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Editorial on the Research Topic

Investigating AI-based smart precision agriculture techniques
Overview

The monsoon plays a pivotal role in determining agricultural output. The success of

crops planted during a monsoon season is highly contingent on the prevailing weather

conditions. Access to real-time meteorological information is crucial for farmers to make

informed decisions regarding crop management, thereby reducing the risks and losses

associated with adverse climatic conditions.

Agricultural fields are typically managed on a field-by-field basis, without considering

the spatial and temporal variability of the soil. This approach can lead to uninformed

decisions by farmers regarding inputs such as fertilizers, irrigation systems, and labor,

resulting in suboptimal harvests. To address this, precision agriculture aims to optimize

resource utilization by effectively managing the temporal and geographical variability of

soil and ecosystem conditions. The advent of the Internet of Things (IoT) and sensor-edge

connecting devices has greatly facilitated the collection of agricultural data in a smart

manner for farmers.

In addition to weather-related challenges, economic difficulties also impact farming

practices and productivity, particularly in rural and semi-rural areas. Farmers face daily

obstacles such as pesticide use, water scarcity, resource limitations, and poor soil quality.

Overcoming these challenges requires the strategic determination of best practices

and approaches.

Smart precision agriculture emerges as an innovative solution that leverages cutting-

edge technology to enhance crop yields sustainably. By integrating smart IoT devices and

sensors, farmers can optimize agricultural output while minimizing their field work time.

Smart technologies enable more efficient resource usage, including reduced water and

power consumption, and constant monitoring of variables like humidity and temperature.

Internet of Things-based smart farming utilizes multiple sensors, measuring parameters

such as humidity, temperature, and soil moisture, to monitor field conditions effectively.
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Despite the potential benefits, Smart Sustainable Agriculture

(SSA) faces challenges due to insufficient investment in research

and development. Additionally, complex barriers arise from the

fragmented nature of agricultural processes, encompassing aspects

such as the management and operation of IoT/AI machines, remote

sensing, environmental impact assessment, data sharing and

management, interoperability, and the analysis and storage of

extensive datasets.

The provided text discusses various research papers and studies

related to AI-based smart precision agriculture techniques. Here is a

summary of each study:
Chinese agricultural named
entity recognition

This study focuses on improving named entity recognition in

Chinese agricultural texts, specifically in the context of kiwifruit

diseases and pests. The researchers propose a novel model called

KIWINER, which incorporates new word detection, an attention-

based softlexicon module, and a parallel connection criss-cross

attention module. The model achieves high F1-scores on multiple

datasets, demonstrating its effectiveness in recognizing kiwifruit-

related named entities (Zhang et al.).
Infrared and visible image
fusion in agriculture

The paper presents a distributed fusion architecture called

RADFNet for combining infrared and visible images in agricultural

applications. The architecture utilizes residual CNN, edge attention,

and multiscale channel attention to improve image quality and

eliminate environmental interference. Experimental results show

that RADFNet outperforms existing image fusion algorithms in

terms of visual effect and quantitative metrics (Feng et al.).
Dome-type planted pumpkin
autonomous harvesting framework

This study introduces a framework for autonomous harvesting of

dome-type planted pumpkins. The framework includes a keypoint

detection method using instance segmentation architecture, combining

transformer network and point rendering to address overlapping and

improve segmenting precision. Experimental results on a pumpkin

image dataset demonstrate the effectiveness of the proposed method in

instance segmentation and keypoint detection, with promising

application prospects in fruit picking tasks (Yan et al.).
Genetic diversity analysis of
Hopea hainanensis

The research focuses on the genetic diversity of Hopea

hainanensis, an endangered tree species found in Hainan Island,
Frontiers in Plant Science 026
China. Using SNP and genotyping-by-sequencing technology,

the study analyzes the genetic diversity among different

populations of Hopea hainanensis in fragmented habitats. The

results reveal low genetic diversity, highlighting the need for

genetic diversity research in the conservation of rare and

endangered plants (Chen et al.).
Cassava leaf disease classification

This paper addresses the classification of cassava leaf diseases

using deep convolutional neural networks. A multi-scale fusion

model based on attention mechanism is proposed to enhance

disease feature extraction from cassava leaves. The model achieves

improved classification performance compared to the original

model, providing support for the recognition and early diagnosis

of plant disease leaves (Liu et al.).
Weed detection in turfgrass

The study focuses on weed detection in turfgrass using deep

learning methods. Various convolutional neural networks

(DenseNet, EfficientNet-v2, and ResNet) are trained to detect

weeds susceptible to herbicides, enabling site-specific weed

detection. The results demonstrate high F1 scores and MCC

values for most weed species, except for those with similar plant

morphology. The proposed method provides an effective strategy

for precision herbicide application (Jin et al.).
Crop rotation and soil health

This research examines the impact of different vegetable

cropping systems on soil chemical properties, eggplant

photosynthesis, and antioxidant functioning. Leafy vegetable

rotation systems are found to significantly improve soil organic

matter and available nutrients, as well as enhance eggplant growth

and yield. The rotation systems also lead to higher antioxidant

enzyme activity, reducing oxidative damage to membranes. The

study highlights the benefits of crop rotation for improving the

growth and yield of eggplant (Ghani et al.).
Objective evaluation of
turfgrass cultivars

The project addresses the subjectivity in the evaluation of

turfgrass cultivars using ordinal data. A model-based approach is

proposed to minimize subjectivity and enable objective

comparisons of cultivars across different test locations. The model

is fitted in a Bayesian framework, allowing the estimation of

additional parameters and providing better separation of cultivar

means. The approach improves the evaluation procedure and

enables more realistic comparisons (Qu et al.).
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Yolo optimization

YOLOv7 maize pests identification method incorporating the

Adan optimizer is proposed for the timely and accurate detection of

major pests of corn. The study focuses on three major corn pests:

corn borer, armyworm, and bollworm. A corn pests dataset is

constructed using data augmentation techniques to address the

issue of limited pest data. The YOLOv7 network is chosen as the

detection model, and the Adan optimizer is introduced to replace

the original optimizer for improved efficiency and accuracy while

reducing computational costs (Zhang et al.).
UNET+CBAM disease classification

This research focuses on the identification of apple diseases,

specifically Alternaria blotch and brown spot diseases, aiming to

improve production efficiency and quality. The paper proposes a

disease spot segmentation and disease identification method based

on DFL-UNet+CBAM. The primary issues addressed are the low

recognition accuracy and poor performance of small spot

segmentation in apple leaf disease recognition. The objective is to

accurately prevent and control apple diseases, minimize fruit

quality degradation, yield reduction, and associated economic

losses. The proposed DFL-UNet+CBAM model incorporates a

hybrid loss function comprising Dice Loss and Focal Loss

(Zhang et al.).
Frontiers in Plant Science 037
Pepper leaf segmentation

The study focuses on segmenting pepper leaves from images to

aid in the control of pepper leaf diseases. A bidirectional attention

fusion network called BAF-Net is proposed (Zhang et al.).
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Lexicon and attention-based
named entity recognition for
kiwifruit diseases and pests: A
Deep learning approach

Lilin Zhang1, Xiaolin Nie1, Mingmei Zhang1, Mingyang Gu1,
Violette Geissen2, Coen J. Ritsema2, Dangdang Niu1*

and Hongming Zhang1*

1College of Information Engineering, Northwest Agricultural and Forestry (A&F) University, Yangling,
China, 2Soil Physics and Land Management Group, Wageningen University, Wageningen, Netherlands
Named Entity Recognition (NER) is a crucial step in mining information from

massive agricultural texts, which is required in the construction of many

knowledge-based agricultural support systems, such as agricultural

technology question answering systems. The vital domain characteristics of

Chinese agricultural text cause the Chinese NER (CNER) in kiwifruit diseases

and pests to suffer from the insensitivity of common word segmentation tools

to kiwifruit-related texts and the feature extraction capability of the sequence

encoding layer being challenged. In order to alleviate the above problems,

effectively mine information from kiwifruit-related texts to provide support for

agricultural support systems such as agricultural question answering systems,

this study constructed a novel Chinese agricultural NER (CANER) model

KIWINER by statistics-based new word detection and two novel modules,

AttSoftlexicon (Criss-cross attention-based Softlexicon) and PCAT (Parallel

connection criss-cross attention), proposed in this paper. Specifically, new

words were detected to improve the adaptability of word segmentation tools

to kiwifruit-related texts, thereby constructing a kiwifruit lexicon. The

AttSoftlexicon integrates word information into the model and makes full use

of the word information with the help of Criss-cross attention network

(CCNet). And the PCAT improves the feature extraction ability of sequence

encoding layer through CCNet and parallel connection structure. The

performance of KIWINER was evaluated on four datasets, namely KIWID

(Self-annotated), Boson, ClueNER, and People’s Daily, which achieved

optimal F1-scores of 88.94%, 85.13%, 80.52%, and 92.82%, respectively.

Experimental results in many aspects illustrated that methods proposed in

this paper can effectively improve the recognition effect of kiwifruit diseases

and pests named entities, especially for diseases and pests with strong

domain characteristics

KEYWORDS

intelligent farming for diseases recognition, Chinese named entity recognition,
kiwifruit diseases and pests, data mining, lexicon, Criss-cross attention, deep
learning, machine learning
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1 Introduction

Kiwifruit is one of the economic sources of the planting

industry in China, but owing to the impact of pests and diseases,

the overall level of kiwifruit quality in China is not high at present

(Jiang and Zong, 2020). Chinese named entity recognition in the

field of agriculture aims to recognize the boundaries and categories

of agriculture-related entities from unstructured agricultural texts,

such as diseases, pests, and pesticides (Guo et al., 2020). This is a key

technology in the automatic mining of knowledge from very large

Chinese agricultural texts and is the basis for downstream tasks

such as building agricultural knowledge graphs and constructing

agricultural intelligent question-and-answer (Q&A) systems (Drury

and Roche, 2019; Guo et al., 2020). Therefore, accurate recognition

of named entities in the field of kiwifruit plays an important role in

ensuring the healthy development of the industry, plant protection,

and convenience for agricultural workers.

Traditional NER methods can be divided into rule-based,

dictionary-matching-based, and machine-learning-based

approaches (Guo et al., 2020). Although each approach can

achieve good results, they rely heavily on time- and energy-

consuming pattern matching and feature engineering and have

poor generalization ability. Through the application of deep

learning in the field of NER and other fields (Chiu and Nichols,

2016; Bhatti et al., 2020b), researchers have developed various

techniques for medical science (Zhao et al., 2019; Bhatti et al.,

2021; Nawaz et al., 2021), cyber security (Li T et al., 2020),

agriculture (Biswas and Sharan, 2021), social media (Aguilar

et al., 2017) and environmental science (Bhatti et al., 2020a;

Aamir et al., 2021; Galvan et al., 2022). In the field of Chinese

NER (CNER), because sentences in Chinese texts are not

naturally separated, unlike sentences in English, there is no

obvious border symbol. Therefore, the first step in many

original deep-learning-based CNER methods is to segment the

text using word segmentation tools (Yang et al., 2016; He and

Sun, 2017). With the development of research on CNER, many

researches show that the character-based CNER model avoids

segmentation errors and makes it more suitable than the word

based model. (Jingzhou and Houfeng, 2008; Liu et al., 2010).

However, in order to avoid the problem of segmentation errors,

the character based CNER model cannot use Chinese word

information. Recently many researchers have realized that word

information will play a positive role in the correct recognition of

Chinese entity boundaries. Therefore, lexicon-based CNER

models have been widely used in recent years. For example,

Zhang and Yang (2018) introduced the lattice long short-term

memory model (Lattice-LSTM) based on a lexicon, allowing

character-level and word-level information corresponding to the

characters to be encoded simultaneously. Peng et al. (2020)

proposed the Softlexicon method to integrate word information

into the NER model by simply adjusting the character

representation layer. The lexicon based model, with the help of

the public lexicon, achieves better results than the purely
Frontiers in Plant Science 02
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character based model (Peng et al., 2020). For example, when

the lexicon based model recognizes the Chinese entity “长江大

桥” (Yangtze River Bridge), words such as “长江” (Yangtze

River), “大桥” (Bridge), and “长江大桥” (Yangtze River

Bridge) in the lexicon can help eliminate the ambiguity of

potentially related named entities in the context, such as the

person name “江大桥” (Daqiao Jiang) (Zhang and Yang, 2018).

For CNER in the field of agriculture (CANER). The lexicon-

based method makes good use of character information and

word information, so using them to solve the CANER problem

may be a theoretically feasible solution too. However, there is

currently no open-source lexicon in the field of agriculture, and

manual lexicon construction is labor-intensive. If the lexicon is

built through automatic word segmentation, the existing word

segmentation tools face the problem of word segmentation

errors caused by insensitive word segmentation. For example,

farm chemicals entities such as “速乐硼、辛硫磷乳油” (solubor,

phoxim) and kiwifruit variety entities “中华猕猴桃、红心猕猴

桃” (Actinidia chinensis Planch., red-fleshed kiwi), which exist in

kiwifruit-related texts, have strong domain characteristics, and

these will make the word segmentation tool insensitive in the

form of out-of-vocabulary (OOV) words. Therefore, many

CANER methods are still character-based models (Guo et al.,

2020; Zhao et al., 2021; Guo et al., 2022), and the use of word

information is hindered by word segmentation errors. As for the

sequence coding layer of recently CANER model, bidirectional

long short-term memory (BiLSTM) is still the mainstream deep

learning method, which can memorize long-text sequence

features in theory (Liu et al., 2020; Zhao et al., 2021).

However, the contextual feature extraction ability of BiLSTM

has the following limitations. First, with an increase in sentence

length, the feature extraction ability of BiLSTM will decline (Li Y

et al., 2020). Second, BiLSTM makes each character contribute

equally to the task (Guo et al., 2020), but the contribution of

different types of characters in agricultural texts to the task is

certainly different. Third, the strong domain features of

kiwifruit-related text, particularly farm chemical-related

entities, disease-related entities, and pest-related entities, pose

a challenge to the feature extraction ability of BiLSTM. In

summary, deep learning-based methods for CANER in the

field of kiwifruit diseases and pests face the following

problems: The use of word information is hampered by OOV

problem in the process of lexicon construction. And the

contextual information capture capability of the sequence

encoding layer needs to be further improved.

This research proposes a lexicon-based CANER model

KIWINER on the basis of bidirectional long short term

memory and conditional random field model (BiLSTM-CRF).

The objectives of KIWINER are to take measures to solve the

above problems in the end of the previous paragraph, that is, to

integrate the word information containing domain features into

the model, improve the model feature extraction ability, and

ultimately provide support for the construction of the kiwifruit
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Q&A system. Specifically, KIWINER improves the recognition

quality through statistics-based new word detection,

AttSoftlexicon, and PCAT. First, statistics-based new word

detection is innovatively used to detect new words in

kiwifruit-related text corpora, thereby improving the

adaptability of word segmentation tools to kiwifruit-related

texts and reducing the impact of word segmentation errors on

the lexicon construction process; Second, through the

AttSoftlexicon method proposed in this paper, based on

Softlexicon (Peng et al., 2020) and CCNet (Huang et al., 2019),

the character and word information in the lexicon are integrated

into the model, and the position information of the character in

the corresponding words can be fully utilized with the help of

CCNet (Huang et al., 2019); Third, a novel module parallel

connection criss-cross attention network (PCAT) is proposed to

improve the contextual feature extraction ability of BiLSTM.

PCAT assigns different weights to different characters according

to their correlation and constructs a parallel structure through

convolutional layers with different filter sizes to obtain richer

semantic information. Additionally, this study collected publicly

available textual information and constructed a kiwifruit NER

dataset consisting of 17809 entities across six categories.

Previous CANER methods based on machine learning, such as

CRF (Li et al., 2017), rely on manual features or rules, which are

time-consuming and unable to process a large number of

complex agricultural texts (Guo et al., 2020). The CANER

methods such as Att-BiLSTM-CRF (Zhao et al., 2021) use the

deep learning method to reduce the work of designing feature

extractors for each problem and solve the above problems.

Compared with the popular CANER methods based on deep

learning, our proposed KIWINER alleviates the OOV problem

through new word detection, and makes full use of lexical

information and agricultural features in addition to character

information through AttSoftlexicon and PCAT, so the feature

extraction ability of deep learning model is effectively improved.

We also use KIWINER and five typical CNER models and two

popular CANER models for comparative experiments, and the

KIWINER model yields better performance.

The remainder of this paper is organized as follows. The

materials used in this study and the methods proposed in this

paper is discussed in detail in section 2. Section 2 also introduces

the experimental parameters, dataset division, evaluation

metrics, and the experimental environment. The experimental

details and results are presented in Section 3. The discussion of

this study is presented in section 4. Finally, the conclusions are

presented in Section 5.
2 Materials and methods

The overall architecture of KIWINER, shown in Figure 1,

indicates that the model contains six layers and uses BiLSTM-

CRF as the basic framework. This section first introduces the
Frontiers in Plant Science 03
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experimental materials. Then this section focuses on the

implementation details of the new word detection layer,

embedding layer, CCNet, and AttSoftlexicon and PCAT

proposed in this paper. Details of the BiLSTM and CRF layers

can be found in (Huang et al., 2015).
2.1 Materials

To solve the problem of the limited public NER dataset for

CANER, a new kiwifruit-related annotated corpus, named

KIWID, was collected and annotated under the guidance of

plant protection experts from Northwest A&F University.

2.1.1 Corpus collection
To ensure the quality of data, this study collected public

information on kiwifruit diseases and pests from the official

websites of trusted research institutions and Baidu Encyclopedia.

Preprocessing was applied to remove non-useful content, such as

webpage tags, links, and special characters contained in the

corpus. Finally, a corpus (Corpus A of kiwifruit) containing

61103 sentences for training character vectors and detecting new

words was obtained.

2.1.2 Corpus tagging
We selected 12477 sentences from Corpus A to form Corpus

B. Under the guidance of plant experts from Northwest A&F

University, six types of kiwifruit-related entities were labeled, as

shown in Table 1. Therefore, this study used the BMES (Ratinov

and Roth, 2009) tagging scheme to tag Corpus B, where B, M, E,

and S represent the beginning, middle, and end of an entity, and

a single-word entity, respectively. To ensure annotation quality,

the manual annotation method was adopted. Finally, the

kiwifruit-related dataset KIWID containing 17809 entities was

obtained, and the statistical information of KIWID is presented

in the last column of Table 1.
2.1.3 Analysis of Corpus features
(1) Contains several specialized vocabulary terms.

Entities involved in agricultural diseases and pests such as

farm chemicals entities, pest entities, plant disease entities, and

varieties entities are annotated in the corpus, such as “二甲吗啉”

(dimethomorph), “联苯菊酯” (bifenthrin), “介壳虫” (scale

insect), and “斑点病” (scab). Such words usually do not appear

in the built-in dictionaries of common word-segmentation tools

and have strong domain characteristics. Therefore, most word

segmentation tools have poor adaptability to these specialized

terms, leading to a greater likelihood of word segmentation

errors. If the word information in the lexicon constructed by

automatic word segmentation is introduced into the CANER

model, the accuracy of the model may be significantly affected by

word segmentation errors.
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(2) Number of entities is unevenly distributed.

As shown in Table 1, there are differences in the number of

different types of entities. The same problem exists not only in

agriculture (Guo et al., 2022) but also in clinical medicine (Kong

et al., 2021). The uneven distribution of the number of entities

introduces challenges to the feature extraction ability of the

CANER models.
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(3) Entities nested within each other

Nested named entities are a common problem in the field of

NER in the task of identifying kiwifruit-related entities. For

example, there are two entities nested in “中华猕猴桃” (Actinidia

chinensis Planch.), which are the location entity “中华” (China)

and the plant entity “猕猴桃” (kiwifruit). First, this leads to

errors in word segmentation. For example, Jieba’s word
FIGURE 1

The architecture of KIWINER.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1053449
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1053449
segmentation result of “中华猕猴桃” (Actinidia chinensis

Planch.) is “中华 猕猴桃” (China kiwifruit). If the lexicon for

the NER model contains incorrect word segmentation

information, it provides misleading information for the

identification of entity boundaries. Moreover, the phenomenon

of nested entities also increases the difficulty of entity

recognition and introduces challenges to the feature extraction

ability of the model.
2.2 New word detection layer

New word detection can identify OOV words and add them

to the built-in dictionary of the word segmentation tool, thus

improving the effect of common word segmentation tools (Du

et al., 2016). Currently, new word detection is either rule-based

(Huiming et al., 2003), statistics-based (Jin and Tanaka-Ishii,

2006), or based on both rules and statistics (Zheng and Wen-

Hua, 2002). Methods that rely entirely or partly on rules rely on

a manually built rule base. Although the rule base is helpful in

improving the effectiveness of new word detection, the

construction process is complex and time-consuming, and

domain transferability is poor. As a result, this study adopts a

statistics-based new word detection method. Corpus A was first

segmented into strings using the N-gram method, and the

garbage strings were then filtered in turn according to the

three statistics of word frequency (WF), mutual information

(MI), and contextual entropy (CE) of the strings. Subsequently, a

new word set was obtained. This new word set was then added to

the built-in dictionary of Jieba to improve its applicability to

kiwifruit-related texts. Finally, the kiwifruit lexicon was

constructed through the word segmentation of Corpus B by

Jieba. This section first introduces the methods related to new

word detec t ion , and then introduces the lex icon

construction process.

2.2.1 N-gram Word segmentation
The basic idea of N-gram word segmentation is to use a fixed

window of length n to segment the sentence. After segmentation,

each string of size N is called a “gram.” For example, the 2-gram

segmentation result of the sentence “农业病害识别” (agricultural

disease identification) is “农业/业病/病害/害识/识别” (nong ye/
Frontiers in Plant Science 05
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ye bing/bing hai/hai shi/shi bie). Other examples are shown

in Figure 2A.

2.2.2 Mutual information
The concept ofMI originates from information theory and is

commonly used to measure how consistently two patterns occur

together in a corpus (Ye et al., 2013). The MI value is derived

from the log-likelihood ratio of the joint probability of patterns

A and B over the individual probabilities of patterns A and B, as

shown in Equation (1). If Chinese strings w1 and w2 in the same

dataset appear as a whole string w12, the probability is p(w12),

and the probabilities of the two strings appearing alone are p(w1)

and p(w2), respectively. The MI value was calculated using

formula (2). The higher the MI value of the two strings, the

more likely they are to be combined into meaningful words.

MI(x, y) = log2
p(x, y)
p(x)p(y)

, (1)

MI(w1,w2) = log2
p(w12)

p(w1)p(w2)
: (2)
2.2.3 Contextual entropy
CE is an external statistic proposed by (Huang and Powers,

2003), that can be used to measure the probability of whether a

string is a meaningful word. It measures the randomness of the

left and right adjacent characters of a string, that is, the left and

right contextual entropies. Compared with a Chinese string with

no practical meaning, a Chinese word with a practical meaning

has a wider application scenario. Thus, the randomness of the set

of left and right adjacent characters will be higher. Therefore, a

higher CE value for a Chinese string indicates a greater

probability that the string has a practical meaning. In the

Chinese new word detection task, the CE accurately reflects

the probability that a string is a meaningful word. The CE value

was calculated using Equations (3) and (4):

El(w) = − o
wl∈Sl

P(wl w)� log2 P(wlj jw), (3)

Er(w) = − o
wr∈Sr

P(wr w)� log2 P(wrj jw), (4)
TABLE 1 Statistics of KIWID.

Category (Symbol) Category definition Examples Numbers

Varieties (KIWI) Names of different varieties of kiwifruit. 陇南猕猴桃 (Longnan kiwi) 3763

Disease (DIS) Diseases of kiwifruit. 叶枯病 (Leaf blight) 561

Pest (PEST) Pests of kiwifruit. 叶蝉 (Leaf cicada) 1247

Part (PART) Diseases harming kiwifruit parts. 叶片 (Leaves)、枝干(branches) 5521

Farm chemical (MED) Farm chemicals. 多菌灵 (Carbendazim) 907

Place (LOC) Distribution area of kiwifruit 陕西 (Shaanxi) 5090
fro
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where p(wl|w) represents the probability that the left-

adjacent character of w is character wl, p(wr|w) represents the

probability that the right-adjacent character of w is character wr,

Sl represents all left-adjacent characters of w, and Sr represents

all right-adjacent characters of w.
2.2.4 Lexicon construction
The lexicon construction process occurs in four steps, as

illustrated in Figure 2B).

Step 1: Apply the N-gram word segmentation method to

segment corpus A and obtain candidate strings with N = 2, 3,

and 4.

Step 2: Calculate the statistics for each string. Compute the

WF, MI, and CE values for each candidate string.

Step 3: Set the corresponding thresholds forWF,MI, and CE,

named Threshold1, Threshold2, and Threshold3, respectively,

and filter the candidate strings to obtain a new set of words.
Frontiers in Plant Science 06
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To avoid the omission of low-frequency new words, we set the

WF threshold to 5,MI threshold to 3.9, and CE threshold to 2.7.

Step 4: Add the new word set obtained in Step 3 to the built-

in dictionary of Jieba and perform word segmentation on

Corpus B to obtain the kiwifruit lexicon for NER.
2.3 Embedding Llayer

For a character-based CNER model, discrete text sequences

are converted into low-dimensional densely distributed

embedded representations, allowing the model to learn more

semantic knowledge and improve its performance (Guo et al.,

2020). As shown in Figure 1, to obtain a high-quality embedded

representation and make good use of the information in the

corpus, Word2vec-CBOW (Mikolov et al., 2013) was used to

train Corpus A in character form and transform the resulting

agricultural lexicon into vectors. The input sequence of length n
B

A

FIGURE 2

(A, B) Lexicon construction process.
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is s=(c1, c2, c3,……,cn)∈Vc, where Vc is the word set (including

characters), and each word is represented by a trained dense

vector xci = ec(ci), where ec denotes the word embedding

lookup table.
2.4 CCNet

CCNet (Huang et al., 2019) is often used in semantic

segmentation to aggregate contextual information from all

pixels to obtain dense contextual information. This study

considered the use of CCNet for text feature extraction. The

overall structure of the CCNet is shown in Figure 3A.

Given a feature map M∈RC×W×H, CCNet first generates two

feature maps Q and K by applying two convolutional layers with

a filter size of 1×1 on the feature mapM. {Q, K}∈RC’×W×H, where

C’ is the number of channels of Q and K, which is less than C for

dimension reduction. Another convolutional layer with filters of

size 1×1 is applied on M to generate V∈RC×W×H. Qu∈RC’ is the

vector for each position u in the spatial dimension of the feature

map Q. And vector set Wu∈R(H+W-1)×C’ is obtained by

extracting feature vectors from K which are in the same row

with position u. Then, CCNet can obtain D∈R(H+W-1)×W×H,

which represents the degree of correlation between features Qu

and Wi,u (i=[1,…,|Wu|]) by the affinity operation, which is

defined as follows:

di,u = QuWi,u
T (5)
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where di,u∈D. Feature map A is then obtained by applying a

softmax layer on D over the channel dimension. CCNet can also

obtain vector Vu∈RC and set qu∈R(H+W-1)×C. The set qu is a

collection of feature vectors in V that are in the same row as

position u. Finally, the contextual information is collected by the

aggregation operation:

Mu
0 = o

i∈ quj j
Ai,uqi,u +Mu (6)

where Mu’ is a feature vector in the output feature maps

M’∈RC×W×H at position u, and Ai,u is a scalar value at channel i

and position u in A. Contextual information is added to local

feature M to enhance the local features and augment the pixel-

wise representation.
2.5 Criss-cross attention based
Softlexicon layer

One of the tasks of CANER is to recognize the boundaries of

agricultural entities, and word segmentation information provides

good guidance for identifying entity boundaries. However,

CANER is affected by the strong domain characteristics of

agricultural texts and the uneven distribution of entity

categories (Guo et al., 2020). Adding more pre-training

information will help the model learn more agricultural

characteristics, thus reducing the impact of the aforementioned

problems. Therefore, this paper proposes an AttSoftlexicon based

on Softlexicon (Peng et al., 2020) and CCNet (Huang et al., 2019),
B

A

FIGURE 3

(A, B) Structure of CCNet and PCAT.
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and integrates the word information in the lexicon into character

representation, which helps the model to learn more kiwifruit

text features.

Assume that the input sequence is s={c1, c2,…, cn}, and wi,j

denotes its subsequence {ci, ci+1,…, cj}. The first step is lexicon

matching. Each character is matched from a lexicon to all words

containing the character. According to the position of each

character ci in the different matched words (beginning, middle,

end, or one-character word), the words matched by a character

were divided into four-word sets B(ci),M(ci), E(ci), and S(ci). The

set construction method is shown in formula (7)-(10).

B(ci) = wi,k,∀ wi,k ∈ L, i < k ≤ n
� �

, (7)

M(ci) = wj,k,∀ wj,k ∈ L, 1 ≤ j < i < k ≤ n
� �

, (8)

E(ci) = wj,i,∀ wj,i ∈ L, 1 ≤ j < i
� �

, (9)

S(ci) = ci,∃ ci ∈ Lf g : (10)

As shown in formula (7)-(10), L denotes the lexicon, and w

represents the words matched in the lexicon. If a word set of

characters is empty, it is represented as {None}. Taking the input

sequence “植物病害” (plant disease) as an example, the character

“物” (matter) is matched with the pre-constructed lexicon, and

the two words “植物病害” (plant disease) and “植物” (plant) are

matched, and the four word sets corresponding to the character

“物” (matter) are formed: B={“None”},M={“植物病害”}, E={“植

物”}, S={“None”}. The character “病” (disease) is matched with

the pre-constructed lexicon, and the two words “病害” (disease

and pest) and “病” (disease) are matched, and the four-word sets

corresponding to the character “病” (disease) are formed: B={“病

害”}, M={“None”}, E={“None”}, S={“病”}, as shown in Figure 4.

To integrate the word set information matched to each character

into the corresponding character representation, the statistics-

based static weighting method in Softlexicon (Peng et al., 2020)

was used, where the frequency reflects the importance of the word.

The weighting method is given by formulae (11) and (12),

where z(w) is the frequency with which a lexicon word w occurs

in the statistical data and ew is the word embedding lookup table.

The weighted representation of word set S is obtained as follows:

vs(S) =
4
Z ow∈S

z(w)ew(w), (11)

Where:

Z = o
w∈B∪M∪E∪S

z(w) : (12)

In the last step, the original Softlexicon (Peng et al., 2020)

combines the representations of four-word sets into the fix-

dimensional feature and adds it to the representation of each

character, as shown in formulae (13) and (14).
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V = ½vs(B); vs(M); vs(E); vs(S)�, (13)

xc ½xc;V � : (14)

The original Softlexicon (Peng et al., 2020) designed four-

word sets to take advantage of these four types of positional

information. However, it only weighs the words in each word set

according to the word frequency and does not distinguish the

importance of different word sets. This does not allow the model

to distinguish the four positions of the characters in the

matched words.

CCNet (Huang et al., 2019) showed a strong contextual

relationship extraction ability in the semantic segmentation task.

Therefore, to make full use of these four types of position

information, this study uses CCNet to learn the weights for

different word sets, as shown in the formula (15). First, CCNet

processes the representation of these four sets and automatically

assigns weights to them based on the relationship between them.

It is then transformed into a vector of 1×4 through q. Finally, the

weight vector ai (i∈[1,4]) with a value range of (0, 1) is obtained

through the sigmoid function. ai is a weight matrix of

dimensions 1×4, where the four values represent the

importance of the four word sets. As shown in formula (16),

the four-word set representations are weighted and merged into

the character representation.

ai = sigmoid(qCCNet(V)) (15)

xc = ½xc; a1vs(B); a2vs(M); a3v
s(E); a4v

s(S)� : (16)
2.6 Parallel connection Criss-cross
attention network

The sequence features extracted by BiLSTM may have a few

limits. First, with an increase in sentence length, the feature

extraction ability of BiLSTM declines (Huang et al., 2019). In

addition, LSTM has been shown to have weaker feature

extraction ability than attention mechanism models, such as

transformers, when dealing with longer sequence texts (Li et al.,

2020b). Second, BiLSTM makes each character contribute

equally to the task. In other words, BiLSTM is not good at

assigning more weight to some important characters in the text

sequence, which is very important for NER. In addition, the

strong domain features of kiwifruit-related texts mentioned in

Section 2.1.3 also pose challenges to the feature extraction ability

of the BiLSTM. In short, the feature extraction ability of BiLSTM

must be further improved when solving the problem of

kiwifruit-named entity recognition. Therefore, a novel module,

parallel connection criss-cross attention network (PCAT), is

proposed to mitigate the impact of the above limits with the

help of CCNet (Huang et al., 2019). The overall structure of the

PCAT is shown in Figure 3B.
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After the agricultural sentence is processed by BiLSTM, a

feature map X∈RC×W is obtained (C represents the dimension of

BiLSTM and W represents the length of the sentence). In this

work, agricultural sentences are regarded as pictures with a

channel number of C and a size of W×1. Therefore, PACT

first transforms X into a feature mapM∈RC×W×H (the value ofH

is 1) through an unsqueeze operation. Each pixel in the feature

map M represents a character in the agriculture text.

To obtain richer semantic information. The PCAT uses two

different convolutional layers with filter sizes of 1 × 1 and 1 × 3

on M to generate two feature maps, M1 and M2. M1 and M2 are

put into the CCNet for processing. To learn more complex

features, PCAT applies two convolutional layers with filter sizes

of 1 × 3 to M1 and M2. Finally, M1 and M2 are added, and the

output vector of the PCAT X’∈RC×W is obtained through a

squeeze operation.

Using CCNet to calculate the connection between each

character, PCAT can assign different weights to different

characters to give more attention to key characters. In addition,

PCAT can solve the problem of long-distance dependency

because it can calculate the degree of association between words

in each position and other words that are not affected by distance.

Through a parallel structure and convolutional layer, PCAT can

obtain richer features from agricultural texts.
2.7 Evaluation indicators and
experimental environment

2.7.1 Parameter setting
In our proposed model, both the character vector dimension

and word vector dimension were set to 50. In the feature encoding
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layer, the hidden size of both the forward and backward LSTM

was set to 300, and to mitigate overfitting, the dropout rate was set

to 0.5. For the model training, the batch size was set to 16.

Furthermore, the model was trained using stochastic gradient

descent with an initial learning rate of 0.0015, and the learning

rate decay was set to 0.05. The hyper-parameter configuration of

the model is listed in Table 2. All experiments were conducted

under the conditions listed in Table 3.
2.7.2 Dataset division
For dataset division, four datasets were involved in the

experiment, namely KIWID, BOSON, ClueNER, and People’s

Daily. We obtained the public data according to Table 2 in study

(Liu et al., 2022). This study randomly divided KIWID, BOSON,

and ClueNER into training, validation, and test sets according to

a ratio of 8:1:1, respectively [refer to Zhang et al. (2021)].

Division of People’s Daily reference https://github.com/zjy-

ucas/ChineseNER. The pre-training corpus used in the

KIWID-related experiments was the kiwifruit pre-training

corpus constructed in this study. The pre-training corpus used

in public dataset-related experiments is derived from Lattice-

LSTM (Zhang and Yang, 2018), which is pre-trained using

Word2vec (Peng et al., 2020) over automatically segmented

Chinese Giga-Word. The number of character vectors in the

public pre-training corpus is 5.7k, and the number of words in

the lexicon is 704.4k.

2.7.3 Evaluation indicators
Precision (P), recall (R) and F1-score (F1) were used to

evaluate the performances of the different models, as shown in

Equations (17)-(19).
FIGURE 4

Example of lexicon matching.
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P =
True positives

Predictied as positives
=

TP

TP + FP
, (17)

R =
True positives
Actual positives

=
TP

TP + FN
, (18)

F1 =
2PR
P + R

: (19)

True positives (TP) refer to the number of correctly

recognized positive samples among all positive samples,

whereas false positives (FP) denote the number of negative

samples incorrectly recognized as positive samples. False

negatives (FN) are positive samples incorrectly recognized as

negative samples. Among all the positive samples, the more that

are predicted correctly, the higher the P value. A higher number

of positive samples predicted in the testing set yielded a higher R

value. F1 is the harmonic average of P and R, providing an

evaluation of the comprehensive ability of the model.
3 Results

3.1 Experiments on KIWID

In this section, some typical NER models such as BiLSTM

(Huang et al., 2015), TENER (Yan et al., 2019), LR-CNN (Gui

et al., 2019a), LGN (Gui et al., 2019b) and Softlexicon-LSTM

(Peng et al., 2020) are considered comparable models. In

addition, this section also uses the previous CANER findings

JMCA-ADP (Guo et al., 2020) and Att-BiLSTM-CRF (Zhao

et al., 2021) as comparison models. Like KIWINER, LR-CNN,

LGN and Softlexicon-LSTM are also lexicon-based models. The

lexicon used in the experiments in this section are the Kiwifruit

lexicon constructed in this study.

The experimental results for KIWID are shown in Table 4. It

could be observed that the model proposed in this study
Frontiers in Plant Science 10
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outperformed other models, and the F1 of this model is at

least 0.47 higher than other models, which illustrates the

effectiveness of it recognizing kiwifruit-related entities. The

performance of our model is significantly improved compared

to the baseline model BiLSTM-CRF. This is due to the fact that

KIWINER makes full use of kiwifruit lexical information with

the help of AttSoftlexicon, and obtains deeper semantic features

with the help of PCAT. Compared with CANER models Att-

BiLSTM-CRF and JMCA-ADP, KIWNER has achieved obvious

improvement, which further verifies the effectiveness of

KIWINER. The lexicon-based models LR-CNN, LGN,

Softlexicon-LSTM and KIWINER have clear advantages over

the rest of the character-based models, illustrating the

effectiveness of constructing a kiwifruit-related lexicon and

incorporating lexical information into the model.
3.2 Experiments on public datasets

To verify the generalization of KIWINER, three public

datasets were selected: Boson, ClueNER, and People’s Daily.

The experimental results are listed in Table 5.

The KIWINER model achieved the best F1 of the three

datasets, which were for Boston, ClueNER, and People’s Daily

85.13%, 80.52%, and 92.82%, respectively. The experimental

results show that KIWINER not only has performance

advantages on the KIWID corpus, but also has a certain

generalization in other fields.
3.3 Ablation experiments

3.3.1 Effectiveness of new word detection layer
In the new word detection layer of KIWINER, the

adaptability of Jieba to kiwifruit-related texts was enhanced by

new word detection and then a lexicon was constructed by word
TABLE 2 Hyper-parameter value.

Parameters Value Parameters Value

character embedding dim 50 learning rate decay 0.05

batchsize 16 LSTM hidden 300

learning rate 0.0015 dropout rate 0.5
frontie
TABLE 3 Experimental environment.

Project Environment Project Environment

Operating system Windows 10(x64) Hard disk 1T

CPU i7-10700F@2.90GHz Python version 3.6.5

GPU NVIDIA TITANRTX (24GB) Pytorch version 1.8.1

Memory 64GB – –
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segmentation of kiwifruit-related texts. To verify the

effectiveness of this lexicon construction method, this section

used several commonly used Chinese automatic word

segmentation tools (Pkuseg, Thulac, HanLP, Jieba, and

Snownlp) to automatically separate the kiwifruit-related texts

collected in this study to construct lexicons and apply them to

KIWINER for experiments. Experiments were performed using

KIWID. The experimental results are shown in Figure 5A.

The method of constructing the lexicon with the aid of new

word detection and Jieba achieves the highest P, R, and F1, and

improves over other methods. This shows that new word

detection effectively reduces the negative impact of word

segmentation errors on CANER during lexicon construction.
3.3.2 Effectiveness of AttSoftlexicon layer
To verify the effectiveness of the AttSoftlexicon, it was

replaced in KIWINER by Softlexicon (Peng et al., 2020), and a

comparative experiment was conducted. The experiment used

the F1 as the evaluation metric, and the experimental results are

shown in Figure 5B. The KIWINER model achieved the best F1
for the four datasets. This shows that by assigning different

weights to different word set representations, the AttSoftlexicon

can help the model to make full use of the position information

of characters in its matched words, thus making more full use of

lexicon information than Softlexicon.
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3.3.3 Effectiveness of PCAT layer
To verify the applicability of the PCAT module for different

sequence encoding models, experiments were performed using

transformer and GRU instead of BiLSTM. And comparative

experiments were carried out with or without the PCAT module

in the model. The experiment was divided into three groups, and

the results are presented in Table 6.

The effect of each sequence coding model in the table

improved after the introduction of PCAT, indicating the

effectiveness and universality of PCAT. The model based on

BiLSTM achieved the best effect, which shows the rationality of

KIWINER using BiLSTM to encode character sequences.

4 Discussion

4.1 Comparison of experiments with
different variants

To verify the rationality of the PCAT module, several

variants of it were designed, and the variant was used to

replace the PCAT in KIWINER for experiments on Boson,

ClueNER, KIWID, and People’s Daily. Variants A and B

increased and decreased the depth of the PCAT, respectively.

Variants C and D break the parallel connection structure of

PCAT. The different variant structures of the PCAT are shown
TABLE 5 Results for each model on public datasets.

Model Boson ClueNER People’s Daily

P R F1 P R F1 P R F1

LSTM 81.78 72.50 76.86 76.80 71.28 73.94 85.96 82.09 83.98

Att-BiLSTM-CRF 79.93 76.67 78.27 74.73 73.62 74.17 86.28 85.05 85.66

JMCA-ADP 80.10 77.66 78.86 75.82 76.58 76.20 87.96 86.93 87.44

TENER 79.45 81.51 80.47 74.34 77.08 75.68 90.36 90.07 90.22

LR-CNN 84.40 82.04 83.20 80.09 78.47 79.27 91.13 90.74 90.93

LGN 82.16 79.16 80.63 77.01 73.95 75.45 90.75 89.52 90.13

Softlexicon-LSTM 85.75 80.67 83.13 80.50 79.11 79.80 92.31 90.43 91.36

KIWINER 86.96 83.37 85.13 81.05 80.01 80.52 93.23 92.42 92.82
frontiersi
TABLE 4 Results of each model on KIWID.

Model P R F1

BiLSTM-CRF 84.42 84.54 84.48

Att-BiLSTM-CRF 82.85 88.99 85.81

JMCA-ADP 84.90 90.47 87.59

TENER 86.40 90.19 88.25

LR-CNN 87.08 89.90 88.47

LGN 86.81 89.63 88.19

Softlexicon-LSTM 87.18 89.27 88.21

KIWINER (our) 88.21 90.31 88.94
n.org
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in Figure 6. In addition, many researchers use the self-attention

mechanism (Self-Att) to improve the feature extraction ability of

the sequence encoding layer. In the field of CANER, Guo et al.

(2020) introduced a self-attention module after the BiLSTM

model to improve the feature extraction ability of sequence

coding layer. Therefore, this section refers to the study by Guo

et al. (2020) and uses Self-Att instead of PCAT for experiments.

Attention unit and head number of Self-Att is 600 and 8. The

experimental results are listed in Table 7.

Compared with Variants A and B, the PCAT achieved

better results, indicating that the depth design of the PCAT is

reasonable. Compared with variables C and D, PCAT achieves

better results, which shows that a parallel structure can

effectively improve the feature extraction ability of the model

and help the model obtain richer semantic information. PCAT

achieves better results than Self-Att (Guo et al., 2020), which

indicates that PCAT is more conducive to improving the model

feature extraction capability than the commonly used module

Self-Att. PCAT constructs a parallel structure with the help of

two different convolutional layers, which allows the model to

simultaneously process semantic information from two

different perspectives. At the same time, with the help of

CCNet, which has good long distance context semantic

aggregation capability (Huang et al., 2019), the information

can be processed again, and different weights can be given

according to different information relationships. Therefore,

PCAT can help the model make full use of the feature

information input into the model.
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4.2 Comparative analysis with the
previous CANER findings

This section discusses the recognition effects of KIWNER

and the previous CANER studys Att-BiLSTM-CRF (Zhao et al.,

2021) and JMCA-ADP (Guo et al., 2020) on each category of

the kiwifruit dataset KIWID. BiLSTM-CRF (Huang et al., 2015),

the baseline model of the above models, also participated in the

experiments. The experimental results are shown in Table 8,

where F1 is chosen as the evaluation metric, and the last column

of the table is the running time of each model.

It can be clearly seen from the table that KIWNER has

achieved the best results in each category, especially in disease,

pest, pesticide, which contain strong domain features. Although

Att-BiLSTM-CRF and JMCA-ADP have made efforts to

integrate agricultural features into the model, KIWINER can

obtain more agricultural features by using word information

with the help of Attsoftlexicon and new word detection. In

addition, PCAT can help the model to further make full use of

these agricultural features. The category of location related

entities usually contain boundary characters, such as “县”

(county), “镇” (town), “村” (village), etc., and the category of

part related entities have limited diversity and many repeated

words, which leads to the recognition difficulty of the above two

categories being relatively low. Therefore, KIWINER did not

significantly improve the recognition effect of LOC and PART.

From the last row of the table, we can see that KIWINER takes

more time than other models, which is a disadvantage of
TABLE 6 Application effect of PCAT.

Group Model F1 Model F1

1 AttSoftlexicon-Transformer-CRF 84.01 AttSoftlexicon-Transformer-PCAT-CRF 85.11

2 AttSoftlexicon-BiGRU-CRF 87.68 AttSoftlexicon-BiGRU-PCAT-CRF 88.85

3 AttSoftlexicon-BiLSTM-CRF 87.17 AttSoftlexicon-BiLSTM-PCAT-CRF(KIWINER) 88.94
frontiersi
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KIWINER. KIWNER incorporates lexical information, so it will

spend an extra part of time on processing lexical information

compared with the character based model. Research on faster

character and word matching methods and more efficient
Frontiers in Plant Science 13
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sequence encoding modules can be helpful to overcome

this shortcoming.

In KIWNER, AttSoftlexicon module and PCAT module

both adopt the CCNet model from semantic segmentation,
TABLE 7 Results for several variants of PCAT.

Module Boson ClueNER KIWID People’s Daily

Self-Att 83.35 79.73 88.12 91.71

Variant A 84.03 80.26 88.41 92.34

Variant B 84.24 80.41 88.62 92.58

Variant C 84.07 80.32 88.22 92.69

Variant D 84.61 80.34 88.83 92.56

PCAT 84.95 80.95 88.94 92.82
The values in bold represent the maximum value in the same column.
B

C

D

A

FIGURE 6

Variants of PCAT.
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and have achieved good results through experimental

verification. With the help of new word detection and

AttSoftlexicon, KIWINER incorporate the word information

containing domain features into the model. And KIWINER

has achieved significant improvement compared with previous

which are character-based models. This shows that when solving

problems with strong domain features such as CANER, it is a

good solution to find a method to integrate more domain

features into the model. In addition, the effectiveness of PCAT

also shows the importance of making full use of these features.

5 Conclusion

To address the lack of an annotation dataset for agricultural

named entity recognition in the kiwifruit field, a kiwi-annotated

NER corpus KIWID, which contains six categories and 17089

entities was constructed in this study. According to the

characteristics of kiwifruit-related texts, a new CANER model,

KIWINER, was proposed by statistics-based new word detection

and the novel module AttSoftlexicon, PCAT. To alleviate the

word segmentation insensitivity caused by the strong

specialization of kiwifruit-related texts, statistics-based new

word detection was used to enrich the built-in vocabulary of

Jieba and improve its applicability to kiwifruit texts to construct

the kiwifruit lexicon. Inspired by the CCNet module in the field

of semantic segmentation, the AttSoftlexicon was proposed to

help the model make efficient use of lexicon information. In

addition, this study proposes a PCAT module to improve the

feature extraction ability of the sequence coding layer BiLSTM.

The experimental results with the comparative models show that

our proposed model can effectively improve CANER

performance, particularly for difficult-to-recognize categories

such as diseases, pests, and farm chemicals.

Moreover, our research can provide reference for developing

new deep learning methods for named entity recognition of

international texts. Theoretically, our construction method of

Attsoftlexicon is also applicable for the named entity recognition

of the texts of other similar languages, such as Japanese, Korean

etc., which are unnaturally partitioned just like Chinese. In

addition, our proposed PCAT module is used to improve the
Frontiers in Plant Science 14
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sequence encoding ability of deep learning model essentially. So,

applying our proposed PCAT module for the named entity

recognition of other language is also theoretically feasible.

Therefore, KIWINER can also be used to explore CNER tasks

in other crops or other fields with domain features. In the future,

we will study how to improve the time efficiency of KIWINER

and use it in the construction of kiwifruit Q&A system.
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TABLE 8 Entity categories study.

Entity type BiLSTM Att-BiLSTM-CRF JMCA-ADP KIWINER

KIWI 83.70 80.00 85.90 87.06

DIS 79.17 78.43 81.63 87.50

PEST 77.00 85.71 86.96 89.76

LOC 81.90 82.64 83.69 84.19

PART 94.44 94.23 94.43 96.80

MED 61.64 70.45 73.33 75.28

All category 84.48 85.81 87.59 88.94

Time(s/epoch) 139.14 149.20 144.13 163.87
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Genetic diversity assessment
of Hopea hainanensis in
Hainan Island
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and Tingting Liu3
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Hopea hainanensis (Dipterocarpaceae) is an endangered tree species restricted

to Hainan Island, China, and a small part of Northern Vietnam. On Hainan

Island, it is an important indicator species for tropical forests. The wood of

Hopea hainanensis has a very high utilization value in nature since it is compact

in structure, hard in texture, not easily deformed after drying, durable, and

resistant to sunlight and water. As a result of its high quality, it has been felled

and mined by humans without restraint, resulting in a reduction of its

population size, severe habitat fragmentation, and a sharp decline in its

population. Therefore, its conservation biology needs to be researched

urgently. Researchers are currently focusing on the ecological factors and

seed germination in the habitat of Hopea hainanensis to determine its

endangered status. In the literature, there are no systematic analyses of the

endangered mechanism of Hopea hainanensis in terms of genetic diversity. It

focuses especially on the systematic genetic diversity of Hopea hainanensis in

fragmented habitats. Using single nucleotide polymorphism (SNP) and

genotyping-by-sequencing (GBS) technology, 42 samples from seven

different cohabitation groups were genotyped. The results showed that the

average heterozygosity of the seven populations of Hopea hainanensis was

19.77%, which indicated that the genetic diversity of Hopea hainanensis was

low. Genetic diversity research is essential for rare and endangered plant

protection research. We can find a scientific basis for protecting endangered

plants on slope bases by analyzing genetic differences and relationships

among populations.
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1 Introduction

The Earth’s biodiversity quickly decreases due to agricultural

growth, over-exploitation, deforestation, pollution, and climate

change (Wang et al., 2007). Around 40% of plant species are on

the verge of extinction (Ly et al., 2018). Conservation genetics, a

new science that uses population genetics principles and

methods to biological conservation, aims to save endangered

species from extinction (Hogarth et al., 1997; Sarath

Padmanabhan and Hemaprabha, 2018). Endangered animals

are frequently distinguished by tiny, scattered populations and

limited gene flow among populations (Mehmood et al., 2018).

Mating happens more commonly among relatives in tiny,

isolated populations, and selfing may be observed in

hermaphroditic plants. Inbreeding causes homozygosity in

harmful recessive genes and, as a result, the generation of

poorer offspring, a condition known as inbreeding depression

(Kardos et al., 2016).

