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Editorial on the Research Topic
Investigating Al-based smart precision agriculture techniques

Overview

The monsoon plays a pivotal role in determining agricultural output. The success of
crops planted during a monsoon season is highly contingent on the prevailing weather
conditions. Access to real-time meteorological information is crucial for farmers to make
informed decisions regarding crop management, thereby reducing the risks and losses
associated with adverse climatic conditions.

Agricultural fields are typically managed on a field-by-field basis, without considering
the spatial and temporal variability of the soil. This approach can lead to uninformed
decisions by farmers regarding inputs such as fertilizers, irrigation systems, and labor,
resulting in suboptimal harvests. To address this, precision agriculture aims to optimize
resource utilization by effectively managing the temporal and geographical variability of
soil and ecosystem conditions. The advent of the Internet of Things (IoT) and sensor-edge
connecting devices has greatly facilitated the collection of agricultural data in a smart
manner for farmers.

In addition to weather-related challenges, economic difficulties also impact farming
practices and productivity, particularly in rural and semi-rural areas. Farmers face daily
obstacles such as pesticide use, water scarcity, resource limitations, and poor soil quality.
Overcoming these challenges requires the strategic determination of best practices
and approaches.

Smart precision agriculture emerges as an innovative solution that leverages cutting-
edge technology to enhance crop yields sustainably. By integrating smart IoT devices and
sensors, farmers can optimize agricultural output while minimizing their field work time.
Smart technologies enable more efficient resource usage, including reduced water and
power consumption, and constant monitoring of variables like humidity and temperature.
Internet of Things-based smart farming utilizes multiple sensors, measuring parameters
such as humidity, temperature, and soil moisture, to monitor field conditions effectively.
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Despite the potential benefits, Smart Sustainable Agriculture
(SSA) faces challenges due to insufficient investment in research
and development. Additionally, complex barriers arise from the
fragmented nature of agricultural processes, encompassing aspects
such as the management and operation of IoT/AI machines, remote
sensing, environmental impact assessment, data sharing and
management, interoperability, and the analysis and storage of
extensive datasets.

The provided text discusses various research papers and studies
related to Al-based smart precision agriculture techniques. Here is a
summary of each study:

Chinese agricultural named
entity recognition

This study focuses on improving named entity recognition in
Chinese agricultural texts, specifically in the context of kiwifruit
diseases and pests. The researchers propose a novel model called
KIWINER, which incorporates new word detection, an attention-
based softlexicon module, and a parallel connection criss-cross
attention module. The model achieves high F1-scores on multiple
datasets, demonstrating its effectiveness in recognizing kiwifruit-
related named entities (Zhang et al.).

Infrared and visible image
fusion in agriculture

The paper presents a distributed fusion architecture called
RADEFNet for combining infrared and visible images in agricultural
applications. The architecture utilizes residual CNN, edge attention,
and multiscale channel attention to improve image quality and
eliminate environmental interference. Experimental results show
that RADFNet outperforms existing image fusion algorithms in
terms of visual effect and quantitative metrics (Feng et al.).

Dome-type planted pumpkin
autonomous harvesting framework

This study introduces a framework for autonomous harvesting of
dome-type planted pumpkins. The framework includes a keypoint
detection method using instance segmentation architecture, combining
transformer network and point rendering to address overlapping and
improve segmenting precision. Experimental results on a pumpkin
image dataset demonstrate the effectiveness of the proposed method in
instance segmentation and keypoint detection, with promising
application prospects in fruit picking tasks (Yan et al.).

Genetic diversity analysis of
Hopea hainanensis

The research focuses on the genetic diversity of Hopea
hainanensis, an endangered tree species found in Hainan Island,
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China. Using SNP and genotyping-by-sequencing technology,
the study analyzes the genetic diversity among different
populations of Hopea hainanensis in fragmented habitats. The
results reveal low genetic diversity, highlighting the need for
genetic diversity research in the conservation of rare and
endangered plants (Chen et al.).

Cassava leaf disease classification

This paper addresses the classification of cassava leaf diseases
using deep convolutional neural networks. A multi-scale fusion
model based on attention mechanism is proposed to enhance
disease feature extraction from cassava leaves. The model achieves
improved classification performance compared to the original
model, providing support for the recognition and early diagnosis
of plant disease leaves (Liu et al.).

Weed detection in turfgrass

The study focuses on weed detection in turfgrass using deep
learning methods. Various convolutional neural networks
(DenseNet, EfficientNet-v2, and ResNet) are trained to detect
weeds susceptible to herbicides, enabling site-specific weed
detection. The results demonstrate high FI scores and MCC
values for most weed species, except for those with similar plant
morphology. The proposed method provides an effective strategy
for precision herbicide application (Jin et al.).

Crop rotation and soil health

This research examines the impact of different vegetable
cropping systems on soil chemical properties, eggplant
photosynthesis, and antioxidant functioning. Leafy vegetable
rotation systems are found to significantly improve soil organic
matter and available nutrients, as well as enhance eggplant growth
and yield. The rotation systems also lead to higher antioxidant
enzyme activity, reducing oxidative damage to membranes. The
study highlights the benefits of crop rotation for improving the
growth and yield of eggplant (Ghani et al.).

Objective evaluation of
turfgrass cultivars

The project addresses the subjectivity in the evaluation of
turfgrass cultivars using ordinal data. A model-based approach is
proposed to minimize subjectivity and enable objective
comparisons of cultivars across different test locations. The model
is fitted in a Bayesian framework, allowing the estimation of
additional parameters and providing better separation of cultivar
means. The approach improves the evaluation procedure and
enables more realistic comparisons (Qu et al.).
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Yolo optimization

YOLOvV7 maize pests identification method incorporating the
Adan optimizer is proposed for the timely and accurate detection of
major pests of corn. The study focuses on three major corn pests:
corn borer, armyworm, and bollworm. A corn pests dataset is
constructed using data augmentation techniques to address the
issue of limited pest data. The YOLOvV7 network is chosen as the
detection model, and the Adan optimizer is introduced to replace
the original optimizer for improved efficiency and accuracy while
reducing computational costs (Zhang et al.).

UNET+CBAM disease classification

This research focuses on the identification of apple diseases,
specifically Alternaria blotch and brown spot diseases, aiming to
improve production efficiency and quality. The paper proposes a
disease spot segmentation and disease identification method based
on DFL-UNet+CBAM. The primary issues addressed are the low
recognition accuracy and poor performance of small spot
segmentation in apple leaf disease recognition. The objective is to
accurately prevent and control apple diseases, minimize fruit
quality degradation, yield reduction, and associated economic
losses. The proposed DFL-UNet+CBAM model incorporates a
hybrid loss function comprising Dice Loss and Focal Loss
(Zhang et al.).
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Pepper leaf segmentation

The study focuses on segmenting pepper leaves from images to
aid in the control of pepper leaf diseases. A bidirectional attention
fusion network called BAF-Net is proposed (Zhang et al.).
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and Hongming Zhang™
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Named Entity Recognition (NER) is a crucial step in mining information from
massive agricultural texts, which is required in the construction of many
knowledge-based agricultural support systems, such as agricultural
technology question answering systems. The vital domain characteristics of
Chinese agricultural text cause the Chinese NER (CNER) in kiwifruit diseases
and pests to suffer from the insensitivity of common word segmentation tools
to kiwifruit-related texts and the feature extraction capability of the sequence
encoding layer being challenged. In order to alleviate the above problems,
effectively mine information from kiwifruit-related texts to provide support for
agricultural support systems such as agricultural question answering systems,
this study constructed a novel Chinese agricultural NER (CANER) model
KIWINER by statistics-based new word detection and two novel modules,
AttSoftlexicon (Criss-cross attention-based Softlexicon) and PCAT (Parallel
connection criss-cross attention), proposed in this paper. Specifically, new
words were detected to improve the adaptability of word segmentation tools
to kiwifruit-related texts, thereby constructing a kiwifruit lexicon. The
AttSoftlexicon integrates word information into the model and makes full use
of the word information with the help of Criss-cross attention network
(CCNet). And the PCAT improves the feature extraction ability of sequence
encoding layer through CCNet and parallel connection structure. The
performance of KIWINER was evaluated on four datasets, namely KIWID
(Self-annotated), Boson, ClueNER, and People’s Daily, which achieved
optimal Fi-scores of 88.94%, 85.13%, 80.52%, and 92.82%, respectively.
Experimental results in many aspects illustrated that methods proposed in
this paper can effectively improve the recognition effect of kiwifruit diseases
and pests named entities, especially for diseases and pests with strong
domain characteristics

KEYWORDS

intelligent farming for diseases recognition, Chinese named entity recognition,
kiwifruit diseases and pests, data mining, lexicon, Criss-cross attention, deep
learning, machine learning
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1 Introduction

Kiwifruit is one of the economic sources of the planting
industry in China, but owing to the impact of pests and diseases,
the overall level of kiwifruit quality in China is not high at present
(Jiang and Zong, 2020). Chinese named entity recognition in the
field of agriculture aims to recognize the boundaries and categories
of agriculture-related entities from unstructured agricultural texts,
such as diseases, pests, and pesticides (Guo et al., 2020). This is a key
technology in the automatic mining of knowledge from very large
Chinese agricultural texts and is the basis for downstream tasks
such as building agricultural knowledge graphs and constructing
agricultural intelligent question-and-answer (Q&A) systems (Drury
and Roche, 2019; Guo et al., 2020). Therefore, accurate recognition
of named entities in the field of kiwifruit plays an important role in
ensuring the healthy development of the industry, plant protection,
and convenience for agricultural workers.

Traditional NER methods can be divided into rule-based,
dictionary-matching-based, and machine-learning-based
approaches (Guo et al, 2020). Although each approach can
achieve good results, they rely heavily on time- and energy-
consuming pattern matching and feature engineering and have
poor generalization ability. Through the application of deep
learning in the field of NER and other fields (Chiu and Nichols,
2016; Bhatti et al.,, 2020b), researchers have developed various
techniques for medical science (Zhao et al., 2019; Bhatti et al.,
2021; Nawaz et al., 2021), cyber security (Li T et al, 2020),
agriculture (Biswas and Sharan, 2021), social media (Aguilar
et al, 2017) and environmental science (Bhatti et al., 2020a;
Aamir et al., 2021; Galvan et al., 2022). In the field of Chinese
NER (CNER), because sentences in Chinese texts are not
naturally separated, unlike sentences in English, there is no
obvious border symbol. Therefore, the first step in many
original deep-learning-based CNER methods is to segment the
text using word segmentation tools (Yang et al., 2016; He and
Sun, 2017). With the development of research on CNER, many
researches show that the character-based CNER model avoids
segmentation errors and makes it more suitable than the word
based model. (Jingzhou and Houfeng, 2008; Liu et al., 2010).
However, in order to avoid the problem of segmentation errors,
the character based CNER model cannot use Chinese word
information. Recently many researchers have realized that word
information will play a positive role in the correct recognition of
Chinese entity boundaries. Therefore, lexicon-based CNER
models have been widely used in recent years. For example,
Zhang and Yang (2018) introduced the lattice long short-term
memory model (Lattice-LSTM) based on a lexicon, allowing
character-level and word-level information corresponding to the
characters to be encoded simultaneously. Peng et al. (2020)
proposed the Softlexicon method to integrate word information
into the NER model by simply adjusting the character
representation layer. The lexicon based model, with the help of
the public lexicon, achieves better results than the purely
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character based model (Peng et al., 2020). For example, when
the lexicon based model recognizes the Chinese entity “KiT K
M” (Yangtze River Bridge), words such as “iT” (Yangtze
River), “A#” (Bridge), and “KILKH” (Yangtze River
Bridge) in the lexicon can help eliminate the ambiguity of
potentially related named entities in the context, such as the
person name “VLK#f” (Dagqiao Jiang) (Zhang and Yang, 2018).

For CNER in the field of agriculture (CANER). The lexicon-
based method makes good use of character information and
word information, so using them to solve the CANER problem
may be a theoretically feasible solution too. However, there is
currently no open-source lexicon in the field of agriculture, and
manual lexicon construction is labor-intensive. If the lexicon is
built through automatic word segmentation, the existing word
segmentation tools face the problem of word segmentation
errors caused by insensitive word segmentation. For example,
farm chemicals entities such as “J&E [RHll, FHEBEF M (solubor,
phoxim) and kiwifruit variety entities “FFSEBERE, Z0 0B
#k” (Actinidia chinensis Planch., red-fleshed kiwi), which exist in
kiwifruit-related texts, have strong domain characteristics, and
these will make the word segmentation tool insensitive in the
form of out-of-vocabulary (OOV) words. Therefore, many
CANER methods are still character-based models (Guo et al.,
2020; Zhao et al.,, 2021; Guo et al., 2022), and the use of word
information is hindered by word segmentation errors. As for the
sequence coding layer of recently CANER model, bidirectional
long short-term memory (BiLSTM) is still the mainstream deep
learning method, which can memorize long-text sequence
features in theory (Liu et al., 2020; Zhao et al., 2021).
However, the contextual feature extraction ability of BiLSTM
has the following limitations. First, with an increase in sentence
length, the feature extraction ability of BILSTM will decline (Li Y
et al., 2020). Second, BiLSTM makes each character contribute
equally to the task (Guo et al., 2020), but the contribution of
different types of characters in agricultural texts to the task is
certainly different. Third, the strong domain features of
kiwifruit-related text, particularly farm chemical-related
entities, disease-related entities, and pest-related entities, pose
a challenge to the feature extraction ability of BiLSTM. In
summary, deep learning-based methods for CANER in the
field of kiwifruit diseases and pests face the following
problems: The use of word information is hampered by OOV
problem in the process of lexicon construction. And the
contextual information capture capability of the sequence
encoding layer needs to be further improved.

This research proposes a lexicon-based CANER model
KIWINER on the basis of bidirectional long short term
memory and conditional random field model (BiLSTM-CREF).
The objectives of KIWINER are to take measures to solve the
above problems in the end of the previous paragraph, that is, to
integrate the word information containing domain features into
the model, improve the model feature extraction ability, and
ultimately provide support for the construction of the kiwifruit
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Q&A system. Specifically, KIWINER improves the recognition
quality through statistics-based new word detection,
AttSoftlexicon, and PCAT. First, statistics-based new word
detection is innovatively used to detect new words in
kiwifruit-related text corpora, thereby improving the
adaptability of word segmentation tools to kiwifruit-related
texts and reducing the impact of word segmentation errors on
the lexicon construction process; Second, through the
AttSoftlexicon method proposed in this paper, based on
Softlexicon (Peng et al., 2020) and CCNet (Huang et al.,, 2019),
the character and word information in the lexicon are integrated
into the model, and the position information of the character in
the corresponding words can be fully utilized with the help of
CCNet (Huang et al, 2019); Third, a novel module parallel
connection criss-cross attention network (PCAT) is proposed to
improve the contextual feature extraction ability of BiLSTM.
PCAT assigns different weights to different characters according
to their correlation and constructs a parallel structure through
convolutional layers with different filter sizes to obtain richer
semantic information. Additionally, this study collected publicly
available textual information and constructed a kiwifruit NER
dataset consisting of 17809 entities across six categories.
Previous CANER methods based on machine learning, such as
CREF (Li et al., 2017), rely on manual features or rules, which are
time-consuming and unable to process a large number of
complex agricultural texts (Guo et al, 2020). The CANER
methods such as Att-BiLSTM-CRF (Zhao et al.,, 2021) use the
deep learning method to reduce the work of designing feature
extractors for each problem and solve the above problems.
Compared with the popular CANER methods based on deep
learning, our proposed KIWINER alleviates the OOV problem
through new word detection, and makes full use of lexical
information and agricultural features in addition to character
information through AttSoftlexicon and PCAT, so the feature
extraction ability of deep learning model is effectively improved.
We also use KIWINER and five typical CNER models and two
popular CANER models for comparative experiments, and the
KIWINER model yields better performance.

The remainder of this paper is organized as follows. The
materials used in this study and the methods proposed in this
paper is discussed in detail in section 2. Section 2 also introduces
the experimental parameters, dataset division, evaluation
metrics, and the experimental environment. The experimental
details and results are presented in Section 3. The discussion of
this study is presented in section 4. Finally, the conclusions are
presented in Section 5.

2 Materials and methods
The overall architecture of KIWINER, shown in Figure 1,

indicates that the model contains six layers and uses BiLSTM-
CREF as the basic framework. This section first introduces the
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experimental materials. Then this section focuses on the
implementation details of the new word detection layer,
embedding layer, CCNet, and AttSoftlexicon and PCAT
proposed in this paper. Details of the BiLSTM and CRF layers
can be found in (Huang et al,, 2015).

2.1 Materials

To solve the problem of the limited public NER dataset for
CANER, a new kiwifruit-related annotated corpus, named
KIWID, was collected and annotated under the guidance of
plant protection experts from Northwest A&F University.

2.1.1 Corpus collection

To ensure the quality of data, this study collected public
information on kiwifruit diseases and pests from the official
websites of trusted research institutions and Baidu Encyclopedia.
Preprocessing was applied to remove non-useful content, such as
webpage tags, links, and special characters contained in the
corpus. Finally, a corpus (Corpus A of kiwifruit) containing
61103 sentences for training character vectors and detecting new
words was obtained.

2.1.2 Corpus tagging

We selected 12477 sentences from Corpus A to form Corpus
B. Under the guidance of plant experts from Northwest A&F
University, six types of kiwifruit-related entities were labeled, as
shown in Table 1. Therefore, this study used the BMES (Ratinov
and Roth, 2009) tagging scheme to tag Corpus B, where B, M, E,
and S represent the beginning, middle, and end of an entity, and
a single-word entity, respectively. To ensure annotation quality,
the manual annotation method was adopted. Finally, the
kiwifruit-related dataset KIWID containing 17809 entities was
obtained, and the statistical information of KIWID is presented
in the last column of Table 1.

2.1.3 Analysis of Corpus features

(1) Contains several specialized vocabulary terms.

Entities involved in agricultural diseases and pests such as
farm chemicals entities, pest entities, plant disease entities, and
varieties entities are annotated in the corpus, such as “ . FFHSIf”
(dimethomorph), “BX#%jlE” (bifenthrin), “/7H” (scale
insect), and “BE 7 (scab). Such words usually do not appear
in the built-in dictionaries of common word-segmentation tools
and have strong domain characteristics. Therefore, most word
segmentation tools have poor adaptability to these specialized
terms, leading to a greater likelihood of word segmentation
errors. If the word information in the lexicon constructed by
automatic word segmentation is introduced into the CANER
model, the accuracy of the model may be significantly affected by
word segmentation errors.
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The architecture of KIWINER.

(2) Number of entities is unevenly distributed.

As shown in Table 1, there are differences in the number of
different types of entities. The same problem exists not only in
agriculture (Guo et al.,, 2022) but also in clinical medicine (Kong
et al., 2021). The uneven distribution of the number of entities
introduces challenges to the feature extraction ability of the
CANER models.
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(3) Entities nested within each other

Nested named entities are a common problem in the field of
NER in the task of identifying kiwifruit-related entities. For
example, there are two entities nested in “rhAERRERL” (Actinidia
chinensis Planch.), which are the location entity “f14£” (China)
and the plant entity “WffEHE” (kiwifruit). First, this leads to
errors in word segmentation. For example, Jieba’s word
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TABLE 1 Statistics of KIWID.

Category (Symbol) Category definition

Varieties (KIWI)
Disease (DIS)

Pest (PEST)

Part (PART)

Farm chemical (MED)
Place (LOC)

Diseases of kiwifruit.

Pests of kiwifruit.

Farm chemicals.

Distribution area of kiwifruit

segmentation result of “HIERMEM” (Actinidia chinensis
Planch.) is “A4E BpEkk” (China kiwifruit). If the lexicon for
the NER model contains incorrect word segmentation
information, it provides misleading information for the
identification of entity boundaries. Moreover, the phenomenon
of nested entities also increases the difficulty of entity
recognition and introduces challenges to the feature extraction
ability of the model.

2.2 New word detection layer

New word detection can identify OOV words and add them
to the built-in dictionary of the word segmentation tool, thus
improving the effect of common word segmentation tools (Du
et al., 2016). Currently, new word detection is either rule-based
(Huiming et al., 2003), statistics-based (Jin and Tanaka-Ishii,
2006), or based on both rules and statistics (Zheng and Wen-
Hua, 2002). Methods that rely entirely or partly on rules rely on
a manually built rule base. Although the rule base is helpful in
improving the effectiveness of new word detection, the
construction process is complex and time-consuming, and
domain transferability is poor. As a result, this study adopts a
statistics-based new word detection method. Corpus A was first
segmented into strings using the N-gram method, and the
garbage strings were then filtered in turn according to the
three statistics of word frequency (WF), mutual information
(MI), and contextual entropy (CE) of the strings. Subsequently, a
new word set was obtained. This new word set was then added to
the built-in dictionary of Jieba to improve its applicability to
kiwifruit-related texts. Finally, the kiwifruit lexicon was
constructed through the word segmentation of Corpus B by
Jieba. This section first introduces the methods related to new
word detection, and then introduces the lexicon
construction process.

2.2.1 N-gram Word segmentation

The basic idea of N-gram word segmentation is to use a fixed
window of length 7 to segment the sentence. After segmentation,
each string of size N is called a “gram.” For example, the 2-gram
segmentation result of the sentence “fRi EHH” (agricultural
disease identification) is “ZV/AVF/% E/FH /AR (nong ye/
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Examples Numbers
Bl ra itk (Longnan kiwi) 3763
4575 (Leaf blight) 561
It (Leaf cicada) 1247
I (Leaves), #4F(branches) 5521
Z R (Carbendazim) 907
Bkt (Shaanxi) 5090

ye bing/bing hai/hai shi/shi bie). Other examples are shown
in Figure 2A.

