoing signals of different signaling pathways.
(F) Specific regulatory of ligands and receptors in cells. (G) Expression levels of ligands and receptors in different cells. (H) Route diagram of reaching
target receptor SDC4 of CCN1 and THBS1 ligands through other receptors or transcription factors.
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and an early intervention measure for preventing cancer metastasis

(29). However, there is a limited prognostic model based on anoikis

for predicting the prognosis and personalized treatment of BC.

By focusing on the process of anoikis—programmed cell death

triggered by cellular detachment—AIDAS provides novel insights
Frontiers in Immunology 11108
into how resistance to anoikis is linked to cancer aggressiveness and

metastasis. Here, we discuss the clinical implications, biological

rationale, and limitations of AIDAS, and outline directions for

future research that could further enhance its utility as a

personalized medicine tool.
FIGURE 7

Differential expression and immunohistochemical analysis of immune markers in tumor microenvironments between AIDAS subgroups. (A) Heatmap
provides a comparative view of immune cell infiltration in tumor samples with low and high AIDAS, utilizing various computational algorithms for
quantification. Each row represents a different type of immune cell, with the color intensity reflecting the level of infiltration. (B) Box plots illustrate
the distribution of gene expression levels for ICIs across low vs. high AIDAS conditions, with statistical significance denoted by ns for not significant;
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (C) Representative immunohistochemistry images showcase the staining intensity of various
immune markers between high and low expression conditions, visually depicting the differential expression of these markers in correlation with
AIDAS levels.
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By focusing on the process of anoikis—programmed cell death

triggered by cellular detachment—AIDAS provides novel insights

into how resistance to anoikis is linked to cancer aggressiveness and

metastasis. Here, we discuss the clinical implications, biological
Frontiers in Immunology 12109
rationale, and limitations of AIDAS, and outline directions for

future research that could further enhance its utility as a

personalized medicine tool. AIDAS leverages machine learning to

capture complex interactions among anoikis-related genes, enabling
FIGURE 8

Personalized immunotherapy for low-AIDAS patients. (A) Differences in TIDE, Dysfunction, and Exclusion between patients in the low- and high-
AIDAS groups. (B) Comparison of the survival probability of four combinations. (C) Correlation analysis of AIDAS with tumor immune cycle and ten
immune pathways. (D) Correlation analysis of AIDAS value with anti-PD-L1 response. (E) KM survival curves of AIDAS after anti-PD-L1 treatment.
(F) Accuracy of AIDAS and TMB in anti-PD-L1 treatment. (G) Proportion of CR/PR and SD/PD of anti-PD-L1 in ADIAS subgroups. (H) Correlation
analysis of AIDAS value with anti-PD-1 response. (I) KM survival curves of AIDAS after anti-PD-1 treatment. (J) Accuracy of AIDAS and TMB in
anti-PD-1 treatment. (K) Proportion of CR/PR and SD/PD of anti-PD-1 in ADIAS subgroups. (L) Distribution of ADIAS score of different patients after
anti-PD-1 treatment. (M) Heatmap demonstrating the predictive power of ADIAS for responsiveness to different ICIs treatment.
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us to explore how gene expression patterns associated with anoikis

resistance influence breast cancer prognosis. Anoikis resistance is a

critical step in metastasis, and understanding its molecular

underpinnings could provide pathways for intervention in cancer

progression. By identifying gene clusters and pathways linked to

anoikis resistance, AIDAS deepens our understanding of this
Frontiers in Immunology 13110
biological process and its role in breast cancer outcomes,

highlighting potential targets for future therapeutic strategies that

could re-sensitize tumor cells to anoikis. This mechanistic insight

underscores the value of combining molecular biology with

advanced computational techniques to address complex questions

in cancer biology.
FIGURE 9

Identification of therapeutic drugs for high-AIDAS patients. (A) Spearman correlation of 7 potential therapeutic targets, where red and blue represent
positive and negative correlations, respectively. (B) Network analysis highlighting the connections between the 7 therapeutic targets and their related
drug action pathways. (C) AUC values of identified compounds from CTRP database. (D) AUC values of identified compounds from PRISM database.
(E) Analysis from multiple perspectives based on the clinical status, experimental evidence, mRNA expression, and CMap score of 13 compounds.
***P < 0.001.
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Immunotherapy is found to be more beneficial for low-AIDAS

patients by studying the immune cell infiltration score and immune

checkpoint count of patients in two AIDAS subgroups. To effectively

examine which patient would be more sensitive to immunotherapy,

multiple analyses were utilized, and it was concluded that low-AIDAS

populations have greater advantages in the treatment of ICIs,

especially in response to PD-1, PD-L1, and CTLA4 drugs. For

aggressive subtypes like triple-negative breast cancer (TNBC), which

frequently exhibit poor responses to chemotherapy, AIDAS could be a

valuable tool for tailoring immunotherapy. By stratifying TNBC

patients based on AIDAS and PD-L1 expression, clinicians may be

able to identify those more likely to benefit from PD-1-targeted

therapies, potentially improving outcomes in this difficult-to-treat

population. Enhancing the patient’s immune response to tumors by

blocking the inhibitory signals of the human anti-tumor response is

recognized as the most promising new cancer immunotherapy

currently. CTLA-4 and PD-1 are considered two important

checkpoints of the immune system, playing a negative regulatory

role in the immune response of T cells. In vivo mouse experiments

indicate that CTLA-4-dependent antibodies bind to Fc receptors

rather than blocking the action of CTLA-4/B7, demonstrating the

anti-tumor effect of CTLA-4 antibodies (30). Nikhil Joshi stated that

PD-1 plays a crucial role in preventing T cells from attacking normal

tissues in healthy individuals, and this finding may help look for a way

to reduce or prevent the side effects of immunotherapy (31). Our study

observed that patients in the low-AIDAS group tend to have lower

PD-L1 expression, correlating with a less immunosuppressive tumor

microenvironment. This reduced immune suppression may explain

their improved responses to PD-1/PD-L1 inhibitors, as these therapies

rely on reactivating the immune system to recognize and target cancer

cells. Beyond PD-L1 expression levels, differences in the immune cell

landscape and functional activity within the tumor microenvironment

likely contribute to these divergent responses. Studies have shown that

functional characteristics, such as T-cell activation and the presence of

regulatory T-cells, can significantly impact immunotherapy

effectiveness (32). Techniques such as leukosome isolation and

single-cell profiling could further elucidate the immune cell

dynamics within AIDAS groups, providing deeper insights into how

these functional immune variations drive therapeutic responses.

Chemotherapy plays an important role in the treatment of

tumors in the clinic. To study the chemotherapy efficacy among

different patients, therapeutic targets and drugs were screened. After

a series of analyses, it was found that BC patients with high-AIDAS

are more suitable for chemotherapy. Finally, seven therapeutic

targets and one drug were identified to improve the prognosis.

These studies have demonstrated the effectiveness of methotrexate.

For example, Methotrexate chemotherapy can induce the

dysregulation of three types of glial cells, which forms the basis

for chemotherapy-related cognitive impairment (33). Shen Y et al.

reported that patients showed a good prognosis after they received

four courses of methotrexate chemotherapy (34). Thomas S et al.

believe that methotrexate is a promising drug for treating

myeloproliferative tumors (35). Overall, the therapeutic potential

of methotrexate has been repeatedly verified.

The genomic alterations identified in high-AIDAS tumors provide

a biologically plausible explanation for the poorer prognosis associated
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with high anoikis resistance. High-AIDAS tumors frequently exhibit

amplification of known oncogenes, such as MYC, and deletions in

tumor suppressor genes, linking AIDAS with oncogenic pathways that

drive tumor progression and therapeutic resistance. These findings add

credibility to AIDAS as a prognostic tool, as they align with established

mechanisms of cancer progression. Further exploration of these genetic

drivers, within the context of AIDAS, could yield new insights into

specific molecular targets, particularly for therapies aimed at reversing

anoikis resistance.

Compared to other prognostic models, AIDAS offers a unique

focus on anoikis-related gene expression patterns, which are

particularly relevant in the context of metastasis and therapeutic

resistance. Existing models tend to emphasize overall survival

predictors or molecular subtypes without specifically addressing

the role of anoikis and immune markers in treatment selection.

AIDAS fills this gap by providing actionable insights that could

directly influence treatment planning, such as recommending

chemotherapy for high-AIDAS patients and immunotherapy for

low-AIDAS patients. This targeted approach enhances the

individualization of breast cancer treatment, which could improve

outcomes by reducing unnecessary treatments and optimizing

therapeutic choices based on tumor biology.

Despite the potential of AIDAS, several limitations need to be

addressed. Firstly, the study’s retrospective and observational design

restricts our findings to associations, without the ability to infer

causality. Prospective studies with standardized, long-term follow-

up would be essential to confirm AIDAS’s clinical relevance over

time. Additionally, our IHC validation was conducted on a limited

sample size of 30 tissue samples, which, although consistent with

broader dataset findings, may not fully capture population-level

heterogeneity. Expanding IHC validation to larger, multi-cohort

studies would strengthen the generalizability of our results.

Our study also integrated data from multiple cohorts, each with

potential variations in sample processing. Although we applied

normalization and batch correction, residual technical variability

may influence the findings. Future studies with harmonized, single-

cohort data could provide a more uniform validation. Finally, while

our bioinformatics analysis identified potential therapeutic targets

through in silico drug screening, wet lab validation is essential to

confirm these findings. Future research should incorporate in vitro

and in vivo experiments to validate AIDAS-predicted drug responses

and explore the efficacy of novel anoikis-targeting therapies.

Furthermore, the integration of AIDAS with PD-L1 expression

and other immune markers offers a promising approach for precision

oncology. For instance, stratifying TNBC patients by AIDAS and PD-

L1 levels could help personalize immunotherapy choices, optimizing

patient selection for anti-PD-1/L1 treatments. By combining

molecular and immune landscape data, AIDAS represents a step

towards fully personalized breast cancer management, offering a

comprehensive molecular profile to guide treatment.

AIDAS exemplifies the potential of combining mechanistic

understanding with machine learning to advance personalized

medicine. By linking anoikis resistance with breast cancer

prognosis and therapy response, AIDAS provides an actionable

framework for individualized treatment selection in clinical settings.

Future studies integrating multi-omics data, single-cell immune
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profiling, and in vivo validation will be crucial to refine AIDAS and

maximize its clinical impact. These steps could ultimately lead to

new therapeutic avenues, including anoikis-targeting agents and

immunotherapy combinations, further expanding the clinical utility

of AIDAS in breast cancer care.
Conclusion

In conclusion, this study advocates for a more nuanced

understanding of the TME, suggesting that the interrelationships and

functional states of different immune components can significantly

influence the efficacy of immunotherapy. It underscores the potential of

integrating comprehensive immune profiling into clinical decision-

making to tailor immunotherapeutic strategies more precisely. The

differential response to immunotherapy in breast cancer groups

highlights the importance of considering qualitative and functional

aspects of immune cells, beyond their numerical abundance. This

approach could lead to more personalized and effective therapeutic

interventions, particularly in the realm of immunotherapy.
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1School of Computer and Control Engineering, Yantai University, Yantai, Shandong, China,
2Department of Hematology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai,
Shandong, China, 3Guangzhou Dublin International College of Life Sciences and Technology, South
China Agricultural University, Guangzhou, Guangdong, China, 4Department of Immunology, Binzhou
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Background: Autophagy promotes the survival of acute myeloid leukemia (AML)

cells by removing damaged organelles and proteins and protecting them from

stress-induced apoptosis. Although many studies have identified candidate

autophagy genes associated with AML prognosis, there are still great

challenges in predicting the survival prognosis of AML patients. Therefore, it is

necessary to identify more novel autophagy gene markers to improve the

prognosis of AML by utilizing information at the molecular level.

Methods: In this study, the Random Forest, SVM and XGBoost algorithms were

utilized to identify autophagy genes linked to prognosis, respectively.

Subsequently, six autophagy genes (TSC2, CALCOCO2, BAG3, UBQLN4, ULK1

and DAPK1) that were significantly associated with patients’ overall survival (OS)

were identified using Lasso-Cox regression analysis. A prediction model

incorporating these autophagy genes was then developed. In addition, the

immunological microenvironment analysis of autophagy genes was performed

in this study.

Results: The experimental results showed that the predictive model had good

predictive ability. After adjusting for clinicopathologic parameters, this feature

proved an independent prognostic predictor and was validated in an external

AML sample set. Analysis of differentially expressed genes in patients in the high-

risk and low-risk groups showed that these genes were enriched in immune-

related pathways such as humoral immune response, T cell differentiation in

thymus and lymphocyte differentiation. Then immune infiltration analysis of

autophagy genes in patients showed that the cellular abundance of T cells

CD4+ memory activated, NK cells activated and T cells CD4+ in the high-risk

group was significantly lower than that in the low-risk group.
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Conclusion: This study systematically analyzed autophagy-related genes (ARGs)

and developed prognostic predictors related to OS for patients with AML, thus

more accurately assessing the prognosis of AML patients. This not only helps to

improve the prognostic assessment and therapeutic outcome of patients, but

may also provide new help for future research and clinical applications.
KEYWORDS

autophagy gene, immune infiltration, random forest, acute myeloid leukemia, prognosis
Introduction

Acute myeloid leukemia (AML) is a complex and diverse blood

cancer triggered by abnormal proliferation and immature

differentiation of hematopoietic stem cells in the bone marrow

(1–3). Despite previous studies on the role of autophagy in AML (4–

6), the specific functions of ARGs and their interaction with

immune infiltration have not been thoroughly explored. This gap

not only makes the biological functions of ARGs unclear, but also

limits their potential application in AML therapy. Therefore, this

study aimed to reveal the key autophagy genes associated with the

prognosis of AML and their role in relation to the immune

microenvironment through comprehensive bioinformatics

analysis, providing new targets and strategies for AML treatment.

Autophagy is an important cellular self-regulatory mechanism

that maintains cellular and organismal homeostasis (7) and adapts

to changes in the external environment by disassembling and

removing damaged proteins and organelles inside the cell.

Autophagy gene (ARG) mutations linked to cancer and other

diseases (8). For example, autophagy levels are strongly associated

with the prognosis of ovarian cancer patients (9). Recent studies

have indicated that autophagy is closely linked to progression of

leukemia, including AML. However, the exact mechanism of

autophagy in AML and the expression and function of autophagy

genes in AML are still limited.

Certain immune cells play an immunoregulatory role in the

tumor microenvironment (TME) and are linked to the immune

escape of tumor cells, thereby influencing tumor progression (10).

Bansal et al. showed that the number of regulatory T cells was

significantly higher in patients with AML than in the healthy

population, and that the increased number of Tregs may be

strongly associated with poor prognosis (11). Wan et al. further

noted that Tregs contribute to immune escape of AML cells in the

tumor microenvironment by enhancing the inhibitory effect on

effector T cells (12). The study by Romee et al. demonstrates the

potential of using cytokines to induce memory-like NK cells for

immunotherapy in AML patients (13). Bioinformatics analysis of

immune infiltration is a powerful approach that allows in-depth

study of immune cell infiltration in TME and its relationship with

tumor development by integrating multi-omics data. Although
02115
there have been several studies on immune infiltration in AML,

the interaction between ARGs and immune infiltration has not been

thoroughly investigated.

In this research, AML transcriptome data obtained from the

GEO database was used to screen for AML-related ARGs (14–16).

Then functional enrichment analyses were conducted to obtain the

biological meaning and functional features of these ARGs. In

addition, the autophagy genes obtained in this experiment were

analyzed by protein–protein interaction (PPI) network to obtain the

interactions between these autophagy genes and their regulatory

mechanisms inside the cell. After that, Random Forest (17), SVM-

RFE (18) and XGBoost were used in combination to identify key

autophagy genes associated with AML. Lasso-Cox analysis was then

conducted to identify six autophagy-related genes and construct a

survival prediction model. After that, AML high and low risk

groups divided according to the survival prediction model and

differential expression analysis was performed. The genes obtained

with significant differences were then analyzed for functional

enrichment. The results indicated that these ARGs were primarily

enriched in immune-related pathways such as T cell differentiation

in thymus and lymphocyte differentiation. Accordingly, the

autophagy genes were analyzed for immune infiltration.

Moreover, the link between ARGs and immune infiltration was

investigated. This study reveals the critical role of autophagy genes

in acute myeloid leukemia and their interaction with the immune

microenvironment, which is of great clinical significance. By

constructing a survival prediction model, it can provide AML

patients with prognostic assessment and personalized treatment

plans. In addition, autophagy genes are expected to be used as

potential targets for novel therapeutic strategies, especially showing

great potential in combination with immunotherapy. The basic flow

of this experiment is shown in Figure 1.
Methods

Data set acquisition

In this study, the original microarray dataset of GSE37642 (19)

was downloaded from the GEO database, including transcriptome
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data of GPL96 and GPL570 platforms. The data were first quality

checked for missing values, outliers and distribution. Subsequently,

the data were normalized using the robust multi-array average

(RMA) algorithm in the affy package to normalize gene expression

levels across arrays. To eliminate the batch effect due to different

platforms, the Combat algorithm from the sva package was used for

correction (20). Clinical information was then collated and

integrated to remove samples lacking relevant clinical

information, resulting in 553 usable acute myeloid leukemia

samples. Clinical information on these samples is presented in

Supplementary Table S1. The dataset GSE12417 was processed in

the same way, resulting in a total of 237 samples with clinical

information. The available clinical information for the samples used

was shown in Supplementary Table S2. AML RNA-seq datasets

were downloaded from the UCSC Xena database (https://

xenabrowser.net/datapages/). Available clinical information for

the samples used in this study is shown in Supplementary Table S3.
Acquisition of autophagy genes

Autophagy-related genes were obtained from the Human

Autophagy Database (HADB, http://www.autophagy.lu/

index.html) and from the GO_AUTOPHAGY gene set in GSEA

website (http://software.broadinstitute.org/gsea/index.jsp). The

Human Autophagy Database (HADb) is an authoritative database

dedicated to autophagy-related genes, covering a large number of

experimentally validated autophagy genes, which ensures the

breadth and comprehensiveness of the data. The collection of
Frontiers in Immunology 03116
GO_AUTOPHAGY genes on the GSEA website is based on the

autophagy biological process as defined by Gene Ontology (GO),

and these genes are strictly classified according to the GO

classification criteria division, ensuring consistency in biological

function and annotation. This enables the autophagy genes selected

during the study to have a clear functional orientation and

ensures their relevance to the autophagy process. The two

obtained autophagy gene sets were combined to obtain 531

related ARGs (Supplementary Table S4). 392 ARGs were screened

from GSE37642.
Random forest identifies overall survival-
related ARGs

In this study, survival time and survival state information were

extracted from AML patient data, and a random forest model with

1000 decision trees was constructed to predict patient survival. The

model used multiple samples, each containing feature genes and

their corresponding survival information. To build the decision

trees, the random forest employed the log-rank split rule, which

assessed the survival differences between two subsets. At each

candidate split point, the log-rank statistic was calculated to

measure the difference between two survival curves, using the

formula X2 =o
m

i=0

(Oi − Ei)
Ei

, where Oi was the observed number of

events at time point i, Ei was the expected number of events at i,

and m was the total number of time points. The split point with the

highest log-rank statistic is selected as the optimal point, as it

maximizes the distinction between the survival curves of the
FIGURE 1

The general analytical flow of this experimental design.
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resulting subsets. This process continues recursively, splitting the

data at the best split points until a stopping condition is met.
SVM identifies ARGs

In this study, a SVM model was used to identify the most

important features for the classification task. The importance of

each feature was determined by looking at how much influence it

had on the model’s decisions. This was done by calculating the

absolute value of the product of the feature’s weight and the

corresponding support vector. In simpler terms, the importance

of a feature depends on how much its weight, when multiplied by

the support vector, affects the classification. After calculating these

importance scores, they were sorted from highest to lowest to

identify the most important features.
XGBoost Identifies ARGs

Firstly, the training data were preprocessed, including

extracting the autophagy gene expression data from the

transcriptome data, and also collecting clinical information such

as the survival time and survival status of the patients. Handle

missing and abnormal values to ensure complete autophagy gene

expression data for each sample and remove abnormal or

incomplete samples. Generate labels by combining survival time

and survival status. Next, the data are converted to DMatrix format

for XGBoost and the model parameters are set, where the objective

function is Cox proportional risk model and the evaluation metric is

negative log likelihood. The objective function of Cox proportional

risk model (21) is defined as:

logL(b) =oi∈E(xib − log(oj∈R(Ti)
exp(xjb))) (1)

where E denotes the set of events, i.e., all samples of observed

deaths, R(Ti) denotes the set of samples at risk at time Ti. xi dentes

the eigenvector of sample i, and b is a parameter of the model. The

model is trained through 100 rounds of iterations, setting the

learning rate to 0.1, and recording the negative log-likelihood

value and training error for each round as a function of the

number of iterations. The model is then used to calculate the

importance of the features. Feature importance (22) (Gain)

indicates the contribution of each feature to the model with the

following formula:

Gain(j) =otϵTj
DGt (2)

where DGt denotes the gain of feature j in tree t and Tj denotes

the set of all trees in which feature j  appears.
Permutation test

To further assess the impact of the identified ARGs on survival,

a permutation test was conducted. This test aims to verify the
Frontiers in Immunology 04117
reliability of the model’s predictions by randomly shuffling the

survival labels, as described below.
1. Randomly disrupt survival state labels to generate a new set

of labels.

2. Retrain the Cox regression model using the disrupted data

and record the C-index of the model each time.

3. Repeat the above process a certain number of times to

generate a C-index replacement distribution.

4. The C-index of the original model was compared with the

C-index distribution of the replacement and the p-value

was calculated to assess the significance of the

original model.
Functional enrichment analysis and PPI
molecular interactions

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses of key autophagy genes were performed

using clusterProfiler (version 3.14.3) to reveal the primary functions

of these genes. We will apply the Benjamini & Hochberg correction

method and use a corrected P value of less than 0.05 as the criterion

for statistical significance.

To study the interactions between these key ARGs, a PPI will be

constructed using the STRING database. Subsequently, the

MCODE plugin was used in Cytoscape (v3.10.0) (23) to extract

densely connected modules with default parameters “degree cutoff

= 2”, “node score cutoff = 0.2”, “K-core = 2”, and “Maximum depth

= 100” to extract densely connected modules.
Construction and validation of survival
prediction models

To avoid overfitting of prognostic risk features, we performed

the following steps on the training set to construct survival

prediction models.
1. A Cox regression method based on the least absolute

shrinkage and selection operator (LASSO) was applied to

the training dataset to identify significant features of ARGs

associated with OS.

2. Subsequently, we performed multivariate Cox proportional

risk regression on these candidate genes and stepwise

variable selection using the Akaike information criterion.

3. Ultimately, risk scores for optimized prognostic markers

were calculated.
Risk score =on
i Coef i � Ai (3)

where Coefi represents the regression coefficient of the i gene,

indicating the degree of influence of the expression level of the gene

on the risk. Ai denotes the expression level of the i gene, and n

denotes the total number of genes selected for characterization.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1489171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1489171
Differences in patient OS were assessed by Kaplan-Meier analysis

and log-rank tests. The predictive power of ARG-based

characteristics was assessed using time-dependent ROC curves (24).

To test the accuracy of the survival prediction model, external

validation was performed using the GSE12417 (n=242) dataset and

AML cohorts-TCGA-LAML (n=129). First, the risk scores of

patients in each external validation dataset were calculated using

the survival prediction model from the training set. Then, patients

were categorized into high-risk and low-risk groups based on their

risk scores. Next, the survival distribution of the model in the high-

and low-risk groups was assessed using Kaplan-Meier curves, and

the survival differences were compared to validate the predictive

performance of the model.
Identification of differentially
expressed genes

Differential expression analysis was performed on samples from

the high-risk and low-risk groups using the limma package, setting

the criteria of |log2FC| > 2 and a P-value < 0.05 to screen for DEGs.

Next, volcano maps of DEGs were plotted using the

EnhancedVolcano (25) function in the EnhancedVolcano package.
Immune infiltration analysis

The analysis of 22 immune cell types is of great importance

during the progression of AML. These immune cells, including T

cells, B cells, NK cells, T cells gamma delta and macrophages, are

known to play a key immunomodulatory role in the tumor

microenvironment (26). Ge Jiang et al. demonstrated that a

significant elevation in the abundance of NK cells and

macrophage infiltration was strongly associated with a poor

prognosis in AML (27). Another study by Moore et al.

demonstrated that macrophage reduction promoted AML cell

growth in vivo (28).

To further investigate the relationship between immune cell

infiltration and AML, the CIBERSORT algorithm was used to

calculate the infiltration abundance of 22 immune cell types in

gene expression data from AML patients. Subsequently, the

association between hub genes and the abundance of 22 immune

cells was detected and then visualized using the software package

“ggcorrplot”, and gene-immune cell correlations greater than 0.28

were considered significant.
Results

Using machine learning to select OS-
related ARGs

Three hundred and ninety-two ARGs were screened from the

gene expression matrix and screened for autophagy genes
Frontiers in Immunology 05118
associated with survival prognosis using Random Forest, Support

Vector Machine (SVM) and XGBoost (29) algorithms, respectively.