Furthermore, genetic drift is higher in small populations,

contributing to the fixation of harmful mutations and loss of

genetic variation, weakening a population’s adaptive ability and

raising its extinction risk (Kardos et al., 2021). The area of

conservation genetics, which aims to research the genetic

diversity, population differentiation, mating system, and

historical demography of endangered species, gives amazing

insights into preserving biodiversity in the real world (Brown

et al., 1991). Furthermore, Hopea hainanensis research is

pr imari ly concerned with the impacts of var ious

environmental conditions in the habitat on seed germination

and seedling development, ex situ conservation, and better seed

selection and cultivation techniques in artificial propagation and

cultivation (Zhang et al., 2022).

Dipterocarpaceae comprise 20-50% of the basal forest area

and more than 50% of the canopy trees in tropical Asian forests

(Ghazoul, 2016). Because many Dipterocarpaceae species are

valuable wood resources, they have been widely exploited in

tropical Asian nations. As a result of the widespread harvesting

of timber and destruction for agriculture, many dipterocarps are

now designated as endangered or severely endangered (Wang

et al., 2021). On the other hand, Dipterocarp woods are

considerably more than just a supply of lumber. They are vital

components of Asian tropical rainforest ecosystems, acting as

the foundation for these varied ecosystems. Indeed, Southeast

Asia is home to four of the world’s 25 “biodiversity hotspots”

(Wang et al., 2020). Furthermore, dipterocarp forests provide

various ecosystem services and play a significant role in

balancing ecological processes at the regional and global levels

(Agoramoorthy, 2002). It is the representative and endemic

species of the tropical ravine rainforest in Hainan.

The natural survival population of H. hainanensis in Hainan

is mainly distributed in the forest patches dominated by broken

secondary rainforests in and around Limushan, Bawangling,
Frontiers in Plant Science 02
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Jianfengling, Diaoluoshan, Yinggeling, Wuzhishan, and other

forest areas in Hainan Island (Song et al., 2020). H. hainanensis

is listed as a class I protected plant in the List of China’s National

Key Protected Wild Plants (Jiang, 2019). It was identified as an

endangered species in the Red Book of Chinese Plants and is

ranked as “Endangered” by the IUCN (Ly et al., 2018).

Currently, studies on H. hainanensis mainly focus on the

effects of various environmental factors in the habitat on seed

germination and seedling development, ex situ protection, and

improved seed selection and cultivation techniques in artificial

propagation and cultivation (Chen et al., 2015). There is a lack of

systematic analysis of the endangerment mechanism in terms of

genetic diversity, and there is even less research on the

systematic genetic diversity of ports in different fragmented

and chemical habitats (Li et al., 2015; Zhang et al., 2022).

However, genetic diversity as an extinction mechanism for

H. hainanensis has not been systematically studied. A few studies

have been conducted on the genetic diversity of Hopea

hainanensis systems in fragmented and metaplastic

environments. Wang et al. isolated and identified 12

polymorphic microsatellite markers on endangered H.

hainanensis (Wang et al., 2020). The genetic diversity and

population structure of 10 H. hainanensis populations were

analyzed using 12 SSR markers in Hainan Island. The

emergence of population bottlenecks may cause genetic

diversity loss and population differentiation. Long-term

protection strategies for endangered species in Hainan

were proposed.

In many fields, genotyping by sequencing (GBS) in

simplified genome sequencing technology has become

increasingly popular as next-generation high-throughput

sequencing technology has developed (Mehmood et al., 2022).

These include the construction and analysis of genetic maps, the

study of genome-wide association systems and gene diversity

and identifying the germplasm of plants and animals. Therefore,

in this study, GBS technology was used to systematically identify

42 genome-wide SNPs of H. hainanensis resources. Based on the

identified SNPs, a phylogenetic tree of these 42 H. hainanensis

resources was constructed, and genetic diversity was analyzed. It

has practical guiding significance for the protection of H.

hainanensis resources and the improvement of its ecological

environment. It is of great significance to the protection of H.

hainanensis biodiversity.
2 Materials and methods

2.1 Study area

Hainan Island (E108°37′-111°03′, N18°10′-20°10) is located
in southern China (Zhang et al., 2021), and it is the largest island

city in China (Figure 1). Hainan Island has a mild climate, with
frontiersin.org
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an annual average temperature of 22-27°C, and is rich in forest

resources (Zhang et al., 2022). Hainan Island is low and flat all

around and towering in the middle, with Wuzhishanand

Yinggeling as the uplift cores and descending step by step to

the periphery. (https://www.hainan.gov.cn). Hainan Island is

hailed as the largest “natural museum” by biologists, and 102

rare animals in Hainan Island have been included in the list of

national first- and second-class key protected animals (Zhang

et al., 2022). There are many rare and endangered wild plants. At

the same time, northern and coastal regions have relatively low

biodiversity and fewer rare and endangered species due to

greater human disturbance intensity (Nizamani et al., 2021).
2.2 Materials

In the early field investigation, field investigation and actual

sampling possibilities are based on the natural distribution of the

levee population. The H. hainanensis sample materials were

divided into seven regional populations according to their

geographical sources for population sampling. The bawangling

population includes nine subpopulations, namely BWL P1-P9,

including samples BWL1-BWL_13. Limushan population

consists of 7 subpopulations, LMS P1 and LMS P3-P8,

including samples LMS1-LMS_10, respectively. The

Jianfengling population included seven subpopulations JFL

X1-X2, JFL P1, JFL P3-P6, which included samples JFL1-

JFL_10. Wuzhishan population included two subpopulations
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(WZS P1-P2), including samples WZS_1-WZS_2, respectively.

Yinggeling population included two subpopulations YGL P1-P2,

including YGL1-YGL_3, respectively. The Diaoluoshan

population included one subpopulation, DLS P1, including

samples DLS_1-DLS_3. Fanyang population included one

subpopulation FY1, including sample FY_1. The Fanyang

population belongs to the Wuzhishan region. Regional

population division, longitude, latitude, and sample number

are shown in Table 1.
2.3 Methods

2.3.1 Sample DNA extraction and
quality testing

42 H. hainanensis leaf samples were extracted with a Biotech

(Beijing, China) DNA extraction kit (Plant no. DP305) under the

standard operating procedure. After DNA extraction, the quality

and concentration of DNA samples should be tested. Qubit was

used to determine the concentration of DNA samples, and AGE

was used to detect the quality of DNA samples (Wang

et al., 2015).

2.3.2 Construction and sequencing of genomic
GBS library

The quality and concentration of the extracted DNA were

tested to be qualified and then sent to Hangzhou Lianchuan

Biotechnology Co., Ltd. for GBS library construction and
FIGURE 1

A distribution and sample collection information map of Hopea hainanensis in Hainan Island.
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sequencing. RsaI-HaeIII digestion was used for digestion. The

high-throughput sequencing library was prepared through

terminal repair, A-tail addition, sequencing adaptor addition,

purification, PCR amplification, and so on. The library was

purified by electrophoresis and gluing according to the preset

scheme. The gluing range of the library was 450-500bp to select

the library with the length of the inserted fragment in the target

interval for subsequent sequencing. Only libraries that had been

screened for fragment length were qualified for sequencing. The

sequencing platform was Illumina Nova6000, and the

sequencing mode was PE150.

2.3.3 SNP mining in H. hainanensis genome
After the sequencing data is taken off the machine, the raw read

data obtained by sequencing is quality-controlled, and low-quality

sequences and splice sequences are removed to obtain a clean read.

After that, all samples’ reads are clustered, similar reads are

clustered together as a tag, and the consensus sequence is

generated. Then, the data were aligned with the consensus

sequence by the individual, and the Clean Read data were aligned

with the consensus sequence. GATK software and SAMTOOLS

software were used for SNP detection, and the quality filtering of the

detected mutation sites was carried out. The evolutionary analysis

was based on SNP data. Before evolutionary population analysis,

SNPs were filtered according to the minor allele frequency (MAF) >

0.05 and data integrity > 80% (i.e., no more than 20% of individual

genotypes were missing).

2.3.4 Phylogenetic tree analysis of
H. hainanensis

The phylogenetic tree is a diagram used to describe the

genetic differentiation relationship between species. According

to the evolutionary relationship between different sources and

different types of organisms, all kinds of organisms are placed on

the branching tree diagram. The evolution process and the

relationship between these organisms are succinctly described.

Based on SNP, 1000 replicates of the PDIST model were

obtained as phylogenetic trees of all samples based on the

neighbor-joining algorithm of MEGA software (Dieckmann

et al., 2016).
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2.3.5 Principal component analysis
Principal Components analysis (PCA) was performed based

on SNP to obtain the clustering of Principal components of all

samples. Through PCA analysis, it can be known which samples

have short genetic distances and close relatives. The samples

with long genetic distances and distant relatives are helpful for

population genetic evolution analysis.

2.3.6 Analysis of population genetic structure
Population genetic structure analysis can provide information

on the origin and composition of individual lineage. Based on

SNP, the population structure of all samples was analyzed by

ADmixture software, and the number of clusters (K value) was

assumed to be 1-10, respectively. Different K values represent the

distribution of ancestral genetic material of different populations

under the assumption that there are K ancestral groups.

2.3.7 Analysis of the genetic relationship
Based on SNP, the genetic distance between pairs of all samples

was calculated. We can get the relative distance between samples by

analyzing genetic distance data, which can assist the evolution

analysis. In the phylogenetic heat map, the redder the color, the

closer the relationship between the two individuals on the

horizontal and vertical axes, the large area of red in the

phylogenetic heat map between multiple individuals indicates that

these individuals may constitute a closely related family group.

Conversely, the bluer the heat map, the more distant the relatives.
3 Results

3.1 The quality of sequencing

After GBS sequencing, 28.09 Gb of Raw READ data were

obtained from 42 H. hainanensis samples. After removing low-

quality sequences, sequences containing more than 5% N (N

represents undetermined base information), and adapter

sequences, 27.85 Gb of high-quality sequencing data (Clean

data) was obtained. The average size of each sample is 0.66

Gb. The average proportion of base error rate below 1% (Q20)
TABLE 1 The list of information for Hopea hainanensis sample collection in Hannan Island.

Area code Location Longitude Latitude Sample Number of sample

BWL Bawanglin 109°03′-109°17′E 18°57′-19°11′N BWL_1-BWL_13 13

LMS Limushan 109°39′-109°48′E 19°07′-19°14′N LMS_1-LMS_10 10

JFL Jianfengling 108°44′-109°02′E 18°23′-18°52′N JFL_1-JFL_10 10

WZS Wuzhishan 109°39′-109°47′E 18°49′-18°58′N WZS_1-WZS_2 2

YGL Yinggeling 109°11′-109°34′E 18°49′-19°08′N YGL_1-YGL_3 3

DLS Diaoluoshan 109°11′-109°34′E 18°49′-19°08′N DLS_1-DLS_3 3

FY Fanyang 109°27′E 18°53′N FY_1 1
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was 96.66%, and the average proportion of base error rate below

0.1% (Q30) was 91.34%, indicating the high quality of

sequencing. The average ratio (GC content) of guanine (G)

and cytosine (C) among the four bases of DNA was 47.84%,

indicating that the distribution was reasonable. The data

overview of each sample is shown in Table 2.
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3.2 SNP site mining

After comparing the data to the consensus sequence, GATK

and SAMTOOLS software were used for mutation detection

(Wright et al., 2019). SNPs consistently output by the two

software were retained as reliable loci. According to the
TABLE 2 The materials used in this study and overview of the GBS dataset.

Sample Raw data (bp) Raw data Clean data (bp) Clean data Effective data (%) Q20 (%) Q30 (%) GC (%)

BWL_1 3889430 0.58G 3840274 0.57G 98.5 96.77 91.59 50.46

BWL_2 4353376 0.65G 4307204 0.64G 98.77 96.97 92 47.31

BWL_3 4410548 0.66G 4361182 0.65G 98.67 96.65 91.3 48.35

BWL_4 5189486 0.78G 5136018 0.77G 98.78 96.97 91.97 47.43

BWL_5 4267498 0.64G 4218714 0.63G 98.63 96.74 91.53 47.6

BWL_6 4538054 0.68G 4487112 0.67G 98.67 96.75 91.5 47.63

BWL_7 4157322 0.62G 4111528 0.62G 98.68 96.68 91.35 47.67

BWL_8 4475100 0.67G 4426518 0.66G 98.71 96.66 91.3 47.72

BWL_9 4937116 0.74G 4886146 0.73G 98.81 96.68 91.31 47.43

BWL_10 4079886 0.61G 4027066 0.60G 98.5 96.47 90.94 47.86

BWL_11 4272788 0.64G 4224600 0.63G 98.64 96.62 91.23 47.32

BWL_12 3689286 0.55G 3652654 0.55G 98.8 96.89 91.79 47.31

BWL_13 5344202 0.80G 5276592 0.79G 98.52 96.61 91.26 47.54

LMS_1 4132158 0.62G 4078226 0.61G 98.48 96.79 91.65 47.51

LMS_2 4568574 0.69G 4503136 0.67G 98.39 96.3 90.59 49.58

LMS_3 4821746 0.72G 4757702 0.71G 98.48 96.6 91.24 48

LMS_4 4205644 0.63G 4159754 0.62G 98.71 96.84 91.7 49

LMS_5 5239770 0.79G 5175988 0.77G 98.58 96.7 91.44 47.39

LMS_6 4629342 0.69G 4577802 0.69G 98.69 96.89 91.83 47.7

LMS_7 4531974 0.68G 4476688 0.67G 98.59 96.7 91.45 48.19

LMS_8 4704600 0.71G 4654786 0.70G 98.75 96.76 91.49 47.3

LMS_9 4455698 0.67G 4406112 0.66G 98.68 96.77 91.55 47.45

LMS_10 3780250 0.57G 3741060 0.56G 98.75 96.83 91.67 47.82

JFL_1 4217110 0.63G 4166782 0.62G 98.61 96.64 91.27 47.93

JFL_2 5198358 0.78G 5130962 0.77G 98.53 96.46 90.9 47.97

JFL_3 4385206 0.66G 4324702 0.65G 98.44 96.4 90.79 47.67

JFL_4 2491648 0.37G 2453514 0.37G 98.24 96.34 90.71 47.39

JFL_5 4668386 0.70G 4607144 0.69G 98.54 96.26 90.48 47.9

JFL_6 6462998 0.97G 6396564 0.96G 98.8 96.84 91.63 46.6

JFL_7 2447580 0.37G 2423086 0.36G 98.69 96.78 91.57 48.35

JFL_8 5394202 0.81G 5330052 0.80G 98.61 96.71 91.43 47.75

JFL_9 5101784 0.77G 5043916 0.76G 98.67 96.77 91.57 47.92

JFL_10 6088498 0.91G 6023038 0.90G 98.76 96.81 91.6 47.54

WZS_1 4060186 0.61G 4003372 0.60G 98.42 96.69 91.45 47.78

WZS_2 6086906 0.91G 6017660 0.90G 98.67 96.84 91.67 47.33

YGL_1 4555380 0.68G 4505358 0.67G 98.74 96.89 91.82 48.3

YGL_2 4127066 0.62G 4066052 0.61G 98.3 96.18 90.33 47.46

YGL_3 3659212 0.55G 3615938 0.54G 98.63 96.43 90.84 47.64

DLS_1 3968904 0.60G 3921372 0.59G 98.54 96.8 91.64 48.71

DLS_2 3803398 0.57G 3754674 0.56G 98.5 96.49 90.98 48.3

DLS_3 4899390 0.73G 4838058 0.72G 98.58 96.71 91.44 48.09

FY_1 3039210 0.46G 2882090 0.43G 94.63 96.19 90.57 47.28
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criteria of MAF >0.05 and data integrity >0.8, SNP data were

further processed and fi l tered to retain SNPS with

polymorphisms. After filtering the SNPs obtained, 430376

high-quality SNPs were finally obtained for subsequent

analysis. It can be seen from the following Table 3 that the

heterozygosity of the Fanyang population (FY) is relatively high,

which may be related to the fact that the Fanyang population has

only one sample, the sample size is small, the width of the genetic

variation is insufficient and other factors, so there is not enough

sample data for comparative analysis of the genetic diversity in

this population. The heterozygosity of the other six populations

ranged from 19.26% to 20.34%, with average heterozygosity of

19.77%, indicating a low level of genetic diversity.
3.3 Genetic evolution and
population analysis

3.3.1 Phylogenetic evolutionary tree
The identified high-quality SNPs were used for phylogenetic

analysis of the 42 H. hainanensis resources. After 1000 repetitions

based on the PDIST model, the neighbor-joining algorithm of

MEGA software was used to perform evolutionary analysis on all

samples, and the phylogenetic tree of 42 H. hainanensis sample

resources was obtained (Figure 2). Samples from the same

sampling site were relatively closer to each other. However, the

relative distance between the samples from different sites means

that the internal samples from different sampling sites in these

seven population areas may have a common ancestor. The results

showed that the 42 samples could be divided into two large

groups, and each could be further divided into small subgroups. In

general, the samples of the same geographical origin were

relatively aggregated in the two large taxa. Still, the distribution

was mixed in the small subgroups, and the samples of the same

geographical origin were not completely merged into the same

subgroup. Group I mainly include the resources from

Diaoluoshan, Fanyang Mountain, and Yinggeling, and the

resources from Wuzhishanare clustered into Group II. The

resources from Limushan, Bawangling, and Jianfengling are

distributed in both groups, and the distribution is relatively

chaotic. The small subgroups clustered in group I were divided
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into three small independent subgroups, indicating a large

difference in kinship distance between the large group and each

other. The aggregation of samples in group II was relatively

uniform. Therefore, although there is certain geographical

isolation between the H. hainanensis resources of different

population areas, there is no direct correlation between the

clustering based on genetic distance and its geographical source.

3.3.2 Analysis of population genetic structure
To further verify the evolutionary genetic relationship

between the samples and infer that the H. hainanensis

population likely came from several ancestors. The genetic

structure of the mutations in each sequencing sample was

further studied. Based on SNP data, ADmixture software was

used to analyze the population structure of all samples. Then,

cluster analysis was performed, assuming that the number of

clusters (K value) was 1-10. Different K values represent the

distribution of ancestral genetic material of different populations

under the assumption that there are K ancestral groups. Since

K=1 cannot represent the distribution of ancestral genetic

material of different populations, it is not shown in the figure.

As shown in Figure 3, when K=2 and the sample are divided into

two subgroups, the sample of group 1 is almost dark blue, and

the sample of group 2 is almost light purple. The samples from

Fanyang (FY), Diaoluoshan (DLS), Jianfengling (JFL), and

Limushan (LMS) were clustered into group 2, and the

remaining samples were clustered into group 1. In the Cross-

Validation (CV) errors graph (Figure 4), when K=2, CV error

achieves the minimum value, indicating that the genetic

differences between samples are relatively large and the genetic

relationship is distant. Therefore, it can be preliminarily

concluded that the seven H. hainanensis populations in

Hainan Island came from two different ancestors, and there

was less gene exchange among them. In the table of genetic

differentiation coefficients among populations (Table 4). The Fst
values among the seven H. hainanensis populations ranged from

-0.05258 to 0.29542. There was significant genetic differentiation

(Fst > 0.25) between FY, WZS, and DLS populations. The genetic

differentiation between DLS and BWL, WZS populations, and

FY and BWL populations was significant (0.15 < Fst < 0.25).

There was a moderate genetic differentiation between BWL and
TABLE 3 SNP Statistical results.

Population code SNP number Heter LociNum Homo LociNum Hetloci-ratio

BWL 84652 16895 67757 19.96%

LMS 99347 19073 80275 19.26%

JFL 86427 17578 68849 20.34%

WZS 92887 18325 74562 19.73%

YGL 80498 15682 64816 19.48%

DLS 86604 17195 69409 19.85%

FY 17510 9285 8225 53.03%
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JFL, YGL, FY and LMS, JFL and DLS, and the other three

populations (0.05 < Fst < 0.15). In addition, the genetic

differentiation among other populations was low, so

differentiation could not be considered (Fst < 0.05).

3.3.3 Principal component analysis
Principal component analysis (PCA) was carried out on H.

hainanensis population samples from Hainan Island to

determine the evolutionary relationship among the

populations further. When the geographical distance between

groups is relatively close, PCA can better reflect the relationship
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between groups. Samples with similar genetic backgrounds will

gather in the figure to form a cluster. The farther the distance

between the two samples in the figure, the greater the genetic

background difference between the two samples. As shown in

the following figure (Figure 5), the 42 H. hainanensis were

clustered to form three independent clusters, among which

eight samples from Jianfengling (JFL_2, JFL_5-JFL_8),

Limushan (LMS_3, LMS_8) and Yinggeling (YGL_1)

populations with similar genetic backgrounds were clustered

together to form cluster 1. Fanyang (FY_1), Wuzhishan(WZS_1-

WZS_2), Bawangling (BWL1-BWL_13), Yingge Mountain

(YGL_2, YGL_3), Jianfeng Mountain (JFL_1, JFL_3-JFL_4,

JFL_9-JFL_10) and Limushan (LMS_1, LMS_2, LMS_4-L).

The 31 samples from the six populations of MS_7, LMS_9,

and LMS_10 were clustered together with similar genetic

backgrounds to form cluster 2. The population of DLS_1-

DLS_3 was far away from the other 2 clusters, showing a long

genetic distance, so the population of DLS_1-DLS_3 formed a

cluster alone.

3.3.4 Analysis of the genetic relationship
In the relatedness heatmap (Figure 6), the relatedness

coefficient was more significant than 0.4 (between the three

samples of DLS_1, DLS_2, and DLS_3). The relatedness among

the three samples of Diaoluoshan was very close. The genetic

distance between LMS_8 and LMS_1 was very close in the

relatedness heatmap. It can be concluded that the samples in

the same population are more closely related, and the more

distant the geographical location, the more complex the gene

exchange, and the more distant the genetic relationship. The six

samples, YGL_1, JFL_2, and JFL_5-JFL_8, are closely related.

The three samples from Diaoluoshan (DLS_1-DLS_3) and
FIGURE 3

The population structure analysis on Hopea hainanensis.
FIGURE 2

The neighbor-joining clustering of Hopea hainanensis in
different Population.
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Limushan (LMS_1) are just between 0.2 and 0.3. This indicates

that there is still some genetic exchange between clusters under

geographical isolation.
4 Discussion

4.1 Genetic diversity in
Hopea hainanensis

SNP variation is the most important and widespread type of

sequence variation in the plant genome, which can be easily

identified by sequence alignment (Fang et al., 2014). In this

study, 48795 high-quality SNPs were obtained by screening and

filtering. In the natural state of H. hainanensis field, the

ecological range of the population is wide. The seeds are

winged nuts, and the germination rate is high. Still, the seeds

have higher requirements for germination conditions in the

natural environment, which restricts the development of the

population (Trang and Triest, 2019). Even if the H. hainanensis

seeds can germinate and grow into seedlings in the natural

population, the H. hainanensis seedlings are easy to be

eliminated due to their weak competitiveness, resulting in few
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remaining adult H. hainanensis plants and weak natural

regeneration ability of the population in the field (Kenta et al.,

2004; Mehmood et al., 2021). The population density was very

low, leading to the population’s weak reproductive ability and

stress resistance and slow natural recovery and development.

Genetic diversity is lost when the effective population shrinks

and mating is switched from outcrossing to selfing (Ellegren and

Galtier, 2016; Cai et al., 2021). It is most likely that a severe

demographic bottleneck is responsible for the low genetic

diversity of H. hainanensis populations. Over the past 300

years, this species has lost about 70% of its population (Ly

et al., 2018). In the 20th century, Hainan Island’s deforestation

increased rapidly. About 80% to 95% of the primary forests have

been destroyed because of logging for wood on a large scale.

Furthermore, transitions to rubber trees and Eucalyptus

plantations, and the growth of cities (Lin et al., 2017; Chen

et al., 2018; Sun et al., 2020). Due to the high quality of its wood,

the number of H. hainanensis trees would go down

proportionally, or maybe even more. There is a lack of genetic

diversity analysis on the endangered mechanism of levees,

especially on the genetic diversity of levees in different

fragmented habitats.

Based on SNP, simplified genome sequencing analysis was

performed on 42 H. hainanensis samples using GBS technology.

After obtaining the data, genetic evolution and population

analysis were performed, such as phylogenetic tree clustering

analysis, population genetic structure analysis, principal

component analysis, and phylogenetic relationship analysis. In

principal component analysis, the contribution rates of the first

principal component (PC1), the second principal component

(PC2), and the third principal component (PC3) were 28.78%,

11.2%, and 6.29%, respectively. The contribution rates of the

three principal components selected in this analysis were all low,

and the total contribution rate was less than 50%. Therefore,

there may be a deviation (difference) between the cluster results

of PCA and the analysis results of other groups. In the principal

component analysis, the genetic distance of the Diaoluoshan

population was far from the other populations, and a single

cluster was formed. Except for principal component analysis, the

population structure of all samples, K value selection of

population structure, and phylogenetic evolutionary tree
TABLE 4 Genetic differentiation coefficient(Fst: above diagonal).

BWL LMS JFL FY WZS YGL DLS

BWL 0.02412 0.07731 0.19692 -0.02501 0.06426 0.19716

LMS 0.03763 0.07358 -0.04653 -0.0011 0.11088

JFL 0.06496 0.00063 -0.03522 0.09211

FY 0.25587 0.02041 0.29542

WZS -0.05258 0.18954

YGL 0.1024

DLS
frontie
FIGURE 4

K selection of population structure.
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analysis results showed that the cluster division was the same

and supported the division of seven populations into two

populations. Therefore, it is more reasonable to divide the 42

H. hainanensis samples from seven populations into two groups:

Group 1 (Diaoluoshan, Limu shan, Yinggeling, Jianfengling) and

Group 2 (Wuzhishan, Fanyang, Bawangling). In this study, high-

throughput GBS sequencing was performed based on SNPs, and

the analysis results may be limited due to the lack of reference

genomes covering the whole genome of SNP.
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4.2 Population genetic structure and
differentiation in Hopea hainanensis

Genetic structure is influenced by many factors, such as

breeding system, genetic drift, population size, seed dispersal,

gene flow, evolutionary history, and natural selection (Konuma

et al., 2000; Mehmood et al., 2020). The terrain of Hainan Island

is low, flat ground, and high in the middle. The terrain takes

Wuzhishan and Yinggeling as the uplifted core and drops

progressively to the periphery. The mountain, hill, platform,

and plain form a ring-stratified landform with an obvious

cascade structure. The samples collected in this study were

taken from Wuzhishan, Yinggeling Mountain, and adjacent

forest reserves. In geographical location, the Jianfenglin

population and Diaoluoshan population, Limushan between

groups are far apart (> 100 km). Still, the smaller the genetic

distance between the two groups (Fst = 0.09211), the existing

gene flow between populations may have originated from the

common ancestor of genetic exchange, carried by man-made

factors, animals or other factors such as geological factors into

the other group.
5 Conclusion

In order to improve genetic diversity among H. hainanensis

populations, the H. hainanensis population resources of

endangered plants should be effectively protected and

developed. In order to protect H. hainanensis species, H.

hainanensis seedlings may be protected ex situ due to their

weak competitive ability and easy inhibition by mother trees. By

conserving H. hainanensis seedlings ex-situ, we can reduce

competition within the population and increase competition

between poke stack populations. Genetic drift can also be

reduced by increasing gene flow among small populations.

Additionally, cross-introduction and breeding among the

seven populations can improve genetic diversity.
6 Implications for conservation

Because the loss of genetic variation is a major threat to

endangered species, preserving and restoring genetic variation is

an important conservation action (Jiang et al., 2018; Cai et al.,

2021). We discovered that genetic variation in the populations

BWL, WZS and FY were low. These populations are more

vulnerable to biotic and abiotic stresses, their conservation is

critical. Furthermore, the populations DLS, YGL, JFL and LMS

had higher levels of genetic diversity and contained more than

one genetic subgroup. That populations could be used as seed

sources for propagating seedlings and saplings in restoring

Hainan Island’s previously logged lowland rainforests. It is
FIGURE 5

Principal component analysis diagram of H. hainanensis.
FIGURE 6

Ties of consanguinity.
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difficult to regenerate native H. hainanensis populations because

seedlings and saplings grow slowly and are frequently unable to

establish themselves in heavily shaded conditions. To help

restore endangered H. hainanensis populations on Hainan

Island, select populations with high genetic diversity (e.g.,

for seedlings).
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Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang, China
Cassava disease is one of the leading causes to the serious decline of cassava

yield. Because it is difficult to identify the characteristics of cassava disease, if

not professional cassava growers, it will be prone to misjudgment. In order to

strengthen the judgment of cassava diseases, the identification characteristics

of cassava diseases such as different color of cassava leaf disease spots,

abnormal leaf shape and disease spot area were studied. In this paper, deep

convolutional neural network was used to classify cassava leaf diseases, and

image classification technology was used to recognize and classify cassava leaf

diseases. A lightweight module Multi-scale fusion model (MSFM) based on

attention mechanism was proposed to extract disease features of cassava

leaves to enhance the classification of disease features. The resulting feature

map contained key disease identification information. The study used 22,000

cassava disease leaf images as a data set, including four different cassava leaf

disease categories and healthy cassava leaves. The experimental results show

that the cassava leaf disease classification model based on multi-scale fusion

Convolutional Neural Network (CNN) improves EfficientNet compared with the

original model, with the average recognition rate increased by nearly 4% and

the average recognition rate up to 88.1%. It provides theoretical support and

practical tools for the recognition and early diagnosis of plant disease leaves.

KEYWORDS

deep learning, classification, EfficientNet, multi-scale feature fusion, attention
mechanism
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1 Introduction

With the current climate posing a threat to human health,

vegetation and biodiversity (Bhatti et al., 2022a), and the

outbreak of the novel coronavirus pneumonia, major cities

across the country have suspended production in order to

effectively prevent the spread of the epidemic (Bhatti et al.,

2022b). The importance of food is self-evident. In recent years,

the planting area has continued to expand, and it is also a key

food security crop for smallholder farmers because it can

withstand harsh conditions. However, with the increase in

cassava planting areas, the disease problem is becoming

increasingly prominent. Cassava disease can generally be

diagnosed according to the shape, color, and leaf shape

characteristics of the disease spots on cassava leaves. Under

the influence of environmental factors, cassava disease is more

likely to occur, which affects the yield and quality of cassava.

According to the different characteristics, cassava disease can be

mainly classified into Cassava Bacterial Blight (CBB), Cassava

Brown Streak Disease (CBSD), Cassava Green Mottle (CGM),

Cassava Mosaic Disease (CMD), etc., which can lead to reduced

and/or diseased cassava output. Due to the small number of

professional plant personnel of cassava and the lack of

professional knowledge of general plant personnel of cassava,

the symptoms of cassava leaf disease are not typically studied

with good understanding, which can lead to inaccurate and

incorrect diagnoses of cassava disease. At the same time, the

artificial diagnosis and treatment of cassava leaf diseases not only

wastes a lot of manpower and material resources but also results

in omission and error from subjective judgment due to the

relatively similar characteristics of each leaf disease. The

diversity of solutions for cassava disease often prevents

effective treatment of cassava, so it is very important to

correctly identify the disease. Therefore, as an auxiliary means,

computer technology can be applied to help planting personnel

determine whether there is cassava disease and of which type,

and then the best treatment can be given, to avoid yield decline.

There have been many research achievements in judging

plant diseases through traditional machine learning methods.

Since they are all based on artificial designs of features, they are

inefficient and have a large workload (Pujari et al., 2016). In

addition, people tend to rely on experience when selecting

features, which is highly subjective and not only consumes

manpower but also has a large amount of uncertainty.

Combining machine learning with deep learning can solve this

problem well. Jamil (Jamil et al., 2021) used artificial neural

network (ANN) and support vector machine (SVM) to solve the

problem of land classification. When the accuracy of ANN was

82.60% and the accuracy of SVMwas 73.66%, they combined the

two models and weighted them, and finally the average accuracy

reached 86.18%. A CNN can automatically extract image

features, greatly reducing the workload, while providing a

good research direction for plant disease classification.
Frontiers in Plant Science 02
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Meanwhile, K-nearest Neighbor (KNN) classifier (Bazai et al.,

2017) and other algorithms are also studied in deep learning in

data analysis scenarios, Bhatti (Bhatti et al., 2021a) proposed a

method for edge detection of color images by using Clifford

algebra and its subalgebra quaternion in image processing,

which improved object detection and classification as well as

extraction of other features. Bhatti (Bhatti et al., 2021b) also

proposed a spatial spectrum HIS classification algorithm – local

similarity Projection Gabor Filtering (LSPGF), which uses the

reduced-dimension Convolutional Neural Network based on

local similarity projection (LSP) and two-dimensional Gabor

filtering algorithm. The performance of the proposed method is

compared with other algorithms in the public Host Integration

Server (HIS) database, and the overall accuracy is better than all

datasets. Based on the data information, Bhatti (Aamir et al.,

2021; Bhatti et al., 2022c) uses regression analysis algorithm and

path analysis algorithm to extract the relationship between

variables and get the relationship between algorithms.

With the proposals of AlexNet (Krizhevsky et al., 2012) and

Visual Geometry Group Network (VGG) (Simonyan and

Zisserman, 2014), the number of network parameters is

greatly reduced and the network is more suitable for complex

samples under multiple training times, paving the way for deep

learning to be applied in future computer vision. In the same

year that VGG was proposed, Google proposed GoogleNet

(Szegedy et al., 2015). This network adopts the Inception

modular structure, by which convolutional kernels of

different sizes are used to capture features of feature maps

and expand their receptive fields, and then splice the results

into channels. Finally, the accuracy of the network is improved

by fusing multiple features. In the following years, the proposal

of Resnet (He et al., 2016) residual network provided new ideas

for the CNN. With the advent of EfficientNet (Tan and Le,

2019), the model has become more capable at capturing

features, and its application in computer vision is developing

day by day, especially in plant disease recognition.

Hewitt (Hewitt and Mahmoud, 2018) only used a simple

shape feature set to judge and recognize relevant plant leaves, in

which the feature set included shape features of original leaves

and signal features extracted from different convolution models

for recognition and obtained good recognition results. In the

face of wheat disease leaf identification and differentiation, (Van

Hieu and Hien, 2020) used a variety of classification algorithms

to compare the prediction accuracy of various neural networks,

among which GoogleNet proved to have the highest accuracy of

98%, more suitable for wheat disease detection. As for the

detection and recognition of tea diseases, Lee (2018) used

Faster Region Convolutional Neural Network (FR-CNN) and

candidate objects proposed by Region Proposal Network (RPN)

to detect, identify, and distinguish three kinds of tea diseases,

with recognition accuracies up to 63%, 81%, and 64%,

respectively. Two major crop damage modes in maize

production were evaluated, and three commonly used object
frontiersin.org
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detectors were evaluated. It was concluded that YOLOv2 had

better performance and was more suitable for the assessment of

maize growth damage (Turkoglu and Hanbay, 2019). The

adversarial robustness of the model (Zoran et al., 2020) was

significantly improved by adding an attention mechanism, and

the robustness was effectively improved by changing the model

expansion steps. On the lightweight model, Wang (Wang et al.,

2022) proposed an Individualized activity space modeler (IASM)

mechanism to improve the accuracy and efficiency of the model,

and achieved the classification accuracy of 92.57% on the self-

made data set by using Ghostnet and Weighted Boxes Fusion

(WBF) structures. In the classification of banana diseases,

Narayanan (Narayanan et al., 2022) combined the mixed

algorithm of CNN and Fuzzy Support Vector Machine

(FSVM) to classify banana diseases, CNN to detect, and FSVM

algorithm to strengthen the classification, and finally achieved

good results. In terms of attention mechanism, Zhu (Zhu et al.,

2021) added an attentional mechanism module combining

Convolutional Block Attention Module (CBAM) and ECA-Net

module to the model, which improved the accuracy of the model

by 3.4%. Zakzouk, S. (Zakzouk et al., 2021) used AlexNet to

classify new rice diseases with an accuracy of 99.71%. The

accuracy of the results indicated the feasibility of the

automatic rice disease classification system. Tang (Tang et al.,

2020) proposed a new two-stage Convolutional Neural Network

image classification network. InnerMove, a new image data

enhancement method, was used to enhance images and

increase the number of training samples, so as to improve the

generalization ability of the deep CNN model for image

classification tasks. There are also many innovative neural

network methods on algorithm models that can provide ideas

for classification. At present, the 3D Convolutional Neural

Network method (Hameed et al., 2022a) is innovatively used

to extract the feature information for the data set. This method

can solve the problem with the data better than the pixel-based

support vector machine classifier. When it comes to the impact

of food security on local and global economies, Mazhar (Hameed

et al., 2022b) applied the sequential model in deep learning to

classify the outer layer air particles through the analysis and

characteristics of objects and fusion. Compared with the existing

deep learning method of surface landscape, the accuracy rate

reaches 98%.

In view of the above mentioned contents and problems, in

order to improve the efficiency of cassava disease classification

and recognition, this paper uses the deep convolutional neural

network method according to the characteristics of crop disease

images in real scenes, takes cassava leaf disease images as the

research object, and designs a cassava disease classification

model based on multi-scale fusion CNN. A multi-scale fusion

module is proposed to extract multi-scale information features

of images. Focal loss was adopted to reduce the emphasis on

most categories caused by data imbalance, and to solve the

problem of low classification accuracy for categories with few
Frontiers in Plant Science 03
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samples. CBAM (Woo et al., 2018) module was introduced to

obtain key information such as texture and color of cassava

leaves, and the result of precise positioning of specific features

was achieved.

We enhance and amplify the existing data images and add

these images to the existing data set to form new mixed data for

training the model. The effectiveness of the proposed model was

verified by designing several comparison experiments and

comparing them with network models such as Resnet and VGG.

The rest of this article is organized as follows. The Materials

and Methods section introduces our proposed cassava disease

classification model based on multi-scale fusion Convolutional

Neural Network. See the results section for experimental results.

Finally, in the conclusion part of the summary of this article.

To summarize, the main contributions of this study are

as follows:
(i)a model is developed to recognize cassava disease based

on Convolutional Neural Network deep learning.

(ii)the accuracy of cassava disease classification model is

evaluated using images taken from nature and artificial

enhanced images.

(iii)a lightweight module based on attention mechanism to

enhance the classification accuracy of the cassava disease

model.
2 Method and materials

2.1 Cassava disease classification model
based on multi-scale fusion
Convolutional Neural Network

In this paper, a classification model of cassava disease was

proposed based on multi-scale fusion (shown in Figure 1). The

proposed model adopts Efficientnet-B6 as the backbone

network, by which a multi-scale fusion module is designed to

improve shallow feature extraction. Through CBAM, the

channel and spatial weights of subsequent modules are re-

calibrated and the classification capacity of cassava leaf disease

is enhanced.

2.1.1 EfficientNet
We generally expand the network scale by increasing

network depth D, receptive field W, and resolution R. Compared

with AlexNet, VGG network convolution kernels were all

replaced with smaller 3×3 convolution kernels (including a few

1×1 convolution kernels), which achieved better training results

through deeper network structure. However, with the gradual

deepening of network depth, network training becomes more

difficult due to the emergence of Vanishing Gradient, over-
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fitting, and other problems. Even if the problem of Vanishing

Gradient is solved, the low precision return will lead to high

calculation cost and low efficiency of increasing network depth

blindly. For another example, MobileNet (Howard et al., 2017)

can adjust the number of feature data channels by reducing the

amount of computation. However, like deepening the network

structure, low precision return will also be found when the width

of the network structure reaches a certain level. In the final

approach, the neural network can capture finer patterns by using

higher-resolution input images. It has developed from 224 × 224

pixels to 229× 229 pixels, or even 512 × 512 pixels. However,

accuracy problems are inevitable as the parameter becomes

larger. Before EfficientNet, network improvements were

generally realized by changing only one of the following

variables of network depth, receptive field, and resolution size.

However, EfficientNet can obtain better training results by

increasing the depth, receptive field, and image resolution

through one adjustment. Compared with the aforementioned

model, EfficientNet can get a better result because it is capable of

adjusting the proportions in three dimensions (shown

in Figure 2).

2.1.2 Proposed model
2.1.2.1 Multi-scale fusion module

The low-level feature map has a small stride, a large size, and

a small receptive field to detect the details of small targets. The

high-level feature map has a larger stride, smaller size, larger

receptive field, and rich semantic information. The model

extracts detailed features such as color and texture from the

low-level network and extracts the blade shape feature from the

high-level network.

The key features in the map can be selectively enhanced and

the features can be accurately located by redistributing both

channel and spatial weights through the Attention Mechanism.
Frontiers in Plant Science 04
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Compared with the previous EfficientNet model, which did not

include the MSFM module, the new model adds modules based

on the attention mechanism to allocate computing resources to

more important tasks. The operations of different pooling layers

in channel and space were added to enhance important features

and reduce the proportion of unnecessary features. At the same

time, the sensitivity field of the low-level feature map augmented

by expansion convolution with different expansion rates can not

only extract the details of color and texture, but also fully obtain

the context information of the image. In the end, the feature map

output obtained by different expansion rates is fused to improve

the classification effect.

In the result part, we can see from the comparison

experiment that our model has higher accuracy compared with

other models, and in the heat map, we can see that it has more

accurate judgment on key points.
2.1.2.1.1 Convolutional Block Attention Module

The attention mechanism is a relatively efficient data

processing method developed in machine learning in recent

years, and is widely used in various types of machine learning

tasks such as image recognition and natural language processing.

When people observe things outside, they usually focus on what

they think is important. The attention mechanism focuses on

local information that allows the network to achieve better

results. Therefore, in this paper, Convolutional Block

Attention Module is added before each regularization of the

pre-training network and improves the features of the selected

maps to increase the accuracy of the model (shown in Figure 3).

2.1.2.1.1.1 Channel Attention Mechanism (CAM)

SENet (Hu J. et al., 2018), as the champion network of the

2017 ImageNet classification Contest, is essentially a model

based on a channel attention mechanism, which gives rewards

and punishments of different weights according to the

importance of each feature channel. In this paper, the channel

attention mechanism adopts avg-pool and max-pool for fusion.
FIGURE 2

EfficientNet-B6 model structure.
FIGURE 1

Cassava disease classification model based on multi-scale fusion.
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After convolution and activation of the Relu function, the results

of the two pooling layers are added together. Finally, it is

outputted by the Sigmoid function (shown in Figure 4). The

size of the input feature map is H×W×C. Firstly, the global

maximum pooling layer and average pooling layer are carried

out, respectively, to obtain two-channel weight matrices

of 1×1×C.

The two matrix results are fed into a two-layer multilayer

perceptron (MLP), respectively, and theMLPcanshareparameters.

After adding the two feature vectors, the weight coefficients

are obtained by the Sigmoid activation function again.

The weight coefficient is multiplied by the original input

feature to obtain the final output feature.

2.1.2.1.1.2 Spatial Attention Mechanism (SAM)

Different from the weight of each feature plane of the

channel attention allocation, the spatial attention model is to

find the most important part of the network for processing

(shown in Figure 5).

The input characteristic graph is H×W×C. The Max-Pool

and Avg-Pool of one dimension are spliced and dimensionally

reduced to generate two one-dimensional feature maps.

The weight parameters are generated by the Sigmoid

activation function, and then the final output feature is

obtained by multiplying the original input feature.

2.1.2.1.2 Multi-scale fusion module

First, the MSFM redistributes the channel and spatial

information through the Convolutional Block Attention

Module to enhance the characteristics of small target

information. Then Feature Extraction is carried out using
Frontiers in Plant Science 05
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dilated convolution of different dilatation rates, and the

context information of feature images is fully extracted by

expanding different receptive fields. The convolution kernel

size of dilated convolution (Yu and Koltun, 2015) is the same

as that of ordinary convolution, and the number of parameters

in the neural network remains unchanged. The difference lies in

that the dilated convolution has a larger receptive field. A 3x3

convolution kernel with an expansion rate of two has the same

receptive field as a 5x5 convolution kernel. However, the number

of parameters is only nine, much less than the 25 parameters of

the 5x5 convolution kernel. The size of the convolution kernel

after expansion:

kd = k + k − 1ð Þ � r − 1ð Þ (1)

where

kd = Size of the expanded convolution kernel

k = Size of original convolution

r = Dilation rate

The calculation of the receptive field of dilated convolution is

as follows:

 rf   ¼ ½ðk+1Þ � ðr-1Þ+k� � ½ðk+1Þ � ðr-1Þ+k� (2)

where

rf = Receptive field

k = Size of original convolution

r = Dilation rate

The multi-scale fusion module designed in this paper is

shown in Figure 6. First, feature maps are learned by the

Convolutional Block Attention Module, and weight calibration
FIGURE 4

Channel Attention Mechanism structure diagram.
FIGURE 5

Spatial attention mechanism.
FIGURE 3

CBAM structure diagram.
FIGURE 6

Multi-scale fusion module.
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is carried out for channel and space to strengthen the weight

reward of important features of feature maps. The invalid

features are punished and the weight is reduced to highlight

the important information of the detected image. In this paper, a

3×3 convolution kernel is used for feature extraction, and the

expansion convolution with expansion rates of 1, 2, and 4 are

used for feature extraction, respectively. The features of different

scales are extracted from each layer, and the new features are

obtained after dimensionality reduction by fusion.
2.2 Loss function

2.2.1 Cross-entropy loss function
In recent years, transfer learning has been widely used in

machine learning, which presents satisfactory application results

in deep learning. For multi-classification tasks, the cross-entropy

loss function (Hu K. et al., 2018) is generally used.

The most commonly used cross-entropy loss function is:

CE ptð Þ = � atlog ptð Þ (3)

where

CE = Loss

Pt = Predictive value

at = Added parameters that represent weights for

different categories

Cross entropy loss function under multiple classifications:

CE = �o
N

j=1
atlog ptð Þ (4)

(b) Focal loss

To a certain extent, traditional methods can solve the

problem of fewer categories and unbalanced image

distribution, but when there are many easily classified samples,

the samples will still dominate the training process, so some

difficult-to-classify samples have little chance of gaining the

attention of the model. The focus function (Lin et al., 2017)

treats the difficult-to-classify samples and the easy-to-classify

samples differently, focusing on the difficult-to-classify samples

and reducing the weight of the easy-to-classify samples.

Therefore, the focus function is adopted as the loss function in

this study.

Focal loss adjusts the weights of the difficult-to-classify and

easy-to-classify samples in the formula:

FL ptð Þ = � at 1� ptð Þl log ptð Þ (5)

g is a constant, and the magnitude of g determines the weight

of small and difficult samples.

When g<=0, the focusing parameter can be adjusted. When

the value of g is larger, the loss of the sample that is easy to

classify is small, and the focus of the model is on the sample that

is difficult to classify. This is because when g is larger, the loss of
Frontiers in Plant Science 06
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small samples and difficult samples will be larger, so that they

can obtain greater weight.

When g>1, the training loss of large and simple samples can

be reduced, while the loss of small and difficult samples will not

be reduced much.

When g=1, the equation degenerates into the cross-entropy

loss function mentioned above.

The focus loss function of multi-classification:

FL = �o
N

j=1
1� ptð Þl log 1� ptð Þ (6)
2.3 Input dataset

2.3.1 Data sources and features
The data used in this paper are a cassava leaf dataset

manually photographed in Uganda and annotated by experts

from the National Crop Resources Institute in collaboration with

the Artificial Intelligence (AI) Laboratory at Makerere

University, Kampala. The data set contains five kinds of

cassava leaf images, and disease images are cassava white leaf

blight, brown streak disease, green mottling disease, Mosaic

disease and healthy cassava leaf images. It can better reflect the

characteristics and symptoms of healthy cassava leaves and

diseased cassava leaves in natural environment, and it also

represents the real and low diagnostic format that farmers

need in real life. The dataset includes images taken under field

conditions (some of which are shown in Figure 7). And images

enhanced by data. There are 22,000 of them. Each image has a

pixel size of 800×600. The standard input size of neural networks

such as ResNet、EfficientNet and Resnet-50 is 224×224 pixels.

The whole data set was randomly divided into a training set

(90%) and a test set (10%). Therefore, 19,800 images were used

for model training, and the remaining 2,200 images were used to

test the performance of the model.
B C

D E

A

FIGURE 7

Images of cassava leaf diseases (A–D is the disease of four
different cassava leaves and e is the healthy leaf).
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2.3.2 Data augmentation
To prevent network overfitting, OpenCV data enhancement

was used to expand the data set appropriately. The data set was

enhanced by increasing the brightness, decreasing the

brightness, and reversing the image, and the data of various

cassava leaves amounted to 4000 pieces. The data enhancement

methods used are as follows (shown in Figures 8–12):
Fron
Rotation: Rotate the image by 180°.

Brightness reduction: The enhancement factor is 0.7, which

means the brightness becomes 70% of the original image.

Horizontal flip: Flip the input image horizontally.
2.4 Computer hardware

The proposed method was tested for training and test

configuration for neural network models (shown in Table 1).

This result is achieved in Table 2, where PyTorch, as a popular

learning framework today, is capable of powerful GPU

acceleration and includes deep neural networks. Meanwhile,

GPU RTX2080Ti has 11 GB of memory, which can better

train the model by adjusting batch size.
2.5 Experimental hyperparameter setting

The cassava leaf data set was divided into a training set, a

validation set, and a test set with the ratio of 8:1:1. The training

set was trained as an epoch 150 times, 1e-4 was selected as the
tiers in Plant Science 07
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initial value of the learning rate in the form of a small amount,

and the batch size was set to 16. Batch size not only affects the

efficiency of the training model but also affects the accuracy. To

find a group balance between efficiency and memory capacity,

the batch size is used to calculate the batch size.
2.6 Model evaluation criteria

Accuracy (%) is used as an evaluation index for multi-

classification problems in the laboratory. The accuracy of the
B C DA

FIGURE 8

Cassava Bacterial Blight. (A) original (B) Rotation by 180° (C)
Brightness reduction (D) Horizontal flipping.
B C DA

FIGURE 9

Cassava Brown Streak Disease. (A) original (B) Rotation by 180°
(C) Brightness reduction (D) Horizontal flipping.
B C DA

FIGURE 10

Cassava Green Mottle. (A) original (B) Rotation by 180°
(C) Brightness reduction (D)Horizontal flipping.
B C DA

FIGURE 11

Cassava Mosaic Disease. (A) original (B) Rotation by 180°
(C) Brightness reduction (D) Horizontal flipping.
TABLE 1 Experimental configuration.

Experimental
environment

Model and version

Deep learning framework Pytorch

Programming language Python3.7

GPU NVIDIA GeForce RTX 2080 Ti

The hardware
environment

Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz 2.10
GHz
B C DA

FIGURE 12

Healthy cassava leaf. (A) original (B) Rotation by 180°
(C) Brightness reduction (D) Horizontal flipping.
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experimental model classification can be obtained by removing

the number of labels in the test set according to the evaluation

criteria. The calculation formula of indicators is as follows:

Precision =
TP

TP + FP
� 100% (7)

TP=Positive sample prediction is the number of positive classes.

FP=Negative sample prediction is thenumber ofnegative classes.
3 Result

3.1 Validation and comparison of
proposed Convolutional Neural Network

Inorder toverify that the improvedmodel in thispaperhasbetter

image recognition ability compared with the traditional model, this

paper uses multiple groups of comparative experiments.

The experimental results are shown in Table 2. According to the

evaluation index results, as shown in the figure above, the improved

model is comparedwith themodelwith better performance recently.