2.2.2 Mutual information

The concept of MI originates from information theory and is
commonly used to measure how consistently two patterns occur
together in a corpus (Ye et al., 2013). The MI value is derived
from the log-likelihood ratio of the joint probability of patterns
A and B over the individual probabilities of patterns A and B, as
shown in Equation (1). If Chinese strings w; and w, in the same
dataset appear as a whole string w,, the probability is p(w;>),
and the probabilities of the two strings appearing alone are p(w;)
and p(w,), respectively. The MI value was calculated using
formula (2). The higher the MI value of the two strings, the
more likely they are to be combined into meaningful words.

MI(x,y) = log, Plxy) (1)

PPy’

MI(w,,w,) = log, ; plva) )

(w)p(ws) '

2.2.3 Contextual entropy

CE is an external statistic proposed by (Huang and Powers,
2003), that can be used to measure the probability of whether a
string is a meaningful word. It measures the randomness of the
left and right adjacent characters of a string, that is, the left and
right contextual entropies. Compared with a Chinese string with
no practical meaning, a Chinese word with a practical meaning
has a wider application scenario. Thus, the randomness of the set
of left and right adjacent characters will be higher. Therefore, a
higher CE value for a Chinese string indicates a greater
probability that the string has a practical meaning. In the
Chinese new word detection task, the CE accurately reflects
the probability that a string is a meaningful word. The CE value
was calculated using Equations (3) and (4):

Ei(w) = = > P(w|w) x log, P(w|w), (3)
wES,

E.(w) == P(w,|w) x log, P(w,|w), (4)
w,ES,
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FIGURE 2
(A, B) Lexicon construction process.

where p(wj|w) represents the probability that the left-
adjacent character of w is character wy, p(w,|w) represents the
probability that the right-adjacent character of w is character w,,
S; represents all left-adjacent characters of w, and S, represents
all right-adjacent characters of w.

2.2.4 Lexicon construction

The lexicon construction process occurs in four steps, as
illustrated in Figure 2B).

Step 1: Apply the N-gram word segmentation method to
segment corpus A and obtain candidate strings with N = 2, 3,
and 4.

Step 2: Calculate the statistics for each string. Compute the
WF, MI, and CE values for each candidate string.

Step 3: Set the corresponding thresholds for WF, MI, and CE,
named Thresholdl, Threshold2, and Threshold3, respectively,
and filter the candidate strings to obtain a new set of words.
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To avoid the omission of low-frequency new words, we set the
WEF threshold to 5, MI threshold to 3.9, and CE threshold to 2.7.

Step 4: Add the new word set obtained in Step 3 to the built-
in dictionary of Jieba and perform word segmentation on
Corpus B to obtain the kiwifruit lexicon for NER.

2.3 Embedding Llayer

For a character-based CNER model, discrete text sequences
are converted into low-dimensional densely distributed
embedded representations, allowing the model to learn more
semantic knowledge and improve its performance (Guo et al,
2020). As shown in Figure 1, to obtain a high-quality embedded
representation and make good use of the information in the
corpus, Word2vec-CBOW (Mikolov et al.,, 2013) was used to
train Corpus A in character form and transform the resulting
agricultural lexicon into vectors. The input sequence of length »
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is s=(Cp, €2 C3pnnnn ,en)EV,, where V., is the word set (including
characters), and each word is represented by a trained dense
vector xj = ¢e°(¢;), where e denotes the word embedding
lookup table.

2.4 CCNet

CCNet (Huang et al., 2019) is often used in semantic
segmentation to aggregate contextual information from all
pixels to obtain dense contextual information. This study
considered the use of CCNet for text feature extraction. The
overall structure of the CCNet is shown in Figure 3A.

Given a feature map MER"*F, CCNet first generates two
feature maps Q and K by applying two convolutional layers with
a filter size of 1x1 on the feature map M. {Q, K}ERTWH \where
C’is the number of channels of Q and K, which is less than C for
dimension reduction. Another convolutional layer with filters of
size 1x1 is applied on M to generate VER“"W* Q&R is the
vector for each position u in the spatial dimension of the feature
map Q. And vector set Q,ERMY Uy is obtained by
extracting feature vectors from K which are in the same row
with position u. Then, CCNet can obtain DERMTHW-DxWxH
which represents the degree of correlation between features Q,
and €, (i=[1,...,|]Q.|]) by the affinity operation, which is
defined as follows:

10.3389/fpls.2022.1053449

where d; ,=D. Feature map A is then obtained by applying a
softmax layer on D over the channel dimension. CCNet can also
obtain vector V,ERC and set §,ERTW*C The set 6, is a
collection of feature vectors in V that are in the same row as
position u. Finally, the contextual information is collected by the

aggregation operation:

Mul = 2 Ai,uei,u + Mu

i<6,]

(6)

where M, is a feature vector in the output feature maps
M’ERY*H at position u, and A, , is a scalar value at channel i
and position u in A. Contextual information is added to local
feature M to enhance the local features and augment the pixel-

wise representation.

2.5 Criss-cross attention based
Softlexicon layer

One of the tasks of CANER is to recognize the boundaries of
agricultural entities, and word segmentation information provides
good guidance for identifying entity boundaries. However,
CANER is affected by the strong domain characteristics of
agricultural texts and the uneven distribution of entity
categories (Guo et al, 2020). Adding more pre-training
information will help the model learn more agricultural
characteristics, thus reducing the impact of the aforementioned
problems. Therefore, this paper proposes an AttSoftlexicon based

diy = QuQi,uT 5) on Softlexicon (Peng et al., 2020) and CCNet (Huang et al., 2019),
A
—  Q: C'xWxH
E . .
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FIGURE 3
(A, B) Structure of CCNet and PCAT.
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and integrates the word information in the lexicon into character
representation, which helps the model to learn more kiwifruit
text features.

Assume that the input sequence is s={c;, ¢,,..., ¢}, and w;;
denotes its subsequence {c; ¢i,p..., ¢;j}. The first step is lexicon
matching. Each character is matched from a lexicon to all words
containing the character. According to the position of each
character ¢; in the different matched words (beginning, middle,
end, or one-character word), the words matched by a character
were divided into four-word sets B(c;), M(c;), E(c;), and S(c;). The
set construction method is shown in formula (7)-(10).

B(c;) = {wijo ¥V wix € Lii<k < n}, (7)
M(c) = {wy, Y Wy EL1<j<i<k<n}, (8)
E(c) = {w, Y w;; EL1<j< i}, 9)
S(e) ={c, Jc; EL}. (10)

As shown in formula (7)-(10), L denotes the lexicon, and w
represents the words matched in the lexicon. If a word set of
characters is empty, it is represented as {None}. Taking the input
sequence “IE47% #” (plant disease) as an example, the character
“¥)” (matter) is matched with the pre-constructed lexicon, and
the two words “fH#9%%” (plant disease) and “fE4%” (plant) are
matched, and the four word sets corresponding to the character
“Y)” (matter) are formed: B={“None”}, M={“Fi#yii %"}, E={“li
W7}, S={“None”}. The character “Jii” (disease) is matched with
the pre-constructed lexicon, and the two words “Wi%” (disease
and pest) and “IFi” (disease) are matched, and the four-word sets
corresponding to the character “Jii” (disease) are formed: B={“Jf
=7}, M={“None”}, E={“None”}, S={“J#5"}, as shown in Figure 4.
To integrate the word set information matched to each character
into the corresponding character representation, the statistics-
based static weighting method in Softlexicon (Peng et al., 2020)
was used, where the frequency reflects the importance of the word.

The weighting method is given by formulae (11) and (12),
where z(w) is the frequency with which a lexicon word w occurs
in the statistical data and e" is the word embedding lookup table.
The weighted representation of word set S is obtained as follows:

V(S = 3 2me(w), ()
wES
Where:
7 = > z(w). (12)
wEBUMUEUS

In the last step, the original Softlexicon (Peng et al., 2020)
combines the representations of four-word sets into the fix-
dimensional feature and adds it to the representation of each
character, as shown in formulae (13) and (14).
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V = [V'(B); v (M); v*(E); v'(S)], (13)

x5 —[x5V]. (14)

The original Softlexicon (Peng et al., 2020) designed four-
word sets to take advantage of these four types of positional
information. However, it only weighs the words in each word set
according to the word frequency and does not distinguish the
importance of different word sets. This does not allow the model
to distinguish the four positions of the characters in the
matched words.

CCNet (Huang et al., 2019) showed a strong contextual
relationship extraction ability in the semantic segmentation task.
Therefore, to make full use of these four types of position
information, this study uses CCNet to learn the weights for
different word sets, as shown in the formula (15). First, CCNet
processes the representation of these four sets and automatically
assigns weights to them based on the relationship between them.
It is then transformed into a vector of 1x4 through g. Finally, the
weight vector a; (i€[1,4]) with a value range of (0, 1) is obtained
through the sigmoid function. a; is a weight matrix of
dimensions 1x4, where the four values represent the
importance of the four word sets. As shown in formula (16),
the four-word set representations are weighted and merged into
the character representation.

a; = sigmoid(qCCNet(V)) (15)

x° = [x5a,v'(B); a,v' (M); a3V’ (E); agv'(S)] - (16)

2.6 Parallel connection Criss-cross
attention network

The sequence features extracted by BiLSTM may have a few
limits. First, with an increase in sentence length, the feature
extraction ability of BiLSTM declines (Huang et al., 2019). In
addition, LSTM has been shown to have weaker feature
extraction ability than attention mechanism models, such as
transformers, when dealing with longer sequence texts (Li et al.,
2020b). Second, BiLSTM makes each character contribute
equally to the task. In other words, BiLSTM is not good at
assigning more weight to some important characters in the text
sequence, which is very important for NER. In addition, the
strong domain features of kiwifruit-related texts mentioned in
Section 2.1.3 also pose challenges to the feature extraction ability
of the BILSTM. In short, the feature extraction ability of BILSTM
must be further improved when solving the problem of
kiwifruit-named entity recognition. Therefore, a novel module,
parallel connection criss-cross attention network (PCAT), is
proposed to mitigate the impact of the above limits with the
help of CCNet (Huang et al., 2019). The overall structure of the
PCAT is shown in Figure 3B.
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FIGURE 4
Example of lexicon matching.

After the agricultural sentence is processed by BiLSTM, a
feature map XER“*" is obtained (C represents the dimension of
BiLSTM and W represents the length of the sentence). In this
work, agricultural sentences are regarded as pictures with a
channel number of C and a size of Wx1. Therefore, PACT
first transforms X into a feature map MER™"> (the value of H
is 1) through an unsqueeze operation. Each pixel in the feature
map M represents a character in the agriculture text.

To obtain richer semantic information. The PCAT uses two
different convolutional layers with filter sizes of 1 x 1 and 1 x 3
on M to generate two feature maps, M; and M,. M; and M, are
put into the CCNet for processing. To learn more complex
features, PCAT applies two convolutional layers with filter sizes
of 1 x 3 to M; and M,. Finally, M; and M, are added, and the
output vector of the PCAT X’€R“*" is obtained through a
squeeze operation.

Using CCNet to calculate the connection between each
character, PCAT can assign different weights to different
characters to give more attention to key characters. In addition,
PCAT can solve the problem of long-distance dependency
because it can calculate the degree of association between words
in each position and other words that are not affected by distance.
Through a parallel structure and convolutional layer, PCAT can
obtain richer features from agricultural texts.

2.7 Evaluation indicators and
experimental environment

2.7.1 Parameter setting

In our proposed model, both the character vector dimension
and word vector dimension were set to 50. In the feature encoding
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layer, the hidden size of both the forward and backward LSTM
was set to 300, and to mitigate overfitting, the dropout rate was set
to 0.5. For the model training, the batch size was set to 16.
Furthermore, the model was trained using stochastic gradient
descent with an initial learning rate of 0.0015, and the learning
rate decay was set to 0.05. The hyper-parameter configuration of
the model is listed in Table 2. All experiments were conducted
under the conditions listed in Table 3.

2.7.2 Dataset division

For dataset division, four datasets were involved in the
experiment, namely KIWID, BOSON, ClueNER, and People’s
Daily. We obtained the public data according to Table 2 in study
(Liu et al., 2022). This study randomly divided KIWID, BOSON,
and ClueNER into training, validation, and test sets according to
a ratio of 8:1:1, respectively [refer to Zhang et al. (2021)].
Division of People’s Daily reference https://github.com/zjy-
ucas/ChineseNER. The pre-training corpus used in the
KIWID-related experiments was the kiwifruit pre-training
corpus constructed in this study. The pre-training corpus used
in public dataset-related experiments is derived from Lattice-
LSTM (Zhang and Yang, 2018), which is pre-trained using
Word2vec (Peng et al, 2020) over automatically segmented
Chinese Giga-Word. The number of character vectors in the
public pre-training corpus is 5.7k, and the number of words in
the lexicon is 704.4k.

2.7.3 Evaluation indicators

Precision (P), recall (R) and F,-score (F;) were used to
evaluate the performances of the different models, as shown in
Equations (17)-(19).
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TABLE 2 Hyper-parameter value.

10.3389/fpls.2022.1053449

Parameters Value Parameters Value
character embedding dim 50 learning rate decay 0.05
batchsize 16 LSTM hidden 300
learning rate 0.0015 dropout rate 0.5
TABLE 3 Experimental environment.

Project Environment Project Environment
Operating system Windows 10(x64) Hard disk 1T

CPU i7-10700F@2.90GHz Python version 3.6.5

GPU NVIDIA TITANRTX (24GB) Pytorch version 1.8.1
Memory 64GB - -

True positives Tp

= = R 17
Predictied as positives  Tp + Fp (7
_ Truepositives  Tp (18)
"~ Actual positives  Tp + Fy
2PR
F, = . 19
'""P+R (19)

True positives (Tp) refer to the number of correctly
recognized positive samples among all positive samples,
whereas false positives (Fp) denote the number of negative
samples incorrectly recognized as positive samples. False
negatives (Fy) are positive samples incorrectly recognized as
negative samples. Among all the positive samples, the more that
are predicted correctly, the higher the P value. A higher number
of positive samples predicted in the testing set yielded a higher R
value. F; is the harmonic average of P and R, providing an
evaluation of the comprehensive ability of the model.

3 Results
3.1 Experiments on KIWID

In this section, some typical NER models such as BiLSTM
(Huang et al,, 2015), TENER (Yan et al., 2019), LR-CNN (Gui
et al,, 2019a), LGN (Gui et al.,, 2019b) and Softlexicon-LSTM
(Peng et al., 2020) are considered comparable models. In
addition, this section also uses the previous CANER findings
JMCA-ADP (Guo et al, 2020) and Att-BiLSTM-CRE (Zhao
et al., 2021) as comparison models. Like KIWINER, LR-CNN,
LGN and Softlexicon-LSTM are also lexicon-based models. The
lexicon used in the experiments in this section are the Kiwifruit
lexicon constructed in this study.

The experimental results for KIWID are shown in Table 4. It
could be observed that the model proposed in this study
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outperformed other models, and the F; of this model is at
least 0.47 higher than other models, which illustrates the
effectiveness of it recognizing kiwifruit-related entities. The
performance of our model is significantly improved compared
to the baseline model BiLSTM-CRF. This is due to the fact that
KIWINER makes full use of kiwifruit lexical information with
the help of AttSoftlexicon, and obtains deeper semantic features
with the help of PCAT. Compared with CANER models Att-
BiLSTM-CRF and JMCA-ADP, KIWNER has achieved obvious
improvement, which further verifies the effectiveness of
KIWINER. The lexicon-based models LR-CNN, LGN,
Softlexicon-LSTM and KIWINER have clear advantages over
the rest of the character-based models, illustrating the
effectiveness of constructing a kiwifruit-related lexicon and
incorporating lexical information into the model.

3.2 Experiments on public datasets

To verify the generalization of KIWINER, three public
datasets were selected: Boson, ClueNER, and People’s Daily.
The experimental results are listed in Table 5.

The KIWINER model achieved the best F; of the three
datasets, which were for Boston, ClueNER, and People’s Daily
85.13%, 80.52%, and 92.82%, respectively. The experimental
results show that KIWINER not only has performance
advantages on the KIWID corpus, but also has a certain
generalization in other fields.

3.3 Ablation experiments

3.3.1 Effectiveness of new word detection layer

In the new word detection layer of KIWINER, the
adaptability of Jieba to kiwifruit-related texts was enhanced by
new word detection and then a lexicon was constructed by word
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TABLE 4 Results of each model on KIWID.

Model P

BiLSTM-CRF 84.42
Att-BiLSTM-CRF 82.85
JMCA-ADP 84.90
TENER 86.40
LR-CNN 87.08
LGN 86.81
Softlexicon-LSTM 87.18
KIWINER (our) 88.21

segmentation of kiwifruit-related texts. To verify the
effectiveness of this lexicon construction method, this section
used several commonly used Chinese automatic word
segmentation tools (Pkuseg, Thulac, HanLP, Jieba, and
Snownlp) to automatically separate the kiwifruit-related texts
collected in this study to construct lexicons and apply them to
KIWINER for experiments. Experiments were performed using
KIWID. The experimental results are shown in Figure 5A.

The method of constructing the lexicon with the aid of new
word detection and Jieba achieves the highest P, R, and F;, and
improves over other methods. This shows that new word
detection effectively reduces the negative impact of word
segmentation errors on CANER during lexicon construction.

3.3.2 Effectiveness of AttSoftlexicon layer

To verify the effectiveness of the AttSoftlexicon, it was
replaced in KIWINER by Softlexicon (Peng et al., 2020), and a
comparative experiment was conducted. The experiment used
the F; as the evaluation metric, and the experimental results are
shown in Figure 5B. The KIWINER model achieved the best F,
for the four datasets. This shows that by assigning different
weights to different word set representations, the AttSoftlexicon
can help the model to make full use of the position information
of characters in its matched words, thus making more full use of
lexicon information than Softlexicon.

TABLE 5 Results for each model on public datasets.

10.3389/fpls.2022.1053449

R F1
84.54 84.48
88.99 85.81
90.47 87.59
90.19 88.25
89.90 88.47
89.63 88.19
89.27 88.21
90.31 88.94

3.3.3 Effectiveness of PCAT layer

To verify the applicability of the PCAT module for different
sequence encoding models, experiments were performed using
transformer and GRU instead of BiLSTM. And comparative
experiments were carried out with or without the PCAT module
in the model. The experiment was divided into three groups, and
the results are presented in Table 6.

The effect of each sequence coding model in the table
improved after the introduction of PCAT, indicating the
effectiveness and universality of PCAT. The model based on
BiLSTM achieved the best effect, which shows the rationality of
KIWINER using BiLSTM to encode character sequences.

4 Discussion

4.1 Comparison of experiments with
different variants

To verify the rationality of the PCAT module, several
variants of it were designed, and the variant was used to
replace the PCAT in KIWINER for experiments on Boson,
ClueNER, KIWID, and People’s Daily. Variants A and B
increased and decreased the depth of the PCAT, respectively.
Variants C and D break the parallel connection structure of
PCAT. The different variant structures of the PCAT are shown

Model Boson ClueNER People’s Daily
p R F, p R F, p R F,

LSTM 81.78 72.50 76.86 76.80 71.28 73.94 85.96 82.09 83.98
Att-BiLSTM-CRF 79.93 76.67 7827 74.73 73.62 74.17 86.28 85.05 85.66
JMCA-ADP 80.10 77.66 78.86 75.82 76.58 76.20 87.96 86.93 87.44
TENER 79.45 81.51 80.47 74.34 77.08 75.68 90.36 90.07 90.22
LR-CNN 84.40 82.04 83.20 80.09 78.47 79.27 91.13 90.74 90.93
LGN 82.16 79.16 80.63 77.01 73.95 7545 90.75 89.52 90.13
Softlexicon-LSTM 85.75 80.67 83.13 80.50 79.11 79.80 92.31 90.43 91.36
KIWINER 86.96 83.37 85.13 81.05 80.01 80.52 93.23 92.42 92.82
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in Figure 6. In addition, many researchers use the self-attention
mechanism (Self-Att) to improve the feature extraction ability of
the sequence encoding layer. In the field of CANER, Guo et al.
(2020) introduced a self-attention module after the BiLSTM
model to improve the feature extraction ability of sequence
coding layer. Therefore, this section refers to the study by Guo
et al. (2020) and uses Self-Att instead of PCAT for experiments.
Attention unit and head number of Self-Att is 600 and 8. The
experimental results are listed in Table 7.

Compared with Variants A and B, the PCAT achieved
better results, indicating that the depth design of the PCAT is
reasonable. Compared with variables C and D, PCAT achieves
better results, which shows that a parallel structure can
effectively improve the feature extraction ability of the model
and help the model obtain richer semantic information. PCAT
achieves better results than Self-Att (Guo et al., 2020), which
indicates that PCAT is more conducive to improving the model
feature extraction capability than the commonly used module
Self-Att. PCAT constructs a parallel structure with the help of
two different convolutional layers, which allows the model to
simultaneously process semantic information from two
different perspectives. At the same time, with the help of
CCNet, which has good long distance context semantic
aggregation capability (Huang et al, 2019), the information
can be processed again, and different weights can be given
according to different information relationships. Therefore,
PCAT can help the model make full use of the feature
information input into the model.

TABLE 6 Application effect of PCAT.