First, in the random forest model, 1000 decision trees were

constructed and the variables were partitioned using the log-rank

rule. The model assessed the relationship between gene expression

and survival prognosis by calculating the importance of each

variable and the proximity of the samples (30). The OBB error

plot of the model showed a gradual decrease in error and improved

performance as the number of trees increased (Figure 2A). The

variable importance plot showed the importance of each gene

(Figure 2B), and 146 genes with significant effects on survival

analysis were screened (Supplementary Table S5). Meanwhile, the

performance of the model was assessed by the C-index (consistency

index), and a C-index value of 0.88 was obtained, indicating that the

model was predicted relatively well.

Next, the XGBoost algorithm was employed for survival

analysis. XGBoost used the Cox proportional risk model as the

objective function and evaluated the model by optimizing the Cox

negative log-likelihood ratio (cox-nloglik). Survival states and

survival times were converted into a labelled format suitable for

the Cox model, and the number of iterations of the model was set to

100 with a learning rate of 0.1. Figure 2C shows the trend of Cox

negative log-likelihood value during the training process. From the

figure, it can be seen that the model gradually converges and the

performance of the model gradually improves as the number of

iterations increases. The top 180 genes that had a significant effect

on survival analysis were screened by feature importance analysis

(Supplementary Table S6) and the performance of the model was

assessed with a C-index of 0.99. The top 10 ranked important

features are shown in Table 1. Figure 2D visualizes the top 10

ranked genes and their corresponding importance scores. These

features had the highest importance scores in the model and

significantly influenced survival prediction.

In addition, a support vector machine (SVM) was used for

survival analysis, and a linear kernel function (31) and epsilon

regression type were used for model training. The coefficients and

support vectors of the model were used to calculate the importance

scores of each feature, and the top 180 feature genes that had a

significant effect on survival prediction were filtered out

(Supplementary Table S7), and the top 10 features with the

highest importance scores were visualized by bar graphs to show

the importance scores of these feature genes (Figure 2E). The model

has a C-index of 0.17. Table 2 demonstrates the top 10 significant

feature genes and their importance scores. A total of 45 overlapping

genes common to all three algorithms were screened by the above

algorithm (32) (Figure 2F).

By comparing the importance scores of the top 10 genes

screened by the three algorithms (Supplementary Figure 1), it was

found that genes such as ITGB1, ANXA7, and ULK1 scored higher

across all algorithms, suggesting a significant association of these

genes with survival prognosis in AML. In model performance

comparisons, XGBoost showed the best performance, while SVM

performed relatively poorly. However, although XGBoost leads in

prediction, it is too dependent on parameter tuning in the case of
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small samples and is prone to overfitting if the parameters are not

adjusted properly. SVM, on the other hand, is more suitable for

handling high-dimensional data with small samples, and although

its overall performance is not as good as that of XGBoost, it has a

unique advantage in handling data dimensions.

In order to improve the stability and consistency of the

screened genes, we adopted a combination strategy of multiple
Frontiers in Immunology 06119
algorithms. By using SVM, Random Forest and XGBoost

algorithms to identify prognostic genes from different angles, we

further screened the overlapping genes that showed significance in

all three algorithms. Finally, we screened 45 overlapping genes in

total (Figure 2F).

To further validate the impact of the screened ARGs on the

survival prognosis of AML patients, we used the replacement test to
FIGURE 2

Screening for prognostically relevant autophagy genes using machine learning methods. (A) The OBB error plot of the random forest algorithm is
used to estimate the generalization performance of the model. The graph shows that as the number of trees increases, the errors of model become
smaller. (B) VIMP plot showing the importance scores of each variable to help identify the most important feature genes. (C) Plot of the number of
iterations of the training process of the XGBoost algorithm versus the Cox negative log-likelihood value. (D) Bar chart of the top 10 genes and their
corresponding importance scores screened by the XGBoost algorithm (E) Bar chart of the top 10 genes and their corresponding importance scores
screened by the SVM algorithm. (F) Venn plots of overlapping genes shared by SVM, Random Forest and XGBoost.
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assess their statistical significance. The results showed that the C-

index of the original model was significantly higher than that of

most of the replacement models, and was located at the rightmost

end of the replacement distribution (Supplementary Figure 2). By

comparing the C-index of the original model with that of the

replacement models, a p-value of 0.0429 was calculated,

indicating that the original model was statistically significant in

predicting the survival of AML patients, further confirming the

importance of the screened ARGs in survival prediction.
Enrichment analysis of ARGs

In order to better study the biological features in the autophagy

gene data so as to understand the functions and regulatory

mechanisms of the biological systems, GO and KEGG analyses

were conducted. For GO enrichment analysis of autophagy genes,

the genes related to total survival were analyzed in terms of

biological processes (BP), cellular components (CC), and

molecular functions (MF), respectively. BP analysis revealed that

these genes were primarily associated with cytolytic metabolic

processes, autophagy, and the regulation of processes that utilize

autophagic mechanisms (Figure 3A). CC analysis indicated that

these ARGs were predominantly distributed in cellular components

of vesicle, cytoplasmic vesicle and bounding membrane of organelle

(Figure 3B). MF analysis showed that most of these genes act

together on a protein and enzyme with catalytic effects

(Figure 3C). KEGG revealed that these ARGs were primarily

enriched in the pathways of autophagy animal, AMPK signaling

and longevity regulation in animals (Figure 3D). To gain insight

into the interactions between these autophagy genes associated with

overall survival, STRING (33) was utilized to construct the PPI

network and identify two important modules: the HSP90AB1

module and the BECN1 module (Figure 3E). The BECN1 module

contains 12 nodes and 29 edges, while the CASP3 module consists

of 4 nodes and 6 edges. HSPA5, VDAC1, and BAG3 are the other 3
Frontiers in Immunology 07120
nodes of the CASP3 module. These ARGs may be important for the

pathogenesis of AML.
Modelling survival predictions

In this study, survival data were systematically analyzed, and

feature genes significantly associated with survival were screened by

Lasso-Cox regression and used for modelling. First, the optimal

lambda value (lambda.1se) of 0.09393562 was selected by 10-fold

cross-validation, and the lambda plot and LASSO regression were

plotted (Figures 4A, B). Next, the non-zero coefficients were

extracted and the six characterized autophagy genes and their

regression coefficients selected by LASSO were saved. Cox

stepwise regression (34) analysis was then conducted to optimize

the selection of feature genes (Table 3). The resulting risk score

model for the patients was as follows:

Risk score = (0:14747� BAG3) − (0:14437� TSC2)

− (0:32652� CALCOCO2) + (0:32410

� UBQLN4) − (0:24254� ULK1) + (0:23913

�DAPK1) (4)

Risk scores were subsequently calculated for each sample, and

the samples were divided into high and low risk groups based on the

median risk score. An increase in the risk score was correlated with

a higher number of patient deaths (Figures 4C, D). Among the

characterized genes screened, DAPK1, UBQLN4, and BAG3 were

highly expressed in high risk, and ULK1, ALCOCO2, and TSC2

were highly expressed in low risk (Figure 4E).

To assess the difference in survival time, the Kaplan–Meier

survival curves were used (35). The results showed that patients in

the high-risk group had a shorter OS than those in the low-risk

group (P< 0.0001, Figure 5A). The accuracy of the constructed

survival prediction model was evaluated, and the results showed

that the AUCs of 1-year, 3-year, and 5-year OS were 0.660, 0.733,
TABLE 1 The top 10 important genes of XGBoost and their
importance scores.

ID Feature Gain

1 SLC1A3 0.022978235

2 YIPF1 0.014842549

3 PACS2 0.014716427

4 CDKN2A 0.014447571

5 DAPK1 0.013909943

6 MYH11 0.011887605

7 DDIT3 0.011406339

8 ULK1 0.010654985

9 BAG3 0.00985662

10 ATG2B 0.009385788
TABLE 2 SVM top 10 significant genes and their importance scores.

ID Feature Gain

1 CASP4 0.514479265

2 VPS37C 0.48390987

3 EIF2AK3 0.454698135

4 KIF5B 0.441155029

5 HSP90AB1 0.426529294

6 TSC2 0.416280361

7 VAMP7 0.410471634

8 NFE2L2 0.410017974

9 ANXA7 0.40822591

10 ITGB1 0.40279245
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and 0.739, respectively (Figure 5B), which indicated that the

survival prediction model constructed by using the prognostic

genes screened in this experiment had high predictive ability.

To quantify the relative importance of the screened autophagy

genes in the survival prediction model, we employed a game theory-

based SHAP value (SHapley Additive exPlanations) technique. By

using the SHAP values calculated by the iml package, we provided a

quantitative relative importance score for each gene. Analysis of

each gene in the model by SHAP value visually demonstrates the

contribution of these genes to the prediction of AML survival

(Supplementary Figure 3). The average contribution of each gene

in the model to the prediction is summarized in Table 4. As shown

in Table 4, these autophagy genes have high contribution values in

the model, further supporting their key role in AML

survival prognosis.

Univariate Cox regression analysis (UCRA) and multivariate

Cox regression analysis (MCRA) were conducted to validate the

independence of prognosis-related autophagy gene survival

prediction. UCRA revealed that age, runx1 mutation, and risk
Frontiers in Immunology 08121
score were significantly associated with patients’ OS (Figure 5C).

MCRA indicated that age and risk score were independent

predictors for AML patients, respectively (Figure 5D).

To more precisely evaluate the survival prediction model’s

effectiveness, nomogram plot integrating risk scores and other

survival information was constructed. (Figure 5E) The calibration

curves demonstrated accurate predictions OS in AML patients

(Figures 5F–H). This suggests that that integrating our risk score

with clinical information can enhance the prediction of OS.
External validation set validation of survival
prediction models

This study evaluated the diagnostic performance of the models

in two external independent validation groups, GSE12417 and

TCGA-LAML. Comparison of OS using Kaplan-Meier curves

(36) and the log-rank test revealed that in the GSE12417 group,

patients in the high-risk group had significantly shorter OS
FIGURE 3

Functional enrichment analysis and PPI analysis of ARGs associated with survival. The gene functional enrichment analysis of key modules (A) BP; (B) CC;
(C) MF; (D) KEGG pathways. (E) HSP90AB1 and BECN1 modules were identified by PPI analysis of ARGs. Darker node colors represent greater node degrees.
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compared to those in the low-risk group (P<0.0001, Figure 6A).

Similarly, in the TCGA-LAML group, the prognosis of patients in

the high-risk group was significantly worse than that in the low-risk

group (P=0.015, Figure 6B).

To further evaluate the classification performance of the model

for patient survival on different datasets, ROC curves for patient

survival were plotted based on the model risk score. In the

GSE12417 group, the area under the curve (AUC) for 1-year and

3-year OS was 0.633 and 0.651, respectively (Figure 6C). In the

TCGA-LAML group, the AUC values for 1-, 3- and 5-year OS were

0.632, 0.612 and 0.704, respectively (Figure 6D). These results

demonstrated the strong predictive power of the model in

predicting survival in AML patients. Additionally, this study

analyzed the distribution of patients’ risk scores and OS, and

found that the mortality rate in the high-risk group was higher

than that in the low-risk group. In terms of gene expression, the
Frontiers in Immunology 09122
validation group showed that DAPK1, UBQLN4, and BAG3 were

significantly up-regulated in the high-risk group, whereas ULK1,
FIGURE 4

Identify autophagy genes associated with survival. (A) Path diagram of LASSO coefficients. (B) Cross-validation curve for LASSO regression analysis.
(C) Change curves of patient risk scores. (D) The number of patients corresponding to different survival times. (E) Expression of six model genes.
TABLE 3 Survival prediction models for acute myeloid leukemia.

Gene Coefficients Exp(coef) P-value

TSC2 -0.14437 0.86556 0.128973

CALCOCO2 -0.32652 0.72143 0.000299

BAG3 0.14747 1.15890 3.70e-05

UBQLN4 0.32410 1.38278 0.009121

ULK1 -0.24254 0.78463 0.020660

DAPK1 0.23913 1.27015 3.26e-06
Coefficients was the regression coefficient for each variable, indicating the direction and
magnitude of the variable's effect on survival time. Se(coef) was the standard error of the
regression coefficient for each variable, indicating the uncertainty in the estimation.
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ALCOCO2, and TSC2 were significantly down-regulated in the

low-risk group (Figures 6E, F), which was consistent with the risk

score calculation. Overall, the validation results indicated that the

proportional risk model has reasonable accuracy and discriminative

ability for independently predicting OS in AML patients.
Identification and enrichment of DEGs

Differential expression analysis of transcriptome data from

patients in the high- and low-risk groups using the limma package

identified 63 DEGs, including 47 up-regulated genes and 16 down-
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regulated genes (Figure 7A). The expression patterns of the

differential genes are shown in Figure 7B. GO enrichment analysis

revealed that these DEGs were mainly associated with BP such as T

cell differentiation in thymus and lymphocyte differentiation. In

terms of cellular components, these genes are predominantly found

in the tertiary granule lumen, actin filament bundle, and platelet

alpha granule. They are involved in molecular functions such as

chemokine activity and cytokine receptor binding (Figure 7C).

KEGG pathway analysis indicated that these DEGs were

primarily enriched in the IL-17 signaling pathway and Th1 and

Th2 cell differentiation (Figure 7D). High and low risk group

differential genes enriched in lymphocyte differentiation, humoral
FIGURE 5

To assess the predictive accuracy of survival prediction models for patient OS. (A) Kaplan–Meier curves visualizing the difference in survival time.
(B) AUC curves for prognostic markers. (C) UCRA (D) MCRA (E) Development of autophagic clinicopathological nomograms for the prediction of OS
in AML patients by combining risk scores and clinical information. (F–H) Calibration curves-predicting 1-, 3-, and 5-year survival in AML patients.
Solid lines indicate ideal performance.
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immune response and T cell differentiation in thymus associated

with immune GO terms were TPD52, ZFP36L1 and GATA3

(Figure 7E). Figure 7F shows DEGs enriched in KEGG pathways

such as IL-17 signaling pathway and so on.

In addition to these genes such as BAG3, DAPK1 and GATA3

are enriched in multiple other GO pathways (Supplementary

Figure 4), and genes such as CXCL2, CXCL3 and CYP1B1 are

also present in multiple other KEGG pathways (Supplementary

Figure 5). This suggests that these genes play important roles in

biological processes. In addition, by analyzing the relationships

between the enriched pathways, the GO term network relationship

map showed significant correlations between chemokine receptors

and term such as activity, humoral immune response, and myeloid
TABLE 4 Relative importance ranking of autophagy genes based on
SHAP values.

ID Feature Mean(|SHAP|)

1 BAG3 0.23646

2 TSC2 0.12995

3 UBQLN4 0.04845

4 DAPK1 0.04821

5 ULK1 0.01969

6 CALCOCO2 0.01892
Mean(|SHAP|) denotes the mean of the absolute value of the SHAP value for the gene or trait,
i.e., the mean of the gene's contribution to the significance predicted by the model.
FIGURE 6

External gene set validation of survival prediction models. (A, B) Kaplan-Meier curves of prognostic genes in validation sets GSE12417 and TCGA-
LAML. (C, D) AUC curve of the GSE12417 validation sets and TCGA-LAML. (E, F) Risk score distribution, survival status and 6 prognostic genes
expression heatmap in the GSE12417 and TCGA-LAML cohorts.
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leukocyte migration (Supplementary Figure 6). The KEGG pathway

showed that the IL-17 signaling pathway, Chemokine signaling

pathway, and TNF signaling pathway also interacted with multiple

other pathways (Supplementary Figure 7). The enrichment analysis

results suggest that these DEGs may play a role in the prognosis and

immune response in AML.
Immune infiltration and
immune interactions

There are complex interactions and associations between leukemia

and immune infiltration. The immune system was crucial in regulating

the development of leukemia. The experiment used the CIBERSORT

(37) algorithm to identify 22 subtypes of immune infiltrating cells in

AML samples and investigated the interactions of different immune cell

subpopulations in AML patients (Figure 8A).
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Supplementary Figure 8 shows the ratio of each type of immune

cell in AML patients, from which it can be seen that immune cells

such as Mast cells activated and Macrophages M0 have a higher

ratio in AML. The immune infiltration results indicated that the

abundance of immune cells, including T cells CD4+ memory

activated, NK cells activated and T cells CD4+ naive was higher

in patients in the low-risk group of AMLs than in the high-risk

group (Figure 8B). Additionally, the relationship between six key

ARGs and immune infiltration was investigated in this experiment.

The results showed that these six key ARGs were associated with T

cells CD4+ naive, T cells CD8+, and Macrophages M1, respectively,

and immune cells, and changes in the abundance of these immune

cells may influence the pathogenesis of AML (Figure 8C). The above

results suggest that key autophagy genes may affect the abundance

of immune cells in AML patients, thereby attenuating the control of

leukemia by the immune system and consequently affecting

leukemia survival.
FIGURE 7

Identification of DEGs in high and low risk groups. (A) Volcano plot of DEGs. (B) Heatmap of DEGs. (C) GO terms analysis of differential genes.
(D) KEGG pathway enrichment analysis. (E) Network diagram of GO terms enrichment with differential genes. (F) Network diagram of KEGG pathway
enrichment of differential genes.
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Discussion

Despite significant progress in recent years in the study of

prognostic markers for acute myeloid leukemia, the role of

autophagy genes in AML is still understudied (38). In this

experiment, machine learning methods such as XGBoost,

Random Forest and SVM were used to identify potential

prognostic markers associated with overall survival in AML (39).

Lasso-Cox was then used to further screen for prognostic markers

and a survival prediction model consisting of six genes was

constructed. The model can predict the overall survival of

patients with some generalization ability. In addition, an immune

infiltration analysis of autophagy genes in transcriptomic data from

AML patients was performed using the CIBERSORT algorithm, and

the relationship between identified prognostic markers and immune

cell infiltration was analyzed. These analyses have deepened our

understanding of TME in AML patients and its impact on disease

progression and prognosis.

AML is a severe blood cancer triggered by abnormal

proliferation and differentiation of hematopoietic stem cells in the

bone marrow. The role of autophagy genes in AML remains under-

explored, despite significant progress in the study of AML

prognostic markers in recent years. Since AML is a highly

heterogeneous disease with multiple molecular features and

significant biological differences between patients, it is difficult for

a single prognostic marker to accurately predict the prognosis of all
Frontiers in Immunology 13126
patients. Existing studies have mostly focused on common genetic

prognostic markers, while studies on autophagy genes are more

limited. However, the key role of autophagy in cell survival and

death suggests that it may be an important factor influencing

AML progression.

The role of autophagy in AML is dual, on the one hand helping

AML cells to survive in a hostile environment by removing

damaged organelles and proteins (7). On the other hand,

autophagy can promote apoptosis in AML cells under certain

circumstances (40). In recent years, some studies have begun to

explore the role of autophagy in AML. For example, the study by

Nan et al. demonstrated that FAT1 inhibited AML cell proliferation

by reducing autophagy levels (41), but the study did not delve into

the mechanism of the role of specific autophagy genes in AML

prognosis. In contrast, Fu et al. used univariate Cox regression to

initially screen autophagy genes associated with AML overall

survival and further constructed a survival prediction model by

Lasso-Cox regression (42). However, univariate Cox regression has

limited predictive power when dealing with the complex effects of

multivariate on survival. In this study, we conducted a more

detailed molecular-level analysis of the relationship between

autophagy genes and AML prognosis. We used a screening

approach combining three machine learning algorithms, SVM,

XGBoost, and Random Forest, which are capable of dealing with

complex interactions of multivariate variables and generally provide

higher prediction accuracy.
FIGURE 8

Analysis of leukemia autophagy gene immune infiltration and correlation with hub gene. (A) Heatmap of correlation of abundance of different
immune cells. (B) Violin plots of immune cell abundance. Red represents the high-risk group and dark blue represents the low-risk group.
(C) Heatmap of the correlation between six prognosis-related genes and immune cell.
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In this study, 45 autophagy genes associated with OS in patients

with acute myeloid leukemia were screened using three machine

algorithms, SVM, XGBoost and Random Forest algorithm. Among

these genes, PDK4 regulates glucose metabolism by inhibiting

pyruvate dehydrogenase complex and promotes glycolytic

metabolism in tumor cells, an altered metabolism that is a typical

feature of cancer cells. Low expression or mutation of BECN1 is

closely associated with tumorigenesis. ULK1 plays a crucial role in

regulating autophagy in cancer cells. These genes are clinically

important as prognostic markers or potential therapeutic targets in

cancers such as AML. These autophagy genes were subjected to PPI

analysis and then the PPI network was further analyzed using

MCODE. As a result, two important modules were identified,

namely the HSP90AB1 module and the BECN1 module. It was

shown that these ARGs modules have an important impact on OS

in AML patients. For example, low expression of BECN1 was

associated with poor prognosis in AML patients (43). High

expression of ULK1 is associated with better prognosis and it may

inhibit tumor growth by promoting autophagy to remove abnormal

proteins and damaged organelles from AML cells (4). In addition,

genes such as HSP90AB1, CALCOCO2, DNAJB1, and WDFY3

have not yet been extensively studied in the regulation of autophagy

in AML. However, these genes are correlated in other cancers (44–

46), and they may serve as important prognostic markers in AML.

Further pathway enrichment analysis showed that these autophagy

genes were mainly enriched in the AMPK signaling pathway,

animal autophagy and longevity. It was shown that the activation

of AMPK could inhibit the mTOR signaling pathway, promote

autophagy and maintain cellular energy homeostasis. By inhibiting

lipid and protein synthesis (47), AMPK can limit AML cell

proliferation. In terms of GO term these genes are mainly

associated with cytolytic metabolic processes, autophagy and the

regulation of processes that utilize the autophagic machinery.

Decreased cytolytic function is thought to correlate with

immunosuppressive status and poor prognosis in AML. For

example, Coles et al. showed that upregulation of the

immunosuppressive glycoprotein CD200 significantly inhibited

the cytolytic capacity of natural killer (NK) cells in AML patients,

and that this inhibition reduced the efficiency of the immune

system in the clearance of tumor cells, thereby worsening patient

prognosis (48). In addition, autophagy, as a key metabolic

regulatory mechanism, is closely related to drug resistance in

AML cells. a study by Chen et al. indicated that autophagy not

only helps leukemia cells to obtain energy and nutrients for

metabolism, but also slows down the damage of drugs on AML cells

by maintaining intracellular homeostasis under chemotherapeutic

stress conditions through metabolic reprogramming (49). Therefore,

over-activation of autophagy may make AML cells more resistant to

drugs, which in turn affects the prognostic outcome of patients. In

summary, cytolysis and autophagy regulation play key roles in the

pathogenesis and prognosis of AML, providing a new entry point for

the development of future targeted therapeutic strategies.

After Lasso-Cox regression analysis of 45 potential prognostic

genes, 6 potential prognostic markers independently affecting AML
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survival were further screened. Kaplan-Meier analysis showed that the

survival rate of the low-risk group was significantly better than that of

the high-risk group on both the training. To assess the robustness of

the model on different datasets, we validated the constructed survival

prediction model using the GSE12417 dataset TCGA-LAML dataset

combined with patients’ survival information, respectively. The AUC

values for 1-year and 3-year were 0.633 and 0.651, respectively, in the

validation set GSE12417.In the validation set TCGA-LAML, the AUC

values for 1-year, 3-year, and 5-year OS were 0.632, 0.612, and 0.704,

respectively. These results indicate the robustness of the model.

Differential expression analysis of patients in the high-risk and low-

risk groups showed that these DEGs were mainly enriched in terms

such as humoral immune response, T cell differentiation in thymus

and lymphocyte differentiation. To investigate the relationship

between immune cell abundance and autophagy genes and AML

prognosis, an immune infiltration analysis of AML autophagy genes

was performed using the CIBERSORT algorithm. The results showed

that the abundance of T cells CD4+ memory activated, NK cells

activated and T cells CD4+ naive was higher in patients in the AML

low-risk group compared with the high-risk group. This suggests that

alterations in the immune microenvironment may make the high-risk

group less able to fight cancer. Further investigation of the relationship

between these prognostic markers and immune cell abundance

showed that ULK1 was positively associated with macrophage

subtypes, whereas BAG3 was significantly negatively associated with

Mast cells resting, and DAPK1 was negatively associated withmultiple

immune cell subtypes. DAPK1 was negatively associated withmultiple

immune cell subtypes. The results suggest that these autophagy genes

may regulate AML progression by influencing immune cell

infiltration. The underlying mechanisms may involve the central

role of autophagy in regulating immune function, with ULK1

promoting anti-tumor immune responses by enhancing macrophage

phagocytic activity, BAG3 inhibiting mast cell activity to weaken the

immune response, and DAPK1 down-regulation inhibiting the

activity of a variety of immune cells, resulting in difficulties for the

immune system to recognize and destroy AML cells, which in turn

drives tumor progression. In terms of clinical treatment, by targeting

the autophagy pathway, it is possible to enhance the activity of specific

immune cell subtypes or inhibit the autophagy escape mechanism of

cancer cells. For example, activation of ULK1 may enhance the anti-

tumor effect of macrophages, whereas by inhibiting BAG3, the control

of AML by immune cells may be enhanced. In addition, DAPK1-

associated negative regulatory effects could also serve as potential

therapeutic targets aimed at restoring the immune system’s ability to

recognize and kill AML cells.

In this study, these gene-enriched pathways revealed the

critical roles of autophagy and metabolic regulation in the

pathogenesis of AML. Autophagy not only helps leukemia cells

to meet their metabolic demands, but may also enable AML cells

to better adapt to environmental stresses through inter-regulation

with, for example, the AMPK signaling pathway. Therefore,

targeting these aberrant pathways may provide new strategies

for the treatment of AML. Survival prediction models constructed

on the basis of these autophagy genes provide more
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comprehensive and precise prognostic information for

personalized treatment of AML patients, helping clinicians to

better assess the prognosis of patients and develop personalized

treatment plans. In addition, autophagy genes play a key role in

regulating immune cell infiltration and its prognostic impact on

AML, which provides a research direction to further explore the

complex relationship between autophagy and the immune

microenvironment. Overall, the study of these pathways is

important for an in-depth understanding of the prognostic

mechani sms of AML and prov ides new targe t s for

clinical treatment.