Among them, theaccuracy rateof themodel proposed in thispaper is

88.1% in the test set separated from the data set, both of which are

better than thepreviousmodels.Toverify that the improvedmodel in

this paper has better image recognition ability compared with the

traditional model, multi-group comparative experiments were

carried out (shown in Table 2).
3.2 Ablation experiments

The confusion matrix (Song et al., 2015) is also one of the

evaluation indicators of the classification model (shown in

Figure 13). The confusion matrix parameters are converted by

classification report. The parameters are given as follows:

(i)The percentage of the total that all predictions are correct,

as in Equation 1:
Frontiers in Plant Science 08
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Accuracy =
TP + TN

TP + TN + FP + FN
(8)

(ii)The proportion of those correctly predicted to be positive

that are actually positive, as in Equation 2:

Recall =
TP

TP + FN
(9)

(i)The proportion of correct positive precisions to total

positive precisions, as in Equation 3:

Precision =
TP

TP + FP
(10)

The column labels of the confusion matrix represent the

predicted cassava leaf disease type, and the sum of the

corresponding row values represents the sum of the samples of

this type. The diagonal line indicates the number of correctly

predicted labels. Each value on the diagonal line indicates the

number of correctly predicted labels. The value at the intersection

of the columns represents the value of the corresponding tag

predicted. If it is not on the diagonal, it can be seen as the

number of wrongly predicted tags. The darker diagonal suggests

the better model. In the classification results, the judgment accuracy

is high, andmost of the results of the test set are concentrated on the

diagonal of the confusion matrix. The identification accuracy of all

kinds of blades is greater than 90%. However, the identification

accuracy of Cassava Mosaic Disease in the test set is lower than that

of other diseases, and it is easy to misjudge it as other cassava leaf

diseases. By observing the confusion matrix, it can be found that the

pictures of Cassava Mosaic Disease can be easily identified as

Cassava Bacterial Bligh and Cassava Green Mottle, because the

symptoms of these three diseases are relatively similar, so

classification errors are prone to occur. The obfuscation matrix of

the improved model presented in this paper has better performance

and a higher average recognition rate.
3.3 Visual output comparative analysis

Class Activation Mapping (CAM) was used to visualize each

trained model (Zhou et al., 2016) to better compare the

expression process of image features between an improved

network and a traditional network. Feng (Feng et al., 2022)

used the Grad-CAM thermal map of interpretative analysis, the

feature extraction effect of the model can be better expressed. In

visualization, the thermal map and the original image are

superimposed (shown in Figure 14). This is a visual output of

the original image and Efficientnet-B6 and our model,

respectively. The darker the color is, the larger the value and

the more feasible it will be to serve as the judgment. Compared

with the model in this paper, our model has a stronger feature

extraction ability and better effects in the face of Cassava leaf

disease, which not only extracts different colors of cassava leaf

disease but also better captures features in the context.
TABLE 2 Classification accuracy of the test set in different models.

Model Accuracy of the test set/%

VGG-16 70.5

Resnet-18 83.2

Resnet-34 83.9

Resnet-50 85.2

Inception v2 84.1

Inception v3 85.3

MobileNet v3 84.1

ShuffleNet 83.5

EfficientNet-b3 85.5

EfficientNet-b6+ 86.5

Our model 88.1
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In addition, it can achieve more accurate extraction of key

information. It can also be seen from the comparative

experiment that the original model has some judgment errors

in the color discrimination of leaves and the discrimination

ability of background information, while the improved one has a

better grasp of sample information and a better capture effect for

judgment features.
4 Conclusions

Cassava, as one of the three varieties of potato, is an

important food. Compared with the diagnosis of cassava

disease by human, the identification of cassava disease by
Frontiers in Plant Science 09
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computer and deep learning method not only has low cost and

higher accuracy than manual diagnosis, but also greatly reduces

the efficiency. The multi-scale cassava leaf classification model

proposed in this paper can better ensure the safety and efficiency

of cassava food production and judge the cassava disease type

more accurately. Compared with the diagnosis of cassava leaf

disease using the human eye, the identification of cassava leaf

disease by computer and deep learning method is characterized

by lower cost, higher accuracy, and greatly increased efficiency.

In this paper, a multi-scale fusion module was proposed, and the

Focal Loss function and CBAM module were introduced. An

optimization network model of a multi-scale fusion network

based on EfficientNet and attention mechanism was proposed.

The model was used to train the cassava leaf disease data set and

compare with the EfficientNet, ResNet50, and VGG16 networks.

The experimental results show that the improved network

proposed in this paper has higher precision and better

generalization ability. The problem of uneven data was solved

by changing the loss function, the distinguishing ability of

cassava leaf diseases was improved through an attention

mechanism, and the recognition ability of the model was

enhanced by multi-layer fusion. According to the pricing

standard of the model, the model proposed in this paper can

be used for image recognition of Cassava leaf disease.

Since our model adds the lightweight module MSFM based

on EfficientNet, our model can be installed on mobile devices,

such as microprocessors. Due to the large-scale application of

5th Generation Mobile Communication Technology (5G)

(Johannes et al., 2017), there is efficient transmission.

According to the improvement of the hardware configuration

of mobile terminal equipment, the image to be detected can be

uploaded to the cloud server for processing, and then the

recognition and classification results can be returned to the

terminal. For some cassava planting technicians, when they have

doubts about cassava disease judgment, the mobile terminal

deployed with the model can detect and classify cassava disease

in real time, which is equivalent to having a valuable consulting

tool. In the future, a cassava disease detection system can be

developed based on the classification results of cassava diseases,

which can judge the disease categories and provide

corresponding management methods. This can greatly

improve the planting efficiency of cassava, improve the

production efficiency of cassava, achieve scientific and

technological progress of agriculture, and promote agriculture

into the era of intelligence. Although the model in this study

achieved a good success rate in a limited number of cassava

diseases, cassava diseases are not limited to these diseases. To

improve this, more images can be collected in different cassava

planting areas and field conditions, and the model can be more

effective in identifying cassava diseases based on field conditions

by amplifying the dataset.
FIGURE 13

Confusion matrix for the test set.
FIGURE 14

Visual comparison of EfficientNet-B6 and our model.
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Introduction: The fusion of infrared and visible images can improve image quality

and eliminate the impact of changes in the agricultural working environment on

the information perception of intelligent agricultural systems.

Methods: In this paper, a distributed fusion architecture for infrared and visible

image fusion is proposed, termed RADFNet, based on residual CNN (RDCNN),

edge attention, and multiscale channel attention. The RDCNN-based network

realizes image fusion through three channels. It employs a distributed fusion

framework to make the most of the fusion output of the previous step. Two

channels utilize residual modules with multiscale channel attention to extract the

features from infrared and visible images, which are used for fusion in the other

channel. Afterward, the extracted features and the fusion results from the previous

step are fed to the fusion channel, which can reduce the loss in the target

information from the infrared image and the texture information from the visible

image. To improve the feature learning effect of the module and information

quality in the fused image, we design two loss functions, namely, pixel strength

with texture loss and structure similarity with texture loss.

Results and discussion: Extensive experimental results on public datasets

demonstrate that our model has superior performance in improving the fusion

quality and has achieved comparable results over the state-of-the-art image

fusion algorithms in terms of visual effect and quantitative metrics.

KEYWORDS

distributed fusion, multiscale channel attention, edge attention, image enhancement,
intelligent agriculture
1 Introduction

Infrared images and visible images are important sensing information for intelligent

agricultural systems. The key to intelligent agricultural systems is to utilize perceptual data for

intelligent analysis and decision-making. The infrared imaging technology with anti-

interference solid ability uses the radiation energy released by the target so it can penetrate

smoke, fog, rain, snow, etc., in the environment. However, the visible light sensor uses light
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reflectivity to image with much spectral information and high-

resolution characteristics. As the application range in intelligent

agricultural equipment gradually broadens and the perceived

information environment is usually changeable, a single image

imaging technology cannot sufficiently perceive the environmental

information. It results in the inability of intelligent agricultural

equipment to perceive enough information, which leads to the

failure of intelligent agricultural systems to work regularly.

Therefore, it is of great significance to study the complementary use

of infrared and visible image imaging technology to enhance the

information perception ability of intelligent agricultural equipment

(Aamir et al., 2021).

High-quality enhanced images can be obtained by fusing infrared

and visible images to improve the information perception ability in

intelligent agricultural equipment and meet various subsequent visual

tasks for intelligent agricultural systems. As a branch of information

fusion, image fusion has played an essential role in computer vision

since it can generate more informative images for high-level vision

tasks such as recognition (Basak et al., 2022), detection (Wieczorek

et al., 2022), tracking (Bhatti et al., 2022d; Yan and Woźniak, 2022),

and surveillance (Chen et al., 2021; Chen et al., 2022b). Significantly,

infrared and visible image fusion is a considerable problem and has

striking advantages. It is a task that aims to integrate salient features

extracted from source images into a single image by appropriate

methods (Li et al., 2017). Generally, visible images contain texture

information with high spatial resolution and often lose effectiveness

under dark or extreme environmental conditions. On the contrary,

infrared images can highlight thermal targets in low light or severe

weather and contain little texture information because of their low

spatial resolution. Infrared and visible image fusion can integrate the

complementary virtues from infrared and visible images into

synthetic images, which not only conform to human visual

perception but also adapt to the application in various vision

systems (Bhatti et al., 2022a; Bhatti et al., 2022b).

According to the abstract degree in image information, image

fusion is divided into three levels: pixel level, feature level, and

decision level (Ma et al., 2019a). In this work, we mainly study

pixel-level image fusion methods because they can retain the

information from the source image to the maximum extent. In the

past decades, scholars have proposed numerous infrared and visible

image fusion techniques. These approaches can be broadly classified

into two categories: traditional and deep learning-based methods (Ma

et al., 2019a). Most traditional infrared and visible image fusion

algorithms belonging to pixel-level fusion directly perform

mathematical operations on the image pairs after image

registration, which have achieved good performance. However,

infrared and visible image fusion methods based on deep learning

have emerged with tremendous potential and even better

performance in recent years.

The traditional methods, in general, cover five approaches: multi-

scale transform methods (MST) (Zhu et al., 2018), sparse

representation methods (SR) (Cui et al., 2015; Zhang et al., 2018),

saliency methods, subspace methods, and other methods (Gangapure

et al., 2018). In general, MST-based methods first decompose the

source images into multiple scales, and then the multi-scale features

are fused using the appropriate fusion rule. Finally, an inverse

operation is performed to reconstruct the fused image. The MST
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based methods usually adopt Laplacian pyramid transform (LP)

(Bulanon et al., 2009), wavelet transform (Wavelet) (Mallat, 1989),

nonsubsampled contourlet transform (NSCT) (Da Cunha et al.,

2006), edge-preserving filter (EPF) (Farbman et al., 2008), curvelet

transform (CVT) (Nencini et al., 2007), and multi-resolution singular

value decomposition (MSVD) (Naidu, 2011). Sparse representation

methods (SR) generally comprise four steps (Ma et al., 2019a): First, a

sliding window strategy is adopted to decompose the source image

into several overlapping patches. Then a learned over-complete

dictionary is used for sparse coding on each patch to obtain the

sparse representation coefficients. Thirdly, a reasonable fusion

strategy is designed to fuse sparse representation coefficients.

Finally, the learned over-complete dictionary produces a marked

effect in reconstructing the fused image using the fused coefficients.

Among them, the construction of the over-complete dictionary is key

in SR (Ma et al., 2019a). The saliency-based methods can highlight

regional activity and significance (Meng et al., 2017; Zhang et al.,

2017). The subspace-based methods, including the principal

component analysis (Bavirisetti et al., 2017), independent

component analysis (Mitianoudis et al., 2013), and non-negative

matrix factorization (Kong et al., 2014) can remove the redundant

information existing in most natural images by converting high

dimensional input images into low dimensional spaces or

subspaces. Although the existing traditional fusion methods have

indicated great performance, these methods require the highly

manual design in decomposition and fusion strategies. Their

application is subject to unpredictable constraints in some tasks,

and their performance deteriorates when the source images are

complex due to the degradation of representation (Chen et al., 2022a).

In the past several years, deep learning has been widely applied in

infrared and visible image fusion to solve the shortcomings in

traditional fusion methods. The application of deep learning-based

methods for infrared and visible image fusion mainly reflects in

convolutional neural network CNN-based network frameworks,

such as convolutional sparse representation (CSR) and generative

adversarial network (GAN). The CNN-based fusion frameworks for

infrared and visible image fusion are divided into two categories: the

depth extraction for image features and the construction for fusion

networks. In depth feature extraction, VGG-19 (Ren et al., 2018),

ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152 (Szegedy

et al., 2017) have been proposed, among which VGG-19 and

ResNet152 are commonly applied. The depth of ResNet152 is

deeper than that of VGG-19, and deepening network depth

improves the depth features in the image. Nevertheless, the more

convolution layer parameter maps cause the problems in increasing

the number of parameters, the amount of calculation, and the high

requirement for computing hardware. The CSR-based methods

generally combine PCNN, wavelet transform, and NSCT to

construct a fusion network structure, which has been widely used

in infrared and visible image fusion. They can effectively represent the

salient features in the source images. However, the local modeling

approach adopted by image fusion methods based on sparse

representation is prone to lead to two major defects: loss of

contextualized information and low tolerance of fault matching.

The GAN-based fusion algorithms adopt the CNN network

structure as the framework with strong feature extraction ability,

significantly improve the fusion quality, and use the confrontation
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between the source image and the generated image to realize the

supervision in the source image on the learning parameters. Ma et al.

introduced the GAN in the infrared and visible image fusion task for

the first time, namely FusionGAN (Ma et al., 2019b), and then more

GAN-based fusion frameworks are proposed (Ma et al., 2020; Li et al.,

2021b; Ma et al., 2021). Nevertheless, they are limited by the size of

the convolution kernel and the depth of the network, ignoring the

correlation between the feature map channels.

Although a variety of networks to improve the performance in

image fusion have been proposed by many scholars. The CNN-based

network frameworks, such as convolutional sparse representation

(CSR), generative adversarial network (GAN), and other many

network architectures are applied in infrared and visible image

fusion. However, the CNN-based fusion frameworks for infrared

and visible image fusion are divided into two categories: the depth

extraction for image features and the construction of fusion networks.

The extraction for depth features requires a deeper network structure,

resulting in weak interpretability, extensive computation, and other

problems. The construction of the fusion network is also complex and

difficult to control. Although many modelsare superficially similar to

RADFNet, they have not abandoned these two categories. To get rid

of the dilemma in these two kinds of fusion categories, the RADFNet

employs a distributed fusion framework to make the most of the

fusion output from the previous step. Two channels utilize residual

modules with multiscale channel attention to extract the features

from infrared and visible images, which are used for fusion in the

other channel. Because it adopts distributed fusion, the fusion

network does not entirely rely on the extraction in deep features,

and the fusion network is simple to construct, showing strong

robustness. The RADFNet solves the limitations from most current

fusion networks and shows strong adaptability. The main

contributions of our work are summarized as follows:
Fron
(A) A distributed fusion framework based on residual CNN

(RDCNN) for infrared and visible image fusion is proposed in

this paper. The distributed fusion framework is distinct from

the existing fusion framework in infrared and visible image

fusion. It adopts three channels to realize image fusion,

wherein two channels are applied to feature extraction and

the other channel realizes feature fusion.

(B) To obtain coarse-to-fine features and compensate edge

information for fused images, the attention mechanism is

discussed. In this way, the fused images retain more
tiers in Plant Science 0348
prominent information and lose less edge information from

source images.

(C) Two loss functions, including the pixel intensity with texture

loss and the structural similarity (SSIM) with texture loss, are

designed to train the RADFNet. Through experiments, it is

found that networks trained by the two loss functions have

their own advantages.

(D) Extensive experiments are conducted on public infrared and

visible image fusion datasets. Compared with existing state-

of-the-art fusion methods, our fusion framework has a

promising even better performance in accordance with

visual effect and quantitative metrics. In addition, we

perform ablation experiments to verify the function in the

corresponding module. Last but not least, unregistered source

image pairs are fed into the proposed network, emerging the

robustness of the proposed framework.
2 Materials and methods

2.1 Related works

2.1.1 Distributed fusion architecture
Distributed fusion architecture is a classical and typical structure

in multi-sensor fusion due to its high speed and reliability (Sun et al.,

2017). In distributed fusion, the measurement results of each sensor

are processed to obtain local estimates and error covariance. Then the

processing results are sent to the fusion node to conflate them into

global state estimation and the estimated error covariance (Wu et al.,

2021). Figure 1 shows a distributed model for the fusion in radar and

infrared sensors (Yang et al., 2016). For single target tracking, radar

and infrared sensors track the target respectively and generate

dependent target trajectories in their local information processing

center, then send the local trajectory information to the fusion center

for data fusion.

2.1.2 Residual network
In some tasks, deeper neural networks can extract higher-level

features and perform excellently. However, too deep networks may

cause the notorious problem of vanishing or exploding gradients and

degrade the accuracy. To solve these problems, He et al. proposed a

residual network composed of a series of residual blocks (He et al.,
FIGURE 1

A distributed fusion model for radar and infrared sensors.
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2016a). Figure 2A shows the original residual module, which can be

expressed as (He et al., 2016b).

yl = h xlð Þ + F xl ,Wlð Þ
xl+1 = f ylð Þ

(1)

where xl and xl+1 are the input and output in the l-th layer, and F
is the residual function. f is a ReLU (Nair and Hinton, 2010) function.

The residual block contains two parts: identity mapping and residual

mapping. The left part of Figure 2A is the identity mapping, and the

right part of Figure 2A is the residual part expressed as F(xl, Wl),

which usually contains 2 or 3 convolutional layers. In many cases, the

dimensions of input xl and output xl+1 are discrepant, so it is

necessary to employ a 1×1 convolution operation to maintain the

dimension in input and output consistent, whose schematic diagram

is shown in Figure 2B, which can be expressed as (He et al., 2016b).

xl+1 = h xlð Þ + F xl ,Wlð Þ
h xlð Þ = W

0
l xl

(2)

where h(xl) is the identity skip connection and W
0
l is the 1×1

convolution kernel.

The residual network can be formulated as (He et al., 2016b)

xL = xl +o
L−1

i=l

F xi,Wið Þ (3)

for any deeper block L and any shallower block l. The formula 3

indicates the feature xL in any deeper residual block L which can be

represented as the feature xl in any shallower block l add the residual

function, which leads to nice backward propagation properties that

the gradient of layers will not vanish even when the weights are

arbitrarily small (He et al., 2016b). Moreover, experiments with the

various usages of activation function were carried out in (He et al.,

2016b). The order of the activation function in the network will affect

the performance of the residual network. The structure of the

improved residual unit shown in Figure 2C has the best

performance. In this structure, the batch normalization (BN) and

ReLU activation function are placed before the convolution layer, and

the activation function after addition is moved to the residual part.
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2.1.3 Attention mechanism in deep learning
Attention mechanism can be traced to the last century, which was

mostly applied to machine translation tasks. It has become an essential

concept in artificial intelligence because it conforms to some laws of

human cognition and can improve the interpretability of neural

networks. Therefore, the attention mechanism is widely applied, such

as natural language processing, speech recognition and computer vision

(Mnih et al., 2014; Vaswani et al., 2017; Bhatti et al., 2022c). In the

computer vision domain, many researchers have studied attention

mechanism and proposed corresponding methods to acquire nice

performance. A residual attention network built by stacking attention

modules is proposed in (Wang et al., 2017) which are designed to

generate attention-aware features, achieving outstanding recognition

performance. A novel architecture unit termed the “Squeeze-and-

Excitatio”(SE) block that adaptively recalibrates the channel feature

strength by explicitly modelling the interdependence between channels

is introduced in (Hu et al., 2020). The structure of SE block is shown in

Figure 3, where U is a feature map with the size of W×H×C, ⨂ and

refers to channel-wise multiplication, so X and U have the same size.

Moreover, edge-guided attention mechanisms which can produce

visually appealing images also attract the attention of many

researchers (Bhatti et al., 2021). Zhao et al. (Zhao et al., 2019a)

propose an edge guidance network (EGNet) which solves the

problems of rough boundary in object detection through the

complementarity of the object and salient edge information.
2.2 Methods

2.2.1 Overall framework
Enlighted by the advantages of distributed structure and the

residual module, we propose a novel distributed fusion architecture

for infrared and visible images based on the residual module and

attention of edge and multiscale channel, RADFNet. The RADFNet is

an end-to-end fusion network, the overall structure of which is shown

in Figure 4. It contains four parts: the feature extraction for the visible

image, the feature extraction for the infrared image, the fusion for
B CA

FIGURE 2

Three different residual units: (A) Original residual unit; (B) Conv residual unit; (C) Improved residual unit.
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features, and the compensation for edge information. The infrared

and visible image fusion process is formulated as follows.

The visible image features extraction branch can be formulated as

Vi = ATTi VRi Vi−1ð Þð ÞⓜEVi
 i = 1, 2, 3, 4 (4)

EVi
= EATi EVi−1

� �
 i = 1, 2, 3, 4 (5)

where V0, the visible image input in the architecture, is the V in the

Figure 4. Vi is the representation of V0 after the residual module,

multiscale channel attention and compensation of edge information.

VRi means the residual module acting on the Vi-1 and ATTi is the

multiscale channel attention module designed to obtain coarse-to-fine

features from the outcome of VRi-1. Vi represents the features in

different levels of V0 with different scales, wherein Vi has a higher

level thanVi-1. EVi is the edge information feature map obtained by EATi
with input EVi−1

configured to compensate for the edge information of

the feature map achieved by residual module and multiscale channel

attention module. ⓜ refers to the maximum value in the homologous

channel and position in the feature map. The features in the visible

image with separate scales are extracted through the above steps. Then,

they are fed into the fusion channel to fuse at each layer, which can fully

utilize the multi-scale information from perceptible images. In this

method, more texture information with high spatial resolution retains,

which can enhance the quality of the fused image.

The infrared image feature extraction branch can be formulated as

Ii = ATTi IR
i
Ii−1ð Þ

� �
ⓜ EIi i = 1, 2, 3, 4 (6)

EIi = EATi EIi−1
� �

 i = 1, 2, 3, 4 (7)

where I0, the infrared image input in the architecture, is the I in

Figure 4. Ii is the representation of I0 after the residual module,
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multiscale channel attention and compensation of edge information.

IRi means the residual module acting on the Ii-1 and ATTi is the

multiscale channel attention module designed to obtain coarse-to-fine

features from the outcome of IRi-1. Ii represents the features in

different levels of I0 with different scales, wherein Ii has ahigher

level than Ii-1. EIi is the edge information feature map obtained by

EATi with input EIi−1 configured to compensate for the edge

information of the feature map achieved by residual module and

multiscale channel attention module. ⓜ refers to the maximum value

in the homologous channel and position in the feature map. The

features in the infrared image with distinct scales are extracted

through the above steps. Then they are constituted into the fusion

channel to fuse at each layer, which can fully utilize the multi-scale

information from infrared images. As a result, rich target information

is used for highlighting the target in the fused image.

The channel of feature fusion can be defined as

FUIi =
Fi Vi, Iið Þ i = 0

Fi Vi, Ii, FUIi−1ð Þ i = 1, 2, 3, 4

(

(8)

where V0 and I0, which are visible image and infrared image

inputs in the fusion architecture, are the V and I in Figure 4

respectively. FUI1, FUI2, FUI3, and FUI4 are the fusion results with

different level features using corresponding rules. Fi refers to the

fusion rule of the relevant layer features. FUIi is the fusion result of the

i-th extracted features Vi, Ii and the different scales from previous

fusion result FUIi-1. It realizes the layer-by-layer fusion so it can make

the best use of the information from multisource images and then

improve the quality of the fused image.

2.2.2 Network structure
The infrared and visible image fusion model RADFNet set out in

the present paper is constituted of three channels. The RADFNet
FIGURE 4

The overall structure for infrared and visible image fusion.
FIGURE 3

A Squeeze-and-Excitation block, where GP means global average pooling, FC refers to fully-connected layers, ReLU refers to the ReLU function, and
Sigmoid refers to the sigmoid function.
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structure is exhibited in Figure 5. RADFNet contains four parts: the

features extraction branch of the visible image and infrared image, the

features fusion branch, and the edge attention module compensating

edge information for the extracted features. The left and right

branches in Figure 5 are intended to extract the features in visible

and infrared images respectively. The middle branch fuses the

features extracted by the two branches with the results from the

previous step layer by layer, and the last layer generates the fused

image. For a convolutional layer, ‘k×k,(in,out)’ means the kernel size

is k×k, the input channel is in and the output channel is out. In the

network, BN indicates batch normalization that is utilized to speed up

the training and make the training more stable, and ReLU denotes the

linear rectification function.

The RADFNet adopts four-layers network structure. The VR1−4

and IR1−4 are the residual networks which extract image features.
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Because the residual network has the advantages of mitigating gradient

disappearance or gradient explosion and protecting the information

integrity, the networks we designed can extract meaningful features and

ensure the information integrity simultaneously. Besides, ATTi

processes the features extracted by residual block VRi or IRi to

obtain coarse-to-fine features. EATi acquires the edge information

and then compensates edge information for the extracted feature

map. The ⓜ refers to the operation for achieving the maximum value

in the homologous channel and the homologous position in the feature

map. The FUPi generates FUIi by fusing features extracted by the other

two branches with the FUIi−1 generated by FUPi−1 when i is not 1.

When i is 1, the concatenated infrared and visible image is fed into the

FUP1 to generate FUI1. The ⊕ is the concatenation operation in

channel-wise, and the 1×1 244 convolution layer in the last fusion layer

constructs fusion images.
FIGURE 5

The structure of RADFNet. ‘ATT1−4’ denote the multiscale channel attention module and ‘EAT1−4’ denote the edge attention module. ‘3 × 3,(1, 32)’ means
the kernel size is 3 × 3, input channel is 1 and output channel is 32 in a convolutional layer.
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2.2.3 Multiscale channel attention network
In the process of infrared and visible image fusion, image feature

extraction is exceptionally significant. However, in practical

situations, numerous detailed information loses in the process of

feature extraction. Inspired by SENet (Hu et al., 2020), the multiscale

channel attention network is proposed to process the features

extracted by the residual network to obtain the coarse-to-fine

features, which can retain more detailed information in the feature

map. As shown in Figure 6, the structure enclosed by the dotted line is

the multiscale channel attention module. The features which lose a lot

of details extracted by VRi or IRi are used as input in ATTi. Then, the

1×1, 2×2, and 4×4 average pooling operations are performed to

generate multiscale features which contain more necessary spatial

information. Moreover, the channel attention mechanism is utilized

to enhance channel correlation information between features. The

multiscale channel attention network is trained to learn the weight

Wk
ti for the k-th feature f kti of the t-th pooling scale in the ATTi which

can be formulated as

Wk
ti = s w2d w1G zð Þð Þð Þ (9)

G zð Þ = ox,yf
k
ti x, yð Þ

H �W
(10)

where G(z) denotes the global average pooling operation.

ox,yf
k
ti (x, y) means the sum of the k-th feature with the t-th pooling

scale in ATTi. (x, y) refers to the position in feature map, and H,W

means the height and width of the feature map. d refers to the ReLU

function, w1∈Rk×k and w2∈Rk×k , s denotes the sigmoid function.

Then the channel-wise multiplication is implemented between Wk
ti

and the up-sampled features which can be expressed as UP(f kti ) ,

ensuring the multiscale features have the same size as the input. Based

on this, the reweighted features are obtained and then the attention

map can be achieved as follows:

Fi = p Wk
1i*UP f k1i

� �� �
ⓜ p Wk

2i*UP f k2i

� �� �
ⓜ p Wk

3i*UP f k3i

� �� �
(11)

where p denotes the instance normalization (Ulyanov et al., 2016)

and ⓜ refers to the operation for acquiring the maximum value in the

homologous channel and position in the feature map. Through the above

method, the coarse-to-fine attention map Fi is obtained. The attention
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map not only emphasizes more critical features and neglects secondary

ones but also reserves more necessarily detailed information.
2.2.4 Edge attention module
Generally, the edge information of an image refers to the sudden

change in local grayscale value, color component and texture

structure. The edge information from images which is helpful to

distinguish objects, can effectively attract attention of people due to

human visual characteristics. Enlightened by previous work, we utilize

an edge feature map extraction model from the shallower to deeper to

obtain the enhanced edge maps, which are designed to compensate

for textural information for the fused image.

For the sake of acquiring the edge information used to

compensate fused images, we obtain the gradient map from the

source images. The process of obtaining the gradient maps ∇g by

inputting a gray-scale image f with the size h×w is defined as

∇ g = o
x=h−1,y=w−1

x=1,y=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇gh x, yð Þ� �2+ ∇gw x, yð Þð Þ2

q
(12)

∇gh x, yð Þ = f x, yð Þ − f x + 1, yð Þ
∇gw x, yð Þ = f x, yð Þ − f x, y + 1ð Þ

(13)

where f(x, y) means the pixel at position (x, y). Moreover, we

perform the enhanced operation to obtain the more obvious gradient

information:

G = max
y∈W

 max
x∈H

(∇ g x + 1, y + 1ð Þ,∇g x, yð Þ) : (14)

where H={1,…,h–1} and W={1,…,w–1}. The (x, y) represent the

position at the gradient map. Through the above steps, we get the

gradient image G with the abundant enhanced edge information.

Subsequently, we feed the gradient images from infrared and

visible images into the edge attention module to generate edge

attention feature maps with enhanced edge information. Then, the

feature maps will be entered into the extraction branch to compensate

edge information for the extracted features by IRi or VRi. The

structure diagram of the edge attention module is shown in

Figure 7. The edge attention module generates EVi and EIi layer by

layer, which is then used to compensate edge information for the
FIGURE 6

The multiscale channel attention network. The features extracted by residual network(VRi or IRi) are fed into the ATTi to generate attention map. GP, FC,
RL, SG denote the global average pooling operation, fully connected layer, ReLUfunction and sigmoid function respectively. ⊲ stands for the up-sample
operation and ⨂ denotes the element-wise multiplication.
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feature maps Vi and Ii extracted by VRi and IRi respectively.

Therefore, compensated feature maps fused to generate the fused

images retain more edge information.

2.2.5 Loss function
For infrared and visible image fusion, it is difficult to provide the

ground truth of fused images for networks to train a model. However,

the requirement to retain salient target information in the infrared

image and the texture information in the visible image is determined.

Inspired by this requirement, the loss function we employ is as

follows:

LF = Lpixel + aLtexture (15)

where the Lpixel constrains the fused image to contain more target

information from the image pair facilitating target tracking and the

Ltexture forces the fused images to contain more texture details which

can effectively improve the identification of objects in images.

Specifically, the exact definition of Lpixel is expressed as follows:

Lpixel =
1
mo

m

j=1
∥ Ijf −max   Ijir , I

j
vis

� �
∥2 (16)

where m is the batch size that is the number of training samples

used in each iteration. The If means the fused image with the input

image pair {Iir, Ivis}, and the max (·) denotes the element-wise

maximum selection. Through the maximum selection strategy, the

fused images have the prominent target information.

Moreover, we hope the fused images contain significant target

information and simultaneously preserve great textural details from

source images. However, the Lpixel has very limited constraints on

textural details. Therefore, the Ltextureis introduced to force the fused

image to retain more textural information and the Ltexture is defined as:

Ltexture =
1
mo

m

j=1
∥ ∇Ijf

			
			 −max   ∇Ijir

			
			, ∇Ijvis

			
			

� �
∥2 (17)

where the m is the batch size, the If means the fused image with

the input image pair {Iir, Ivis}, and the max (·) denotes the element-

wise maximum selection. The ∇ indicates the Sobel gradient operator

and the |·| means the absolute operation. The element-wise maximum

selection strategy can make the fused images obtain the most

significant edge textural information.
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3 Experimental results and analysis

3.1 Experimental configurations

To evaluate the proposed fusion algorithm in many aspects, we

conduct extensively qualitative and quantitative experiments on the

RoadScene (Xu et al., 2020) dataset. We evaluate the performance of

our method by making a comparison with six state-of-the-art

approaches, including two Nest-based methods, i.e., NestFuse (Li

et al., 2020) and RFN-Nest (Li et al., 2021a), and four CNN-based

methods: DenseFuse (Li and Wu, 2018), IFCNN (Zhang et al., 2020),

U2Fusion (Xu et al., 2022), and SDNet (Zhang and Ma, 2021). The

subjective visual perception system is vulnerable to human factors,

such as personal emotion and visual environment, and the fused

images using different approaches resemble somewhat. Therefore,

there are six evaluation statistical metrics which are selected to

quantify the evaluation, including mutual information(MI) (Qu

et al., 2002), entropy(EN) (Roberts et al., 2008), visual information

fidelity(VIF) (Han et al., 2013), stand deviation (SD), spatial

frequency(SF) (Eskicioglu and Fisher, 1995) and average gradient

(AG) (Zhao et al., 2019b). MI quantifies the amount of information

obtained from the source image by the fused image, and EN assesses

the amount of information contained in the fused image based on

information theory. VIF mainly computes information fidelity in a

fused image, which is in line with human visual perception. SD

reflects the contrast of an image based on statical concepts, a larger SD

value indicates a higher contrast distribution in an image, and the

image carries more information. SF reflects the change rate of image

gray scale. AG can measure the fused image clarity, which can be

considered that the greater AG, the better the image clarity and the

better the fused image quality. EN, SF and SD are reference-free

metrics. Moreover, a fusion method with larger MI, EN, VIF, SD, SF,

and AG represents better performance.
3.2 Details of implementation

In the training process of the RADFNet model, we use images

from the OSU (Davis and Sharma, 2007) dataset to construct the

training dataset. Due to different imaging sensors, the image pairs in

the OSU dataset are not strictly registered resulting in black edges in
FIGURE 7

The architecture of edge attention module. The EAT1-4 are designed to generate shallow to deep edge feature maps EV1−4
or EI1−4. For convolution layer,

the ‘k×k,(in,out)‘ means that the convolution kernel size is k×k , the input channel is in and output channel is out. In addition, the ‘rate 2’ denotes the
dilated convolution operator with a dilation rate of two.
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infrared images. Therefore, we crop both infrared and visible images

at the same size 280 × 200. Based on the above operations, we can get

8,544 image pairs. It is worth nothing that the visible images in the

OSU dataset are color images, but the infrared images are grayscale.

To make the number of channels with the input image pair the same,

we perform the process that converts the visible images to grayscale

images in advance. Moreover, all images are normalized to [0,1]

before being fed into the network to accelerate model convergence.

The hyper-parameter of the loss is set as a = 10. Adam optimizer

(Kingma and Ba, 2015) with b1 of 0.9, b2 of 0.999, epsilon of 10−8,

weight decay of 0, the initial learning rate of 0.001 is used to optimize

our fusion model with the guidance of loss function LF. All

experiments are conducted on the Quadro RTX6000 GPU and 2.90

GHz Intel(R) Xeon(R) Gold 6226R CPU.

The RoadScene dataset contains color visible images, but we

employ the input grayscale images to train the proposed network.

To get better visuals in the test phase, we adopt the strategy

(Prabhakar et al., 2017) to process color images instead of

converting the input color images to grayscale images. Precisely, we

first convert the color image to the YCbCr color space, then the

infrared image and the Y channel of visible image are entered into the

RADFNet. Finally, the fusion result is concatenated with Cb andCr

channels from visible image along channel-wise and then converted

into the RGB color image. The RGB color image is the result of the

proposed network.
3.3 Results analysis on RoadScene datasets

To fully evaluate the performance of the RADFNet, we compare

the RADFNet with the other six methods on the Roadscene dataset.

The Roadscene dataset mainly contains road scenes, including

pedestrians and cars, in the daytime and at night. We select two

images in the daytime and two in the nighttime for evaluation

subjectively so as to exhibit some intuitive fused images on the

fusion performance. The fused images of the proposed RADFNet

and the other six methods are presented in Figure 8. In the daytime

scenes, the fused images with exceptional visual quality have rich

texture information from visible images and enhanced prominent

target information from infrared images. In the first column images in

Figure 8, RADFNet makes the pedestrians in the image have the most

incredible vigorous light intensity. The fused images of U2fusion and

SDnet show they tend to darken the entire color of the images. For

example, the color of the sky is darker than the fusion images with

other methods. In the second column, all six methods enhance the

pedestrian. Still, all other methods, except the RADFNet, dim the

streetlamp to a certain extent, thus losing information. Moreover, the

fusion image of the proposed approach has more obvious color

contrast and texture details, so the buildings in our fused image

have a richer structure sense than the fused images with other

methods. In the nighttime scenes, the ability of both infrared

images and visible images to provide information is limited.

Therefore, sufficiently retaining meaningful data from the source

images is challenging. In the third column, all fusion methods

inevitably integrate useless information into the fused image, which
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degrades the visual quality of the image. Regardless, the proposed

approach best protects the information from the visible image while

using the meaningful information from the infrared image to enhance

the target information. In the last column, compared with other fused

images, the fused image in the proposed method failsto remove the

halo on the streetlamp altogether. Nonetheless, the signs on the road

are most conspicuous in the fusion image, while signs on the street in

other images even tend to disappear. In a word, the proposed method

can efficiently utilize the information of the infrared and visible

images to generate high-quality fused images.

To avoid human factors and other factors affecting the subjective

evaluation. We conduct quantitative assessments with the six

approaches and the proposed method. The results of six metrics on

the Roadscene dataset, which contains 221 image pairs, are shown in

Figure 9. It can be noted that our results achieve better performance

on six metrics. The best MI means that our method transfers the most

information from the source image to the fused image and the best

EN represents the fused image thatcontains the most information.

The proposed method represents the best on VIF, which indicates our

fused image gets a better human visual perception effect. The best SF

and AG suggest that the proposed approach generates the clearest

image with remarkable quality. In addition, our RADFNet displays

the best SD, illustrating our fused images have the highest contrast.

Combined with subjective and quantitative evaluation results, these

results prove that RADFNet can convert more meaningful

information from infrared and visible images to fused images while

ensuring the best quality.
3.4 Ablation experiment

To verify the effectiveness of the edge attention module, we

conduct ablation experiments. We employ edge attention and

ignore edge attention to create two models, then the same image

pair is used as input to test the difference between the two models, and

the visual results are presented in Figure 10. The red and green box

parts are magnified for a more intuitive comparison. In the first row,

the telegraph pole in the red box with edge attention has a clearer

texture, while that without edge attention even becomes blurred. In

addition, the leaves with edge attention in the green box also have

more precise texture details than that not using edge attention. The

words in the red box of the images in the second row are difficult to

identify because of the blurred source image. In contrast, words in the

fused image using edge attention are more beneficial to observe than

that in the image not using edge attention because the edge attention

module compensates for the edge information for the fused image.

In addition, to comprehensively evaluate the impact of edge

attention in fused images, we make quantitative evaluations for the

four images in Figure 10, and the result is listed in Table 1. It is noted that

only the fused images with edge attention have a slightly lower metric SD

than that without edge attention. The fused images with edge attention

are higher for the other five metrics, i.e., EN, SF, SD, MI, VIF, and AG in

both Street and House images. The results show that the generated edge

information from the edge attention module compensating for the fused

image can improve the image quality effectively.
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3.5 Discussion on loss function

For the sake of comprehensively considering the improvement in

model training on fused image quality, we design another loss

function LFS, which can be defined as follows:

LFS = bLSSIM + Ltexture (18)

where Ltexture is represented by Equation 17, the value of b is 5,

and the LSSIM is the structural similarity (SSIM) loss, which can be

expressed as

LSSIM = 1 − w · SSIM (F, Ið Þ + 1 − wð Þ · SSIM (F,V)) (19)

where the SSIM(·) means the structural similarity (Wang et al.,

2004). F denotes the output result from the proposed model. V and I

refer to the homologous input visible and infrared images
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respectively. In addition, to balance the structural similarity loss

between the fused image and infrared and visible image, the weight

w is taken as 0.5.

The loss functions LF and LFS are used to train the proposed

network respectively, and the results are exhibited in Figure 11. In the

first row, the zebra crossing in the green box of fused image output

after the network trained with LF is more prominent than that trained

with LFS. However, the halo on the streetlamp in the red box in the

image output by the network trained by LF is not completely removed.

In the second row, it can be seen that no matter the definition of the

whole image or the details, the network output image using LF
training is better. In a word, the output image from the network

trained by LF can highlight more important information in the

nighttime scenes. But that trained by LFS can essentially eliminate

the halo in the image. In the daytime scenes, the quality of the output
FIGURE 8

The visual results comparison with different methods on the Roadscene dataset.
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FIGURE 9

The quantization results of six metrics on the 221 image pairs from the Roadscene dataset. The abscissa x refers to the number of image pairs and the
ordinate y refers to the metric value.
FIGURE 10

The results of ablation study about the influence of edge attention module in two image pairs from the Roadscene dataset.
TABLE 1 The quantitative results on the four images shown in Figure 10.

EN SF SD MI VIF AG

Street Edge 7.514 0.077 10.492 3.890 0.730 7.763

No-Edge 7.533 0.061 10.721 2.376 0.590 5.905

House Edge 7.586 0.072 10.334 3.946 0.937 6.846

No-Edge 7.573 0.056 10.605 2.686 0.709 5.427
F
rontiers in Plant Scien
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The Street means the first row images and House denotes the second row images. Edge and No-Edge refer to edge attention and no edge attention during image fusion, respectively.
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images from the network trained by LF is better in both overall and

detail. Therefore, we choose fusion loss LF as the training loss function

in our experimental test.

To set the best optimal coefficients for the proposed method, the

parameter a is set as 1, 10, 50 and 100. The epoch and batch size are 4

and 4, respectively. One a is needed to choose for the image fusion

task based on the test images. Six metrics are employed to evaluate the

performance of RADFNet with different a. The values are shown in

Table 2. The best values are indicated in red and the second-best

values are denoted in blue. It is worth nothing that three of the six

metrics are best when a=1. However, the metrics MI and VIF are

unstable. When a=10, the values of all metrics are considerable and

stable, which indicates the proposed network can achieve better

fusion performance than other values of a. So, a is set as 10

in experiments.
3.6 Fusion of unregistered image pairs

In general, it is difficult to obtain the source image pairs that have

been strictly registered for image fusion because the imaging

characteristics of different sensors are quite different. Therefore, at

the training stage, we train our model without using the infrared and

visible image pairs that are strictly registered. Aiming to verify that

our method performs well in fusing image pairs without strict

registration, we randomly translate the infrared images in the

source image pairs with [-5,5], [-8,8]and [-10,10] pixels on the

Roadscene dataset to get the misregistered infrared and visible

image pairs, and then use the proposed method to fuse these
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misregistered image pairs. The fusion results of these unregistered

images are displayed in Figure 12. From these fusion results, the

proposed method can preserve the target information from the source

image. At the same time, the texture details from the source images

are also fused into the fused image, which improves the quality of the

fused image. The numbers in the red box of the fused images are still

vivid, even under different unregistered degrees. The experimental

results demonstrate the proposed method with strong robustness still

has good performance in fusing images without registration.
4 Discussion

For the sake of avoiding the impact of changes in the agricultural

working environment on the information perception for the

intelligent agricultural system, we utilize infrared and visible image

fusion to improve the image quality, so that the fused images can be

used normally and even efficiently for various subsequent vision tasks

in the intelligent agricultural system. Specifically, we propose a

distributed fusion architecture for infrared and visible image fusion,

termed RADFNet, which fuses images through three channels based

on residual (RDCNN), edge attention, and multiscale channel

attention. The proposed method can most retain the salient target

information in the infrared image and the textural details information

in the visible image. In addition, we introduce the multiscale channel

attention module, which can extract coarse-to-fine features to

preserve more information from source images to fused images. We

also adopt an edge attention module that can compensate edge

information for the fusedimage to make the fused image lose less
FIGURE 11

The results of RADFNet trained by SSIM loss LFS and Fusion loss LF.
TABLE 2 The quantitative results on the RoadScene dataset with different a.

a=1 a=10 a=50 a=100

EN 7.612254 7.604088 7.5805 7.58722

SF 0.088493 0.075895 0.076245 0.073816

SD 10.41727 10.50972 10.35863 10.38415

MI 2.670785 3.468535 3.501638 3.156152

VIF 0.698988 0.836942 0.832764 0.787895

AG 8.19272 7.033987 6.88297 6.939895
fron
The red word represents the best, and the blue word represents the second best.
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edge information from source images. The comparative experiments

are conducted on the Roadscene dataset, and the results demonstrate

that the proposed method has superior performance in improving the

fusion qualityand has achieved comparable results over the state-of-

the-art image fusion algorithms in terms of visual effect and

quantitative metrics. Finally, we send the unregistered image pairs

into our network, and the results demonstrate that our method with

strong robustness still performs well in fusing images without

registration. The RADFNet performs well for infrared and visible

image fusion due to the robust feature extraction ability of the

network. The distributed fusion framework endows it with strong

robustness, but the network parameters are still relatively large, which

is not simple enough in the actual project deployment. In the future, it

is necessary to improve the parameters of the network and the actual

deployment of the model.
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Deep learning methods for weed detection typically focus on distinguishing weed

species, but a variety of weed species with comparable plant morphological

characteristics may be found in turfgrass. Thus, it is difficult for deep learning

models to detect and distinguish every weed species with high accuracy. Training

convolutional neural networks for detecting weeds susceptible to herbicides can

offer a new strategy for implementing site-specificweed detection in turf. DenseNet,

EfficientNet-v2, and ResNet showed high F1 scores (≥0.986) and MCC values

(≥0.984) to detect and distinguish the sub-images containing dollarweed,

goosegrass, old world diamond-flower, purple nutsedge, or Virginia buttonweed

growing in bermudagrass turf. However, they failed to reliably detect crabgrass and

tropical signalgrass due to the similarity in plant morphology. When training the

convolutional neural networks for detecting and distinguishing the sub-images

containing weeds susceptible to ACCase-inhibitors, weeds susceptible to ALS-

inhibitors, or weeds susceptible to synthetic auxin herbicides, all neural networks

evaluated in this study achieved excellent F1 scores (≥0.995) and MCC values

(≥0.994) in the validation and testing datasets. ResNet demonstrated the fastest

inference rate and outperformed the other convolutional neural networks on

detection efficiency, while the slow inference of EfficientNet-v2 may limit its

potential applications. Grouping different weed species growing in turf according

to their susceptibility to herbicides and detecting and distinguishing weeds by

herbicide categories enables the implementation of herbicide susceptibility-based

precision herbicide application. We conclude that the proposed method is an

effective strategy for site-specific weed detection in turf, which can be employed

in a smart sprayer to achieve precision herbicide spraying.

KEYWORDS

deep learning, convolutional neural networks, weed detection, herbicide susceptibility,
precision herbicide application
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Introduction

Turfgrass is widely grown in urban landscapes, including

institutional and residential lawns, parks, or athletic fields (Potter

and Braman, 1991). The total turfgrass area in the United States is

163,812 km2, which accounts for approximately 1.9% of the whole

terrestrial land of the country (Milesi et al., 2005). Weed control is a

challenging task for turfgrass management. Weeds compete with the

turfgrass for sunlight, moisture, and soil nutrients, reducing turf

aesthetics, surface quality, and functionality (Hamuda et al., 2016;

Liu and Bruch, 2020). Weed management in turfgrass landscapes has

relied heavily on broadcast herbicide application (McElroy and

Martins, 2013), although weeds almost always present in non-

uniform and patchy distributions (Dai et al., 2019; Yu et al., 2019a).

Excessive application of synthetic herbicides could potentially pose a

risk to human health and cause environmental pollution (Slaughter

et al., 2008; Dai et al., 2019; Yu et al., 2019b; Mennan et al., 2020).

Moreover, the application of synthetic herbicides represents a

significant variable cost in turf weed management (Davis and

Frisvold, 2017). These concerns have led to legal regulations

regarding herbicide usage in several countries. For example, the

European Union encourages spot-spraying to reduce the herbicide

input (Busey, 2003; Marchand and Robin, 2019). Additionally, spot-

spraying could effectively minimize the amount reaching off-target

areas (Melland et al., 2016). In the United States, Environmental

Protection Agency has proposed a series of measures, including

prohibiting aerial applications for all atrazine labels to reduce their

chance of runoff from the managed fields (Pimentel and Burgess,

2012; McCullough et al., 2015).

Site-specific weed management is a promising solution for

sustainable weed control (Chen et al., 2022). Precision spraying a

particular type or volume of herbicide onto susceptible weed species

can significantly reduce herbicide input and weed control costs

(Liakos et al., 2018). Site-specific weed management relies on the

accurate identification and localization of weeds (Fennimore et al.,

2016; Wang et al., 2019). Previous researchers explored various visual

characteristics, such as color (Tang et al., 2016), morphological (Perez

et al., 2000), hyper- or multi-spectral (Pantazi et al., 2016; Jiang et al.,

2020), and textural features (Bakhshipour et al., 2017), for weed

detection. However, crops and weeds may exhibit similar visual

characteristics, thus detection and classification of weeds in crops

are inherently challenging (Hasan et al., 2021). In turf, weed detection

is challenging due to the presence of a variety of weed species growing

with turfgrass.

In recent years, deep learning, a subfield of artificial intelligence,

has demonstrated remarkable capability in speech recognition

(Hinton et al., 2012; LeCun et al., 2015), natural language

processing (Collobert and Weston, 2008; Collobert et al., 2011), and

computer vision (Gu et al., 2018; Shi et al., 2020; Zhou et al., 2020).

Deep learning technologies exhibit a tremendous ability to learn

representations from raw data and extract complex features from

images with a high accuracy level (Jordan and Mitchell, 2015; He

et al., 2020; Yang et al., 2022a). Moreover, the improvements in

graphics processing units (GPUs) have facilitated the use of deep

convolutional neural networks (Bao et al., 2017; Bao et al., 2021; Ngo

et al., 2021). Recent studies have investigated the feasibility of using

deep learning in various agricultural domains, including plant disease
Frontiers in Plant Science 0262
detection (Martinelli et al., 2015; Saleem et al., 2019), crop yield

prediction (Khaki and Wang, 2019; Van Klompenburg et al., 2020),

plant phenotyping (Atefi et al., 2021; Zhang et al., 2022), and weed

detection (Jin et al., 2021; Peng et al., 2022; Razfar et al., 2022). For

example, Abbas et al. proposed a deep learning-based method for

tomato disease detection. The trained neural network achieved a best

5-class classification accuracy of 99.51 (Abbas et al., 2021). Subeesh

et al. compared four convolutional neural networks, including

AlexNet, GoogLeNet, InceptionV3, and Xception for detecting

various weeds growing in bell peppers (Capsicum annum L.) and

found InceptionV3 achieved the highest accuracy (97.7%) (Subeesh

et al., 2022). For image-based weed detection and discrimination,

previous findings suggest that deep learning methods generally

outperform other methods (Fennimore et al., 2016; Kamilaris and

Prenafeta-Boldú, 2018).

Several studies have investigated the use of image classification or

object detection neural networks for detecting and distinguishing

various weed species in turfgrass (Yu et al., 2019a; Yu et al., 2019b; Yu

et al., 2019c; Yu et al., 2020). Jin et al. demonstrated that VGGNet

effectively detected and distinguished dallisgrass (Paspalum dilataum

Poir.), purple nutsedge (Cyperus rotundus L.), and white clover

(Trifolium repens L.) growing in bermudagrass [Cynodon dactylon

(L.) Pers.] turf, while RegNet is well-performed in discriminating

common dandelion (Taraxacum officinale Web.) (Jin et al., 2022). In

another study, Yu et al. developed effective deep convolutional neural

networks to detect weeds in turf. The authors reported that the image

classification neural network VGGNet reliably classified broadleaf

and grassy weeds growing in bermudagrass turf. In addition, the

object detection neural network DetectNet achieved high overall

accuracy at detecting cutleaf evening-primrose (Oenothera laciniata

Hill) growing in bahiagrass (Paspalum notatum Flugge) (Yu et al.,

2019b; Yu et al., 2019c).