Group Model F,

1 AttSoftlexicon-Transformer-CRF 84.01
2 AttSoftlexicon-BiGRU-CRF 87.68
3 AttSoftlexicon-BiLSTM-CRF 87.17
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4.2 Comparative analysis with the
previous CANER findings

This section discusses the recognition effects of KIWNER
and the previous CANER studys Att-BiLSTM-CRF (Zhao et al,
2021) and JMCA-ADP (Guo et al,, 2020) on each category of
the kiwifruit dataset KIWID. BILSTM-CRF (Huang et al., 2015),
the baseline model of the above models, also participated in the
experiments. The experimental results are shown in Table 8,
where F; is chosen as the evaluation metric, and the last column
of the table is the running time of each model.

It can be clearly seen from the table that KIWNER has
achieved the best results in each category, especially in disease,
pest, pesticide, which contain strong domain features. Although
Att-BiLSTM-CRF and JMCA-ADP have made efforts to
integrate agricultural features into the model, KIWINER can
obtain more agricultural features by using word information
with the help of Attsoftlexicon and new word detection. In
addition, PCAT can help the model to further make full use of
these agricultural features. The category of location related
entities usually contain boundary characters, such as “£L”
(county), “#4” (town), “F}” (village), etc., and the category of
part related entities have limited diversity and many repeated
words, which leads to the recognition difficulty of the above two
categories being relatively low. Therefore, KIWINER did not
significantly improve the recognition effect of LOC and PART.
From the last row of the table, we can see that KIWINER takes
more time than other models, which is a disadvantage of

Model F,
AttSoftlexicon-Transformer-PCAT-CRF 85.11
AttSoftlexicon-BiGRU-PCAT-CRF 88.85
AttSoftlexicon-BiLSTM-PCAT-CRF(KIWINER) 88.94
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Variants of PCAT.

KIWINER. KIWNER incorporates lexical information, so it will sequence encoding modules can be helpful to overcome
spend an extra part of time on processing lexical information this shortcoming.

compared with the character based model. Research on faster In KIWNER, AttSoftlexicon module and PCAT module
character and word matching methods and more efficient both adopt the CCNet model from semantic segmentation,

TABLE 7 Results for several variants of PCAT.

Module Boson ClueNER KIWID People’s Daily
Self-Att 83.35 79.73 88.12 91.71
Variant A 84.03 80.26 88.41 92.34
Variant B 84.24 80.41 88.62 92.58
Variant C 84.07 80.32 88.22 92.69
Variant D 84.61 80.34 88.83 92.56
PCAT 84.95 80.95 88.94 92.82

The values in bold represent the maximum value in the same column.
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TABLE 8 Entity categories study.

10.3389/fpls.2022.1053449

Entity type BiLSTM Att-BiLSTM-CRF JMCA-ADP KIWINER
KIWI 83.70 80.00 85.90 87.06
DIS 79.17 78.43 81.63 87.50
PEST 77.00 85.71 86.96 89.76
LOC 81.90 82.64 83.69 84.19
PART 94.44 94.23 94.43 96.80
MED 61.64 70.45 7333 75.28
All category 84.48 85.81 87.59 88.94
Time(s/epoch) 139.14 149.20 144.13 163.87

and have achieved good results through experimental
verification. With the help of new word detection and
AttSoftlexicon, KIWINER incorporate the word information
containing domain features into the model. And KIWINER
has achieved significant improvement compared with previous
which are character-based models. This shows that when solving
problems with strong domain features such as CANER, it is a
good solution to find a method to integrate more domain
features into the model. In addition, the effectiveness of PCAT

also shows the importance of making full use of these features.

5 Conclusion

To address the lack of an annotation dataset for agricultural
named entity recognition in the kiwifruit field, a kiwi-annotated
NER corpus KIWID, which contains six categories and 17089
entities was constructed in this study. According to the
characteristics of kiwifruit-related texts, a new CANER model,
KIWINER, was proposed by statistics-based new word detection
and the novel module AttSoftlexicon, PCAT. To alleviate the
word segmentation insensitivity caused by the strong
specialization of kiwifruit-related texts, statistics-based new
word detection was used to enrich the built-in vocabulary of
Jieba and improve its applicability to kiwifruit texts to construct
the kiwifruit lexicon. Inspired by the CCNet module in the field
of semantic segmentation, the AttSoftlexicon was proposed to
help the model make efficient use of lexicon information. In
addition, this study proposes a PCAT module to improve the
feature extraction ability of the sequence coding layer BiLSTM.
The experimental results with the comparative models show that
our proposed model can effectively improve CANER
performance, particularly for difficult-to-recognize categories
such as diseases, pests, and farm chemicals.

Moreover, our research can provide reference for developing
new deep learning methods for named entity recognition of
international texts. Theoretically, our construction method of
Attsoftlexicon is also applicable for the named entity recognition
of the texts of other similar languages, such as Japanese, Korean
etc., which are unnaturally partitioned just like Chinese. In
addition, our proposed PCAT module is used to improve the
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sequence encoding ability of deep learning model essentially. So,
applying our proposed PCAT module for the named entity
recognition of other language is also theoretically feasible.
Therefore, KIWINER can also be used to explore CNER tasks
in other crops or other fields with domain features. In the future,
we will study how to improve the time efficiency of KIWINER
and use it in the construction of kiwifruit Q&A system.
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Hainan Island

Yukai Chen", Hai-Li Zhang?, Li Zhang™,
Mir Muhammad Nizamani*, Taoxiu Zhou®, Haiyang Zhang®
and Tingting Liu®

*Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences,
Hainan Normal University, Haikou, China, 2Hainan Key Laboratory for Sustainable Utilization of
Tropical Bioresources, School of Life Sciences, Hainan University, Haikou, China, *Guizhou Normal
University Museum, Guizhou Normal University, Guizhou, China, “Department of Plant Pathology,
Agricultural College, Guizhou University, Guiyang, China, °College of Biological Science and
Technology, Yangzhou University, Yangzhou, China, ¢College of International Studies, Sichuan
University, Chengdu, China

Hopea hainanensis (Dipterocarpaceae) is an endangered tree species restricted
to Hainan Island, China, and a small part of Northern Vietnam. On Hainan
Island, it is an important indicator species for tropical forests. The wood of
Hopea hainanensis has a very high utilization value in nature since it is compact
in structure, hard in texture, not easily deformed after drying, durable, and
resistant to sunlight and water. As a result of its high quality, it has been felled
and mined by humans without restraint, resulting in a reduction of its
population size, severe habitat fragmentation, and a sharp decline in its
population. Therefore, its conservation biology needs to be researched
urgently. Researchers are currently focusing on the ecological factors and
seed germination in the habitat of Hopea hainanensis to determine its
endangered status. In the literature, there are no systematic analyses of the
endangered mechanism of Hopea hainanensis in terms of genetic diversity. It
focuses especially on the systematic genetic diversity of Hopea hainanensis in
fragmented habitats. Using single nucleotide polymorphism (SNP) and
genotyping-by-sequencing (GBS) technology, 42 samples from seven
different cohabitation groups were genotyped. The results showed that the
average heterozygosity of the seven populations of Hopea hainanensis was
19.77%, which indicated that the genetic diversity of Hopea hainanensis was
low. Genetic diversity research is essential for rare and endangered plant
protection research. We can find a scientific basis for protecting endangered
plants on slope bases by analyzing genetic differences and relationships
among populations.
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1 Introduction

The Earth’s biodiversity quickly decreases due to agricultural
growth, over-exploitation, deforestation, pollution, and climate
change (Wang et al., 2007). Around 40% of plant species are on
the verge of extinction (Ly et al., 2018). Conservation genetics, a
new science that uses population genetics principles and
methods to biological conservation, aims to save endangered
species from extinction (Hogarth et al., 1997; Sarath
Padmanabhan and Hemaprabha, 2018). Endangered animals
are frequently distinguished by tiny, scattered populations and
limited gene flow among populations (Mehmood et al., 2018).
Mating happens more commonly among relatives in tiny,
isolated populations, and selfing may be observed in
hermaphroditic plants. Inbreeding causes homozygosity in
harmful recessive genes and, as a result, the generation of
poorer oftspring, a condition known as inbreeding depression
(Kardos et al., 2016).

Furthermore, genetic drift is higher in small populations,
contributing to the fixation of harmful mutations and loss of
genetic variation, weakening a population’s adaptive ability and
raising its extinction risk (Kardos et al, 2021). The area of
conservation genetics, which aims to research the genetic
diversity, population differentiation, mating system, and
historical demography of endangered species, gives amazing
insights into preserving biodiversity in the real world (Brown
et al, 1991). Furthermore, Hopea hainanensis research is
primarily concerned with the impacts of various
environmental conditions in the habitat on seed germination
and seedling development, ex situ conservation, and better seed
selection and cultivation techniques in artificial propagation and
cultivation (Zhang et al., 2022).

Dipterocarpaceae comprise 20-50% of the basal forest area
and more than 50% of the canopy trees in tropical Asian forests
(Ghazoul, 2016). Because many Dipterocarpaceae species are
valuable wood resources, they have been widely exploited in
tropical Asian nations. As a result of the widespread harvesting
of timber and destruction for agriculture, many dipterocarps are
now designated as endangered or severely endangered (Wang
et al,, 2021). On the other hand, Dipterocarp woods are
considerably more than just a supply of lumber. They are vital
components of Asian tropical rainforest ecosystems, acting as
the foundation for these varied ecosystems. Indeed, Southeast
Asia is home to four of the world’s 25 “biodiversity hotspots”
(Wang et al., 2020). Furthermore, dipterocarp forests provide
various ecosystem services and play a significant role in
balancing ecological processes at the regional and global levels
(Agoramoorthy, 2002). It is the representative and endemic
species of the tropical ravine rainforest in Hainan.

The natural survival population of H. hainanensis in Hainan
is mainly distributed in the forest patches dominated by broken
secondary rainforests in and around Limushan, Bawangling,
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Jianfengling, Diaoluoshan, Yinggeling, Wuzhishan, and other
forest areas in Hainan Island (Song et al., 2020). H. hainanensis
is listed as a class I protected plant in the List of China’s National
Key Protected Wild Plants (Jiang, 2019). It was identified as an
endangered species in the Red Book of Chinese Plants and is
ranked as “Endangered” by the IUCN (Ly et al., 2018).
Currently, studies on H. hainanensis mainly focus on the
effects of various environmental factors in the habitat on seed
germination and seedling development, ex situ protection, and
improved seed selection and cultivation techniques in artificial
propagation and cultivation (Chen et al., 2015). There is a lack of
systematic analysis of the endangerment mechanism in terms of
genetic diversity, and there is even less research on the
systematic genetic diversity of ports in different fragmented
and chemical habitats (Li et al., 2015; Zhang et al., 2022).

However, genetic diversity as an extinction mechanism for
H. hainanensis has not been systematically studied. A few studies
have been conducted on the genetic diversity of Hopea
hainanensis systems in fragmented and metaplastic
environments. Wang et al. isolated and identified 12
polymorphic microsatellite markers on endangered H.
hainanensis (Wang et al., 2020). The genetic diversity and
population structure of 10 H. hainanensis populations were
analyzed using 12 SSR markers in Hainan Island. The
emergence of population bottlenecks may cause genetic
diversity loss and population differentiation. Long-term
protection strategies for endangered species in Hainan
were proposed.

In many fields, genotyping by sequencing (GBS) in
simplified genome sequencing technology has become
increasingly popular as next-generation high-throughput
sequencing technology has developed (Mehmood et al., 2022).
These include the construction and analysis of genetic maps, the
study of genome-wide association systems and gene diversity
and identifying the germplasm of plants and animals. Therefore,
in this study, GBS technology was used to systematically identify
42 genome-wide SNPs of H. hainanensis resources. Based on the
identified SNPs, a phylogenetic tree of these 42 H. hainanensis
resources was constructed, and genetic diversity was analyzed. It
has practical guiding significance for the protection of H.
hainanensis resources and the improvement of its ecological
environment. It is of great significance to the protection of H.
hainanensis biodiversity.

2 Materials and methods
2.1 Study area
Hainan Island (E108°37’-111°03’, N18°10’-20°10) is located

in southern China (Zhang et al., 2021), and it is the largest island
city in China (Figure 1). Hainan Island has a mild climate, with
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FIGURE 1

A distribution and sample collection information map of Hopea hainanensis in Hainan Island.

an annual average temperature of 22-27°C, and is rich in forest
resources (Zhang et al., 2022). Hainan Island is low and flat all
around and towering in the middle, with Wuzhishanand
Yinggeling as the uplift cores and descending step by step to
the periphery. (https://www.hainan.gov.cn). Hainan Island is
hailed as the largest “natural museum” by biologists, and 102
rare animals in Hainan Island have been included in the list of
national first- and second-class key protected animals (Zhang
etal,, 2022). There are many rare and endangered wild plants. At
the same time, northern and coastal regions have relatively low
biodiversity and fewer rare and endangered species due to
greater human disturbance intensity (Nizamani et al., 2021).

2.2 Materials

In the early field investigation, field investigation and actual
sampling possibilities are based on the natural distribution of the
levee population. The H. hainanensis sample materials were
divided into seven regional populations according to their
geographical sources for population sampling. The bawangling
population includes nine subpopulations, namely BWL P1-P9,
including samples BWLI-BWL_13. Limushan population
consists of 7 subpopulations, LMS P1 and LMS P3-P8,
including samples LMS1-LMS_10, respectively. The
Jianfengling population included seven subpopulations JFL
X1-X2, JFL PI1, JFL P3-P6, which included samples JFL1-
JFL_10. Wuzhishan population included two subpopulations
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(WZS P1-P2), including samples WZS_1-WZS_2, respectively.
Yinggeling population included two subpopulations YGL P1-P2,
including YGL1-YGL_3, respectively. The Diaoluoshan
population included one subpopulation, DLS P1, including
samples DLS_1-DLS_3. Fanyang population included one
subpopulation FY1, including sample FY_1. The Fanyang
population belongs to the Wuzhishan region. Regional
population division, longitude, latitude, and sample number
are shown in Table 1.

2.3 Methods

2.3.1 Sample DNA extraction and
quality testing

42 H. hainanensis leaf samples were extracted with a Biotech
(Beijing, China) DNA extraction kit (Plant no. DP305) under the
standard operating procedure. After DNA extraction, the quality
and concentration of DNA samples should be tested. Qubit was
used to determine the concentration of DNA samples, and AGE
was used to detect the quality of DNA samples (Wang
et al., 2015).

2.3.2 Construction and sequencing of genomic
GBS library

The quality and concentration of the extracted DNA were
tested to be qualified and then sent to Hangzhou Lianchuan
Biotechnology Co., Ltd. for GBS library construction and
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TABLE 1 The list of information for Hopea hainanensis sample collection in Hannan Island.

Area code Location Longitude
BWL Bawanglin 109°03'-109°17'E
LMS Limushan 109°39'-109°48'E
JEL Jianfengling 108°44'-109°02'E
WZS Wuzhishan 109°39'-109°47'E
YGL Yinggeling 109°11'-109°34'E
DLS Diaoluoshan 109°11'-109°34'E
FY Fanyang 109°27'E

sequencing. Rsal-Haelll digestion was used for digestion. The
high-throughput sequencing library was prepared through
terminal repair, A-tail addition, sequencing adaptor addition,
purification, PCR amplification, and so on. The library was
purified by electrophoresis and gluing according to the preset
scheme. The gluing range of the library was 450-500bp to select
the library with the length of the inserted fragment in the target
interval for subsequent sequencing. Only libraries that had been
screened for fragment length were qualified for sequencing. The
sequencing platform was Illumina Nova6000, and the
sequencing mode was PE150.

2.3.3 SNP mining in H. hainanensis genome

After the sequencing data is taken off the machine, the raw read
data obtained by sequencing is quality-controlled, and low-quality
sequences and splice sequences are removed to obtain a clean read.
After that, all samples’ reads are clustered, similar reads are
clustered together as a tag, and the consensus sequence is
generated. Then, the data were aligned with the consensus
sequence by the individual, and the Clean Read data were aligned
with the consensus sequence. GATK software and SAMTOOLS
software were used for SNP detection, and the quality filtering of the
detected mutation sites was carried out. The evolutionary analysis
was based on SNP data. Before evolutionary population analysis,
SNPs were filtered according to the minor allele frequency (MAF) >
0.05 and data integrity > 80% (i.e., no more than 20% of individual
genotypes were missing).

2.3.4 Phylogenetic tree analysis of
H. hainanensis

The phylogenetic tree is a diagram used to describe the
genetic differentiation relationship between species. According
to the evolutionary relationship between different sources and
different types of organisms, all kinds of organisms are placed on
the branching tree diagram. The evolution process and the
relationship between these organisms are succinctly described.
Based on SNP, 1000 replicates of the PDIST model were
obtained as phylogenetic trees of all samples based on the
neighbor-joining algorithm of MEGA software (Dieckmann
et al., 2016).
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Latitude Sample Number of sample
18°57"-19°11'N BWL_1-BWL_13 13
19°07"-19°14'N LMS_1-LMS_10 10
18°23'-18°52'N JEL_1-JFL_10 10
18°49'-18°58'N WZS_1-WZS_2 2
18°49'-19°08'N YGL_1-YGL_3 3
18°49'-19°08'N DLS_1-DLS_3 3

18°53'N FY_1 1

27

2.3.5 Principal component analysis

Principal Components analysis (PCA) was performed based
on SNP to obtain the clustering of Principal components of all
samples. Through PCA analysis, it can be known which samples
have short genetic distances and close relatives. The samples
with long genetic distances and distant relatives are helpful for
population genetic evolution analysis.

2.3.6 Analysis of population genetic structure

Population genetic structure analysis can provide information
on the origin and composition of individual lineage. Based on
SNP, the population structure of all samples was analyzed by
ADmixture software, and the number of clusters (K value) was
assumed to be 1-10, respectively. Different K values represent the
distribution of ancestral genetic material of different populations
under the assumption that there are K ancestral groups.

2.3.7 Analysis of the genetic relationship

Based on SNP, the genetic distance between pairs of all samples
was calculated. We can get the relative distance between samples by
analyzing genetic distance data, which can assist the evolution
analysis. In the phylogenetic heat map, the redder the color, the
closer the relationship between the two individuals on the
horizontal and vertical axes, the large area of red in the
phylogenetic heat map between multiple individuals indicates that
these individuals may constitute a closely related family group.
Conversely, the bluer the heat map, the more distant the relatives.

3 Results
3.1 The quality of sequencing

After GBS sequencing, 28.09 Gb of Raw READ data were
obtained from 42 H. hainanensis samples. After removing low-
quality sequences, sequences containing more than 5% N (N
represents undetermined base information), and adapter
sequences, 27.85 Gb of high-quality sequencing data (Clean
data) was obtained. The average size of each sample is 0.66
Gb. The average proportion of base error rate below 1% (Q20)
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was 96.66%, and the average proportion of base error rate below
0.1% (Q30) was 91.34%, indicating the high quality of
sequencing. The average ratio (GC content) of guanine (G)
and cytosine (C) among the four bases of DNA was 47.84%,
indicating that the distribution was reasonable. The data
overview of each sample is shown in Table 2.

10.3389/fpls.2022.1075102

3.2 SNP site mining

After comparing the data to the consensus sequence, GATK
and SAMTOOLS software were used for mutation detection
(Wright et al., 2019). SNPs consistently output by the two
software were retained as reliable loci. According to the

TABLE 2 The materials used in this study and overview of the GBS dataset.