Although this study constructed a prognostic prediction model

for AML based on autophagy genes, there are still some limitations.

Firstly, although the joint screening of prognosis-related genes by

three algorithms, SVM, Random Forest and XGBoost, can combine

their respective advantages and improve the stability and

consistency of the screening results, XGBoost and Random Forest

are susceptible to overfitting when the sample sizes are small,

especially when the parameters are not precisely adjusted. In

addition, although SVM usually performs better on small sample

data, the risk of overfitting may be further amplified when

combining these three algorithms. Therefore, special attention

needs to be paid to model tuning and validation when applying

this combination strategy, especially when dealing with small-

sample data, in order to reduce the potential overfitting problem.

Secondly, this study mainly relied on transcriptomics data and did

not address protein expression or functional status, thus some key

biological processes may be missed. Although the model performed

well in the validation set, further functional validation and

experimental evaluation are needed for its clinical application

prospects. Compared with other AML prognostic models, such as

Guo et al. (19). who constructed models with common genetic

markers or mutation information, our model, although

incorporating the specific mechanism of autophagy genes, is

slightly deficient in predictive ability, especially the low AUC

value in the independent validation set, suggesting that the

model’s predictive performance needs to be further improved. In

addition, the relatively small sample size of the 2 external validation

datasets used in the study may not cover the diversity of AML

patients. This limits the ability of the model to generalize to a wider

patient population.

Therefore, future studies should further validate the robustness

and accuracy of the model in larger and more diverse AML patient

cohorts. Meanwhile, in addition to traditional transcriptomics data,

multi-omics data such as proteomics and metabolomics can be

integrated to provide a more comprehensive biological perspective

and avoid missing biological processes that may play a key role in

disease development. In addition, functional experiments should be

performed on the screened autophagy genes to delve into the

specific mechanisms of these genes in AML and to assess their

impact on disease progression. In order to gain a deeper

understanding of the complexity of the AML tumor immune

microenvironment, future studies should be expanded to cover

the analysis of more types and subpopulations of immune cells.

Finally, based on the importance of these key autophagy genes,
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precision therapeutic strategies targeting these genes or their

associated pathways could be explored in the future, thus

promoting further development of personalized treatment for

AML patients.
Conclusion

In this study, we screened six potential autophagy gene

prognostic markers for AML (TSC2, CALCOCO2, BAG3,

UBQLN4, ULK1, and DAPK1) and constructed a survival

prediction model of eight autophagy genes for predicting the

survival of AML patients. The model was validated by two

validation sets, and the results showed that the survival prediction

model had strong validity. In addition, autophagy gene pathway

enrichment analysis as well as immune infiltration and immune

correlation analysis of ARGs were performed to investigate the

biological functions of autophagy genes and the prognostic markers

of ARGs in correlation with many immune cells. However, although

potential prognostic markers and correlations can be identified

from transcriptomic data, the biological significance and clinical

application of these results have not been fully confirmed due to the

lack of further clinical validation. More medically relevant

experiments are needed in the future to validate the potential

molecular mechanisms of these genes to better understand their

role and application value in AML.
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Construction of a risk prediction
model for postoperative deep
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cancer patients based on
machine learning algorithms
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Sichuan, China
Background: Colorectal cancer is a prevalent malignancy of the digestive

system, with an increasing incidence. Lower extremity deep vein thrombosis

(DVT) is a frequent postoperative complication, occurring in up to 40% of cases.

Objective: This research aims to develop and validate a machine learning model

(ML) to predict the risk of lower limb deep vein thrombosis in patients with

colorectal cancer, facilitating preventive and therapeutic measures to enhance

recovery and ensure safety.

Methods: In this retrospective cohort study, we collected data from 429

colorectal cancer patients from January 2021 to January 2024. The medical

records included age, blood test results, body mass index, underlying diseases,

clinical staging, histological typing, surgical methods, and postoperative

complications. We employed the Synthetic Minority Oversampling Technique

to address imbalanced data and split the dataset into training and validation sets

in a 7:3 ratio. Feature selection was performed using Random Forest (RF),

XGBoost, and Least Absolute Shrinkage and Selection Operator algorithms

(LASSO). We then trained six machine learning models: Logistic Regression

(LR), Naive Bayes (NB), Gaussian Process (GP), Random Forest, XGBoost, and

Multilayer Perceptron (MLP). The model’s performance was evaluated using

metrics such as area under the Receiver Operating Characteristic curve,

accuracy, sensitivity, specificity, F1 score, and confusion matrix. Additionally,

SHAP and LIME were used to enhance the interpretability of the results.

Results: The study combined Random Forest, XGBoost algorithms, and LASSO

regression with univariate regression analysis to identify significant predictive

factors, including age, preoperative prealbumin, preoperative albumin,

preoperative hemoglobin, operation time, PIKVA2, CEA, and preoperative

neutrophil count. The XGBoost model outperformed other ML algorithms,

achieving an AUC of 0.996, an accuracy of 0.9636, a specificity of 0.9778, and

an F1 score of 0.9576. Moreover, the SHAP method identified age and

preoperative prealbumin as the primary determinants influencing ML model

predictions. Finally, the study employed LIME for more precise prediction and

interpretation of individual predictions.
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Conclusion: The machine learning algorithms effectively predicted

postoperative lower limb deep vein thrombosis in colorectal cancer patients.

The XGBoost model demonstrated strong potential for improving early detection

and treatment in clinical settings.
KEYWORDS

colorectal cancer, venous thrombosis, machine learning, prediction model,
postoperative complications
1 Introduction

Colorectal cancer is among the most prevalent malignant

tumors of the digestive system globally, ranking third in both

incidence and mortality rates among malignant tumors (1).

Currently, surgical treatment is the primary approach for

colorectal cancer. However, ostoperative lower limb deep vein

thrombosis has consistently been an issue that cannot be

overlooked. Literature reports that the incidence of lower limb

deep vein thrombosis after abdominal surgery is 15%-19%.

Alarmingly, the incidence in colorectal cancer patients post-

surgery is 40% (2). Additionally, since only 50% of patients with

lower limb deep vein thrombosis exhibit symptoms and signs

such as swelling and tenderness, many cases are overlooked

postoperatively (3). Without timely diagnosis and intervention,

the clot may detach and move through the veins to the lungs,

leading to a life-threatening pulmonary embolism (4). However,

lower limb deep vein thrombosis can be prevented in advance.

Research suggests that prophylactic anticoagulant treatment can be

suitably applied to bedridden patients in the perioperative phase

(5, 6). Currently, the Caprini risk assessment model is the most

widely used model in surgery. However, all colorectal cancer

patients stratified postoperatively according to the Caprini model

are considered high risk. Therefore, the Caprini model may not be a

completely accurate indicator for DVT occurrence and intervention

in colorectal cancer patients (7).

Additionally, most existing studies utilize traditional statistical

methods rather than advanced machine learning algorithms, which

often limits the models’ ability to handle nonlinear relationships

and multivariable interactions, thereby affecting their predictive

performance and applicability (8). The purpose of this study is to

integrate these common high-risk factors using machine learning

by selecting shared features through three different machine

learning algorithms and constructing multiple models to identify

the optimal deep vein thrombosis risk prediction model for

colorectal cancer patients. This model will assist clinicians in

more accurately identifying high-risk patients and providing

personalized, precise guidance for the prevention and treatment

of deep vein thrombosis.
02132
2 Materials and methods

2.1 Study design

The aim of this research is to develop a machine learning-based

model to predict the risk of lower limb deep vein thrombosis in

postoperative colorectal cancer patients. A retrospective study was

conducted, including 429 colorectal cancer patients who underwent

surgical treatment. Data were extracted from the hospital’s

electronic medical record system, which included demographic

details, medical history, treatment information, disease severity,

blood test results, and postoperative complications. The SMOTE

algorithm was employed to address the issue of class imbalance.

LASSO regression, Xgboost, and random forest were applied for

feature selection to identify the features most associated with the

risk of lower limb deep vein thrombosis. Following this, a range of

ML models, such as LR, RF, GB, MLP, XGB, and KNN, were

developed and optimized using the 10-fold cross-validation

approach. The performance of these models was assessed through

a range of metrics, including accuracy, sensitivity, specificity,

positive predictive value, negative predictive value, F1 score,

Kappa score, AUC, calibration curve, clinical impact curve, and

confusion matrix. To enhance the transparency and interpretability

of the model, SHAP and LIME methods were used to explain the

prediction results, clarifying the impact of each feature on the

predictions and thereby offering useful references for clinicians.

Figure 1 illustrates the overall workflow of the proposed system

more clearly.
2.2 Study data

We retrospectively selected 429 colorectal cancer patients who

visited the Department of Gastrointestinal Surgery at the First

Affiliated Hospital of Southwest Medical University from January

2022 to January 2024. Exclusion criteria include: patients with a

history of prolonged bed rest or restricted activity; patients with a

history of venous thrombosis; patients with a history of coagulation

disorders; patients using drugs affecting coagulation function;
frontiersin.org
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patients with malignancies outside the gastrointestinal tract; and

patients preoperatively diagnosed with lower extremity deep vein

thrombosis. (Exclusion criteria are shown in Figure 1). As this study

is retrospective, patients are exempt from providing informed

consent according to the ethics review board’s policy. The ethics

committee has encrypted all personal information of patients

involved in this study to prevent any leaks.
Frontiers in Oncology 03133
2.3 Study variables

The study includes 44 variables related to demographic factors

(gender, age), medical history (history of diabetes, hypertension,

coronary artery disease, chronic obstructive pulmonary disease),

physical characteristics (BMI), disease severity (clinical stage,

histological grade, presence of cancer embolus, nerve invasion,
FIGURE 1

Research process.
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vascular invasion), treatment information (surgical method, surgery

duration, use of specific cancer treatments), laboratory values

(white blood cell count, neutrophil count, lymphocyte count,

monocyte count, NLR, hemoglobin, prealbumin, albumin,

creatinine clearance, platelet count, prothrombin time PT,

fibrinogen, thrombin time TT, D-dimer), and postoperative

complications (postoperative high fever, anastomotic leak).

Venous blood samples were collected within 24 hours of admission.
2.4 Diagnosis

Patients were tested within 14 days postoperatively according to

the diagnostic criteria for lower limb deep vein thrombosis.

Specifically, color Doppler ultrasound showed an uneven echo

solid mass in the lower limb, reduced or absent color blood flow

and spectral signals, non-collapse of the venous lumen after

compression, and venous incompressibility (9).
2.5 Data preprocessing

The structured database initially included 44 clinical variables.

First, clinical variables with more than 30% missing data (n = 2)

were excluded. The missing data were handled using 10-fold

crossvalidation combined with the KNN imputation method.

Subsequently, to prevent bias during later model training and

improve interpretability, the Variance Inflation Factor (VIF) was

employed to examine multicollinearity among the chosen features,

ensuring all features’ VIF values were less than 10. Additionally, we

also removed variables with nearly zero variance to simplify the

model and enhance its robustness. In the end, 39 clinical features of

patients were chosen to construct the predictive model. The

SMOTE algorithm was used to address the class imbalance issue,

balancing the dataset and avoiding bias. Subsequently, patient data

were randomly divided into two datasets: (1) a training dataset

(70%) for feature selection and model training, and (2) a testing

dataset (30%) for model performance evaluation.
2.6 Feature selection

For predicting postoperative DVT occurrence in colorectal cancer

patients, features were selected using training group samples through

three machine learning models: LASSO regression, random forest, and

XGboost. The results showed that 29, 15, and 15 feature vectors were

selected in the three models, Ultimately, we selected 8 common feature

variables from the three models: age, preoperative prealbumin,

preoperative albumin, preoperative hemoglobin, CEA, PIKVA2,

surgery time, and preoperative white blood cell count.
2.7 Model development and evaluation

The machine learning task is to predict the probability

distribution of patients developing lower extremity deep vein
Frontiers in Oncology 04134
thrombosis based on these clinical variables. Model development

involves experimenting with six machine learning algorithms:

Logistic Regression (LR), Multilayer Perceptron (MLP), Extreme

Gradient Boosting (XGBoost), Gaussian Process (GP), Random

Forest (RF), and Naive Bayes (NB). During the training phase, we

employed the 10-fold cross-validation method to train the models

in order to achieve optimal predictive performance. To evaluate the

predictive performance of each model, we primarily measured the

Receiver Operating Characteristic (ROC) curve. In addition, we

calculated sensitivity, specificity, accuracy, false positive (FP) rate,

positive predictive value (PPV), negative predictive value (NPV),

Brier score, F1 score, Decision Curve Analysis (DCA) curve,

calibration curve, and Clinical Impact Curve (CIC) for a

comprehensive assessment of the model’s performance.
2.8 Statistical analysis

All data analyses in this study were carried out using SPSS (27.0)

and R language (version 4.3.3). Preliminary analysis of the dataset

used descriptive statistics. Data points that followed a normal

distribution were represented by mean ± standard deviation,

whereas data points deviating from a normal distribution were

shown as median (interquartile range). Subsequently, an

independent samples t-test was employed to compare two groups

of normally distributed data. In contrast, the Mann-Whitney U test

was used for comparing two groups of non-normally distributed

data. We resolved the sample imbalance problem by oversampling

the minority classes using the SMOTE function from the DMwR2

package in R. To build the predictive model, the dataset was

randomly split into a training subset comprising 70% of the total

data and a testing subset making up 30% of the total data.

Subsequently, various machine learning methods were executed

using R, including logistic regression (glm package), Gaussian

model (e1071 package), random forest (randomForest package),

XGBoost (XGBoost package), feedforward neural network (nnet

package), and naive Bayes model (e1071 package). Models were

trained using the training subset data with these six ML algorithms.

During the model training, a 10-fold cross-validation method was

adopted to optimize the model parameters, aiming to prevent

overfitting. Statistical significance was defined at the level of P<0.05.
2.9 Feature interpretation

We used the Shapley Additive Explanations (SHAP) algorithm

and the Local Interpretable ModelAgnostic Explanations (LIME)

algorithm to interpret the main feature contributions after

machine learning model training. In particular, the SHAP

algorithm assesses the average contribution of each feature value

by computing its Shapley value within all possible combinations of

features. By taking the weighted average of each feature value’s

Shapley value, we can assess the impact of that feature on the

overall prediction. Meanwhile, the LIME algorithm analyzes the

model from a local perspective to explain the feature importance

of specific predictions, providing an additional layer of
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interpretation and transparency. The combination of these two

methods provides us with a multidimensional understanding of

model interpretability.
3 Results

3.1 Characteristics of patients

This study encompassed 429 colorectal cancer patients who

underwent surgical treatment. The median age of the patients was 67

years (range: 16-91), with 258 males (60.24%) and 171 females

(39.76%). The original data from 429 cases includes 267 cases

without lower extremity deep vein thrombosis (62.23%) and 162

cases with lower extremity deep vein thrombosis (37.77%). The

baseline characteristics comparison of the two patient groups in the

original data reveals that age, preoperative white blood cell count,

preoperative lymphocyte count, preoperative hemoglobin, preoperative

albumin, preoperative prealbumin count, preoperative glomerular

filtration rate, gender, preoperative acute complete intestinal

obstruction, and surgical method are all statistically significant (refer

to Table 1).
3.2 Prediction factor screening

A total of 1134 patients with colorectal cancer receiving surgical

treatment were involved after data imbalance. Patients were split into

a training group with 796 cases and a test group with 338 cases in a

7:3 ratio. LASSO regression, as a shrinkage estimation method,

achieves variable selection and complexity adjustment by

formulating an optimization objective function with a penalty term.

This study utilized LASSO regression to identify features including

age, surgical procedure, acute intestinal obstruction, nerve invasion,

preoperative lymphocyte count, preoperative fibrinogen, preoperative

prothrombin time, coronary artery disease, and diabetes (Figure 2A).

Random forest builds multiple decision trees through the random

selection of data subsets and features. Each feature’s importance

score reflects its contribution to the model’s predictions, allowing the

extraction of the most predictive features and the identification of

characteristic factors. Features including age, preoperative

prealbumin, preoperative albumin, preoperative hemoglobin,

CA724, CEA, and CA242 were selected (Figure 2B). Xgboost

improves prediction performance by constructing multiple weak

learners and using an additive model approach. The importance of

features is assessed by calculating gain, coverage, and frequency for

each one, identifying factors like age, preoperative prealbumin,

preoperative white blood cell count, preoperative hemoglobin,

preoperative glomerular filtration rate, BMI, and preoperative

prothrombin time (Figure 2C). By comparing the selection results

of LASSO regression, Xgboost algorithm, and random forest

algorithm, we identified the common subset of features selected by

these three methods. These selected features were eventually used to

construct the model, including age, preoperative prealbumin,

preoperative albumin, preoperative hemoglobin, operation time,

PIKVA2, CEA, and preoperative neutrophil count (Figure 2D).
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3.3 Model performance

In the training dataset, the RF model demonstrated excellent

predictive performance with an AUC of 1.00, indicating very high

prediction accuracy. In comparison, the AUC values for the

remaining five models are as follows: XGB’s AUC is 0.996 (95%

CI [0.994, 0.999]), GP’s AUC is 0.950 (95% CI [0.935, 0.966]),

MLP’s AUC is 0.938 (95% CI [0.918, 0.958]), NB’s AUC is 0.882

(95% CI [0.859, 0.905]), and LR’s AUC is 0.814 (95% CI [0.785,

0.844]) (Figure 3A). The F1 scores of these models are as follows: RF

1.0, XGB 0.976, GP 0.878, MLP 0.889, NB 0.740, LR 0.720. In the

testing dataset, the AUC values for XGB, GP, MLP, NB, LR, and RF

are 0.936 (95% CI [0.907, 0.966]), 0.919 (95% CI [0.890, 0.949]),

0.884 (95% CI [0.843, 0.925]), 0.826 (95% CI [0.781, 0.871]), 0.806

(95% CI [0.760, 0.853]), and 0.973 (95% CI [0.959, 0.986]),

respectively (Figure 3B). The F1 scores for XGB, GP, MLP, NB,

LR, and RF are respectively 0.853, 0.816, 0.825, 0.693, 0.696, and

0.881. In this research, the accuracy, sensitivity, specificity, positive

predictive value, negative predictive value, and kappa value of each

model were computed and compared (Figures 3C, D). The RF

model performed excellently in the training dataset. Due to

concerns about potential overfitting, the XGB model was

ultimately selected as the optimal model.
3.4 Model performance evaluation

In our study, we evaluated the predictive accuracy and

calibration of the model by analyzing calibration curves for the

training and test sets. The calibration curve results showed that the

model in the training set had high predictive accuracy, with a

Somers’ D coefficient of 0.992 and an area under the ROC curve of

0.996, indicating good discriminatory power (Figure 4A).

Additionally, the regression calibration slope of the training set

model is 0.9934, close to the ideal value of 1.000, and the intercept

is -0.0175, demonstrating excellent calibration ability. The Brier

score is 0.038, reflecting the high reliability of the model’s

predictions. In contrast, the model’s discriminatory power in the

test set decreased but still maintained a high level, with an area

under the ROC curve of 0.936 and a Somers’ D coefficient of 0.873

(Figure 4B). Decision curves for the training set (Figure 4C) indicate

that the model’s net benefit is significantly above the baseline

strategy. On the test set (Figure 4D), the model likewise exhibits

good net benefit, particularly in the threshold probability range of

0.1 to 0.95, where it maintains a high level of net benefit. The

confusion matrix results show the performance differences of

the model across different datasets. In the training set (Figure 4E),

the model correctly identified 440 true negatives and 327 true

positives, with 10 false positives and 19 false negatives, the true

positive rate is 85.0%, and the true negative rate is 89.7%.In the test

set (Figure 4F), the model correctly identified 119 true negatives and

178 true positives, misidentifying 20 false positives and 21 false

negatives, with a true positive rate of 85.0% and a true negative rate

of 89.7%. During the model development process, we considered

applying a penalty to the confusion matrix to reduce Type II errors

(false negatives). Specifically, we explored methods such as
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TABLE 1 Raw data in Three-Baseline table.

Variables Total (n=429) Missing Value (%) Deep Vein Thrombosis Occurrence
After Colorectal Surgery

P

N0 (n=267) YES (n=162)

age 67 (57-73) 0 61 (54-71) 71 (65-74) <0.01

prewbc 6.57 (5.25-8.08) 0 6.51 (5.34-7.58) 6.72 (5.12-8.89) <0.01

prene 4.31 (3.27-5.77) 0 4.27 (3.28-5.35) 4.44 (3.26-6.38) <0.01

prelym 1.37 (1.07-1.75) 0.7 1.39 (1.12-1.79) 1.32 (1.02-1.72) 0.06

premon 0.39 (0.3-0.51) 0.7 0.37 (0.3-0.5) 0.4 (0.31-0.53) 0.48

preNLR 68.3 (61.2-75.08) 0 67.4 (60.1-73.7) 70.25 (63.25-76.95) 0.08

prehb 126 (111-140) 0 131 (115-143) 120 (103-129) <0.01

prepab 194.9 (156.3-230.2) 0.2 207.3 (176.32-242.95) 165.3(136.12-201.9) <0.01

prealb 41.5 (38.6-44.1) 0 42.3 (39.95-44.9) 39.75 (37.23-42.5) <0.01

precrci 93.05 (82.77-102.2) 0.2 95.9 (84.65-105.35) 90.8 (80.9-98) <0.01

preplt 235 (194.75-304) 0.2 230 (191.5-299.75) 246 (198.25-318) 0.1

AFP 2.93 (2.14-3.96) 1.4 2.99 (2.21-4.08) 2.82 (2.02-3.66) 0.12

CEA 5.64 (3.08-15.25) 1.2 5.25 (3.07-13.88) 6.05 (3.18-19.52) 0.08

FER 64.18 (21.79129.28) 2.6 74.44 (26.35128.98) 45.53 (15.5-130.88) 0.91

CA50 8.92 (4.54-18.37) 2.8 8.92 (4.19-15.6) 8.91 (4.83-23.03) 0.13

CA242 5.66 (2.9-14.61) 2.8 5.66 (3.05-13.57) 5.67 (2.63-18.53) 0.3

CA724 2.83 (1.29-7.97) 2.8 2.82 (1.27-8.13) 2.96 (1.38-6.49) 0.46

CA199 12.03 (3.91-24.02) 2.1 11.5 (3.78-21.81) 14.68 (4.34-26.86) 0.03

PIVKA2 23.69 (18.37-31.35) 2.6 24.52 (18.72-31.68) 22.99 (18.26-30.52) 0.46

prept 11.3 (10.9-12) 1.4 11.3 (10.9-11.9) 11.4 (11-12.12) 0.14

prefib 3.69 (3.02-4.27) 1.4 3.58 (3-4.16) 3.83 (3.13-4.49) <0.01

prett 17 (16.15-17.8) 1.4 17.1 (16.3-17.8) 16.8 (16.1-17.6) 0.08

pred2 0.4 (0.3-0.6) 53.4 0.37 (0.27-0.55) 0.46 (0.33-0.8) 0.95

time 225 (195-265) 0.7 220 (185.5-260) 234 (200-270) 0.01

Blood 50 (20-50) 4 50 (20-50) 50 (20-50) 0.08

BMI 22.77 (20.72-24.97) 4.9 22.77 (20.96-24.84) 22.83 (20.4-25.11) 0.94

Gender < 0.01

Female 171 (39.86%) 0 86 (32.21%) 85 (52.47%)

Male 258 (60.14%) 181 (67.79%) 77 (47.53%)

Region 0.04

Ascending Colon 85 (19.81%) 0 47 (17.60%) 38 (23.46%)

Transverse Colon 28 (6.53%) 11 (4.12%) 17 (10.49%)

Descending and Sigmoid Colon 89 (20.75%) 60 (22.47%) 29 (17.90%)

Upper-middle Rectum 154 (35.90%) 101 (37.83%) 53 (32.72%)

Lower rectum 73 (17.02%) 48 (17.98%) 25 (15.43%)

(Continued)
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TABLE 1 Continued

Variables Total (n=429) Missing Value (%) Deep Vein Thrombosis Occurrence
After Colorectal Surgery

P

N0 (n=267) YES (n=162)

Obstruction <0.01

No 379 (88.34%) 0 248 (92.88%) 131 (80.86%)

Yes 50 (11.66%) 19 (7.12%) 31 (19.14%)

Specialreatment 1

No 312 (72.73%) 0 194 (72.66%) 118 (72.84%)

Yes 117 (27.27%) 73 (27.34%) 44 (27.16%)

stag 0.1

Stag0 11 (2.56%) 0 9 (3.37%) 2 (1.23%)

StagI 30 (6.99%) 22 (8.24%) 8 (4.94%)

StagII 174 (40.56%) 110 (41.20%) 64 (39.51%)

StagIII 155 (36.13%) 97 (36.33%) 58 (35.80%)

StagIV 59 (13.75%) 29 (10.86%) 30 (18.52%)

tissue 0.82

Intramucosal
Carcinoma

6 (1.40%) 0.2 5 (1.88%) 1 (0.62%)

Highly
Differentiated
Adenocarcinoma

46 (10.75%) 29 (10.90%) 17 (10.49%)

Moderately
Differentiated
Adenocarcinoma

293 (68.46%) 183 (68.80%) 110 (67.90%)

Poorly
Differentiated
Adenocarcinoma

24 (5.61%) 14 (5.26%) 10 (6.17%)

undifferentiated carcinoma 59 (13.79%) 35 (13.16%) 24 (14.81%)

Tumor Embolus 0.71

No 349 (81.92%) 0.7 216 (81.20%) 133 (83.12%)

Yes 77 (18.08%) 50 (18.80%) 27 (16.88%)

Vascular Invasion 0.05

No 323 (75.64%) 0.5 211 (79.03%) 112 (70.00%)

Yes 104 (24.36%) 56 (20.97%) 48 (30.00%)

Perineural Invasion 0.76

No 325 (76.11%) 0.5 205 (76.78%) 120 (75.00%)

Yes 102 (23.89%) 62 (23.22%) 40 (25.00%)

Microsatellites 0.16

Stable 244 (93.13%) 38.9 156 (95.12%) 88 (89.80%)

Unstable 18 (6.87%) 8 (4.88%) 10 (10.20%)

Hypertension 0.23

No 322 (75.41%) 0.5 207 (77.53%) 115 (71.88%)

Yes 105 (24.59%) 60 (22.47%) 45 (28.12%)

(Continued)
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adjusting the classification threshold and using weighted loss

functions to impose a higher penalty on false negatives during

model training. However, after several experiments, we found that

while these adjustments could reduce false negatives, they also led to

an increase in false positives, which in turn affected the overall

performance metrics of the model (such as AUC and accuracy).