Different weed species exhibit varying susceptibility to a particular

herbicide category (McElroy and Martins, 2013; Yu et al., 2018). For

example, acetolactate synthase (ALS)-inhibiting herbicides generally

provide a narrow weed control spectrum (Yu and Boyd, 2018);

ACCase-inhibiting herbicides are only effective for controlling

grassy weeds (McElroy and Martins, 2013); nonselective herbicides,

such as glyphosate and glufosinate, could nonselectively control all

weeds (Johnson, 1977); and synthetic auxin herbicides, such as 2,4-D,

dicamba, and MCPA, are only effective for controlling broadleaf

weeds (McElroy and Martins, 2013). Therefore, precision spraying

herbicides based on the susceptibility of different weed species to the

herbicides can significantly reduce herbicide input and improve

herbicide use efficiency. Although deep learning has been well-

performed in weed detection and discrimination, previous studies

have generally focused on distinguishing different weed species and

did not establish a direct connection between weeds and herbicides.

Moreover, a variety of weed species with comparable plant

morphological characteristics may be found in turfgrass, thus it is

difficult for the deep learning models to detect and distinguish every

weed species with high accuracy. In the present research work, in

addition to the detection and discrimination of individual weed

species, different weed species growing in bermudagrass turf were

grouped according to their susceptibility to herbicides, and weeds

were detected and distinguished by herbicide categories. The

proposed method would allow precision herbicide application based
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on susceptibility and thereby effectively reduce herbicide input while

achieving the same level of weed control as the broadcast herbicide

application. The objectives of this paper were to (1) investigate the

feasibility of utilizing deep learning for herbicide susceptibility-based

weed detection in bermudagrass turf, and 2) evaluate and compare the

performance of different convolutional neural networks for

distinguishing individual weed species.
Materials and methods

Overview

The image classification convolutional neural networks, including

DenseNet (Huang et al., 2017), EfficientNet (Tan and Le, 2019), and

ResNet(He et al., 2016), were selected for evaluating the feasibility of

using the convolutional neural networks for detecting and

distinguishing individual weed species growing in bermudagrass

turf or detecting and distinguishing weeds susceptible to herbicides.

DenseNet is a convolutional neural network that computes dense and

multi-scale features from the convolutional layers. For each layer, it

obtains additional inputs from all preceding layers and passes on its

feature maps to all subsequent layers. EfficientNet uses a set of fixed

scaling coefficients to uniformly scales all dimensions of depth, width,

and resolution in a principled way. The EfficientNet achieves state-of-

the-art accuracy with 10× better efficiency by utilizing this novel

scaling method. ResNet introduced the concept of residual learning. It

employs an identity-based skip connection in each residual unit.

ResNet eases the flow of information across units and thus can gain

accuracy from very deep networks. In this study, these three

convolutional neural networks were trained and evaluated with the

ultimate goal of site-specific herbicide application.
Image acquisition

The training images of crabgrass (D.igitaria ischaemum L.),

dollarweed (Hydrocotyle spp.), old world diamond-flower (Hedyotis

cormybosa L.), and tropical signalgrass [Urochloa distachya (L.) T.Q.

Nguyen] were acquired at several golf courses in Bradenton (27.49°N,

82.47°W), Riverview (27.86°N, 82.32°W), Sun City (27.71°N, 82.35°

W), and Tampa (27.95°N, 82.45°W), Florida, while the testing images

were acquired at several golf courses and institutional lawns in

Lakeland, Florida (28.03°N, 81.94°W). The training images of

goosegrass (Eleusine indica L.) and Virginia buttonweed (Diodia

virginiana L.) growing in bermudagrass turf were acquired at the

University of Georgia Griffin Campus in Griffin, Georgia, United

States (33.26°N, 84.28°W), while the testing images were acquired at

several golf courses in Peachtree City, Georgia, United States (33.39°

N, 84.59°W). The training images of purple nutsedge were acquired at

sod farms in Jiangning District, Nanjing, Jiangsu, China (31.95°N,

118.85°E), while the testing images were acquired at sod farms in

Shuyang, Jiangsu, China (34.12°N, 118.79°E). The training and testing

images of crabgrass, dollarweed, goosegrass, old world diamond-

flower, tropical signalgrass, and Virginia buttonweed were captured

multiple times from April to November 2018 using a digital camera

(DSC-HX1, SONY®, Cyber-Shot Digital Still Camera, SONY
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Corporation, Minato, Tokyo, Japan). The training and testing

images of purple nutsedge were captured in spring 2021 using a

digital camera (Panasonic® DMC-ZS110, Xiamen, Fujian, China).

The original resolution of the training and testing images was 1,920 ×

1,080 pixels. To enrich the diversity of the training dataset, images

were captured under various illumination conditions, including partly

cloudy, cloudy, or sunny days.
Training and testing

Images containing crabgrass, dollarweed, goosegrass, old world

diamond-flower, purple nutsedge, tropical signalgrass, and Virginia

buttonweed growing in bermudagrass turf were selected to constitute

the training or testing datasets. Images containing a single weed species

were selected for training and testing neural networks. All images were

cropped into 40 equal-sized sub-images by a 5 rows × 8 columns

division. Each sub-image was 240 × 216 pixels. Sub-images of crabgrass,

goosegrass, and tropical signalgrass (Figure 1), purple nutsedge

(Figure 2), dollarweed, old world diamond-flower, and Virginia

buttonweed (Figure 3) at different growth stages and densities, and

sub-images of bermudagrass at varying mowing heights and surface

conditions (Figure 4) were utilized for training and testing the neural

networks. Figure 5 outlines the sequence diagram of image processing

and training and testing the convolutional neural networks for

detecting and discriminating individual weed species or weeds

susceptible to ACCase-inhibitor, ALS-inhibitor, synthetic auxin

herbicides, or bermudagrass without weed infestation (no herbicide).

The convolutional neural networks for detecting and distinguishing

weed species were trained utilizing a total of 21,000 true positive sub-

images (3,000 sub-images for each weed species) containing crabgrass,

dollarweed, goosegrass, old world diamond-flower, purple nutsedge,

tropical signalgrass, or Virginia buttonweed growing in bermudagrass

turf, while a total of 9,000 sub-images containing only bermudagrass

were utilized as the true negative images. To establish the validation or

testing dataset, a total of 3,500 sub-images (500 images for each weed

species) containing crabgrass, dollarweed, goosegrass, old world

diamond-flower, purple nutsedge, tropical signalgrass, or Virginia

buttonweed growing in bermudagrass were utilized as the true

positive images, while a total of 1,500 sub-images containing only

bermudagrass were utilized as the true negative images.

The convolutional neural networks for detecting and distinguishing

weeds susceptible to various herbicides were trained using a dataset

containing four categories of sub-images: weed species susceptible to

ACCase-inhibitors, weed species susceptible to ALS-inhibitors, weed

species susceptible to synthetic auxin herbicides, and bermudagrass

without weed infestation. To establish the training, validation, or testing

dataset, the sub-images containing crabgrass, goosegrass, or tropical

signalgrass, the sub-images containing purple nutsedge, the sub-images

containing dollarweed, old world diamond-flower, or Virginia buttonweed,

and the sub-images containing bermudagrass only were grouped and

labeled as ACCase-inhibiting herbicides, ALS-inhibiting herbicides,

synthetic auxin herbicides and no herbicide, respectively (Table 1).

The training and testing of the convolutional neural networks

were performed in PyTorch (version 1.8.1) deep learning

environment (Facebook, San Jose, California, United States) with an

NVIDIA GeForce RTX 2080 Ti graphic processing unit (GPU).
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Transfer learning seeks to use previously acquired knowledge while

addressing one problem and applying it to a different but similar

problem (Lu et al., 2015). The convolutional neural networks were

pre-trained with the ImageNet dataset to initialize the weights and

bias through the transfer learning technology. To ensure fair

comparisons among the evaluated deep learning models, default

values of hyper-parameters for each neural network were adopted

and used (Table 2).

A binary classification confusion matrix with four conditions,

including the true positive (tp), false positive (fp), true negative (tn),

and false negative (fn), was used to present the training and testing

results of the convolutional neural networks. The performances of the

convolutional neural networks were evaluated and compared against

each other in terms of precision, recall, F1 score, and Matthews

Correlation Coefficient (MCC).

Precision is the ability of the neural networks to detect the

susceptible weed species and was calculated using the tp and fp

(Sokolova and Lapalme, 2009):

precision =   tp
tp+fp (1)

Recall is the effectiveness of the neural networks to detect the

susceptible weed species and was computed using the tp and fn

(Sokolova and Lapalme, 2009):

recall   =   tp
tp+fn (2)
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The F1 score is a commonly used metric for measuring the overall

performance of the neural networks, which was defined using the

following equation (Sokolova and Lapalme, 2009):

F1 =
2�precision�recall
precision+recall (3)

The MCC is the correlation between ground truth labels and

predictions, which was determined using the following equation

(Chicco and Jurman, 2020):

MCC = tp�tn−fp�fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(tp+fp)�(tp+fn)�(tn+fp)�(tn+fn)

p (4)

Frames per second (FPS) measures the number of images, also

known as frames processed by the neural networks each second. A

higher FPS value indicates faster image processing. The FPS value was

adopted as a quantitative metric to evaluate the computational

efficiency of the neural networks.
Results

Detection and discrimination of
weed species

When the convolutional neural networks were trained for detecting

and distinguishing weed species growing in bermudagrass turf,

DenseNet, EfficientNet-v2, and ResNet exhibited excellent
B CA

FIGURE 1

The training and testing sub-images of crabgrass (A), goosegrass (B), and tropical signalgrass (C) at different growth stages and densities.
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performances and achieved high F1 scores (≥0.995) and MCC values

(≥0.994) in the validation datasets for detecting and distinguishing the

sub-images containing dollarweed, goosegrass, purple nutsedge, and

the sub-images containing bermudagrass only (Table 3). In general, a

slight reduction in weed detection performance of all neural networks

was observed in the testing datasets compared to the validation datasets.

For the detection of old world diamond-flower, the recall values of

DenseNet in the validation and testing datasets were 0.994, while the

precision values were 0.984 and 0.980, respectively, in predicting the

correct weed species labels. For the detection of Virginia buttonweed,

the precision values of DenseNet were 0.996 and 0.994, respectively,

while the recall values were 0.984 and 0.978, respectively. Similar
Frontiers in Plant Science 0565
trends were observed in the validation and testing datasets for

EfficientNet-v2 and ResNet.

All three neural networks performed poorly at detecting and

distinguishing crabgrass and tropical signalgrass growing in

bermudagrass turf. Because of low precision and recall values, the

F1 scores and MCC values of DenseNet, EfficientNet-v2, and ResNet

never exceeded 0.918, 0.919, and 0.918, respectively, in the validation

and testing datasets. The low F1 scores and MCC values indicate that

the neural networks are more likely to mistakenly classify crabgrass as

tropical signalgrass (or vice versa). This finding could likely attribute

to the similarity in plant morphology between crabgrass and

tropical signalgrass.
B CA

FIGURE 2

The training and testing sub-images of dollarweed (A), old world diamond-flower (B), and Virginia buttonweed (C) at different growth stages and densities.
FIGURE 3

The training and testing sub-images of purple nutsedge at different growth stages and densities.
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Detection and discrimination of weeds
susceptible to herbicides

No obvious differences were observed among DenseNet, EfficientNet-

v2, and ResNet for detecting and distinguishing weeds susceptible to

ACCase-inhibitors, ALS-inhibitors, synthetic auxin herbicides, or

bermudagrass without weed infestation (no herbicide) (Table 4).

DenseNet, EfficientNet-v2, and ResNet achieved high F1 scores

and MCC values (≥0.997) with high precision (≥0.996) and recall (≥

0.997) in the validation datasets. All neural networks had slightly

reduced precision and recall values in the testing datasets, but the F1
scores and MCC values never fell below 0.994.

These results suggest that convolutional neural networks can

reliably detect and distinguish weeds susceptible to particular

herbicides. Furthermore, it can be inferred that training the neural

networks based on the susceptibility of weed species to herbicides
Frontiers in Plant Science 0666
could probably minimize the morphological similarity issue and

hence improve weed detection accuracy.
Inference time of the convolutional
neural networks

In addition to the weed detection accuracy, the inference time of

the convolutional neural networks is also critical for real-time

precision herbicide application. The FPS values of DenseNet,

EfficientNet-v2, and ResNet were calculated by averaging the

inference time of images from the testing dataset. Since the original

images were captured at a resolution of 1,920 × 1,080 pixels, the

detection speed with the full images was measured by processing the

sub-images (240 × 216 pixels) with a batch size value of 40 (for

simultaneously processing 40 sub-images).
FIGURE 4

The training and testing sub-images of bermudagrass at different turfgrass management regimes, mowing heights, and surface conditions.
FIGURE 5

Flow diagram illustrates the sequence of image processing and training and testing the convolutional neural networks.
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All convolutional neural networks, including DenseNet,

EfficientNet-v2, and ResNet, had an excellent detection speed

(≥77.94fps) when detecting and distinguishing the sub-images with

a batch size value of 1 (Table 5). DenseNet, with 61.79 full images

detected per second, was 31.59 slower than ResNet but noticeably

faster than EfficientNet-v2 when setting the batch size value as 40.

ResNet demonstrated the fastest inference rate and outperformed the

other convolutional neural networks on detection efficiency.

However, the slow detection of EfficientNet-v2 may limit its

potential applications.
Discussion

Deep learning methods for weed detection typically focus on

distinguishing weed species, but various weed species with

comparable plant morphological features may be found in the

turfgrass. Thus, it is difficult for neural networks to achieve high

accuracy of detection and discrimination for every weed species.

Distinguishing different categories of weed species growing in turf

based on their susceptibility to herbicides reduces the complexity of

weed detection. By training the neural networks according to the

susceptibility of weed species to herbicides, we achieved an excellent

performance in weed detection. Moreover, this strategy allows the use

of specific herbicides for precision spraying susceptible weeds, thus

saving more herbicides.

When training convolutional neural networks for detecting weeds

susceptible to herbicides, weed vegetation was grouped and labeled

into three categories: weeds susceptible to ACCase-inhibitors, weeds

susceptible to ALS-inhibitors, and weeds susceptible to synthetic

auxin herbicides. ACCase-inhibitors, such as diclofop-methyl, can

be applied in bermudagrass turf for POST control of various grassy

weeds, while sethoxydim (cyclohexanedione), another ACCase-

inhibitor, is used for POST control of grassy weeds growing in

centipedegrass [Eremochloa ophiuroides (Munro) Hack.] (Neal
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et al., 1990; Tate et al., 2021). Synthetic auxin herbicides, such as

2,4-D and mecoprop, are POST herbicides that selectively control

broadleaf weeds in bermudagrass turf (Grichar et al., 2008; Reed et al.,

2013). ALS-inhibitors (e.g. halosulfuron, imazaquin, and

trifloxysulfuron-sodium) can effectively control nutsedge weeds.

However, it should be noted that certain ALS-inhibitors, such as

halosulfuron and trifloxysulfuron-sodium, can also suppress or

effectively control broadleaf weeds (McElroy and Martins, 2013). In

this context, broadleaf and nutsedge weeds could be grouped into the

same category when training the neural network for precision

spraying the ALS-inhibitors that are effective for controlling both

broadleaves and nutsedges growing in bermudagrass turf.

Deep learning neural networks, including image classification and

object detection neural networks, can be developed and potentially

integrated into the machine vision sub-system of a smart sprayer.

Nevertheless, it should be noted that image classification neural

networks alone do not localize weeds on the input images.

Consequently, when utilizing image classification neural networks for

weed detection, a smart sprayer likely generates a considerably larger

spraying output area than the area covered by weeds. In the present

work, localizing weeds with image classification neural networks could

be realized by cropping the input image into multiple grid cells (sub-

images) and identifying the grid cells containing weeds.

In the present study, original images (1,920 × 1,080 pixels) were

divided into 40 grid cells (sub-images with a resolution of 240 × 216

pixels) for training and testing the image classification neural

networks. Spraying areas can be localized by detecting if the grid

cells contain weeds. When developing a precision spraying system,

custom software can be programmed to generate grid cell maps on the

input images and realize precision herbicide application by detecting

if the grid cells contain weeds susceptible to the herbicides. To realize

precision herbicide spraying, a binary (on/off) input command can be

implemented via a nozzle control system to turn off the spray nozzles

over the weed-free cells while the nozzles corresponding to the grid

cells containing weeds need to be turned on.
TABLE 1 The number of sub-images used to establish the training, validation, and testing datasets of the convolutional neural networks.

Dataset ACCase-inhibiting herbicides ALS-inhibiting
herbicides

No herbicide Synthetic auxin herbicides

Crabgrass Goosegrass Tropical
signalgrass

Purple nut-
sedge

Bermudagrass Dollarweed Old world
diamond-
flower

Virginia
buttonweed

Training 3000 3000 3000 3000 9000 3000 3000 3000

Validation 500 500 500 500 1500 500 500 500

Testing 500 500 500 500 1500 500 500 500
The convolutional neural networks were trained to detect and discriminate weed species and the sub-images containing weeds susceptible to ACCase-inhibiting herbicides, ALS-inhibiting herbicides,
synthetic auxin herbicides, or bermudagrass without weed infestation (no herbicide).
TABLE 2 Hyperparameters used for training the convolutional neural networks.

Deep learning architecture Optimizer Base learning rate Learning rate policy Batch size Training epochs

DenseNet SGD 0.001 LambdaLR 16 30

EfficientNet-v2 SGD 0.01 LambdaLR 16 30

ResNet Adam 0.0001 StepLR 16 30
SGD, stochastic gradient descent.
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While the convolutional neural networks achieved high classification

rates for detecting and distinguishing weeds susceptible to herbicides, it

should be noted that when weeds susceptible to different herbicides are

grown too close or occluded, the neural networks would not effectively

distinguish weed categories based on their susceptibility to the herbicides

because the grid cell contains multiple targets. Although such a case may

result in missed detection, this is hardly an issue in field applications

because the weed infestation zone has been detected, and one of the

herbicides will be sprayed onto the susceptible weeds.

It was reported that the training image size could significantly affect

the reliability of image classification neural networks for weed detection

(Zhuang et al., 2021; Yang et al., 2022b). For example, Zhuang et al.

observed increased classification accuracy (high recall values) with

AlexNet and VGGNet when they were trained with images of 200 ×

200 pixels than 300 × 300 or 400 × 400 pixels; however, increasing

training image quantities diminished the differences in detection accuracy

(Zhuang et al., 2021). In the present study, each sub-image (240 × 216

pixels) represented a physical size of 10 cm × 9 cm. When the

convolutional neural networks are integrated into the machine vision

sub-system of smart sprayers for precision herbicide application, the
Frontiers in Plant Science 0868
nozzles should generate the same or slightly larger spraying outputs to

cover the grid cells. An additional investigation is needed to investigate

the implications of training image sizes and quantities on the

performances of neural networks for weed detection in turf.
Conclusions

The present research demonstrated the reliability and effectiveness of

using convolutional neural networks to detect and distinguish weeds

growing in bermudagrass turf based on their susceptibility to herbicides.

All convolutional neural networks, including DenseNet, EfficientNet-v2,

and ResNet achieved excellent F1 scores (≥ 0.995) and MCC values (≥

0.994) in the validation and testing datasets to detect and distinguish

weeds susceptible to ACCase-inhibitors, ALS-inhibitors, and synthetic

auxin herbicides, or bermudagrass turf without weed infestation (no

herbicide). In addition, DenseNet, EfficientNet-v2, and ResNet had an

excellent detection speed (≥77.94fps) when detecting and distinguishing

the sub-images with a resolution of 240 × 216 pixels. For detecting the

original/full images (1,920 × 1,080 pixels), ResNet demonstrated the
TABLE 3 Weed species detection and discrimination training results using various convolutional neural networks.

Deep learning architecture Weed species Validation dataset Testing dataset

Precision Recall F1 score MCC Precision Recall F1 score MCC

DenseNet Bermudagrass 1.000 0.998 0.999 0.999 0.999 0.999 0.999 0.999

Crabgrass 0.923 0.940 0.931 0.924 0.920 0.938 0.929 0.921

Dollarweed 0.998 1.000 0.999 0.999 0.996 0.998 0.997 0.997

Goosegrass 0.994 0.996 0.995 0.994 0.990 0.996 0.993 0.992

Old world diamond-flower 0.984 0.994 0.989 0.988 0.980 0.994 0.987 0.986

Purple nutsedge 0.994 0.998 0.996 0.996 0.996 0.994 0.995 0.994

Tropical signalgrass 0.937 0.920 0.928 0.921 0.937 0.916 0.926 0.918

Virginia buttonweed 0.996 0.984 0.990 0.989 0.994 0.978 0.986 0.984

EfficientNet-v2 Bermudagrass 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000

Crabgrass 0.924 0.942 0.933 0.925 0.920 0.938 0.929 0.921

Dollarweed 1.000 1.000 1.000 1.000 0.998 0.998 0.998 0.998

Goosegrass 0.998 0.996 0.997 0.997 0.992 0.996 0.994 0.993

Old world diamond-flower 0.986 0.996 0.991 0.990 0.982 0.994 0.988 0.987

Purple nutsedge 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

Tropical signalgrass 0.941 0.922 0.931 0.924 0.937 0.918 0.927 0.919

Virginia buttonweed 0.996 0.986 0.991 0.990 0.994 0.982 0.988 0.987

ResNet Bermudagrass 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999

Crabgrass 0.922 0.942 0.932 0.924 0.918 0.938 0.928 0.920

Dollarweed 1.000 0.998 0.999 0.999 0.998 0.998 0.998 0.998

Goosegrass 0.998 0.996 0.997 0.997 0.990 0.996 0.993 0.992

Old world diamond-flower 0.986 0.996 0.991 0.990 0.980 0.994 0.987 0.986

Purple nutsedge 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

Tropical signalgrass 0.941 0.918 0.929 0.921 0.937 0.916 0.926 0.918

Virginia buttonweed 0.992 0.986 0.989 0.988 0.994 0.978 0.986 0.984
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fastest inference rate and outperformed the other convolutional neural

networks on detection efficiency (93.38fps). Effective detection and

discrimination of weeds susceptible to herbicides enable the smart

sprayer to spray particular herbicides to control susceptible weeds,

thereby significantly reducing herbicide input. Based on the high-level

performance, we conclude that the proposed method is highly suitable

for integrating into the machine vision sub-system of smart sprayers for

the precision control of weeds while growing in turf.
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TABLE 4 Training and testing results of various convolutional neural networks for detecting and discriminating the sub-images containing weeds
susceptible to herbicides, or bermudagrass without weed infestation (no herbicide).

Deep learning architecture Herbicides Validation dataset Testing dataset

Precision Recall F1 score MCC Precision Recall F1 score MCC

DenseNet ACCase-inhibiting herbicides 0.999 0.999 0.999 0.998 0.997 0.998 0.997 0.997

ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

No herbicide 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Synthetic auxin herbicides 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999

EfficientNet-v2 ACCase-inhibiting herbicides 0.999 0.999 0.999 0.999 0.998 0.998 0.998 0.997

ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

No herbicide 0.999 0.999 0.999 0.999 1.000 0.999 0.999 1.000

Synthetic auxin herbicides 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.999

ResNet ACCase-inhibiting herbicides 0.999 0.998 0.998 0.998 0.998 0.995 0.996 0.995

ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

No herbicide 0.998 1.000 0.999 0.999 0.997 0.999 0.998 0.997

Synthetic auxin herbicides 0.999 0.997 0.998 0.998 0.997 0.997 0.997 0.996
frontie
TABLE 5 The inference time of the convolutional neural networks evaluated in the study.

Deep
learning
architecture

Image type Resolution Batch size FPS

DenseNet Sub-image 240 × 216
1 103.75

40 61.79

EfficientNet-v2 Sub-image 240 × 216
1 77.94

40 38.77

ResNet Sub-image 240 × 216
1 276.08

40 93.38
FPS, frames per second.
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The segmentation of pepper leaves from pepper images is of great significance

for the accurate control of pepper leaf diseases. To address the issue, we

propose a bidirectional attention fusion network combing the convolution

neural network (CNN) and Swin Transformer, called BAF-Net, to segment the

pepper leaf image. Specially, BAF-Net first uses a multi-scale fusion feature

(MSFF) branch to extract the long-range dependencies by constructing the

cascaded Swin Transformer-based and CNN-based block, which is based on

the U-shape architecture. Then, it uses a full-scale feature fusion (FSFF) branch to

enhance the boundary information and attain the detailed information. Finally, an

adaptive bidirectional attention module is designed to bridge the relation of the

MSFF and FSFF features. The results on four pepper leaf datasets demonstrated

that our model obtains F1 scores of 96.75%, 91.10%, 97.34% and 94.42%, and IoU

of 95.68%, 86.76%, 96.12% and 91.44%, respectively. Compared to the state-of-

the-art models, the proposedmodel achieves better segmentation performance.

The code will be available at the website: https://github.com/fangchj2002/

BAF-Net.

KEYWORDS

convolution neural network, leaf segmentation, attention mechanism, multi-scale
network, Swin Transformer
1 Introduction

Pepper is a common crop in China and has become an important vegetable and

condiment in our daily life. However, pepper is a sensitive plant and pepper crops are

highly exposed to diseases, which easily cause the frontal disease of the pepper leaves. The

plant leaves can reflect plant growth, and pepper leaf diseases directly leads to the decline of
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pepper yield and quality. The visual characteristics of pepper leaf

diseases is very similar, so it is not easy to distinguish them. With

the advance of imaging technology, computer vision technologies

have been widely used in plant leaf extraction to guide the

agricultural expert to analyze the crop growth. By using image

processing technology to analyze two-dimensional leaf image

features, the plant growth stages could be dissected (Slaughter

et al., 2008; Koirala et al., 2019), and monitor the plant diseases

(Singh, 2019; Tian et al., 2019) by the analysis of the image various

plant organs. Therefore, the accurate segmentation of pepper leaves

from pepper images is of great significance for controlling pepper

leaf diseases. However, it is challenging to design a general model

for automatic segmentation of pepper leaves since the pepper leaves

and some crops have similar phenotypic features (Hasan

et al., 2021).

Broadly speaking, the existing literature for the plant leaf

segmentation can be classified into two categories as shown in

Figure 1: conventional and deep learning-based methods. For the

conventional methods, a statistical method with graph-based models

(Kumar andDomnic, 2019) was proposed to segment the plant image

and leaf counting, where the image enhancement techniques and the

transformation from RGB to HSV were used to improve the quality

of the input image. To avoid the problem of leaf over-segmentation,

green channel information (Wang et al., 2018) was used to remove

the background information, and the Sobel operator was improved to

segment cucumber leaves. To detect the occluded plant leaves, leaf

shape (Xia et al., 2013) was fused into the energy function to segment

the leaf images. To deal with the complex background and the strong

illumination, Larese et al. (2014) proposed a leaf vein analysis method

for leguminous leaf segmentation and classification. The automatic

segmentation method for plant leaf images under complex

background was proposed to obtain the segmentation results.

Scharr et al. (2016) uses the supervised classification with a neural

network along with color and watershed transform for plant leaf

segmentation and counting. Kuznichov et al. (2019) proposed a

schema to augment the training dataset and remain the geometrical

structure of the plant leaf by constructing a generation synthetic data.

To segment multiple leaves at the same time and deal with the leaf

over-segmentation, a deep extraction method for plant leaf (Amean

et al., 2021) was proposed by incorporating multiple features, such as

color, shape, and depth information. Lin et al. (Lin et al., 2023)

proposed a self-supervised blade segmentation framework consisting

of a self-supervised semantic segmentation model, a color-based

blade segmentation algorithm, and a self-supervised color

correction model. A self-supervised semantic segmentation model

(Lin et al., 2023) was proposed to deal with the complex lighting

conditions. The model was comprised of the features extracted from

the CNN-based network and the fully connected Conditional

Random Fields (CRFs), thus significantly reducing the impact of

complex backgrounds and variations within the leaf and non-

leaf regions.

In recent years, the deep learning-based method has

outperformed the conventional segmentation methods and shows

great potential in processing plant phenotypic tasks (Bhagat et al.,

2021; Chandra et al., 2020). The SegNet-based model (Aich and

Stavness, 2017) with the encoder-decoder architecture was used to
Frontiers in Plant Science 0273
segment plant leaves and leaf counting. Three RGB images and the

segmentation mask of leaf counting were used as four input channels

to build a regression model. Thus, the SegNet-based model can solve

the problem of leaf counting (Ubbens and Stavness, 2017). To

segment multiple objects, the instance segmentation model

(Romera-Paredes and Torr, 2016) was proposed based on an end-

to-end recurrent neural network (RNN). The model designed a

spatial attention module to extract small patches, and then uses a

convolutional long short-term memory (LSTM) network to build the

relation of these patches. By doing so, the model can finish plant leaf

segmentation and leaf counting. To solve the target occlusion

problem, Ren et al. (Ren and Zemel, 2017) used an RNN-based

architecture to generate continuous regions of interest and designed a

human-like counting process based on the attention mechanism, thus

making it a more accurate segmentation for each object in turn. Lin

et al. (Lin et al., 2019) proposed a self-supervised CNN-based

framework for leaf segmentation. The model first used self-

contained information to classify each pixel, and then the

segmentation algorithm for the color leaf images was used to

identify the leaf region. Finally, a self-supervised color-based

correction model was proposed to segment the complex images

taken under complex lighting conditions. As shown in Table 1, we

summarize the work related to plant leaf segmentation.

It is well-known that U-Net (Ronneberger et al., 2015) is one of

the most efficient models and widely used for specific object

extraction in image segmentation. U-Net and its variants (Shen

et al., 2017) have achieved competitive performance in many

computer vision tasks, such as ResU-Net (Zhang et al., 2018), U-

Net++ (Zhou et al., 2019), DenseNet (Huang et al., 2017), 3D U-Net

(Li et al., 2020), V-Net (Milletari et al., 2016). Bhagat et al. (2022)

proposed a modified U-Net architecture for plant leaf segmentation,

where an EffcientNet-B4 module was used as an encoder to extract

the image feature. Meanwhile, a redesigned skip connection and the

residual modules of the decoder were used to reduce computational

cost. However, these methods usually ignored the global context

information. To be exact, these models could not extract the long-

range correlation between pixels, especially for the pixels

surrounding the boundary of the objects. The effective method for

obtaining the precise location and boundary of the segmentation

object was to extract the global context information of the feature

map and the long-range correlation between pixels. Transformer

has been proved to be an efficient self-attention mechanism to

establish long-term dependencies in the field of natural language

processing (NLP). More recently, it was introduced into the visual

classification tasks. Ramachandran et al. (Ramachandran et al.,

2019) explored a novel ResNet-based model by replacing all

spatial convolutional layers with the self-attention layers.

However, the local self-attention might still lose part of the global

structural information. In order to obtain global information of

visual images, Vision Transformer (ViT) (Dosovitskiy et al., 2020)

inspired by Transformer was proposed to solve the natural image

recognition task. ViT first divided the image into several non-

overlapping patches, and then used Transformer with the self-

attention mechanism to calculate the global information between

each token to obtain the global context information. To further

reduce the sequence length and computational complexity, Swin
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Transformer (Liu et al., 2021) used a shifted window to calculate the

local self-attention. By establishing a shifted window, two adjacent

windows could interact with each other, and cross connections were

established between the widows of the upper and lower layers,

which improved the effect of global context.

To address these problems, we built a pepper leaf dataset

focused on the disease detection segmentation, and propose a

bidirectional attention fusion network, named BAF-Net, to obtain

the for pepper leaf segmentation. BAF-Net is comprised of three

parts: multi-scale fusion feature (MSFF) branch, full-scale feature

fusion (FSFF) branch, and bidirectional attention feature fusion

(BAF) modules. The backbone of the MSFF branch is a U-shaped

network architecture. By incorporating the Swin-Transformer block

and the CNN-based module, a cascaded hybrid module (Swin-

Trans-Conv) is constructed, to obtain multi-scale fusion features. In

the FSFF branch, we first fuse the features of the five-layer encoder

from the MSFF branch. Then, the generated features pass through

several convolution blocks to obtain the full-resolution feature. The

BAF module adaptively fuses the output features of the MSFF and

FSFF branches, generating two corresponding features for each

branch. In short, the main contributions of our work are as follows:
Fron
(1) By incorporating the Swin Transformer and CNN-based

modules, we build a cascaded Swin-Trans-Conv block to

replace each convolutional layer of U-Net. The Swin

Transformer-based module can extract the long-range

dependencies while the CNN-based module is used to

obtain the local image information.

(2) An FSFF branch is designed to extract detailed information

and the boundaries. By incorporating the multi-scale

features which are from the outputs of the encoder in the

MSFF branch, the boundary information is retained.

Meanwhile, the multi-layer full-scale convolution block

can extract detailed information.
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(3) We propose a BAF module to adaptive share the multi-

scale and full-scale features, which can adaptively compute

the features of two corresponding branches according to the

output features of the MSFF and FSFF branches.

(4) By verifying on four dataset of pepper leaf images, the

results show that our model is superior to the state-of-the-

art models in terms of the evaluation indices such as IoU

and F1score.
The rest of this paper is arranged as follows. Section 2 first

reviews the materials including the dataset and its labeling process.

Then, the proposed model including the overall architecture, the

formulation of the MSFF and FSFF branches, the BAF module, and

the loss function are discussed. Finally we introduce the evaluation

indices. Section 3 demonstrates the experimental results and

discussion. The conclusions are summarized in Section 4.
2 Materials and methods

2.1 Dataset

In our experiments, the images of pepper leaves were taken

from the farm of Nanchang Academy of Agricultural Sciences in

Jiangxi Province, China. We took photos for multi-view in the real

natural environment from the morning to the afternoon on August

12 and 13, 2021.Pepper leaves were seriously affected by a variety of

diseases during growth. Two common diseases of pepper leaf

destroyed the normal growth of pepper, such as the brown spot

disease and the early blight disease. Meanwhile, we also collect

healthy pepper leaves to expand our dataset. As shown in Table 2,

there are 3921 pepper leaf images in our dataset including the

healthy pepper leaves (HPL) and two different categories of

infection (2606 images): spot disease (SD) and early blight disease
TABLE 1 The related works in plant leaf image.

Categories Author Method

Conventional method

Kumar and Domnic, 2019 A statistical method with graph-based models

Wang et al., 2018 The Sobel-based model with green channel information

Xia et al., 2013 The modified active shape models for plant leaf detection

Larese et al., 2014 Automatic classification modle for legumes image

Kuznichov et al., 2019 Augment dataset and the geometrical structure

Amean et al., 2021 Self-supervised blade segmentation framework

Lin et al., 2023 Self-supervised semantic segmentation model for complex lighting conditions

Deep learning-based method

Aich and Stavness, 2017 The SegNet-based model for leaves and leaf counting

Ubbens and Stavness, 2017 A deep learning platform for complex plant phenotyping

Romera-Paredes and Torr, 2016 Recurrent instance segmentation

Ren and Zemel, 2017 End-to-end instance segmentation with recurrent attention

Lin et al., 2019 A self-supervised CNN-based framework for leaf segmentation
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(EBD), and several examples are shown in Figure 1. As shown in

Table 2, the SD, EBD, and HPL datasets contain 1385, 1221, and

1315 images. The total pepper leaf (TPL) dataset is comprised of the

SD, EBD, and HPL datasets. In our experiment, the images of each

image dataset are split into the training set, the validation set and

the test set, and the image numbers of the training set. Meanwhile,

in order to evaluate the robustness of the BAF-Net, the images were

taken with different complex background as shown in Figure 1.
2.2 Dataset labeling

In the following section, we present a data labeling process, and

the labeled images are used for validating the proposed model. To

accurately annotate the given images, we use the open-source tool

named as LabelMe1, which was developed by the computer science

and artificial intelligence laboratory of MIT university. It allows

users to annotate images manually to build image dataset for image

segmentation. The pixel-by-pixel way carefully delineated the

boundary of each leaf. All these images in the experiment are

marked using this tool. Thereafter, each annotated image generates
1 https://github.com/wkentaro/labelme
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a binary segmentation mask, where the intensity values of the

foreground and background are 1 and 0, respectively. During

annotating the dataset, we retain the same size as the input

image. In view of the computational cost in deep learning, we set

the size of the input image to 512×512.
2.3 Method

2.3.1 Overall architecture
In the field of image segmentation, U-Net has become one of the

most successful network frameworks. It consists of a contracting

path and an expanding path, where the contracting path is used to

capture the image feature while the expanding path can achieve

object localization. In each encoder-decoder layer, a skip

connection layer transforms the low-level and high-level

information. The model uses a convolution layer with fixed

kernel size to extract image features, However, it is difficult to

capture long-range semantic information. Although Transformers

(Dong et al., 2019) can effectively encode the long-range

dependencies, it is difficult to obtain local details and accurate

boundaries of pepper leaves. To solve this problem, we propose a

bidirectional attention fusion network by combining CNN and

Transformer for pepper leaf segmentation, also named as BAF-Net,
TABLE 2 Four datasets for the validating the proposed model on the pepper leaf.

Dataset Test Training Validation Total

Spot Disease (SD) 186 1015 184 1385

Early Blight Disease (EBD) 164 895 162 1221

Healthy Pepper Leaf (HPL) 176 965 174 1315

Total Pepper Leaf (TPL) 526 2875 520 3921
FIGURE 1

The sample dataset with different background.
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where CNN is used to extract the local image information while the

Transformer-based module can capture the long-range

dependencies. As shown in Figure 2, the multi-scale branch is

used to extract the global features while the full-scale feature can

retain the detailed boundary information. The bidirectional fusion

module is designed to concatenate the multi-scale features and the

full scale features.

Specifically, BAF-Net includes three parts: a multi-scale feature

fusion (MSFF) branch, a full-scale fusion feature (FSFF) branch,

and bidirectional attention fusion (BAF) modules. In the MSFF

branch, the network structure is similar to U-Net, composed of an

encoding path and a decoding path. Different from the U-Net

model, the encoder is replaced by a hybrid module by incorporating

the convolutional layer and the Swin Transformer (Liu et al., 2021)

module, and the decoder is composed of convolutional modules. In

the FSFF branch, we first upsample four features: the output

features of the encoder from the 2nd layer to the 4th layer, and the

5th layer of the decoder. Four output features are the same size as the

first layer’s output feature in the MSFF branch. Then, we fuse five

generated features, and the generated feature is passed through four

continuous convolutional modules. Each convolutional module is

activated by the convolution layer, batch normalization, and the

ReLU activation function. In the BAF module, the input features are

from the output feature of the decoder in the MSFF branch and the

output feature of the corresponding convolutional module in the

FSFF branch. By incorporating the MSFF and FSFF branches, the

improved model not only achieves the full resolution feature but

also extracts the comprehensive and multi-scale features.
Frontiers in Plant Science 0576
2.3.2 Multi-scale feature fusion branch
The transformer-based model (Dosovitskiy et al., 2020; Cao et al.,

2021) has a more robust representation than the CNN-based model

while building the long-range dependencies. In order to extract the

global features, we explore a hybrid Swin-Trans-Conv block by

combining the Swin-Transformer encoder and the convolutional

layer, which is used to replace the convolutional layer of the encoder

in the MSFF branch. As shown in Figure 3A, the backbone network

including an encoder network and a decoder network is similar to U-

Net. In the encoder network, we use a hybridmodule by combining the

convolutional layer and the Swin Transformer block, also called as

Swin-Trans-Conv block, to replace each convolutional layer of U-Net,

where an average pooling operator perform the downsampling process

and the size of the feature maps are changed into half of the original.

The decoder network is comprised of four convolutional layers and

four upsampling operators. The upsampling operation is achieved by

performing a deconvolutional operator with the stride of 2. The

convolutional layer consists of a convolutional operator, batch

normalization, and a ReLU activation layer. The number of channels

in five layers corresponding to the 1st layer to the 5th layer is 32, 64, 128,

256 and 512, respectively.

Assuming that the input feature is X∈RB×H×W×C, where B, C, H

and W represent the batch size, the channel number, and the image

height and width of the input feature, respectively. In the Swin-Trans-

Conv block as shown in Figure 3A, we first transforms the input

feature X into X’∈RB×H×W×C. Then, we perform a 1×1 convolution

operator on the generated feature, and split the generated feature Y

into two groups FTrans and Fconv, which can be expressed as:
FIGURE 2

The overall framework of the proposed BAF-Net, which includes three main modules such as the multiscale feature fusion branch, GAM and
decoders, where the decoder includes the global context module (GAM) and FAM with LAM.
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Y = Conv1�1( Re shape(X))                                           X, Y

∈ RB�C�H;�W (1)

Ftrans,  Fconv = Split(Y)                                                   FTrans,Fconv

∈ RB�C=2�H�W (2)

where Re shape( · ) is a reshape operator on two feature matrix

Ftrans and Fconv, Conv1�1( · ) denotes a 1×1 convolutional operator,

and Split( · ) represents a split operation on the multidimensional

matrix. Finally, the feature FTrans is passed through a module based

on Swin Transformer (Swin-Trans) encoder, and the generated

feature map F
0
trans is written as:

F
0
trans = SwinTrans(Ftrans) (3)

Similarly, the feature map Fconv passes through a residual

convolution module, and the generated feature F
0
conv is defined as:

F
0
conv = RConv(Fconv) (4)

where RConv( · ) is the residual convolution module, which is

comprised of a 3×3 convolution filter, a ReLU activation layer, and a

3×3 convolution filter by a residual path, which is rewritten as:

F3 = Conv3�3(Fconv) (5)

F
0
conv = Conv3�3( Re lu(F

3)) + F3 (6)

where F3 is the feature map performed a 3×3 convolution

operation on the feature map Fconv , Conv3×3 is a 3×3

convolutional layer, and Re lu( · ) is a ReLU activation layer.
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Finally, we concatenate two features F
0
trans and F

0
conv , and then

perform a 1×1 convolution filter by a residual path, which is

represented as:

Xout = Conv1�1(F
0
trans ⊙ F

0
conv) + X (7)

where ⊙ denotes the concatenation operation.

Meanwhile, to construct the Swin-Trans module as shown in

Figure 3B, the input feature FTrans is split into small patches, and

each patch size is set to P × P × P, where P is a positive integer and

the number of the patches is S=[H/P]×[W/P]×[C/P]. For the feature

FiTrans of the i-th layer with the 3D patches, we first compute the

multi-head self-attention in a small window (W-MSA), which can

be formulated as:

F̂ i
out = W-MSA(LN(FiTrans)) + FiTrans (8)

F̂ i
mlp = MLP(LN(F̂ i

Out)) + F̂ i
Out (9)

where W-MSA( · ) denotes the window multi-head self-

attention, LN( · ) is the layer normalization operator, and MLP( · )

denotes a multilayer perceptron module with two fully-connected

layers and the GELU activation function. Then, the generated

feature F̂ i
mlp is passed through the multi-head self-attention in the

shifted window (SW-MSA), which is represented as:

F̂ i
sw = SW-MSA(LN(F̂ i

mlp)) + F̂ i
mlp (10)

Fiout = MLP(LN(F̂ i
sw)) + F̂ i

sw (11)

where SW-MSA( · ) denotes the shifted window multi-head

self-attention, and Fiout is the output feature of the i-th layer.
A

B

FIGURE 3

The network structure of the Swin-Trans-Conv block. In each block, the input feature is first passed through a 1×1 convolution, and subsequently is
split evenly into two feature map groups, each of which is then fed into a Swin transformer block and a residual 3×3 convolutional (RConv) block,
respectively. Afterwards, the output features of the Swin-Trans-Conv block and the RConv block are concatenated and then passed through a 1×1
convolution to generate a novel feature via a residual path.
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Finally, the output feature Fiout is reshaped into the same size of the

input feature in the Swin-Trans module.

It is worth noting that the Swin-Trans-Conv block has several

advantages. First, it integrates the local modeling capability of the

convolution module and the global modeling capability of the Swin-

Trans module. Secondly, the split and concatenation operations are

used for two branches to extract different features, reducing the

computational complexity and the number of parameters.

2.3.3 Full-scale feature fusion branch
The edge and detailed image information may be lost in the U-

shape network framework due to the continuous downsampling

operators. To solve this problem, we design an MSFF branch to

retain the detailed information, and the network structure is shown

in Figure 2B. We fuse the output features of the first 1st to 4th layer

in the encoder of the MSFF branch and the output feature of the

decoder of the 5th layer in the decoder since the multi-scale features

can enhance the edge information (Liu et al., 2023). For four output

features from the MSFF branch, we first carry out a 1×1 convolution

filter to reduce the channel number. Then, we perform the

upsampling operator on the four features, and the four generated

features have the same size with the first channel feature. Then, we

integrate four generated features into the input feature by a residual

path, which can be expressed as:

Xup
i = Conv1�1 up (⋯ up(Xi))|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

i−1

0

@

1

A                         i = 2,⋯, 5 (12)

Xfuse =o5
i=2X

up
i + X (13)

where Conv3×3 denotes a 3×3 convolutional filter.
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Finally, the novel feature passes through four continuous

convolutional modules. Each convolutional module includes a 3×3

convolution layer, batch normalization, and a ReLU activation layer.

To reduce the computational cost and the parameters, we keep each

channel number of four features equal to that of the first layer in the

MSFF branch. In this paper, the channel number is set at 32. The

operations for each convolution block are presented as follows:

X4
f = Re lu(BN(Conv3�3(ffuse) ) )                                                         i =

Xi−1
f = Re lu(BN(Conv3�3(X

i
f )))                                    i = 2,   ⋯,   4

(

(14)
2.3.4 Bidirectional attention fusion module
In order to achieve the multi-scale and full-scale features, we

designed a BAF module to generate the corresponding output

features for the MSFF and FSFF branches. As shown in Figure 4,

the BAF module includes multi-scale feature guidance (MSFG)

module and full-scale feature guidance (FSGM) module. For the

MSGM module, we first conduct the downsampling operation on

the input feature of the FSGM module, and the novel feature maps

have the same spatial dimensions with the same with that of the

MSGF map, which can be expressed as:

Fdnfg = DN(Ffg) (15)

where DN( · ) denotes the downsampling operation. Then, we

concatenate the output feature of the MSFF branch Fms and the feature

Fdnfg , and perform a 1×1 convolution module on the novel feature map

to compress the number of channels, we can obtain the feature map:

Fcms = Conv1�1(Fms e F
dn
fg ) (16)
FIGURE 4

The network structure of the BAF module. Two input features Fms and Ffg are from the output features of the MSFF and FSFF branches, respectively.
The BAF module contains a multi-scale feature guided (MSFG) module and a full resolution feature guided (FRFG) module. The MSFG module is used
to generate the multi-scale feature while the FRFG module is used to generate the full-scale feature.
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At the same time, we project the feature Fcms to compress the

feature map into a channel along the channel direction, and use the

Sigmoid activation function to obtain the global attention map,

which is defined as:

ams = ssig( Pr oj(F
c
ms)) (17)

where Pr oj( · ) denotes the linear projection function, ssig( · )

denotes the Sigmoid function, and ams∈[0,1] is the spatial attention
map of the feature Fcms. It is obvious that the spatial attention map

ams calculates the spatial weight of each pixel, and the calibrated

feature map is expressed as:

Foutms = ams ⊗ Fcms (18)

Finally, the feature Foutms is transformed to the next

convolution layer.

In the FSFG module, we first perform a 1×1 convolutional filter

on the multi-scale feature map Fms to compress the number of

channels. The expression is as follows:

F
0
ms = Conv1�1(Fms) (19)

Then, we upsample the multi-scale feature map to make the

generated features have the same spatial dimension as that of the

full-scale feature. The expression is as follows:

Fupms = up(F
0
ms) (20)

where up( · ) denotes the upsampling operator. Afterwards, two

features Fupms and Ffg are fed into the convolutional layer to generate a

new feature Fcfg , which is written as:

Fcfg = Conv3�3(F
up
ms ⊕ Ffg) (21)

where ⊕ represents the pixel-wise addition operation.

Meanwhile, we use linear projection to compress the feature into

a channel along the channel direction, and then use the sigmoid

activation function to obtain the global attention map:

afg = ssig( Pr oj(F
c
fg)) (22)

where afg∈[0, 1] is the spatial attention map of Fcfg , which is

used to calculate the spatial position weight of each pixel. The

calibrated feature map can be represented as:

Foutfg = afg ⊗ Fcfg (23)

Finally, it is input to the convolution layer of the next

FSFG module.
2.3.5 Training loss
The network should be trained to obtain the best training

parameters. It is known that the loss function is essential to the

predicted performance of the segmentation model. The loss

function is used to measure the deviation between the model

prediction and the ground truth. The binary cross entropy (BCE)

is a loss function widely used in binary image segmentation tasks.

Assuming that the input predicted result is p, and the corresponding

ground truth label is g, the BCE loss function is defined as:
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Lbce(p,     g) = −oN
i=1½gx log (px) + (1� gx) log (1 − px)� (24)

The intersection over union (IoU) loss is defined as:

LIoU (p,     g) = − log oN
i=1 gx · pxj j

oN
i=1(gx + px − gx · pxj j)

 !

(25)

Therefore, our final loss includes Lbce and LIoU, which can be

expressed as:

Ltotal(p,     g) = aLbec(p, g) + (1 − a)LIoU (p, g) (26)

The weight a is a coefficient to balance the importance of two

loss functions, and we set a=0.5.
2.4 Performance evaluation

In order to verify the segmentation performance, we use six

evaluation indices to evaluate the accuracy of the model on the

pepper leaf datasets. Six evaluation indices include: pixel accuracy

(PA), pixel recall (PR), pixel precision (PP), pixel specificity (PS),

intersection over union (IoU) and F1 score. We assume that TP

(True Positive) represents the number of pixels that are both 1 in

the predicted value and the label value, TN (True Negative)

represents the number of pixels that are both 0 in the predicted

value and the label value, FP (False Positive) represents the number

of pixels that are 1 in the predicted value and 0 in the label value,

and FN (False Negative) represents the number of pixels that are 0

in the predicted value and 1 in the label value. The expression of the

pixel accuracy is written as follows:

PA =
TP + TN

TP + TN + FP + FN
(27)

PR is defined as follows:

PR =
TP

TP + FN
(28)

PP is defined as follows:

PP =
TP

TP + FP
(29)

F1 score is defined as:

F1 =
2� PR · PP
PR + PP

(30)

PS is defined as follows:

PS =
TN

TN + FP
(31)

From Equations (27)-(31) and the IoU as defined in Equation

(25), it can be seen that six evaluation indices range from 0 to 1. The

higher the index values are, the best segmentation performance is

obtained. Generally speaking, the mean IoU (mIoU) is used to

evaluate the segmentation performance on a given dataset.
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3 Experiments

In this section, we present the experimental results including

the experimental settings, the comparison with the state-of-the-arts

models, the ablation study and the discussion.
3.1 Experimental settings

All models in the experiment are carried out on Intel (R) Core

(R) i7-8700K CPU 3.70GHz CPU and Nvidia GeForce TITAN XP

12 GB GPU with 48G RAM. The programs are conducted on the

Ubuntu 16.04 with the Conda environment. In the BAF-Net,

the parameter settings are as follows: the batch size is set to 4, the

number of iterations (epoch) is set to 60, and each epoch contains

350 batches. During the training process, the network is optimized

using stochastic gradient descent (SGD), the initial learning rate is

set to 0.01.
3.2 Comparison with the state-of-the-arts
models

We compared BAF-Net with the state-of-the-art methods on four

pepper leaf datasets, such as the SD, EBD, HPL, and TPL datasets. For

fairness, these models are running on the same training dataset, the

validation dataset, and the test dataset. The comparative models on

the pepper leaf dataset involve U-Net (Ronneberger et al., 2015),

AttU-Net (Oktay et al., 2018), Swin-UNet (Cao et al., 2021), SCUNet

(Zhang et al., 2022) and the proposed BAF-Net. We set the training

epochs to 60 for each trained model.