Sample Raw data (bp) Raw data Clean data (bp) Clean data  Effective data (%) Q20 (%) Q30 (%) GC (%)

BWL_1 3889430 0.58G 3840274
BWL_2 4353376 0.65G 4307204
BWL_3 4410548 0.66G 4361182
BWL_4 5189486 0.78G 5136018
BWL_5 4267498 0.64G 4218714
BWL_6 4538054 0.68G 4487112
BWL_7 4157322 0.62G 4111528
BWL_8 4475100 0.67G 4426518
BWL_9 4937116 0.74G 4886146
BWL_10 4079886 0.61G 4027066
BWL_11 4272788 0.64G 4224600
BWL_12 3689286 0.55G 3652654
BWL_13 5344202 0.80G 5276592
LMS_1 4132158 0.62G 4078226
LMS_2 4568574 0.69G 4503136
LMS_3 4821746 0.72G 4757702
LMS_4 4205644 0.63G 4159754
LMS_5 5239770 0.79G 5175988
LMS_6 4629342 0.69G 4577802
LMS_7 4531974 0.68G 4476688
LMS_8 4704600 0.71G 4654786
LMS_9 4455698 0.67G 4406112
LMS_10 3780250 0.57G 3741060
JFL_1 4217110 0.63G 4166782
JFL_2 5198358 0.78G 5130962
JFL_3 4385206 0.66G 4324702
JFL_4 2491648 0.37G 2453514
JEL_5 4668386 0.70G 4607144
JFL_6 6462998 0.97G 6396564
JEL_7 2447580 0.37G 2423086
JFL_8 5394202 0.81G 5330052
JEL_9 5101784 0.77G 5043916
JEL_10 6088498 091G 6023038
WZS_1 4060186 0.61G 4003372
WZS_2 6086906 091G 6017660
YGL_1 4555380 0.68G 4505358
YGL_2 4127066 0.62G 4066052
YGL_3 3659212 0.55G 3615938
DLS_1 3968904 0.60G 3921372
DLS_2 3803398 0.57G 3754674
DLS_3 4899390 0.73G 4838058
FY_1 3039210 0.46G 2882090
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0.57G 98.5 96.77 91.59 50.46
0.64G 98.77 96.97 92 47.31
0.65G 98.67 96.65 91.3 48.35
0.77G 98.78 96.97 91.97 47.43
0.63G 98.63 96.74 91.53 47.6
0.67G 98.67 96.75 91.5 47.63
0.62G 98.68 96.68 91.35 47.67
0.66G 98.71 96.66 91.3 47.72
0.73G 98.81 96.68 91.31 47.43
0.60G 98.5 96.47 90.94 47.86
0.63G 98.64 96.62 91.23 47.32
0.55G 98.8 96.89 91.79 47.31
0.79G 98.52 96.61 91.26 47.54
0.61G 98.48 96.79 91.65 47.51
0.67G 98.39 96.3 90.59 49.58
0.71G 98.48 96.6 91.24 48

0.62G 98.71 96.84 91.7 49

0.77G 98.58 96.7 91.44 47.39
0.69G 98.69 96.89 91.83 47.7
0.67G 98.59 96.7 91.45 48.19
0.70G 98.75 96.76 91.49 47.3
0.66G 98.68 96.77 91.55 47.45
0.56G 98.75 96.83 91.67 47.82
0.62G 98.61 96.64 91.27 47.93
0.77G 98.53 96.46 90.9 47.97
0.65G 98.44 96.4 90.79 47.67
0.37G 98.24 96.34 90.71 47.39
0.69G 98.54 96.26 90.48 47.9
0.96G 98.8 96.84 91.63 46.6
0.36G 98.69 96.78 91.57 48.35
0.80G 98.61 96.71 91.43 47.75
0.76G 98.67 96.77 91.57 47.92
0.90G 98.76 96.81 91.6 47.54
0.60G 98.42 96.69 91.45 47.78
0.90G 98.67 96.84 91.67 47.33
0.67G 98.74 96.89 91.82 48.3
0.61G 98.3 96.18 90.33 47.46
0.54G 98.63 96.43 90.84 47.64
0.59G 98.54 96.8 91.64 48.71
0.56G 98.5 96.49 90.98 48.3
0.72G 98.58 96.71 91.44 48.09
0.43G 94.63 96.19 90.57 47.28
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criteria of MAF >0.05 and data integrity >0.8, SNP data were
further processed and filtered to retain SNPg with
polymorphisms. After filtering the SNPs obtained, 430376
high-quality SNPs were finally obtained for subsequent
analysis. It can be seen from the following Table 3 that the
heterozygosity of the Fanyang population (FY) is relatively high,
which may be related to the fact that the Fanyang population has
only one sample, the sample size is small, the width of the genetic
variation is insufficient and other factors, so there is not enough
sample data for comparative analysis of the genetic diversity in
this population. The heterozygosity of the other six populations
ranged from 19.26% to 20.34%, with average heterozygosity of
19.77%, indicating a low level of genetic diversity.

3.3 Genetic evolution and
population analysis

3.3.1 Phylogenetic evolutionary tree

The identified high-quality SNPs were used for phylogenetic
analysis of the 42 H. hainanensis resources. After 1000 repetitions
based on the PDIST model, the neighbor-joining algorithm of
MEGA software was used to perform evolutionary analysis on all
samples, and the phylogenetic tree of 42 H. hainanensis sample
resources was obtained (Figure 2). Samples from the same
sampling site were relatively closer to each other. However, the
relative distance between the samples from different sites means
that the internal samples from different sampling sites in these
seven population areas may have a common ancestor. The results
showed that the 42 samples could be divided into two large
groups, and each could be further divided into small subgroups. In
general, the samples of the same geographical origin were
relatively aggregated in the two large taxa. Still, the distribution
was mixed in the small subgroups, and the samples of the same
geographical origin were not completely merged into the same
subgroup. Group I mainly include the resources from
Diaoluoshan, Fanyang Mountain, and Yinggeling, and the
resources from Wuzhishanare clustered into Group II. The
resources from Limushan, Bawangling, and Jianfengling are
distributed in both groups, and the distribution is relatively
chaotic. The small subgroups clustered in group I were divided

TABLE 3 SNP Statistical results.

Population code SNP number
BWL 84652
LMS 99347
JFL 86427
WA 92887
YGL 80498
DLS 86604
FY 17510

Frontiers in Plant Science

Heter LociNum

16895
19073
17578
18325
15682
17195
9285

29

10.3389/fpls.2022.1075102

into three small independent subgroups, indicating a large
difference in kinship distance between the large group and each
other. The aggregation of samples in group II was relatively
uniform. Therefore, although there is certain geographical
isolation between the H. hainanensis resources of different
population areas, there is no direct correlation between the
clustering based on genetic distance and its geographical source.

3.3.2 Analysis of population genetic structure
To further verify the evolutionary genetic relationship
between the samples and infer that the H. hainanensis
population likely came from several ancestors. The genetic
structure of the mutations in each sequencing sample was
further studied. Based on SNP data, ADmixture software was
used to analyze the population structure of all samples. Then,
cluster analysis was performed, assuming that the number of
clusters (K value) was 1-10. Different K values represent the
distribution of ancestral genetic material of different populations
under the assumption that there are K ancestral groups. Since
K=1 cannot represent the distribution of ancestral genetic
material of different populations, it is not shown in the figure.
As shown in Figure 3, when K=2 and the sample are divided into
two subgroups, the sample of group 1 is almost dark blue, and
the sample of group 2 is almost light purple. The samples from
Fanyang (FY), Diaoluoshan (DLS), Jianfengling (JFL), and
Limushan (LMS) were clustered into group 2, and the
remaining samples were clustered into group 1. In the Cross-
Validation (CV) errors graph (Figure 4), when K=2, CV error
achieves the minimum value, indicating that the genetic
differences between samples are relatively large and the genetic
relationship is distant. Therefore, it can be preliminarily
concluded that the seven H. hainanensis populations in
Hainan Island came from two different ancestors, and there
was less gene exchange among them. In the table of genetic
differentiation coefficients among populations (Table 4). The Fy,
values among the seven H. hainanensis populations ranged from
-0.05258 to 0.29542. There was significant genetic differentiation
(Fg > 0.25) between FY, WZS, and DLS populations. The genetic
differentiation between DLS and BWL, WZS populations, and
FY and BWL populations was significant (0.15 < Fy < 0.25).
There was a moderate genetic differentiation between BWL and

Homo LociNum Hetloci-ratio

67757 19.96%
80275 19.26%
68849 20.34%
74562 19.73%
64816 19.48%
69409 19.85%
8225 53.03%
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FIGURE 2
The neighbor-joining clustering of Hopea hainanensis in
different Population.

JFL, YGL, FY and LMS, JFL and DLS, and the other three
populations (0.05 < Fst < 0.15). In addition, the genetic
differentiation among other populations was low, so
differentiation could not be considered (Fg < 0.05).

3.3.3 Principal component analysis

Principal component analysis (PCA) was carried out on H.
hainanensis population samples from Hainan Island to
determine the evolutionary relationship among the
populations further. When the geographical distance between
groups is relatively close, PCA can better reflect the relationship

10.3389/fpls.2022.1075102

between groups. Samples with similar genetic backgrounds will
gather in the figure to form a cluster. The farther the distance
between the two samples in the figure, the greater the genetic
background difference between the two samples. As shown in
the following figure (Figure 5), the 42 H. hainanensis were
clustered to form three independent clusters, among which
eight samples from Jianfengling (JFL_2, JFL_5-JFL_8),
Limushan (LMS_3, LMS_8) and Yinggeling (YGL_1)
populations with similar genetic backgrounds were clustered
together to form cluster 1. Fanyang (FY_1), Wuzhishan(WZS_1-
WZS_2), Bawangling (BWLI-BWL_13), Yingge Mountain
(YGL_2, YGL_3), Jianfeng Mountain (JFL_1, JFL_3-JFL_4,
JFL_9-JFL_10) and Limushan (LMS_1, LMS_2, LMS_4-L).
The 31 samples from the six populations of MS_7, LMS_9,
and LMS_10 were clustered together with similar genetic
backgrounds to form cluster 2. The population of DLS_1-
DLS_3 was far away from the other 2 clusters, showing a long
genetic distance, so the population of DLS_1-DLS_3 formed a
cluster alone.

3.3.4 Analysis of the genetic relationship

In the relatedness heatmap (Figure 6), the relatedness
coefficient was more significant than 0.4 (between the three
samples of DLS_1, DLS_2, and DLS_3). The relatedness among
the three samples of Diaoluoshan was very close. The genetic
distance between LMS_8 and LMS_1 was very close in the
relatedness heatmap. It can be concluded that the samples in
the same population are more closely related, and the more
distant the geographical location, the more complex the gene
exchange, and the more distant the genetic relationship. The six
samples, YGL_1, JFL_2, and JFL_5-JFL_8, are closely related.
The three samples from Diaoluoshan (DLS_1-DLS_3) and

Population Structure

K=7

BWL1

FIGURE 3
The population structure analysis on Hopea hainanensis.
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FIGURE 4
K selection of population structure.

Limushan (LMS_1) are just between 0.2 and 0.3. This indicates
that there is still some genetic exchange between clusters under
geographical isolation.

4 Discussion

4.1 Genetic diversity in
Hopea hainanensis

SNP variation is the most important and widespread type of
sequence variation in the plant genome, which can be easily
identified by sequence alignment (Fang et al, 2014). In this
study, 48795 high-quality SNPs were obtained by screening and
filtering. In the natural state of H. hainanensis field, the
ecological range of the population is wide. The seeds are
winged nuts, and the germination rate is high. Still, the seeds
have higher requirements for germination conditions in the
natural environment, which restricts the development of the
population (Trang and Triest, 2019). Even if the H. hainanensis
seeds can germinate and grow into seedlings in the natural
population, the H. hainanensis seedlings are easy to be
eliminated due to their weak competitiveness, resulting in few

TABLE 4 Genetic differentiation coefficient(Fs: above diagonal).

10.3389/fpls.2022.1075102

remaining adult H. hainanensis plants and weak natural
regeneration ability of the population in the field (Kenta et al,
2004; Mehmood et al.,, 2021). The population density was very
low, leading to the population’s weak reproductive ability and
stress resistance and slow natural recovery and development.
Genetic diversity is lost when the effective population shrinks
and mating is switched from outcrossing to selfing (Ellegren and
Galtier, 2016; Cai et al., 2021). It is most likely that a severe
demographic bottleneck is responsible for the low genetic
diversity of H. hainanensis populations. Over the past 300
years, this species has lost about 70% of its population (Ly
et al,, 2018). In the 20th century, Hainan Island’s deforestation
increased rapidly. About 80% to 95% of the primary forests have
been destroyed because of logging for wood on a large scale.
Furthermore, transitions to rubber trees and Eucalyptus
plantations, and the growth of cities (Lin et al., 2017; Chen
etal, 2018; Sun et al,, 2020). Due to the high quality of its wood,
the number of H. hainanensis trees would go down
proportionally, or maybe even more. There is a lack of genetic
diversity analysis on the endangered mechanism of levees,
especially on the genetic diversity of levees in different
fragmented habitats.

Based on SNP, simplified genome sequencing analysis was
performed on 42 H. hainanensis samples using GBS technology.
After obtaining the data, genetic evolution and population
analysis were performed, such as phylogenetic tree clustering
analysis, population genetic structure analysis, principal
component analysis, and phylogenetic relationship analysis. In
principal component analysis, the contribution rates of the first
principal component (PC1), the second principal component
(PC2), and the third principal component (PC3) were 28.78%,
11.2%, and 6.29%, respectively. The contribution rates of the
three principal components selected in this analysis were all low,
and the total contribution rate was less than 50%. Therefore,
there may be a deviation (difference) between the cluster results
of PCA and the analysis results of other groups. In the principal
component analysis, the genetic distance of the Diaoluoshan
population was far from the other populations, and a single
cluster was formed. Except for principal component analysis, the
population structure of all samples, K value selection of
population structure, and phylogenetic evolutionary tree

BWL LMS JFL FY WZS YGL DLS

BWL 0.02412 0.07731 0.19692 -0.02501 0.06426 0.19716
LMS 0.03763 0.07358 -0.04653 -0.0011 0.11088
JEL 0.06496 0.00063 -0.03522 0.09211
FY 0.25587 0.02041 0.29542
WZS -0.05258 0.18954
YGL 0.1024
DLS
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FIGURE 5
Principal component analysis diagram of H. hainanensis.

analysis results showed that the cluster division was the same
and supported the division of seven populations into two
populations. Therefore, it is more reasonable to divide the 42
H. hainanensis samples from seven populations into two groups:
Group 1 (Diaoluoshan, Limu shan, Yinggeling, Jianfengling) and
Group 2 (Wuzhishan, Fanyang, Bawangling). In this study, high-
throughput GBS sequencing was performed based on SNPs, and
the analysis results may be limited due to the lack of reference
genomes covering the whole genome of SNP.

FIGURE 6
Ties of consanguinity.
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4.2 Population genetic structure and
differentiation in Hopea hainanensis

Genetic structure is influenced by many factors, such as
breeding system, genetic drift, population size, seed dispersal,
gene flow, evolutionary history, and natural selection (Konuma
et al., 2000; Mehmood et al., 2020). The terrain of Hainan Island
is low, flat ground, and high in the middle. The terrain takes
Wuzhishan and Yinggeling as the uplifted core and drops
progressively to the periphery. The mountain, hill, platform,
and plain form a ring-stratified landform with an obvious
cascade structure. The samples collected in this study were
taken from Wuzhishan, Yinggeling Mountain, and adjacent
forest reserves. In geographical location, the Jianfenglin
population and Diaoluoshan population, Limushan between
groups are far apart (> 100 km). Still, the smaller the genetic
distance between the two groups (Fy = 0.09211), the existing
gene flow between populations may have originated from the
common ancestor of genetic exchange, carried by man-made
factors, animals or other factors such as geological factors into
the other group.

5 Conclusion

In order to improve genetic diversity among H. hainanensis
populations, the H. hainanensis population resources of
endangered plants should be effectively protected and
developed. In order to protect H. hainanensis species, H.
hainanensis seedlings may be protected ex situ due to their
weak competitive ability and easy inhibition by mother trees. By
conserving H. hainanensis seedlings ex-situ, we can reduce
competition within the population and increase competition
between poke stack populations. Genetic drift can also be
reduced by increasing gene flow among small populations.
Additionally, cross-introduction and breeding among the
seven populations can improve genetic diversity.

6 Implications for conservation

Because the loss of genetic variation is a major threat to
endangered species, preserving and restoring genetic variation is
an important conservation action (Jiang et al., 2018; Cai et al,,
2021). We discovered that genetic variation in the populations
BWL, WZS and FY were low. These populations are more
vulnerable to biotic and abiotic stresses, their conservation is
critical. Furthermore, the populations DLS, YGL, JFL and LMS
had higher levels of genetic diversity and contained more than
one genetic subgroup. That populations could be used as seed
sources for propagating seedlings and saplings in restoring
Hainan Island’s previously logged lowland rainforests. It is
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difficult to regenerate native H. hainanensis populations because
seedlings and saplings grow slowly and are frequently unable to
establish themselves in heavily shaded conditions. To help
restore endangered H. hainanensis populations on Hainan
Island, select populations with high genetic diversity (e.g.,
for seedlings).
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Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang, China

Cassava disease is one of the leading causes to the serious decline of cassava
yield. Because it is difficult to identify the characteristics of cassava disease, if
not professional cassava growers, it will be prone to misjudgment. In order to
strengthen the judgment of cassava diseases, the identification characteristics
of cassava diseases such as different color of cassava leaf disease spots,
abnormal leaf shape and disease spot area were studied. In this paper, deep
convolutional neural network was used to classify cassava leaf diseases, and
image classification technology was used to recognize and classify cassava leaf
diseases. A lightweight module Multi-scale fusion model (MSFM) based on
attention mechanism was proposed to extract disease features of cassava
leaves to enhance the classification of disease features. The resulting feature
map contained key disease identification information. The study used 22,000
cassava disease leaf images as a data set, including four different cassava leaf
disease categories and healthy cassava leaves. The experimental results show
that the cassava leaf disease classification model based on multi-scale fusion
Convolutional Neural Network (CNN) improves EfficientNet compared with the
original model, with the average recognition rate increased by nearly 4% and
the average recognition rate up to 88.1%. It provides theoretical support and
practical tools for the recognition and early diagnosis of plant disease leaves.

KEYWORDS

deep learning, classification, EfficientNet, multi-scale feature fusion, attention
mechanism

frontiersin.org
35


https://www.frontiersin.org/articles/10.3389/fpls.2022.1088531/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1088531/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1088531/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1088531/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1088531/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1088531&domain=pdf&date_stamp=2022-12-22
mailto:houmx@gdou.edu.cn
https://doi.org/10.3389/fpls.2022.1088531
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1088531
https://www.frontiersin.org/journals/plant-science

Liu et al.

1 Introduction

With the current climate posing a threat to human health,
vegetation and biodiversity (Bhatti et al., 2022a), and the
outbreak of the novel coronavirus pneumonia, major cities
across the country have suspended production in order to
effectively prevent the spread of the epidemic (Bhatti et al,
2022b). The importance of food is self-evident. In recent years,
the planting area has continued to expand, and it is also a key
food security crop for smallholder farmers because it can
withstand harsh conditions. However, with the increase in
cassava planting areas, the disease problem is becoming
increasingly prominent. Cassava disease can generally be
diagnosed according to the shape, color, and leaf shape
characteristics of the disease spots on cassava leaves. Under
the influence of environmental factors, cassava disease is more
likely to occur, which affects the yield and quality of cassava.
According to the different characteristics, cassava disease can be
mainly classified into Cassava Bacterial Blight (CBB), Cassava
Brown Streak Disease (CBSD), Cassava Green Mottle (CGM),
Cassava Mosaic Disease (CMD), etc., which can lead to reduced
and/or diseased cassava output. Due to the small number of
professional plant personnel of cassava and the lack of
professional knowledge of general plant personnel of cassava,
the symptoms of cassava leaf disease are not typically studied
with good understanding, which can lead to inaccurate and
incorrect diagnoses of cassava disease. At the same time, the
artificial diagnosis and treatment of cassava leaf diseases not only
wastes a lot of manpower and material resources but also results
in omission and error from subjective judgment due to the
relatively similar characteristics of each leaf disease. The
diversity of solutions for cassava disease often prevents
effective treatment of cassava, so it is very important to
correctly identify the disease. Therefore, as an auxiliary means,
computer technology can be applied to help planting personnel
determine whether there is cassava disease and of which type,
and then the best treatment can be given, to avoid yield decline.

There have been many research achievements in judging
plant diseases through traditional machine learning methods.
Since they are all based on artificial designs of features, they are
inefficient and have a large workload (Pujari et al, 2016). In
addition, people tend to rely on experience when selecting
features, which is highly subjective and not only consumes
manpower but also has a large amount of uncertainty.
Combining machine learning with deep learning can solve this
problem well. Jamil (Jamil et al., 2021) used artificial neural
network (ANN) and support vector machine (SVM) to solve the
problem of land classification. When the accuracy of ANN was
82.60% and the accuracy of SVM was 73.66%, they combined the
two models and weighted them, and finally the average accuracy
reached 86.18%. A CNN can automatically extract image
features, greatly reducing the workload, while providing a
good research direction for plant disease classification.
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Meanwhile, K-nearest Neighbor (KNN) classifier (Bazai et al,
2017) and other algorithms are also studied in deep learning in
data analysis scenarios, Bhatti (Bhatti et al., 2021a) proposed a
method for edge detection of color images by using Clifford
algebra and its subalgebra quaternion in image processing,
which improved object detection and classification as well as
extraction of other features. Bhatti (Bhatti et al., 2021b) also
proposed a spatial spectrum HIS classification algorithm - local
similarity Projection Gabor Filtering (LSPGF), which uses the
reduced-dimension Convolutional Neural Network based on
local similarity projection (LSP) and two-dimensional Gabor
filtering algorithm. The performance of the proposed method is
compared with other algorithms in the public Host Integration
Server (HIS) database, and the overall accuracy is better than all
datasets. Based on the data information, Bhatti (Aamir et al.,
2021; Bhatti et al., 2022c¢) uses regression analysis algorithm and
path analysis algorithm to extract the relationship between
variables and get the relationship between algorithms.

With the proposals of AlexNet (Krizhevsky et al., 2012) and
Visual Geometry Group Network (VGG) (Simonyan and
Zisserman, 2014), the number of network parameters is
greatly reduced and the network is more suitable for complex
samples under multiple training times, paving the way for deep
learning to be applied in future computer vision. In the same
year that VGG was proposed, Google proposed GoogleNet
(Szegedy et al, 2015). This network adopts the Inception
modular structure, by which convolutional kernels of
different sizes are used to capture features of feature maps
and expand their receptive fields, and then splice the results
into channels. Finally, the accuracy of the network is improved
by fusing multiple features. In the following years, the proposal
of Resnet (He et al., 2016) residual network provided new ideas
for the CNN. With the advent of EfficientNet (Tan and Le,
2019), the model has become more capable at capturing
features, and its application in computer vision is developing
day by day, especially in plant disease recognition.