Therefore, we ultimately decided not to apply such penalties to

maintain the overall balanced performance of the model. Finally, we

plotted Clinical Impact Curves (CICs) to evaluate the net benefit of

the model with the highest diagnostic value in terms of clinical

utility and applicability. Clinical Impact Curves (Figures 4G, H)

offer insights into the model’s capability to predict high-risk

patients at various cost-benefit ratio thresholds. The test set’s

curve indicates that when prediction score probabilities exceed

65%, the model’s predictions for postoperative colorectal cancer

patients align closely with those who actually develop lower

extremity deep vein thrombosis, confirming the model’s high

clinical efficacy.
3.5 Model-based interpretability analysis

This study evaluated the relative importance of various factors

affecting the susceptibility of colorectal cancer patients to

developing lower extremity deep vein thrombosis post-surgery.
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Figure 5A visually represents this ranking, with each point

indicating a sample and the color gradient from purple to yellow

indicates the magnitude of sample feature values. The vertical axis

shows the importance ranking of features alongside the correlation

and distribution of feature values with SHAP values. Figure 5B

illustrates the hierarchical significance of features in the XGBmodel.

The vertical axis shows individual features ranked in descending

order of importance, and the horizontal axis represents the average

SHAP values. The analysis shows that age, preoperative albumin,

preoperative white blood cell count, surgery duration, and

preoperative hemoglobin are the top five ranked features in terms

of importance, indicating their critical impact on the occurrence of

DVT. To better understand the model’s decision-making process at

the individual level, we performed detailed interpretability analyses

using LIME on two representative samples(As illustrated in

Figures 5C, D). Through model visualization, we can discern the

impact of each feature on the model predictions for these

specific instances.
4 Discussion

The migration of deep vein thrombosis from the lower

extremities into the pulmonary artery through the circulatory

system is a major trigger for fatal pulmonary embolism (10).
TABLE 1 Continued

Variables Total (n=429) Missing Value (%) Deep Vein Thrombosis Occurrence
After Colorectal Surgery

P

N0 (n=267) YES (n=162)

Diabetes 0.31

No 372 (87.32%) 0.7 237 (88.76%) 135 (84.91%)

Yes 54 (12.68%) 30 (11.24%) 24 (15.09%)

CAD 0.39

No 402 (94.59%) 0.9 255 (95.51%) 147 (93.04%)

Yes 23 (5.41%) 12 (4.49%) 11 (6.96%)

Pneumonia 0.09

No 387 (90.85%) 0.7 248 (92.88%) 139 (87.42%)

Yes 39 (9.15%) 19 (7.12%) 20 (12.58%)

Approach <0.01

Laparotomy 78 (18.22%) 0.2 36 (13.48%) 42 (26.09%)

Laparoscopic
Surgery

350 (81.78%) 231 (86.52%) 119 (73.91%)

Fever 0.87

No 336 (78.50%) 0.2 210 (78.95%) 126 (77.78%)

Yes 92 (21.50%) 56 (21.05%) 36 (22.22%)

Leak 1

No 290 (97.97) 31 180 (97.83) 110 (98.21)

Yes 6 (2.03) 4 (2.17) 2 (1.79)
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The differences in disease onset and progression characteristics

across various specialties result in varying incidence rates of lower

extremity DVT (11). Literature reports indicate that the incidence

of lower extremity deep vein thrombosis in colorectal cancer

patients post-surgery is 40% (2). At present, there is a lack of

effective evidence-based research on the risk factors, clinical

characteristics, and targeted prevention and treatment measures

for lower extremity DVT following gastrointestinal surgery. The

American College of Chest Physicians Guidelines define cancer

surgery as a high-risk factor for venous thromboembolism and

recommend the use of intermittent pneumatic compression and

certain medications (such as low molecular weight heparin, low-

dose unfractionated heparin, and Xa inhibitors) to prevent the

occurrence of venous thromboembolism (7). Caprini, Geneva, and

Rapt scores are commonly used tools for assessing DVT, but they

are limited in their applicability to colorectal cancer patients. The

Caprini assessment rates all colorectal cancer patients undergoing

abdominal surgery as high-risk, therefore, current risk assessment

models are insufficient to identify patients truly at risk of DVT post-

surgery. Many studies have examined the risk factors for

postoperative DVT in colorectal cancer patients, such as open

surgery, age, D-dimer, pulmonary disease, hemoglobin, and more
Frontiers in Oncology 09139
(12, 13). Although many risk factors have been identified, the

available assessment systems are still limited and unable to

accurately predict the occurrence of postoperative DVT.

With the continuous advancement of surgical techniques for

colorectal cancer, the differences in intraoperative factors are

becoming less apparent. Therefore, we aim to develop a

preoperative risk assessment tool similar to the Caprini score to

facilitate early diagnosis and prevention of postoperative DVT in

colorectal cancer patients.

Traditional approaches to identifying risk factors usually

depend on developing risk models through univariate or

multivariate regression, yet these models often ignore the

interactions among variables and nonlinear relationships. In

contrast, machine learning models are flexible enough to handle

nonlinear and complex data structures, and can effectively address

the challenges of high dimensional data and missing values. By

training models on large datasets and continuously optimizing their

performance, they improve prediction and classification accuracy

(14–18). The SHAP algorithm utilizes the Shapley value concept

from game theory, calculating the average contribution of each

feature to the prediction. This approach enables us to thoroughly

quantify each feature’s influence on the model’s overall predictions,
FIGURE 2

(A) AUC curve, path diagram, and importance ranking of selected feature variables from univariate combined with LASSO regression. 1. Penalization
process of variables in LASSO. 2. Evaluation of predictive performance of LASSO model in testing set. 3. Feature importance ranking in LASSO model.
(B) AUC curve, OOB plot, and importance ranking of selected feature variables from random forest. 1. Evaluation of predictive performance of RF
model in testing set. 2.Feature importance ranking in RF model. 3. Relationship between number of trees and OOB (Out-of-Bag) error. (C) AUC
curve, feature importance ranking, and SHAP visualization for XGBOOST model evaluation. 1. Evaluation of predictive performance of XGBOOST
model in testing set. 2.Feature importance ranking in XGBOOST model. 3.SHAP value visualization for XGBOOST variables. (D) Eight common feature
variables selected by three predictive models.
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thus providing a deeper understanding of the model’s workings

(19). On the other hand, the LIME algorithm provides localized and

transparent explanations by analyzing the feature importance of

individual predictions. This local interpretability allows us to

understand the reasons behind specific predictions in detail (20).

The combination of these two approaches provides us a

multidimensional model interpretation framework, capable of

capturing global feature impacts and providing thorough insights

into specific predictions.

In this study, we first used three machine learning models to

construct a prediction model for DVT in patients with gastrointestinal

tumors among postoperative colorectal cancer patients. Lasso, Xgboost,

and Random Forest each filtered out 29, 15, and 15 feature vectors,

respectively. In the end, we selected 8 common feature variables among

the three models. During the feature selection process, we adopted a

model-based feature selection method. This approach selects the most

relevant features by evaluating each feature’s contribution to the

model’s performance. Specifically, we employed algorithms such as

Lasso regression, Xgboost, and Random Forest, which effectively

handle high-dimensional data and identify features that most

significantly impact the prediction results. Existing studies have

shown that feature selection plays an important role in cancer

prediction models; for example, Sun Tao employed LASSO

regression combined with the Boruta algorithm for feature selection,
Frontiers in Oncology 10140
thereby enhancing the accuracy of predicting the risk of pulmonary

infection in lung cancer patients post-chemotherapy (21). The ROC

curve constructed from these feature vectors indicates that the AUC

values for Xgboost and Decision Tree are both greater than 0.900, and

the AUC value for Lasso regression is 0.823. The findings indicate that

the Lasso, Xgboost, and Decision Tree models have high clinical value

in predicting postoperative DVT occurrence in colorectal cancer

patients. In contrast, in the research conducted by Xiuying L et al.

(22) the DVT model developed through the Caprini Risk Assessment

Model exhibited an AUC value of merely 0.701, with a sensitivity of

80.6% and specificity of 56.3%. These comparative results highlight the

superiority of the machine learning models in this study, providing

powerful tools for accurately predicting postoperative DVT in

colorectal cancer patients, indicating that machine learning

technology has high potential for application in clinical research. We

utilized six machine learning models to build and compare prediction

models, from which we selected the optimal model. Through

comparison, we found that the XGBOOST model has extremely

high prediction accuracy, with an area under the ROC curve larger

than 0.99. Additionally, the internally validated DCA and calibration

curve confirmed the model’s consistency in net clinical benefit and

prediction probability, indicating its high predictive value. Literature

has shown that the Xgboost model has a higher predictive value for

DVT prediction in gastrointestinal tumors, with an AUC value
FIGURE 3

(A) Comparison of AUC models in the training set. (B) Comparison of AUC models in the testing set. (C) Comparison of F1 score, accuracy,
sensitivity, specificity, positive predictive value, negative predictive value, and kappa value in the training set. (D) Comparison of F1 score, accuracy,
sensitivity, specificity, positive predictive value, negative predictive value, and kappa value in the testing set.
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significantly higher than that of nomograms (23). Additionally,

RuifengD et al. (24) constructed a model using the Xgboost model to

predict early postoperative DVT in patients after hip surgery. In their

study, the Xgboost model achieved an AUC of 0.991 ± 0.012 in the

training cohort and an AUC of 0.982 in the validation cohort, with a

sensitivity of 0.913 and a specificity of 0.998.The calibration and DCA
Frontiers in Oncology 11141
curves in the validation cohort indicated good performance by the

Xgboost model. Our study showed similar performance on these

evaluation metrics, validating the model’s effectiveness and reliability.

Consistent with some studies (25), advanced age is a predictive

factor for VTE occurrence. In our predictive model, SHAP feature

importance ranking shows that advanced age is the most important
FIGURE 4

(A) XGBOOST model calibration curve in the training set. (B) XGBOOST model calibration curve in the testing set. (C) XGBOOST model clinical
decision curve in the training set. (D) XGBOOST model clinical decision curve in the testing set. (E) XGBOOST model confusion matrix in the training
set. (F) XGBOOST model confusion matrix in the testing set. (G) XGBOOST Model Clinical Impact Curve (CIC) in the training set. (H) XGBOOST
model Clinical Impact Curve (CIC) in the testing set.
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predictive factor. This indicates that age plays a crucial role in

predicting the risk of VTE occurrence. As age increases, reduced

vascular elasticity and changes in coagulation mechanisms can

increase the risk of thrombosis. Additionally, reduced activity and

the presence of multiple comorbidities in the elderly also increase

the likelihood of VTE occurrence.

Prealbumin is a protein synthesized in the liver, commonly used

to assess nutritional status and liver function. Its levels can reflect a

person’s nutritional state and inflammatory response (26, 27). Low

levels of prealbumin are often associated with malnutrition, which

may increase the risk of DVT (28). Malnutrition can lead to

increased blood viscosity and endothelial dysfunction, thereby

promoting thrombosis. Meanwhile, prealbumin levels decrease

during acute inflammation or infection. The inflammatory

response is a crucial mechanism in thrombosis as it can lead to

endothelial damage and activation of coagulation factors (29, 30).

Studies have shown that there is a complex relationship between

leukocyte activity and venous thrombosis, and the activity of

inflammatory cells may play an important role in the natural

history of thrombosis (31). Furthermore, research points out that

when hematocrit is controlled, an increased white blood cell count

(>12) is significantly correlated with the risk of thrombotic events

(32). These discoveries highlight the significance of including white

blood cell count as a factor in managing VTE, particularly among

high-risk groups like surgical and cancer patients.
Frontiers in Oncology 12142
Our diagnostic tools encompass several additional features,

including preoperative hemoglobin, preoperative albumin, CEA,

and PIKVA2, all of which are essential preoperative laboratory

checks. Additionally, we included surgery duration as a history-

related feature. Some features in the tool have SHAP values that are

inconsistent with clinical knowledge. However, it is important to

consider that these features contribute differently to the overall

model and should be viewed as a whole.

Our study has some limitations. Due to the limitations of

retrospective studies, we were unable to include some highly valuable

data that could be crucial and closely related to colorectal cancer.

Despite extensive literature indicating that DD values might be closely

linked to the occurrence of postoperative DVT (6, 33), unfortunately,

due to a large number of missing values in preoperative DD, it was

removed during preprocessing. We anticipate that with the

advancements in genetics and bioinformatics, more predictive

biomarkers will be identified and utilized, such as tumor genomic

features in the Tic-ONCOmodel (34), among others. Additionally, due

to limitations of the constraints of the data system, we could not

perform extended observations on patients who were moved to

rehabilitation facilities approximately 10 days after surgery. Finally,

due to the lack of external validation, it is unclear whether our results

are applicable to other populations, necessitating further research on

more groups. In summary, these limitations hinder the clinical

application of this predictive model, requiring further prospective
FIGURE 5

(A) SHAP interpretability analysis. The color gradient from purple to yellow represents the magnitude of the sample feature values. The vertical axis
displays the importance ranking of features, along with the correlation and distribution of feature values with SHAP values. (B) Hierarchical
importance ranking of features in the XGBOOST model. (C, D) Detailed interpretability analysis of two representative samples using LIME.
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studies with larger samples and meticulous design. As an initial

exploration of this research theme, we hope this study offers some

guidance for future prospective research.
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Background: Reactive Oxygen Species (ROS), a hallmark of cancer, is related to

prognosis, tumor progression, and treatment response. Nevertheless, the

correlation of ROS-based molecular signature with clinical outcome and

immune cell infiltration has not been thoroughly studied in bladder cancer

(BLCA). Accordingly, we aimed to thoroughly examine the role and prognostic

value of ROS-related genes in BLCA.

Methods: We obtained RNA sequencing and clinical data from The Cancer

Genome Atlas (TCGA) for bladder cancer (BLCA) patients and identified ROS-

associated genes using the GeneCards and Molecular Signatures Database

(MSigDB). We then analyzed differential gene expression between BLCA and

normal tissues and explored the functions of these ROS-related genes through

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and

Protein-Protein Interaction (PPI) analysis. Prognostic ROS-related genes were

identified using Univariate Cox regression (UCR) and LASSO analyses, which were

further refined in a Multivariate Cox Regression (MCR) analysis to develop a

Prognostic Signature (PS). This PS was validated in the GSE13507 cohort,

assessing its predictive power with Kaplan-Meier survival and time-dependent

ROC curves. To forecast BLCA outcomes, we constructed a nomogram

integrating the PS with clinical variables. We also investigated the signature’s

molecular characteristics through Gene Set Enrichment Analysis (GSEA), Immune

Cell Infiltration (ICI), and Tumor Mutational Burden (TMB) analyses. The

Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict

chemotherapy responses based on the PS. Additionally, we screened for Small-

Molecule Drugs (SMDs) targeting ROS-related genes using the CMAP database.

Finally, we validated our findings by checking protein levels of the signature

genes in the Human Protein Atlas (HPA) and confirmed the role of Aldo–keto

reductase family 1 member B1 (AKR1B1) through in vitro experiments.
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Results: The constructed and validated PS that comprised 17 ROS-related genes

exhibited good performance in predicting overall survival (OS), constituting an

independent prognostic biomarker in BLCA patients. Additionally, we

successfully established a nomogram with superior predictive capacity, as

indicated by the calibration plots. The bioinformatics analysis findings

showcased the implication of PS in several oncogenic pathways besides tumor

ICI regulation. The PS was negatively associated with the TMB. The high-risk

group patients had greater chemotherapy sensitivity in comparison to low-risk

group patients. Further, 11 candidate SMDs were identified for treating BLCA. The

majority of gene expression exhibited a correlation with the protein expression.

In addition, the expression of most genes was consistent with protein expression.

Furthermore, to test the gene reliability we constructed, AKR1B1, one of the

seventeen genes identified, was used for in-depth validation. In vitro experiments

indicate that siRNA-mediated AKR1B1 silencing impeded BLCA cell viability,

migration, and proliferation.

Conclusions:We identified a PS based on 17 ROS-related genes that represented

independent OS prognostic factors and 11 candidate SMDs for BLCA treatment,

which may contribute to the development of effective individualized therapies

for BLCA.
KEYWORDS

bladder cancer, reactive oxygen species, prognostic signature, chemotherapy response,
overall survival, AKR1B1
1 Introduction

Bladder cancer (BLCA) has the sixth worldwide prevalence of

new cases and the ninth-highest number of fatalities among male

cancer patients globally. In 2020, there were nearly 573,000 new

cases and nearly 213,000 deaths caused by BLCA (1, 2). Based on

the depth of muscle invasion, BLCA can be mainly classified into

non-muscle-invasive BLCA (NMIBC) and muscle-invasive BLCA

(MIBC) (3). Despite remarkable advancements in treatments,

including adjuvant chemotherapy, immune checkpoint inhibitor

therapy, robot-assisted surgery systems, and targeted therapy, the

overall survival (OS) of BLCA patients remains unfavorable (4–6).

In addition, BLCA is a cancerous malignancy with notable and

substantial heterogeneity, and conventional clinical predictive

factors, including tumor grade and TNM stage, can be utilized for

predicting BLCA patient prognosis accurately (7). Hence,

identifying novel biomarkers for predicting the BLCA patient

survival time is of crucial practical clinical significance.

Reactive oxygen species (ROS), characterized by molecules that

contain oxygen with oxidizing properties, are the reduction

products of oxidative metabolism and consist of nonradicals,

mainly hydrogen peroxide (H2O2), hypochlorous acid (HOC1),

and organoid hydroperoxides (ROOH), and free radicals, mainly

hydroxyl and superoxide anion radicals (8). Mitochondria,
02146
peroxisomes, the endoplasmic reticulum (ER), metabolic

enzymes, and the Warburg effect are the main endogenous

sources of ROS (9). ROS can also be produced by physical agent

exposure (ultraviolet rays and heat), chemotherapy, and

radiotherapy (10, 11). ROS has been indicated to be crucial

secondary messengers governing various cellular biological

processes, including proliferation, angiogenesis, differentiation,

metastasis, autophagy, drug resistance, immune response, and

cancer stem cells (12). Moderate ROS levels are believed to be

essential for cell growth and differentiation. Nevertheless, the

excessive accumulation of ROS is involved in multiple diseases

(13), particularly malignant tumors (14, 15). Recent studies have

indicated that an imbalance in ROS is closely related to BLCA

development and progression (16, 17). Therefore, comprehensively

investigating the functions of ROS-related genes and identifying

ROS-related biomarkers to accurately predict BLCA patients’ OS is

highly important.

The relationship between genes and reactive oxygen species

(ROS) is multifaceted, including the regulation of ROS production

and clearance by genes, and the influence of ROS on gene

expression (18). Here are some key points that outline the

interaction between genes and ROS: (1) Regulation of ROS by

Genes. Genes such as p53 play a critical role in maintaining

genomic integrity and orchestrating cellular responses to stress,
frontiersin.org
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including the modulation of ROS activity. ROS can act as signaling

molecules to initiate p53 activation in response to DNA damage,

leading to transcriptional regulation of genes involved in cell cycle

arrest, DNA repair, and apoptosis (19, 20). (2) ROS Influence on

Gene Expression. The Keap1-Nrf2-ARE signaling pathway is a well-

studied regulatory system that preserves cellular redox homeostasis

(21, 22). ROS act as central players in this mechanism, providing a

dynamic balance between Nrf2 activation and its inhibition by

Keap1. When cellular ROS levels rise, certain cysteine residues in

Keap1 are oxidized, disrupting its ability to ubiquitinate Nrf2,

leading to the accumulation of Nrf2 in the nucleus and the

transcriptional activation of antioxidant and detoxification genes

(22). (3) ROS and Chromatin. ROS influence the activity of

epigenetic modulators, such as histone deacetylases (HDACs) or

DNA methyltransferases (DNMTs), affecting the expression of

target genes. They also oxidize DNA, particularly adenine and

guanine, which can lead to mutations and contribute to

tumorigenesis (23, 24). (4) ROS and Cancer. In cancer therapy,

ROS can either activate or suppress NF-kB signaling involved in the

control of cellular processes such as embryogenesis, cell

proliferation and death, and responses to stress stimuli (21).

Additionally, ROS can induce DNA hypermethylation, potentially

affecting tumor phenotype when promoter regions of tumor

suppressor genes are involved (25).

Our study comprehensively investigated the functions and

prognostic values of ROS-associated genes in BLCA by accessing

a public database via bioinformatics methods, aiming at

constructing and validating a novel Prognostic Signature (PS)

relying on ROS-related genes in BLCA through LASSO and Cox

regression analyses. We also explored the associations between PS

and Immune Cell Infiltration (ICI), Tumor Mutational Burden

(TMB), and chemosensitivity. A nomogram was established by

combining the Risk Scores (RSs) based on the seventeen prognostic

ROS-associated genes and clinical characteristics. Additionally, we

identified 11 candidate Small-Molecule Drugs (SMDs) for BLCA

treatment. To verify the authenticity of the data, in vitro

experiments revealed that siRNA-mediated AKR1B1 silencing

impeded BLCA cell viability, migration, and proliferation,

aligning with our expectations and demonstrating the constructed

ROS-related gene reliability. We identified a PS based on 17 ROS-

related genes that represented independent OS prognostic factors

and 11 candidate SMDs for BLCA treatment, which may contribute

to the development of effective individualized therapies for BLCA.
Abbreviations: BLCA, Bladder Cancer; ROS, Reactive Oxygen Species; MSigDB,

Molecular Signature Database; TCGA, The Cancer Genome Atlas; GEO, Gene

Expression Omnibus; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR,

False Discovery Rate; FC, Fold Change; GO, Gene Ontology; PPI, Protein-Protein

Interaction; UCR, Univariate Cox Regression; MCR, Multivariate Cox

Regression; PS, Prognostic Signature; GSEA, Gene Set Enrichment Analysis;

ICI, Immune Cell Infiltration; TMB, Tumor Mutational Burden; GDSC, The

Genomics of Drug Sensitivity in Cancer; SMDs, Small-Molecule Drugs; HPA,

Human Protein Atlas; AKR1B1, Aldo–keto reductase family 1 member B1.
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2 Methods and methods

2.1 Data acquisition

We first obtained ROS-related genes from the GeneCards

database (https://www.genecards.org/) and Molecular Signature

Database v7.1 (MSigDB; https://www.gsea-msigdb.org/gsea/

msigdb). Then, we downloaded the level-three transcriptome

RNA sequencing information and clinicopathological features of

BLCA patients by accessing The Cancer Genome Atlas (TCGA)

(https://gdc‐portal.nci.nih.gov/). Further, we utilized the GSE13507

acquired from the Gene Expression Omnibus database (GEO,

https://www.ncbi.nlm.nih.gov/geo/) as the validation set.
2.2 Identification of ROS‐associated
differentially expressed genes

Employing the R edge package (version R 4.0.5, https://

bioconductor.org/packages/release/bioc/), the ROS‐related DEGs

between BLCA and normal bladder samples were screened,

setting the cutoff criteria as a False Discovery Rate (FDR) < 0.05

and a |log2-fold change (FC)| > 1.
2.3 Enrichment analysis of ROS‐
related DEGs

Gene Ontology (GO) analysis that includes molecular function

(MF), cell component (CC), and biological process (BP) analyses

was implemented to explore the possible molecular mechanisms

behind ROS‐related DEGs via the clusterProfiler package of R,

utilizing the same approach for Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis (26–28) and considering P < 0.05 as

significant enrichment.
2.4 Protein-protein interactions

ROS‐related DEGs were uploaded to the STRING database

(http://www.string-db.org/) to obtain PPI information. The PPI

network establishment and visualization were conducted via

Cytoscape software, using the MCODE plug-in to screen the

considerable PPI network modules.
2.5 Identification of potential small-
molecule drugs

The Connect ivi ty Map (CMAP) database (ht tp :/ /

www.broadinstitute.org) could be beneficial for researchers in the

identification of probable molecular drugs closely associated with

diseases, including cancer. The enrichment scores were -1–1, with a

negative score showing that BLCA patients could benefit from

this drug.
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2.6 Construction and validation of the
prognostic signature of ROS

The prognosis-associated ROS-related genes were identified via

Univariate Cox regression (UCR) analysis (survival package) and

least absolute shrinkage and selection operator (LASSO) regression

analysis (glmnet and survival package) with P < 0.05 in the TCGA

dataset, followed by incorporating the results into the Multivariate

Cox Regression (MCR) analysis. Finally, a ROS-correlated gene

signature related, to OS was constructed based on MCR analysis

results. The Risk Score (RS) was generated by this formula: RS =

(Coef1*expression mRNA1) + (Coef2*expression mRNA2) + (Coef

n * expression mRNA n), where Coef represents the MCR model

coefficient of relevant mRNA. Based on the RS mean, patients were

classified into high-risk group (HRG) and low-risk group (LRG),

employing the Kaplan-Meier (K-M) method to compare the

survival outcomes between different groups. Our study deployed

time-related ROC analysis to determine the predictive prognostic

value of the PS. Both T-distributed stochastic neighbor embedding

(t-SNE) analysis alongside principal component analysis (PCA)

were implemented to examine the risk signature classification

capacity with the R packages “Rtsne” and “ggplot2”, employing

the same approach to calculate the RS and then validated the ROS-

related gene signature in the GSE13507 dataset.
2.7 Development of a nomogram

We explored the relationships between the PS and clinical

features (age, sex, T/N/TNM stages, and tumor grade) in the

TCGA dataset via the chi-squared test. Then, stratified analysis

was performed to further examine the PS reliability and stability of

ROS in the prediction of BLCA patients’ OS. Additionally, we

implemented UCR and MCR analyses to explore whether the RS

was of independent prognostic value. Both RS and clinical features

were incorporated to establish an OS-related nomogram, estimating

the nomogram ’s predictive capability by generating a

calibration curve.
2.8 Gene set enrichment analysis and
immune cell infiltration and tumor
mutational burden analyses

GSEA was implemented to investigate the latent mechanisms

among different groups based on GSEA software (version 4.1.0).