Table 3 shows the test results on the SD dataset using five

different state-of-the-art models. Compared with U-Net, the

proposed model has a precision increase of 7.48%, IoU increase

of 3.88%, and F1 score increase of 5.0%. It also shows that PA score

has the relative improvement of 0.5% on the SD dataset. For the

attention U-Net model, the segmentation results on five indices are

close to that of the U-Net. In addition, Swin-UNet and SCUNet

have the similar segmentation performance. However, the

segmentation performance of U-Net exceeds two models in terms

of six evaluation indices. The reason is that Swin-UNet and SCUNet

containing the transformer-based modules attain better

segmentation results only if more efficient pre-trained model is

provided. From Table 3, where the highest score for each indicator

is shown in bold, our model can obtain the best segmentation
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performance in terms of five evaluation indices including PA, PP,

PS, IoU, and F1 scores compared with other models. By evaluating

the segmentation performance of five models, we also give several

examples of the segmentation results using these compared

methods as shown in Figure 5.

Table 4 presents the segmentation results of five segmentation

models on EBD pepper leaf dataset, in which the highest score of

each index is shown in bold. From the experimental results, the

proposed model has the highest scores among the six indices

including PA, PR, PP, PS, IoU and F1 scores. Specifically,

compared with U-Net, BAF-Net increased PA by 0.62%, PR by

0.06%, PP by 3.44%, PS by 1.7%, IoU by 5%, and F1 score by 7.04%.

Attention U-Net is only lower than BAF-Net in terms of the indices

IoU and F1-score, with a decrease of 4.92% and 6.59%, respectively.

Compared with Swin-Unet and SCUNet, the proposed model has

significant improvement in terms of six indices. The proposed BAF-

Net have significant improvement in terms of PP, reaching the

increase by 7.25% and 14.29%, respectively. By evaluating the

segmentation performance of five deep learning-based models, we

find these models can obtain better segmentation results than the

traditional methods. Meanwhile, we also give the examples of the

segmentation results using these compared methods as shown

in Figure 6.

Table 5 shows the validation results of five different models on

the HPL data set, with the highest score for each indicator shown in

bold. From the experimental results, the proposed model can obtain

the best segmentation accuracy in terms of PA, PP, PS, mIoU and

F1 score. Compared with U-Net, the proposed model has increased

PA by 0.21%, PP by 1.51%, PS by 1.52%, IoU by 0.01%, and F1 score

by 0.27%. The attention U-Net has the similar segmentation results

with U-Net. Our model has significant improvement than Swin-

UNet and SCUNet in terms of the PP, mIoU and F1 score.

Compared with the Swin-UNet, the PP, mIoU and F1 scores have

increased by 4.95%, 3.60% and 2.43%, respectively. Compared with

the SCUNet, the PP, mIoU and F1 score has increased by 2.51%,

2.22% and 1.58%, respectively. Meanwhile, we also give the example

of the segmentation results for qualitative comparison, and the

representative examples are shown in Figure 7.

The experimental results on the TPL dataset are shown in

Table 6, with the highest score in each indicator represented in bold.

It can be seen that our model obtains the best segmentation results

in terms of the six indices among five models. Compared with U-

Net, the proposed model has IoU increased by 0.01%, PA increased

by 0.13%, PR increased by 0.03%, and PP increased by 0.87%. The

PS score is 0.01% higher than that of U-Net, and F1 score is 0.48%
TABLE 3 The segmentation results on the SD dataset using five different models.

Model PA(%) PR(%) PP(%) PS(%) mIoU(%) F1(%)

UNet 98.70 99.09 91.10 98.65 91.80 94.93

Attention U-Net 98.24 98.11 88.72 98.26 90.09 93.18

Swin-UNet 97.68 97.90 85.36 97.65 86.76 91.20

SCUNet 97.42 98.14 83.68 97.32 87.34 90.33

Ours 99.20 98.74 98.58 99.80 95.68 96.75
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higher than that of U-Net. Compared with attention U-Net, the

proposed model has significant improvement in terms of six

indices. However, Swin-UNet and SCUNet do not improve the

segmentation results compared with the U-Net. In summary, BAF-

Net has obvious advantages in segmenting the pepper leaf from the

natural images.
3.3 Ablation study

In this section, we perform an ablation study to validate the

effectiveness of each module. Especially, we consider the basic U-

Net architecture as the baseline, namely the simple U-Net (SU-Net),

which is similar to U-Net with half of the channel number of U-Net.
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In the ablation experiments, we take SU-Net, MFF, MRF, and BAF

as four basic modules. Our experimental strategy is to add a module

each time, and it is proven to be effective. We approve that it is

effective in subsequent studies. Strictly speaking, we selected four

unique models, such as SU-Net, SU-Net-MFF, SU-Net- MFF-MRF,

and BAF-Net, to verify that different modules are still valid when

each model is added to SU-Net each time.

As shown in Table 7, we first experiment SU-Net-MSFF by

replacing the convolution layer of the encoder in the SU-Net model

with the Swin-Trans-Conv block, which is formulated by adding the

MSFF module into SU-Net. Experiments show that PA, PR, PP, PS,

mIoU and F1 score of the SU-Net-MSFF model are 98.94%, 96.87%,

96.90%, 99.36%, 95.63% and 96.88, respectively. Then, by adding

the FSFF module to SU-Net-MSFF, the results show that the PA,
TABLE 4 The segmentation results on the EBD dataset using different models.

Model PA(%) PR(%) PP(%) PS(%) mIoU(%) F1 (%)

UNet 96.98 98.11 81.54 95.82 81.76 84.06

Attention U-Net 95.57 96.63 75.08 95.41 81.84 84.51

Swin-Unet 96.02 95.55 77.73 96.08 80.63 85.72

SCUNet 94.49 95.70 70.69 94.32 77.33 81.31

BAF-Net(ours) 97.60 98.17 84.98 97.52 86.76 91.10
FIGURE 5

Examples of the predicted results using five different models on the SD dataset. From the 1st column to 7th column: the original images, the
predicted results using the U-Net, attention U-Net, Swin-UNet, SCUNet, the proposed model and ground truth (GT), respectively.
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PA, PP, PS, IoU and F1 scores of the SU-Net-MSFF-FSFF are

98.94%, 96.62%, 97.14%, 99.42%, 95.68% and 96.98%, respectively.

Compared with the SU-Net-MSFF, PR, PS, IoU and F1 score of the

SU-Net-MSFF-FSFF model are increased by 0.24%, 0.06%, 0.05%

and 0.10%, respectively. Finally, we experiment BAF-Net by fusing

the output features of the decoder in the MSFF and FSFF branches

to the BAF modules. The results show that PA, PR, PP, PS, IoU and

F1 score of BAF-Net are 98.98%, 6.82%, 97.20%, 99.43%, 95.86%

and 97.01%, respectively, which are increased by 0.04%, 0.2%,

0.06%, 0.01%, 0.18% and 0.03%, respectively. From the

segmentation results, we can see that the addition of the Swin-

Trans-Conv block expands the receptive field and enhances the

feature extraction ability of SU-Net, enabling it to obtain different

levels of information at the same time. The full-resolution features
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enable the proposed model to retain image local details. By

combining multi-scale information and full scale information, it

can extract deeper structural information. Therefore, the

combination of the three modules can obtain the best performance.
3.4 Discussion

The above analysis shows that the segmentation results of these

deep learning-based segmentation models are suitable. Compared with

the classical methods based on the variational statistics theory (Costa et

al., 2019; Fang et al., 2019a; Fang et al., 2019b; Gao and Lin, 2019; Liu

et al., 2020; Fang et al., 2021a; Fang et al., 2021b; Liu et al., 2021; Ward

et al., 2021), the deep-learning-based models can obviously obtain
TABLE 5 The segmentation results on the HPL dataset using different models.

Model PA(%) PR(%) PP(%) PS(%) mIoU(%) F1 (%)

U-Net 99.09 98.51 95.84 99.02 96.11 97.07

Attention U-Net 99.21 97.69 96.34 99.44 95.53 97.01

Swin-UNet 98.63 97.57 92.40 98.79 92.52 94.91

SCUNet 98.88 96.69 94.84 99.21 93.90 95.76

BAF-Net(ours) 99.30 97.32 97.35 99.60 96.12 97.34
FIGURE 6

Examples of the predicted results using five different model on the EBD dataset. From the 1st column to 7th column: the original image, the
predicted results using the U-Net, attention U-Net, Swin-UNet, SCUNet, and our model, respectively.
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better classification results. In our work, to capture the long-range

dependencies between different pixels, we propose a bidirectional

adaptive attention fusion network called BAF-Net by exploring an

adaptive attention mechanism to extract multi-scale and full-scale

features simultaneously. Specifically, we first design an MSFF branch

based on the encoder-decoder structure, which can not only extract

local information of the target, but also learn the spatial attention to

increase the receptive field. To further retain the boundary information

of the segmented object, we propose a FSFF branch, and design

adaptive bidirectional attention modules to achieve the bidirectional

connection between the MSFF module and the FSFF module.

The results of the ablation experiment in Table 7 shows that

progressive network such as SU-Net, SU-Net-MSFF, SU-Net-
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MSFF-FSFF and BAF-Net can improve the predicted performance

of the baseline (SU-Net). Compared with the baseline, three models

by progressively adding the MSFF, FSFF and BAF modules increase

mIoU by 0.28%, 0.33% and 0.51%, respectively, and F1 score

increased by 0.02%, 0.02% and 0.36%, respectively. From the

segmentation results, it can be seen that BAF-Net has achieved

the best performance. Compared with the baseline, the mIoU and

F1 score of BAF-Net reaches 95.86% and 97.01%, respectively.

Although the proposed BAF-Net can obtain better performance

on the four pepper leaf datasets, there are disadvantages in this

work. (1) In the training process, the epoch number in our model is

set to 60. Therefore, we need explore a schema to stop the training

process for the deep learning-based model automatically. (2) Our
TABLE 6 The segmentation results on the pepper leaf dataset using different models.

Model PA(%) PR(%) PP(%) PS(%) mIoU(%) F1 (%)

U-Net 98.40 98.59 89.70 98.37 91.43 93.94

Attention U-Net 97.73 97.51 86.28 97.76 89.31 91.55

Swin-UNet 97.48 97.06 85.07 97.54 86.87 90.67

SCUNet 97.00 96.88 82.40 97.01 86.32 89.06

BAF-Net(ours) 98.53 98.62 90.57 98.52 91.44 94.42
FIGURE 7

Examples of the predicted results using five different model on the HPL dataset. From the 1st column to 7th column: the original image, the predicted
results using the U-Net, attention U-Net, Swin-UNet, SCUNet, and our model, respectively.
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model is supervised learning, which requires many training

samples. Accordingly, in our future work, we will focus on the

semi-supervised or self-supervised segmentation methods to reduce

the requirements for training samples.
4 Conclusion

In our work, we propose a bidirectional adaptive attention

fusion network for automatic segmentation of pepper leaves. The

proposed model consists of the MSFF branch with the like-U-Net

network structure, the FSFF branch, and the BAF modules with an

adaptive attention mechanism. This MSFF branch fuses the Swin-

Transformer-based and CNN-based modules to construct the Swin-

Trans-Conv block, which replaces the convolution layer of the

encoder of U-Net to expand the receptive field. In the MSFF branch,

the CNN-based layer can extract the local image features while the

Swin-Transformer-based module is used to extract the long-range

dependencies of the channel and spatial information to expand

receptive field. The FSFF branch performs multiple convolution

layers keeping the same size with the original image, which is used

to retain the boundary information and detail information of the

segmented object. In addition, the BAF modules are used to fuse

the output features of the MSFF and FSFF branch, which output the

corresponding features for each branch. Compared with the existing

model, our model obtain the highest evaluation indices on four

pepper leaf datasets. In addition, the ablation experiment shows that

the proposed three modules including MSFF, FSFF and BAF are

effective. In the future, we will explore a weak-supervised model for

pepper leaf segmentation since the small dataset may cause over-

segmentation. Meanwhile, we study the construction of loss

function and the method for augmentation dataset.
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TABLE 7 Comparison of pepper segmentation results of four models on the dataset.

Model MSFF FSFF BAF PA% PR% PP% PS% IoU% F1%

SU-Net 98.86 96.52 96.80 99.35 95.35 96.66

SU-Net-MSFF √ 98.94 96.87 96.90 99.36 95.63 96.88

SU-Net_MSFF-FSFF √ √ 98.94 96.62 97.14 99.42 95.68 96.98

BAF-Net √ √ √ 98.98 96.82 97.20 99.43 95.86 97.01
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Grasping and cutting points
detection method for the
harvesting of dome-type planted
pumpkin using transformer
network-based instance
segmentation architecture

Jin Yan, Yong Liu*, Deshuai Zheng and Tao Xue

School of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing, China
An accurate and robust keypoint detection method is vital for autonomous

harvesting systems. This paper proposed a dome-type planted pumpkin

autonomous harvesting framework with keypoint (grasping and cutting points)

detection method using instance segmentation architecture. To address the

overlapping problem in agricultural environment and improve the segmenting

precision, we proposed a pumpkin fruit and stem instance segmentation

architecture by fusing transformer and point rendering. A transformer network

is utilized as the architecture backbone to achieve a higher segmentation

precision and point rendering is applied so that finer masks can be acquired

especially at the boundary of overlapping areas. In addition, our keypoint

detection algorithm can model the relationships among the fruit and stem

instances as well as estimate grasping and cutting keypoints. To validate the

effectiveness of our method, we created a pumpkin image dataset with manually

annotated labels. Based on the dataset, we have carried out plenty of

experiments on instance segmentation and keypoint detection. Pumpkin fruit

and stem instance segmentation results show that the proposedmethod reaches

the mask mAP of 70.8% and box mAP of 72.0%, which brings 4.9% and 2.5% gains

over the state-of-the-art instance segmentation methods such as Cascade Mask

R-CNN. Ablation study proves the effectiveness of each improved module in the

instance segmentation architecture. Keypoint estimation results indicate that our

method has a promising application prospect in fruit picking tasks.

KEYWORDS

keypoint detection, stem instance segmentation, transformer, point rendering,
pumpkin harvesting
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1 Introduction

Agriculture is the foundation of people’s livelihood. To

effectively harvest crops, fruits and vegetables, researchers have

made efforts from different aspects, for instance, nutrient supply

(Sun et al., 2022), disease prevention (Yang et al., 2022), postharvest

preservation (Pan et al., 2023) and so on. Crop, fruit and vegetable

picking is often the most labor-intensive part of the entire

production chain. Therefore, intelligent picking robots have

become a research hotspot. Among them, accurate detection is a

prerequisite for intelligent picking, and many vision-based fruit and

vegetable detection works have been launched.

In recent years, deep learning applications have attracted great

attention and made great breakthroughs in image processing tasks

(Liu et al., 2021a; Bhatti et al., 2023), the research on learning-based

fruit and vegetable detection also moves forward. Liu et al. (2019a)

trained a Support Vector Machine (SVM) classifier utilizing the

Histograms of Oriented Gradients (HOG) descriptor to detect

mature tomatoes. The proposed machine learning method’s

recall, precision, and F1 scores are 90.00%, 94.41%, and 92.15%,

respectively. Sun et al. (2019) designed a GrabCut model based on

the visual attention mechanism for fruit region extraction, then

applied the Ncut algorithm to segment the extracted fruits. The

recognition method achieves the F1 score of 94.12% and an error of

7.37%. Deep learning (DL) has developed rapidly in these years, and

because of its excellent performance, DL has been applied in many

fields, including agriculture. Yuan et al. (2020) applied SSD to detect

tomatoes in the greenhouse with the backbone of Inception V2, and

the network achieves an average precision of 98.85%. Bresilla et al.

(2019) set up a fruit detection network based on YOLO. The

network can be trained to detect apples and pears without

classifying them. The architecture shows an accuracy of more

than 90% fruit detection. Fu et al. (2020) compared two Faster R-

CNN based architectures ZFNet and VGG16, employed to detect

apples in images. The results indicate that the network with VGG16

achieves the highest average precision (AP) of 0.893.

It can be seen that the accuracy and speed of fruit and vegetable

detection can meet the requirements of practical applications.

However, deep learning-based detection frameworks only

generate coarse boundaries, and many pixels irrelevant to the

detected fruit or vegetable are also included in the bounding box.

In order to obtain more abundant information, some scholars have

carried out researches on fruit or vegetable instance segmentation.

Instance segmentation combines the advantages of semantic

segmentation and object detection and identifies each object

instance of each pixel for every known object within an image.

With the help of instance segmentation, fruits or vegetables can be

assigned to different instances with pixel accuracy.

Ganesh et al. (2019) presented a deep learning approach, named

Deep Orange, to detect and pixel-wise segment oranges based on

Mask R-CNN. Gonzalez et al. (2019) proposed a network based on

Mask R-CNN for blueberry detection and instance segmentation.

The authors tested the performances of several backbones such as

ResNet101, ResNet50, and MobileNetV1. Jia et al. (2020) improved

Mask R-CNN through the fact as the feature extraction, RoI

acquisition, and mask generation so that the network is more
Frontiers in Plant Science 0287
suitable for recognizing and segmenting overlapped apples. Also

based on the well-known Mask R-CNN network, Perez-Borrero

et al. (2020) designed a new backbone and mask network, removed

the object classifier and the bounding-box regressor and replaced

the non-maximum suppression algorithm with a new region

grouping and filtering algorithm to better segment instances of

strawberry. The same research team (Perez-Borrero et al., 2021)

proposed another strawberry instance segmentation methodology

based on the use of a fully convolutional neural network. Instance

segmentation is achieved by adding two new channels to the

network output so that each strawberry pixel predicts the

centroid of its strawberry. The final segmentation of each

strawberry is obtained by applying a grouping and filtering

algorithm. Liu et al. (2019b) improved Mask R-CNN to detect

and segment cucumbers by designing a logical green operator to

filter non-green backgrounds and adjusting the scales and aspect

ratios of anchor boxes to fit the size and shape of cucumbers.

In the actual picking applications, the key operating points are

often generated in the fruit stem area, so the detection of stems

should be taken seriously. Some scholars have focused their

attention on fruit stem detection.

Sa et al. (2017) made use of an RGB-D sensor to acquire color

and geometry information and utilized a supervised-learning

approach for the peduncle detection task. Yoshida et al. (2018)

used the support vector machine to classify the point cloud data,

clustering to obtain fruit stem pixels, and then looking for cutting

points. Luo et al. (2018) studied the detection of cutting points on

stems of overlapping grape clusters. After segmenting individual

clusters using machine learning method, a geometric constraint

method is then used to determine the cutting point in the region of

interest of each cluster’s stem. Sun et al. (2021) developed a deep

learning-based top-down framework to detect keypoint on the

bearing branch, enabling branch pruning during fruit picking.

This work only detects citrus branch keypoint without

segmentation. Kalampokas et al. (2021) applied a regression

convolutional neural network (RegCNN) for executing a stem

segmentation task and determined the cutting point on the stem

based on a geometric model. Chen et al. (2021) proposed a banana

stalk segmentation method based on a lightweight multi-feature

fusion deep neural network. The methods in both (Kalampokas

et al., 2021) and (Chen et al., 2021) can only segment the stem of a

single cluster of grape or banana. Wan et al. (2022) proposed a real-

time branch detection and reconstruction method applied to fruit

harvesting. To segment the branches separately, the authors first

detect branch region boxes using YOLOv4, then utilize image

segmentation to locate the branch boundaries. Next, the division

of precise boxes belonging to the same branch is achieved based on

the branch growth trend constraints. Rong et al. (2021) proposed a

method to localize the peduncle cutting point and estimate the

cutting pose. The authors first detect tomatoes via YOLOv4 and

then segment fruit and peduncle masks by YOLACT++. The

segmented peduncle mask is fitted to the curve using least squares

and three key points on the curve are found. Chen and Chen (2020)

proposed a methodology to identify the plucking points of tea

shoots using machine vision and deep learning. The authors first

localize the one tip with two leaves regions through Faster-RCNN,
frontiersin.org
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then identify the plucking areas using FCN. The plucking point is

determined as the centroid of the plucking area. The approaches in

(Wan et al., 2022) (Rong et al., 2021), and (Chen and Chen, 2020)

treat detection and stem instance segmentation as two

separate networks.

As a nutritious crop, there are few studies on pumpkin

detection. Wittstruck et al. (2020) and Midtiby and Pastucha

(2022) have conducted researches on large-scale pumpkin yield

estimation. The datasets are captured by UAVs from the air. To the

best of the authors’ knowledge, there is currently no dataset

consisting of close-range pumpkin images and devoted to

autonomous pumpkin harvesting. In this paper, we established a

dataset on two varieties of pumpkin, and the instance masks of

pumpkin fruit and pumpkin stem are labeled manually. The

pumpkin stem is thick and it is hard to tear off or twist off the

pumpkin fruit with one end effector. As is illustrated in Figure 1B,

an ideal way to pick the pumpkin is utilizing two arms or one arm

with two end effectors, one to grasp and another to cut. The

detection of pumpkin stems cannot be ignored during automatic

picking. This paper presents a pumpkin autonomous picking

framework with keypoint detection and instance segmentation

method. Firstly, pumpkin fruit and stem masks can be generated

by instance segmentation method as shown in Figure 1A. Then,

through the keypoint detection algorithm, relationships among the

fruit and stem instances are determined and keypoints are localized

as marked in Figure 1, where red points are cutting points, blue

points are grasping points, and yellow lines link one stem and one

fruit that belong to one pumpkin instance. Main contributions of

our work are three folds:
Fron
1) We propose a novel pumpkin autonomous picking

framework with grasping and cutting point detection

method using instance segmentation architecture. The

keypoint detection algorithm can model the relationships

among the fruit and stem instances as well as estimate

grasping and cutting keypoints.

2) This paper presents a pumpkin fruit and stem instance

segmentation architecture based on deep learning and

applying a transformer backbone and point rendering
tiers in Plant Science 0388
mask head. Compared with several state-of-the-art

instance segmentation methods, the proposed method

shows significant performance advantages in both metric

evaluation and visualization analysis.

3) To validate the effectiveness of our method, we created a

pumpkin image dataset with manually annotated labels.

Downstream tasks such as image classification, pumpkin

detection and instance segmentation can be deployed on

the database.
The remainder of this paper is arranged as follows. Section 2

introduces the dataset and our method. Section 3 presents the

results and analyses. Finally, conclusions are summarized in

Section 4.
2 Materials and methods

In this paper, we perform instance segmentation on pumpkin

fruit and stem. Then, we detect and localize the grasping points and

cutting point using the proposed keypoint detection algorithm. To

complete this research, we first collect pumpkin images to establish

the dataset.
2.1 Data acquisition

This paper establishes a pumpkin dataset containing two

varieties of pumpkin (Bebe pumpkin and Hazel pumpkin). The

dataset was collected in Tangshancuigu modern agriculture

demonstration zone, Nanjing, China. We used three different

capture devices (Intel RealSense D435i, One Plus 6T smartphone,

and Apple iPhone 13 Pro smartphone) to collect a total of 679 ripe

pumpkin images. The original image pixels are 1280×720,

4608×3456, and 4032×3024, respectively. To better train the

images, we resized the high-resolution images from 4608×3456

and 4032×3024 to 640×480. The resolutions of final images in the

dataset are 1280×720 and 640×480. The dataset collection

environment and real image examples are shown in Figure 2.
BA

FIGURE 1

Example of pumpkin keypoint detection framework output (A) and pumpkin picking illustration (B).
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Through the review above, the pixel-wise segmentation of fruits

and the labeling of fruit stems are very important. Therefore, we

manually annotated the pixel-level instances of the pumpkin fruit

and stem, as well as the pumpkin box containing one fruit and stem

(see Figure 3). The labeling software we used is Labelme. Table 1

shows the distribution of the dataset.

The data is split into a training set and a testing set with a ratio of

80:20, where 543 images belong to training set and 136 images are in

the testing set. Differing from the general structured scene, agricultural

environment is a typical unstructured scene. The key problems faced

during image collection in agricultural environment are large changes

in illumination, a lot of dust, and frequent overlaps of fruit branches

and leaves. To simulate the agriculture environment and enhance the

generalization and robustness of deep neural network, we augment

the dataset by changing brightness, blurring the image, adding noise,

and cutout operation as shown in Figure 4. In addition, the horizontal

flip is operated with a probability of 0.5 during training. After data

augmentation, the training set contains 3258 images.
2.2 Pumpkin fruit and stem instance
segmentation

The agricultural environment is a typical unstructured environment

with complex background. Due to ‘free growth’ and overlapped fruits,

stems, branches, and leaves, fine instance segmentation in fruit

harvesting environment becomes a challenging work. In this paper, we

proposed a pumpkin fruit and stem instance segmentation framework as

illustrated in Figure 5. The main feature of this framework is introducing

a transformer network to replace the commonly used convolutional
Frontiers in Plant Science 0489
neural network (CNN). The transformer network helps effectively extract

image features, improve instance segmentation accuracy, and reduce

model computational complexity. In addition, to deal with the

overlapping phenomenon that often occurs in the harvesting

environment, we add a hard point selection module to the mask

branch. Coarse features are concatenated with fine features from the

output of the feature pyramid network (FPN) to classify those hard

points and then generate the final fine mask.

Compared with the literature in the previous review, our

framework achieves the end-to-end fruit and stem instance

segmentation. The specific implementation is as follows. First, we

introduce the Swin Transformer (Liu et al., 2021b) to the task of

pumpkin fruit and stem instance segmentation and replace CNN

(such as ResNet) to extract features. The feature extraction structure

of this transformer network combined with a feature pyramid

network (FPN) (Lin et al. (2017)). Hierarchical transformer and

FPN are applied to generate a pyramid of feature maps with

different sizes of a fixed number of channels (set to 256).

Specially, we use four levels of feature maps denoted as {P2,P3,P4,

P5}. P2, P3, P4 and P5 are generated by four transformer feature

maps T2, T3, T4 and T5, convolving with 1×1 kernel via top-down

connection mechanism. As a result, P2, P3, P4 and P5 have strides 4,

8, 16 and 32 respectively. Then a region proposal network (RPN)

(Ren et al., 2015) is deployed to generate the feature map with

anchors. Via RoIAlign (He et al., 2017) operation, fixed-size feature

maps can be obtained. After fully connected (FC) layers, prediction

results of the bounding box and classification are output. In a

general way, fixed-size feature maps can generate mask predictions

after several convolution operations. However, since the fixed size

of the feature map is generally 7*7, it is tough to generate an
B

CA

FIGURE 2

Image collection environment and pumpkin images. (A) Image capture scene. (B) Original Bebe pumpkin image. (C) Original Hazel pumpkin image.
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accurate mask, especially at the fruit boundary. Therefore, we select

the hard points in the edge area and combine the coarse features

from the fixed-size feature map and the fine features from high-

resolution feature map output by FPN to generate more refined

point-wise label predictions. Details of transformer network and

mask branch will be introduced in subsections.

2.2.1 Transformer network
Transformer has a great impact on the field of natural language

processing (NLP) before. The proposal of vision transformer (ViT)

(Dosovitskiy et al., 2020) breaks the gap between NLP and vision, and

replaces the convolutional neural network with a pure transformation

module to perform image classification tasks. Liu et al. (2021b)

proposed a new visual transformer, called Swin Transformer,

whose multi-scale and computationally inexpensive properties

make it compatible with a wide range of vision tasks (image

classification, object detection, semantic segmentation, etc.). An

overview of the transformer architecture and transformer blocks we
Frontiers in Plant Science 0590
applied are presented in Figure 6. It first splits an input RGB image

into non-overlapping patches (raw-valued features) by a patch

partition operation. Then a linear embedding layer is applied to the

raw-valued features to project them to an arbitrary dimension (set to

96). Several transformer blocks are applied to these patch tokens. To

produce a hierarchical representation, the number of tokens is

reduced by patch merging layers as the network gets deeper.

Specific implementations are demonstrated in (Liu et al., 2021b).

2.2.2 Mask branch
In the instance segmentation task of agricultural environment,

due to the large-scale overlapping problem, fine segmentation of the

target edges and overlapping edges is challenging. Research in (Li

et al. 2017) shows that in the segmentation task, most of the hard

pixels (about 70%) are at the edge of the object. Point rendering

method (Kirillov et al., 2020) we applied is devoted to segmenting

these blurry pixels finely. Figure 7 depicts the main idea of point

rendering. Point rendering includes three steps:
TABLE 1 Distribution of the dataset.

Images Fruit instances Stem instances Pumpkin bounding boxes

Bebe 354 608 552 608

Hazel 325 676 516 676

Total 679 1284 1068 1284
B

C D

A

FIGURE 3

Illustration of the image annotation process. (A) Original image. (B) Polygonal annotation and extraction of the pumpkin fruit mask. (C) Polygonal
annotation and extraction of the pumpkin stem mask. (D) Annotated images, red polygons are pumpkin fruits, green polygons are pumpkin stems,
yellow boxes are pumpkins.
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2.2.2.1 Candidate point selection

First, via upsampling, the low-resolution segmentation map is

converted to high-resolution, and N hard points with low

confidence are filtrated in the high-resolution segmentation map.

Most of these points are concentrated near the edge. This process

iterates step by step to obtain a segmentation map of the desired

resolution. In the implementation of this paper, the N value we

choose is 28*28.

2.2.2.2 Point feature extraction

Coarse and fine features for each candidate point are extracted.

The coarse features are extracted from the low-resolution

segmentation map, and the fine features are taken from the P2

layer of the FPN. The two sets of features are concatenated to obtain

the feature expression of the candidate points.
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2.2.2.3 Point prediction

After obtaining the features of the candidate points, through a

set of multi-layer perceptions (MLP), the final segmentation

prediction results of the candidate points are obtained. More

implementation details can be seen in Kirillov et al. (2020).

2.2.3 Training and inference
2.2.3.1 Training

In our implementation, we apply amulti-scale training mechanism

(He et al. 2015). To address the issue of varying image sizes in training.

In each epoch, a scale is randomly selected for training.

In the proposed pumpkin fruit and stem instance segmentation

network, we define the training loss function as Equation (1):

L = Lclassification + lLbox + g Lmask (1)
FIGURE 5

Pumpkin fruit and stem instance segmentation framework.
B C D

E F G

A

FIGURE 4

Data augmentation. (A) Original image; (B) Brightness enhancement; (C) Brightness reduction; (D) Gaussian blur; (E) Noise; (F) Cutout; (G) horizontal
flip.
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where Lclassification is the loss for fruit or stem classification, Lbox
is the loss for the bounding box coordinates prediction, and Lmask is

the loss for mask prediction.

In our implementation, we apply cross entropy loss to calculate

Lclassificationand Lmask, L1 loss to calculate Lbox. We set l to 1 and g to
2 because mask is more difficult to train and is more important in

our implementation.

2.2.3.2 Inference

The inference of the pumpkin fruit and stem instance

segmentation network is a straightforward process. We forward

input images through the transformer backbone and FPN. We select

the points from the 224×224 resolution feature map refined by the

coarse 7×7 prediction in 5 steps. We select the N=282 most uncertain

points based on the absolute difference between the predictions and 0.5.

2.3 Cutting and grasping point estimation

The proposed pumpkin keypoint detection framework is illustrated

in Figure 8. Firstly, fruit and stem masks are generated via instance

segmentation method as shown in Figure 8B. After obtaining the

instance segmentation result, the fruit instances and the stem instances

can be separated as depicted in Figure 8C. Among these instances, there

are corresponding relationships among the fruits and the stems, and only
Frontiers in Plant Science 0792
one-to-one fruit and stem can be labeled as the pumpkin picking target.

Then, we apply a geometric model to determine the cutting and grasping

points. Finally, by modeling the robot and its coordinate systems,

calibrating the camera parameters, the target pixel in 2D image can be

transformed a position in 3D space. In practical operations, Birrell et al.

(2020);Wang et al. (2022) andKang et al. (2020) proposed approaches to

tackle the coordinate transformation problem. Two pivotal steps of the

keypoint estimation algorithm are fruit and stem correspondence

determination and keypoint determination.
2.3.1 Fruit and stem correspondence
determination

To determine the corresponding relationships among the fruit

and stem instances, we take advantage of the apriori knowledge.

Three requirements should be satisfied. 1) The masks of fruit and

stem are adjacent. 2) Under the force of gravity, the center point of the

stem is above the center point of the fruit. 3) One fruit corresponds to

at most one stem. Algorithm 1 shows the matching process.

2.3.2 Keypoint determination
After obtaining the mask of a whole pumpkin includes a fruit

and a corresponding stem by the proposed correspondence

determination algorithm, a geometric model is employed to
FIGURE 7

Scheme of point rendering mask head.
FIGURE 6

The architecture of transformer network.
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estimate the exact location of the grasping points and

cutting point.

Denote fruit mask as F :  f(xFi , yFi )gNF
i=1, stem mask as S :  f(xSi , ySi

)gNS
i=1, where NF and NS represents number of fruit pixels and stem

pixels respectively. As illustrated in Figure 9, first, the center of mass

of the 2D fruit and stem is calculated as Equation (2), labeled as
Frontiers in Plant Science 0893
fCF : (xcf , ycf )g and fCS : (xcs, ycs)g respectively.

xcf =
oNF

i=1x
F
i

NF
,  ycf =

oNF
i=1y

F
i

NF
,  xcs =

oNS
i=1x

S
i

NS
,  ycs =

oNS
i=1y

S
i

NS
(2)

A straight line denoted as lp passes through CF and CS.

Considering two conditions:
B

C

D

E

A

FIGURE 8

Block diagram of cutting and grasping point estimation method along with example images. (A) Pumpkin RGB image. (B) Pumpkin fruit and stem
instance segmentation result. (C) Visualization of pumpkin fruit and stem instances. The left column instances are fruits, and the right column
instances are stems. (D) The separate pumpkins with keypoints. The red points between the stem and the fruit are adjacent points. The red dot in
the stem is the cutting point, and the blue points in the fruit are the grasping points. (E) Pumpkin depth image. Best viewed zoom in.
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Fron
Input:
Fruiti ∈ NH�W: The i-th fruit mask in the image;

Stemj ∈ NH�W: The j-th stem mask in the image;

M: Number of fruits detected in the image;

N: Number of stems detected in the image;

Output:
K matched pairs, each pair has a fruit mask and a

stem mask,

K ≤ minfM,Ng
1: for i=0 to M do
2: Calculate center point of Fruiti :CFi = (xi, yi)

3: for j=0 to N do
4: Calculate center point of Stemj :CSj = (xj, yj)

5: if xj > xi (To ensure the center point of stem

is above the center point of fruit) then

6: count adjacent mask point: num(dis < dis _ thr)

7: if num(dis < dis _ thr) > num _ thr (To ensure the

masks of fruit and stem are adjacent) then
8: Fruiti and Stemj is a matching candidate

9: end if
10: end if

11: for i=0 to M do

12: if There is one or more than one match

candidates with stem then
13: Calculate the degree of pumpkin matching

candidate: D ¼ arctan
jxi−xj j
jyi−yjj

14: The matching candidate with the minimum D

value is determined as the match pair.(To

ensure one fruit corresponds to at most one

stem)

15: end if

16: end for
17: end for

18:end for
ALGORITHM 1
Matching pumpkin fruit masks with their corresponding stem masks.

Case 1: lp is a vertical line (slope of lp is ∞).

Denote lp as x=c. Index of grasping points G1 and G2 from fruit

mask F can be calculated as Equation (3):

G1 = arg  max
i
      xFi − c

�� ��,    x ≤ c

G2 = arg  max
i
      xFi − c

�� ��,    x > c

8
><

>:
(3)

Case 2: lp is not a vertical line (slope of lp is not ∞).

Assume line equation as lp : y = kx + b. Denote Di as the

distance from ith point in F to lp. G1 and G2 can be calculated as

Equation (4):

G1 = arg  max
i
    Di,    y

F
i ≤ kxFi + b

G2 = arg  max
i
     Di,    y

F
i > kxFi + b

8
><

>:
(4)

F i na l l y , keypointG1
: xFG1

, yFG1
a nd keypointG2

: xFG2
, yFG2

a r e

determined as two grasping points that distribute in two sides of
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lp. Cutting point keypointC is the center point of stem mask, that is

fCS : (xcs , ycs )g.
3 Results and discussion

3.1 Evaluation metrics

3.1.1 Average precision
According to whether the true sample and the predicted result

match, the prediction results can be divided into four types: true

positive (TP), false positive (FP), true negative (TN), and false

negative (FN). Precision and recall are defined as follows:

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

The average precision metric is used to measure the quality of

the detections and the segmentations obtained by the models.

Average precision computes the average precision value for recall

values over 0 to 1. Specifically, mean average precision (mAP) is

defined as the primary metric. As in (Lin et al. (2014)), mAP is

calculated using 10 intersection over union (IoU) thresholds from

0.50 to 0.95. The IoU measures the overlap between two boundaries

or masks and measures how much the box boundary or mask

predicted by the algorithm overlaps with the ground truth (the real

object boundary or real object mask).

3.1.2 Model complexity and inference speed
The model complexity usually relates to parameter number and

calculation amount, two metrics that describe how many

parameters the model defines and how many floating point
FIGURE 9

Estimation of pumpkin grasping and cutting points.
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operations(FLOPs) are required when running the model.

1GFLOPs = 109FLOPs. The metric to define the model inference

speed is the average number of frames per second (FPS). Model

complexity and FPS are vital indicators to evaluate the performance

of the model.
3.2 Instance segmentation result

3.2.1 Experiment setup
In this paper, the training and evaluation of the proposed

network are conducted on a server, which consists of an Intel i9-

10900X CPU with 20 cores, 32G RAM, and an RTX 3090 GPU with

24G memory. The network implementation was carried out using

Pytorch 1.7.0.

3.2.2 Performance comparison with state-of-the-
art methods

We performed a series of experiments to compare our method

with the state-of-the-art methods, namely YOLACT (Bolya et al.,

(2019), QueryInst (Fang et al., 2021), Mask R-CNN (He et al.,

(2017) and Cascade Mask R-CNN (Cai and Vasconcelos, 2019). All

algorithms are trained for 100 epochs, and when every training

epoch ends, the mAP values of mask segmentation and box

detection are calculated as shown in Figures 10, 11. The detection

mAP of our proposed method outperforms these state-of-the-art

methods, and the segmentation mAP is significantly superior to the

existing methods. Fortunately, in this application, segmentation

precision is more important than detection precision.

The evaluation results are listed in Table 2. Our architecture

achieves a high instance segmentation accuracy of 0.708 mask mAP

and 0.720 box mAP, which brings 4.9% and 2.5% gains over the

second-best results. From the parameter comparison, except

QueryInst (the model is too large) and YOLACT (the accuracy is

not satisfactory), the margin among parameter numbers of Mask R-

CNN, Cascade Mask R-CNN and the method we proposed is

narrow. It’s worth noting that although the parameter size of our

method is larger than Mask R-CNN (59.27M Vs 43.76M), the

computational complexity is lower than Mask R-CNN (213.01

GFLOPs Vs 258.19 GFLOPs). Our method achieves 13.5 FPS on

a single RTX 3090 GPU, which can meet the requirements of

agricultural applications.

3.2.3 Visualization result analysis
To highlight the superiority of the proposed architecture

more intuitively, the visual analysis of the outstanding networks

and our network is conducted. As can be seen in Figure 12, all

methods can detect the majority of pumpkin instances, whereas

our method achieves higher confidence. As is shown in the third

column, YOLACT and QueryInst fail to detect the pumpkin in

red circle covered by the leave, while Mask R-CNN, Cascade

Mask R-CNN and our method detect the pumpkin with the

confidence of 0.38, 0.97 and 1.0, respectively. It is obvious that

our method generates finer masks compared with other methods.

To emphasize the contribution of point rendering mask branch,

we compared the visualization results of our method and our
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method without point rendering as shown in the last two rows,

where can be seen that the finer masks benefit more from the

point rendering mechanism.

3.2.4 Ablation study of improved models
In order to prove the effectiveness of the improved modules in

the proposed pumpkin fruit and stem instance segmentation

method, the ablation study on different modules is performed in

this section. The comparisons are conducted on seven cases, as

shown in Table 3. As can be seen from the table, replacing the

original CNN module with the transformer network and the

mechanism of multi-scale training have greatly improved the

results, and the mask mAP and box mAP have increased by 2.5%,

2.4% and 1.7%, 3.3% respectively. Although the improvement of

replacing the original mask branch with the point rendering mask

branch takes no remarkable superiority in mAP results, it only

increases by 0.6% in mask mAP, and the box mAP has a slight
FIGURE 10

Mask segmentation mAP of the model.
FIGURE 11

Box detection mAP of the model.
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increase of 0.3%, but from the visualization results, point rendering

mask branch greatly optimizes the boundary masks, which cannot

be ignored. Finally, the architecture with transformer network,

point rendering mask branch, and the multi-scale training

network improves 5.3% mask mAP and 5.1% box mAP over the

Mask R-CNN Baseline network. The inference speed decreased

from 16.4 FPS to 13.5 FPS, but this is acceptable.
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3.3 Keypoint estimation results

3.3.1 Pumpkin fruit and stem correspondence
determination result

Figure 13 shows some example results of fruit and stem

matching algorithm. It can be seen that in most conditions,

including one image with single or multiple pumpkins, existing
TABLE 2 Performance comparison with state-of-the-art methods.

mask mAP box mAP #param. GFLOPs FPS

YOLACT (Bolya et al. (2019)) 0.596 0.572 34.74M 186.57 21.3

QueryInst (Fang et al. (2021)) 0.559 0.554 172.23M 464.29 6.2

Mask R-CNN (He et al. (2017)) 0.656 0.669 43.76M 258.19 16.4

Cascade Mask R-CNN (Cai and Vasconcelos (2019)) 0.659 0.695 76.8M 389.03 13.6

Ours 0.708 0.720 59.27M 213.01 13.5
frontiers
The best performances of each metrics are in bold format.
FIGURE 12

Example of pumpkin fruit and stem instance segmentation results.
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fruit, leave, or branch overlaps, our algorithm can match the fruits

and stems successfully. To analyze the results accurately, we count

all the matched pumpkin instances in the test images, the number of

TP is 215, FP is 4, and TN is 2. The precision and recall reach 98.2%

and 99.1% respectively. Some negative matched examples are listed

in Figure 14. The reason for the faults is that in the instance

segmentation step, missing and erroneous detections happen

sometimes. The pumpkin is too small or interference of branches

may cause false detection.
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3.3.2 Keypoint determination result

Figure 15 presents the visualized results of grasping and cutting

keypoint detection. In the figure, red points are the cutting points,

blue points are the grasping points. Yellow lines linking the cutting

points and grasping points signify that the 3 points attach to one

pumpkin instance. Specially, the occlusion problem is usually not

negligible in fruit picking task. One of the advantages of this

approach is that if a pumpkin is occluded seriously, for instance,
TABLE 3 Ablation study on the pumpkin fruit and stem instance segmentation method.

Model transformer network multi-scale training point rendering mask mask mAP box mAP FPS

Baseline model 0.656 0.669 16.4

Model-A √ 0.681 0.686 15.4

Model-B √ 0.680 0.702 16.5

Model-C √ 0.665 0.672 14.3

Model-D √ √ 0.705 0.718 15.1

Model-E √ √ 0.701 0.709 13.7

Model-F (Ours) √ √ √ 0.708 0.720 13.5
fro
The best performances of each metrics are in bold format.
FIGURE 13

Pumpkin fruit and stem matching result.
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if we can only see the fruit part or the stem part in the image, our

algorithm can filter this pumpkin autonomous as shown in the first

image from the second row in Figure 15. If the pumpkin is only

occluded part of the fruit or stem by leaves, branched or other fruits,

our algorithm also determines the grasping point and cutting point

reasonably as shown in the right three columns from Figure 15. The

results show that our algorithm is promising for the pumpkin

picking task.
4 Conclusion

In this paper, we presented a pumpkin autonomous picking

framework with keypoint detection and instance segmentation

method. A transformer network is utilized as the architecture
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backbone to replace CNN, which helps achieve a higher detection

and segmentation precision. To tackle the overlapping problem,

point rendering is applied so that finer masks can be acquired.

Sufficient experimental results indicate that our method

significantly outperforms several state-of-the-art instance

segmentation methods. In addition, a novel keypoint detection

algorithm is proposed to model the relationships among the fruit

and stem instances as well as estimate grasping and cutting

keypoints. The effectiveness and applicability of the proposed

method are verified through plenty experiments on pumpkin

image dataset we created. In this work, we applied traditional

geometric method to model the fruit-stem relationships and

estimating the keypoints. Our future work will expand into

learning-based method to detect the fruit-stem pairs and directly

generate the keypoints using deep neural networks.
FIGURE 14

Wrong examples of pumpkin fruit and stem matching result.
FIGURE 15

Visualized results of grasping and cutting keypoint detection.
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Different leafy vegetable
cropping systems regulate
growth, photosynthesis, and PSII
functioning in mono-cropped
eggplant by altering chemical
properties and upregulating the
antioxidant system

Muhammad Imran Ghani1,2,3, Ahmad Ali3,
Muhammad Jawaad Atif3,4, Muhammad Ali3,
Mohammad Abass Ahanger5, Xiaoyulong Chen1,2,6*

and Zhihui Cheng3*

1College of Agriculture, Guizhou University, Guiyang, China, 2Key Laboratory of Karst Georesources
and Environment, Ministry of Education, College of Resources and Environmental Engineering,
Guizhou University, Guiyang, China, 3College of Horticulture, Northwest A&F University,
Yangling, China, 4Horticultural Research Institute, National Agricultural Research Centre,
Islamabad, Pakistan, 5College of Life Sciences, Northwest A&F University, Yangling, China, 6College of
Ecology and Environment, Tibet University, Lhasa, Tibet, China
Continuous cropping of eggplant threatened regional ecological sustainability by

facilitating replanting problems under mono-cropping conditions. Therefore,

alternative agronomic and management practices are required to improve crop

productivity at low environmental cost for the development of sustainable

agricultural systems in different regions. This study examined changes in soil

chemical properties, eggplant photosynthesis, and antioxidant functioning in five

different vegetable cropping systems over a 2-year period., 2017 and 2018. The

results showed that welsh onion-eggplant (WOE), celery-eggplant (CE), non-

heading Chinese cabbage-eggplant (NCCE), and leafy lettuce-eggplant (LLE)

rotation systems significantly impacted growth, biomass accumulation, and yield

than fallow-eggplant (FE). In addition, various leafy vegetable cropping systems,

WOE, CE, NCCE, and LLT induced significant increases in soil organic matter

(SOM), available nutrients (N, P, and K), and eggplant growth by affecting the

photosynthesis and related gas exchange parameters with much evident effect

due to CE and NCCE. Moreover, eggplant raised with different leafy vegetable

rotation systems showed higher activity of antioxidant enzymes, resulting in

lower accumulation of hydrogen peroxide and hence reduced oxidative damage

to membranes. In addition, fresh and dry plant biomass was significantly

increased due to crop rotation with leafy vegetables. Therefore, we concluded

that leafy vegetable crop rotation is a beneficial management practice to improve

the growth and yield of eggplant.

KEYWORDS

continuous cropping, crop rotation, sustainable vegetable production, lipid
peroxidation, plant defense system, soil available nutrients, eggplant
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1 Introduction

The consistent increase in the global population has increased

the demand for food and cash crops. Due to limited agricultural

land worldwide and the decreasing number of new crop areas,

monoculture is a common model for large-scale, intensive

agricultural production, especially in the horticultural industry

(Tan et al., 2021; Bhatti et al., 2022). Even with a good field

management regime, the crop may still experience growth and

yield reduction and promote disease incidence (Zeng et al., 2020).

Mono-cropping refers to the practice of growing the same type of

crop every year for a long period of time (Scarascia-Mugnozza et al.,

2011; Xiao et al., 2012). The overuse of synthetic fertilizers and

agrochemicals is inevitable in the mono-cropping system, which

leads to mono-cropping obstacles (Ghani et al., 2019b; Ali et al.,

2021; Ghani et al., 2022b). The mono-cropping obstacles are

attributed to soil salinization, acidification, nutrient imbalance,

and autotoxicity (Lyu et al., 2020; Zeng et al., 2020).

Eggplant (Solanum melongena L.) is a valuable vegetable cash

crop mostly grown under plastic shed (Wang et al., 2015; Ghani

et al., 2022a). Eggplant production in plastic shed heavily relies on

mono-cropping systems. Like other crops, consecutive eggplant

cultivation could occur mono-cropping obstacles, including an

upsurge in autotoxins in the soil, which hampers plant growth

and development, reduces resistance to harsh environmental

conditions, and ultimately reduces plant yield and quality (Wang

et al., 2015). One of the beneficial practices that ameliorate the

negative impact of mono-cropping is crop rotation. To enhance

productivity and optimize the profitability of a rotation system,

rotated crops should be appropriately selected (Li et al., 2017; Ali

et al., 2019). Diversified crop rotation during the fallow period

mitigates the adverse effects of mono-cropping obstacles by

sustaining the soil quality via nutrient deposit (St. Luce et al.,

2020), greater SOM input (Ali et al., 2021), soil carbon

sequestration (Song et al., 2018), and minimizing pest and disease

attacks, particularly compared with mono-cropping systems (Ali

et al., 2021; Ghani et al., 2022b). Different leafy vegetable plants

have legacy effects on soil through root exudation, suppress soil-

borne pathogens, and enhance soil fertility, improving plant growth

and yield of the subsequent crop (Ali et al., 2019; Ghani et al.,

2022b). Numerous studies have demonstrated yield advantages of

crop rotation to subsequent crops, including tomato-onion,

tomato-chrysanthemum, hairy vetch-eggplant, and cow pea-

broccoli significantly improved tomato, eggplant, and broccoli

yield compared with mono-cropping planting (Tian et al., 2009;

Radicetti et al., 2016; Sánchez-Navarro et al., 2020). Furthermore,

crop rotation also enhanced plant tolerances to different types of

stresses (Gaudin et al., 2015).

Plants might be subjected to a wide range of external stresses

during their growth period, including salt and heat stress and water

deficit. However, crops grown in mono-cropping suffer from

additional stresses such as evolving diseases and pests, various

biotic and abiotic stresses, reduced soil physical-chemical

characteristics, and the gradual buildup of root exudates in the

soil. All of these stresses pose a constant threat to plant growth.
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(Chen et al., 2011; Wang et al., 2015). Moreover, physiological and

biochemical alterations following mono-cropping involve reduced

growth underlined by a significant decline in photosynthetic rate. In

addition, changes in soil pH adversely affect growth by declining

photosynthesis and gas exchange parameters (Long et al., 2017).