Hewitt (Hewitt and Mahmoud, 2018) only used a simple
shape feature set to judge and recognize relevant plant leaves, in
which the feature set included shape features of original leaves
and signal features extracted from different convolution models
for recognition and obtained good recognition results. In the
face of wheat disease leaf identification and differentiation, (Van
Hieu and Hien, 2020) used a variety of classification algorithms
to compare the prediction accuracy of various neural networks,
among which GoogleNet proved to have the highest accuracy of
98%, more suitable for wheat disease detection. As for the
detection and recognition of tea diseases, Lee (2018) used
Faster Region Convolutional Neural Network (FR-CNN) and
candidate objects proposed by Region Proposal Network (RPN)
to detect, identify, and distinguish three kinds of tea diseases,
with recognition accuracies up to 63%, 81%, and 64%,
respectively. Two major crop damage modes in maize
production were evaluated, and three commonly used object
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detectors were evaluated. It was concluded that YOLOv2 had
better performance and was more suitable for the assessment of
maize growth damage (Turkoglu and Hanbay, 2019). The
adversarial robustness of the model (Zoran et al, 2020) was
significantly improved by adding an attention mechanism, and
the robustness was effectively improved by changing the model
expansion steps. On the lightweight model, Wang (Wang et al.,
2022) proposed an Individualized activity space modeler (IASM)
mechanism to improve the accuracy and efficiency of the model,
and achieved the classification accuracy of 92.57% on the self-
made data set by using Ghostnet and Weighted Boxes Fusion
(WBF) structures. In the classification of banana diseases,
Narayanan (Narayanan et al., 2022) combined the mixed
algorithm of CNN and Fuzzy Support Vector Machine
(FSVM) to classify banana diseases, CNN to detect, and FSVM
algorithm to strengthen the classification, and finally achieved
good results. In terms of attention mechanism, Zhu (Zhu et al,,
2021) added an attentional mechanism module combining
Convolutional Block Attention Module (CBAM) and ECA-Net
module to the model, which improved the accuracy of the model
by 3.4%. Zakzouk, S. (Zakzouk et al., 2021) used AlexNet to
classify new rice diseases with an accuracy of 99.71%. The
accuracy of the results indicated the feasibility of the
automatic rice disease classification system. Tang (Tang et al,
2020) proposed a new two-stage Convolutional Neural Network
image classification network. InnerMove, a new image data
enhancement method, was used to enhance images and
increase the number of training samples, so as to improve the
generalization ability of the deep CNN model for image
classification tasks. There are also many innovative neural
network methods on algorithm models that can provide ideas
for classification. At present, the 3D Convolutional Neural
Network method (Hameed et al., 2022a) is innovatively used
to extract the feature information for the data set. This method
can solve the problem with the data better than the pixel-based
support vector machine classifier. When it comes to the impact
offood security on local and global economies, Mazhar (Hameed
et al,, 2022b) applied the sequential model in deep learning to
classify the outer layer air particles through the analysis and
characteristics of objects and fusion. Compared with the existing
deep learning method of surface landscape, the accuracy rate
reaches 98%.

In view of the above mentioned contents and problems, in
order to improve the efficiency of cassava disease classification
and recognition, this paper uses the deep convolutional neural
network method according to the characteristics of crop disease
images in real scenes, takes cassava leaf disease images as the
research object, and designs a cassava disease classification
model based on multi-scale fusion CNN. A multi-scale fusion
module is proposed to extract multi-scale information features
of images. Focal loss was adopted to reduce the emphasis on
most categories caused by data imbalance, and to solve the
problem of low classification accuracy for categories with few
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samples. CBAM (Woo et al,, 2018) module was introduced to
obtain key information such as texture and color of cassava
leaves, and the result of precise positioning of specific features
was achieved.

We enhance and amplify the existing data images and add
these images to the existing data set to form new mixed data for
training the model. The effectiveness of the proposed model was
verified by designing several comparison experiments and
comparing them with network models such as Resnet and VGG.

The rest of this article is organized as follows. The Materials
and Methods section introduces our proposed cassava disease
classification model based on multi-scale fusion Convolutional
Neural Network. See the results section for experimental results.
Finally, in the conclusion part of the summary of this article.

To summarize, the main contributions of this study are
as follows:

(i)a model is developed to recognize cassava disease based
on Convolutional Neural Network deep learning.

(ii)the accuracy of cassava disease classification model is
evaluated using images taken from nature and artificial
enhanced images.

(iii)a lightweight module based on attention mechanism to
enhance the classification accuracy of the cassava disease
model.

2 Method and materials

2.1 Cassava disease classification model
based on multi-scale fusion
Convolutional Neural Network

In this paper, a classification model of cassava disease was
proposed based on multi-scale fusion (shown in Figure 1). The
proposed model adopts Efficientnet-B6 as the backbone
network, by which a multi-scale fusion module is designed to
improve shallow feature extraction. Through CBAM, the
channel and spatial weights of subsequent modules are re-
calibrated and the classification capacity of cassava leaf disease
is enhanced.

2.1.1 EfficientNet

We generally expand the network scale by increasing
network depth D, receptive field W, and resolution R. Compared
with AlexNet, VGG network convolution kernels were all
replaced with smaller 3x3 convolution kernels (including a few
1x1 convolution kernels), which achieved better training results
through deeper network structure. However, with the gradual
deepening of network depth, network training becomes more
difficult due to the emergence of Vanishing Gradient, over-
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FIGURE 1
Cassava disease classification model based on multi-scale fusion.

fitting, and other problems. Even if the problem of Vanishing
Gradient is solved, the low precision return will lead to high
calculation cost and low efficiency of increasing network depth
blindly. For another example, MobileNet (Howard et al., 2017)
can adjust the number of feature data channels by reducing the
amount of computation. However, like deepening the network
structure, low precision return will also be found when the width
of the network structure reaches a certain level. In the final
approach, the neural network can capture finer patterns by using
higher-resolution input images. It has developed from 224 x 224
pixels to 229x 229 pixels, or even 512 x 512 pixels. However,
accuracy problems are inevitable as the parameter becomes
larger. Before EfficientNet, network improvements were
generally realized by changing only one of the following
variables of network depth, receptive field, and resolution size.
However, EfficientNet can obtain better training results by
increasing the depth, receptive field, and image resolution
through one adjustment. Compared with the aforementioned
model, EfficientNet can get a better result because it is capable of
adjusting the proportions in three dimensions (shown
in Figure 2).

2.1.2 Proposed model
2.1.2.1 Multi-scale fusion module

The low-level feature map has a small stride, a large size, and
a small receptive field to detect the details of small targets. The
high-level feature map has a larger stride, smaller size, larger
receptive field, and rich semantic information. The model
extracts detailed features such as color and texture from the
low-level network and extracts the blade shape feature from the
high-level network.

The key features in the map can be selectively enhanced and
the features can be accurately located by redistributing both
channel and spatial weights through the Attention Mechanism.
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Compared with the previous EfficientNet model, which did not
include the MSFM module, the new model adds modules based
on the attention mechanism to allocate computing resources to
more important tasks. The operations of different pooling layers
in channel and space were added to enhance important features
and reduce the proportion of unnecessary features. At the same
time, the sensitivity field of the low-level feature map augmented
by expansion convolution with different expansion rates can not
only extract the details of color and texture, but also fully obtain
the context information of the image. In the end, the feature map
output obtained by different expansion rates is fused to improve
the classification effect.

In the result part, we can see from the comparison
experiment that our model has higher accuracy compared with
other models, and in the heat map, we can see that it has more
accurate judgment on key points.

2.1.2.1.1 Convolutional Block Attention Module

The attention mechanism is a relatively efficient data
processing method developed in machine learning in recent
years, and is widely used in various types of machine learning
tasks such as image recognition and natural language processing.
When people observe things outside, they usually focus on what
they think is important. The attention mechanism focuses on
local information that allows the network to achieve better
results. Therefore, in this paper, Convolutional Block
Attention Module is added before each regularization of the
pre-training network and improves the features of the selected
maps to increase the accuracy of the model (shown in Figure 3).

2.1.2.1.1.1 Channel Attention Mechanism (CAM)

SENet (Hu J. et al,, 2018), as the champion network of the
2017 ImageNet classification Contest, is essentially a model
based on a channel attention mechanism, which gives rewards
and punishments of different weights according to the
importance of each feature channel. In this paper, the channel
attention mechanism adopts avg-pool and max-pool for fusion.
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After convolution and activation of the Relu function, the results
of the two pooling layers are added together. Finally, it is
outputted by the Sigmoid function (shown in Figure 4). The
size of the input feature map is HxWxC. Firstly, the global
maximum pooling layer and average pooling layer are carried
out, respectively, to obtain two-channel weight matrices
of 1x1xC.

The two matrix results are fed into a two-layer multilayer
perceptron (MLP), respectively, and the MLP can share parameters.

After adding the two feature vectors, the weight coefficients
are obtained by the Sigmoid activation function again.

The weight coefficient is multiplied by the original input
feature to obtain the final output feature.

2.1.2.1.1.2 Spatial Attention Mechanism (SAM)

Different from the weight of each feature plane of the
channel attention allocation, the spatial attention model is to
find the most important part of the network for processing
(shown in Figure 5).

The input characteristic graph is HxWxC. The Max-Pool
and Avg-Pool of one dimension are spliced and dimensionally
reduced to generate two one-dimensional feature maps.

The weight parameters are generated by the Sigmoid
activation function, and then the final output feature is
obtained by multiplying the original input feature.

2.1.2.1.2 Multi-scale fusion module

First, the MSFM redistributes the channel and spatial
information through the Convolutional Block Attention
Module to enhance the characteristics of small target
information. Then Feature Extraction is carried out using

Max-Pool

S =
g W =
\ Avg-Pool /’ \ : / 3

Input feature F

Shared MLP

FIGURE 4
Channel Attention Mechanism structure diagram.
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dilated convolution of different dilatation rates, and the
context information of feature images is fully extracted by
expanding different receptive fields. The convolution kernel
size of dilated convolution (Yu and Koltun, 2015) is the same
as that of ordinary convolution, and the number of parameters
in the neural network remains unchanged. The difference lies in
that the dilated convolution has a larger receptive field. A 3x3
convolution kernel with an expansion rate of two has the same
receptive field as a 5x5 convolution kernel. However, the number
of parameters is only nine, much less than the 25 parameters of
the 5x5 convolution kernel. The size of the convolution kernel
after expansion:

ki=k+k-1)x(r-1) (1)

where

kg = Size of the expanded convolution kernel

k = Size of original convolution

r = Dilation rate

The calculation of the receptive field of dilated convolution is
as follows:

rp = [(k+1) X (r-1)+k] x [(k+1) x (r-1)+K] (2)

where

7r = Receptive field

k = Size of original convolution

r = Dilation rate

The multi-scale fusion module designed in this paper is
shown in Figure 6. First, feature maps are learned by the
Convolutional Block Attention Module, and weight calibration

Multi-scale fusion
33 convolution kernel

BE  3x3Conv
-] r=2

Channel . .
Attention Spatial —

Attention| pEHE  3x3Conv e
" . Module I Output = 1xi Coay
|_‘ Input feature F / J N\ P Mot Y foature F bmd (- x1 Conv

® ®— i
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3x3 Conv
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FIGURE 6
Multi-scale fusion module.
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is carried out for channel and space to strengthen the weight
reward of important features of feature maps. The invalid
features are punished and the weight is reduced to highlight
the important information of the detected image. In this paper, a
3x3 convolution kernel is used for feature extraction, and the
expansion convolution with expansion rates of 1, 2, and 4 are
used for feature extraction, respectively. The features of different
scales are extracted from each layer, and the new features are
obtained after dimensionality reduction by fusion.

2.2 Loss function

2.2.1 Cross-entropy loss function

In recent years, transfer learning has been widely used in
machine learning, which presents satisfactory application results
in deep learning. For multi-classification tasks, the cross-entropy
loss function (Hu K. et al., 2018) is generally used.

The most commonly used cross-entropy loss function is:

CE(p,) = — a,log(p,) (3)

where
CE = Loss
P, = Predictive value
a;, = Added parameters that represent weights for
different categories

Cross entropy loss function under multiple classifications:

N
CE=— ElatZOg(Pt) 4)
=

(b) Focal loss

To a certain extent, traditional methods can solve the
problem of fewer categories and unbalanced image
distribution, but when there are many easily classified samples,
the samples will still dominate the training process, so some
difficult-to-classify samples have little chance of gaining the
attention of the model. The focus function (Lin et al., 2017)
treats the difficult-to-classify samples and the easy-to-classify
samples differently, focusing on the difficult-to-classify samples
and reducing the weight of the easy-to-classify samples.
Therefore, the focus function is adopted as the loss function in
this study.

Focal loss adjusts the weights of the difficult-to-classify and
easy-to-classify samples in the formula:

FL(p:) = — /(1 —p,)*log(p,) (5)

Yis a constant, and the magnitude of y determines the weight
of small and difficult samples.

When y<=0, the focusing parameter can be adjusted. When
the value of v is larger, the loss of the sample that is easy to
classify is small, and the focus of the model is on the sample that
is difficult to classify. This is because when 7 is larger, the loss of
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small samples and difficult samples will be larger, so that they
can obtain greater weight.

When y>1, the training loss of large and simple samples can
be reduced, while the loss of small and difficult samples will not
be reduced much.

When y=1, the equation degenerates into the cross-entropy
loss function mentioned above.

The focus loss function of multi-classification:

FL=— %(1 —p)*log(1—p,)

j=1

2.3 Input dataset

2.3.1 Data sources and features

The data used in this paper are a cassava leaf dataset
manually photographed in Uganda and annotated by experts
from the National Crop Resources Institute in collaboration with
the Artificial Intelligence (AI) Laboratory at Makerere
University, Kampala. The data set contains five kinds of
cassava leaf images, and disease images are cassava white leaf
blight, brown streak disease, green mottling disease, Mosaic
disease and healthy cassava leaf images. It can better reflect the
characteristics and symptoms of healthy cassava leaves and
diseased cassava leaves in natural environment, and it also
represents the real and low diagnostic format that farmers
need in real life. The dataset includes images taken under field
conditions (some of which are shown in Figure 7). And images
enhanced by data. There are 22,000 of them. Each image has a
pixel size of 800x600. The standard input size of neural networks
such as ResNet, EfficientNet and Resnet-50 is 224x224 pixels.
The whole data set was randomly divided into a training set
(90%) and a test set (10%). Therefore, 19,800 images were used
for model training, and the remaining 2,200 images were used to
test the performance of the model.

E Healthy Cassava Leaf

D cassava Mosaic Disease (CMD)

FIGURE 7
Images of cassava leaf diseases (A—D is the disease of four
different cassava leaves and e is the healthy leaf).
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2.3.2 Data augmentation

To prevent network overfitting, OpenCV data enhancement
was used to expand the data set appropriately. The data set was
enhanced by increasing the brightness, decreasing the
brightness, and reversing the image, and the data of various
cassava leaves amounted to 4000 pieces. The data enhancement
methods used are as follows (shown in Figures 8-12):

Rotation: Rotate the image by 180°.

Brightness reduction: The enhancement factor is 0.7, which
means the brightness becomes 70% of the original image.

Horizontal flip: Flip the input image horizontally.

2.4 Computer hardware

The proposed method was tested for training and test
configuration for neural network models (shown in Table 1).
This result is achieved in Table 2, where PyTorch, as a popular
learning framework today, is capable of powerful GPU
acceleration and includes deep neural networks. Meanwhile,
GPU RTX2080Ti has 11 GB of memory, which can better
train the model by adjusting batch size.

2.5 Experimental hyperparameter setting

The cassava leaf data set was divided into a training set, a
validation set, and a test set with the ratio of 8:1:1. The training
set was trained as an epoch 150 times, le-4 was selected as the

FIGURE 8
Cassava Bacterial Blight. (A) original (B) Rotation by 180° (C)

Brightness reduction (D) Horizontal flipping.

FIGURE 9
Cassava Brown Streak Disease. (A) original (B) Rotation by 180°
(C) Brightness reduction (D) Horizontal flipping.
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FIGURE 10
Cassava Green Mottle. (A) original (B) Rotation by 180°
(C) Brightness reduction (D)Horizontal flipping.

FIGURE 11
Cassava Mosaic Disease. (A) original (B) Rotation by 180°

(C) Brightness reduction (D) Horizontal flipping.

FIGURE 12
Healthy cassava leaf. (A) original (B) Rotation by 180°
(C) Brightness reduction (D) Horizontal flipping.

TABLE 1 Experimental configuration.

Experimental Model and version
environment

Deep learning framework Pytorch
Programming language Python3.7

GPU NVIDIA GeForce RTX 2080 Ti
The hardware Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz 2.10
environment GHz

initial value of the learning rate in the form of a small amount,
and the batch size was set to 16. Batch size not only affects the
efficiency of the training model but also affects the accuracy. To
find a group balance between efficiency and memory capacity,
the batch size is used to calculate the batch size.

2.6 Model evaluation criteria

Accuracy (%) is used as an evaluation index for multi-
classification problems in the laboratory. The accuracy of the
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TABLE 2 Classification accuracy of the test set in different models.

Model Accuracy of the test set/%
VGG-16 70.5
Resnet-18 83.2
Resnet-34 83.9
Resnet-50 85.2
Inception v2 84.1
Inception v3 85.3
MobileNet v3 84.1
ShuffleNet 83.5
EfficientNet-b3 85.5
EfficientNet-b6+ 86.5
Our model 88.1

experimental model classification can be obtained by removing

the number of labels in the test set according to the evaluation

criteria. The calculation formula of indicators is as follows:
Precision = x 100 %

TP @)
TP + FP
TP=Positive sample prediction is the number of positive classes.
FP=Negative sample prediction is the number of negative classes.

3 Result

3.1 Validation and comparison of
proposed Convolutional Neural Network

In order to verify that the improved model in this paper has better
image recognition ability compared with the traditional model, this
paper uses multiple groups of comparative experiments.
The experimental results are shown in Table 2. According to the
evaluation index results, as shown in the figure above, the improved
model is compared with the model with better performance recently.
Among them, the accuracy rate of the model proposed in this paper is
88.1% in the test set separated from the data set, both of which are
better than the previous models. To verify that the improved model in
this paper has better image recognition ability compared with the
traditional model, multi-group comparative experiments were
carried out (shown in Table 2).

3.2 Ablation experiments

The confusion matrix (Song et al., 2015) is also one of the
evaluation indicators of the classification model (shown in
Figure 13). The confusion matrix parameters are converted by
classification report. The parameters are given as follows:

(i) The percentage of the total that all predictions are correct,
as in Equation 1:
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A TP + TN
ccuracy =
Y= IP+ IN + FP + EN

(8)

(ii) The proportion of those correctly predicted to be positive
that are actually positive, as in Equation 2:

TP

Recall = ———
O = TP PN

)

(i)The proportion of correct positive precisions to total
positive precisions, as in Equation 3:

P

T (10)
TP + FP

Precision =

The column labels of the confusion matrix represent the
predicted cassava leaf disease type, and the sum of the
corresponding row values represents the sum of the samples of
this type. The diagonal line indicates the number of correctly
predicted labels. Each value on the diagonal line indicates the
number of correctly predicted labels. The value at the intersection
of the columns represents the value of the corresponding tag
predicted. If it is not on the diagonal, it can be seen as the
number of wrongly predicted tags. The darker diagonal suggests
the better model. In the classification results, the judgment accuracy
is high, and most of the results of the test set are concentrated on the
diagonal of the confusion matrix. The identification accuracy of all
kinds of blades is greater than 90%. However, the identification
accuracy of Cassava Mosaic Disease in the test set is lower than that
of other diseases, and it is easy to misjudge it as other cassava leaf
diseases. By observing the confusion matrix, it can be found that the
pictures of Cassava Mosaic Disease can be easily identified as
Cassava Bacterial Bligh and Cassava Green Mottle, because the
symptoms of these three diseases are relatively similar, so
classification errors are prone to occur. The obfuscation matrix of
the improved model presented in this paper has better performance
and a higher average recognition rate.

3.3 Visual output comparative analysis

Class Activation Mapping (CAM) was used to visualize each
trained model (Zhou et al, 2016) to better compare the
expression process of image features between an improved
network and a traditional network. Feng (Feng et al., 2022)
used the Grad-CAM thermal map of interpretative analysis, the
feature extraction effect of the model can be better expressed. In
visualization, the thermal map and the original image are
superimposed (shown in Figure 14). This is a visual output of
the original image and Efficientnet-B6 and our model,
respectively. The darker the color is, the larger the value and
the more feasible it will be to serve as the judgment. Compared
with the model in this paper, our model has a stronger feature
extraction ability and better effects in the face of Cassava leaf
disease, which not only extracts different colors of cassava leaf
disease but also better captures features in the context.
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FIGURE 13

Confusion matrix for the test set.

Cassava Brown Streak Disease Cassava Mosaic Disease

‘The original Image The original Image

EfficientNet-B6

93.40%
4.24%
2.36%

‘Our model

1 CBSD
2 cMDp

95.68%
332%

FIGURE 14
Visual comparison of EfficientNet-B6 and our model.

In addition, it can achieve more accurate extraction of key
information. It can also be seen from the comparative
experiment that the original model has some judgment errors
in the color discrimination of leaves and the discrimination
ability of background information, while the improved one has a
better grasp of sample information and a better capture effect for
judgment features.