Then, we acquired mutation information for BLCA patients by

accessing the TCGA database, calculated the total mutation number

for each sample, and analyzed the top mutational genes among

different risk groups using the maftools package. The TIMER,

CIBERSORT, CIBERSORT-ABS, XCELL, QUANTISEQ, EPIC,

and MCP-counter methods were utilized for the analysis of the

ICI levels of 22 distinct leukocyte subsets in both groups. P < 0.05

indicated statistically significant.
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2.9 Chemotherapeutic response analysis

The Genomics of Drug Sensitivity in Cancer (GDSC, http://

www.cancerrxgene.org) database was accessed to predict BLCA

patients’ response in both groups to chemotherapy drugs.

Eventually, we assessed chemosensitivity by calculating the half-

maximal inhibitory concentration (IC50) through the R package

pRRophetic, with P < 0.05 indicating statistical significance.
2.10 Patient sample

Between 2022 and 2024, 20 BLCA tissue and their

corresponding non-tumor tissue specimens were collected from

Shaoxing People’s Hospital for immunohistochemical staining

(IHC) and western blot. No patient in this study had received

radiation therapy, adjuvant therapy, or preoperative chemotherapy.

The samples from Shaoxing People’s Hospital were collected with

informed consent, and the use of the stored cancer specimens and

clinical data was granted clearance by the Academic Ethical

Committee of Shaoxing People’s Hospital (ethical approval

number: 2022-K-Y-054-01). The study was executed in a way that

aligned with the Declaration of Helsinki.
2.11 Immunohistochemistry

IHC images of key genes in BLCA and normal tissue samples

were acquired through the Human Protein Atlas (HPA) database

while evaluating the staining intensity following the HPA database

standard (https://www.proteinatlas.org/). Use anti-AKR1B1

(1:1000; Proteintech,15439-1-AP). Rabbit monoclonal antibody

was used for immunohistochemistry of paraffin-embedded human

and nude mouse BLCA specimens. In short, samples were

processed using dewaxing, hydration, antigen extraction, IHC

labeling, and pathology scores.
2.12 Cell culture, treatments, and
siRNA transfection

Human BLCA cells (T24 and 5637) were procured from Procell

Life Science & Technology Company (Hubei, China). Herein, we

grouped the logarithmic growth phase cells into the control,

siAKR1B1-negative control (NC), and siAKR1B1 groups. The two

cell lines were cultured in MCCOY’S 5A (Gibco, USA) and 1640

(Gibco, USA) medium supplemented with 10% fetal bovine serum

(FBS, Gibco, USA) and 1% penicillin/streptomycin at 37°C and 5%

CO2. The cells went through treatment with 5 µl of siAKR1B1, using

Lipofectamine 2000 to dilute the solution in Opti-MEM for 5 min.

The solution was thereafter mixed and allowed to incubate at ambient

temperature for a duration of 20 min, followed by introducing the

composite into the cell culture plate. After a 48-h period of

transfection, the cells were gathered for additional assessments.
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2.13 Western blot analysis

Proteins were subjected to extraction using RIPA buffers and

quantification by BCA kits. The protein eluate went through

separation utilizing 10% SDS-PAGE and transferred to a PVDF

membrane that was blocked and then incubated with primary and

secondary antibodies. AKR1B1 (Proteintech, 15439-1-AP) and b-
catenin (Abcam, ab32572) were detected by imaging with enhanced

chemiluminescence reagents (Merck Millipore, Billerica, MA).
2.14 CCK8 assay

100 mL of suspension containing 5000 transfected cells was

dispensed into each well of a 96-well plate along with 10 mL of

CCK8 solution (MCE, HY-K0301). The plate was then placed in a

cell culture incubator for 1 hour, following which absorbance

readings were taken at 450 nm and recorded.
2.15 Colony formation assay

3600 BLCA cells were equally distributed into six-well plates

and incubated at 37°C with 5% CO2 for 14 days with regular

medium changes. Post-incubation, the cells were fixed and stained

using 4% paraformaldehyde and 0.1% crystal violet for 20 minutes

each, after which images were captured and data documented.
2.16 Edu assay

5-ethynyl-2′-deoxyuridine (EdU) assay kit (MCE, China) was

used as instructed by the manufacturer. In this experiment, BLCA

cells were cultured in 96-well plates, with a seeding density of 4,000

cells per well, after incubation at 37°C for 72 hours. Next, BLCA cells

were exposed to 10 mM EdU for 2 hours at 37°C. Subsequently, the

cells were fixed using 4% paraformaldehyde and permeabilized with

0.5% Triton X-100 for 15 minutes at room temperature. After

removing the fixatives, the cells were washed with PBS containing

1% BSA. Lastly, the cells were incubated in Click Additive Solution,

protected from light, for 30minutes and then stained with Hoechst to

label the nucleus. Microscopic images were captured to observe the

EdU detection samples. The proliferation of cells was further assessed

by calculating the ratio of EdU-positive cells to the overall cell count.
2.17 Transwell assay

The transfected HOS and 143B cell lines were cultured with the

serum-free DMEM and serum-free 1640, respectively, in a

Transwell upper chamber. Corresponding culture medium

containing 10% FBS was added to the lower chamber. The cells

were incubated at 37°C with 5% CO2 for 48 hours, fixed with

formaldehyde, stained with crystal violet, and visualized under a

microscope for analysis.
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2.18 Statistical analysis

Statistical analysis was conducted using the R software (version

4.0.5). The significance of differential gene expression was

ascertained using adjusted p-value to correct for the multiple

testing phenomenon, with a significance threshold set at p-value

< 0.05. Another statistical analysis was conducted with SPSS

Statistics software version 20. The values were compared by one-

way ANOVA or independent-samples Student’s t test. Statistical

significance was determined at *p < 0.05, **p < 0.01, or ***p < 0.001.

Values are presented as the mean ± SEM. Error bars indicate the

SEM unless otherwise noted.
3 Results

3.1 Identification of ROS-related genes
in BLCA

Supplementary Figure 1 illustrates the workflow diagram of this

study. In total, we obtained 1749 ROS-related genes with relevance

scores > 0.5 from the Gene Cards database and 70 ROS-related

genes from the MSigDB database, acquiring 1767 genes after

removing the overlapping genes. However, from the 1,767 genes,

we eventually extracted the expression profiles of 1,719 ROS-

associated genes identical to those in 412 and 19 BLCA and

normal bladder tissue samples, respectively, in the TCGA dataset.

By applying cutoff criteria of FDR < 0.05 and |log2 FC| > 1, 308

ROS-related Differentially Expressed Genes (DEGs) were identified;

of them, 138 were downregulated, and 170 were upregulated.

Moreover, GO, KEGG, and PPI analyses were deployed to

explore the possible roles of ROS-associated genes. Both

Univariate Cox regression (UCR) and LASSO analyses were

performed to screen for prognostic ROS-related genes, and 71

genes were included in subsequent analyses (p<0.05). As a means

to guarantee the clinical outcomes’ stability and reliability based on

the 71 genes, we conducted LASSO analysis to further screen for

prognostic ROS-related genes, identifying 31 genes related to OS.

The MCR analysis identified 17 ROS-related genes (JUN, CALR,

P4HB, ELN, MYC, FASN, REV3L, VHL, NID1, SLC38A1, TFRC,

AKR1B1, ITGA3, CGB5, HLA-G, FADS1, and ORM1) that were

utilized to construct a PS, which was subsequently validated in the

GSE13507 cohort. Both K–M survival and time-dependent receiver

operating characteristic (ROC) curves were employed to evaluate

the prognostic value of the PS. A nomogram was constructed,

aiming at predicting the outcomes of BLCA patients in combination

with the PS and clinical factors. GSEA, ICI, and TMB analysis were

implemented for the exploration of the molecular characteristics of

the PS. The GDSC database was accessed for the prediction of

chemotherapy response according to the PS. Candidate SMDs

targeting ROS-related genes were screened against the CMAP

database. To verify the authenticity of the data, the PS protein

expression levels were detected through the HPA. AKR1B1 was

selected for in vitro experimental validation, demonstrating the

reliability of the ROS-related genes we constructed.
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3.2 Functional assays of the selected
prognostic genes and Protein-protein
interaction network construction

The GO analysis findings represented that ROS-associated genes

were involved in multiple biological processes, including the response

to toxic substances, aging, metal ions, oxidative stress, and ROS, besides

cell cycle arrest and the cellular response to drugs (Figure 1A). The

KEGG analysis findings showcased that these genes exhibited main

involvement in multiple pathways, including the p53, platinum drug

resistance, cell cycle, ErbB, PI3K-Akt, TNF, cellular senescence, IL-17,

MAPK, HIF-1, and cGMP-PKG signaling pathways (Figure 1B) (26–
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28). For better comprehension of the involvements of ROS-associated

genes in BLCA, a PPI network was established and visualized through

the utilization of STRING database and Cytoscape software, which

included 298 nodes and 2859 edges (Figure 2A). The MCODE plugin

identified three crucial modules of target genes, and the critical

modules consisted of 39 nodes and 321 edges, 29 nodes and 250

edges, and 31 nodes and 123 edges (Figures 2B–D).

3.3 Small-molecule drugs

Using the CMAP database, candidate SMDs for BLCA were

identified based on ROS-related DEGs, identifying eleven SMDs
FIGURE 1

Enrichment analysis of ROS-related differentially expressed genes (DEGs) and PPI. (A) GO and (B) KEGG analyses.
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(0297417-0002B, 5248896, puromycin, blebbistatin, anisomycin,

STOCK1N-35215, methylergometrine, clofilium tosylate,

verteporfin, withaferin A, and rottlerin) with anticancer functions

in BLCA progression with enrichment scores < -0.8, p < 0.01, and n

> 2 as the screening criteria (Table 1).
3.4 Construction and validation of the
ROS-based prognostic signature

Our study conducted UCR analysis to identify ROS-related

DEGs notably correlated with OS, and 71 genes were included in

subsequent analyses (p<0.05) (Figure 3A). Aiming to ensure the

clinical outcomes stability and reliability based on the 71 genes,

LASSO analysis was conducted to further screen for prognostic

ROS-related genes, and we identified 31 genes related to OS

(Figures 3B, C). Multivariate Cox Regression (MCR) analysis

identified 17 ROS-related genes (JUN, CALR, P4HB, ELN, MYC,

FASN, REV3L, VHL, NID1, SLC38A1, TFRC, AKR1B1, ITGA3,
Frontiers in Immunology 07151
CGB5, HLA-G, FADS1, and ORM1) that were used to construct a

PS (Figure 3D). A ROS-based RS was established depending on

the coefficient of 17 genes according to this formula: risk score =

(0.3078 × FASN expression) + (0.305 × CALR expression) + (0.3832

× P4HB expression) + (0.1599 × ELN expression) + (0.2941 × MYC

expression) + (0.3702 × REV3L expression) + (-0.4548 ×

VHL expression) +(0.147 × NID1 expression) + (-0.2213 ×

SLC38A1 expression) + (0.1687 × TFRC expression) +(0.123

× AKR1B1 expression) + (-0.1371 × ITGA3 expression) +(0.1762

× CGB5 expression) + (-0.1483 × HLA-G expression) +(0.1368 ×

FADS1 expression) + (-0.252 × ORM1 expression) + (0.1274 × JUN

expression). Subsequently, we classified patients into HRG and LRG

in accordance with the median RS. The LRG patients had longer OS

than those in the HRG (p < 0.05) (Figures 4A, C). Time‐dependent

ROC analysis depicted that the signature AUC in the TCGA cohort

was 0.78 at 5 years (Figure 4B). A heatmap was generated to show

the differences in 17 ROS-related genes between the different groups

(Figure 4D). PCA and t-SNE analyses indicated the signature’s good

classification ability (Figures 4E, F). Additionally, the prognostic
FIGURE 2

Protein-protein interaction (PPI) network. (A) Protein-protein interaction (PPI) network of differentially expressed ROS-related genes. (B-D) Key
models of PPI networks.
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capacity of our constructed PS was validated in the GSE13507

dataset. The results in GSE13507 (Supplementary Figure 2) were

consistent with previous results, which demonstrated the good

performance of the PS in predicting OS.
3.5 Establishment and validation of the risk
scores model

We first compared the ROS-based RSs among various

subgroups classified by clinicopathological characteristics (TNM

stage, sex, grade, age, T stage, and N stage). The RSs exhibited a

significant correlation with clinicopathological factors and were

markedly elevated in the following subgroups: >65 years of age,

advanced T stage (T3/4), N stage (N1/2/3), pathological grade

(High), and TNM stage (Stage III-IV) (Figure 5). Subsequently,

stratification analysis was conducted relying upon the clinical

characteristics (age, sex, grade, and TNM/T/N stages). Male or

female sex, age (>65 years) or (<=65 years), T stage (T3-T4), N stage

(N0), pathological grade (High), and TNM stage (Stage III–IV)

were associated with inferior OS in the high-risk subgroup (P <

0.05) (Supplementary Figure 2), with no difference in OS in the T

stage (T1/2), N stage (N1/2/3), or TNM stage (Stage I-II) subgroup

(Figure 6). Furthermore, to evaluate whether the RS was an

autocephalous prognostic indicator for BLCA patients, univariate

and multivariate Cox proportional hazard models were

implemented. According to UCR analysis results, age, TNM/T/N

stages, and RS were related to unfavorable OS (Figure 7A).

According to the multivariate analysis, age, N stage, and RS were

still associated with unfavorable OS (Figure 7B). Multiparameter

ROC curve analyses also revealed that the AUC of the RS was 0.769

(Figure 7C), indicating that compared with traditional clinical

prognostic indicators, the ROS-based RS exhibited remarkable

performance in predicting prognosis. Collectively, the ROS-based

RS was an autocephalous prognostic factor. A nomogram including

RS, age, and N stage we established to predict the outcomes of

BLCA patients (Figure 8A), with the calibration curve elucidating
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the nomogram’s good performance in predicting patient prognosis

(Figures 8B, C).
3.6 GSEA

The GSEA results demonstrated that carcinogenic signaling

pathways, such as calcium, focal adhesion, ECM receptor

interaction, MAPK, BLCA, GAP junction, Wnt, Hedgehog,

cancer, and TGF-b signaling pathways, exhibited main

enrichment in the HRG (Figure 9). Several metabolism-associated

signaling pathways, including autophagy regulation, peroxisomes,

and oxidative phosphorylation, were highly enriched in the LRG.
3.7 Immune cell infiltration

A heatmap of the ICI data obtained via CIBERSORT,

MCPcounter, XCELL, TIMER, CIBERSORT-ABS, QUANTISEQ,

and EPIC analyses (Figure 10) suggested that the RS was correlated

with ICI in BLCA. Additionally, significant differences were

observed in the fractions of distinct leukocyte subsets between

both groups. The proportions of naive B cells and M0/M2

macrophages were lower in the HRG, whereas the proportions of

CD8+/CD4+T cells/were greater in the LRG.
3.8 Tumor mutational burden analysis

The mutation profile results among different risk groups in the

TCGA dataset revealed somatic mutations in 93.53% (118) and 94.55%

(191) of the BLCA patients in the HRG (Figure 11A) and LRG

(Figure 11B), respectively. TP53, TTN, KMT2D, MUC16, ARID1A,

KDM6A, PIK3CA, SYNE1, RB1, and KMT2Cwere the top 10mutated

genes in the HRG. TP53, TTN, KMT2D, MUC16, ARID1A, KDM6A,

PIK3CA, SYNE1, RB1, and FGFR3 were the top 10 mutated genes in

the LRG. Furthermore, the proportions of somatic mutations in
TABLE 1 The 11 small molecule drugs of CMP dataset analyses results.

cmap name mean n enrichment p-value percent non-null

0297417-0002B -0.779 3 -0.979 0.00004 100

puromycin -0.765 4 -0.952 0 100

5248896 -0.668 2 -0.948 0.00594 100

blebbistatin -0.679 2 -0.936 0.00861 100

anisomycin -0.662 4 -0.933 0.00002 100

STOCK1N-35215 -0.691 3 -0.926 0.00062 100

methylergometrine -0.64 4 -0.863 0.00064 100

verteporfin -0.607 3 -0.844 0.00757 100

rottlerin -0.68 3 -0.84 0.00817 100

withaferin A -0.569 4 -0.832 0.00145 100

clofilium tosylate -0.597 3 -0.832 0.00937 100
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KDM6A and FGFR3 significantly differed between both groups.

Additionally, the LRG patients had more mutation events than the

HRG (Figure 11C). Patients having a high TMB appeared to possess a

better prognosis than those with a low TMB (Figure 11D). Further, we

investigated the collaborative interaction effect of the ROS-based RS

and TMB on prognosis (Figure 11E). We found that the HRG patients

having a high TMB had shorter OS than those in the LRG with a high

TMB, and the LRG patients having a low TMB had longer OS than

those in the HRGwith a low TMB. Interestingly, patients having a high

TMB exhibited better OS than those having a low TMB in the HRG,

and patients having a low TMB displayed worse OS than those having

a high TMB in the LRG. Patients possessing high TMB in the LRG had
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a greater OS than patients in the other three patient groups, and

patients having low TMB in the HRG tended to have a significantly

worse OS than patients in the other three patient groups. Collectively,

the ROS-based RS might be a probable biomarker for predicting OS in

BLCA patients.
3.9 Chemotherapeutic response analysis

The GDSC database analysis findings depicted that the IC50

values of chemotherapy drugs, including GSK269962A, BMS.536924,

JNJ.26854165, docetaxel, temsirolimus, cisplatin, thapsigargin,
FIGURE 3

Identification of prognostic ROS-related genes in TCGA dataset. (A) Screening prognostic ROS-associated genes through univariate Cox regression
analysis; (B) Incorporating the prognostic ROS-associated genes into the LASSO regression analysis; (C)The prognostic ROS-related genes were
incorporated into the LASSO regression analysis. (D) Screening prognostic ROS-related genes through multivariate Cox regression analysis.
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sunitinib, rapamycin, and paclitaxel, were greater in LRG patients

than in those the HRG. In comparison, the IC50 values of BIBW2992

and gefitinib were greater in HRG patients than in those at

LRG (Figure 12).
3.10 Expression analysis of nine genes in
the Human Protein Atlas database

IHC was utilized to additionally investigate the nine gene

protein expression in the HPA database between BLCA and

normal control tissues (Figure 13). In line with the RNA
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sequencing data, P4BH, FASN, AKR1B1, and CBG5 proteins,

which have a high prognostic risk, were upregulated in tumor

tissues, and MYC proteins, which have a low prognostic risk, were

downregulated in tumor tissues compared with normal controls.
3.11 AKR1B1 affected BLCA cell viability,
migration, and proliferation

While AKR1B1 has been documented in other types of cancer (29–

31), its impact on BLCA remains unreported. Therefore, AKR1B1 was

selected for further analysis. IHC andWB analyses elucidated AKR1B1
FIGURE 4

Prognostic ROS-based signature construction in TCGA dataset. (A) Kaplan-Meier survival analysis of BLCA patients between different groups;
(B) Survival status distribution relying on the median risk score; (C)Time-independent ROC analysis of 5-year survival risk scores; (D) Heatmap
showing the differences of 17 ROS-related genes between different groups. (E) PCA analysis; (F) t-SNE analysis.
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overexpression in BLCA tissues (Figure 14A). To understand the role

of AKR1B1 in BLCA, we further investigated the effect of increased

AKR1B1 levels in BLCA cell lines (T24 and 5637) via in vitro

experiments. siRNA transfection successfully interfered with the

mRNA expression of AKR1B1, which was confirmed by WB

(Figure 14B). To further understand the effect of AKR1B1, colony

formation analysis was also performed (Figure 14C), which showed

that BLCA cell viability was significantly hindered after AKR1B1 was
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silenced by siRNA. The CCK-8 assay showcased that cell viability was

impeded after the silencing of AKR1B1 expression (Figure 14D). In

addition, an EdU proliferation assay showed that inhibiting AKR1B1

significantly lowered the percentage of EdU-positive BLCA cells

(Figure 14E). To further test whether AKR1B1 affects BLCA cell

metastasis, a Transwell assay was performed (Figure 14F), revealing

that siRNA-mediated silencing of AKR1B1 inhibited BLCA cell

migration and invasion.
FIGURE 5

The risk score and clinicopathological factor correlation in the TCGA dataset. (A) The heatmap (*: 0.01<P<0.05; **: 0.001<P<0.01; ***: P<0.001) and
(B) Boxplot show the risk score and clinicopathological factor correlation.
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4 Discussion

Reactive Oxygen Species (ROS) include hydroxyl radicals

(·OH), superoxide anions radicals (·O2-), and hydrogen peroxide

(H2O2), are considered a double-edged sword (32). Physiologically,

ROS play a crucial role in organisms. Excessive ROS can damage

proteins and DNA through oxidative damage, causing many

diseases, including cancer. ROS can cause cancer cells to die in

high concentrations (33, 34). However, the possible mechanisms

and prognostic value of ROS-associated genes in BLCA remain
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indefinite. Our study systematically explored the expression

patterns and correlations of ROS-associated genes with outcomes

in BLCA. Furthermore, we established a prognosis-correlated novel

signature relying on 17 ROS-related genes. Here, the ROS-based

signature was associated with CD8+ T cells and chemotherapy

responses. Eleven drugs were screened for treating BLCA patients.

Our results offer novel insights into ROS involvement in BLCA

development and progression.

In BLCA, 308 ROS-related genes were identified as

Differentially Expressed Genes (DEGs); of them, 138 and 170
FIGURE 6

Kaplan-Meier curves stratification of OS by gender, age, grade, or N/T/TNM stages between both risk groups.
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were downregulated and upregulated genes, respectively. Then, we

explore the ROS-related DEGs’ functions through GO and KEGG

analyses. According to GO analysis, these genes exhibited main

enrichment in response to toxic substances, aging, metal ions,

oxidative stress, and ROS, besides cellular response to drugs.

KEGG analysis showcased that these genes were closely associated

with cancer-, immune-, and drug resistance-correlated pathways,

such as the p53, platinum drug resistance, PI3K-Akt, TNF, IL-17,

MAPK, HIF-1, and cGMP-PKG pathways, suggesting that ROS-

related genes are involved in tumorigenesis. Subsequently,

according to the results of differential expression analyses, a PS

consisting of 17 ROS-related genes (JUN, CALR, P4HB, ELN, MYC,

FASN, REV3L, VHL, NID1, SLC38A1, TFRC, AKR1B1, ITGA3,
Frontiers in Immunology 13157
CGB5, HLA-G, FADS1, and ORM1) was constructed and validated

via LASSO and Cox regression analyses.