During stressful conditions, plants promote the production of

reactive oxygen species (ROS) and cause significant damage to

DNA, lipid peroxidation, the cell membrane, and proteins

However, plants develop efficient adaptive strategies such as

generating antioxidants, secondary metabolite, and osmolyte

metabolism to overcome these stresses (Ahanger and Agarwal,

2017b; Ahanger et al., 2017; Ghani et al., 2022c). These

biochemical pathways serve as an early signaling molecule of the

plant’s defense response to a variety of environmental stresses and

as a secondary messenger for subsequent defense reactions (Yin

et al., 2015; Chen et al., 2022). Increased activity of the antioxidant

system and the metabolism of secondary metabolites avoid

oxidative damage to membranes and other important

macromolecules in the cell, hence keeping important mechanisms

such as photosynthesis from being disrupted (Ahanger et al., 2017;

Ahanger et al., 2018)

Previous studies have figure out the importance of crop rotation

on pathogen suppression and soil stability (Thorup-Kristensen

et al., 2012; Tian et al., 2013; Ali et al., 2019). More recently, we

reported that leafy vegetables used as a crop rotation and their

residue retention (above and below-ground biomass) significantly

influenced soil nitrogen, microbial biomass, and soil enzymatic

activity (Ghani et al., 2022b). However, limitation may still exist

that dead roots and leaves were maintained in the field and well

incorporated into the soil, and then influence on plant growth and

development, as well as plant resistance-related enzymes. In this

study, we postulated that executing different leafy vegetable plants

would help to increase the eggplant’s production capacity.

Therefore, the aim of the study was to evaluate the capacities of

different leafy vegetables, welsh onion, celery, non-heading Chinese

cabbage, and leafy lettuce to alleviate mono-cropping obstacles of

eggplant cultivation that generally occur due to mono-cropping, as

well as to determine a sustainable vegetable cropping system to

enhance eggplant production. Hence, the influence of different leafy

vegetables on soil chemical properties, plant morphological and

physiological observations, lipid peroxidation (MDA), and H2O2

level and, correlations between plant growth, physiology, and soil

chemical properties were assessed.
2 Material and methods

2.1 Experimental site description and
experimental design

Two years of field experiment under a plastic shed was

conducted at the research station of Northwest A&F University

Yangling, China. FromMarch 2013 to November 2016, the eggplant

was continuously cultivated under this plastic shed for four years.

The eggplant was cultivated once a year with a mono-cropping
frontiersin.org

https://doi.org/10.3389/fpls.2023.1132861
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ghani et al. 10.3389/fpls.2023.1132861
regime. The growing season of eggplant starts from 1st week of

March to mid-November. The plastic shed’s soil is sandy loam soil.

The specific details of basic soil properties were reported previously

by (Ghani et al., 2022b). After four years of consecutive eggplant

cultivation, a rotational experiment was performed with four

different winter leafy vegetables, including (I) welsh onion

(Allium fistulosum L.), (II) celery (Apium graveolens L.), (III)

non-heading Chinese cabbage (Brassica rapa L.), and (IV) leafy

lettuce (Lactuca sativa L.) during the fallow period of eggplant from

mid-November to 1st week of March. These leafy vegetables were

harvested at the full leaf growth stage in 1st week of March, followed

by the immediate planting of eggplant. The leafy vegetables root left

over were mixed in the soil before eggplant seedlings were

transplanted. With a factorial randomized complete block design,

the eggplant seedlings were transplanted to the field in both years

on the second week of March and harvested on 2nd week of

November in both years. The experiment consisted of five

different planting systems with three replications: fallow–eggplant

(FE), welsh onion–eggplant (WOE), celery–eggplant (CE), no-

heading Chinese cabbage–eggplant (NCCE), and leafy lettuce–

eggplant (LLE) with three replications.

Each cropping system and fellow eggplant was assigned three

plots and each plot consist of three beds. The size of each plot was

12.60 m2 (3.6 m long . 3.5 m wide) and each bed was 4.20 m2 (3.5 m

long . 1.2 m wide). A thin, impermeable plastic sheet was inserted at

a depth of 50 cm into the soil among experimental plots and

extended to 5 cm above the ground, intended to prevent the passage

of water and nutrients between plots and stop the interplay of

various treatments. Three-week-old uniform eggplant seedlings

(Solanummelongena L. Cv.Tai Kong Qie Wang) with 3 leaves

were transplanted to the above-prepared beds; each bed consists

of two rows. There were 7 seedlings in each row, and 14 in each bed,

with 0.8 m distance between rows and 0.5 m between plants. Each

year, before eggplant planting, each bed was fertilized with organic

fertilizer (PengDiXin) at the rate of (50.65 kg ha−1), “SaKeFu”

(119.04 kg ha−1). The detailed information is previously reported in

(Ghani et al., 2022b). In addition, JinBa fertilizer was top-dressed

(0.5kg/bed) according to local recommendations for vegetable

production. No chemical fertilizers were used during the winter

leafy vegetable growth period, and the same amount of irrigation,

fertilization, and management practices were carried out

throughout the experiment.
2.2 Measurement of morphological indices

To evaluate morphological traits at different growth phases, we

randomly sampled three plants from each replication and 9 plants

from each treatment. The growth phases included the first

flowering, the first fruiting, the second flowering, and the second

fruiting. A measuring tape was utilized to get an accurate reading of

the plant height. The diameter of the stem was determined using an

electronic vernier caliper. The eggplant’s fresh weight (FW) was

measured using an electronic scale after the eggplant was harvested,

whereas the eggplant’s dry weight (DW) was determined after oven

drying at 70 °C for 72 hours.
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2.3 Quantification of photosynthetic
pigment and gas exchange parameters

Chlorophyll a, b, total chlorophyll, and carotenoids weremeasured

by placing 0.5 g of fresh leaf tissue into a 25 mL glass tube with 20 mL

80% acetone for 48 hours in the dark after that, and absorbance was

determined spectrophotometrically (UV-3802, UNICO, MDN, USA)

at 645 nm, 663 nm, and 652 nm, respectively (Arnon, 1949).

Net photosynthetic rate (pN), stomatal conductance (gs),

intercellular CO2 concentration (Ci), and transpiration rate (E)

were measured in the uppermost leaf by using a LI-6400 portable

photosynthesis system (Li-Cor, Lincoln, NE, USA).

Measurement of the maximal photochemical efficiency (Fv/

Fm), photosystem II (ФPSII), non-photochemical quenching

coefficient (NPQ) and, photochemical quenching (qP) were

determined using modulated chlorophyll fluorometer (PAM-2000

chlorophyll fluorometer) after 20 min of dark adaptation. The

recorded data were processed by PAM Win software.
2.4 Antioxidant enzymes assay

The eggplant leaves (0.5 g)were homogenized in a chilled 0.05mM

(pH 7.8) phosphate buffer containing 0.1% polyvinylpyrrolidone and

0.5 M ethylenediaminetetraacetic acid (EDTA). The homogenate was

centrifuged at 12000 g for 15min at 4°C, and the supernatant was used

for enzyme analysis. To estimate superoxide dismutase (SOD) activity,

we followed the method of (Dhindsa et al., 1981). The enzyme’s ability

to inhibit the photochemical reduction of nitroblue tetrazolium (NBT)

was monitored at 560 nm.

The reactionmixture was prepared by adding 0.5mL enzyme extract

into50mLof0.05Mphosphatebuffer(pH7.8),28mLguaiacol,and19mL

30%H2O2 (v/v)weremixed.Theprepared reactionmixtureof 3.5mLwas

then transferred toa cuvette (1 cm)path length.An increase in absorbance

was recorded at 470 nmwavelength over 3 min at 30-s intervals.

For the Catalase (CAT) activity, an enzyme extract of (0.1 mL)

was added to 1.9 mL of reaction mixture containing phosphate

buffer 200 mM (pH 7.0) and 1 mL of 0.3% H2O2. The enzyme

activity was assessed by observing the decrease in absorbance at 240

nm for 2 min (Chance and Maehly, 1955).

Ascorbate peroxidase (APX) extraction was quantified by

observing a reduction in absorbance due to the oxidation of

ascorbic acid at 290 nm according to the method of (Nakano and

Asada, 1981). The enzyme mixture consisted of 50 mM potassium

phosphate buffer (pH 7.0), 0.2 mM EDTA, 0.5 mM ascorbic acid, 2

mM H2O2, and 100 mL enzyme extract.

Polyphenol oxidase (PPO) activity was assayed by measuring

the initial increase in absorbance during the first 3 min of the

reaction at 410 nm (Zheng et al., 2007). PAL activity was assessed

according to the method of (Gao, 2006).
2.5 Measurement of oxidative
stress biomarkers

The concentration of H2O2 was estimated following the method

of (Velikova et al., 2000). For lipid peroxidation, the content of
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malonaldehyde (MDA) was measured by incubating tissue extract

with thiobarbituric acid (TBA) at boiling temperature (Dhindsa

et al., 1981).
2.6 Assessment of protein content

The protein content was quantified using the method proposed

by (Bradford, 1976) using BSA as a standard.
2.7 Measurement of soil
chemical properties

Soil organic matter (SOM) was determined through the

procedure described by (Walkley and Black, 1934). We utilized

the alkali-hydrolyzed diffusion method to determine the amount of

available nitrogen (AN) (Shi, 1996). The development of a complex

that was blue in colour following the extraction of 0.5 M NaHCO3

at a pH of 8.5 was used to measure the amount of accessible

phosphorus (AP) in the soil (Murphy and Riley, 1962). The

following procedure was used to analyze the available K

(Knudsen et al., 1983).
2.8 Statistical analysis

Data presented are the mean of three replicates and were

statistically analyzed by two-way analysis of variance (ANOVA)

as a 5 × 2 (treatment × year) factorial design for the experiment, and

Tukey HSD test was used to analyze the mean separations among

treatments at p < 0.05. Using origin software, a Pearson correlation

was conducted to evaluate the relationship between plant growth,

physiological traits, and soil chemical properties. All statistical

analyses were performed with SPSS v.19.0 (SPSS Inc.,

Chicago, USA).
3 Results

3.1 Effect of different leafy vegetable
cropping systems on morphological
traits and chlorophyll pigments in
eggplant leaves

Results illustrated in Table 1 showed that plant height and stem

diameter were significantly (P < 0.05) affected by WOE, CE, NCCE

and, LLE cropping systems as compared to FE. The highest plant

height was observed for NCCE and LLE cropping systems than FE,

and the observed increase was 18.34% and 16.15%, respectively.

Regarding the growing stages, the eggplant height showed a rapid

increase from 1st flowering to 2nd flowering stage and then slowed

down at later stages. The maximum increase was recorded at 2nd

fruiting stage (297.38%) than other growth stages, whereas the year

factor exhibited a non-significant effect. Maximum stem diameter
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was observed for CE as compared to FE, and the increase was

15.54%. Regarding growth stages, stem diameter increased

gradually from 1st flowering to 2nd flowering. The maximum stem

diameter was observed at 2nd fruiting stage as compared to other

growth stages, and the increase was 45.32%. The year factor also had

a significant effect, and the highest increase in stem diameter was

observed in 2018 as compared to 2017 (Table 1).

Leafy vegetable cropping systems significantly stimulated the

chlorophyll pigments. Maximum chlorophyll a content was

observed for NCCE as compared to FE rotation, and the increase

was 13.48% (Table 1). With respect to growth stages, maximum

content of chlorophyll a was recorded at 1st flowering stage as

compared to other growth stages, and the increase was 41.27%, and

the minimum chlorophyll a was observed at 2nd fruiting stage. Year

factor was also significant, and maximum chlorophyll a was

observed in 2018. The interaction effect of three factors (Y × T ×

S) on chlorophyll a was also significant. Winter leafy vegetables

significantly affected chlorophyll b pigment. The highest increase

(35.27%) in chlorophyll b content was observed for NCCE as

compared to FE rotation. Regarding growing stages, maximum

chlorophyll b was observed at 1st flowering stage, and an increase

was 52.24%, and minimum chlorophyll b was observed at 2nd

fruiting stage. Year factor was also significant, and maximum

chlorophyll b was observed in 2018. The interaction effect of

three factors (Y × T × S) on chlorophyll b was also

significant (Table 1).

It is shown in Table 1 that chlorophyll a and b were significantly

(P < 0.05) affected by leafy vegetable rotation systems. It was shown

that the highest chlorophyll ab were recorded for NCCE, followed

by CE as compared to FE, and an increase was 9.20% and 7.69%,

respectively. Chlorophyll ab were observed maximum at 1st

flowering stage, and an increase was 33.27%, and the minimum

increase (24.96%) was observed at the 2nd fruiting stage. Year factor

was also significant, and maximum chlorophyll ab was observed in

2018. The interaction effect of three factors (Y × T × S) on

chlorophyll ab was also significant.

The effect of different leafy vegetable species on carotenoid

content is illustrated in Table 1. Leafy vegetables significantly (P <

0.05) enhanced the carotenoid contents compared to FE, and a

significant effect of NCCE was observed on carotenoid content.

Maximum carotenoid content was observed for NCCE as compared

to FE, and the increase was 26.7%. The growth stage also had a

significant effect on carotenoid content. The highest increase in

carotenoid content was observed at the 1st flowering stage, and the

lowest increase was observed at the 2nd fruiting stage. The year

factor was significant, and the highest carotenoid content was

observed in 2018.
3.2 Effect of different leafy
vegetable cropping systems on
gas exchange parameters

Leafy vegetable cropping systems significantly (P < 0.05)

affected gas exchange parameters (Table 2). pN was higher for CE
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and NCCE than FE, with an increase of 15.28% and 11.18%,

respectively. Similarly, growth stages also had a significant effect

on net photosynthesis. pN increased at all stages, and the maximum

increase was observed at 1st flowering stage, which was 39.94%,

while the minimum increase was observed at 2nd fruiting stage,

which was 28.54%. Year factor was also significant, and maximum

pN was observed in 2018. The interaction effect of three factors (Y ×

T × S) on pN was also significant (Table 2). In addition, leafy

vegetable species had a significant impact on Ci. Ci was increased in

all vegetable species as compared to FE. NCCE and CE exhibited

higher Ci than FE, and the increase was 11.15% and 10.17%,

respectively. The Ci increased at all growth stages, with the

highest values recorded at 1st flowering stage. The year factor had

a non-significant effect on Ci (Table 2).

Leafy vegetable rotations also had a significant (P < 0.05) effect

on gs and E. The highest increase in gs and E was observed in NCCE

as compared to FE, and the increase was 50% and 42.47%,

respectively (Table 3). Similarly, growth stages also significantly

affected gs and E. Maximum gs was observed at the 1st flowering

stage with an increase of 375%, and maximum E was observed at the

1st flowering stage 11.11%. The year factor had a non-significant
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effect on gs. Whereas, for E year factor was significant and

maximum E was observed in 2018 (Table 2).
3.3 Effect of different leafy vegetable
cropping systems on chlorophyll
fluorescence parameters

Crop rotation with leafy vegetable cropping systems significantly

(P < 0.05) affected Fv/Fm, ФPSII, NPQ, and qp (Table 3). Among

different leafy vegetable rotations, the maximum increase in Fv/Fm,

ФPSII, and qPwas observed for NCCE cropping system as compared

to FE, and the increase was 8.57, 9.23, 25.92, and 14.47%, respectively.

At different growth stages, maximum Fv/Fm, ФPSII, and qP were

observed at 1st flowering stage, and the increase was 8.69%, 9.23%,

and 9.09%, respectively. However, NPQ was higher in FE than other

leafy vegetables and increased by 6.89% compared to other leafy

vegetables (Table 4). The year factor was also significant for

chlorophyll fluorescence parameters, and maximum Fv/Fm, ФPSII,

and NPQ were observed in 2017, and qP was observed maximum in

2018 (Table 3).
TABLE 1 Effect of different leafy vegetable rotation systems on morphological indexes and photosynthetic pigments of eggplant at different growth
stages during the years 2017 and 2018.

Treatment Plant height
(cm)

Stem diameter
(mm)

Chlorophyll a
(mg g-1 FW)

Chlorophyll b
(mg g-1 FW)

Chlorophyll ab
(mg g-1 FW)

Carotenoids
(mg g-1 FW)

Year

2017 111.1 ± 48.57a 14.200 ± 2.64b 17.18 ± 2.44b 6.77 ± 2.23b 24.42 ± 2.90b 2.96± 1.35b

2018 112.2 ± 48.32a 14.771 ± 2.79a 18.16 ± 2.46a 7.63 ± 2.02a 25.63 ± 2.66a 3.69 ± 2.66a

Leafy vegetables

FE 100.3 ± 43.95c 13.941 ± 2.33c 16.84 ± 2.36d 6.18 ± 1.95e 23.90 ± 3.05d 2.87± 1.23d

WOE 107.1 ± 41.35b 15.196 ± 2.41b 16.98 ± 2.34d 6.68 ± 1.96d 24.49 ± 2.82c 3.19 ± 1.46c

CE 115.8 ± 51.16a 16.107 ± 2.30a 18.00 ± 2.27b 7.73 ± 2.01b 25.74 ± 2.68a 3.57 ± 1.51ab

NCCE 118.7 ± 52.01a 14.906 ± 2.62b 19.11 ± 2.74a 8.36 ± 1.99a 26.10 ± 2.30a 3.62 ± 1.49a

LLE 116.5 ± 50.31a 12.275 ± 2.32d 17.41 ± 2.04c 7.05 ± 2.22c 24.89 ± 2.77b 3.40± 2.77bc

Stage

1st flowering 39.81 ± 3.69d 12.145 ± 1.30c 20.81 ± 1.29a 9.80 ± 1.03a 28.48 ± 0.88a 5.50 ± 0.62a

1st fruiting 97.95 ± 6.37c 12.509 ± 1.34c 18.57 ± 0.88b 8.10 ± 0.95b 26.14 ± 0.85b 3.40 ± 0.82b

2nd flowering 150.8 ± 11.34b 15.636 ± 1.68b 16.56 ± 1.02c 6.22 ± 2.01c 24.10 ± 1.19c 2.47 ± 0.28c

2nd fruiting 158.2 ± 12.34a 17.650 ± 1.66a 14.73 ± 0.98d 4.68 ± 1.99d 21.37 ± 1.50d 1.94 ± 0.44d

F-test

Year (Y) ns *** *** *** *** ***

Leafy vegetable (LV) *** *** *** *** *** ***

Stage (S) *** *** *** *** *** ***

Y × LV × S ns ns * ** * *
Data are presented as means with standard deviation (n= 9). Different letters show significant difference at p<0.05 level. FE, fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant;
NCCE, non-heading Chinese cabbage-egglant; LLE, leafy lettuce-eggplant. *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant.
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3.4 Effect of different leafy vegetable
cropping systems on antioxidant system
and soluble protein

Results for the antioxidant enzymes observed are depicted in

Table 4. The results revealed that WOE, CE, NCCE and, LLE

cropping systems used as a crop rotation enhanced the antioxidant

enzyme of eggplant. Among different winter leafy vegetable species,

NCCE rotation had shown maximum activity of SOD, POD, PAL,

PPO, APX, and CAT as compared to FE, and the increase was 38.36%,

53.68%, 27.78%, 21.44%, 18.90%, and 28.00%, respectively.

Furthermore, with respect to different growth stages, various

enzymatic activities were observed maximum at 2nd fruiting stage

than other growth stages, and a significant increase of SOD (47.01%),

POD (36.55%), PAL (56.43%), PPO (77.48%), APX (42.22%) and CAT

(27.70%) was observed (Table 4). Year factor was also significant, and

maximum SOD, POD, PAL, APX, and CAT were observed in 2017,

whereas maximum PPOwas observed in 2018. The interaction effect of

three factors (Y × T × S) on SOD, PAL, PPO, APX, and CAT was also

significant, whereas POD activity was non-significant.

Leafy vegetable cropping systems significantly influenced the soluble

protein content of eggplant leaves (Table 4). A maximum increase in
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soluble protein content was observed for NCCE (26.37%) and CE

(25.41%) as compared to FE. A higher amount of soluble protein was

observed at different growing stages at 2nd fruiting stage than in other

growth stages. The year factor was also significant, and higher soluble

protein content was observed in 2018 than in 2017 (Table 4).
3.5 Effect of different leafy vegetable
cropping systems on MDA and H2O2

Using different Leafy vegetable cropping systems as a crop

rotation significantly (P < 0.05) reduced MDA and H2O2

concentration compared to FE (Table 5). A higher reduction in

MDA concentration was recorded for CE and NCCE as compared

to FE, and an increase was 33.09% and 32.84%, respectively. The

year factor was also significant, and a higher concentration was

observed in 2018 than in 2017. Similarly, H2O2 was also lower in all

leafy vegetable treatments as compared to FE. Compared to FE, the

maximum reduction was observed under NCCE (28.52%) and CE

(26.59%). Regarding different growth stages, a higher reduction in

MDA and H2O2 concentration was recorded at the 2nd fruiting

stage, and a higher reduction of 60.45% and 51.16% in MDA and
TABLE 2 Effect of different leafy vegetable rotation systems on gas exchange parameters of eggplant at different growth stages during the year 2017
and 2018.

Treatment (pN)
(µmol m-2 s-1)

Ci
(µmol mol-1)

E
(mmol m-2 s-1)

gs
(mol m-2 s-1)

Year

2017 26.50 ± 3.40a 281.0 ± 30.04a 0.029 ± 0.171a 1.38 ± 0.21a

2018 25.37 ± 3.55b 280.2 ± 19.39a 0.008 ± 0.006b 1.34 ± 0.22a

Leafy vegetables

FE 23.88 ± 2.90d 263.5 ± 26.37d 0.006 ± 0.006c 1.13 ± 0.15d

WOE 25.52 ± 3.09c 271.7 ± 25.06c 0.007 ± 0.006b 1.28 ± 0.13c

CE 27.53 ± 3.59a 290.3 ± 22.29ab 0.008 ± 0.007a 1.43 ± 0.18b

NCCE 26.55 ± 3.76b 292.9 ± 19.22a 0.009 ± 0.007a 1.61 ± 0.13a

LLE 26.18 ± 3.11b 284.5 ± 19.42b 0.007 ± 0.006b 1.36 ± 0.13c

Stage

1st flowering 30.13 ± 1.98a 308.0 ± 8.98a 0.019 ± 0.002a 1.40 ± 0.21a

1st fruiting 27.32 ± 1.58b 287.5 ± 15.60b 0.003 ± 0.001c 1.40 ± 0.15a

2nd flowering 24.75 ± 1.24c 269.1 ± 15.45c 0.004 ± 0.001b 1.38 ± 0.22a

2nd fruiting 21.53 ± 1.23d 257.8 ± 23.32d 0.004 ± 0.001b 1.26 ± 0.24b

F-test

Year (Y) *** ns *** ns

Leafy vegetable (LV) *** *** *** ***

Stage (S) *** *** *** ***

Y × LV × S ns ns ** ns
Main effect due to treatment (crop rotation), sampling year and their interaction was analyzed by Two-way ANOVA. Data are presented as means with standard deviation (n= 9). Different letters
show significant difference at p<0.05 level. pN, net photosynthesis; Ci, internal CO2 rate; E, transpiration rate. gs, stomatal conductance; FE, fellow eggplant; WOE, welsh onion-eggplant: CE,
celery-eggplant; NCCE, non-heading Chinese cabbage-egglant. **p < 0.01; ***p < 0.001; ns, non-significant.
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H2O2 respectively was recorded at the 2nd fruiting stage compared

to the 1st flowering stage (Table 5).
3.6 Effect of different leafy
vegetable cropping systems
on soil chemical properties

Different leafy vegetable cropping systems used as a crop

rotation showed a significant (P < 0.05) impact on soil chemical

properties such as pH, EC, SOM, and soil available nutrients in both

years (Table 6). A maximum increment in soil pH was recorded in

NCCE by (8.01%) and CE (6.61%) compared with FE. The highest

increase in pH was observed at 2nd flowering stage as compared to

other stages (Table 6). The year factor was also significant, and a

higher concentration was observed in 2018 than in 2017. The

interaction effect of three factors (Y × T × S) on pH was also

significant (Table 6). Soil EC showed a downward trend after the

inclusion of leafy vegetable cropping systems (Table 6). WOE and

NCCE exhibited the maximum reduction in EC. The highest

increase in EC was observed at 1st flowering stage as compared to

other stages (Table 6). The year factor was also significant, and a

higher concentration was observed in 2018 than in 2017. Similarly,
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leafy vegetables significantly impacted AN, AP, and SOM. The

NCCE exhibited a maximum increment in AN (24.31%), AP

(14.81%), and SOM (26.37%) compared with the FE. The year

factor was significant, with the highest increment in AP and SOM in

2018 than in 2017 (Table 6). The highest increase was observed at

2nd fruiting stage as compared to other stages (Table 6). However,

AK was higher in CE, which increased AK by 9.78% compared to

FE. The year factor was significant, with the highest increment in

AP in 2017 than in 2018 (Table 6). The highest increase was

observed at 2nd fruiting stage as compared to other stages.
3.7 Effect of different leafy vegetable
cropping systems on eggplant fresh and
dry biomass

Leafy vegetable cropping systems significantly (P < 0.05)

increased eggplant’s fresh and dry weight over FE. Both years, the

highest increment in eggplant biomass was observed in NCCE and,

CE rotation (Table 7). However, the highest enhancement was

observed in 2018, and the observed increase was 73.05% in NCCE

and 62.06% in CE rotation. The year factor also had a significant

effect; the highest increase in fresh weight was observed in 2018
TABLE 3 Effect of different leafy vegetable rotation systems on chlorophyll fluorescence parameters of eggplant at different growth stages during the
year 2017 and 2018.

Treatment Fv/Fm ФPSII NPQ qP

Year

2017 0.73 ± 0.03a 0.70 ± 0.03a 0.34 ± 0.02a 0.79 ± 0.03b

2018 0.71 ± 0.03b 0.66 ± 0.03b 0.26 ± 0.02b 0.83 ± 0.06a

Leafy vegetables

FE 0.70 ± 0.02d 0.65 ± 0.03d 0.34 ± 0.04a 0.76 ± 0.02e

WOE 0.71 ± 0.02c 0.68 ± 0.02b 0.29 ± 0.03c 0.78 ± 0.02c

CE 0.74 ± 0.02b 0.70 ± 0.02a 0.32 ± 0.04b 0.85 ± 0.05b

NCCE 0.76 ± 0.02a 0.71 ± 0.02a 0.27 ± 0.04d 0.87 ± 0.05a

LLE 0.70 ± 0.02d 0.67 ± 0.02c 0.29 ± 0.03c 0.78 ± 0.02d

Stage

1st flowering 0.75 ± 0.02a 0.71 ± 0.03a 0.31 ± 0.05a 0.84 ± 0.05a

1st fruiting 0.73 ± 0.02b 0.69 ± 0.03b 0.31 ± 0.04b 0.82 ± 0.05b

2nd flowering 0.71 ± 0.02c 0.67 ± 0.02c 0.30 ± 0.04c 0.80 ± 0.05c

2nd fruiting 0.69 ± 0.02d 0.65 ± 0.02d 0.29 ± 0.04d 0.77 ± 0.05d

F-test

Year (Y) *** *** *** ***

Leafy vegetable (LV) *** *** *** ***

Stage (S) *** *** *** ***

Y × LV × S ns ns ns ns
fr
Data are presented as means with standard deviation (n= 9). Different letters show significant difference at p<0.05 level. Fv/Fm, photochemical efficiency; ФPSII, photosystem II; NPQ, non-
photochemical quenching coefficient; qP, photochemical quenching. FE, fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant; NCCE, non-heading Chinese cabbage-egglant. ***
p<0.001; ns, non-significant.
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TABLE 4 Effect of different leafy vegetable rotation systems on the antioxidant system and soluble protein of eggplant at different growth stages during the year 2017 and 2018.

PPO
(0.001DA min-1)

APX activity
Mm/(g. min)

CAT activity
(U mg-1 protein min-1)

Soluble protein
(mg g-1)

368.5 ± 222.5a 7.96 ± 1.52b 25.89 ± 5.24b 15.82 ± 2.88b

324.0 ± 187.0b 8.66 ± 2.02a 27.68 ± 4.16a 16.30 ± 2.81a

307.8 ± 175.9d 7.51 ± 1.80e 23.57 ± 4.05d 14.14 ± 2.14c

332.1 ± 192.0c 7.87 ± 1.90d 25.11 ± 4.03cd 15.26 ± 1.77b

369.3 ± 220.9a 8.73 ± 1.62b 28.17 ± 4.06ab 17.68 ± 3.33a

373.8 ± 227.6a 8.93 ± 1.72a 30.17 ± 4.72a 17.87 ± 2.51a

348.0 ± 205.7b 8.50 ± 1.67c 26.90 ± 4.23bc 15.36 ± 2.19b

130.4 ± 6.83d 6.28 ± 0.80d 21.81 ± 3.81c 13.00 ± 1.56d

161.3 ± 18.44c 7.63 ± 0.63c 25.65 ± 3.36b 15.52 ± 1.92c

514.0 ± 50.55b 8.46 ± 0.48b 29.51 ± 3.19a 17.43 ± 2.03b

579.2 ± 69.96a 10.87 ± 0.96a 30.17 ± 3.44a 18.30 ± 2.39a

*** *** *** *

*** *** *** ***

*** *** *** ***

*** *** ns ns

POD, peroxidase; PAL, phenylalanine ammonia–lyase; PPO, polyphenol oxidase; APX, ascorbate peroxidase: CAT, catalase. FE,
p < 0.001; ns, non-significant.
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Treatment SOD activity
(U g-1 FW h-1)

POD activity
(U mg-1 protein min-1)

PAL
(A290 g-1 h-1)

Year

2017 615.8 ± 175.9b 18.76 ± 4.51b 2758 ± 819.9b

2018 659.3 ± 157.5a 19.29 ± 4.71a 2820 ± 799.6a

Leafy vegetables

FE 537.0 ± 151.3e 15.20 ± 2.70d 2462 ± 723.6e

WOE 560.5 ± 154.9d 16.39 ± 2.91c 2642 ± 761.4d

CE 692.3 ± 142.6b 20.38 ± 3.77b 2957 ± 768.2b

NCCE 743.0 ± 153.0a 23.36 ± 4.51a 3146 ± 819.3a

LLE 654.7 ± 143.7c 19.80 ± 3.70b 2737 ± 795.3c

Stage

1st flowering 438.0 ± 57.51d 15.03 ± 2.14d 1635 ± 191.9d

1st fruiting 594.0 ± 125.5c 17.09 ± 3.16c 2686 ± 273.1c

2nd flowering 690.5 ± 107.6b 20.30 ± 3.37b 3082 ± 318.4b

2nd fruiting 827.6 ± 45.81a 23.69 ± 4.06a 3753 ± 240.3a

F-test

Year (Y) *** * ***

Leafy vegetable (LV) *** *** ***

Stage (S) *** *** ***

Y × LV × S ** ns ***

Data are presented as means with standard deviation (n= 9). Different letters show significant difference at p<0.05 level. SOD, super oxidase
fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant; NCCE, non-heading Chinese cabbage-egglant. *p < 0.05; **p < 0.01; **
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compared to 2017 (Table 7). Similarly, dry weight was highest in

NCCE and CE in both years, which increased by 51.01% in CE and

71.45% in NCCE over FE in 2018.
3.8 Correlation between plant
physiological, biochemical indexes, and soil
chemical properties

The correlation between various physiological, biochemical,

and soil chemical characteristics was examined using the Pearson

correlation (Figure 1). Based on Pearson correlation PFB, PDB

showed a highly significant positive correlation with SOM, AN, AP,

and AK. However, these traits showed a highly negative correlation

with NPQ, MDA, HD, and EC. Similarly, plant enzymes such as

SOD, POD, CAT, PAL, PPO, and APX showed a highly negative

correlation with NPQ, MDA, HD, and EC. SOD, POD, CAT, PAL,

PPO, and APX positively correlated with SOM. CAT exhibited a

positive correlation with AK, while PPO showed a positive

correlation with AK.
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4 Discussion

Our results demonstrated that two years of vegetable cover

crops used as a crop rotation significantly impacted soil pH

(Table 6). It is likely due to the incorporation of dead roots in the

soil after harvesting leafy vegetables. Aschi et al. (2017) reported

that the residues’ chemical properties could change the soil pH,

primarily due to their alkalinity and nitrogen content. Soil organic

carbon (SOC) is considered a good soil quality index Ghani et al.

(2022d) because it affects soil fertility. Many studies have reported

that in crop rotation, below-ground rhizodeposits and root addition

are the key factors of carbon accumulation in the soil, accounting

for up to 75% of soil organic matter (Jones et al., 2009; Ghani et al.,

2022d). Different types of crop stalks, twigs, dead roots as well as

fallen leaves are important sources of nutrients Aschi et al. (2017),

while leafy vegetables used as crop rotation can scavenge nutrients

from the soil, store it in their residues and return it to the soil for the

next crop through root decomposition and improved SOM

(Dorissant et al., 2022; Ghani et al., 2022b). Kong and Six (2012)

reported that living cover crops significantly improved soil organic

matter compared to bare fallow due to the rhizodeposition of low

molecular carbon into the soil. The rhizodeposition rate decreases

with plant age, but the addition of mature roots into the soil as

residue acts as a microbial substrate, thus increasing MBC as well as

soil organic matter (Chahal and Van Eerd, 2020). In line with this

concept, NCCE and CE modify the soil environment (Table 6) by

improving soil nutrients and SOM through root exudates and dead

roots, which were available for eggplant. Our results align with the

findings of Ali et al. (2021), where different winter leafy vegetables

cover crops used as a crop rotation can enhance soil nutrient

availability and SOM by incorporating plant and root residue.

It was observed that eggplant grown on soils after the leafy

vegetable crop rotation exhibited increased growth in terms of plant

height, stem diameter, and greater biomass (Tables 1, 7) and

reflected in significantly increased yield (Ghani et al., 2022b)

compared with mono-cropping for two years. Higher eggplant

growth and biomass production directly correlated to improved

soil chemical properties, evident from the positive correlation

between plant growth and soil chemical parameters (Figure 1).

Similar findings were reported by D’Acunto et al. (2018), where

pea-maize crop rotation improved maize biomass which was

interlinked with different soil properties.

Furthermore, increased growth and yield in eggplant-leafy

vegetable cropping systems were correlated with enhanced

photosynthesis and gas exchange, which was confirmed by the

positive correlation between eggplant growth and photosynthetic

parameters (Figure 1). Earlier, it has been reported that mono-

cropping or intercropping systems negatively influence the

photosynthesis and growth of plants (Yao et al., 2017). Mono-

cropping results in the depletion of soil microbial population and

mineral status. Mono-cropping of cucumber reduces growth and

yield by declining beneficial microbial populations in the soil,

and crop rotation significantly increases the yield (Wu and Wang,

2007). Reduced photosynthesis directly results from the restricted
TABLE 5 Effect of different leafy vegetable rotation systems on the
oxidative markers of eggplant at different growth stages during the year
2017 and 2018.

Treatment MDA content
(nmol g-1 FW)

H2O2

(µmol g-1 FW)

Year

2017 28.00 ± 12.09 b 21.68 ± 6.47a

2018 29.59 ± 11.89a 21.36 ± 6.12a

Leafy vegetables

FE 36.35 ± 12.53a 25.87 ± 7.23a

WOE 29.30 ± 10.91b 22.81 ± 6.39b

CE 24.32 ± 10.29c 18.99 ± 4.33d

NCCE 24.41 ± 10.59c 18.49 ± 4.35d

LLE 29.61 ± 11.45b 21.43 ± 5.60c

Stage

1st flowering 17.86 ± 4.01d 13.37 ± 1.60d

1st fruiting 21.58 ± 5.39c 20.73 ± 2.96c

2nd flowering 30.46 ± 5.90b 24.60 ± 4.19b

2nd fruiting 45.30 ± 7.17a 27.38 ± 4.34a

F-test

Year (Y) * ns

Leafy vegetable (LV) *** ***

Stage (S) *** ***

Y × LV × S ns ns
Data are presented as means with standard deviation (n= 9). Different letters show significant
difference at p<0.05 level. MDA: malondialdehyde; H2O2: hydrogen peroxide. FE, fellow
eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant; NCCE, non-heading Chinese
cabbage-egglant. * p<0.05; *** p<0.001; ns, non-significant.
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stomatal conductance and internal CO2 concentrations in mono-

cropped eggplant. It is believed that increased stomatal conductance

leads to the maintenance of CO2, reflected in increased

photosynthetic rate (Ahanger et al., 2018). Reports discussing the

role of leafy vegetables-eggplant cropping systems in the protection
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of the photosynthetic system, growth, and yield are not available.

The present investigation shows the protection of available mineral

status and soil health due to crop rotation with leafy vegetables.

Reduced photosynthesis in the mono-cropping or intercropping

system results in declined production of energy, carbohydrate
TABLE 6 Effect of different leafy vegetable rotation systems on soil chemical properties of eggplant at different growth stages during the year 2017
and 2018.

Treatment pH EC
(ms . cm-1)

AN
(mg kg-1)

AP
(mg kg-1)

AK
(mg kg-1)

SOM
(g kg-1)

Year

2017 7.49±0.17b 162.14±60.43a 125.97 ± 3.39a 34.37 ± 0.57b 360.58 ± 9.43a 21.08 ± 0.53b

2018 7.51±0.22a 160.36±71.71b 123.19 ± 3.70b 37.67 ± 0.65a 351.32 ± 9.97b 22.93 ± 0.35a

Leafy vegetables

FE 7.11±0.09d 288.58±11.42a 113.79 ± 2.99c 34.42 ± 1.20b 338.53 ± 3.63d 19.30 ± 0.36e

WOE 7.56±0.06bc 113.80±5.81e 116.13 ± 3.09c 35.19 ± 1.16b 355.06 ± 2.32c 22.06 ±0.0.49c

CE 7.58±0.05b 126.33±7.47c 136.06 ± 3.59b 35.70 ± 1.25b 371.64 ± 2.90a 23.08 ± 0.28b

NCCE 7.68±0.04a 120.59±5.98d 141.46 ± 3.76a 39.52 ± 1.42a 363.89 ±2.23b 24.39 ± 0.33a

LLE 7.57±0.06bc 154.42±4.98b 115.45 ± 3.11c 35.29 ± 1.50b 350.61 ± 1.58c 21.20 ± 0.17d

Stage

1st flowering 7.49±0.18b 162.32±20.32a 123.77 ± 1.98b 33.75 ± 2.92bc 343.94 ± 2.57d 21.65 ± 0.56c

1st fruiting 7.50±0.20ab 161.58±21.76a 129.79 ± 1.58a 35.49 ± 2.62c 354.35 ± 2.70c 21.54 ± 0.20c

2nd flowering 7.51±0.23a 159.59±22.40b 119.69 ± 1.24c 36.46 ± 2.92b 359.71 ± 2.80b 22.16 ± 0.25b

2nd fruiting 7.50±0.24ab 159.48±22.57b 125.05 ± 1.23b 38.40 ± 2.69a 365.80± 2.61b 22.67 ± 0.44ba

F-test

Year (Y) *** *** * * * ***

Leafy vegetable (LV) *** *** *** *** *** ***

Stage (S) * *** *** *** *** ***

Y × LV × S *** ns ns ns ns ns
Data are presented as means with standard deviation (n= 9). Different letters show significant difference at p<0.05 level. AN, available nitrogen; AP, available phosphorus; AK, available
potassium; SOM, soil organic matter; FE, fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant; NCCE, non-heading Chinese cabbage-egglant. * p<0.05; *** p<0.001; ns, non-
significant.
TABLE 7 Effect of different leafy vegetable rotation systems on fresh and dry weight of eggplant during the year 2017 and 2018.

Treatment Fresh Weight (g) Dry Weight (g)

2017 2018 Means 2017 2018 Means

FE 351.41±8.18e 342.13±11.48e 346.77±6.89e 140.70±2.95fg 127.66±4.47g 134.18±10.58e

WOE 448.74±9.00d 474.12±8.05cd 461.43±10.94c 163.53±12.03de 174.12±5.69cd 168.83±4.14c

CE 521.35±12.39bc 454.47±15.86ab 537.91±5.49b 187.88±4.06c 192.79±4.27bc 190.34±7.12b

NCCE 553.35±10.49ab 592.08±11.22a 572.72±11.46a 208.40±5.14ab 218.88±5.34a 213.64±7.90a

LLE 370.74±9.03ef 389.28±9.49e 380.01±7.05d 148.23±4.00ef 153.28±3.89ef 150.76±5.30d

Year means 449.12±21.61b 470.42±25.65a 169.75±6.89a 173.35±8.58a

Tukey HSD test Treatment Year Interaction Treatment Year Interaction

*** *** NS *** NS *
Data are presented as means with standard deviation (n= 3). Different letters show significant difference at p<0.05 level. FE, fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant;
NCCE, non-heading Chinese cabbage-egglant. * p<0.05; *** p<0.001; ns, non-significant.
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metabolism and chlorophyll production (Table 2), (Su et al., 2014).

Crop rotation improves soil physical and chemical environment

(Table 6), including water holding capacity and aeration, and

ultimately increases plant growth attributes like root growth and

nutrient foraging. In the wheat-peanut crop rotation system,

increased nitrogen uptake and allocation resulted in greater

chlorophyll synthesis and photosynthesis rate (Liu et al., 2019).

Moreover, increased pigment synthesis and photosynthesis in the

crop rotation system were linked with improved PSII functioning.

Relative to FE, Fv/Fm, ФPSII, and qP increased in all cropping

systems while NPQ exhibited a reduction (Table 3). Photosystem

functioning was considerably enhanced during both experimental

seasons due to crop rotation with WOE, CE, NCCE, and LE.net

Increased fluorescence parameters reflect photosynthetic regulation

through non-stomatal modulations (Ahanger et al., 2020). The

present study envisaged that both stomatal and non-stomatal

enhancements in the different cropping systems influenced the
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growth and yield performance of eggplant. Increased access to

external CO2 and reduced accumulation of toxic radicals in

intercropping systems significantly contributed to the functioning

of photosynthetic machinery (Yao et al., 2017).

Increased growth and photosynthesis in plants raised in the

crop rotation system are due to reduced oxidative damage in them

(Table 5), resulting in a significant enhancement in the structural

and functional integrity of membranes and cells (Liu et al., 2019).

Reduced generation of reactive oxygen species prevents the

oxidative effects on the membranes reflecting in the maintenance

of plant functioning (Ahanger and Agarwal, 2017b). In the present

study, eggplant grown on soils following crop rotation with different

leafy vegetables also exhibited reduced lipid peroxidation due to a

significant decline in the accumulation of hydrogen peroxide during

both years. Our findings were further supported by a negative

correlation among growth, photosynthesis, and oxidative markers

(Figure 1). The declining oxidative effects of mono-cropping due to

the growth of leafy vegetables were observed due to up-regulation of

APX and CAT activities in them during both years and at both

developmental stages (Table 4). Relative to FE, activities of APX and

CAT increased in seedlings grown after leafy vegetable crops, with

the maximal increase in plants grown in NCCE system at both

developmental stages. APX and CAT act on the same substrate, i.e.,

hydrogen peroxide but at different sites, with APX eliminating

excess hydrogen peroxide from chloroplast while CAT from the

cytosol (Ahmad, 2010). Increased APX activity due to crop rotation

with leafy vegetables strengthened the key radical scavenging

pathways, including ascorbate-glutathione in chloroplasts leading

to increased protection of major cellular pathways, including

photosynthesis (Ahanger and Agarwal, 2017a; Ghani et al.,

2022a). Up-regulation of the activities of APX due to crop

rotation prevents the formation of toxic hydroxyl radicals by

assisting in the maintenance of redox homeostasis and the

electron donors, including ascorbate and glutathione (Khan and

Khan, 2014). Greater ascorbate and glutathione content due to

improved ascorbate-glutathione functioning maintains the electron

transport in chloroplasts and mitochondria (Nahar et al., 2016).

In addition to this protein content of eggplant increased

significantly due to crop rotation with leafy vegetables. During

both years, maximal protein content was reported at the second

fruiting and second flowering stages. During both years of

experimentation, the influence of leafy vegetable crop rotation on

eggplant protein content slowly increased from 2017 to 2018 and

showed an increasing trend with the developmental stage (Table 6),

indicating the development of beneficial proteins under a crop

rotation system. Proteins form an important nutritional component

of plants, particularly in vegetables, and help plants maintain

growth and development under different growth conditions (Lee

and Yaffe, 2016). Proteins assist in signaling and maintaining

development from seed germination to flowering. Plants have

specific proteins maintaining key cellular functioning like

photosynthesis, signaling, and response elicitation. Intercropping

and crop rotation systems have been proposed to influence plant

development by modulating physiology and biochemistry and

reducing disease incidence; however, the effect has been reported

to be species-dependent (Crow et al., 2000; Ghani et al., 2019a).
FIGURE 1

Pearson correlation between eggplant growth, physiological and soil
chemical parameters. The brown color represents a positive
correlation while the blue color represents a negative correlation.
The lighter colors indicate the lower values of the correlation
coefficient, while darker colors indicate high positive correlation.
PH, Plant height; STD, stem diameter; PFB, plant fresh weight; PDB,
plant dry biomass; CA, chlorophyll a; CB, chlorophyll b; CAB,
chlorophyll ab; Car, carotenoids; pN, net photosynthesis; E,
transpiration rate; Ci, internal CO2 rate; gs, stomatal conductance;
Fv/Fm, photochemical efficiency; ФPSII, photosystem II; NPQ, non-
photochemical quenching coefficient; qP, photochemical
quenching; SOD, super oxidase; POD, peroxidase; PAL,
phenylalanine ammonia–lyase; PPO, polyphenol oxidase; APX,
ascorbate peroxidase; CAT, catalase; MDA, malonaldehyde; HD,
hydrogen peroxide; EC, electrical conductivity; AP, available
phosphorus; AK, available potassium; SOM, soil organic matter The
stars indicate a significant correlation at (*) 0.05, (**) 0.01, (***), and
0.001 levels of significance.
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Such beneficial effects of crop rotation with leafy vegetables can be

due to the significant decline in the accumulation of allelopathic

compounds within the eggplant rhizosphere, thereby declining the

growth through auto-allelopathy (Cheng and Cheng, 2015).

However, eggplant crop rotation with leafy vegetables may have

reduced the accumulation of allelochemicals and improved the

synthesis of some specific proteins. Proteins mediate specific

defense pathways in plants (Chuang et al., 2016). In addition, the

activity of PAL is stimulated significantly due to crop rotation with

vegetable crops.

PAL regulates the synthesis of secondary metabolites in plants.

Increased PAL activity has been reported to contribute to greater

stress tolerance by enhancing antioxidant potential (Ahanger and

Agarwal, 2017b). Increased PAL activity due to crop rotation with

leafy vegetables may improve eggplant metabolite content with

significant health benefits (Gürbüz et al., 2018). Eggplant is rich in

some key metabolites contributing to its functional and

pharmaceutical properties (Rodriguez-Jimenez et al., 2018).

Increased PAL and PPO activity (Table 4) under crop rotation

with different vegetables justify the beneficial effect on secondary

metabolism. The accumulation of secondary metabolites is

regulated by PPO, which does this by oxidizing phenols. This, in

turn, mediates fruit harvesting and resistance to pathogens. On the

other hand, it has been reported that silencing PPOmakes pathogen

infection more likely by modifying the accumulation of phenolic

compounds and their derivatives (Araji et al., 2014). However,

through metabolomics increase in individual metabolites can be

assessed to unravel the exact mechanisms involved.
5 Conclusion

Conclusively results of the study, which was carried out

underneath a plastic shed using sustainable practices, indicated

that different leafy vegetable species could be successfully used to

minimize external inputs without a reduction in yield. The study

was carried out within the context of the transition of agricultural

practices toward the cultivation of sustainable vegetables.

Conclusively, crop rotation of eggplant with leafy vegetable

cropping systems, including WOE, CE, NCCE, and LE, exhibited

greater yield and growth through improving soil chemical

properties, modulation in the photosynthetic efficiency and gas

exchange parameters. Increased activity of antioxidant enzymes

imparted reduced oxidative damage by lowering the generation of

reactive oxygen species. In addition, crop rotation with leafy

vegetables may have regulated the metabolism of secondary

metabolites through the upregulation of PAL and PPO. By

modulating ROS and altering the activity of antioxidant enzymes,

NCCE, and CE were more effective in improving growth and yield

than other leafy vegetable species assessed in this study, including

fallow eggplant. This was determined by comparing their results to
Frontiers in Plant Science 12112
those of other leafy vegetable plants. Further studies at

transcriptomic, metabolomic, and molecular levels would be

helpful in unraveling the exact mechanisms of the above findings.
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Major pests of corn insects include corn borer, armyworm, bollworm, aphid, and

corn leaf mites. Timely and accurate detection of these pests is crucial for

effective pests control and scientific decision making. However, existing

methods for identification based on traditional machine learning and neural

networks are limited by high model training costs and low recognition accuracy.

To address these problems, we proposed a YOLOv7 maize pests identification

method incorporating the Adan optimizer. First, we selected three major corn

pests, corn borer, armyworm and bollworm as research objects. Then, we

collected and constructed a corn pests dataset by using data augmentation to

address the problem of scarce corn pests data. Second, we chose the YOLOv7

network as the detection model, and we proposed to replace the original

optimizer of YOLOv7 with the Adan optimizer for its high computational cost.

The Adan optimizer can efficiently sense the surrounding gradient information in

advance, allowing the model to escape sharp local minima. Thus, the robustness

and accuracy of the model can be improved while significantly reducing the

computing power. Finally, we did ablation experiments and compared the

experiments with traditional methods and other common object detection

networks. Theoretical analysis and experimental result show that the model

incorporating with Adan optimizer only requires 1/2-2/3 of the computing power

of the original network to obtain performance beyond that of the original

network. The mAP@[.5:.95] (mean Average Precision) of the improved network

reaches 96.69% and the precision reaches 99.95%. Meanwhile, the mAP@[.5:.95]

was improved by 2.79%-11.83% compared to the original YOLOv7 and 41.98%-

60.61% compared to other common object detection models. In complex

natural scenes, our proposed method is not only time-efficient and has higher

recognition accuracy, reaching the level of SOTA.
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YOLOv7, smart agriculture, object detection, deep learning, pests identification
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1 Introduction

In the past decade, due to the excellent performance of machine

learning and deep learning techniques on other tasks, scholars have

applied them to crop pests and disease identification and have made

good, progress in pests and disease identification. Scholars have

applied them to crop pests and disease identification and made

good progress. In 2010, Al-Bashish et al. (Al Bashish et al., 2010a).