4 Conclusions

Cassava, as one of the three varieties of potato, is an
important food. Compared with the diagnosis of cassava
disease by human, the identification of cassava disease by
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computer and deep learning method not only has low cost and
higher accuracy than manual diagnosis, but also greatly reduces
the efficiency. The multi-scale cassava leaf classification model
proposed in this paper can better ensure the safety and efficiency
of cassava food production and judge the cassava disease type
more accurately. Compared with the diagnosis of cassava leaf
disease using the human eye, the identification of cassava leaf
disease by computer and deep learning method is characterized
by lower cost, higher accuracy, and greatly increased efficiency.
In this paper, a multi-scale fusion module was proposed, and the
Focal Loss function and CBAM module were introduced. An
optimization network model of a multi-scale fusion network
based on EfficientNet and attention mechanism was proposed.
The model was used to train the cassava leaf disease data set and
compare with the EfficientNet, ResNet50, and VGG16 networks.
The experimental results show that the improved network
proposed in this paper has higher precision and better
generalization ability. The problem of uneven data was solved
by changing the loss function, the distinguishing ability of
cassava leaf diseases was improved through an attention
mechanism, and the recognition ability of the model was
enhanced by multi-layer fusion. According to the pricing
standard of the model, the model proposed in this paper can
be used for image recognition of Cassava leaf disease.

Since our model adds the lightweight module MSFM based
on EfficientNet, our model can be installed on mobile devices,
such as microprocessors. Due to the large-scale application of
5th Generation Mobile Communication Technology (5G)
(Johannes et al., 2017), there is efficient transmission.
According to the improvement of the hardware configuration
of mobile terminal equipment, the image to be detected can be
uploaded to the cloud server for processing, and then the
recognition and classification results can be returned to the
terminal. For some cassava planting technicians, when they have
doubts about cassava disease judgment, the mobile terminal
deployed with the model can detect and classify cassava disease
in real time, which is equivalent to having a valuable consulting
tool. In the future, a cassava disease detection system can be
developed based on the classification results of cassava diseases,
which can judge the disease categories and provide
corresponding management methods. This can greatly
improve the planting efficiency of cassava, improve the
production efficiency of cassava, achieve scientific and
technological progress of agriculture, and promote agriculture
into the era of intelligence. Although the model in this study
achieved a good success rate in a limited number of cassava
diseases, cassava diseases are not limited to these diseases. To
improve this, more images can be collected in different cassava
planting areas and field conditions, and the model can be more
effective in identifying cassava diseases based on field conditions
by amplifying the dataset.
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Introduction: The fusion of infrared and visible images can improve image quality
and eliminate the impact of changes in the agricultural working environment on
the information perception of intelligent agricultural systems.

Methods: In this paper, a distributed fusion architecture for infrared and visible
image fusion is proposed, termed RADFNet, based on residual CNN (RDCNN),
edge attention, and multiscale channel attention. The RDCNN-based network
realizes image fusion through three channels. It employs a distributed fusion
framework to make the most of the fusion output of the previous step. Two
channels utilize residual modules with multiscale channel attention to extract the
features from infrared and visible images, which are used for fusion in the other
channel. Afterward, the extracted features and the fusion results from the previous
step are fed to the fusion channel, which can reduce the loss in the target
information from the infrared image and the texture information from the visible
image. To improve the feature learning effect of the module and information
quality in the fused image, we design two loss functions, namely, pixel strength
with texture loss and structure similarity with texture loss.

Results and discussion: Extensive experimental results on public datasets
demonstrate that our model has superior performance in improving the fusion
quality and has achieved comparable results over the state-of-the-art image
fusion algorithms in terms of visual effect and quantitative metrics.

KEYWORDS

distributed fusion, multiscale channel attention, edge attention, image enhancement,
intelligent agriculture

1 Introduction

Infrared images and visible images are important sensing information for intelligent
agricultural systems. The key to intelligent agricultural systems is to utilize perceptual data for
intelligent analysis and decision-making. The infrared imaging technology with anti-
interference solid ability uses the radiation energy released by the target so it can penetrate
smoke, fog, rain, snow, etc., in the environment. However, the visible light sensor uses light
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reflectivity to image with much spectral information and high-
resolution characteristics. As the application range in intelligent
agricultural equipment gradually broadens and the perceived
information environment is usually changeable, a single image
imaging technology cannot sufficiently perceive the environmental
information. It results in the inability of intelligent agricultural
equipment to perceive enough information, which leads to the
failure of intelligent agricultural systems to work regularly.
Therefore, it is of great significance to study the complementary use
of infrared and visible image imaging technology to enhance the
information perception ability of intelligent agricultural equipment
(Aamir et al., 2021).

High-quality enhanced images can be obtained by fusing infrared
and visible images to improve the information perception ability in
intelligent agricultural equipment and meet various subsequent visual
tasks for intelligent agricultural systems. As a branch of information
fusion, image fusion has played an essential role in computer vision
since it can generate more informative images for high-level vision
tasks such as recognition (Basak et al., 2022), detection (Wieczorek
et al,, 2022), tracking (Bhatti et al., 2022d; Yan and Wozniak, 2022),
and surveillance (Chen et al,, 2021; Chen et al., 2022b). Significantly,
infrared and visible image fusion is a considerable problem and has
striking advantages. It is a task that aims to integrate salient features
extracted from source images into a single image by appropriate
methods (Li et al., 2017). Generally, visible images contain texture
information with high spatial resolution and often lose effectiveness
under dark or extreme environmental conditions. On the contrary,
infrared images can highlight thermal targets in low light or severe
weather and contain little texture information because of their low
spatial resolution. Infrared and visible image fusion can integrate the
complementary virtues from infrared and visible images into
synthetic images, which not only conform to human visual
perception but also adapt to the application in various vision
systems (Bhatti et al., 2022a; Bhatti et al., 2022b).

According to the abstract degree in image information, image
fusion is divided into three levels: pixel level, feature level, and
decision level (Ma et al., 2019a). In this work, we mainly study
pixel-level image fusion methods because they can retain the
information from the source image to the maximum extent. In the
past decades, scholars have proposed numerous infrared and visible
image fusion techniques. These approaches can be broadly classified
into two categories: traditional and deep learning-based methods (Ma
et al, 2019a). Most traditional infrared and visible image fusion
algorithms belonging to pixel-level fusion directly perform
mathematical operations on the image pairs after image
registration, which have achieved good performance. However,
infrared and visible image fusion methods based on deep learning
have emerged with tremendous potential and even better
performance in recent years.

The traditional methods, in general, cover five approaches: multi-
scale transform methods (MST) (Zhu et al., 2018), sparse
representation methods (SR) (Cui et al., 2015; Zhang et al,, 2018),
saliency methods, subspace methods, and other methods (Gangapure
et al, 2018). In general, MST-based methods first decompose the
source images into multiple scales, and then the multi-scale features
are fused using the appropriate fusion rule. Finally, an inverse
operation is performed to reconstruct the fused image. The MST
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based methods usually adopt Laplacian pyramid transform (LP)
(Bulanon et al., 2009), wavelet transform (Wavelet) (Mallat, 1989),
nonsubsampled contourlet transform (NSCT) (Da Cunha et al,
2006), edge-preserving filter (EPF) (Farbman et al., 2008), curvelet
transform (CVT) (Nencini et al.,, 2007), and multi-resolution singular
value decomposition (MSVD) (Naidu, 2011). Sparse representation
methods (SR) generally comprise four steps (Ma et al., 2019a): First, a
sliding window strategy is adopted to decompose the source image
into several overlapping patches. Then a learned over-complete
dictionary is used for sparse coding on each patch to obtain the
sparse representation coefficients. Thirdly, a reasonable fusion
strategy is designed to fuse sparse representation coefficients.
Finally, the learned over-complete dictionary produces a marked
effect in reconstructing the fused image using the fused coefficients.
Among them, the construction of the over-complete dictionary is key
in SR (Ma et al,, 2019a). The saliency-based methods can highlight
regional activity and significance (Meng et al., 2017; Zhang et al,,
2017). The subspace-based methods, including the principal
component analysis (Bavirisetti et al., 2017), independent
component analysis (Mitianoudis et al,, 2013), and non-negative
matrix factorization (Kong et al., 2014) can remove the redundant
information existing in most natural images by converting high
dimensional input images into low dimensional spaces or
subspaces. Although the existing traditional fusion methods have
indicated great performance, these methods require the highly
manual design in decomposition and fusion strategies. Their
application is subject to unpredictable constraints in some tasks,
and their performance deteriorates when the source images are
complex due to the degradation of representation (Chen et al., 2022a).

In the past several years, deep learning has been widely applied in
infrared and visible image fusion to solve the shortcomings in
traditional fusion methods. The application of deep learning-based
methods for infrared and visible image fusion mainly reflects in
convolutional neural network CNN-based network frameworks,
such as convolutional sparse representation (CSR) and generative
adversarial network (GAN). The CNN-based fusion frameworks for
infrared and visible image fusion are divided into two categories: the
depth extraction for image features and the construction for fusion
networks. In depth feature extraction, VGG-19 (Ren et al., 2018),
ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152 (Szegedy
et al., 2017) have been proposed, among which VGG-19 and
ResNet152 are commonly applied. The depth of ResNetl52 is
deeper than that of VGG-19, and deepening network depth
improves the depth features in the image. Nevertheless, the more
convolution layer parameter maps cause the problems in increasing
the number of parameters, the amount of calculation, and the high
requirement for computing hardware. The CSR-based methods
generally combine PCNN, wavelet transform, and NSCT to
construct a fusion network structure, which has been widely used
in infrared and visible image fusion. They can effectively represent the
salient features in the source images. However, the local modeling
approach adopted by image fusion methods based on sparse
representation is prone to lead to two major defects: loss of
contextualized information and low tolerance of fault matching.
The GAN-based fusion algorithms adopt the CNN network
structure as the framework with strong feature extraction ability,
significantly improve the fusion quality, and use the confrontation
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between the source image and the generated image to realize the
supervision in the source image on the learning parameters. Ma et al.
introduced the GAN in the infrared and visible image fusion task for
the first time, namely FusionGAN (Ma et al., 2019b), and then more
GAN-based fusion frameworks are proposed (Ma et al., 2020; Li et al.,
2021b; Ma et al., 2021). Nevertheless, they are limited by the size of
the convolution kernel and the depth of the network, ignoring the
correlation between the feature map channels.

Although a variety of networks to improve the performance in
image fusion have been proposed by many scholars. The CNN-based
network frameworks, such as convolutional sparse representation
(CSR), generative adversarial network (GAN), and other many
network architectures are applied in infrared and visible image
fusion. However, the CNN-based fusion frameworks for infrared
and visible image fusion are divided into two categories: the depth
extraction for image features and the construction of fusion networks.
The extraction for depth features requires a deeper network structure,
resulting in weak interpretability, extensive computation, and other
problems. The construction of the fusion network is also complex and
difficult to control. Although many modelsare superficially similar to
RADEFNet, they have not abandoned these two categories. To get rid
of the dilemma in these two kinds of fusion categories, the RADFNet
employs a distributed fusion framework to make the most of the
fusion output from the previous step. Two channels utilize residual
modules with multiscale channel attention to extract the features
from infrared and visible images, which are used for fusion in the
other channel. Because it adopts distributed fusion, the fusion
network does not entirely rely on the extraction in deep features,
and the fusion network is simple to construct, showing strong
robustness. The RADFNet solves the limitations from most current
fusion networks and shows strong adaptability. The main
contributions of our work are summarized as follows:

(A) A distributed fusion framework based on residual CNN
(RDCNN) for infrared and visible image fusion is proposed in
this paper. The distributed fusion framework is distinct from
the existing fusion framework in infrared and visible image
fusion. It adopts three channels to realize image fusion,
wherein two channels are applied to feature extraction and
the other channel realizes feature fusion.

(B) To obtain coarse-to-fine features and compensate edge
information for fused images, the attention mechanism is
discussed. In this way, the fused images retain more

10.3389/fpls.2022.1056711

prominent information and lose less edge information from

source images.

(C) Two loss functions, including the pixel intensity with texture
loss and the structural similarity (SSIM) with texture loss, are
designed to train the RADFNet. Through experiments, it is
found that networks trained by the two loss functions have
their own advantages.

(D) Extensive experiments are conducted on public infrared and
visible image fusion datasets. Compared with existing state-
of-the-art fusion methods, our fusion framework has a
promising even better performance in accordance with
visual effect and quantitative metrics. In addition, we
perform ablation experiments to verify the function in the
corresponding module. Last but not least, unregistered source
image pairs are fed into the proposed network, emerging the
robustness of the proposed framework.

2 Materials and methods
2.1 Related works

2.1.1 Distributed fusion architecture

Distributed fusion architecture is a classical and typical structure
in multi-sensor fusion due to its high speed and reliability (Sun et al,,
2017). In distributed fusion, the measurement results of each sensor
are processed to obtain local estimates and error covariance. Then the
processing results are sent to the fusion node to conflate them into
global state estimation and the estimated error covariance (Wu et al.,
2021). Figure 1 shows a distributed model for the fusion in radar and
infrared sensors (Yang et al., 2016). For single target tracking, radar
and infrared sensors track the target respectively and generate
dependent target trajectories in their local information processing
center, then send the local trajectory information to the fusion center
for data fusion.

2.1.2 Residual network

In some tasks, deeper neural networks can extract higher-level
features and perform excellently. However, too deep networks may
cause the notorious problem of vanishing or exploding gradients and
degrade the accuracy. To solve these problems, He et al. proposed a
residual network composed of a series of residual blocks (He et al.,

FIGURE 1
A distributed fusion model for radar and infrared sensors.
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2016a). Figure 2A shows the original residual module, which can be
expressed as (He et al., 2016b).

v =hx) + F(x, W)
X141 =f(yl)

where x; and x;, ; are the input and output in the I-th layer, and F
is the residual function. fis a ReLU (Nair and Hinton, 2010) function.
The residual block contains two parts: identity mapping and residual

(1)

mapping. The left part of Figure 2A is the identity mapping, and the
right part of Figure 2A is the residual part expressed as F(x;, W),
which usually contains 2 or 3 convolutional layers. In many cases, the
dimensions of input x; and output x;,; are discrepant, so it is
necessary to employ a 1x1 convolution operation to maintain the
dimension in input and output consistent, whose schematic diagram
is shown in Figure 2B, which can be expressed as (He et al., 2016b).

X = h(xg) + F (g, Wy)

, (2)
h(x) = Wyx,

where h(x;) is the identity skip connection and Wl, is the 1x1
convolution kernel.
The residual network can be formulated as (He et al., 2016b)

L-1
XL =X+ Elf(x,-, w;) (3)
i

for any deeper block L and any shallower block I. The formula 3
indicates the feature x; in any deeper residual block L which can be
represented as the feature x; in any shallower block [ add the residual
function, which leads to nice backward propagation properties that
the gradient of layers will not vanish even when the weights are
arbitrarily small (He et al., 2016b). Moreover, experiments with the
various usages of activation function were carried out in (He et al,
2016b). The order of the activation function in the network will affect
the performance of the residual network. The structure of the
improved residual unit shown in Figure 2C has the best
performance. In this structure, the batch normalization (BN) and
ReLU activation function are placed before the convolution layer, and

the activation function after addition is moved to the residual part.

A 7, B 5
v v
\ weight
L8
R:LU v
1x1 conv
weight
8
add‘i'tion / add‘i'tion
Rer Rer
Xra X

FIGURE 2

10.3389/fpls.2022.1056711

2.1.3 Attention mechanism in deep learning

Attention mechanism can be traced to the last century, which was
mostly applied to machine translation tasks. It has become an essential
concept in artificial intelligence because it conforms to some laws of
human cognition and can improve the interpretability of neural
networks. Therefore, the attention mechanism is widely applied, such
as natural language processing, speech recognition and computer vision
(Mnih et al.,, 2014; Vaswani et al., 2017; Bhatti et al., 2022c). In the
computer vision domain, many researchers have studied attention
mechanism and proposed corresponding methods to acquire nice
performance. A residual attention network built by stacking attention
modules is proposed in (Wang et al., 2017) which are designed to
generate attention-aware features, achieving outstanding recognition
performance. A novel architecture unit termed the “Squeeze-and-
Excitatio”(SE) block that adaptively recalibrates the channel feature
strength by explicitly modelling the interdependence between channels
is introduced in (Hu et al., 2020). The structure of SE block is shown in
Figure 3, where U is a feature map with the size of WxHxC, ) and
refers to channel-wise multiplication, so X and U have the same size.
Moreover, edge-guided attention mechanisms which can produce
visually appealing images also attract the attention of many
researchers (Bhatti et al., 2021). Zhao et al. (Zhao et al., 2019a)
propose an edge guidance network (EGNet) which solves the
problems of rough boundary in object detection through the
complementarity of the object and salient edge information.

2.2 Methods

2.2.1 Overall framework

Enlighted by the advantages of distributed structure and the
residual module, we propose a novel distributed fusion architecture
for infrared and visible images based on the residual module and
attention of edge and multiscale channel, RADFNet. The RADFNet is
an end-to-end fusion network, the overall structure of which is shown
in Figure 4. It contains four parts: the feature extraction for the visible
image, the feature extraction for the infrared image, the fusion for

BN ReLU
s v
ReLU Weigh‘

v
weight PlN
gN ReLU

v
/ weight

v
addition

X141

Three different residual units: (A) Original residual unit; (B) Conv residual unit; (C) Improved residual unit
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FIGURE 3

A Squeeze-and-Excitation block, where GP means global average pooling, FC refers to fully-connected layers, ReLU refers to the RelLU function, and

Sigmoid refers to the sigmoid function.

features, and the compensation for edge information. The infrared
and visible image fusion process is formulated as follows.
The visible image features extraction branch can be formulated as

Vi = ATT{(VR(V;.1))®Ey, i=1,2,3,4 (4)

Ey, =EAT,(Ey ) i=1,2,3,4 (5)

where Vj, the visible image input in the architecture, is the V in the
Figure 4. V; is the representation of Vj after the residual module,
multiscale channel attention and compensation of edge information.
VR; means the residual module acting on the V;; and ATT; is the
multiscale channel attention module designed to obtain coarse-to-fine
features from the outcome of VR;;. Vi represents the features in
different levels of V, with different scales, wherein V; has a higher
level than V; ;. Ey; is the edge information feature map obtained by EAT;
with input Ey_ configured to compensate for the edge information of
the feature map achieved by residual module and multiscale channel
attention module. @ refers to the maximum value in the homologous
channel and position in the feature map. The features in the visible
image with separate scales are extracted through the above steps. Then,
they are fed into the fusion channel to fuse at each layer, which can fully
utilize the multi-scale information from perceptible images. In this
method, more texture information with high spatial resolution retains,
which can enhance the quality of the fused image.

The infrared image feature extraction branch can be formulated as

I; = ATT; (IR(IH)>® E i=1,2,34 (6)
1

E, = EAT(E; ) i=1,2,3,4 @)

where Iy, the infrared image input in the architecture, is the I in
Figure 4. I; is the representation of I, after the residual module,

>)—>!

W
C

multiscale channel attention and compensation of edge information.
IR; means the residual module acting on the I; ; and ATT; is the
multiscale channel attention module designed to obtain coarse-to-fine
features from the outcome of IR;,. I; represents the features in
different levels of I, with different scales, wherein I; has ahigher
level than I; ;. E; is the edge information feature map obtained by
EAT; with input E; = configured to compensate for the edge
information of the feature map achieved by residual module and
multiscale channel attention module. @ refers to the maximum value
in the homologous channel and position in the feature map. The
features in the infrared image with distinct scales are extracted
through the above steps. Then they are constituted into the fusion
channel to fuse at each layer, which can fully utilize the multi-scale
information from infrared images. As a result, rich target information
is used for highlighting the target in the fused image.
The channel of feature fusion can be defined as

FUI, =
F;

where V and Iy, which are visible image and infrared image

Fi(Vi’Ii)
(Vin’FUIifl) i= 1) 2a 3)4

i=0
)

inputs in the fusion architecture, are the V and I in Figure 4
respectively. FUL, FUI,, FUI, and FUI, are the fusion results with
different level features using corresponding rules. F; refers to the
fusion rule of the relevant layer features. FUI, is the fusion result of the
i-th extracted features V;, I; and the different scales from previous
fusion result FUI, ;. It realizes the layer-by-layer fusion so it can make
the best use of the information from multisource images and then
improve the quality of the fused image.

2.2.2 Network structure
The infrared and visible image fusion model RADFNet set out in
the present paper is constituted of three channels. The RADFNet

FIGURE 4
The overall structure for infrared and visible image fusion.
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structure is exhibited in Figure 5. RADFNet contains four parts: the
features extraction branch of the visible image and infrared image, the
features fusion branch, and the edge attention module compensating
edge information for the extracted features. The left and right

-

branches in Figure 5 are intended to extract the features in visible
and infrared images respectively. The middle branch fuses the
features extracted by the two branches with the results from the
previous step layer by layer, and the last layer generates the fused
image. For a convolutional layer, kxk,(in,out)’ means the kernel size
is kxk, the input channel is in and the output channel is out. In the
network, BN indicates batch normalization that is utilized to speed up
the training and make the training more stable, and ReLU denotes the
linear rectification function.

The RADFNet adopts four-layers network structure. The VR;_4
and IR;_4 are the residual networks which extract image features.