Among the seventeen ROS-related genes in our established

signature, calreticulin (CALR), an ER protein with high Ca2

+-binding activity, is crucial in maintaining cell homeostasis and

initiating the anticancer immune response to immunogenic cell

death (35, 36). Elevated CALR was correlated with favorable

prognosis in distinct tumor types (36–39). CALR overexpression

was linked to worse OS in natural-killer T-cell lymphoma patients

(40). CALR silencing suppressed BLCA cell proliferation,

migration, and lung metastasis (41). FASN can serve as an

oncogene by regulating AKT signaling pathways in BLCA (42,

43). Overexpression of P4HB was notably associated with inferior
FIGURE 7

The risk signature as an independent BLCA prognostic factor in the TCGA dataset. (A) The OS risk score and clinicopathological factor correlations
by univariate and (B) multivariate Cox regression analysis. (C) ROC curves of the clinical characteristics and risk score.
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outcomes, and knocking down P4HB impeded cell proliferation and

enhanced GEM sensitivity via the PERK/eIF2a/ATF4/CHOP

signaling pathways in BLCA (44). ITGA3 downregulation

hindered tumor cell invasion and proliferation by regulating the

FAK/PI3K/AKT pathway and epithelial-mesenchymal transition

(45, 46). SLC38A1, a vital transporter of glutamine, has been

implicated in tumorigenesis (47, 48). The expression of TFRC, a

crucial member involved in ferroptosis, was significantly elevated in

BLCA and promoted the tumorigenic phenotype of BLCA cells by

inducing EMT (49). Aldo–keto reductase family 1 member B1

(AKR1B1) is closely implicated in cancer development and
Frontiers in Immunology 14158
progression through various mechanisms, including EMT, ERK1/

2, Ras, and PI3K-AKT signaling pathways (50). Additionally,

ARK1B1 was also related to chemotherapeutic resistance and

cancer stem cells (51, 52). REV3L is highly overexpressed in

several cancers and facilitates cancer cell proliferation, metastasis,

and insensitivity to cisplatin (53, 54). Elastin (ELN), a crucial

member of the extracellular matrix family, has been documented

to contribute to cancer cell invasion (55, 56). Orosomucoid 1

(ORM1), an essential immune system regulator in acute-phase

reactions, might facilitate cancer cell immune evasion (57, 58).

Nidogen1 (NID1), a vital component of the basement membrane,
FIGURE 8

The nomogram construction. (A) Nomogram predicting 3‐ or 5‐year OS. (B) Calibration plots predicting 3‐ and (C) 5‐year OS.
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FIGURE 9

Gene set enrichment analysis among different groups.
FIGURE 10

Immune cell infiltration between both risk groups.
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serves as an oncogene in several tumors (59–62). Chorionic

gonadotropin beta polypeptide 5 (CGB5) can accelerate cancer

growth and vasculogenic mimicry formation by activating

the LHR signaling pathway (63). Jun represents a critical

transcription factor implicated in various biological processes,

including autophagy, proliferation, apoptosis, metastasis, and

inflammation (64, 65). FADS1 silencing reduced cell growth by

arresting the cell cycle in the G1 phase (66).

Our Univariate Cox regression (UCR) and Multivariate Cox

Regression (MCR) analyses results demonstrated that the RS was a

negative prognostic factor of OS in BLCA patients. Further, ROC

analysis suggested that the RS outbalanced the conventional clinical

characteristics in OS prediction of BLCA patients. Herein, BLCA
Frontiers in Immunology 16160
patients with advanced clinical features (III-IV stage, Grade high,

T3/4 stage, and N1/2/3 stage) had elevated RSs in comparison with

patients with early clinical features (I-II stage, Grade low, T1/2

stage, and N0 stage). The RS was also related to age. Stratification

analyses revealed that the RS could effectively predict BLCA patient

outcomes in most subgroups other than subgroups (N1/2/3 stage,

T1/2 stage, and I-II stage). Finally, we constructed a ROS-related

nomogram to evaluate 3- and 5-year OS comprehensively. The

calibration curve results implied that the nomogram showed

excellent performance in predicting BLCA patient prognosis.

To deeply understand the potential mechanisms behind ROS-

mediated differential outcomes in BLCA patients, we implemented

GSEA analyses for different groups relying upon the ROS-based PS.
FIGURE 11

Tumor mutational burden (TMD) analysis. (A) Demonstrating the top 20 mutational genes within the high- and (B) low-risk groups. (C) TMB
difference in both risk groups. (D) Kaplan-Meier (K-M) survival analysis of BLCA patients with high or low TMB. (E) K-M curve analysis stratification of
OS by TMB and the prognostic signature.
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The findings demonstrated that the HRG exhibited enrichment in

cancer-associated pathways, including calcium, focal adhesion,

ECM receptor interaction, MAPK, Wnt, Hedgehog, cancer, and

TGF-b pathways, implying the existence of an immunosuppressive

microenvironment. Meanwhile, the LRG genes exhibited main

involvement in the regulation of autophagy, peroxisomes, and
Frontiers in Immunology 17161
oxidative phosphorylation. Altogether, OS was inferior in the

HRG patients than those in the LRG. The ICI is related to the

malignant biological phenotypes and prognosis of cancer patients,

which indicates that immunotherapy, particularly immune

checkpoint inhibitor treatment, has become crucial for treating

advanced tumors (67). CD8+ T cells are strongly correlated with the
FIGURE 12

GDSC database-based chemotherapy response prediction.
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effectiveness of cancer immunotherapy (68). An elevated CD8+ T

cell infiltration level indicated a superior prognosis in BLCA

patients (69), aligning with our finding that the LRG patients

possessed a greater CD8+ T cell proportion and favorable

outcomes. Previous research has shown that patients having a

high TMB appear to possess a prolonged survival time and an

improved immunotherapy response (70). However, the TMB and

immunotherapy response correlation remains controversial (71).
Frontiers in Immunology 18162
Herein, the HRG patients exhibited a lower TMB and an inferior

prognosis and might benefit from cisplatin, docetaxel, temsirolimus,

thapsigargin, BMS.536924, GSK269962A, JNJ.26854165, sunitinib,

rapamycin, and paclitaxel. Meanwhile, LRG patients might benefit

from BIBW2992 and gefitinib.

Our study had various constraints. The ROS-based signature we

developed and validated was generated via retrospective research

and requires confirmation through a prospective trial. However, it is
FIGURE 13

Sectional images of the differential expression of the above genes from the Human Protein Atlas. (A–I) representative images of P4HB (A), ELN (B),
MYC (C), FASN (D), REV3L (E), VHL (F), AKR1B1 (G), ITGA3 (H), and CGB5 (I) protein expression from HPA databases. (J) Genes from HPA databases
Statistical Column Stacked Plots of Characterized Protein Expression. Scale bar: 200mm.
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necessary to conduct more experimental validation to confirm the

probable molecular mechanisms behind the PS in BLCA.
5 Conclusions

Conclusively, we conducted a thorough investigation of the

possible functions and prognostic value of ROS-associated genes in

BLCA through integrated bioinformatics analyses. In addition, a ROS-
Frontiers in Immunology 19163
dependent PS we constructed and validated with the ability to predict

the outcome and chemotherapy response of BLCA patients. Moreover,

we constructed a nomogram including a ROS-based PS with clinical

characteristics for 3- and 5-year OS, which could aid clinicians in

clinical decision-making. To verify the authenticity of the data, we

detected the signature protein expression levels through HPA. In vitro,

siRNA-mediated AKR1B1 silencing impeded BLCA cell viability,

migration, and proliferation, consistent with our projections and

demonstrating the constructed ROS-related gene reliability.
FIGURE 14

(A) IHC representation chart and western blot (WB) showed AKR1B1 expression in normal bladder tissue and BLCA tissue. Scale bar: 100mm. (B) WB
detection of AKR1B1 relative expression in control, NC, and siAKR1B1 groups. (C) Colony formation experiment results with AKR1B1 expression.
(D) Results of silencing AKR1B1 expression at different time points of CCK-8:24, 48, 72, 96h. (E) Edu assay showing proliferating cells (T24 and 5637);
Edu (red) and DAPI (blue) staining. Scale bar: 50mm. (F) Transwell assay results in control, NC, and siAKR1B1 groups. Scale bar: 100mm. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, ns p > 0.05.
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Background: Immunotherapy has emerged as a pivotal therapeutic modality for

a multitude of malignancies, notably hepatocellular carcinoma (HCC). This

research endeavors to construct a prognostic signature based on immune-

related genes between different HCC molecular subtypes, offer guidance for

immunotherapy application, and promote its clinical practical application

through immunohistochemistry.

Methods: Distinguishing HCC subtypes through Gene set variation analysis and

Consensus clustering analysis using the Kyoto Encyclopedia of Genes and

Genome (KEGG) pathway. In the TCGA-LIHC cohort, univariate, Lasso, and

multivariate Cox regression analyses were applied to construct a novel

immune relevant prognostic signature. The Subtype-specific and Immune-

Related Prognostic Signatures (SIR-PS) were validated in three prognostic

cohorts, one immunotherapy cohort, different HCC cell lines and tissue chips.

Further possible mechanism on immunotherapy was explored by miRNA-mRNA

interactions and signaling pathway.

Results: This prognostic model, which was based on four critical immune-

related genes, STC2, BIRC5, EPO and GLP1R, was demonstrated excellent

performance in both prognosis and immune response prediction of HCC.

Clinical pathological signature, tumor microenvironment and mutation analysis

also proved the effective prediction of this model. Spatial transcriptome analysis

shows that STC2 and BIRC5 are mainly enriched in liver cancer cells and their

mRNA and protein expression levels were greater in higher malignant HCC cell

lines than in the lower ones. Further validation on HCC tissue chips of this model

also showed good correlation with cancer prognosis. The risk score of each

patient demonstrated that the SIR-PS exhibited excellent 1 and 3-year survival

prediction performance.
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Conclusions:Our analysis demonstrates that the SIR-PSmodel serves as a robust

prognostic and predictive tool for both the survival outcomes and the response

to immunotherapy in hepatocellular carcinoma patients, whichmay shed light on

promoting the individualized immunotherapy against hepatocellular carcinoma.
KEYWORDS

hepatocellular carcinoma, immune-related genes, prognosis, immunotherapy,
immunohistochemistry, biomarker
1 Introduction

According to the 2020 Global Cancer Statistics, liver cancer is the

sixth most common human malignancy and the third leading cause of

cancer related deaths worldwide, in which liver hepatocellular

carcinoma (HCC) accounts for the vast majority (75%-85%) (1).

Characterized by nonspecific symptoms and pronounced

heterogeneity in the early phases, HCC is often diagnosed at

advanced stages, precluding the possibility of curative surgery for the

majority of patients (2). Even with the emergence of

immunotherapeutic and targeted therapies, the 5-year survival rate for

HCC patients remains below 20% (3). The prognosis of patients with

HCC is highly variable, which is attributable to its inherent

heterogeneity (4). Consequently, there is a pressing need for a novel

signature that leverages tumor heterogeneity to predict patient

prognosis and select immunotherapy candidates for precision medicine.

Cancer immunotherapy activates the immune system to induce the

death of cancer cells (5). The tumor microenvironment (TME), which

includes immune cells, stromal cells, the extracellular matrix, and

peripheral blood vessels, significantly influences tumor proliferation,

metabolic processes, and metastatic potential (6). What’s more, TME

plays a vital role in response to cancer immunotherapy in patients with

HCC. Amidst the rapid advancements in immunotherapy, its role in

HCC treatment is increasingly pivotal.

High-throughput transcriptome sequencing has been widely used

in recent years for both clinical and research purposes. However,

stringent requirements, intricate procedures and elevated costs

impeded its widespread adoption. Immunohistochemistry (IHC)

offers a practical and economical alternative for determining

protein expression via antibody-mediated staining. Currently, the

majority of studies rely on RNA-Seq data for prognostic assessments,

whereas models utilizing IHC are limited. If gene-guided predictions
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ntially expressed genes
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can ultimately be validated and applicated through IHC, that will

provide a more convenient and cost-effective option.

Therefore, in this study, we established a prognostic model

based on HCC subtypes and immune related genes. This model was

also proofed by the immunohistochemical score to facilitate clinical

prognosis and treatment. Figure 1 illustrates the methodological

steps undertaken in this study. The findings might provide insights

for future IHC-based studies and contribute to advanced

individualized immune therapies for HCC.
2 Materials and methods

2.1 Data resources

This investigation procured RNA -Seq, clinical, and SNP data from

HCC patients through the TCGA (https://portal.gdc.cancer.gov/) and

ICGC (https://dcc.icgc.org/) databases, with the exclusion of

subjects lacking complete overall survival (OS) data or having

survival durations of less than 30 days. The GSE54236 dataset

and GSE202069 dataset, sourced from the GEO (https://

www.ncbi.nlm.nih.gov/geo/) database, were incorporated into this

analysis. The complete TCGA-LIHC cohort served as the training

set, while the ICGC- LIRI-JP, GSE54236 and GSE202069 cohorts

were utilized as validation datasets.
2.2 Gene set variation analysis and
consensus clustering

The GSVA algorithm, implemented in the “GSVA” package (7),

was employed to derive the relative enrichment scores for the entirety

of Kyoto Encyclopedia of Genes and Genome (KEGG) pathways that

referenced from the MSigDB (c2.cp.kegg.v2023.1.Hs.symbols) for the

comprehensive TCGA cohort (8, 9).

Unsupervised hierarchical clustering of all HCC patients from

the TCGA cohort was conducted using the “ConsensusClusterPlus”

package (10) to discern distinct HCC subtypes. This procedure

entailed 1000 iterations, sampling 80% of the dataset per iteration,

to ascertain the stability and reliability of the resulting clusters. The

optimal cluster number was determined through the application of

the proportion of ambiguous clustering algorithm (11, 12).
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2.3 Differential and enrichment analysis of
the subtypes

Using the “DESeq2” software package for differential analysis,

screening differential expressed genes between the two subtypes

(SDEGs) based on adjusted P value<0.05 and absolute value of

logFC>1 as criteria (13, 14). Utilizing the “clusterProfiler” R package

(15), we performed enrichment analysis on above differential genes

using gene sets from diverse databases, including OMIM disease gene

set, OMIM expanded gene set, ClinVar 2019 gene set, and Rare

Diseases GeneRIF Gene Lists gene sets (16–18).
2.4 Identification of immune-related
differentially expressed genes among HCC
subtypes (SIRDEGs)

Immune-related genes (IRGs) were identified from the

Immunology Database and Analysis Portal (ImmPort, https://
Frontiers in Immunology 03169
immport.niaid.nih.gov/). Intersection of SDEGs and IRGs to

obtain SIRDEGs.
2.5 Construction and validation of a
prognostic signature based on the
SIRDEGs

The TCGA-LIHC Cohort was utilized as the training set for

model development. Validation was conducted using the ICGC-

LIRI Cohort, the GSE54236 and GSE202069 datasets. Univariate

and least absolute shrinkage and selection operator (LASSO) Cox

regression analyses were performed using the “survival” and

“glmnet” packages to identify the modeling genes. Subtype-

specific and Immune-Related Prognostic Signatures, designated

the SIR-PS, were identified through multivariate Cox regression.

The computational formula for SIR-PS is given by SIR-PS =on
i co

efi*mRNAi. The R packages “survivalROC” and “survminer” were

used to generate time-dependent receiver operating characteristic
FIGURE 1

Flow diagram of the analysis procedure: data collection, preprocessing, analysis and validation.
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curves (t-ROC) and Kaplan–Meier survival curves, respectively.

The samples were stratified into high-risk and low-risk groups

based on the median risk score derived from the TCGA-LIHC

cohor t . The a s soc i a t i on s be tween the S IR-PS and

clinicopathological parameters were assessed using the chi-square

test and graphically depicted using the “ComplexHeatmap” package

(19). Significant clinical parameters were further represented

through a stacked bar plot.
2.6 Exploration of the tumor immune
microenvironment and immunotherapy
response

This study utilized the CIBERSORT algorithms for a

quantitative assessment of immune cell infiltration, thereby

elucidating immunological variations across different groups.

Additionally, we scrutinized the expression profiles of immune

checkpoint molecules, conducting a comparative analysis to

delineate the distinctions between the high-risk and low-risk

groups. Furthermore, we leveraged the HCC Immunotherapy

Cohort (RNA-Seq data from Li et al.’s study) to substantiate the

predictive efficacy of the SIR-PS in forecasting responses to

immunotherapy (20).
2.7 Mutation analysis

The mutational data of patients in the TCGA-LIHC cohort were

obtained from the TCGA database. The “maftools” R package was

utilized to evaluate the mutational landscape and compare the

mutational spectra between high-risk and low-risk groups of

HCC patients (21).
2.8 Spatial transcriptome analysis

The spatial transcriptomics data were obtained from Liu et al.’s

study (22). According to the authors’ provided data, we calculated

the model score for each cell using SIR-PS. We then used the Seurat

package to visualize cell types and their corresponding scores.
2.9 Quantitative real-time reverse
transcriptase polymerase chain reaction in
cell lines

Hep3B, Huh7, MHCC-97H (97H), and SNU-449 cell lines

(ATCC Cell Bank, United States) were cultured to verify the

expression levels of these signature genes. Total RNA was isolated

from the aforementioned cell lines utilizing FreeZol Reagent

(Vazyme, China) followed by the synthesis of cDNA using a

reverse transcription kit (Vazyme, China). qPCR was conducted

with SYBR Green Mix (Q711, Vazyme) and a C1000 thermal cycler

from Bio-Rad (Hercules, CA). The sequences of the primers used
Frontiers in Immunology 04170
for the signature genes are detailed in Table 1. The relative

expression levels were normalized to those of the housekeeping

gene GAPDH.
2.10 Western blotting

Cellular lysates were prepared using RIPA lysis buffer. Equal

amounts of proteins were subjected to SDS–PAGE and then

transferred to polyvinylidene fluoride membranes. The

membranes were blocked with a protein-free rapid blocking

solution (PS108P, Epizyme) for 20 minutes to prevent nonspecific

antibody binding. Primary antibodies (10314, 10508, 26196 from

Proteintech, A5663 from ABclonal) were diluted according to the

manufacturer’s instructions and incubated at 4°C for 12 hours to

allow for antibody-antigen binding. After washing with Tris-

Buffered Saline with Tween, secondary antibodies (SA00001 from

Proteintech) were applied and incubated for 1 h at room

temperature to facilitate signal detection. After washing, the

immunoreactive bands on the membranes were visualized using

an enhanced chemiluminescence chromogenic substrate.
2.11 Validation of SIR-PS in HCC tissue
chips

Two HCC tissue chips were obtained from the Department of

Liver Surgery at Tongji Hospital, Tongji Medical College,

Huazhong University of Science and Technology. Patients with

incomplete clinical data or tissue loss excluded from the analysis.

The immunohistochemistry staining was performed as described

previously (23). The slides were incubated with primary antibodies

(anti-STC2 ab255610, Abcam, anti-GLP1R 26196, Proteintech, anti-

EPO ZRB1366, Sigma, and anti-BIRC5 ZA0530, ZSGB-BIO).

Semiquantitative scores were assigned according to the staining

intensity and the proportion of positively stained cells, with the

following categories and corresponding scores: no staining (0), light

yellow (1), medium yellow (2), dark yellow (3), and heavy yellow

(4); multiple with the corresponding positive percentage of stained

cells relative to the total number of cells > The composite score for

each specimen was calculated as the sum of the products of the

staining intensity and the percentage of positively stained cells.

Immunohistochemical staining was independently evaluated by two

pathologists in a double-blinded manner via microscopy. The HCC
TABLE 1 The sequences of the primers used in qPCR.

Gene
name

Forward primer sequence Reverse primer sequence

GAPDH TCCAAAATCAAGTGGGGCGA TGATGACCCTTTTGGCTCCC

STC2 TGAAATGTAAGGCCCACGCT ACTGTTCGTCTTCCCACTCG

BIRC5 TCAAGGACCACCGCATCTCT CCAAGTCTGGCTCGTTCTCA

EPO AGGCCGAGAATATCACGACG CAGACTTCTACGGCCTGCTG

GLP1R AGTCCAAGCGAGGGGAAAGA GAGGCGATAACCAGAGCAGAG
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tissue chip cohort was stratified into High-risk and Low-risk groups

utilizing “surv_cutpoint” from the “survminer” package. The

prognostic predictive efficacy of the SIR-PS was confirmed using

Kaplan–Meier analysis and t-ROC curves. In the HCC tissue chip

cohort, use the “compactGroups” package to generate a three line

table to statistically analyze the distribution of clinical pathologica l

parameters between different groups for each indicator (24).
2.12 Exploring the potential mechanisms of
SIR-PS regulating immunotherapy efficacy

Analyze the relationship between modeling genes and PDL1

expression in the TCGA-LIHC cohort. Based on the above results,

miRNAs targeting PDL1 and modeling genes correlated with PDL1

expression that have been experimentally validated in the TarBase

database were screened using the MultiMiR package. Take the

intersection of the miRNA results of the modeling genes

mentioned above with the miRNAs targeting PDL1.
2.13 Statistical analysis

All the statistical tests and bioinformatics analyses were

performed with R software, version 4.0.1. The Wilcoxon rank

sum test, Pearson chi-square test, t test and log-sum test were

included. P <0.05 was considered to indicate statistical significance.
3 Results

3.1 Identification and enrichment analysis
of subtypes based on KEGG pathway in
HCC

Utilizing the enrichment scores of KEGG gene sets based on the

GSVA algorithm, we conducted unsupervised hierarchical

clustering to classify the samples into two distinct subtypes,

which were validated by the examination of the cluster heatmap,

the consensus CDF plot, the average silhouette width, and the

Proportion of Ambiguous Clustering algorithm (Figures 2A-C).

Consequently, the patients of TCGA-LIHC cohort was stratified

into two distinct molecular subtypes (Supplementary Table 1).

Subsequently, a comparative analysis of the clinical factors across

different subtypes was conducted, employing heatmap for

visualization (Figure 2D). Additionally, stacked bar charts were

utilized to highlight factors exhibiting significant inter-subtype

disparities (Figure 2E). Compared to Sub2, Sub1 is characterized

by elevated levels of AFP, a higher GRADE, advanced path stage

and T stage, a greater proportion of female patients, and a lower

median age. As indicated by the Kaplan–Meier analysis, patients

classified into Sub2 exhibited a more favorable prognosis than those

classified into Sub1 (Figure 2F). In light of the observed disparities

in survival outcomes, we employed the “DESeq2” package to

perform a differential analysis between the two identified
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subtypes. Employing LogFC>1 as the criterion, Sub1 and Sub2

were found to harbor 2284 and 751 differentially expressed genes,

respectively. The enrichment analysis conducted on Sub1 disclosed

that in the gene sets of the four databases, OMIM disease, OMIM

Expanded, ClinVar2019, and Rare Disease GeneRIF GeneLists, the

genes enriched by Sub1 are unanimously associated with

immunodeficiency diseases (Figure 2G). Additionally, an analysis

of immune checkpoint expression levels among the subtypes was

performed. This analysis indicated that the expression levels of

immune checkpoint genes in Sub1 were, on the whole, markedly

elevated compared to those in Sub2 (Figure 2H).
3.2 Development and validation of the
SIR-PS

In the TCGA-LIHC cohort we obtained 3035 SDEGs

(Supplementary Figure 1). Then, SDEGs were intersected with

1,509 immune-related genes obtained from the ImmPort

database, yielding a total of 239 immune-related SDEGs

(SIRDEGs) (Figure 3A). Univariate Cox regression analysis

revealed 67 SIRDEGs with significant prognostic potential

(Supplementary Table 2). Then, LASSO regression analysis was

performed, and five SIRDEGs were further identified for modeling

(Figures 3B, C). Four genes, STC2, BIRC5, EPO, and GLP1R, were

identified for their substantial influence on the prognostic model.

The group with high expression levels of these genes exhibited a

markedly poorer prognosis than the group with low expression

(Supplementary Figures 2A-D). These genes were subsequently

utilized to construct a prognostic model (called SIR-PS) through

multivariate Cox regression analysis, resulting in the following risk

score formula: risk score = (STC2 × 0.22344) + (BIRC5 × 0.19238) +

(EPO × 0.11058) + (GLP1R × 0.24472). The four-gene model

demonstrated a prediction performance closely comparable to

that of the five-gene model (Supplementary Figures 2E, F).

Subsequently, 343 TCGA-LIHC patients were stratified into low-

risk and high-risk groups based on the median risk score. In

addition, we plotted ensemble plots of survival status and four

signature gene expression profiles as the risk score increased

(Figures 3D, E). There was a progressive increase in both

mortality rates and the expression levels of the four signature

genes concomitant with increasing risk scores. Kaplan–Meier

analysis revealed that patients in the high-risk group experienced

a more adverse clinical prognosis than did those in the low-risk

group (Figure 3F). The AUC value at 1 and 3 years were 0.771 and

0.727 respectively, which is indicative of the model’s robust

predictive capability (Figure 3I). Leveraging the SIR-PS, we

computed individual risk scores for all HCC patients within the

ICGC cohort. These scores were then stratified to distinguish

between high-risk and low-risk groups based on the median value

of the risk scores. Consistent with the findings in the TCGA-LIHC

cohort, the Kaplan–Meier analysis demonstrated that the OS of

patients in the high-risk group was significantly inferior to that of

patients in the low-risk group in ICGC-LIRI-JP cohort (Figure 3G).