Introduced proposed the use of K-means clustering with HSI color

space co-occurrence to extract color and texture features of plants,

ultimately classifying five different plant diseases with a simple

neural network. Since then, research works based on various

machine learning methods to identify plant diseases and pests

have emerged. In 2016, Sladojevic et al. (Al Bashish et al., 2010a).

developed a new method for identifying 13 different plant diseases

using deep convolutional neural networks, achieving a final

accuracy of 96.3%. The authors created a comprehensive database

and methodology for modeling, which is essential for future

research in this field. Scholars have gradually realized the great

potential of deep learning techniques, and research on pests and

disease identification based on various deep learning methods has

proliferated. For instance, Amara et al. (2017) identified and

classified banana leaf diseases in the natural environment by

using LeNet network, Nachtigall et al. (Bochkovskiy et al., 2020).

used CNN to recognize diseases, nutrient deficiencies and herbicide

damage in apple leaf images. Inspired by these previous works, our

team conducted research on corn borer and anthracnose spore

identification using different machine learning methods, all of

which yielded promising result. However, these traditional

machine learning and deep learning methods above still have

their own limitations, such as high model training cost and poor

robustness, which sharply increase the cost of academic research or

industrial implementation. Therefore, it is important to find a pests

identification method with low training cost, accurate identification

and good robustness.
1.1 Related work and motivation

With the development of digital image processing and machine

learning techniques, intelligent detection and identification of crop

diseases and pests have become increasingly prevalent. In plant

disease identification, Sasaki et al. (Girshick, 2015). utilized spectral

reflectance differences to distinguish healthy and diseased areas on

cucumber leaves, while Vıźhányó et al. (Girshick et al., 2014). used

color point differences to identify diseased mushrooms. In China,

Guili Xu et al. (He et al., 2017). achieved over 70% accuracy in

identifying tomato leaves based on histogram-based color feature

extraction. Yuxia Zhao et al. (Li et al., 2022). used a Bayesian

classifier to successfully identify five diseases, including maize rust.

Our team has proposed several algorithms, such as the marker

watershed algorithm (Lin et al., 2017a) and the Otsu separation and

symbolic similarity-driven level set algorithm (Lin et al., 2017b), for

accurate statistics of anthracnose spore distribution density on

farms for better control. Additionally, our team proposed an

accurate segmentation method for diseased fruits based on log
Frontiers in Plant Science 02116
similarity-constrained Otsu and distance rule level set activity

profile evolution (Liu et al., 2019), which can achieve good

segmentation of diseased fruits.

In the field of plant pests identification, various methods have

been proposed to improve the accuracy and efficiency of the

identification process. However, most of these methods have

limitations that need to be addressed. For instance, In terms of

plant pests identification, Prof. Zorui Shen of China Agricultural

University (Liu et al., 2008) firstly used mathematical morphology

to solve the problem and achieved good result, but the variation of

the selection of structural elements in mathematical morphology

will affect the identification result, then it will cause the robustness

of the identification algorithm is not strong. For insects’ color

characteristics, Dr. Zhu used color histogram and double-tree

complex wavelet transform (Liu et al., 2016) and support vector

machine (Mohanty et al., 2016) to further improve the recognition

rate, but this method requires reliable data sets for training, so a

large number of images need to be acquired and the cost is high. In

addition, Dr. Zhu also proposed the color histogram combined with

Weber descriptors for insect recognition of Lepidoptera (Nachtigall

et al., 2016), CART-based combined with LLC (Redmon et al.,

2016), and color-based combined with OpponentSIFT features

(Redmon and Farhadi, 2017). However, these methods require

manual extraction of features and are not applicable to borer

moth family pests. To address these limitations, we propose an

automatic pests monitoring robotic vehicle with a Pyralidae

recognition scheme based on histogram and multi-template image

reverse mapping method (Redmon and Farhadi, 2018). This new

approach enables the automatic capture of pests images and

achieves a recognition accuracy of up to 94.3% in the natural

farm planting scenario. We also propose a pests image

segmentation method based on GMM and DRLSE (Ren et al.,

2015), which can automatically identify positive and negative

samples of specific pests from a large number of scene images

with recognition accuracy of up to 95%. Additionally, our proposed

hybrid Gaussian model-based texture disparity representation and

texture disparity-guided DRLSE model (Sammany and Medhat,

2007) can also achieve accurate segmentation of crop pests

and diseases.

While the traditional machine learning methods have

contributed to the field of crop pests and disease identification,

they have certain limitations that prevent them from achieving the

desired result. The advancements in deep learning technology have

paved the way for researchers to apply deep learning algorithms to

pests recognition, resulting in significant progress in this field. Deep

learning algorithms can automatically extract image features,

making good use of this information to achieve high accuracy in

pests and disease identification. Several studies have used deep

learning techniques to identify and classify pests, achieving higher

robustness, generalization, and accuracy. For example, Sammany

et al. (Sasaki et al., 1998). utilized genetic algorithms to improve

neural networks, reducing the dimensionality of feature vectors and

improving pests recognition efficiency. Similarly, Al Bashish et al.

(Sladojevic et al., 2016). used the K-means clustering algorithm to

classify images into clusters, extracted feature values of color and

texture for each cluster, and inputted them into neural networks for
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https://doi.org/10.3389/fpls.2023.1174556
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1174556
classification. Mohanty et al. (Tian et al., 2019). used the GoogleNet

convolutional neural network structure to build a pests

identification model with satisfactory result. Compared to

traditional machine learning methods, deep neural network-based

pests recognition methods have better accuracy, making them an

important research direction in pests recognition. As deep learning

technology continues to advance, we can expect more

breakthroughs in crop pests and disease identification, which will

undoubtedly benefit the agriculture industry.

Deep learning models have shown promising result in

identifying and detecting pests. However, there are still

limitations that need to be addressed. In recent years, various

sophisticated training methods have been developed to improve

the generalization and robustness of deep models. Nevertheless, the

cost of training these models has increased significantly due to the

higher computing power required. This increase in training cost has

a considerable impact on the research and industrial

implementations. One common approach to reduce the training

time is to increase the batch size and assist parallel training.

However, a larger batch size often leads to a decrease in

performance. The YOLOv7 method (Vızhányó and Felföldi,

2000), which is the current SOTA in object detection, also faces

the same challenge. In this context, a new YOLOv7 corn pests

identification method is proposed in this paper, which incorporates

the Adan optimizer. This new method uses Adan (Wang et al.,

2022), a novel optimizer that can sense the surrounding gradient

information and efficiently escape from sharp local minimal areas.

By replacing the original optimizer of YOLOv7 with Adan, the

model can achieve faster and better training without compromising

its accuracy. The proposed YOLOv7 method can identify major

corn pests in complex natural environments quickly and accurately,

reducing the cost of practical application of model. With fewer

parameter updates, the deep model can achieve faster and more

accurate identification, making it suitable for various applications.

In summary, the YOLOv7 corn pests identification method

incorporating the Adan optimizer presented in this paper can

significantly reduce the training time and cost while maintaining

the accuracy of the model. It is expected to contribute to the efficient

and accurate identification of pests in agricultural production.
1.2 Contributions
Fron
1. To address the lack of maize pests data, we used data

augmentation techniques to construct a maize pests image

dataset, which effectively improved the training of the

model.

2. We replaced the original optimizer of YOLOv7 with a new

optimizer, Adan, which combines a rewritten Nesterov

momentum algorithm with an adaptive optimization

algorithm and introduces decoupled weight decay,

allowing the model to increase its speed without

degrading its accuracy, thus enabling faster and better

training of the model and reducing the cost of

implementing the model.
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3. From the theoretical analysis and experimental result, it can

be seen that the YOLOv7 network incorporating the Adan

optimizer can effectively alleviate the negative impact

caused by the increase of batch size, and solve the

problem that the training speed and training accuracy

cannot be achieved at the same time.
1.3 Paper organization

The rest of this paper is organized as follows. The second part

Section 2 mainly introduces the related network model; In the third

part Section 3, experimental scheme, process and results are

introduced in detail; The fourth part Section 4 discusses the

experimental results; The fifth part Section 5 summarizes the full

text and puts forward the existing deficiencies and the direction that

can be improved.
2 Materials and methods

This section first introduces the basic concepts of object

detection network. Then it describes the YOLOv7 network and

Adan optimizer used in this project, and finally introduces the

proposed improved network.
2.1 Object detection network

Object detection is one of the core problems in the field of

computer vision. It needs to find out all the objects of interest in an

image, and determine their classes and locations. Object detection is

always the most challenging problem in the field of computer vision

because of the different appearances, shapes and poses of various

objects, as well as the interference of illumination, occlusion and

other factors during imaging. A diagram of the object detection task

is shown in Figure 1.

The current popular algorithms can be divided into two

categories, one is the two-stage algorithm based on Region

Proposal, which find out some candidate regions primarily, and

then adjust the regions for classification, such as the series of R-

CNN (Regions with CNN features) algorithm (Xu et al., 2002; Zhao

and Hu, 2015; Wang et al., 2020; Xie et al., 2022). The other

category is one-stage algorithm, such as SSD (Zhao et al., 2015)

(Single Shot Multibox Detector), the series of YOLO (You Only

Look Once) algorithm (Vızhányó and Felföldi, 2000; Zhao et al.,

2007; Zhu et al., 2015a; Zhu et al., 2015b; Zhao et al., 2019; Zhao

et al., 2020), RetinaNet (Zhu et al., 2010), FCOS (Zhu et al., 2012)

(Fully Convolutional One-Stage Object Detection) and other such

side-to-side networks. They only use a convolutional neural

network to directly predict classes and locations of different

objects. Comparing the two categories of object detection

algorithms, the former is more accurate but slower, while the

latter is faster but less accurate. In this paper, some representative
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networks in the above two categories are selected for

comparative experiments.
2.2 YOLOv7

YOLOv7 is a new network framework based on the series

of YOLO algorithm, which mainly designs a better performance

detect ion model through the fol lowing four aspects :

backbone design with new ELAN module, composite model

scaling, deep supervision label assignment strategy and model

re-parameterization.

The first improvement is the design of new network structure.

YOLOv7 proposes such a view: the shortest and longest gradient

paths can be controlled to achieve more effective learning and

convergence of deep networks. Based on this idea, YOLOv7 designs

the E-ELAN network structure as shown in Figure 2 on the basis of

ELAN. In common ELAN module, the whole network reaches a

stable state regardless of the gradient path length and the number of

computing modules. However, if more ELAN modules are stacked

indefinitely, this stable state may be destroyed and the parameter

utilization may be reduced. Based on the above shortcomings,

YOLOv7 proposes the E-ELAN module. E-ELAN module adopts

the structure of expand, shuffle and merge cardinality, and it can

guide different computing blocks to learn more diversified

characteristics compared to common ELAN module, thus

improving the learning ability of the network without destroying

the original gradient path.

The second improvement is composite model scaling. The main

purpose of model scaling is to adjust certain properties of the model

and generate models of different sizes to meet the needs of different

inference speeds. If the E-ELAN method described above is applied

directly to a cascaded model, the action of directly scaling up the

depth of the model will result in a change in the scale of the input

and output channels. As a result, the model’s usage of hardware

may decrease. Therefore, for the cascaded model, a composite

model method must be proposed. The method must consider that

the width of the transition layer should also be changed by the same

amount when the depth of the computing module is scaled. Based

on these ideas, YOLOv7 proposes a network architecture as shown

in Figure 3. The network only needs to scale the depth in the
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computation block when performing the model scaling, and the rest

of the transport block will use the corresponding width scaling. The

composite scaling method can preserve the properties of the model

at the initial design and maintain the optimal structure.

The third improvement is deep supervision label assignment

strategy. Deep supervision is a common technique in deep network

training, it adds auxiliary head for loss calculation in the middle of

the network to assist training. In order to differentiate auxiliary

head for different functions, the final output head is called the Lead

Head and the auxiliary training head is called the Aux Head. The

core idea of deep supervision is to take shallow network weight and

auxiliary loss as guidance, combine the output result with Ground
A B

FIGURE 1

Schematic diagram of object detection: (A) Original map. (B) Object detection map.
FIGURE 2

E-ELAN structure diagram. bold values means the better results.
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True (GT), and use some calculation and optimization methods to

generate reliable soft labels. For example, YOLO uses the bounding

box regression and GT and the IOU of the prediction box as soft

labels. The current common method of assigning soft labels to Aux

Head and Lead Head is shown in the Figure 4A, which separates

Aux Head and Lead Head, and uses their respective prediction

result and GT to perform label assignment. In contrast, YOLOv7

network uses the Lead Head prediction result as a guide to generate

coarse-to-fine hierarchical labels for Aux Heads and other Lead

Heads learning. The two proposed deep supervision label

assignment strategies are shown in Figures 4B, C. The reason for

this is that the Lead Head has strong learning ability, and the

generated soft labels should better represent the distribution and

correlation between the source and target data. By allowing the

shallow Aux Heads to directly learn the information that Lead

Heads has already learned, the Lead Heads will be better able to

focus on learning residual information that has not yet

been learned.

The last improvement is model re-parameterization. Re-

parameterization is a technique used to improve a model after

training, which increases the training time but improves the

inference result. Although model re-parameterization has

achieved excellent performance on VGG, when applied directly to

architectures such as ResNet and DenseNet, it instead causes a

significant decrease in accuracy. For these reasons, YOLOv7 uses

the constant connection-free RepConvN to redesign the

architecture of the reparameterized convolution by replacing the
Frontiers in Plant Science 05119
3×3 convolutional layers of the E-ELAN computational block with

constant connection-free RepConv layers.
2.3 Adan optimizer

The most direct way to speed up the convergence of the

optimizer is to import momentums. The deep model optimizers

proposed in recent years all follow the same momentum paradigm

used in Adam - the reball method. However, with the advent of ViT,

researchers found that Adam was not able to train ViT. And

AdamW, an improved version of Adam, gradually became the

preferred choice for training ViT and even ConvNext. However,

AdamW does not change the momentum paradigm in Adam,

which tends to cause the performance of AdamW-trained

networks to drop dramatically when the batch size increases to a

certain threshold.

In the field of traditional convex optimization, there is an

momentum algorithm equal to the heavy ball method, the

Nesterov momentum algorithm. As shown in Equation 1.

AGD : gk = ∇f (qk − h(1 − b1)mk−1) + xk,mk

= (1 − b1)mk−1 + gk, qk+1 = qk − hmk

(1)

The Nesterov momentum algorithm has a faster theoretical

convergence rate than the heavy ball method for smooth and

generally convex problems, and can theoretically withstand larger
A B C

FIGURE 4

Deep supervision label assignment strategies: (A) Common strategy. (B, C) Two proposed strategies of YOLOv7. bold values means the better results.
FIGURE 3

Composite model scaling for YOLOv7. bold values means the better results.
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batch size. Different from the heavy ball method, Nesterov

algorithm does not calculate the gradient at the current point, but

uses the momentum to find an extrapolation point, and then carries

on the momentum accumulation after calculating the gradient at

the point. Although Nesterov momentum algorithm has some

advantages, it is rarely applied and explored in depth optimizers.

One of the main reasons is that Nesterov algorithm needs to

calculate gradient at extrapolated points, which requires multiple

overloading of model parameters during updating at current points

and requires artificial back-propagation (BP) at extrapolated points.

These inconveniences greatly limit the application of Nesterov

momentum algorithm in depth model optimizer.

In order to give full play to the advantages of the Nesterov

momentum algorithm, Adan researchers obtained the final Adan

optimizer by combining the rewritten Nesterov momentum with

the adaptive optimization algorithm and introducing decoupled

weight attenuation. In order to solve the problem of multiple model

parameter overloads in the Nesterov momentum algorithm, the

researchers first rewrote the Nesterov momentum algorithm as

shown in Equation 2.

 Reformulated AGD :  

gk = Ez∼D½∇f (qk, z )� + xk
mk = (1 − b1)mk−1 + ½gk + (1 − b1)(gk − gk−1)�
qk+1 = qk − hmk

8
>><

>>:

(2)

Combining the rewritten Nesterov momentum algorithm with

the adaptive class optimizer - replacing the update of m_k from the

cumulative form to the moving average form and using the second-

order moment to deflate the learning rate - has resulted in a basic

version of Adan’s algorithm. As shown in Equation 3.

Vanilla Adan :

mk = (1 − b1)mk−1 + b1½gk + (1 − b1)(gk − gk−1)�
nk = (1 − b3)nk−1 + b3½gk + (1 − b1)(gk − gk−1)�2

nk = h= ffiffiffiffiffiffiffiffiffiffiffiffi
nk + ϵ

p

qk+1 = qk − hk ∘mk

8
>>>>><

>>>>>:

(3)

Although it can be seen that the update of m_k combines the

gradient with the gradient’s difference, in real-world applications it

is frequently necessary to treat the two physically distinct

meaningful things separately. For this reason, the researchers

developed the gradient difference momentum v_k, as shown in

Equation 4.

mk = (1 − b1)mk−1 + b1gk, vk = (1 − b2)vk−1 + b2(gk − gk−1) (4)

Here different momentum/average coefficients are set for the

momentum of the gradient and its difference. The gradient

difference term can slow down the optimizer update when

adjacent gradients are not consistent and, conversely, speed up

the update when the gradients are in the same direction.

Based on the idea of L2 regular decoupling, Adan introduces a

weight attenuation strategy, each iteration of Adan can be regarded

as minimizing some first-order approximation of the optimization

objective F, as shown in Equation 5.
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qk+1 = qk − hk ∘ �mk = argmin 
q

(F(qk) + 〈 �mk, b − qk 〉+
1
2h

jjq − qk j2 ffiffiffiffinkp ),
���

where j xj jj2 ffiffiffiffinkp : = 〈 x,
ffiffiffiffiffiffiffiffiffiffiffiffi
nk + ϵ

p
∘ x 〉, �mk : = mk + (1 − b2)vk

(5)

Because L2 weight regularization in F is too simple and smooth,

it is unnecessary to make a first-order approximation. Therefore,

only the first-order approximation of training loss can be performed

and L2 weight regularization can be ignored. Then the last iteration

of Adan will become as shown in Equation 6.

qk+1 = qk − hk ∘ �mk = argmin
q

F(qk) + �mk, q − lqk +
1
2h

jjq − qk j2 ffiffiffiffinkp
���

(6)

The final Adan optimization algorithm can be obtained by

combining the above two improvements Equation 4 and Equation 6

into the base version of Adan.
2.4 The proposed identification method

Since the network architecture is not changed, we still use the

original network structure of YOLOv7, as shown in Figure 5.

After replacing the optimizer inside YOLOv7 with Adan, the loss

function module will calculate the loss of this forward inference

according to the difference between the output of model and the real

label. Subsequently, the model will take the derivative of loss to obtain

the gradient of each learnable parameter. Then the Adan optimizer can

obtain the gradient and update parameters through the optimization

strategy described above, such as m_k, v_k, n_k, etc. The model keeps

the loss decreasing by updating these parameters after each inference,

thus gradually reducing the difference between the output of model and

the real label, and finally achieving the convergence. The whole model

training process is shown in Figure 6, and the pseudocode is shown in

algorithm 1.
Input: An image [H×W×3].

Output: Detection image.

Preprocessing: The input RGB image aligned to

an RGB image of size 640×640.

Training
for every image in training set do

Stage 1: The processed images are input into

the backbone module for feature

extraction, while the backbone module will

output three feature maps in different

scales. And these feature maps will be

input into the head module together for

prediction.

Stage 2: In the head module, three types of

feature maps will be fused and input into

RepVGG block and detect block to predict

objects.

Stage 3: The loss function module will

calculate the loss of this inference
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Fron
according to the difference between the

output of model and the real label.

Subsequently, the model will take the

derivative of loss to get the gradient and

pass it to the optimizer module.

Stage 4: Adan Optimizer will initialize the

following parameters: initialization θ0,

step size η, average parameter

(β1,β2,β3,ϵ[0,1]
3), stable parameter,

weight decays ϵ>0 and restart condition λ

k>0, and then start the optimizing

strategy.

for k<K do

compute the stochastic gradient estimator

gk at θk;

mk = (1 − b1) mk − 1 + b1gk=*set m0 = g0*=

vk = (1 − b2) vk − 1 + b2(gk − gk − 1)=*set v1 = g1 − g0*=;
nk = (1 − b3) nk − 1 + b3½gk + (1 − b2)(gk − gk − 1)�2

nk = h=(
ffiffiffiffiffiffiffiffiffiffiffiffi
nk + ϵ

p
)

qk + 1 = (1 + lkh) − 1½qk − hk−1 ∘ (mk + (1 − b2)vk)�if restart condition holds then

get stochastic gradient estimator g0 at θk

+1;

m0 = g0, v0 = 0, n0 = (g0)
2, update θ1 by Line

7, k = 1;
tiers in Plant Science 07121
end

end
d

ALGORITHM 1
Description of the algorithm of YOLOv7 incorporating the Adan optimizer
3 Experiments and result

3.1 Experimental scheme

The experimental scheme proposed is shown as Figure 7. We

first pre-processed the original dataset, mainly including data

recovery, data filtering and data filling. In order to solve the

problem of scarce data, we used data augmentation and transfer

learning to ensure that the network can fully learn the features. The

two technologies will be introduced in detail in the following

sections. And then, the augmented dataset was divided into

training set, testing set and validation set. The training set and

validation set was input into the original YOLOv7 network, the

improved YOLOv7 network and other comparative networks

respectively. If the performance of the model does not meet

expectations, we will adjust the network’s hyperparameters and

retrain it. After that, the testing set was input into trained models to

test the performance of different models. Finally, we compared and

analyzed the experimental result.
FIGURE 6

Flow chart of model training.
FIGURE 5

Network structure diagram.
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3.2 Evaluation metrics

For binary classification problem, A is called “positive” and B is

called “negative,” and the classifier correctly predicts “True” and

incorrectly predicts “False”. According to these four basic

combinations, the four basic elements of the confusion matrix are

TP (True Positive), FN (False Negative), TN ((True Negative), and

FP (False Positive), as shown in Table 1.

In object detection experiments, IoU, Precision, Recall, AP and

mAP are commonly used as evaluation indexes. Among them, IoU

represents the intersection ratio between the predicted result and

the true label for each category, as shown in Eq.7. Precision refers to

the proportion of data whose value is true indeed when the classifier

predicts it to be true, while Recall refers to the percentage of the

classifier predicts to be correct for all data that is true, respectively,

the formulas of the two is Eq.8 and Eq.9. However, all three indexes

have their limitations, therefore AP/mAP is often used to evaluate

the performance of object detection task.

 IoU  = TP
TP+FP+FN (7)

 Precision  = TP
TP+FP (8)

 Recall  = TP
TP+FN (9)

If we take different confidence levels, we can get different

Precision and Recall, and if we get the confidence level dense

enough, we will obtain the Precision-Recall curve(PR curve), as

shown in Figure 8. While AP refers to the area under the curve, and
Frontiers in Plant Science 08122
mAP is the average of the AP values for all classes. In particular, the

mAP@[.5:.95] refers to the mAP at different IoU thresholds (from

0.5 to 0.95, in steps of 0.05).
3.3 Dataset acquisition

Due to the scarcity of public corn pests dataset, we collected

some images of three major corn pests: corn borer, bollworm, and

armyworm on the web as our original dataset, including 31 images

of corn borer, 36 images of bollworm, 31 images of armyworm and

31 negative images. Prior to beginning the experiment, we used

data augmentation techniques to the technique expands a total of

129 images to 5160 images as our final dataset. During training, we

use a ratio of 8:1:1 to split the dataset into a training set, a

validation set and a testing set. And the training set has 4128

images, the validation set has 516 images and the testing set has

516 images.
FIGURE 7

Flow chart of experimental scheme.
TABLE 1 Confusion matrix.

Truth Prediction

T F

P TP FN

N FP TN
 FIGURE 8

Schematic diagram of PR curve.
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3.4 Data augmentation

As deep learning requires a large amount of data for training, we

used data augmentation on the original dataset, such as random

rotation transform, blur transformation, flip transform, addition of

Gaussian noise and so on. The random rotation and flip

transformation models are able to simulate the different locations of

insect presence, while the blur transformation and Gaussian noise

could better simulate the various environment that may occur in

reality. Figure 9 shows the images which performing

data augmentation.
1 https://github.com/xpwu95/IP102
3.5 Transfer learning

Transfer learning is a popular method in the field of computer

vision, because it can build accurate models in less time. By using

transfer learning, model do not start training from scratch, but start

with the patterns of solving problems that learned from previous

problems. In the field of computer vision, transfer learning is usually

represented by the use of pre-trained models. Pre-trained models are

models that trained on large baseline datasets. For example, in object

detection tasks, backbone neural network is first used for feature

extraction. The backbone used here is generally a neural network

such as VGG, ResNet, etc. Therefore, when training an object detection

model, the parameters of the backbone can be initialized by using the

pre-trained weights of these neural networks so that more effective

features can be extracted at the beginning.
Frontiers in Plant Science 09123
In this paper, we selected the IP102 public dataset as a pre-

trained dataset1. The IP102 dataset is a large-scale dataset for pests

identification, which contains more than 75,000 images of 102 pests

classes. These images exhibit a natural long-tailed distribution. In

addition, about 19,000 of these images have added bounding boxes

for object detection. We select these images with object detection

frames, and feed them into individual networks for training to

obtain pre-trained weights. The pre-trained weights will be

transferred to our own dataset for use, and it can make the final

model more robust and convincing in the pests identification task.
3.6 Experimental environment and
parameter settings

The experimental environment configuration of this paper is

as follows: OS is Linux, GPUs are two Tesla V100 with 80G

memories, training environment is python 3.7, Pytorch 1.11.0.

while Labelme is used to annotate the data. In training, to ensure

comparability across experiments and appropriateness of training,

each training epoch consists of 100 rounds and the img_size is

320×320. In order to verify the good performance of our proposed

algorithm under large batch size, we set the batch size to 512.

While for training of YOLOv7, the weight_decay is 0.002 and

learning rate is 0.001.
B

C D

A

FIGURE 9

Data augmentation effect display: (A) Original image. (B) Random crop. (C) Flip. (D) Decrease in brightness.
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3.7 Experiment result

Figure 10 shows the prediction performance of the YOLOv7

network incorporating with the Adan optimizer when facing

different species of maize pests.

In order to verify the effectiveness of the algorithm proposed in

this paper, we compared the improved network with the original

network which using Adam, AdamW and SGD. We also tested

several other object detection networks: SSD (Zhao et al., 2015),

RetinaNet (Zhu et al., 2010), FCOS (Zhu et al., 2012), Faster RCNN

(Xu et al., 2002) and FPN (Zhu and Zhang, 2013). Finally, we put

these networks together and compared them with the result of our

previous works, and the performance evaluation indexes are

[mAP@.5:.95] and precision which are described above. The

result is shown in Table 2.

We also compared the differences between the YOLOv7

network loaded with Adan and other networks when face with

the same image. And the prediction result are shown in Figure 11.
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4 Discussion

The experimental result in Table 2 shows that the YOLOv7

network incorporating the Adan outperforms traditional ML

algorithms and other comparative networks in the comparison of

both mAP@[.5:.95] and precision. Meanwhile, from Figure 10 we

can see that the improved network has a good performance on

different types of maize pests. What’s more, further comparison of

three different networks in Figure 11 shows that the YOLOv7

network incorporating Adan can still perform well in more

complex natural environment with no errors. SSD network and

the YOLOv7 network incorporating the Adam both have errors in

prediction of the same images. The YOLOv7 network with the

Adam misidentified the background as insects in two images, while

SSD network misidentified insects as the background in both

images. The final comparison of performance indexes and

prediction result verifies that Adan optimizer can effectively

improve the model performance and help the YOLOv7 network
FIGURE 10

Test result: (A) bollworm. (B) armyworm. (C) corn borer.
TABLE 2 Performance comparison of different networks.

Networks mAP@[.5:.95] Precision

YOLOv7(Adam) (Vızhányó and Felföldi, 2000) 0.8646 99.66%

YOLOv7(AdamW) (Vızhányó and Felföldi, 2000) 0.9032 99.64%

YOLOv7(SGD) (Vızhányó and Felföldi, 2000) 0.9407 99.91%

Faster R-CNN (Xu et al., 2002) 0.6655 88.99%

SSD (Zhao et al., 2015) 0.6608 98.87%

RetinaNet (Zhu et al., 2010) 0.681 98.2%

FCOS (Zhu et al., 2012) 0.602 86.8%

FPN (Zhu and Zhang, 2013) 0.6337 87.6%

Histogram Reverse Mapping
and Invariant Moment (Redmon and Farhadi, 2018)

None 94.3%

GMM and DRLSE (Ren et al., 2015) None 86.364%

Ours 0.9669 99.95%
fr
The bold values means the better results.
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reduce the possibility of false recognition and missed recognition,

thus making the network more efficient and error-free in pests

recognition task. For further confirmation, we collected data of the

map[.5:.95] and precision of YOLOv7 networks which using

different optimizers in the experiment when the epoch changed,

as shown in Tables 3, 4. Based on these data, we plotted the

performance trends of four optimizers, as shown in Figure 12.

From Figure 12 we can see that the YOLOv7 incorporating with

Adan optimizer converges faster than YOLOv7 loaded with other

optimizers in both mAP@[.5:.95] and precision, and the result are

consistent with our theoretical analysis. In process of calculating

momentums, Adan uses the modified Nesterov momentum

algorithm, while Adam with AdamW use the traditional reballing

algorithm. The modified Nesterov momentum algorithm helps

Adan to sense the surrounding gradient information in advance,

which helps model to escape from the sharp local minimal regions

efficiently, thus speeding up the convergence of Adan. The

comparison of map[.5:.95] and precision shows that Adan can

obtain greater performance by using only 1/2-2/3 of the

computation of other optimizers. What’s more, the mAP@[.5:.95]

increases by 2.79%-11.83% compared to original optimizers. The

experimental result also confirm that Adan only needs less than 2/3
Frontiers in Plant Science 11125
of computation of the original network to obtain the performance

beyond it, which is proposed in the original paper of Adan.
5 Conclusions

In this paper, a new deep learning algorithm based on YOLOv7

network and Adan optimizer is proposed, and a feasible maize pests

identification scheme is proposed as well, which is successfully applied

to the identification task of maize pests. The mAP@[.5:.95] of the

improved network reaches 96.69% and the precision reaches 99.95% in

this task, which breaks the bottleneck of the original networks. And it

also confirms the feasibility and effectiveness of applying deep

convolutional neural networks to the task of crop pests and disease

identification, and it has positive significance for crop pests and disease

prevention and control. We can quickly identify common corn pests

and take appropriate measures by using this model, and scientifically

carryout pests control methods to reduce possible economic losses and

promote agricultural modernization.

However, the environment is more complex in real life. There are

many other insects with similar characteristics, while the difficulty of

detection in complex environment will be greatly increased due to the
FIGURE 11

Comparison of the prediction effect of different networks when facing the same image: (A) YOLOv7(Adan). (B) YOLOv7(Adam). (C) SSD.
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TABLE 3 Comparison of [mAP@.5:.95] changes with epochs for different optimizers.

epochs Ours YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)

10/100 0.4202 0.342 0.2719 0.241

20/100 0.5444 0.2034 0.3086 0.3765

30/100 0.7107 0.4091 0.4758 0.3746

40/100 0.8681 0.5632 0.7297 0.5812

50/100 0.8691 0.7674 0.802 0.6337

60/100 0.9212 0.8176 0.8966 0.7758

70/100 0.9401 0.8409 0.8846 0.8022

80/100 0.9615 0.8699 0.9083 0.8103

90/100 0.9658 0.9089 0.9289 0.8916

100/100 0.9669 0.8646 0.9032 0.9407
F
rontiers in Plant Science
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The bold values means the better results.
TABLE 4 Comparison of precision changes with epochs for different optimizers.

epochs Ours YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)

10/100 0.3589 0.4026 0.2933 0.4015

20/100 0.8744 0.3229 0.5222 0.5031

30/100 0.968 0.6481 0.7153 0.6272

40/100 0.9717 0.7398 0.9332 0.9803

50/100 0.9974 0.9466 0.9774 0.995

60/100 0.9981 0.9823 0.9962 0.9979

70/100 0.9986 0.9825 0.9978 0.9967

80/100 0.9991 0.9918 0.9972 0.9989

(Continued)
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FIGURE 12

Comparison of precision changes with epoches for different optimizers. (A) map@[.5:.95] (B) precision.
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limitations of scarce data. Meanwhile, some corn pests will appear in

the form of eggs in real life, while these eggs are tiny and their

characteristics are difficult to distinguish, making identification more

difficult. What’s worse, pests data are scarce and difficult to collect, and

the cost of manual labeling is very high. Therefore, how to obtain

sufficient data and enough computing power is the key of future pests

controlling technology researches.
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epochs Ours YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)

90/100 0.999 0.9959 0.997 0.9997

100/100 0.9995 0.9966 0.9982 0.9991
The bold values means the better results.
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Research of segmentation
recognition of small disease
spots on apple leaves based on
hybrid loss function and CBAM

Xiaoqian Zhang †, Dongming Li †, Xuan Liu, Tao Sun,
Xiujun Lin and Zhenhui Ren*

College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China
Identification technology of apple diseases is of great significance in improving

production efficiency and quality. This paper has used apple Alternaria blotch and

brown spot disease leaves as the research object and proposes a disease spot

segmentation and disease identification method based on DFL-UNet+CBAM to

address the problems of low recognition accuracy and poor performance of

small spot segmentation in apple leaf disease recognition. The goal of this paper

is to accurately prevent and control apple diseases, avoid fruit quality degradation

and yield reduction, and reduce the resulting economic losses. DFL-UNet

+CBAM model has employed a hybrid loss function of Dice Loss and Focal

Loss as the loss function and added CBAM attentionmechanism to both effective

feature layers extracted by the backbone network and the results of the first

upsampling, enhancing the model to rescale the inter-feature weighting

relationships, enhance the channel features of leaf disease spots and

suppressing the channel features of healthy parts of the leaf, and improving

the network’s ability to extract disease features while also increasing model

robustness. In general, after training, the average loss rate of the improvedmodel

decreases from 0.063 to 0.008 under the premise of ensuring the accuracy of

image segmentation. The smaller the loss value is, the better the model is. In the

lesion segmentation and disease identification test, MIoU was 91.07%, MPA was

95.58%, F1 Score was 95.16%, MIoU index increased by 1.96%, predicted disease

area and actual disease area overlap increased, MPA increased by 1.06%,

predicted category correctness increased, F1 Score increased by 1.14%, the

number of correctly identified lesion pixels increased, and the segmentation

result was more accurate. Specifically, compared to the original U-Net model,

the segmentation of Alternaria blotch disease, the MIoU value increased by

4.41%, the MPA value increased by 4.13%, the Precision increased by 1.49%, the

Recall increased by 4.13%, and the F1 Score increased by 2.81%; in the

segmentation of brown spots, MIoU values increased by 1.18%, MPA values by

0.6%, Precision by 0.78%, Recall by 0.6%, and F1 Score by 0.69%. The spot

diameter of the Alternaria blotch disease is 0.2-0.3cm in the early stage, 0.5-

0.6cm in the middle and late stages, and the spot diameter of the brown spot

disease is 0.3-3cm. Obviously, brown spot spots are larger than Alternaria blotch

spots. The segmentation performance of smaller disease spots has increased

more noticeably, according to the quantitative analysis results, proving that the

model’s capacity to segment smaller disease spots has greatly improved. The
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findings demonstrate that for the detection of apple leaf diseases, the method

suggested in this research has a greater recognition accuracy and better

segmentation performance. The model in this paper can obtain more

sophisticated semantic information in comparison to the traditional U-Net,

further enhance the recognition accuracy and segmentation performance of

apple leaf spots, and address the issues of low accuracy and low efficiency of

conventional disease recognition methods as well as the challenging

convergence of conventional deep convolutional networks.
KEYWORDS

hybrid loss function, CBAM, U-net, small spot segmentation, apple leaf disease
Introduction

Apples are rich in medicinal and nutritional value and are one

of the most widely planted fruit industries in the world (Khan et al.,

2022). From the data of recent years, the growth rate of apple

production has been decreasing year by year (Liu et al., 2018), and

analyzing the reasons for this, diseases are one of the important

influencing factors. Diseases of apple trees occur in the roots,

branches, fruits, and leaves, and most of them initially spread

from the leaves, so accurate and effective identification of apple

leaf disease types and the degree of disease is a key aspect of apple

disease protection management. According to statistics, there are

more than 100 kinds of apple leaf diseases, among which Alternaria

blotch and brown spot disease are the two most common leaf

diseases of apple trees. In this paper, we have segmented the spots

and classified the diseases for the 2 common types of apple

leaf diseases.

The traditional method of judging fruit tree leaf diseases mainly

relies on expert experience by manually extracting the color, texture,

and shape characteristics of diseased leaf images (Ayaz et al., 2021).

However, in actual production activities, it is easy to misjudge the type

of disease and thus misuse pesticides, which affects apple production.

Therefore, a more convenient and accurate disease diagnosis method is

urgently needed to analyze and determine the type of disease which

provides researchers with a reasonable application strategy to prevent

and control the disease on time and reduce the planting management

pressure of fruit farmers. With the breakthrough progress of deep

convolutional neural networks in classification tasks on open data sets,

many scholars have applied image segmentation technology to the field

of disease spot recognition to segment disease images and identify them

in real-time, scientifically determine the type of leaf diseases and the

degree of disease, take timely and effective measures to improve apple

yield, and help fruit farmers achieve early disease control.

The current challenges of apple leaf and spot image

segmentation can be summarized into the following three types:
1. Unbalanced pixel ratio. The disease spot information is

readily lost in the disease spot segmentation task because

the pixels in the diseased region only make up a small
02130
portion of all the pixels in the entire image. Additionally,

because of the imbalanced pixel ratio, a lot of pixels in the

background that can be classified easily hide a lot of the

pixels in the rare diseased zone during the loss summing,

which negatively affects model training and, as a result, the

segmentation of diseased spots.

2. Hard example sample problem. The extraction of target leaf

edges and disease areas is problematic in the natural

environment due to leaf overlap, uneven lighting, and

shadows. These difficult-to-classify pixels directly affect

the outcomes of leaf segmentation, which in turn affects

the extraction of disease spots.

3. When an apple tree is infected in its early stages, the fruit

has not yet developed, and the illness first appears in the

leaves. Brown to dark brown little round spots with a

diameter of 2 to 3 mm was generated on the young leaves

during the early stages of spotted defoliation, and purple

haloes were frequently present surrounding the lesions with

obvious margins. Yellowish-brown dots that eventually

became circular emerged on the leaf surface in the early

stages of brown spot disease. The early stages of spotted

defoliation and brown spot are quite similar, making it

challenging to tell them apart. This makes it difficult to

identify the types of diseases, which has an impact on early

disease prevention and control.
In order to more precisely locate disease areas and identify

disease species, as well as to lay the groundwork for future

assessments of the severity of disease in fruit trees and effective

disease control methods, the main motivation for the current study

is to segment the smaller spots on apple leaves and classify similar

diseases. Smaller spots are challenging to identify in lesion

segmentation, necessitating model improvement to enhance

lesion segmentation performance. Early detection of apple leaf

diseases is essential for timely disease management, illness

prevention, and mitigation of effects on fruit quality and fruit

yield. Further, the performance of various semantic segmentation

models (such as Deeplabv3+, PSPNet (Pyramid Scene Parseing

Network), and U-Net) in spot segmentation has been the focus of

recent research, and performance evaluation measures like MIOU
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(Mean Intersection over Union), MPA (Mean Pixel Accuracy),

Precision, and F1 scores were taken into account in the

current work.

Too et al. (Too et al., 2019) compared various convolutional

neural network models, including VGG16, InceptionV4, ResNet50,

ResNet101, ResNet152, and DenseNets121, using plant leaf diseases

from the publicly available Plant Village dataset as the research

object. The results of the experiment revealed that the DenseNets

network model performed the best in terms of classifying and

identifying plant leaf diseases. Lin et al. (Lin et al., 2019) improved

the UNet-based deep convolutional neural network model was

proposed for cucumber powdery mildew to segment and extract

the diseased areas of cucumber leaves with an average pixel

accuracy of 96.08%, which is better than traditional detection

methods such as K-means, random forest, and GBDT (Gradient

Boosting Decision Tree). Zhong Y et al. (Zhong and Zhao, 2020)

proposed three methods to identify apple leaf diseases: regression,

multi-label classification, and Focal Loss function based on

DenseNet-121 deep convolutional network, and the accuracy of

the method on the test set was 93.51%, 93.31%, and 93.71%,

respectively, which was better than the traditional CE (cross-

entropy) loss function-based multi-classification methods. Santos

et al. (Santos et al., 2020) used the Mask R-CNN instance

segmentation network model to segment, detect and count the

grape trees in the real scene, compared with other network models,

the F-score of the Mask R-CNN network model achieved an

optimal effect of 0.91. Ngugi et al. (Ngugi et al., 2020) modified

the encoder component of the UNet network model to offer the

network the ability of multi-scale feature extraction to achieve

tomato leaf disease spot segmentation on complicated backdrops,

thus increasing the segmentation accuracy of tomato leaf illnesses.

On the entire plant leaf specimen dataset, Hussein et al. (Hussein

et al., 2021) used DeepLabV3+ to conduct segmentation

experiments and found that utilizing a deep learning semantic

segmentation model produced superior semantic segmentation

outcomes than target detection techniques like Faster R-CNN

(Ren et al., 2017) and Yolo v5. Wang P et al. (Wang et al., 2021)

proposed to use CA-ENet to identify different apple diseases. This

method integrates a coordinate attention block in the EfficientNet-

B4 network, uses deep separable convolution in the convolution

module, and introduces the h-swish activation function. The

experimental results show that the accuracy of this method is

98.92%, and the average F1 score is 0.988, which is better than

ResNet-152, DenseNet-264, and ResNeXt-101. Tassis L M et al.

(Tassis et al., 2021) used the Mask R-CNN network, U-Net, and

PSPNet networks to automatically detect identify disease spots in

field images containing some coffee trees and obtained 73.90%

accuracy and 71.90% recall in the instance segmentation task; for U-

Net and PSPNet networks, 94.25% and 93.54% average intersection

and union were obtained. Li X et al. (Li et al., 2022) used U-Net,

PSPNet, and DeepLabV3+ (Chen et al., 2018a) semantic

segmentation model for potato leaf segmentation, and the MIoU

of the model was 89.91% and MPA was 94.24%.

Studies have shown that plant leaf lesion segmentation based on

deep learning semantic segmentation models is feasible, but existing

studies have only used CNN-based models to identify crops and
Frontiers in Plant Science 03131
plant diseases without improving the models, and there are fewer

studies on segmentation of apple leaf lesion regions based on

semantic segmentation. Liu et al. (Liu et al., 2022) used the

severity of apple Alternaria blotch assessed using DeeplabV3 +,

PSPNet, and UNet. The correlation coefficient and consistency

correlation coefficient were both 0.992 and the average accuracy

of severity categorization was 96.41%. The study’s lack of many

disease instances in a single leaf image was a drawback, even though

the reference value and anticipated value were in agreement. In

addition, in prior research, the loss function of the model is typically

a single loss function. In this study, to enhance the segmentation

performance and achieve more precise segmentation of leaves and

disease spots under natural conditions, we fused two loss functions

and added attention mechanisms to both the two effective feature

layers extracted by the backbone network and the outcomes of the

first upsampling.

Therefore, this paper has improved the U-Net model by

adopting a hybrid loss function and adding an attention

mechanism to perform pixel feature extraction and spot

segmentation for two common types of apple leaf diseases, so that

the disease can be recognized accurately. This method has improved

the recognition accuracy and segmentation effect for small targets

such as apple leaf spots while ensuring its feature extraction and

classification ability.

The main contributions of this work are as follows:
1. Dice Loss and Focal Loss are combined as the loss function

in this paper, causing the network to pay more attention to

the similarity of lesions, increase the accuracy of image

segmentation, and optimize the segmentation details.

2. The original U-Net model is proposed to be enhanced with

an attention mechanism in this research. By comparing the

segmentation accuracy after incorporating the three

attention mechanisms SENet (Squeeze-and-Excitation

Networks), ECANet (Efficient Channel Attention

Module), and CBAM (Convolutional Block Attention

Module), it is found that adding CBAM to the original

model improves the network’s capacity to extract illness

features and increases the robustness of the model.

3. The model in this work has the best segmentation

performance in smaller disease spots segmentation

recognition when the segmentation performances of

Deeplabv3+, PSPNet, U-Net, and DFL-UNet+CBAM are

compared.

4. The classification and identification of related diseases, as

well as the segmentation and recognition of smaller disease

spots in apple leaves, were accomplished. In general, the

results of this experiment can serve as a technical

foundation for the future segmentation, classification, and

precise management of plant leaf disease spots.
The structure of the whole document is as follows. The first

section of this essay provides an overview of the study context and

topic’s importance, the research’s driving forces, its current state, its

main contributions, and its primary ideas. In Section 2, the

suggested modeling strategy is introduced, with an emphasis on
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the U-Net algorithm, the attention mechanism, and the loss

function, as well as a description of the enhanced network

topology. The study’s materials and procedures are described in

Section 3, including the dataset preparation process, model training

environment, model implementation platform, and an explanation

of each model assessment metric’s parameter. The fourth section

examines the experimental findings, investigates the segmentation

impact of the model trained on smaller disease spots using a variety

of algorithms, loss functions, and attention processes, and discusses

the training strategy for the model with the best segmentation effect.

The discussion of the research is introduced in Section 5, which

mostly outlines the issues that need to be resolved. Section 6

summarizes the research of this paper and introduces the

research conclusions of the test.
Improved U-Net network structure

U-Net network structure

One of the earliest full convolutional network-based image

segmentation algorithms, U-Net is an upgraded semantic

segmentation network built on FCN (Fully Convolutional

Networks) (Shelhamer et al., 2017) and may maintain more local

features in the segmentation outcomes.

The “U-shaped” symmetric encoder-decoder structure of the U-

Net network’s second half, which is upsampling, is used for feature

extraction in the first half. The enhanced feature extraction part of the

process can be used to up-sample the five initial effective feature layers

obtained from the backbone part and perform feature fusion to obtain

an effective feature layer that fuses all features to classify each feature

point. The backbone feature extraction part makes up the first half.
Loss function

In this paper, a hybrid loss function was utilized to close the gap

between the prediction results and the true values and achieved high

confidence in the boundaries of segmented images. The commonly

used loss function was CE Loss, but its role was relatively small

when the examples were unbalanced. Lin, T.-Y. et al. (Lin et al.,

2020) proposed focal loss to improve the accuracy of dense object

detection. Dice Loss (Wang et al., 2020) and Focal Loss (Chen and

Qin, 2022) were taken into consideration in order to address the

issues of poor segmentation performance of smaller disease spots in

apple leaves and the challenge of classifying apple Alternaria blotch

and brown spot disease diseases with similar disease characteristics

at the early stage of disease onset.

The basic idea behind Dice Loss was to measure the regional

similarity between the prediction result and the true value during

training; however, using Dice Loss directly reduced training

stability. To avoid the problem of assigning different weights to

the same class while ignoring the presence of hard examples in both

positive and negative examples, such as pixels in the diseased area

covered by raindrops and light or other leaf pixels in the

background, the network was focused on learning hard examples
Frontiers in Plant Science 04132
by using a Focal Loss function that increases the loss value of

challenging examples. By increasing the loss value of hard examples

and forcing the network to concentrate on learning hard examples,

it addressed the issue of unbalanced positive and negative examples

as well as unbalanced hard and easy examples.

(1) CE loss is used to measure the difference between two

probability distributions and the gap between model learning and

reality. The traditional cross-entropy loss function is the most often

used loss function in classification. Equation (1) displays its formula.

CE   Loss = −(yi log pi + (1 − yi) log (1 − pi)) (1)

(2) Dice Loss places more emphasis on identifying leaf regions

and gauges how well the outcomes anticipated and actual values in

the area match up. Equation (2) illustrates the formula.

Dice   loss =
2TP

2TP + FN + FP
(2)

where, correspondingly, TP (True Positive), FP (False Positive),

and FN (False Negative) represent the total number of true

positives, false positives, and false negatives.

(3) Focal Loss focuses the network on learning hard examples

by enhancing the loss value of hard examples, balancing positive

and negative examples and difficult and easy classification examples,

as shown in equation (3).

Focal loss(Y, P) = −
1
no

n
i=1½ayi(1 − pi)

g ln pi + (1 − a)(1

− yi)p
g
i ln (1 − pi)� (3)

In the equation, n stands for the total number of apple leaf

samples, yifor the input sample’s true category, pifor the likelihood

that the sample is 1, and gfor the modulation coefficient. The

average logarithmic loss for each sample is shown by the

logarithmic loss for all samples. To strengthen the focus on

positive examples and improve the imbalance of targets in the

case of extremely unbalanced categories, adding (1 − pi)
gwill cause

the loss value of samples with high prediction probability to

decrease while the loss value of samples with low prediction

probability to increase. Currently, image segmentation can only

use it for binary classification. The positive example in the binary

classification problem has a label of 1, and the negative example has

a label of 0. For the positive example, the more 1 − pi, the harder it is

to categorize the sample. The more piis greater, the more

challenging it is to classify negative examples.

In this study, the loss function employed a hybrid loss function

(DFL) that scaled both Dice Loss and Focal Loss to the same order

of magnitude to predict the input data, with Dice Loss emphasizing

similarity and Focal Loss improving segmentation specifics to

increase image segmentation accuracy.
Attentional mechanism

Jain et al. (Jain et al., 2022) compared the Attention-UNet

model with the UNet, UNet + + and UNet3P models, the AUC

(Area Under Curve) value is 0.97, while the AUC values of other
frontiersin.org
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models are 0.964,0.966 and 0.965, respectively. The results show

that the attention mechanism is beneficial to segment very bright

and blurred plaque images that are difficult to diagnose using

other methods.

The inclusion of an attention mechanism was thought to

improve feature extraction because the leaf spot areas are smaller.

The model would then assign different weights to each location of

the input image and concentrate on the areas with crucial

information, which would help it make more accurate judgments

while using fewer resources. The attention mechanism has

demonstrated strong performance in previous research on tasks

like categorization, detection, and segmentation (Karthik et al.,

2020; Mi et al., 2020). In this study, we thoroughly examined

SENet (Hu et al., 2020), ECANet (Yu et al., 2022), and CBAM

(Ma et al., 2022), three attention mechanisms, and we chose the best

module to enhance apple leaf spot segmentation.

ECANet removed the two FC (Fully Connected) layers used in

SENet and performed global average pooling without

dimensionality reduction. It used the current channel and its k

neighboring channels for local cross-channel interaction. SENet

performed global average pooling of the input feature layer, took the

Sigmoid after completing two full joins, obtained the weight of each

channel of the input feature layer, and then multiplied that weight

by the original input feature layer. Compared to SENet’s attention

mechanism, which focused exclusively on channels, CBAM was a

lightweight attention module that could be integrated into virtually

any convolutional neural network, and almost negligible

computation and parameters were introduced. It combined the

channel attention mechanism and the spatial attention mechanism

to jointly learn the important local detail information in the image,

assign higher weights to the diseased spot region in the neural

network’s feature map and lower weights to the background,

improved the neural network’s attention to the diseased spot in

the image, and then enhanced the network’s capacity for feature

learning and expression.

In order to boost the network’s capacity to extract disease

features and the resilience of the model, an attention mechanism

was added to the two effective feature layers that the backbone

network extracted, as well as to the outcomes of the

initial upsampling.
Improved U-Net network structure

This paper proposed an improved model based on U-Net that

keeps the backbone feature extraction network but enhanced it by

adding CBAM modules to the two effective feature layers extracted

by the backbone network; after being subjected to feature fusion to

complete two convolution operations, the effective feature layers

obtained in the coding stage are then subjected to upsampling to

recover the original image accuracy and detail information pixel by

pixel. The CBAM attention module was then embedded after the

first upsampling. The model was designed to recalibrate the weight

relationships between features, amplify channel features of leaf

disease spots, and suppressed channel features of healthy regions

of leaves to improve the network’s ability to extract disease features
Frontiers in Plant Science 05133
and to increase the model’s robustness. The upper portion of the

improved U-Net network was the backbone feature extraction

network, and the lower portion was the enhanced feature

extraction network.