10.3389/fpls.2022.1056711

Because the residual network has the advantages of mitigating gradient
disappearance or gradient explosion and protecting the information
integrity, the networks we designed can extract meaningful features and
ensure the information integrity simultaneously. Besides, ATTi
processes the features extracted by residual block VRi or IRi to
obtain coarse-to-fine features. EATi acquires the edge information
and then compensates edge information for the extracted feature
map. The ® refers to the operation for achieving the maximum value
in the homologous channel and the homologous position in the feature
map. The FUPi generates FUIi by fusing features extracted by the other
two branches with the FUI;_; generated by FUP;_; when i is not 1.
When i is 1, the concatenated infrared and visible image is fed into the
FUPI to generate FUI,. The @ is the concatenation operation in
channel-wise, and the 1x1 244 convolution layer in the last fusion layer
constructs fusion images.

shorteut connection
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shorteut connection
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shorteut connection
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FIGURE 5

The structure of RADFNet. 'ATT;_4" denote the multiscale channel attention module and 'EAT; 4
the kernel size is 3 X 3, input channel is 1 and output channel is 32 in a convolutional layer.
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2.2.3 Multiscale channel attention network

In the process of infrared and visible image fusion, image feature
extraction is exceptionally significant. However, in practical
situations, numerous detailed information loses in the process of
feature extraction. Inspired by SENet (Hu et al., 2020), the multiscale
channel attention network is proposed to process the features
extracted by the residual network to obtain the coarse-to-fine
features, which can retain more detailed information in the feature
map. As shown in Figure 6, the structure enclosed by the dotted line is
the multiscale channel attention module. The features which lose a lot
of details extracted by VRi or IRi are used as input in ATTi. Then, the
1x1, 2x2, and 4x4 average pooling operations are performed to
generate multiscale features which contain more necessary spatial
information. Moreover, the channel attention mechanism is utilized
to enhance channel correlation information between features. The
multiscale channel attention network is trained to learn the weight
W for the k-th feature f* of the t-th pooling scale in the ATTi which
can be formulated as

Wi = 0(w,8(w1G(2))) ©

D)

G2 = =rcw

(10)

where G(z) denotes the global average pooling operation.

., fi(xy) means the sum of the k-th feature with the t-th pooling
scale in ATTi. (x, y) refers to the position in feature map, and H,W
means the height and width of the feature map. § refers to the ReLU
function, w,€R®* and w,€R®* | 6 denotes the sigmoid function.
Then the channel-wise multiplication is implemented between W[f
and the up-sampled features which can be expressed as UP(f,f) ,
ensuring the multiscale features have the same size as the input. Based
on this, the reweighted features are obtained and then the attention
map can be achieved as follows:

F=n(whvp(f) o n(wheur(f) o n(wi<up(f)) (1)

where 7 denotes the instance normalization (Ulyanov et al., 2016)
and @ refers to the operation for acquiring the maximum value in the
homologous channel and position in the feature map. Through the above
method, the coarse-to-fine attention map Fi is obtained. The attention

10.3389/fpls.2022.1056711

map not only emphasizes more critical features and neglects secondary
ones but also reserves more necessarily detailed information.

2.2.4 Edge attention module

Generally, the edge information of an image refers to the sudden
change in local grayscale value, color component and texture
structure. The edge information from images which is helpful to
distinguish objects, can effectively attract attention of people due to
human visual characteristics. Enlightened by previous work, we utilize
an edge feature map extraction model from the shallower to deeper to
obtain the enhanced edge maps, which are designed to compensate
for textural information for the fused image.

For the sake of acquiring the edge information used to
compensate fused images, we obtain the gradient map from the
source images. The process of obtaining the gradient maps Vg by
inputting a gray-scale image f with the size hxw is defined as

Vg

(12)

x=h-1,y=w-1
ST (T8 ) (T )

x=1,y=1

Vg (xy) =f(xy) - f(x+1,y)
V" (xy) =f(xy) - flxy+1)

where f(x, ) means the pixel at position (x, y). Moreover, we

(13)

perform the enhanced operation to obtain the more obvious gradient
information:

G =maxmax(V g(x+1Ly+1),Vg(xy)). (14)

YEW xEH

where H={1,...,h-1} and W={1,...,w-1}. The (x, y) represent the
position at the gradient map. Through the above steps, we get the
gradient image G with the abundant enhanced edge information.

Subsequently, we feed the gradient images from infrared and
visible images into the edge attention module to generate edge
attention feature maps with enhanced edge information. Then, the
feature maps will be entered into the extraction branch to compensate
edge information for the extracted features by IRi or VRi. The
structure diagram of the edge attention module is shown in
Figure 7. The edge attention module generates Ey; and Ej; layer by
layer, which is then used to compensate edge information for the
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FIGURE 6

The multiscale channel attention network. The features extracted by residual network(VRi or IRi) are fed into the ATTi to generate attention map. GP, FC,
RL, SG denote the global average pooling operation, fully connected layer, ReLUfunction and sigmoid function respectively. <t stands for the up-sample

operation and ) denotes the element-wise multiplication.
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feature maps V; and I; extracted by VR; and IR; respectively.
Therefore, compensated feature maps fused to generate the fused
images retain more edge information.

2.2.5 Loss function

For infrared and visible image fusion, it is difficult to provide the
ground truth of fused images for networks to train a model. However,
the requirement to retain salient target information in the infrared
image and the texture information in the visible image is determined.
Inspired by this requirement, the loss function we employ is as
follows:

LF = Lpixel + aLtexture (15)

where the L, constrains the fused image to contain more target
information from the image pair facilitating target tracking and the
Liexeure forces the fused images to contain more texture details which
can effectively improve the identification of objects in images.

Specifically, the exact definition of Ly is expressed as follows:

1
> (16)

m
Lpixel = I
1

|I} — max (I{,,Iiis) I

where m is the batch size that is the number of training samples
used in each iteration. The I means the fused image with the input
image pair {I;, I,;}, and the max () denotes the element-wise
maximum selection. Through the maximum selection strategy, the
fused images have the prominent target information.

Moreover, we hope the fused images contain significant target
information and simultaneously preserve great textural details from
source images. However, the L, has very limited constraints on
textural details. Therefore, the L;,.is introduced to force the fused

image to retain more textural information and the Ly, is defined as:

)12

where the m is the batch size, the Iy means the fused image with

m

VEL|,|VE, (17)

>

o] o

1
mS

Liexture =

the input image pair {I;,, I,;}, and the max (-) denotes the element-
wise maximum selection. The V indicates the Sobel gradient operator
and the || means the absolute operation. The element-wise maximum
selection strategy can make the fused images obtain the most
significant edge textural information.

10.3389/fpls.2022.1056711

3 Experimental results and analysis
3.1 Experimental configurations

To evaluate the proposed fusion algorithm in many aspects, we
conduct extensively qualitative and quantitative experiments on the
RoadScene (Xu et al,, 2020) dataset. We evaluate the performance of
our method by making a comparison with six state-of-the-art
approaches, including two Nest-based methods, i.e., NestFuse (Li
et al., 2020) and REN-Nest (Li et al.,, 2021a), and four CNN-based
methods: DenseFuse (Li and Wu, 2018), IFCNN (Zhang et al., 2020),
U2Fusion (Xu et al,, 2022), and SDNet (Zhang and Ma, 2021). The
subjective visual perception system is vulnerable to human factors,
such as personal emotion and visual environment, and the fused
images using different approaches resemble somewhat. Therefore,
there are six evaluation statistical metrics which are selected to
quantify the evaluation, including mutual information(MI) (Qu
et al., 2002), entropy(EN) (Roberts et al., 2008), visual information
fidelity(VIF) (Han et al, 2013), stand deviation (SD), spatial
frequency(SF) (Eskicioglu and Fisher, 1995) and average gradient
(AG) (Zhao et al., 2019b). MI quantifies the amount of information
obtained from the source image by the fused image, and EN assesses
the amount of information contained in the fused image based on
information theory. VIF mainly computes information fidelity in a
fused image, which is in line with human visual perception. SD
reflects the contrast of an image based on statical concepts, a larger SD
value indicates a higher contrast distribution in an image, and the
image carries more information. SF reflects the change rate of image
gray scale. AG can measure the fused image clarity, which can be
considered that the greater AG, the better the image clarity and the
better the fused image quality. EN, SF and SD are reference-free
metrics. Moreover, a fusion method with larger MI, EN, VIF, SD, SF,
and AG represents better performance.

3.2 Details of implementation

In the training process of the RADFNet model, we use images
from the OSU (Davis and Sharma, 2007) dataset to construct the
training dataset. Due to different imaging sensors, the image pairs in
the OSU dataset are not strictly registered resulting in black edges in
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FIGURE 7

The architecture of edge attention module. The EAT; 4 are designed to generate shallow to deep edge feature maps Ey, , or E;,_,. For convolution layer,
the 'kxk,(in,out)’ means that the convolution kernel size is kxk , the input channel is in and output channel is out. In addition, the 'rate 2" denotes the

dilated convolution operator with a dilation rate of two.
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infrared images. Therefore, we crop both infrared and visible images
at the same size 280 x 200. Based on the above operations, we can get
8,544 image pairs. It is worth nothing that the visible images in the
OSU dataset are color images, but the infrared images are grayscale.
To make the number of channels with the input image pair the same,
we perform the process that converts the visible images to grayscale
images in advance. Moreover, all images are normalized to [0,1]
before being fed into the network to accelerate model convergence.
The hyper-parameter of the loss is set as a = 10. Adam optimizer
(Kingma and Ba, 2015) with B1 of 0.9, B2 of 0.999, epsilon of 1078,
weight decay of 0, the initial learning rate of 0.001 is used to optimize
our fusion model with the guidance of loss function Lp. All
experiments are conducted on the Quadro RTX6000 GPU and 2.90
GHz Intel(R) Xeon(R) Gold 6226R CPU.

The RoadScene dataset contains color visible images, but we
employ the input grayscale images to train the proposed network.
To get better visuals in the test phase, we adopt the strategy
(Prabhakar et al., 2017) to process color images instead of
converting the input color images to grayscale images. Precisely, we
first convert the color image to the YCbCr color space, then the
infrared image and the Y channel of visible image are entered into the
RADEFNet. Finally, the fusion result is concatenated with Cb andCr
channels from visible image along channel-wise and then converted
into the RGB color image. The RGB color image is the result of the
proposed network.

3.3 Results analysis on RoadScene datasets

To fully evaluate the performance of the RADFNet, we compare
the RADFNet with the other six methods on the Roadscene dataset.
The Roadscene dataset mainly contains road scenes, including
pedestrians and cars, in the daytime and at night. We select two
images in the daytime and two in the nighttime for evaluation
subjectively so as to exhibit some intuitive fused images on the
fusion performance. The fused images of the proposed RADFNet
and the other six methods are presented in Figure 8. In the daytime
scenes, the fused images with exceptional visual quality have rich
texture information from visible images and enhanced prominent
target information from infrared images. In the first column images in
Figure 8, RADFNet makes the pedestrians in the image have the most
incredible vigorous light intensity. The fused images of U2fusion and
SDnet show they tend to darken the entire color of the images. For
example, the color of the sky is darker than the fusion images with
other methods. In the second column, all six methods enhance the
pedestrian. Still, all other methods, except the RADFNet, dim the
streetlamp to a certain extent, thus losing information. Moreover, the
fusion image of the proposed approach has more obvious color
contrast and texture details, so the buildings in our fused image
have a richer structure sense than the fused images with other
methods. In the nighttime scenes, the ability of both infrared
images and visible images to provide information is limited.
Therefore, sufficiently retaining meaningful data from the source
images is challenging. In the third column, all fusion methods
inevitably integrate useless information into the fused image, which
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degrades the visual quality of the image. Regardless, the proposed
approach best protects the information from the visible image while
using the meaningful information from the infrared image to enhance
the target information. In the last column, compared with other fused
images, the fused image in the proposed method failsto remove the
halo on the streetlamp altogether. Nonetheless, the signs on the road
are most conspicuous in the fusion image, while signs on the street in
other images even tend to disappear. In a word, the proposed method
can efficiently utilize the information of the infrared and visible
images to generate high-quality fused images.

To avoid human factors and other factors affecting the subjective
evaluation. We conduct quantitative assessments with the six
approaches and the proposed method. The results of six metrics on
the Roadscene dataset, which contains 221 image pairs, are shown in
Figure 9. It can be noted that our results achieve better performance
on six metrics. The best MI means that our method transfers the most
information from the source image to the fused image and the best
EN represents the fused image thatcontains the most information.
The proposed method represents the best on VIF, which indicates our
fused image gets a better human visual perception effect. The best SF
and AG suggest that the proposed approach generates the clearest
image with remarkable quality. In addition, our RADFNet displays
the best SD, illustrating our fused images have the highest contrast.
Combined with subjective and quantitative evaluation results, these
results prove that RADFNet can convert more meaningful
information from infrared and visible images to fused images while
ensuring the best quality.

3.4 Ablation experiment

To verify the effectiveness of the edge attention module, we
conduct ablation experiments. We employ edge attention and
ignore edge attention to create two models, then the same image
pair is used as input to test the difference between the two models, and
the visual results are presented in Figure 10. The red and green box
parts are magnified for a more intuitive comparison. In the first row,
the telegraph pole in the red box with edge attention has a clearer
texture, while that without edge attention even becomes blurred. In
addition, the leaves with edge attention in the green box also have
more precise texture details than that not using edge attention. The
words in the red box of the images in the second row are difficult to
identify because of the blurred source image. In contrast, words in the
fused image using edge attention are more beneficial to observe than
that in the image not using edge attention because the edge attention
module compensates for the edge information for the fused image.

In addition, to comprehensively evaluate the impact of edge
attention in fused images, we make quantitative evaluations for the
four images in Figure 10, and the result is listed in Table 1. It is noted that
only the fused images with edge attention have a slightly lower metric SD
than that without edge attention. The fused images with edge attention
are higher for the other five metrics, i.e., EN, SF, SD, M, VIF, and AG in
both Street and House images. The results show that the generated edge
information from the edge attention module compensating for the fused
image can improve the image quality effectively.
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FIGURE 8

3.5 Discussion on loss function

For the sake of comprehensively considering the improvement in
model training on fused image quality, we design another loss

function Lgs, which can be defined as follows:
LFS = ﬂLSSIM + Ltexture (18)

where Ly is represented by Equation 17, the value of f is 5,
and the Lggpy, is the structural similarity (SSIM) loss, which can be
expressed as

Less = 1= (w-SSIM (F,I) + (1 —w) - SSIM (F, V))  (19)

where the SSIM(-) means the structural similarity (Wang et al,
2004). F denotes the output result from the proposed model. V and I
refer to the homologous input visible and infrared images
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respectively. In addition, to balance the structural similarity loss
between the fused image and infrared and visible image, the weight
w is taken as 0.5.

The loss functions Lr and Lgg are used to train the proposed
network respectively, and the results are exhibited in Figure 11. In the
first row, the zebra crossing in the green box of fused image output
after the network trained with Ly is more prominent than that trained
with Lps. However, the halo on the streetlamp in the red box in the
image output by the network trained by Lr. is not completely removed.
In the second row, it can be seen that no matter the definition of the
whole image or the details, the network output image using Lp
training is better. In a word, the output image from the network
trained by Lr can highlight more important information in the
nighttime scenes. But that trained by Lps can essentially eliminate
the halo in the image. In the daytime scenes, the quality of the output
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The results of ablation study about the influence of edge attention module in two image pairs from the Roadscene dataset.

The quantization results of six metrics on the 221 image pairs from the Roadscene dataset. The abscissa x refers to the number of image pairs and the
ordinate y refers to the metric value.

TABLE 1 The quantitative results on the four images shown in Figure 10.

Street Edge 7.514 0.077 10.492 3.890 0.730 7.763
No-Edge 7.533 0.061 10.721 2.376 0.590 5.905
House Edge 7.586 0.072 10.334 3.946 0.937 6.846
No-Edge 7.573 0.056 10.605 2.686 0.709 5.427

The Street means the first row images and House denotes the second row images. Edge and No-Edge refer to edge attention and no edge attention during image fusion, respectively.
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FIGURE 11
The results of RADFNet trained by SSIM loss Lgs and Fusion loss Lr.
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SSIM loss Fusion loss

images from the network trained by Lp. is better in both overall and
detail. Therefore, we choose fusion loss L as the training loss function
in our experimental test.

To set the best optimal coefficients for the proposed method, the
parameter a is set as 1, 10, 50 and 100. The epoch and batch size are 4
and 4, respectively. One a is needed to choose for the image fusion
task based on the test images. Six metrics are employed to evaluate the
performance of RADFNet with different a. The values are shown in
Table 2. The best values are indicated in red and the second-best
values are denoted in blue. It is worth nothing that three of the six
metrics are best when a=1. However, the metrics MI and VIF are
unstable. When a=10, the values of all metrics are considerable and
stable, which indicates the proposed network can achieve better
fusion performance than other values of a. So, a is set as 10
in experiments.

3.6 Fusion of unregistered image pairs

In general, it is difficult to obtain the source image pairs that have
been strictly registered for image fusion because the imaging
characteristics of different sensors are quite different. Therefore, at
the training stage, we train our model without using the infrared and
visible image pairs that are strictly registered. Aiming to verify that
our method performs well in fusing image pairs without strict
registration, we randomly translate the infrared images in the
source image pairs with [-5,5], [-8,8]and [-10,10] pixels on the
Roadscene dataset to get the misregistered infrared and visible
image pairs, and then use the proposed method to fuse these

TABLE 2 The quantitative results on the RoadScene dataset with different a.

misregistered image pairs. The fusion results of these unregistered
images are displayed in Figure 12. From these fusion results, the
proposed method can preserve the target information from the source
image. At the same time, the texture details from the source images
are also fused into the fused image, which improves the quality of the
fused image. The numbers in the red box of the fused images are still
vivid, even under different unregistered degrees. The experimental
results demonstrate the proposed method with strong robustness still
has good performance in fusing images without registration.

4 Discussion

For the sake of avoiding the impact of changes in the agricultural
working environment on the information perception for the
intelligent agricultural system, we utilize infrared and visible image
fusion to improve the image quality, so that the fused images can be
used normally and even efficiently for various subsequent vision tasks
in the intelligent agricultural system. Specifically, we propose a
distributed fusion architecture for infrared and visible image fusion,
termed RADFNet, which fuses images through three channels based
on residual (RDCNN), edge attention, and multiscale channel
attention. The proposed method can most retain the salient target
information in the infrared image and the textural details information
in the visible image. In addition, we introduce the multiscale channel
attention module, which can extract coarse-to-fine features to
preserve more information from source images to fused images. We
also adopt an edge attention module that can compensate edge
information for the fusedimage to make the fused image lose less

EN 7.612254 7.604088 7.5805 7.58722
SF 0.088493 0.075895 0.076245 0.073816
SD 10.41727 10.50972 10.35863 10.38415
MI 2.670785 3.468535 3.501638 3.156152
VIF 0.698988 0.836942 0.832764 0.787895
AG 8.19272 7.033987 6.88297 6.939895

The red word represents the best, and the blue word represents the second best.
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Infrared

FIGURE 12

The results of fusing unregistered images with the proposed method on the Roadscene dataset. The infrared images are randomly translated, which
causes the black edge in the images. The infrared images from top to bottom are translated with [-5,5],[-8,8],[-10,10] pixels.

Visible
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Unregistered fusion results

edge information from source images. The comparative experiments
are conducted on the Roadscene dataset, and the results demonstrate
that the proposed method has superior performance in improving the
fusion qualityand has achieved comparable results over the state-of-
the-art image fusion algorithms in terms of visual effect and
quantitative metrics. Finally, we send the unregistered image pairs
into our network, and the results demonstrate that our method with
strong robustness still performs well in fusing images without
registration. The RADFNet performs well for infrared and visible
image fusion due to the robust feature extraction ability of the
network. The distributed fusion framework endows it with strong
robustness, but the network parameters are still relatively large, which
is not simple enough in the actual project deployment. In the future, it
is necessary to improve the parameters of the network and the actual
deployment of the model.
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Deep learning methods for weed detection typically focus on distinguishing weed
species, but a variety of weed species with comparable plant morphological
characteristics may be found in turfgrass. Thus, it is difficult for deep learning
models to detect and distinguish every weed species with high accuracy. Training
convolutional neural networks for detecting weeds susceptible to herbicides can
offer a new strategy for implementing site-specific weed detection in turf. DenseNet,
EfficientNet-v2, and ResNet showed high F; scores (>0.986) and MCC values
(>0.984) to detect and distinguish the sub-images containing dollarweed,
goosegrass, old world diamond-flower, purple nutsedge, or Virginia buttonweed
growing in bermudagrass turf. However, they failed to reliably detect crabgrass and
tropical signalgrass due to the similarity in plant morphology. When training the
convolutional neural networks for detecting and distinguishing the sub-images
containing weeds susceptible to ACCase-inhibitors, weeds susceptible to ALS-
inhibitors, or weeds susceptible to synthetic auxin herbicides, all neural networks
evaluated in this study achieved excellent F; scores (>0.995) and MCC values
(>0.994) in the validation and testing datasets. ResNet demonstrated the fastest
inference rate and outperformed the other convolutional neural networks on
detection efficiency, while the slow inference of EfficientNet-v2 may limit its
potential applications. Grouping different weed species growing in turf according
to their susceptibility to herbicides and detecting and distinguishing weeds by
herbicide categories enables the implementation of herbicide susceptibility-based
precision herbicide application. We conclude that the proposed method is an
effective strategy for site-specific weed detection in turf, which can be employed
in a smart sprayer to achieve precision herbicide spraying.