The AUCs for the ICGC-LIRI-JP cohort at 1 and 3 years were 0.791
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and 0.751, respectively (Figure 3J). In the GSE54236 cohort and the

GSE202069 cohort, the Kaplan–Meier analysis revealed that

patients in the high-risk group experienced significantly shorter

OS than those in the low-risk group (p<0.0001 and p=0.08,
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respectively) (Figure 3H, Supplementary Figure 3A). The AUCs

for the GSE54236 cohort and the GSE202069 cohort at the 1-year

were 0.838 and 0.818, respectively, while at the 3-year they were

0.67 and 0.866, respectively (Figure 3K, Supplementary Figure 3B).
FIGURE 2

Identification and differential analysis of HCC Subtypes based on KEGG pathways. (A) Heatmap of sample clustering at consensus k=2. (B)
Consensus clustering CDF for k= 2 to 9. (C) The Average Silhouette width Plot. (D) Heatmap of and (E) Stacked bar chart of multiple
clinicopathological features between Subtypes. (F) Kaplan-Meier survival plots between Subtypes for Overall Survival (0S). (G) Enrichment analysis of
diseases associated with Sub1 enrichment genes. (H) Immune Checkpoint genes’ expression between Subtypes. *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001.
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In addition, we compared the three-year survival prediction

performance of SIR-PS with nine other prognostic models in four

datasets (25–33). The results showed that the AUC value of SIR-PS

had the best predicted performance in these datasets
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(Supplementary Figure 3C). Taking the average AUC value at 1

and 3 year of four datasets, the AUC value of SIR-PS ranked the

second and first respectively, which also proofed its comprehensive

prediction value.
FIGURE 3

Construction and Validation of SIR-PS. (A) Venn plot showed 239 immune-related DEGs among subtypes. (B) LASSO coefficient profiles of 67 prognostic
genes of HCC. (C) 10-fold cross validated lasso regression identified five prognostic genes with minimal l. (D, E) Riskscore distribution, survival status, and
expression of four SIR-PS signature genes of patients in the Low-risk and High-risk group of TCGA Cohort and ICGC Cohort, respectively. (F–H) Kaplan-
Meier survival plots of High-risk and Low-risk group for Overall Survival in the TCGA Cohort, the ICGC Cohort and the GSE54236 Cohort. (I–K) Time-
dependent ROC curves of SIR-PS for Overall Survival in the TCGA Cohort, the ICGC Cohort and the GSE54236 Cohort.
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3.3 Exploration of the clinical significance
and tumor microenvironment of the
SIR-PS

To investigate the association between the SIR-PS and a range

of clinicopathological characteristics, the correlation analysis was

conducted and revealed significant associations between the risk

groups and various HCC features (Figure 4A). The high-risk group
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exhibited increased levels of AFP, a greater percentage of patients

within Sub1 and female patients, more advanced GRADE, and

higher pathological stage and T stage than did the low-risk group

(Figure 4A). Subsequently, leveraging the CIBERSORT algorithm,

we quantified the infiltration levels of various immune cells across

samples and delineated the comparative immune landscape

between the high-risk and low-risk groups within the TCGA

cohort. The analysis delineated that the high-risk group was
FIGURE 4

Exploration of clinical significance and tumor microenvironment of SIR-PS in the TCGA Cohort. (A) Heatmap and Stacked bar chart of multiple
clinicopathological features between High-risk and Low-risk group of SIR-PS. (B) Heatmap of Immune Checkpoint expression and CIBERSORT result
between High-risk and Low-risk group of SIR-PS. (C) Stacked bar chart of immunotherapy response between High-risk and Low-risk group of SIR-
PS in our HCC Immunotherapy Cohort. (D) Diagnostic ROC plot of SIR-PS predicting response to immunotherapy. **p<0.01, ***p<0.001.
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distinguished by an enhanced infiltration of B cells memory, T cells

regulatory, Dendritic cells resting, Neutrophils, T cells CD4

memory activated and T cells CD8 and a diminished presence of

NK cells activated, Mast cells activated and resting, Macrophages

M1, Dendritic cells activated (Figure 4B). Further analysis of

immune checkpoint gene expression between risk groups within

the TCGA database revealed that the high-risk group displayed

elevated expression levels for the majority of these genes, in contrast

to the low-risk group (Figure 4B). Concurrently, we assessed the

predictive efficacy of SIR-PS concerning the response to

immunotherapy within the HCC Immunotherapy Cohort, with

results indicating a higher response rate among patients in the

high-risk group as per the median risk score (Figure 4C). The t-

ROC curve analysis revealed that the AUC value for predicting

treatment responsiveness based on the risk score was

0.787 (Figure 4D).
3.4 Mutation landscape analysis of SIR-PS

Initially, we scrutinized the 10 genes exhibiting the highest

mutation frequencies within the low-risk and high-risk group.

Oncoplots revealed that within the TCGA database, the genes

exhibiting the highest mutation frequencies in the high-risk and

low-risk groups were TP53, with a 40% mutation frequency, and

CTNNB1, with a 33% mutation frequency, respectively

(Figures 5A, B).
3.5 Spatial transcriptome analysis of SIR-PS

To determine the cell types in which our model is active, we

analyzed spatial transcriptomics data from HCC patients. Our

analysis revealed that the riskscores highest in HCC cells,

indicating that the SIR-PS’s riskscore in patients is predominantly

determined by its riskscore in these cancer cells (Figure 5C).

Concurrently, STC2 and BIRC5 exhibit predominant expression

within HCC cells.
3.6 qPCR and Western blotting in HCC cell
lines

In light of the spatial transcriptome analysis findings, we chose

HCC cell lines, including SNU-449, 97H, Hep3B and Huh7, to

conduct cellular-level validation studies. The SNU-449 and 97H cell

lines exhibited a greater degree of malignancy or transfer ability

than the Hep3B and Huh7 cell lines, which commonly means a

worse prognosis (34, 35). No matter in the qPCR or the western

blotting detection, the expression levels of STC2 and BIRC5 were

higher in the SNU-449 and 97H cell lines than in the Huh7 and

Hep3B cell lines (Figures 5D, E), which were in accordance with

their malignancies. However EPO and GLP1R showed not obvious

trends in the mRNA and protein levels.
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3.7 Validation of the SIR-PS based on iHC
staining of the HCC tissue chips

Owing to the remarkable prognostic potential of the four

signature genes, we conducted IHC staining on tissue chips

sourced from HCC patients and subsequently scored the

expression of these genes. Post-IHC staining revealed that STC2,

BIRC5, EPO, and GLP1R exhibited increased expression in HCC

tissues relative to normal controls (Figures 6A–D). Utilizing the

“surv_cutpoint” function from the “survminer” package, the IHC

scores for each gene were stratified into high-IHC and low-IHC

groups. Kaplan–Meier analysis demonstrated that Patients in the

high-IHC group for STC2, BIRC5, EPO and GLP1R exhibited a

markedly poorer prognosis than did those in the low-IHC group

(Figures 6E-H). Subsequently, we calculated the riskscore of each

patient of HCC tissue chips using SIR-PS based on the IHC score of

four genes. The riskscores of patients were subsequently categorized

into high-risk and low-risk group using “surv_cutpoint” function of

“survminer” package. Based on the calculated risk scores, patient

stratification into high-risk and low-risk groups was determined

using a cutoff value of 0.6115285. Kaplan–Meier analysis indicated

that across the entire HCC tissue chip cohort, the high-risk group

had a significantly worse prognosis than did the low-risk group

(Figure 7A). ROC curve analysis revealed that the AUC value for the

entire HCC tissue chip cohort at the 1 and 3-year was 0.711 and

0.795, respectively (Figure 7B). Furthermore, given that GPC3 and

CK19 are commonly used prognostic markers in clinical liver

cancer diagnostics, we also conducted IHC staining for these

markers on HCC tissue chips and scored them accordingly.

Subsequent to their score, these two prognostic indicators were

evaluated independently to predict patient outcomes. Kaplan-Meier

analysis revealed no significant survival disparity between the high-

IHC and low-IHC groups for CK19 and GPC3 across the entire

HCC tissue chips cohort (Figures 7C, E). Correspondingly, the 1-

year AUC values of their respective t-ROC curves were 0.664 and

0.504, while the 3-year AUC values were 0.571 and 0.585,

respectively (Figures 7D, F).
3.8 Exploration of clinical information
between high-risk and low-risk group of
patients with HCC tissue chips data

A comparative analysis of the clinical characteristics between

different groups was conducted. Summary descriptives table of

general clinical factors of all patients and riskgroup is shown in

Table 2, while the different indicators groups are shown in

Supplementary Table 3. Based on the clinical data and varying

classifications of staining and risk groups, we conducted both

univariate and multivariate Cox regression analysis (Table 3). The

results of univariate Cox regression analysis showed that there were

significant differences in survival between AST, childpugh, tumor

size, vascular invasion, BIRC5, EPO and risk groups. STC2 and

GLP1R cannot be subjected to Cox regression analysis due to the
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fact that the number of deceased patients in one of the high and low

IHC groups is less than 3. Given that risk group are determined by

the expression levels of STC2, BIRC5, GLP1R, and EPO, we

prioritized risk group, and other factors exhibiting significant
Frontiers in Immunology
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intergroup survival differences for inclusion in the multivariate Cox

regression analysis. In the multivariate Cox regression analysis, the

risk group remained the sole significant predictor, with a

p-value<0.05.
FIGURE 5

Mutational and spatial transcriptome analysis of SIR-PS risk groups and cell experiment of different cell lines. (A, B) Oncoplot analysis of the high-risk
and low-risk group, respectively. (C) Spatial expression pattern of SIR-PS (including BIRC5, STC2, EPO and GLP1R). (D) qPCR and (E) Western Blotting
result of Hep3B, Huh7, 97H and SNU-449 (compare with Hep3B cell lines). *p<0.05, ***p<0.001, ****p<0.0001.
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3.9 Exploration of the mechanism by which
prognostic models affect immunotherapy

Due to the good predictive effect of risk scores in the liver cancer

immunotherapy queue treated with anti-PD1/PDL1, SIR-PS may

affect the efficacy of immunotherapy by affecting PDL1 expression.

In the TCGA-LIHC cohort, the expression levels and risk scores of

STC2 and BIRC5 were positively correlated with the expression

level of PDL1 (Figures 8A, B, E, F), indicated that both STC2 and

BIRC5 can promote the expression of PDL1 on cancer cells, thereby
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promoting tumor immune escape. However, there is no obvious

correlation between EPO or GLP1R and PDL1 (Figures 8C, D).

Further exploration on the potential mechanism of STC2 and

BIRC5 regulating PDL1 was conducted. Since the potential

mutual influence of gene expression through miRNAs, the

multiMIiR package was used to screen miRNAs in the TarBase

database that have been experimentally validated to bind to STC2,

BIRC5, and PDL1. There are a total of 87 miRNAs targeting PDL1,

with 61 shared miRNAs between PDL1 and STC2, and 48 shared

miRNAs between PDL1 and BIRC5 (Figures 8G, H, Table 4).
FIGURE 6

Immunohistochemistry staining and corresponding Kaplan Meier analysis of STC2, BIRC5, EPO, GLP1R. Tumor and paired Normal tissue IHC staining
of HCC tissue chip by STC2 (A), BIRC5 (B), EPO (C), GLP1R (D). Kaplan-Meier curve between high and low expression of STC2 (E), BIRC5 (F), EPO
(G), GLP1R (H) in HCC tissue chip Cohort, respectively. ****p<0.0001.
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Discussion

Currently, nonsurgical therapeutic interventions are

instrumental in the management of HCC, as the majority of

patients present with advanced disease stages that preclude

surgical intervention (2). As immunotherapy continues to evolve,
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the role of immunotherapies in the management of HCC has

become increasingly pivotal, exerting a profound influence on

patient prognosis. In this study, we constructed a prognostic and

immunotherapy efficacy prediction model SIR-PS based on two

distinct HCCmolecular subtypes. This model consists of four genes:

STC2, BIRC5, EPO, and GLP1R. Using a group of genes to build the
FIGURE 7

Prognostic performance of SIR-PS, GPC3, and CK19. (A, C, E) Kaplan-Meier survival plots of SIR-PS risk group, CK19 and GPC3 expression group for
Overall Survival in the HCC tissue chip Cohort. (B, D, F) Time-dependent ROC curves of SIR-PS, CK19 and GPC3 for Overall Survival in the HCC
tissue chip Cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1481366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1481366

Frontiers in Immunology 13179
prognostic model was successfully used in some solid tumors, such

as breast cancer (36, 37). But to our knowledge, this is the first-time

using SIR-PS to predict the prognosis and give suggestion of

immune therapy in HCC.

Further validation on HCC cell lines revealed distinct RNA or

protein expression levels of STC2 and BIRC5 in different malignant

HCC cell lines, which were correspondence with these cells’

malignances. STC2 has been revealed a marked increased

expression in HCC tissues compared to normal tissues (38).

Additionally, STC2 has also been implicated in promoting tumor

cell invasion and metastasis while concurrently inhibiting apoptosis

in numerous tumor types (39). This heightened expression was

positively correlated with an adverse patient prognosis, et al. which

was consistent with our results. There was also been reported a

significant overexpression of BIRC5 in HCC tissues, contrast to its

near undetectability in tissues affected by cirrhosis (40). The

expression of BIRC5 appears to be correlated with the metastatic

potential of HCC, which is aligns with the findings of this study.

However, same trends didn’t been observed on EPO and GLP1R in

different HCC cells. In this study, we found that EPO and GLP1R could
TABLE 2 Summary descriptives table of all patients and riskgroup in the
tissue chips cohort.

All IHC Riskgroup

Low High p.overall

N:
80

(100%)
33 (41.2%) 47 (58.8%)

Gender: 0.233

Female
16

(20.0%)
4 (12.1%) 12 (25.5%)

Male
64

(80.0%)
29 (87.9%) 35 (74.5%)

Age: 0.79

<=50
39

(48.8%)
15 (45.5%) 24 (51.1%)

>50
41

(51.2%)
18 (54.5%) 23 (48.9%)

ALT: 1

<=41
61

(76.2%)
25 (75.8%) 36 (76.6%)

>41
19

(23.8%)
8 (24.2%) 11 (23.4%)

AST: 0.234

<=40
56

(70.0%)
26 (78.8%) 30 (63.8%)

>40
24

(30.0%)
7 (21.2%) 17 (36.2%)

AFP: 1

<=20
20

(25.3%)
8 (24.2%) 12 (26.1%)

>20
59

(74.7%)
25 (75.8%) 34 (73.9%)

Child-Pugh: 0.139

A
76

(95.0%)
33 (100%) 43 (91.5%)

B
4

(5.00%)
0 (0.00%) 4 (8.51%)

Cirrhosis: 0.707

No
26

(32.5%)
12 (36.4%) 14 (29.8%)

Yes
54

(67.5%)
21 (63.6%) 33 (70.2%)

Tumor
number:

0.933

1
59

(73.8%)
25 (75.8%) 34 (72.3%)

>1
21

(26.2%)
8 (24.2%) 13 (27.7%)

Tumor size: 1

(Continued)
TABLE 2 Continued

All IHC Riskgroup

Low High p.overall

Tumor size: 1

<=5cm
31

(38.8%)
13 (39.4%) 18 (38.3%)

>5cm
49

(61.3%)
20 (60.6%) 29 (61.7%)

Vascular
invasion:

1

No
66

(82.5%)
27 (81.8%) 39 (83.0%)

Yes
14

(17.5%)
6 (18.2%) 8 (17.0%)

Differentiation: 0.389

Moderate or High
54

(67.5%)
20 (60.6%) 34 (72.3%)

Low or
Moderately low

26
(32.5%)

13 (39.4%) 13 (27.7%)

BCLC.stage: 0.981

A
52

(65.0%)
22 (66.7%) 30 (63.8%)

B or C
28

(35.0%)
11 (33.3%) 17 (36.2%)

TNM.stage: 0.475

1 or 2
61

(76.2%)
27 (81.8%) 34 (72.3%)

3 or 4
19

(23.8%)
6 (18.2%) 13 (27.7%)
fr
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promote HCC development and coincident with worse prognosis by

bioinformation data and the validated results on HCC cohorts.

However, the validation in different HCC cell lines didn’t show

obvious relationship with their corresponding malignances. The

protein levels of EPO and GLP1R were even no statistical differences.

Further exploration on the expression of these genes in HCC cell

cohorts was taken out by spatial transcriptome analysis. Differ from

STC2 and BIRC5 which were mainly expressed in liver cancer cells,

EPO and GLP1R did not exhibit specific expression in a certain cell

type, which could potentially be attributed to the fact that EPO and

GLP1R may not predominantly expressed in HCC cell lines.

Analysis of the mutational landscape of genes between low-risk

and high-risk groups of HCC revealed significant differences in

TP53 and CTNNB1. TP53 mutations are correlated with an

unfavorable prognosis in HCC patients, and are predictive of

potential responsiveness to immunotherapy (41). In various cell

lines, TP53 mutations or knockdown lead to increased PDL1

expression (42, 43). Conversely, CTNNB1 mutations, while

indicative of a favorable prognosis, are linked to reduced efficacy

of immunotherapy in HCC patients (44, 45). And patients with

CTNNB1 mutations exhibit lower PDL1 expression (46, 47).

Therefore, TP53 and CTNNB1 may influence the efficacy of

immunotherapy by affecting PDL1 expression. These findings

supported SIR-PS as the predictive model for HCC prognosis and
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immunotherapy efficacy. Meanwhile, validation on external HCC

cohorts and gathering the corresponding clinical characteristics

proofed SIR-PS as an apt prognostic model for HCC patients,

demonstrating robust predictive accuracy in forecasting clinical

outcomes. Patients categorized in the high-risk group by SIR-PS

exhibited significantly adverse prognosis.

Moreover, microenvironment analysis showed this model could

serves as an excellent and dependable tool for the prediction of

treatment responses to immunotherapy. CD8+ T cells were the

primary immune cells that exert anti-tumor effects (48). The

expression of PDL1 on tumor cells often led to the exhaustion or

reduced function of CD8+ T cells (49, 50). The mechanism of anti-

PD-1 therapy is to restore the function of exhausted CD8 T cells and

promote their proliferation (51, 52). In this study, a higher

infiltration level of CD8+ T cell was observed within the high risk

group. High CD8 T cells pave the way for anti-PD-1 therapy to

restore those exhausted T cell function and finally killed the tumor

cells. Meanwhile, we also detected the immune checkpoint gene

expressions between risk groups which revealed that in contrast to

the low-risk group, the high-risk group displayed elevated

expression levels for most of these genes. This should be a direct

clue for anti-PD-1/PDL1 efficiency.

In order to explain the potential mechanisms of prognostic

models on the efficacy of immunotherapy, especially on the
TABLE 3 Cox Univariate and Multivariable regression analysis between cumulative overall survival rate and clinicopathological variables of all patients
in the HCC tissue chip.

Variables

Univariate analysis Multivariable analysis

HR (95% CI) P-value HR (95% CI) P-value

Gender (Male/Female) 1.69 (0.385-7.41) 0.487

Age (>50/<=50) 1.42 (0.55-3.68) 0.467

ALT (>41/<=41) 1.33 (0.473-3.76) 0.586

AST (>40/<=40) 4.4 (1.7-11.4) 0.00229 2.32 (0.777-6.9) 0.132

ALP (>130/<=130) 1.8 (0.589-5.48) 0.303

AFP (>20/<=20) 0.656 (0.245-1.75) 0.401

ChildPugh (B/A) 8.95 (2.36-34) 0.00129 2.81 (0.679-11.6) 0.154

Cirrhosis (Yes/No) 1.08 (0.403-2.87) 0.884

Tumornumber (>1/1) 1.6 (0.596-4.3) 0.351

Tumorsize (>5cm/<=5cm) 3.75 (1.08-13) 0.0371 2.5 (0.663-9.4) 0.176

Vascularinvasion (Yes/No) 3.66 (1.25-10.7) 0.0181 1.95 (0.584-6.52) 0.278

Differentiation (Low or Moderately low/Moderate or High) 1.64 (0.63-4.25) 0.312

BCLCstage (B or C/A) 2.54 (0.994-6.49) 0.0514

TNMstage (3 or 4/1 or 2) 2.39 (0.917-6.24) 0.0747

STC2group (High/Low) 7.45e+08 (0-Inf) 0.997

BIRC5group (High/Low) 7.99 (1.74-36.8) 0.00763

GLP1Rgroup (High/Low) 2.71e+08 (0-Inf) 0.998

EPOgroup (High/Low) 4.41 (1.48-13.1) 0.0076

RiskGroup (High/Low) 22.8 (2.85-182) 0.0032 23.8 (2.74-207) 0.00405
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expression of PDL1, we further explored STC2 and BIRC5 form

endogenous competitive RNAs with PDL1 through multiple

miRNAs, which affect the expression of PDL1. STC2 and PDL1

mRNAs can compete with each other for binding to miR-17-5p,

miR-33a, miR-34a, miR-138-5p, miR-140, miR-152, miR-155, miR-

197, miR-200, and miR-424 (53–68). Additionally, BIRC5 and
Frontiers in Immunology 15181
PDL1 mRNAs also compete with each other for binding to miR-

17-5p, miR-34a, miR-140, miR-142-5p, miR-152, miR-200, and

miR-424 (53, 54, 56, 58, 59, 63–66, 69, 70). Consequently, an

increase in the expression level of one mRNA enhances its

competitive binding with miRNAs, which in turn can lead to an

increase in the expression level of another mRNA to a certain
FIGURE 8

Exploration of the mechanism by which prognostic models affect immunotherapy. (A–D) Correlation diagram between PDL1 and STC2, BIRC5, EPO,
GLP1R, respectively. (E) Boxplot between PDL1 and riskgroup. (F) Correlation diagram between PDL1 and riskscore. (G, H) Venn diagram of miRNAs
targeting PDL1 with targeting STC2 and BIRC5, respectively.
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TABLE 4 The miRNAs targeting STC2, BIRC5, and PDL1.

STC2 BIRC5 PDL1

hsa-miR-106a-5p hsa-miR-15a-5p hsa-let-7a-5p

hsa-miR-335-5p hsa-miR-424-5p hsa-let-7f-5p

hsa-miR-15b-5p hsa-miR-218-5p hsa-miR-15a-5p

hsa-miR-20b-5p hsa-miR-550a-3p hsa-miR-424-5p

hsa-miR-424-5p hsa-miR-219a-5p hsa-miR-182-5p

hsa-miR-15a-5p hsa-miR-21-5p hsa-miR-15b-5p

hsa-miR-708-5p hsa-miR-33b-5p hsa-miR-374a-5p

hsa-miR-125b-5p hsa-miR-320d hsa-miR-16-5p

hsa-miR-103a-3p hsa-miR-223-3p hsa-miR-195-5p

hsa-miR-130a-3p hsa-miR-219a-1-3p hsa-miR-17-5p

hsa-miR-16-5p hsa-miR-16-5p hsa-miR-155-5p

hsa-miR-374b-5p hsa-miR-195-5p hsa-miR-302c-3p

hsa-miR-106b-5p hsa-miR-34a-5p hsa-miR-106a-5p

hsa-miR-576-5p hsa-miR-20b-5p hsa-miR-15b-3p

hsa-miR-20a-5p hsa-let-7g-5p hsa-miR-106b-5p

hsa-miR-17-5p hsa-miR-452-5p hsa-let-7b-5p

hsa-miR-124-3p hsa-miR-181b-5p hsa-miR-20a-5p

hsa-miR-302a-3p hsa-miR-129-2-3p hsa-miR-107

hsa-miR-302d-3p hsa-miR-1225-5p hsa-miR-1246

hsa-miR-30e-5p hsa-miR-671-5p hsa-miR-1292-5p

hsa-miR-876-3p hsa-miR-30c-2-3p hsa-miR-24-3p

hsa-miR-887-3p hsa-miR-106a-5p hsa-miR-34a-5p

hsa-miR-545-5p hsa-miR-30a-5p hsa-miR-142-5p

hsa-miR-30a-5p hsa-miR-17-5p hsa-miR-9-3p

hsa-miR-34a-5p hsa-miR-182-5p hsa-miR-130a-3p

hsa-miR-301b-3p hsa-miR-106b-5p hsa-miR-150-3p

hsa-miR-454-3p hsa-miR-194-5p hsa-miR-3928-3p

hsa-miR-155-5p hsa-miR-576-3p hsa-miR-93-5p

hsa-miR-130b-3p hsa-miR-203a-3p hsa-miR-103a-3p

hsa-miR-181b-5p hsa-miR-7-5p hsa-miR-301b-3p

hsa-miR-132-3p hsa-miR-30a-3p hsa-miR-33a-5p

hsa-miR-181a-5p hsa-miR-20a-5p hsa-miR-30c-1-3p

hsa-miR-4491 hsa-miR-130b-3p hsa-miR-23a-3p

hsa-miR-181d-5p hsa-miR-124-3p hsa-miR-320a-3p

hsa-miR-101-3p hsa-miR-135a-5p hsa-miR-20b-5p

hsa-miR-139-5p hsa-miR-130a-3p hsa-miR-320c

hsa-miR-24-3p hsa-miR-148a-3p hsa-miR-18a-5p

hsa-miR-27a-3p hsa-miR-301a-3p hsa-miR-363-3p

(Continued)
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TABLE 4 Continued