Additionally, the improved model predicts the input data using a

mixed loss function (DFL), which scales the focus loss and dice loss to

the same magnitude. During training, Dice Loss focuses more on

identifying the foreground region and assesses how closely the results

of the prediction match the actual value in the area. By strengthening

the loss value of hard examples (such as pixels in the diseased area

covered by raindrops and light or other leaf pixels in the background),

the Focal Loss function makes the network focus on the learning of

difficult samples and solves the problem of imbalance between positive

and negative examples and imbalance between difficult and easy

samples. The structure of the network is shown in Figure 1.
Materials and methods

Dataset source

The image samples of apple leaf diseases in this experiment

came from the public data set Plant Village (Geetharamani and

Pandian, 2019). The dataset manually collects images of indoor and

outdoor diseased apple leaves. In order to ensure the versatility of

the model, outdoor landscape images were taken on sunny and

rainy days, respectively.

The data set in this paper contains different situations of a single

leaf with a single disease and multiple diseases and multi-leaf

images in complex backgrounds. As seen in Figure 2, the leaf

diseases include single Alternaria blotch, brown spot, and

multiple diseases (including brown spot and mosaic) of apple

leaves. The samples in this dataset include pre-processing

operations on the acquired images, such as image rotation,

horizontal and vertical mirroring, a sharpness value, brightness

value, contrast adjustment, and Gaussian blur on the original

disease images. This pre-processing was done to prevent

overfitting issues in the later network training phase, to improve

the anti-interference ability of complex conditions as well as the

generalization ability of the model, to increase the diversity, and to

avoid generating problems during the network training phase, and

thus the model robustness is enhanced.

Also to ensure a balanced sample, 1200 images of a single

Alternaria blotch, 1200 images of a single brown spot, 600 images of

apple leaf diseases infected with multiple diseases (mosaic and

brown spot), a total of 3000 original images (JPG format) were

selected, with a 1:1 ratio of complex background images to simple

laboratory background images, which is more challenging than

laboratory images of diseased leaves with simple backgrounds, with

an original image size of 512 pixels * 512 pixels, and the dataset was

divided into training, validation and test sets in a 6:2:2 ratio. As

demonstrated in Figure 2, the image of apple leaf disease has the

traits of a smaller disease spot and high similarity, which presents

numerous difficulties for image segmentation.

For leaf segmentation, it is difficult to extract the target leaf’s

edge because there are multiple leaves overlapping in the
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background of the image in the outdoor scene. Additionally, there

are shadows in the leaf image due to uneven illumination, self-

crimping, folding, and other factors, which makes the segmentation

more challenging. Diverse and challenging to extract features from

the target leaf scales. The extraction of disease spot features and the

precise detection of disease spots are greatly hampered by the

smaller disease spot pixels, which make up 0.2% to 0.4% of

the leaf pixels in spot segmentation. Outside, there are materials

that resemble spots that could prevent infections from being

extracted. The segmentation impact of disease spots is easily

influenced by the spots on raindrops and leaves.
Dataset production

The photos must be converted into a dataset in PASCAL VOC

format by the specifications of the model for the dataset.

JPEGImages, ImageSets, and Annotations were the three main

files that made up the PASCAL VOC format dataset.

The Segmentation folder of the ImageSets file contained four

text files: train.txt, val.txt, test.txt, and trainval.txt, which,

respectively, represented the training set, validation set, test set,

and summary of the training and validation sets required by the

model. The numbers of the photographs in each of the four text
Frontiers in Plant Science 06134
files’ respective sets, with each image number on a distinct line,

made up their contents. To ensure the generalizability of the model,

the image numbers were created at random.

The function of Annocations file was mainly to store the

annotation information corresponding to the leaf image. In order

to train the model, a large number of data annotations of the data

set must be performed; this work used Labelme as the data labeling

software. The annotation file is initially stored in.json format, and

then changed to a tag image in.png format by batch converting the

file, as shown in Figure 3.
Setting up the testing environment
and parameters

Intel Core i7-9700, 32 GB of RAM, and an Nvidia GeForce RTX

2080Ti graphics card were the specifications of the computer’s

processor. Model construction, training, and prediction were

performed in this deep learning environment using Tensorflow-

gpu1.13.2, keras2.1.5, Windows 10, 64-bit operating system, Python

3.6.13 compiled environment, CUDA10.1 architecture, and

cuDNN7.4.1 Development library. When compared to other

adaptive learning rate algorithms, the Adam approach is simple

to use, very computationally efficient, memory-light has a quicker
FIGURE 2

Examples of apple leaf disease image.
FIGURE 1

Improved U-Net network structure diagram.
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convergence time and is invariant to diagonal gradient rescaling. In

order to select the model with the best segmentation effect through

interaction, this experiment trains the models using the Adam

optimizer until convergence.

During training, the input image is 512*512 pixels. Padding=1 is

utilized so that each input square can serve as the convolution

window’s center and stride=1 is used to limit the number of input

parameters and processing. The output size is the same as the input

when stride and padding are both set to 1. In order to nonlinearly

transform the input, the activation function needs to be introduced.

The activation function used in this paper is sigmoid. The whole

training is divided into two stages, the freezing stage and the

thawing stage. The quantity of images entered into the network at

once during training is referred to as the batch size. The model

training generation is known as an epoch. It can be regarded as a

suitable training generation when there is a minimal difference in

error between the training set and the test set. In order to ensure

that the model achieves the best effect in terms of accuracy and

training time, this paper sets the training generation to 200.

According to the graphics performance of the operating system

and the size of the image, the first 50 stages are the freezing stage,

the batch size is set to 4, and the last 150 stages are the thawing

stage, the batch size is set to 2, to ensure that the model achieves the

best effect in terms of accuracy and training time, and avoids

insufficient memory. The average value of the updated network

weight in the algorithm is the initial learning rate. The maximum

learning rate is set at 0.0001 in order to speed up the model

training’s transition into a stable learning state. The learning rate

is reduced by the cosine annealing attenuation method. Period = 5 is

set during training to attenuate the model once every 5 epochs and

preserve it, preventing the loss of the training model in the event of

a power outage or an abnormal exit during long-term training.
Model evaluation indicators

This study evaluated the classification accuracy of the model for

the disease classification problem using true positive (TP, the

number of times the model accurately predicts the disease type),

true negative (TN, the number of times the model accurately

predicts the leaf area), false positive (FP, the possibility of
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misjudging the leaf area as the spot area), and false negative (FN,

the possibility of misjudging the spot area as the leaf area).

After the establishment of the model, it was necessary to

evaluate its effectiveness. This work suggested using the mean

intersection ratio MIoU (Shoaib et al., 2022), the category average

pixel accuracy MPA, the precision rate Precision, and the

comprehensive evaluation index F1 Score (Shoaib et al., 2022) as

the evaluation index of the segmentation results in order to quantify

and assess the model’s performance.

To facilitate the interpretation of the evaluation metric

formulas, it is assumed that the data set has a total of k   +   1

categories. pij denotes the number of pixels for which category iis

predicted to category j, pii denotes the number of pixels that are

correctly predicted, and pij and pji denote the number of false

negative and false positive pixels, respectively.

(1) MIoU

The average of the ratio between the intersection and

concatenation of the set of pixels whose true value is the spot and

the set of pixels whose predicted value is the spot is determined, as

indicated in equation (4). The higher the MIoU value, the higher the

overlapping degree between the projected spot area and the actual

spot area.

MIoU =
1

k + 1o
k
i=0

pii

ok
j=0pij +ok

j=0pji − pii
(4)

(2) MPA

Equation (5) demonstrates that MPA is the average of the

percentage of total pixels that fall into the proper prediction

category.

MPA =
1

k + 1o
k
i=0

Pii

ok
j=0Pij

(5)

(3) Precision

The accuracy rate is defined as the proportion of actual diseased

pixels to those predicted as such by the model, as indicated in

equation (6). Less false detection areas are seen in the prediction

results as the value increases.

Precision =
TP

TP+FP
(6)

(4) Recall
FIGURE 3

Examples image of a.png tag image.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1175027
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1175027
The recall rate, also known as the check-all rate, is the

proportion of spots that are detected to all spots in the data set,

as is evident from equation (7).

Recall =
TP

TP+FN
(7)

(5) F1 Score

The F1 Score metric combines the Precision and Recall outputs,

as given in equation (8). F1 Score accepts values between 0 and 1.

The model’s best output is represented by 1, while its worst output is

represented by 0. The more correctly recognized spot pixels, the

more accurate the segmentation result.

F1 =
2*Precision*Recall
Precision+Recall

(8)
Test results and analysis

Test process

After 250 epochs of training the U-Net model, the Loss finally

converged to 0.022. Figure 4 depicts the Loss’s evolution throughout

training epochs. It is clear from the figure that the Loss stopped

dropping and stabilized around 200 epochs, indicating that the

model had progressively converged at that point. The U-Net model

with 200 and 250 epochs of training was chosen to compare the test

results in order to determine the best model for this experiment.

The findings are displayed in Table 1.

Table 1 shows that as training epochs increased, MIoU, MPA,

and Precision values fell at training 250 epochs, indicating the

occurrence of an overfitting phenomenon. As a result, the model in

this research was chosen for training 200 epochs.

In the experiment to segment unhealthy spots, the target pixel

points can be separated into two primary categories: diseased spots

and healthy parts. Since the background does not include any

diseased spots, it is likewise segmented into healthy parts. Three
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loss functions—CEL, CEDL, and DFL—are employed in this study’s

ablation experiments, with U-Net serving as the main body. The

experiment assesses the effectiveness of the loss functions using the

loss rate and accuracy of the validation set. Table 2 presents

the outcomes.

Table 2 compares the performance of the original U-Net and

the improved U-Net deep learning designs using various loss

functions. Verification loss, accuracy, MIoU, and MPA are

employed as evaluation indicators for these variables. As can be

observed, under the presumption that picture segmentation

accuracy is guaranteed, the outcomes of the four parameters are

0.008, 98.86%, 91.07%, and 95.58%, respectively, after adding the

DFL mixed loss function. The modified model’s average loss rate

dropped from 0.063 to 0.008; the lower the loss, the more accurate

the model, the MPA increased by 1.06%, the prediction category

correctness increased, the MIoU score rose by 1.96%, and the more

the predicted illness area overlapped with the actual disease region.

The challenge of distinguishing apple Alternaria blotch disease and

brown spot disease with high similarity in the early stage of disease

is resolved by the addition of the DFL mixed loss function, which

also addresses the issue of poor segmentation performance of

smaller disease points. Additionally, it lessens the disparity

between simple and difficult training examples as well as the

disparity between positive and negative training examples. The

process by which the effective loss value of the U-Net model

changes when different loss functions are applied is shown in

Figure 5. The outcomes demonstrate that the DFL mixed loss

function employed in this study has the smallest loss value, the

fastest decline rate, and the smoothest training procedure.

The model is trained by adding various attention mechanism

modules using the same experimental setting and training

parameters as U-Net combined with hybrid loss function DFL.

The experimental findings are displayed in Table 3 to compare the

various types of segmentation MIoU.

As shown in Table 3, the accuracy of disease identification can

be increased by adding SENet or ECANet, but the addition of the

CBAM attention mechanism results in superior disease

identification. The comparison shows that the MIoU value of

smaller Alternaria blotch disease spots increases by 2.97%,

indicating that the CBAM attention mechanism can effectively

focus on the disease spots in the image and suppress the

interference information. To address the issue of the DFL-UNet

model’s poor segmentation performance of smaller spots, we

decided to integrate the CBAM module in this study.
FIGURE 4

Loss curve.
TABLE 1 Comparison of segmentation results for different epochs of
training.

Epoch MIoU/(%) MPA/(%) Precision/(%)

200 89.11 94.52 93.53

250 88.96 94.30 93.24
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Results analysis

The segmentation performance of the Deeplabv3+ model,

PSPNet model, original U-Net model, and DFL-UNet+CBAM

model was compared, and the results are shown in Table 4. In

this paper, MIoU, MPA, and F1 Score were all used as evaluation

metrics for segmentation results under the same research object and

the same experimental conditions.

As can be seen in Table 4, when comparing the four models, the

MIoU, MPA, and F1 Score of the DFL-UNet+CBAM model

proposed in this paper are the highest, increasing by 1.96% in

MIoU value, 1.06% in MPA value, and 1.14% in F1 Score when

compared with the original U-Net model. This shows that the

model in this paper correctly identifies the most diseased pixels and

can effectively optimize the segmentation results and obtain more.

The change in MIoU value during model training is depicted in

Figure 6, and it is also obvious from the change curve that the model

used in this paper has the greatest MIoU value, suggesting the

highest overlap between the predicted spot area and the actual

spot area.

Table 5 compares the segmentation performance of smaller

spots before and after model modification using MIOU, MPA,

Precision, Recall, and F1 scores as assessment metrics. This

comparison is done to indicate the benefit of the suggested

method in recognizing smaller spots.
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As can be seen from Table 5, compared to the original U-Net

model, the segmentation of Alternaria blotch disease, the MIoU

value increased by 4.41%, the MPA value increased by 4.13%, the

Precision increased by 1.49%, the Recall increased by 4.13%, and the

F1 Score increased by 2.81%; in the segmentation of brown spots,

MIoU values increased by 1.18%, MPA values by 0.6%, Precision by

0.78%, Recall by 0.6%, and F1 Score by 0.69%. The spot diameter of

the Alternaria blotch disease is 0.2-0.3cm in the early stage, 0.5-

0.6cm in the middle and late stages, and the spot diameter of the

brown spot disease is 0.3-3cm. Obviously, brown spot spots are

larger than Alternaria blotch spots. The segmentation performance

of smaller disease spots has increased more noticeably, according to

the quantitative analysis results, proving that the model’s capacity to

segment smaller disease spots has greatly improved.

Additionally, the proposed model’s training and validation

performance are assessed using the training set F1 score, validation

set F1 score, a training set loss, and validation set loss. This is done to

further validate the performance of the model segmentation. The loss

value is used to quantify the discrepancy between the model’s true

value and its predicted value, and the F1 score is calculated as a

weighted average of Precision and Recall metrics. Better model

robustness is associated with smaller loss functions. The training

score determines the generalization ability of the algorithm in its

training samples. The verification score determines the optimal

model (Srinivasu et al., 2022). Figure 7 displays the model’s

performance in relation to the hyperparameters.

In this study, we used a trained semantic segmentation model to

predict apple leaf disease in laboratory and field environments. The

image dataset must meet two criteria: first, it must allow for the

simultaneous occurrence of various illnesses on the same leaf; and

second, it must allow for the presence of complicated backgrounds

in some images to guarantee the data images’ excellent

generalization ability.

In comparison to the Deeplabv3+ model, the PSPNet model,

and the original U-Net model, the segmentation results of the DFL-

UNet+CBAMmodel utilized in this paper are shown in Figure 8 for

the test set of apple disease leaf photos.

The prediction outcomes of single-leaf spot segmentation

against various backgrounds are shown in Figure 8. Figure 8

shows it abundantly clear that the network structure suggested in

this paper achieves more accurate segmentation for apple leaf spots

and produces better segmentation results for both the disease

location on the leaf and the size of the spot area. This network

structure is also more accurate than other networks used in this
TABLE 2 Experimental results of loss function ablation.

Loss function Network Val-acc/(%) Val-loss MIoU/(%) MPA/(%)

CEL Original U-Net 98.34 0.063 89.11 94.52

CEDL Original U-Net 98.37 0.055 89.33 94.85

DFL Original U-Net 98.40 0.010 90.09 95.14

CEL Improved U-Net 98.51 0.039 90.89 95.07

CEDL Improved U-Net 98.76 0.045 89.96 94.90

DFL Improved U-Net 98.86 0.008 91.07 95.58
FIGURE 5

Loss curves of different loss functions.
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paper. When recognizing brown spot disease, the Deeplabv3+

model in Figure 8C incorrectly recognized the green halo area

surrounding the illness spot as the disease spot; the PSPNet model

in Figure 8D has a condition where the object boundary

segmentation is discontinuous and the segmentation result is

rough, the border between the leaf and the backdrop is hazy, and

there is a missing section for the area affected by the brown spot

disease. Analysis of the segmentation results of the model proposed

in this paper demonstrates that the model in this paper can segment

the semantic objects completely, finely, and accurately, and it is

apparent from Figure 8F that the recognition results of the disease

spots and the segmentation results of the edges of the disease spots

in this paper are more accurate.

Comparing Figure 8C and Figure 8D, it can be seen that the

network structure of the proposed model performs well in the

segmentation of smaller spots. Although the U-Net model in

Figure 8E identified smaller spots in the apple Alternaria leaf spot

and brown spot categories of foliar diseases, the identified spot area

was incomplete. In contrast, the model in Figure 8F accurately

identified the smaller spots in the categories of apple ringspot and

brown spot, and the recognition results were more accurate.
Discussion

Semantic segmentation and attention mechanisms have been

widely used in the realm of disease recognition. An ASPP (Atrous

Spatial Pyramid Pooling)-based DeepLabV3+ semantic

segmentation network model, for instance, was developed by Li L

et al. (Li et al., 2023). The experimental findings revealed that the

model’s average pixel accuracy (MPA) and average intersection

(MIoU) reached 97.26% and 83.85%, respectively. Additionally, Li

Q et al. (Li et al., 2021) proposed an integrated U-Net segmentation

model for small sample datasets, merging U-edge Net’s features and

high-level features using ASPP. The experimental findings
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demonstrated that the method significantly increased the

segmentation accuracy of the target fruits as well as the model’s

capacity for generalization.

The segmentation task of apple leaves and spot areas was

carried out in this study using three traditional semantic

segmentation network models (DeepLabV3+, PSPNet, and U-

Net). The segmentation performance of the model was evaluated

throughout the experiment. Also, the performance of the model is

addressed in relation to the implications of various loss functions

and attention mechanisms. Following are our findings:
1. Three semantic segmentation network models (DeepLabV3

+, PSPNet, and PSPNet) were compared and their

segmentation and convergence capabilities for the apple

leaf and speckle regions were examined. The findings

indicate that PSPNet and Deeplabv3+ are not as effective

in segmenting data as the U-Net network model.

2. Investigated is how the U-Net network model chooses its

loss function. According to the results, the addition of the

DFL hybrid loss function improves the segmentation

performance and classification capacity of the model. The

average loss rate val-loss lowers from 0.063 to 0.008, the

MIoU index increases by 1.96%, and the MPA increases by

1.06%.

3. Compare the different U-Net attention mechanism

modules. The findings demonstrate that the addition of

the CBAM attention mechanism improves the disease

recognition effect. Comparatively, it is discovered that the

MIoU value of the smaller speckle leaf spot disease spot is

increased by 2.97%, demonstrating that the CBAM

attention mechanism can concentrate on and pay

attention to the disease spot in the image, as well as

effectively suppress the interference information, which

enhances the model’s focus on the target channel and

spatial information.
TABLE 4 Comparison table of segmentation performance of different models.

Model MIoU/(%) MPA/(%) F1 Score/(%)

Deeplabv3+ 85.94 92.04 91.80

PSPNet 83.49 86.81 90.40

U-Net 89.11 94.52 94.02

DFL-UNet+CBAM 91.07 95.58 95.16
TABLE 3 Comparison of the cross-merge ratio (MIoU) for each category of the model after adding the attention mechanism.

Segmentation Model leaf/(%) Alternaria blotch/(%) Brown spot disease/(%)

DFL-UNet 93.70 76.05 84.12

DFL-UNet+SENet 94.05 78.56 84.93

DFL-UNet+ECANet 93.43 78.99 85.11

DFL-UNet+CBAM 94.86 79.02 85.28
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In the prior research, the loss function of the model is typically a

single loss function. In this study, to enhance the segmentation

performance and achieve more precise segmentation of leaves and

disease spots under natural conditions, we fused two loss functions

and added attention mechanisms to both the two effective feature

layers extracted by the backbone network and the outcomes of the

first upsampling.

Overall, our technique demonstrates good adaptability in the

single background and complicated background segmentation and

detection of leaf spots. But because there are so many distractions in

the natural world (such as uneven lighting), incorrect detection and

missed detection will always happen there. In order to test the

segmentation performance of the model, Figure 9 uses the relatively

smaller and more challenging-to-identify Alternaria blotch disease

as an example. It then displays the segmentation prediction results

of the diseased leaves and disease spots in the multi-leaf image in

the natural environment. The findings demonstrate that the disease

spot segmentation effect is effective when the uneven light shadow

coverage is varied, however, there is a false detection part between

the leaf and the background.

The target leaves’ edges are difficult to extract because the

background of the image in the outdoor scene has multiple leaves

overlapping each other. Additionally, there are shadows in the leaf

images due to uneven lighting or because of curling and folding,

which makes the segmentation more challenging.

The area of light irradiation to the leaves is also diverse, as

illustrated in Figure 9, due to different shooting angles and self-
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curling factors. As a result, diseased leaves are concealed by other

leaves or object shadows, which causes the pigment imbalance

problem. Diagram 9 (a) (b) The disease leaf identification is

insufficient because only a small portion of the disease leaf’s edge

was impacted by other leaves, a phenomenon known as missed

detection; in Figure 9(c), the disease leaf edge segmentation is

inaccurate because there is cross-over between leaves and a light

uneven dual impact; as seen in Figure 9(d), the diseased leaf shadow

is heavier Part of the incorrect check for the background area, the

overall image tone is dark, the color of the measured target

is distorted.

The following issues still need to be resolved even though we

explored the segmentation recognition of smaller spots in apple

leaves in this work and increased the segmentation effect and

recognition accuracy of smaller spots.
1. The ability to quickly diagnose diseases in fruit trees is

crucial for practical production, so future research should

focus on enhancing the network structure to reduce the

model segmentation time. This will help fruit farmers

quickly confirm the diagnosis of diseases in fruit trees

and quickly apply pesticides.

2. In actual, there are frequently several leaves in a single

image and the leaves are set against a complicated

background. The presence of disease spots on many

leaves is not taken into account in this work.

Consequently, to enhance the segmentation performance

of disease leaves and thereby enhance the precision of

disease spot recognition, the model needs to be further

enhanced in the upcoming research.

3. The actual development of disease species is complex and

varied. Despite the fact that the method described in this

paper enhances the segmentation performance of smaller

spots in apple leaf diseases and the recognition precision of

difficult-to-classify diseases, the disease species in the

training data set still need to be increased, and the disease

species can be increased later to improve the recognition

and segmentation ability of the model for various diseases

and make the model broadly applicable.
Conclusion

In practice, the naked eye can easily misinterpret the type of

disease and thus overuse pesticides, which in turn affects apple
FIGURE 6

Comparison of different model segmentation mean intersection
over union.
TABLE 5 Analysis of quantitative results of U-Net and improved U-Net.

Model Disease types MIoU/(%) MPA/(%) Precision/(%) Recall/(%) F1 Score/(%)

Original U-Net
Alternaria blotch 74.61 84.93 86.02 84.93 85.47

Brown spot 84.1 92.7 90.06 92.7 91.36

Improved U-Net
Alternaria blotch 79.02 89.06 87.51 89.06 88.28

Brown spot 85.28 93.3 90.84 93.3 92.05
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production. Therefore, disease diagnosis must be easier, faster, and

more accurate, while the type of disease must be analyzed and

determined. Apple leaf spot is very small and has similar

characteristics when the disease first appears, while the actual

orchard environment has different light conditions, overlapping

leaf shade, etc. A deep learning-based apple leaf disease spot

segmentation technique is suggested for apple leaf disease

recognition by utilizing CNN’s strong feature extraction

capabilities in order to minimize the influence on disease spot

segmentation. The core network architecture used by the method is

a convolutional neural network called U-Net, and to better extract

picture features, its structure and parameters have been modified

and optimized. The identification of apple leaf disease depends

directly on the precision of the segmentation method. In order to

address the issues of low recognition accuracy and subpar

performance of smaller spot segmentation in apple leaf disease

recognition, this paper uses apple leaf Alternaria blotch and brown
Frontiers in Plant Science 12140
spot as its research object. It then proposes a method of spot

segmentation and disease recognition based on hybrid loss function

and CBAM. The following conclusions were obtained from

the study:
1. To deal with the issue of poor performance in segmenting

smaller spots in apple leaves, a model for apple leaf disease

segmentation based on hybrid loss function and CBAM

network has been developed. Firstly, the model using mixed

loss function of Dice Loss and Focal Loss has swapped out

the original cross entropy function, which has given larger

weight to the samples that are difficult to classify, making

the model pay more attention to the target with smaller

pixel proportion. Secondly, the backbone network’s two

useful feature layers and the outcomes of the first

upsampling have been combined with the CBAM module

to complete the extraction of pixel features and disease spot
A B

FIGURE 7

Training and validation set details. (A) Loss function curve. (B) F1 score curve.
B C D E FA

FIGURE 8

Comparison of segmentation results of various models. (A) Original images. (B) Ground truth. (C) Deeplabv3+ segmentation results. (D) PSPNet
segmentation results. (E) U-Net segmentation results. (F) Improved U-Net segmentation results.
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Fron
segmentation for apple Alternaria blotch and brown spot.

This has caused the model to pay more attention to the

regions with important information.

2. MIoU values in DFL-UNet+CBAMmodel employed in this

study were 91.07%, MPA values o were 95.58%, and F1

Score values were 95.16%. These values were higher than

those of the original U-Net model by 1.96%, 1.06%, and

1.14% respectively, and the illness identification impact was

also enhanced. The segmentation result images have also

shown that the DFL-UNet+CBAM model has had better

segmentation and recognition capabilities, can more

precisely identify smaller disease spot areas, improves the

detection and recognition accuracy of smaller disease spots,

better satisfies the requirements of apple leaf disease

recognition, and provides a basis for the diagnosis of

apple leaf diseases.

3. In the multi-blade environment of nature, several leaves

may coexist on a single map, and various illnesses may be

present on the leaves. The experimental results

demonstrate that the semantic segmentation model of

apple leaf diseases trained in this paper using a single leaf

dataset can not only detect a single background in the

laboratory but can also be used to detect apple leaf diseases

in the complex background of the natural environment; it

can not only detect single objects of single and multiple

leaves, but it can also detect multiple objects of single

leaves, demonstrating powerful segmentation performance.
Research demonstrates that the model can ensure segmentation

accuracy in complicated orchard environments as well as

laboratores, particularly when it comes to the edge segmentation

accuracy of smaller disease spots. The suggested method performs

segmentation better than other methods, and the model has good

generalizability. In the future, it might serve as a technical

foundation for the segmentation, categorization, and precise

management of plant leaf disease spots.
tiers in Plant Science 13141
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FIGURE 9

Detection fault analysis. (A) Leaf occlusion. (B) Self-crimp factor. (C) Leaf folding. (D) Insufficient light.
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Introduction: Traditional evaluation procedure in National Turfgrass Evaluation

Program (NTEP) relies on visually assessing replicated turf plots at multiple testing

locations. This process yields ordinal data; however, statistical models that falsely

assume these to be interval or ratio data have almost exclusively been applied in

the subsequent analysis. This practice raises concerns about procedural

subjectivity, preventing objective comparisons of cultivars across different test

locations. It may also lead to serious errors, such as increased false alarms, failures

to detect effects, and even inversions of differences among groups.

Methods: We reviewed this problem, identified sources of subjectivity, and

presented a model-based approach to minimize subjectivity, allowing objective

comparisons of cultivars across different locations and better monitoring of the

evaluation procedure. We demonstrate how to fit the described model in a

Bayesian framework with Stan, using datasets on overall turf quality ratings from

the 2017 NTEP Kentucky bluegrass trials at seven testing locations.

Results: Compared with the existing method, ours allows the estimation of

additional parameters, i.e., category thresholds, rating severity, and within-field

spatial variations, and provides better separation of cultivar means and more

realistic standard deviations.

Discussion: To implement the proposed model, additional information on rater

identification, trial layout, rating date is needed. Given the model assumptions,

we recommend small trials to reduce rater fatigue. For large trials, ratings can be

conducted for each replication on multiple occasions instead of all at once. To

minimize subjectivity, multiple raters are required. We also proposed new ideas

on temporal analysis, incorporating existing knowledge of turfgrass.

KEYWORDS

NTEP, visual ratings, cultivar evaluation, subjectivity minimization, Bayesian model
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1 Introduction

The National Turfgrass Evaluation Program (NTEP) is an

internationally renowned turfgrass research program. Starting from

1981, NTEP has coordinated trials and collected data on a variety of

turfgrass species at locations across the United States and Canada (Xie

et al., 2022). At each testing location, replicated turf plots of different

cultivars are established, maintained, and visually evaluated by trained

raters periodically on various traits of interest. Experienced raters

usually mentor new raters following rating guidelines set by NTEP.

Evaluated traits have traditionally included overall quality, color,

density, resistance to diseases and insects, tolerance to biotic or

abiotic stresses, and more recently expanded to drought and traffic

tolerance. Over the years, NTEP has created a unique data repository,

providing rich information for characterizing and selecting turfgrass

cultivars for various applications.

NTEP adopted a 1-9 integer scale to assess traits of selected

turfgrass cultivars (hereinafter referred to as the NTEP scale). It was

originally used by turfgrass researchers in the 1980s in the

northeas tern reg ion of the United Sta tes (persona l

communication with Dr. Bill Meyer of Rutgers University), which

resembles the 9-point hedonic scale. Developed by David R. Peryam

and his colleagues (Peryam and Girardot, 1952; Peryam and

Pilgrim, 1957), the 9-point hedonic scale was originally used to

measure the food, i.e., the stimuli, preferences of soldiers, i.e., the

subjects, in the U.S. Armed Forces in the 1950s. Since then, it has

become the most widely used scale for testing consumer preferences

and acceptability of foods and beverages (Lim et al., 2009). The

original 9-point hedonic scale is a balanced bipolar scale centered

around a neutral position with four positive and four negative

categories on each side. The categories are labeled with phrases

ranging from “Dislike Extremely” to “Like Extremely” (Table 1),

representing a continuum from dislikes to likes.

Response to the 9-point hedonic scale is an ordinal variable as

its categories have a natural order (Seddon et al., 2001). In

subsequent analysis, the categories are generally assigned with

numerical values from 1 to 9, respectively, such that parametric

statistical models can be utilized. For the NTEP scale, a trained rater

walks through all plots in serpentine order in each rating event,

assigning an integer from 1 to 9 directly for a particular trait of
Frontiers in Plant Science 02144
interest where 1 is typically the poorest/lowest and 9 is the best/

highest. Similar to analyzing responses to a 9-point hedonic scale,

the analysis of NTEP rating data treats the ordinal variables as

numerical values, which may lead to serious errors, such as

increased false alarms, i.e., detecting non-existing effects, failures

to detect effects, and even inversions of differences among groups

(Bürkner and Vuorre, 2019). There is abundant literature, e.g., Lim

et al. (2009), Liddell and Kruschke (2018), on the reasons for these

problems. Some important ones are summarized here.
1. The categories in the 9-point hedonic scale are not

equidistant, which was first discovered by the

Psychometric Laboratory at the University of Chicago

(Jones and Thurstone, 1955; Jones et al., 1955), and

confirmed in later studies (Moskowitz, 1971; Moskowitz

and Sidel, 1971; Moskowitz, 1977; Moskowitz, 1980).

2. The 9-point hedonic scale lacks an absolute zero point.

While there is a neutral position (i.e., the INDIFFERENT

category or the "5"), it varies from subject to subject, even

across different measurements by the same subject.

3. The general tendency of subjects to avoid using the extreme

categories (Hollingworth, 1910; Stevens and Galanter,

1957; Parducci and Wedell, 1986) makes the scale

vulnerable to ceiling and flooring effects. This truncates

the 9-point scale, limits the scale’s ability to identify

extreme stimuli, and skews the response data.
As a derivation of the original 9-point hedonic scale, the NTEP

scale also yields ordinal data. Such data only provide rudimentary

information on the hedonic magnitude and cannot directly be used

to compare hedonic perceptions across different raters. In the

current evaluation process, a turf plot’s rating for a specific trait,

e.g., turf quality, depends on the rater’s severity in the rating event.

Given the same plot, it will likely score higher when the rater is

lenient or lower when severe, giving rise to subjectivity. In other

words, for a specific rater’s turf quality ratings, we know a “3” plot

has better turf quality than a “2” plot. But we cannot conclude a “3”

plot rated by A is better than a “3” plot rated by B in turf quality

without adjusting for rater severity. Considering the temporal

nature of the evaluation process, even for the same rater on the
TABLE 1 Replication of the questionnaire designed for studying soldiers’ preferences in the field.

FOOD
ITEM

LIKE INDIFFERENT DISLIKE

Not
Tried

Cream Gravy Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely

Not
Tried

Bread Putting Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely

Not
Tried

Cheese Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely

Not
Tried

French Fried
Onions

Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely

Not
Tried

Lettuce
Wedges

Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely
f
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same trait, consistency is not guaranteed at different times of the

year. Another source of subjectivity relates to the scale categories,

which are not equal distances or of the same levels. To meaningfully

aggregate data collected from different rating events across different

testing sites, both sources of subjectivity need to be addressed.

However, current methods, e.g., the additive main effect and

multiplicative interaction (AMMI) method, analysis of variance

(ANOVA) (Ebdon and Gauch Jr., 2002a; Ebdon and Gauch Jr.,

2002b), and linear mixed model (LMM), are not adequate and suffer

the same errors when they were applied to ordinal data directly.

Inspired by Rasch Rating Scale Model (Andrich, 1978), we propose

a latent scale model to minimize subjectivity, hereinafter referred to

as NTEP RSM (NTEP Rating Scale Model), allowing more objective

comparisons of cultivars across different raters and research groups.

We also demonstrate how to fit the described model in a Bayesian

framework, using datasets on overall turf quality ratings in the 2017

NTEP Kentucky bluegrass trials. The model is programmed in Stan

(Lee et al., 2017) via Python. Stan is a probabilistic programming

language for statistical modeling, inference, and computation.

Although demonstrations are done for overall turf quality rating,

this approach works for other traits of interest evaluated using the

1-9 NTEP rating scale.
2 Model specifications

2.1 NTEP RSM

We started by constructing a latent scale based on the

probability distribution of raw ordinal data. The model predicts

the decision between two adjacent categories using a threshold

parameter on the latent scale. The 1-9 scale is re-indexed in the

following sections as 0-8 categories for conciseness in mathematical

notations. At a given test location, let Yni denote the rating assigned

to plot n in rating event i, the logarithmic ratio of the probability of

plot n assigned to category s to that of plot n assigned to s–1 can be

expressed by the following equation,

ln½ Pr(Yni = s)
Pr(Yni = s − 1)

� = qn − bi − ts (1)

where
Fron
i=1,2,…,I is the index for each rating event during the trial;

n=1,2,…,N is the index for each plot;

s=1,2,…,M is the index for category thresholds;

M(M ≤ 8) is both the maximum rating score after reindexing

and the number of thresholds;

qn is the perceived turf quality of plot n in a specific rating

event;

bi measures rating severity in rating event i;

ts is the threshold at which at Pr(Y=s–1) = Pr(Y=s).
Constraints were placed on bI and tS to add a meaningful zero

to the scale. Both parameters were constrained to be the negative

sum of the other parameters, respectively. We further assume q, b,
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and mbolt are normally distributed. For an unbiased rater in a

rating event (b=0), the probability density curves for each category
are illustrated in Figure 1. The vertical dash lines indicate category

thresholds located at the points where the probability of a cultivar

being assigned to two adjacent categories is equal. Note that these

thresholds are not necessarily equidistant. In Figure 1, if a cultivar

is located in a category (i.e., between two adjacent thresholds),

then the response in that category has the greatest probability. The

x-axis represents the constructed latent scale. It is continuous and

equidistant, with a zero indicating the average level of overall turf

quality. While the average level in individual rating events might

vary (b≠0), we assume the average levels for each research group

at different test locations are the same, allowing scale matching

across different testing locations. Once subjectivity effects, i.e., b
and t, were estimated and removed, q can be further analyzed. In

this study, we partitioned q into cultivar and plot location effects,

that is,

q = h + LOC (2)

where h is the cultivar effect, reflecting the intrinsic quality of a

cultivar, and LOC is the plot location effect due to spatial

heterogeneity of the field. We further assume cultivar effects

follow normal distributions with a mean of 0 and a variance of

s2. The plot location effect was modeled as a Gaussian process with

a zero mean and covariance function K,

LOC( · ) ∼ N(0,K( · )) (3)

The covariance function K(·) implemented here is an

exponential quadratic function. For two plots i and j in the same

trial at a specific testing location,

K( · ja , r,se)ij = a2 exp  (
d2ij
2r2

) + dijs
2
e (4)

where a, r, and se are hyperparameters defining the covariance

function; dij is the Kronecker delta function with value 1 if i = j and

0 otherwise; dij is the Euclidean distance between centers of the two

plots. As this is a Bayesian model, priors for parameters and

hyperparameters are required. We adopted weakly informative

priors: t3(0,1) for a, s and se; Inv–Gamma(5,5) for r.
FIGURE 1

Hypothetical category probability curves for nine ordered categories
as used in NTEP rating scale.
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2.2 Parameter recovery with NTEP RSM

To ensure that model parameters are identifiable, the following

parameter recovery test was performed to evaluate the model. We

first generated a synthetic dataset from 3 replications of 10 cultivars

rated monthly for 5 years by 5 raters. The entry effects are random

draws from a normal distribution with a mean of 0 and a standard

deviation of 0.7 (s = 0.7). Plot location effects are generated from a

Gaussian process with an assigned mean vector and covariance

matrix with a = 0.15, r = 2.5, se = 0.2. Rating severity is a vector of

five evenly spaced numbers over [–0.8,0.8], and category threshold

is a vector of eight evenly spaced numbers over [–2,2]. All

parameters, functions, and simulated data can be found in the

Github repository. The simulated data were fit to the NTEP RSM

for parameter recovery.
2.3 Linear mixed model

To compare with the existing method, we also implemented the

following LMM for each testing location,

Y = h + u + ϵ (5)

in which quality rating, Y, was treated as a continuous variable

and partitioned into a fixed effect of cultivars, h, and a random effect

of rating event, u. ϵ denotes the residual that the model does

not explain.
2.4 Model implementation

The NTEP RSM model is implemented in Stan (version

2.29.1) with a Python interface (version 3.10.4). The same

model was fitted to data collected from each trial location, and

posterior sampling of model parameters was generated by four
Frontiers in Plant Science 04146
Markov chain Monte Carlo chains, each with 1,000 iterations. The

first 500 iterations were discarded to minimize the effect of initial

values, and the rest were thinned by taking every other sample to

reduce sample autocorrelation. The convergence of chains was

confirmed via visual inspection and examining the R̂ values of all

parameters and the log posteriors. Model codes and output files

can be found at https://github.com/QhenryQ/ntep-rsm. The

LMM is implemented with the Python package Statsmodels

(Seabold and Perktold, 2010).
3 Results and discussions

3.1 Preliminary data analysis

Kentucky bluegrass is a cool-season turfgrass that grows best

when temperatures are between 60-75°F and goes dormant in hot,

dry summer and cold winter. Given this behavior, turf quality data

is only collected from May to October in northern trial locations,

while in the southern trial locations, data is usually collected all year

round. Figure 2 presents monthly histograms for all the raw turf

quality rating data. In most months, the quality rating showed good

symmetry and central tendency around 5 or 6. In January and

February, turf quality ratings were only available from Raleigh, NC,

and Stillwater, OK. We noticed decreased turf quality ratings and

the number of categories assigned in both locations. For example,

the February overall turf quality ratings at Stillwater, OK, were

found to have a range of [3, 6], with a median of 4. This is

presumably due to raters’ adjustment to the dormancy of

Kentucky bluegrass. The significant reduction of turf quality in

dormancy makes it difficult for raters to distinguish cultivars.

Ceiling and flooring effects were also observed at other locations,

e.g., the overall turf quality data at East Lansing, MI, and Raleigh,

NC, ranged from 2 to 9, while that for data at West Lafayette, IN,

from 2 to 8.
FIGURE 2

Histogram of raw overall turf quality ratings for each month at seven test locations.
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3.2 NTEP RSM results

3.2.1 Category thresholds
“How is Rater A’s 5 different from Rater B’s 5?” This type of

question is inevitable when it comes to the comparison of cultivars

following the current NTEP procedure. However, such a question

cannot be answered without proper definitions of categories, which

in our model, are done by identifying category thresholds. These

thresholds are points on the latent scale at which a rater is equally

likely to select two adjacent response options (Andrich and Luo,

2003). We also assumed there are fixed distances among the

category thresholds for raters within the same research group at

the same location. This assumption is reasonable given that

experienced raters of the same research group usually train newer

raters. Estimation of category thresholds from the data provides

important feedback on category definitions and how the scale is

utilized by each research group, allowing us to ensure raters are

adequately differentiating cultivars. When adjacent thresholds are

too far apart, a category becomes too wide and less informative; on

the other hand, when adjacent thresholds are close, a category

becomes too narrow, indicating underutilization of the scale (see

Guidelines for Rating Scales and Andrich Thresholds). We

examined the non-terminal categories used at seven testing

locations (Figure 3) . Their widths spanned the range of [0.07,

4.76] on the logit scale, e.g., Category 2 at Adelphia, NJ, only

spanned 0.59 logits, while category 8 at Stillwater, OK, was 3.54

logits. Category thresholds are generally required to be in ascending

order concordant with the category numbers, i.e., ordered

thresholds (Andrich, 2011). Disordered thresholds imply a higher

rating may not be assigned as a turf cultivar advances along the

scale. Such inconsistency of raters is usually the result of too many

options or/and poor category definitions in scale development.

Estimated category thresholds from all testing locations, ranging

from -6.64 to 6.05, were in order. Large variations were observed in

the range of category thresholds. Category thresholds at East

Lansing, MI, and Stillwater, OK, spread more than 10 logits,

while those in Adelphia, NJ, only spanned 4.5 logits.
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3.2.2 Rating severity
Defining category thresholds is not sufficient to answer the

question of rater variation. On the constructed latent scale, category

thresholds can still slide left (indicating a lenient rating event) or

right (indicating a severe rating event). In many fields, severity can

be treated as a constant for a given rater. That is to say, whenever

the rater conducts a rating, he/she is always the same in terms of

severity. However, this might not be true during the evaluation of

turfgrass. For new raters, it takes time to achieve consistency; for

trained raters, some may adjust their severity to credit cultivars that

perform well under harsh environmental conditions or at different

times of the year (personal communications with NTEP raters).

Historically, there have been two sets of rating criteria for reference

standards in NTEP. One is based on an optimal growth

environment (e.g., light, temperature, soil moisture) and

management regime (e.g., mowing height, fertilization rate), while

the other is based on the actual environment or management

regime. Using either criterion, the rater must idealize his/her

reference standards to compare against all treatments and assign

a quality score using a scale of 1 to 9. With the first criterion, we

expect consistency of raters regardless of the rating time of the year

since the best plot is defined considering all possible growth

environments and management regimes. With the second, raters

could be either severe or lenient depending on the environment or

management regimes at the rating time. We examined the

consistency in rating severity estimates of 10 raters who have

performed more than 3 ratings across different months. For each

rater, we fit a trend line for their rating severity across different

months of the year using the weighted scatterplot smoothing

(LOWESS) method. No strong trends were observed for raters in

St. Paul, MN, West Lafayette, IN, and Adelphia, NJ, while strong

seasonal patterns were seen for raters in the other four locations

(Figure 4). One potential confounding factor in the current

definition of rating severity is the seasonality of turfgrass quality.

It is also worth noting that while the model focuses on point

estimates for the average turf quality, the actual turf quality of cool-

season turfgrass is not a constant; instead, it varies over time with

strong annual seasonality. Unfortunately, the current data do not

provide sufficient information, e.g., the exact rating dates, for

investigation on how rating severity changes in response to the

seasonality of turf quality. Standard deviations of rating severity per

rater ranged from 0.13 to 0.97 on the logit scale. Considering the

category widths, such variation in severity for a given rater could

lead to changes in rating categories.

3.2.3 Field spatial variation
We implemented a Gaussian process to estimate the spatial

variation within a specific trial. The traditional cultivar comparison

method based on ANOVA or LLM assumes uniform growth

conditions within a trial, which is hardly achievable due to

heterogeneity in soil texture, seeding depth, elevation gradient,

etc. Thus, removing field spatial effect is important for reliable

cultivar comparison results. Figure 5 visualizes the spatial variation

estimated by our model at seven testing locations, in which every

pixel represents a plot as defined by row and column number. The
FIGURE 3

The latent scale partitioned by category thresholds into NTEP rating
categories at seven test locations.
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level of spatial heterogeneity varied from trial to trial; some were

higher, e.g., the trial at East Lansing, MI, while some were lower,

e.g., the trial at Adelphia, NJ. Noticeably, we observed large edge

effects from the trial at Logan, UT, the diagonal division from the

trial at St. Paul, MN, and the localized hot spots from trials at East

Lansing, MI, and Raleigh, NC. The estimated field spatial variation

provided turfgrass researchers with a high-level summary of their

trials, which can help improve experimental design and allow better

differentiation of cultivars.
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3.2.4 Cultivars comparison across testing
locations

Our model quantifies and removes confounding factors at each

location, i.e., rating severity and field spatial effect, allowing a more

reliable and accurate cultivar comparison. An additional

assumption is required for scale alignments to compare cultivars

across different testing locations. We assume the average levels for a

turfgrass cultivar, as perceived by raters at different NTEP testing

locations, are roughly the same. In Figure 6, we compared the
FIGURE 4

Rating severity estimates and monthly trend lines of ten raters at seven test locations.
FIGURE 5

Field spatial variation at seven test locations.
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performance of two example cultivars by aligning the average levels

at seven testing locations. Each angular axis represents the latent

logit scale at corresponding testing locations, where zero indicates

the average level. For ‘After Midnight,’ it performed above average

at Adelphia, NJ, Stillwater, OK, and Raleigh, NC, and below average

at St. Paul, MN, East Lansing, MI, Logan, UT, and West Lafayette,

IN. ‘Kenblue’ performed below average at all locations. When

comparing the two, the distance between the logit values

estimates how much one cultivar is better than the other at each

location. After Midnight outperformed Kenblue at all testing

locations except East Lansing, MI, and West Lafayette, IN. The

comparison of all evaluated cultivars can be found in

Supplementary Materials and the GitHub repository.

3.2.5 Effect sizes
Effect size quantifies the strengths of relationships between

variables and determines their practical importance in the study.

One way to determine the effect size is by examining the percentage

of variance the effects explain. Figure 7 illustrates the variance

percentage explained by the model’s estimated parameters. At all

locations except Logan, UT, the effect of field spatial variation is the

smallest of the three. In contrast, the effect of rating severity is the

largest at all locations but at Adelphia, NJ. Notably, there are seven

raters at Adelphia, NJ, compared with 1 to 3 raters at other

locations, highlighting the importance of gathering opinions from

more raters during cultivar evaluation. The percentage of variance
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explained by cultivar effect varied drastically, from a merely 4% at

Logan, UT, to as much as 79% at Adelphia, NJ. Quantifying and

removing these confounding factors is thus essential when

evaluating and comparing cultivars in field trials.
3.3 Comparison with LMM

The advantages of NTEP RSM over the currently-adopted

LMM are three-folded. First, it allows the estimation of additional

parameters, namely category thresholds, rating severity, and field

spatial variation. All three parameters are essential for rater

training, better utilization of the whole scale, and understanding

of the field conditions. Second, NTEP RSM separates mean

estimations of the evaluated cultivars better. To name a few of the

numerous examples, Blue Gem (NAI-13-9), MVS-130, Heartland

(NAI-14-187), AKB3241, and RAD 553 all received the same mean

estimation of -0.261 at East Lansing, MI, from LLM, while the mean

estimates from NTEP RSMwere 0.030, -0.020, -0.145, -0.268, -0.580

respectively. Similar patterns were observed for DLFPS-340/3556,

Paloma (PST-K13-139), DLFPS-340/3552, J-1138 at St. Paul, MN;

DLFPS-340/3556, A16-2, NuRush (J-3510) at West Lafayette, IN;

and DLFPS-340/3548, A16-17, Barvette HGT®, NK-1 at Logan, UT.

Detailed comparison for all cultivars can be found in Among the

seven test locations, the largest discrepancies between the two

models’ output were seen at Logan, UT. At the same time, the

smallest were observed at Stillwater, OK (Table 2). It is important to

highlight the robustness of the current LMM approach despite all

the merits of NTEP RSM. Last but not least, RSM provides more

realistic standard deviation estimations, while the currently-

adopted LMM generates the same standard deviations for all

cultivars at each location. Given the different genetic backgrounds

of cultivars, they are unlikely to have the same standard deviations.
3.4 Parameter recovery with NTEP RSM

The highest value for R̂ was 1.0 for all parameters and the log

posterior, suggesting that all four chains have converged. As shown

in Figure 8, all except three of the 95% credit intervals include zero,

indicating the model’s ability to recover the original values of

the parameters.
3.5 Discussions

Despite the promising results, there are at least two major

challenges that lie ahead for the successful implementation of the

proposed model. The first and foremost is the lack of data. While

NTEP has done a remarkable job of gathering, cleaning, organizing,

and storing historical data on cultivar evaluation, a significant

amount of valuable data are left out in this process. This includes

but is not limited to rater identification, trial layout, rating dates,

field gradient, etc. Luckily, researchers generally record and

preserve such information at each trial location. Additional work

is required to incorporate such data into the current NTEP

database. Second, there are too few raters at some trial locations.
FIGURE 6

Performance of After Midnight and Kenblue at seven test locations.
FIGURE 7

Percentage of explained variance by different effects estimated by
the model.
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The fundamental debiasing mechanism of the proposed model is to

aggregate individuals’ opinions on the same cultivar into an

objective and collective opinion. Multiple raters are required to

ensure accurate estimations of the collective opinion on the tested

cultivar. As mentioned above, one limitation of the proposed model

is the absence of a seasonality component. As a cool-season

turfgrass, Kentucky bluegrass thrives during the fall and early

spring and slows significantly in growth during the hot summer

months. The proposed model focuses on estimating the overall

quality for a given cultivar over the entire testing period but cannot

provide a quality estimation at a given time of the year. We tested

year and month effects as independent Gaussian variables; however,

as pointed out by one reviewer, it was unrealistic that months have

the same effect across different years. We agree with the reviewer

and are exploring better ways to improve the proposed model. A

potential approach is the multiple-output Gaussian process model

(Li et al., 2021) that incorporates the seasonal grown pattern of

Kentucky bluegrass as a prior distribution. This requires additional

information on the rating dates. Once implemented, it will allow the

analysis of the temporal variation of cultivars, which caters to needs

such as mixing/blending cultivars based on spring green up,

comparison of cultivars on growth potential at a given time of the
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year (Woods, 2013). Now that the model assumes raters are

consistent in all rating event, we encourage small trial sizes at

each testing location. Smaller trials reduce the risk of rater fatigue

during rating, thus helping raters to maintain better consistency.

For trials with too many cultivars, we recommend ratings be

conducted on each replication on separate occasions instead of

finishing all the plots at once. Regarding the rating scale, researchers

should attempt to achieve a uniform distribution (Bond and Fox,

2013) of category thresholds. NTEP is currently working towards a

data ingestion, analysis, and visualization pipeline, with the

objectives to provide timely feedback to raters during the reason,

to help raters to utilize the rating scale better, and to service a larger

audience. NTEP also need to set standards for cultivar average,

representing the zero point on the scale, such that results of cultivar

comparisons across time and location are accurate and reliable.
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