STC2 BIRC5 PDL1

hsa-miR-27b-3p hsa-miR-301b-3p hsa-miR-2278

hsa-miR-449b-5p hsa-miR-454-3p hsa-miR-183-5p

hsa-let-7a-5p hsa-miR-10a-5p hsa-miR-25-3p

hsa-let-7c-5p hsa-miR-10b-5p hsa-miR-138-5p

hsa-let-7d-5p hsa-miR-497-5p hsa-miR-185-5p

hsa-let-7e-5p hsa-miR-181a-5p hsa-miR-301a-3p

hsa-let-7f-5p hsa-miR-142-5p hsa-miR-374b-5p

hsa-let-7g-5p hsa-let-7b-5p hsa-miR-30e-3p

hsa-let-7i-5p hsa-miR-140-3p hsa-miR-23c

hsa-miR-196a-5p hsa-miR-148b-3p hsa-miR-877-5p

hsa-miR-425-5p hsa-miR-205-5p hsa-miR-320b

hsa-miR-7-5p hsa-miR-1180-3p hsa-miR-23b-3p

hsa-miR-3140-3p hsa-miR-181d-5p hsa-miR-32-5p

hsa-miR-625-5p hsa-miR-200a-3p hsa-miR-7-5p

hsa-miR-18a-5p hsa-miR-30d-3p hsa-miR-3934-5p

hsa-miR-18b-5p hsa-miR-30e-3p hsa-miR-92a-3p

hsa-miR-671-5p hsa-miR-320b hsa-miR-18b-5p

hsa-miR-4306 hsa-miR-542-3p hsa-miR-590-5p

hsa-miR-3177-3p hsa-miR-93-5p hsa-miR-92b-3p

hsa-miR-1827 hsa-let-7d-5p hsa-miR-320d

hsa-miR-135b-3p hsa-miR-15b-3p hsa-miR-19a-3p

hsa-miR-378a-3p hsa-miR-139-5p hsa-miR-19b-3p

hsa-miR-28-5p hsa-miR-141-3p hsa-miR-5000-3p

hsa-miR-19b-3p hsa-miR-27a-3p hsa-miR-29c-3p

hsa-miR-182-5p hsa-miR-877-5p hsa-miR-30a-5p

hsa-miR-423-5p hsa-miR-25-5p hsa-miR-30d-5p

hsa-miR-147b-3p hsa-let-7c-5p hsa-miR-26a-5p

hsa-miR-193b-5p hsa-miR-671-3p hsa-miR-26b-5p

hsa-miR-191-5p hsa-miR-4677-3p hsa-miR-29b-3p

hsa-miR-92a-3p hsa-miR-1307-5p hsa-miR-194-5p

hsa-miR-15b-3p hsa-miR-196a-5p hsa-miR-29c-5p

hsa-miR-218-5p hsa-miR-423-5p hsa-miR-584-5p

hsa-miR-98-5p hsa-miR-22-3p hsa-miR-4677-3p

hsa-miR-19a-3p hsa-miR-26b-5p hsa-let-7d-5p

hsa-miR-449c-5p hsa-miR-375-3p hsa-let-7c-5p

hsa-miR-30a-3p hsa-miR-149-5p hsa-miR-148b-3p

hsa-miR-576-3p hsa-miR-96-5p hsa-let-7e-5p

hsa-miR-10a-5p hsa-miR-151b hsa-let-7i-5p

(Continued)
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TABLE 4 Continued

STC2 BIRC5 PDL1

hsa-miR-152-3p hsa-miR-101-3p hsa-miR-221-3p

hsa-miR-183-5p hsa-let-7i-5p hsa-miR-302a-3p

hsa-miR-135b-5p hsa-miR-484 hsa-miR-196a-5p

hsa-miR-96-5p hsa-miR-152-3p hsa-miR-148a-3p

hsa-miR-877-5p hsa-miR-182-3p hsa-miR-222-3p

hsa-miR-628-5p hsa-miR-450a-5p hsa-miR-335-3p

hsa-let-7b-5p hsa-miR-99b-5p hsa-miR-191-5p

hsa-miR-107 hsa-miR-1234-3p hsa-miR-1271-5p

hsa-miR-195-5p hsa-miR-3184-3p hsa-miR-340-5p

hsa-miR-503-5p hsa-miR-328-3p hsa-miR-34b-5p

hsa-miR-411-3p hsa-miR-320a-3p hsa-miR-1-3p

hsa-miR-193a-3p hsa-miR-203b-5p

hsa-miR-193b-3p hsa-miR-27b-3p

hsa-miR-205-5p hsa-miR-19a-3p

hsa-miR-21-5p hsa-miR-183-5p

hsa-miR-497-5p hsa-miR-103a-3p

hsa-miR-125b-2-3p hsa-miR-15b-5p

hsa-miR-186-5p hsa-miR-107

hsa-miR-320a-3p hsa-miR-148b-5p

hsa-miR-4677-3p hsa-miR-29a-3p

hsa-miR-93-5p hsa-miR-19b-3p

hsa-miR-29c-3p hsa-miR-423-3p

hsa-miR-196b-5p hsa-miR-486-3p

hsa-miR-29a-3p hsa-miR-29c-3p

hsa-miR-641 hsa-miR-30d-5p

hsa-miR-589-3p hsa-miR-132-3p

hsa-miR-429 hsa-miR-103b

hsa-miR-1301-3p hsa-miR-17-3p

hsa-miR-320b hsa-miR-760

hsa-miR-577 hsa-miR-199a-3p

hsa-miR-532-5p hsa-miR-199b-3p

hsa-miR-140-3p hsa-let-7f-5p

hsa-miR-148a-3p hsa-miR-185-5p

hsa-miR-30b-3p hsa-let-7a-5p

hsa-miR-194-5p hsa-miR-210-3p

hsa-miR-3909 hsa-miR-340-5p

hsa-miR-4446-3p hsa-miR-708-5p

hsa-miR-200a-5p hsa-miR-1-3p

(Continued)
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STC2 BIRC5 PDL1

hsa-miR-30d-5p hsa-miR-1343-3p

hsa-miR-324-5p hsa-miR-218-1-3p

hsa-miR-489-3p hsa-miR-26a-5p

hsa-miR-203a-3p hsa-miR-147a

hsa-miR-26b-5p hsa-miR-345-5p

hsa-miR-33a-5p hsa-miR-1296-5p

hsa-miR-33b-5p hsa-miR-335-5p

hsa-miR-1266-5p hsa-miR-128-3p

hsa-miR-181c-5p

hsa-miR-23a-3p

hsa-miR-25-3p

hsa-miR-326

hsa-miR-92b-3p

hsa-miR-30d-3p

hsa-miR-197-3p

hsa-miR-3620-3p

hsa-miR-340-3p

hsa-miR-4728-3p

hsa-miR-769-5p

hsa-let-7f-2-3p

hsa-miR-516b-5p

hsa-miR-185-5p

hsa-miR-182-3p

hsa-miR-340-5p

hsa-miR-23b-3p

hsa-miR-4709-5p

hsa-miR-148a-5p

hsa-miR-548e-3p

hsa-miR-454-5p

hsa-miR-4429

hsa-miR-143-3p

hsa-miR-30c-1-3p

hsa-miR-1225-5p

hsa-miR-3652

hsa-miR-1910-5p

hsa-miR-26a-5p

hsa-miR-3184-5p

hsa-miR-197-5p

(Continued)
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extent. The elevated expression of STC2 and BIRC5, can promote

the binding with those competed miRNA of PDL1, which in turn

upregulated the PDL1 expression. Simultaneously, the activation of

the PI3K/AKT pathway is known to promote PD-L1 expression

(71–73). Li and Zhu et al.’s research demonstrates that STC2 can

facilitate the activation of the PI3K/AKT pathway (74, 75).

Additionally, Shang et al.’s research have shown that BIRC5

expression is regulated by the PI3K/AKT pathway (76). Thus,

elevated BIRC5 expression may serve as an indicator of PI3K/

AKT pathway activation.

Further validation of the prognostic predictive ability of SIR-PS

on HCC tissues of our own center were taken out, and the

consistent results were collected. In addition, we creatively

combined SIR-PS with IHC, which is more extensively utilized

and offers greater convenience in clinical application in comparison

to RNA-Seq technology. HCC tissue chips were performed for IHC

staining and the results were scored. Utilizing these scores, we

employed the SIR-PS to calculate individual patient risk scores,

thereby evaluating the clinical utility of it. The SIR-PS exhibited a

high degree of accuracy in prognostically assessing the 1 and 3 year

survival for the HCC tissue chips’ patients, with the low-risk group

exhibiting a markedly more favorable prognosis than the high-risk

group. In comparison to other immunohistochemical indicators,

such as GPC3 and CK19, the SIR-PS demonstrates superior

predictive capabilities. This study has to some extent filled the

gap in clinical pathological work that lacks specific IHC prognostic

indicators for HCC. However, there are still limitation and

deficiency in our study. Firstly, due to the lack of immune

therapy results in tissue chips, we were unable to validate the
Frontiers in Immunology 18184
predictive ability of this model for immune therapy efficacy in

tissue chips through IHC. Secondly, although the datasets we

included cover a wide range of ethnicities, they are still not

comprehensive. Finally, as the datasets only include samples from

patients who can undergo surgery, the applicability to samples from

patients who cannot undergo surgery is uncertain, especially in

clinical pathology work, where liver biopsy samples from non-

resectable patients may not be applicable.

Taken together, the present investigation identified a novel

prognostic model (SIR-PS) based on the KEGG pathway and

focused on immune related genes. This model demonstrates

potential as an effective tool for predicting prognosis of HCC and

for assessing the efficacy of immunotherapeutic interventions.

Utilizing the SIR-PS to calculate the risk score of each patient

with HCC has showed a favorable efficacy in the 1 and 3 year

survival rate prognostication. Given the absence of specific

biomarkers for the prognostic evaluation of HCC in clinical,

combination of SIR-PS with IHC promoted the clinical

application of prognostic models and broadening the approach of

prognostic models from databases to clinical practice.
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STC2 BIRC5 PDL1

hsa-miR-378i

hsa-let-7d-3p

hsa-miR-103b

hsa-miR-320d
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hsa-miR-30e-3p

hsa-miR-423-3p

hsa-miR-574-5p

hsa-miR-1271-5p

hsa-miR-21-3p

hsa-miR-27a-5p

hsa-miR-147a

hsa-miR-494-3p

hsa-miR-941

hsa-miR-138-5p
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represses the oncogenic sno-miR-28, et al. Widespread context dependency of
microRNA-mediated regulation. Genome Res. (2014) 24:906–19. doi: 10.1101/
gr.166702.113

70. Yu F, Bracken CP, Pillman KA, Lawrence D, Goodall GJ, Callen DF, et al. p53
represses the oncogenic sno-miR-28 derived from a snoRNA. PLoS One. (2015) 10:
e0129190. doi: 10.1371/journal.pone.0129190

71. Muthumani K, Shedlock DJ, Choo DK, Fagone P, Kawalekar OU, Goodman JS,
et al. HIV-mediated phosphatidylinositol 3-kinase/serine–threonine kinase activation
in APCs leads to programmed death-1 ligand upregulation and suppression of HIV-
specific CD8 T cells. J Immunol. (2011) 187:2932–43. doi: 10.4049/jimmunol.1100594

72. Lastwika KJ, Wilson W 3rd, Li QK, Norris JW, Xu H, Ghazarian SR, et al.
Control of PD-L1 expression by oncogenic activation of the AKT–mTOR pathway in
non–small cell lung cancer. Cancer Res. (2016) 76:227–38. doi: 10.1158/0008-5472.can-
14-3362

73. Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y, et al. Clinical implications of
the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression
and treatment of non-small cell lung cancer. J Cancer. (2022) 13:3434–43. doi: 10.7150/
jca.77619

74. Zhu C, Jiang Y, Zhu J, He Y, Yin H, Duan Q, et al. CircRNA8220 sponges miR-
8516 to regulate cell viability and milk synthesis via ras/MEK/ERK and PI3K/AKT/
mTOR pathways in goat mammary epithelial cells. Anim (Basel). (2020) 10(8):1347.
doi: 10.3390/ani10081347

75. Li D, Xiong Y, Li M, Long L, Zhang Y, Yan H, et al. STC2 knockdown inhibits
cell proliferation and glycolysis in hepatocellular carcinoma through promoting
autophagy by PI3K/Akt/mTOR pathway. Arch Biochem Biophys. (2024) 761:110149.
doi: 10.1016/j.abb.2024.110149

76. Shang X, Liu G, Zhang Y-F, Tang P, Zhang H, Jiang H, et al. Downregulation of
BIRC5 inhibits the migration and invasion of esophageal cancer cells by interacting
with the PI3K/Akt signaling pathway. Oncol Lett. (2018) 16(3):3373–9. doi: 10.3892/
ol.2018.8986
frontiersin.org

https://doi.org/10.3389/fonc.2022.978050
https://doi.org/10.3389/fonc.2022.978050
https://doi.org/10.1002/hep.27273
https://doi.org/10.1002/hep.27273
https://doi.org/10.1016/j.cancergencyto.2005.08.022
https://doi.org/10.1200/jco.2014.32.15_suppl.6580
https://doi.org/10.1056/nejmoa2108873
https://doi.org/10.1042/bsr20182057
https://doi.org/10.5483/bmbrep.2015.48.12.158
https://doi.org/10.3748/wjg.v11.i25.3855
https://doi.org/10.1200/jco.2019.37.15_suppl.1573
https://doi.org/10.1186/s13046-019-1403-9
https://doi.org/10.1126/science.1261669
https://doi.org/10.18632/aging.205047
https://doi.org/10.3892/mco.2015.569
https://doi.org/10.1111/jgh.15475
https://doi.org/10.1016/j.annonc.2020.02.017
https://doi.org/10.1038/s41416-020-01048-4
https://doi.org/10.1084/jem.20160801
https://doi.org/10.1084/jem.20160801
https://doi.org/10.1016/j.celrep.2024.113712
https://doi.org/10.1038/nature19330
https://doi.org/10.1038/nature04444
https://doi.org/10.18632/oncotarget.15213
https://doi.org/10.1016/j.cellsig.2014.12.003
https://doi.org/10.1186/s12935-017-0474-y
https://doi.org/10.1093/jnci/djv303
https://doi.org/10.1093/jnci/djv303
https://doi.org/10.18632/oncotarget.v7i29
https://doi.org/10.1159/000488634
https://doi.org/10.18632/oncotarget.15924
https://doi.org/10.1074/jbc.M117.809053
https://doi.org/10.1074/jbc.M117.809053
https://doi.org/10.1038/mt.2015.10
https://doi.org/10.18632/oncotarget.19842
https://doi.org/10.1038/ncomms6241
https://doi.org/10.1038/ncomms6241
https://doi.org/10.1038/ncomms11406
https://doi.org/10.1016/j.neo.2016.04.008
https://doi.org/10.1186/s12864-016-2675-5
https://doi.org/10.1007/s00439-010-0915-3
https://doi.org/10.1128/mBio.00193-13
https://doi.org/10.1101/gr.166702.113
https://doi.org/10.1101/gr.166702.113
https://doi.org/10.1371/journal.pone.0129190
https://doi.org/10.4049/jimmunol.1100594
https://doi.org/10.1158/0008-5472.can-14-3362
https://doi.org/10.1158/0008-5472.can-14-3362
https://doi.org/10.7150/jca.77619
https://doi.org/10.7150/jca.77619
https://doi.org/10.3390/ani10081347
https://doi.org/10.1016/j.abb.2024.110149
https://doi.org/10.3892/ol.2018.8986
https://doi.org/10.3892/ol.2018.8986
https://doi.org/10.3389/fimmu.2025.1481366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores the biological processes of human aging

Advances our understanding of human aging and 

the fundamental link with age-related diseases, 

ultimately leading to improved healthspans.

Discover the latest 
Research Topics

See more 

Frontiers in Aging

https://www.frontiersin.org/journals/aging/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Application of bioinformatics, machine learning, and artificial intelligence to improve diagnosis, prognosis and treatment of cancer

	Table of contents

	Editorial: Application of bioinformatics, machine learning, and artificial intelligence to improve diagnosis, prognosis and ...
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving&#146;neoadjuvant immunochemotherapy
	1 Introduction
	2 Methods and materials
	2.1 Study population
	2.2 Treatment method
	2.3 Pathological evaluation
	2.4 Image acquisition
	2.5 Radiomics procedures
	2.6 Statistics

	3 Results
	3.1 Clinical characteristics
	3.2 Selection of the radiomics features
	3.3 Development and validation of the prediction models
	3.4 Calibration curve and decision curve analysis of the prediction models

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Construction and validation of a machine learning-based nomogram to predict the prognosis of HBV associated hepatocellular carcinoma patients with high levels of hepatitis B surface antigen in primary local treatment: a multicenter study
	1 Introduction
	2 Materials and methods
	2.1 Patient selection
	2.2 Clinicopathologic characteristics
	2.3 Treatment received
	2.3.1 TACE procedure
	2.3.2 Ablation procedure

	2.3 Follow-up
	2.4 Statistical analysis

	3 Result
	3.1 Efficacy
	3.2 The prediction model was built based on the Lasso-Cox regression
	3.2.1 Independent prognostic factors of RFS
	3.2.2 Develop the nomogram
	3.2.3 Validate the nomogram


	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Mining bone metastasis related key genes of prostate cancer from the STING pathway based on machine learning
	1 Introduction
	2 Methods
	2.1 Cell culture and transfection
	2.2 Cell proliferation assay
	2.3 Cell migration assay
	2.4 Immunohistochemistry
	2.5 Data collection and preprocessing
	2.6 Identification and evaluation of key genes
	2.7 Biological function exploration of key genes
	2.8 Immune analysis of key genes
	2.9 Molecular functional validation of RELA
	2.10 Construction of nomogram and prediction of targeted drugs

	3 Results
	3.1 Identification and evaluation of key genes
	3.2 Biological function exploration of key genes
	3.3 Immune analysis of key genes
	3.4 Molecular functional validation of RELA
	3.5 Construction of nomogram and prediction of targeted drugs

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	References

	Pan-cancer analysis predict that FAT1 is a therapeutic target and immunotherapy biomarker for multiple cancer types including non-small cell lung cancer
	Introduction
	Materials and methods
	NSCLC samples and next-generation sequencing
	Data sources and processing for FAT1 mRNA expression
	Genetic analysis
	FAT1-related gene enrichment analysis
	Analysis of tumor immune and immunosuppressive cell infiltration
	Epigenetic methylation analysis
	Analysis of gene expression correlations with therapeutic responses
	Cell culture and transfection
	Real-time polymerase chain reaction
	Cell proliferation assay
	5-ethynyl-2’-deoxyuridine assay
	Colony formation assay
	Transwell assay
	Scratch wound-healing assay
	Protein extraction and western blot analysis
	Multicolor immunofluorescence
	Animal xenograft tumor experiment
	Statistical analysis

	Results
	FAT1 is frequently mutated in NSCLC tissues
	FAT1 expression and its clinical significance in pan-cancer
	DNA methylation analysis of FAT1 in pan-cancer
	Correlation analysis and pathway enrichment of FAT1 in pan-cancer
	Distinct immune microenvironment based on FAT expression
	Prediction of therapeutic response based on FAT1 expression
	Altered FAT1 expression changes tumor immune microenvironment
	FAT1 accelerated the proliferation and migration of lung cancer cells in vitro
	Knockdown of FAT1 inhibited the proliferation of lung cancer cells in vivo

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Exploring the molecular and immune landscape of cellular senescence in lung adenocarcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data source and processing
	2.2 Aging gene set and screening
	2.3 Construction and validation of an ARGs risk model
	2.4 Functional enrichment analysis of differentially expressed genes based on HAS and LAS groups
	2.5 Immune infiltration between the HAS-group and LAS-group from TCGA-LUAD cohort
	2.6 The genetic landscapes of HAS-group and LAS-group
	2.7 Single-cell RNA-seq analysis
	2.8 Identification of cancer cells
	2.9 Aging-related risk scores based on pseudo-bulks
	2.10 Cell-cell interactions
	2.11 Statistical analysis

	3 Results
	3.1 Construction and validation of aging-related risk score
	3.2 The genetic characteristics of HAS-group and LAS-group
	3.3 ARRSs is associated with cell proliferation and immune function
	3.4 The single cell alta of HAS-group and LAS-group
	3.5 Inference of cell-cell interactions
	3.6 Cellular senescence heterogeneity in the tumor microenvironment

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Machine learning to predict distant metastasis and prognostic analysis of moderately differentiated gastric adenocarcinoma patients: a novel focus on lymph node indicators
	1 Introduction
	2 Materials and methods
	2.1 Sources of data and sample selection
	2.2 Variable selection
	2.3 Statistical methods
	2.4 Ethics approval

	3 Results
	3.1 Basic features and patient subgroups
	3.2 Comparison and analysis of model variables
	3.3 Establishment of predictive models for distant metastasis

	4 Prognostic analysis and prediction of MDGA patients with established DM
	4.1 Patient baseline characteristics
	4.2 Analysis of prognosis-related factors
	4.3 Nomogram
	4.4 Evaluation and validation of the nomograms

	5 Analysis of the impact of more detailed LN indicators on the occurrence of DM and prognosis of MDGA
	6 Discussion
	7 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Machine learning based anoikis signature predicts personalized treatment strategy of breast cancer
	Introduction
	Methods
	Data acquisition
	Machine learning derived anoikis signature
	Genomic alteration analysis
	Single-cell data processing
	Inference of regulons and their activity
	Regulon clustering
	Cell-cell communication analysis
	Evaluation of TME disparities and immunotherapy response
	Determination of therapeutic targets and drugs for high AIDAS patients
	Patient stratification
	Immunohistochemistry experiment

	Results
	Construction of an anoikis model using artificial intelligence
	Assessment of AIDAS with 83 published models
	Multi-omics analysis of genomic alterations based on AIDAS
	Deciphering the AIDAS at the single-cell level
	Specific regulons for AIDAS and cell recognition
	Intercellular communications for AIDAS
	Personalized immunotherapy for low-AIDAS patients
	Identification of therapeutic drugs for high-AIDAS patients

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Prediction of acute myeloid leukemia prognosis based on autophagy features and characterization of its immune microenvironment
	Introduction
	Methods
	Data set acquisition
	Acquisition of autophagy genes
	Random forest identifies overall survival-related ARGs
	SVM identifies ARGs
	XGBoost Identifies ARGs
	Permutation test
	Functional enrichment analysis and PPI molecular interactions
	Construction and validation of survival prediction models
	Identification of differentially expressed genes
	Immune infiltration analysis

	Results
	Using machine learning to select OS-related ARGs
	Enrichment analysis of ARGs
	Modelling survival predictions
	External validation set validation of survival prediction models
	Identification and enrichment of DEGs
	Immune infiltration and immune interactions

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Construction of a risk prediction model for postoperative deep vein thrombosis in colorectal cancer patients based on machine learning algorithms
	1 Introduction
	2 Materials and methods
	2.1 Study design
	2.2 Study data
	2.3 Study variables
	2.4 Diagnosis
	2.5 Data preprocessing
	2.6 Feature selection
	2.7 Model development and evaluation
	2.8 Statistical analysis
	2.9 Feature interpretation

	3 Results
	3.1 Characteristics of patients
	3.2 Prediction factor screening
	3.3 Model performance
	3.4 Model performance evaluation
	3.5 Model-based interpretability analysis

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Exploration and validation of a novel reactive oxygen species–related signature for predicting the prognosis and chemotherapy response of patients with bladder cancer
	1 Introduction
	2 Methods and methods
	2.1 Data acquisition
	2.2 Identification of ROS&dash;associated differentially expressed genes
	2.3 Enrichment analysis of ROS&dash;related DEGs
	2.4 Protein-protein interactions
	2.5 Identification of potential small-molecule drugs
	2.6 Construction and validation of the prognostic signature of ROS
	2.7 Development of a nomogram
	2.8 Gene set enrichment analysis and immune cell infiltration and tumor mutational burden analyses
	2.9 Chemotherapeutic response analysis
	2.10 Patient sample
	2.11 Immunohistochemistry
	2.12 Cell culture, treatments, and siRNA transfection
	2.13 Western blot analysis
	2.14 CCK8 assay
	2.15 Colony formation assay
	2.16 Edu assay
	2.17 Transwell assay
	2.18 Statistical analysis

	3 Results
	3.1 Identification of ROS-related genes in BLCA
	3.2 Functional assays of the selected prognostic genes and Protein-protein interaction network construction
	3.3 Small-molecule drugs
	3.4 Construction and validation of the ROS-based prognostic signature
	3.5 Establishment and validation of the risk scores model
	3.6 GSEA
	3.7 Immune cell infiltration
	3.8 Tumor mutational burden analysis
	3.9 Chemotherapeutic response analysis
	3.10 Expression analysis of nine genes in the Human Protein Atlas database
	3.11 AKR1B1 affected BLCA cell viability, migration, and proliferation

	4 Discussion
	5 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	An immune-related signature based on molecular subtypes for predicting the prognosis and immunotherapy efficacy of hepatocellular carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data resources
	2.2 Gene set variation analysis and consensus clustering
	2.3 Differential and enrichment analysis of the subtypes
	2.4 Identification of immune-related differentially expressed genes among HCC subtypes (SIRDEGs)
	2.5 Construction and validation of a prognostic signature based on the SIRDEGs
	2.6 Exploration of the tumor immune microenvironment and immunotherapy response
	2.7 Mutation analysis
	2.8 Spatial transcriptome analysis
	2.9 Quantitative real-time reverse transcriptase polymerase chain reaction in cell lines
	2.10 Western blotting
	2.11 Validation of SIR-PS in HCC tissue chips
	2.12 Exploring the potential mechanisms of SIR-PS regulating immunotherapy efficacy
	2.13 Statistical analysis

	3 Results
	3.1 Identification and enrichment analysis of subtypes based on KEGG pathway in HCC
	3.2 Development and validation of the SIR-PS
	3.3 Exploration of the clinical significance and tumor microenvironment of the SIR-PS
	3.4 Mutation landscape analysis of SIR-PS
	3.5 Spatial transcriptome analysis of SIR-PS
	3.6 qPCR and Western blotting in HCC cell lines
	3.7 Validation of the SIR-PS based on iHC staining of the HCC tissue chips
	3.8 Exploration of clinical information between high-risk and low-risk group of patients with HCC tissue chips data
	3.9 Exploration of the mechanism by which prognostic models affect immunotherapy

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