KEYWORDS

deep learning, convolutional neural networks, weed detection, herbicide susceptibility,
precision herbicide application
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Introduction

Turfgrass is widely grown in urban landscapes, including
institutional and residential lawns, parks, or athletic fields (Potter
and Braman, 1991). The total turfgrass area in the United States is
163,812 km?, which accounts for approximately 1.9% of the whole
terrestrial land of the country (Milesi et al.,, 2005). Weed control is a
challenging task for turfgrass management. Weeds compete with the
turfgrass for sunlight, moisture, and soil nutrients, reducing turf
aesthetics, surface quality, and functionality (Hamuda et al., 2016;
Liu and Bruch, 2020). Weed management in turfgrass landscapes has
relied heavily on broadcast herbicide application (McElroy and
Martins, 2013), although weeds almost always present in non-
uniform and patchy distributions (Dai et al., 2019; Yu et al,, 2019a).
Excessive application of synthetic herbicides could potentially pose a
risk to human health and cause environmental pollution (Slaughter
et al., 2008; Dai et al,, 2019; Yu et al., 2019b; Mennan et al., 2020).
Moreover, the application of synthetic herbicides represents a
significant variable cost in turf weed management (Davis and
Frisvold, 2017). These concerns have led to legal regulations
regarding herbicide usage in several countries. For example, the
European Union encourages spot-spraying to reduce the herbicide
input (Busey, 2003; Marchand and Robin, 2019). Additionally, spot-
spraying could effectively minimize the amount reaching off-target
areas (Melland et al, 2016). In the United States, Environmental
Protection Agency has proposed a series of measures, including
prohibiting aerial applications for all atrazine labels to reduce their
chance of runoff from the managed fields (Pimentel and Burgess,
2012; McCullough et al., 2015).

Site-specific weed management is a promising solution for
sustainable weed control (Chen et al., 2022). Precision spraying a
particular type or volume of herbicide onto susceptible weed species
can significantly reduce herbicide input and weed control costs
(Liakos et al., 2018). Site-specific weed management relies on the
accurate identification and localization of weeds (Fennimore et al.,
2016; Wang et al., 2019). Previous researchers explored various visual
characteristics, such as color (Tang et al., 2016), morphological (Perez
et al,, 2000), hyper- or multi-spectral (Pantazi et al., 2016; Jiang et al.,
2020), and textural features (Bakhshipour et al, 2017), for weed
detection. However, crops and weeds may exhibit similar visual
characteristics, thus detection and classification of weeds in crops
are inherently challenging (Hasan et al., 2021). In turf, weed detection
is challenging due to the presence of a variety of weed species growing
with turfgrass.

In recent years, deep learning, a subfield of artificial intelligence,
has demonstrated remarkable capability in speech recognition
(Hinton et al., 2012; LeCun et al, 2015), natural language
processing (Collobert and Weston, 2008; Collobert et al., 2011), and
computer vision (Gu et al.,, 2018; Shi et al., 2020; Zhou et al., 2020).
Deep learning technologies exhibit a tremendous ability to learn
representations from raw data and extract complex features from
images with a high accuracy level (Jordan and Mitchell, 2015; He
et al, 2020; Yang et al, 2022a). Moreover, the improvements in
graphics processing units (GPUs) have facilitated the use of deep
convolutional neural networks (Bao et al., 2017; Bao et al,, 2021; Ngo
et al, 2021). Recent studies have investigated the feasibility of using
deep learning in various agricultural domains, including plant disease
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detection (Martinelli et al., 2015; Saleem et al, 2019), crop yield
prediction (Khaki and Wang, 2019; Van Klompenburg et al., 2020),
plant phenotyping (Atefi et al., 2021; Zhang et al., 2022), and weed
detection (Jin et al., 2021; Peng et al., 2022; Razfar et al., 2022). For
example, Abbas et al. proposed a deep learning-based method for
tomato disease detection. The trained neural network achieved a best
5-class classification accuracy of 99.51 (Abbas et al., 2021). Subeesh
et al. compared four convolutional neural networks, including
AlexNet, GoogLeNet, InceptionV3, and Xception for detecting
various weeds growing in bell peppers (Capsicum annum L.) and
found InceptionV3 achieved the highest accuracy (97.7%) (Subeesh
et al, 2022). For image-based weed detection and discrimination,
previous findings suggest that deep learning methods generally
outperform other methods (Fennimore et al., 2016; Kamilaris and
Prenafeta-Boldu, 2018).

Several studies have investigated the use of image classification or
object detection neural networks for detecting and distinguishing
various weed species in turfgrass (Yu et al, 2019a; Yu et al., 2019b; Yu
et al.,, 2019¢; Yu et al,, 2020). Jin et al. demonstrated that VGGNet
effectively detected and distinguished dallisgrass (Paspalum dilataum
Poir.), purple nutsedge (Cyperus rotundus L.), and white clover
(Trifolium repens L.) growing in bermudagrass [Cynodon dactylon
(L.) Pers.] turf, while RegNet is well-performed in discriminating
common dandelion (Taraxacum officinale Web.) (Jin et al., 2022). In
another study, Yu et al. developed effective deep convolutional neural
networks to detect weeds in turf. The authors reported that the image
classification neural network VGGNet reliably classified broadleaf
and grassy weeds growing in bermudagrass turf. In addition, the
object detection neural network DetectNet achieved high overall
accuracy at detecting cutleaf evening-primrose (Oenothera laciniata
Hill) growing in bahiagrass (Paspalum notatum Flugge) (Yu et al.,
2019b; Yu et al., 2019c).

Different weed species exhibit varying susceptibility to a particular
herbicide category (McElroy and Martins, 2013; Yu et al., 2018). For
example, acetolactate synthase (ALS)-inhibiting herbicides generally
provide a narrow weed control spectrum (Yu and Boyd, 2018);
ACCase-inhibiting herbicides are only effective for controlling
grassy weeds (McElroy and Martins, 2013); nonselective herbicides,
such as glyphosate and glufosinate, could nonselectively control all
weeds (Johnson, 1977); and synthetic auxin herbicides, such as 2,4-D,
dicamba, and MCPA, are only effective for controlling broadleaf
weeds (McElroy and Martins, 2013). Therefore, precision spraying
herbicides based on the susceptibility of different weed species to the
herbicides can significantly reduce herbicide input and improve
herbicide use efficiency. Although deep learning has been well-
performed in weed detection and discrimination, previous studies
have generally focused on distinguishing different weed species and
did not establish a direct connection between weeds and herbicides.
Moreover, a variety of weed species with comparable plant
morphological characteristics may be found in turfgrass, thus it is
difficult for the deep learning models to detect and distinguish every
weed species with high accuracy. In the present research work, in
addition to the detection and discrimination of individual weed
species, different weed species growing in bermudagrass turf were
grouped according to their susceptibility to herbicides, and weeds
were detected and distinguished by herbicide categories. The
proposed method would allow precision herbicide application based
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on susceptibility and thereby effectively reduce herbicide input while
achieving the same level of weed control as the broadcast herbicide
application. The objectives of this paper were to (1) investigate the
feasibility of utilizing deep learning for herbicide susceptibility-based
weed detection in bermudagrass turf, and 2) evaluate and compare the
performance of different convolutional neural networks for
distinguishing individual weed species.

Materials and methods
Overview

The image classification convolutional neural networks, including
DenseNet (Huang et al., 2017), EfficientNet (Tan and Le, 2019), and
ResNet(He et al., 2016), were selected for evaluating the feasibility of
using the convolutional neural networks for detecting and
distinguishing individual weed species growing in bermudagrass
turf or detecting and distinguishing weeds susceptible to herbicides.
DenseNet is a convolutional neural network that computes dense and
multi-scale features from the convolutional layers. For each layer, it
obtains additional inputs from all preceding layers and passes on its
feature maps to all subsequent layers. EfficientNet uses a set of fixed
scaling coefficients to uniformly scales all dimensions of depth, width,
and resolution in a principled way. The EfficientNet achieves state-of-
the-art accuracy with 10x better efficiency by utilizing this novel
scaling method. ResNet introduced the concept of residual learning. It
employs an identity-based skip connection in each residual unit.
ResNet eases the flow of information across units and thus can gain
accuracy from very deep networks. In this study, these three
convolutional neural networks were trained and evaluated with the
ultimate goal of site-specific herbicide application.

Image acquisition

The training images of crabgrass (D.igitaria ischaemum L.),
dollarweed (Hydrocotyle spp.), old world diamond-flower (Hedyotis
cormybosa L.), and tropical signalgrass [Urochloa distachya (L.) T.Q.
Nguyen] were acquired at several golf courses in Bradenton (27.49°N,
82.47°W), Riverview (27.86°N, 82.32°W), Sun City (27.71°N, 82.35°
W), and Tampa (27.95°N, 82.45°W), Florida, while the testing images
were acquired at several golf courses and institutional lawns in
Lakeland, Florida (28.03°N, 81.94°W). The training images of
goosegrass (Eleusine indica L.) and Virginia buttonweed (Diodia
virginiana L.) growing in bermudagrass turf were acquired at the
University of Georgia Griffin Campus in Griffin, Georgia, United
States (33.26°N, 84.28°W), while the testing images were acquired at
several golf courses in Peachtree City, Georgia, United States (33.39°
N, 84.59°W). The training images of purple nutsedge were acquired at
sod farms in Jiangning District, Nanjing, Jiangsu, China (31.95°N,
118.85°E), while the testing images were acquired at sod farms in
Shuyang, Jiangsu, China (34.12°N, 118.79°E). The training and testing
images of crabgrass, dollarweed, goosegrass, old world diamond-
flower, tropical signalgrass, and Virginia buttonweed were captured
multiple times from April to November 2018 using a digital camera
(DSC-HXI1, SONY®, Cyber-Shot Digital Still Camera, SONY
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Corporation, Minato, Tokyo, Japan). The training and testing
images of purple nutsedge were captured in spring 2021 using a
digital camera (Panasonic® DMC-ZS110, Xiamen, Fujian, China).
The original resolution of the training and testing images was 1,920 x
1,080 pixels. To enrich the diversity of the training dataset, images
were captured under various illumination conditions, including partly
cloudy, cloudy, or sunny days.

Training and testing

Images containing crabgrass, dollarweed, goosegrass, old world
diamond-flower, purple nutsedge, tropical signalgrass, and Virginia
buttonweed growing in bermudagrass turf were selected to constitute
the training or testing datasets. Images containing a single weed species
were selected for training and testing neural networks. All images were
cropped into 40 equal-sized sub-images by a 5 rows x 8 columns
division. Each sub-image was 240 x 216 pixels. Sub-images of crabgrass,
goosegrass, and tropical signalgrass (Figure 1), purple nutsedge
(Figure 2), dollarweed, old world diamond-flower, and Virginia
buttonweed (Figure 3) at different growth stages and densities, and
sub-images of bermudagrass at varying mowing heights and surface
conditions (Figure 4) were utilized for training and testing the neural
networks. Figure 5 outlines the sequence diagram of image processing
and training and testing the convolutional neural networks for
detecting and discriminating individual weed species or weeds
susceptible to ACCase-inhibitor, ALS-inhibitor, synthetic auxin
herbicides, or bermudagrass without weed infestation (no herbicide).

The convolutional neural networks for detecting and distinguishing
weed species were trained utilizing a total of 21,000 true positive sub-
images (3,000 sub-images for each weed species) containing crabgrass,
dollarweed, goosegrass, old world diamond-flower, purple nutsedge,
tropical signalgrass, or Virginia buttonweed growing in bermudagrass
turf, while a total of 9,000 sub-images containing only bermudagrass
were utilized as the true negative images. To establish the validation or
testing dataset, a total of 3,500 sub-images (500 images for each weed
species) containing crabgrass, dollarweed, goosegrass, old world
diamond-flower, purple nutsedge, tropical signalgrass, or Virginia
buttonweed growing in bermudagrass were utilized as the true
positive images, while a total of 1,500 sub-images containing only
bermudagrass were utilized as the true negative images.

The convolutional neural networks for detecting and distinguishing
weeds susceptible to various herbicides were trained using a dataset
containing four categories of sub-images: weed species susceptible to
ACCase-inhibitors, weed species susceptible to ALS-inhibitors, weed
species susceptible to synthetic auxin herbicides, and bermudagrass
without weed infestation. To establish the training, validation, or testing
dataset, the sub-images containing crabgrass, goosegrass, or tropical
signalgrass, the sub-images containing purple nutsedge, the sub-images
containing dollarweed, old world diamond-flower, or Virginia buttonweed,
and the sub-images containing bermudagrass only were grouped and
labeled as ACCase-inhibiting herbicides, ALS-inhibiting herbicides,
synthetic auxin herbicides and no herbicide, respectively (Table 1).

The training and testing of the convolutional neural networks
were performed in PyTorch (version 1.8.1) deep learning
environment (Facebook, San Jose, California, United States) with an
NVIDIA GeForce RTX 2080 Ti graphic processing unit (GPU).
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FIGURE 1

Transfer learning seeks to use previously acquired knowledge while
addressing one problem and applying it to a different but similar
problem (Lu et al.,, 2015). The convolutional neural networks were
pre-trained with the ImageNet dataset to initialize the weights and
bias through the transfer learning technology. To ensure fair
comparisons among the evaluated deep learning models, default
values of hyper-parameters for each neural network were adopted
and used (Table 2).

A binary classification confusion matrix with four conditions,
including the true positive (¢p), false positive (fp), true negative (tn),
and false negative (fn), was used to present the training and testing
results of the convolutional neural networks. The performances of the
convolutional neural networks were evaluated and compared against
each other in terms of precision, recall, F; score, and Matthews
Correlation Coefficient (MCC).

Precision is the ability of the neural networks to detect the
susceptible weed species and was calculated using the tp and fp
(Sokolova and Lapalme, 2009):

precision = t;%fp (1)

Recall is the effectiveness of the neural networks to detect the
susceptible weed species and was computed using the fp and fn
(Sokolova and Lapalme, 2009):

recall = t;%fn (2)
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The F; score is a commonly used metric for measuring the overall
performance of the neural networks, which was defined using the
following equation (Sokolova and Lapalme, 2009):

_ 2xprecisionXrecall
By = e ionsrecall (3)

The MCC is the correlation between ground truth labels and
predictions, which was determined using the following equation
(Chicco and Jurman, 2020):

tpxtn—fpxfn

Mcc = /(tp+p) x (tpfin) x (tn-+fp) x (tn-+fin) 4)

Frames per second (FPS) measures the number of images, also
known as frames processed by the neural networks each second. A
higher FPS value indicates faster image processing. The FPS value was
adopted as a quantitative metric to evaluate the computational
efficiency of the neural networks.

Results

Detection and discrimination of
weed species

When the convolutional neural networks were trained for detecting

and distinguishing weed species growing in bermudagrass turf,
DenseNet, EfficientNet-v2, and ResNet exhibited excellent
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FIGURE 2

performances and achieved high F; scores (20.995) and MCC values
(20.994) in the validation datasets for detecting and distinguishing the
sub-images containing dollarweed, goosegrass, purple nutsedge, and
the sub-images containing bermudagrass only (Table 3). In general, a
slight reduction in weed detection performance of all neural networks
was observed in the testing datasets compared to the validation datasets.

For the detection of old world diamond-flower, the recall values of
DenseNet in the validation and testing datasets were 0.994, while the
precision values were 0.984 and 0.980, respectively, in predicting the
correct weed species labels. For the detection of Virginia buttonweed,
the precision values of DenseNet were 0.996 and 0.994, respectively,
while the recall values were 0.984 and 0.978, respectively. Similar

FIGURE 3

The training and testing sub-images of dollarweed (A), old world diamond-flower (B), and Virginia buttonweed (C) at different growth stages and densities.

10.3389/fpls.2023.1096802

trends were observed in the validation and testing datasets for
EfficientNet-v2 and ResNet.

All three neural networks performed poorly at detecting and
distinguishing crabgrass and tropical signalgrass growing in
bermudagrass turf. Because of low precision and recall values, the
F, scores and MCC values of DenseNet, EfficientNet-v2, and ResNet
never exceeded 0.918, 0.919, and 0.918, respectively, in the validation
and testing datasets. The low F; scores and MCC values indicate that
the neural networks are more likely to mistakenly classify crabgrass as
tropical signalgrass (or vice versa). This finding could likely attribute
to the similarity in plant morphology between crabgrass and
tropical signalgrass.

The training and testing sub-images of purple nutsedge at different growth stages and densities.
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FIGURE 4

Detection and discrimination of weeds
susceptible to herbicides

No obvious differences were observed among DenseNet, EfficientNet-
v2, and ResNet for detecting and distinguishing weeds susceptible to
ACCase-inhibitors, ALS-inhibitors, synthetic auxin herbicides, or
bermudagrass without weed infestation (no herbicide) (Table 4).

DenseNet, EfficientNet-v2, and ResNet achieved high F; scores
and MCC values (20.997) with high precision (=0.996) and recall (>
0.997) in the validation datasets. All neural networks had slightly
reduced precision and recall values in the testing datasets, but the F,
scores and MCC values never fell below 0.994.

These results suggest that convolutional neural networks can
reliably detect and distinguish weeds susceptible to particular
herbicides. Furthermore, it can be inferred that training the neural
networks based on the susceptibility of weed species to herbicides

The training and testing sub-images of bermudagrass at different turfgrass management regimes, mowing heights, and surface conditions.

10.3389/fpls.2023.1096802

could probably minimize the morphological similarity issue and
hence improve weed detection accuracy.

Inference time of the convolutional
neural networks

In addition to the weed detection accuracy, the inference time of
the convolutional neural networks is also critical for real-time
precision herbicide application. The FPS values of DenseNet,
EfficientNet-v2, and ResNet were calculated by averaging the
inference time of images from the testing dataset. Since the original
images were captured at a resolution of 1,920 x 1,080 pixels, the
detection speed with the full images was measured by processing the
sub-images (240 x 216 pixels) with a batch size value of 40 (for
simultaneously processing 40 sub-images).

Image Processing

Datasets CNNs

Sub-i

t dollarweed,\

&
goosegrass,

All images were
cropped into 40
equal-sized sub-
images by a 5§

old world diamond-flower,
nutsedge, tropical signalgrass, or Virginia buttonweed
growing in bermudagrass turf, and
containing only bermudagrass

purple ‘Weed species
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—_—
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Image
Acquisition

Tows x 8 columns

=

division.

Four categories of sub-images: weed species\
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FIGURE 5

Flow diagram illustrates the sequence of image processing and training and testing the convolutional neural networks.
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TABLE 1 The number of sub-images used to establish the training, validation, and testing datasets of the convolutional neural networks.

Dataset ACCase-inhibiting herbicides ALS-inhibiting =~ No herbicide Synthetic auxin herbicides
herbicides
Crabgrass = Goosegrass Tropical Purple nut- Bermudagrass = Dollarweed Old world Virginia
signalgrass sedge diamond- buttonweed
flower

Training 3000 3000 3000 3000 9000 3000 3000 3000
Validation 500 500 500 500 1500 500 500 500
Testing 500 500 500 500 1500 500 500 500

The convolutional neural networks were trained to detect and discriminate weed species and the sub-images containing weeds susceptible to ACCase-inhibiting herbicides, ALS-inhibiting herbicides,

synthetic auxin herbicides, or bermudagrass without weed infestation (no herbicide).

All convolutional neural networks, including DenseNet,
EfficientNet-v2, and ResNet, had an excellent detection speed
(277.94fps) when detecting and distinguishing the sub-images with
a batch size value of 1 (Table 5). DenseNet, with 61.79 full images
detected per second, was 31.59 slower than ResNet but noticeably
faster than EfficientNet-v2 when setting the batch size value as 40.
ResNet demonstrated the fastest inference rate and outperformed the
other convolutional neural networks on detection efficiency.
However, the slow detection of EfficientNet-v2 may limit its
potential applications.

Discussion

Deep learning methods for weed detection typically focus on
distinguishing weed species, but various weed species with
comparable plant morphological features may be found in the
turfgrass. Thus, it is difficult for neural networks to achieve high
accuracy of detection and discrimination for every weed species.
Distinguishing different categories of weed species growing in turf
based on their susceptibility to herbicides reduces the complexity of
weed detection. By training the neural networks according to the
susceptibility of weed species to herbicides, we achieved an excellent
performance in weed detection. Moreover, this strategy allows the use
of specific herbicides for precision spraying susceptible weeds, thus
saving more herbicides.

When training convolutional neural networks for detecting weeds
susceptible to herbicides, weed vegetation was grouped and labeled
into three categories: weeds susceptible to ACCase-inhibitors, weeds
susceptible to ALS-inhibitors, and weeds susceptible to synthetic
auxin herbicides. ACCase-inhibitors, such as diclofop-methyl, can
be applied in bermudagrass turf for POST control of various grassy
weeds, while sethoxydim (cyclohexanedione), another ACCase-
inhibitor, is used for POST control of grassy weeds growing in
centipedegrass [Eremochloa ophiuroides (Munro) Hack.] (Neal

et al, 1990; Tate et al,, 2021). Synthetic auxin herbicides, such as
2,4-D and mecoprop, are POST herbicides that selectively control
broadleaf weeds in bermudagrass turf (Grichar et al., 2008; Reed et al.,
2013). ALS-inhibitors (e.g. halosulfuron, imazaquin, and
trifloxysulfuron-sodium) can effectively control nutsedge weeds.
However, it should be noted that certain ALS-inhibitors, such as
halosulfuron and trifloxysulfuron-sodium, can also suppress or
effectively control broadleaf weeds (McElroy and Martins, 2013). In
this context, broadleaf and nutsedge weeds could be grouped into the
same category when training the neural network for precision
spraying the ALS-inhibitors that are effective for controlling both
broadleaves and nutsedges growing in bermudagrass turf.

Deep learning neural networks, including image classification and
object detection neural networks, can be developed and potentially
integrated into the machine vision sub-system of a smart sprayer.
Nevertheless, it should be noted that image classification neural
networks alone do not localize weeds on the input images.
Consequently, when utilizing image classification neural networks for
weed detection, a smart sprayer likely generates a considerably larger
spraying output area than the area covered by weeds. In the present
work, localizing weeds with image classification neural networks could
be realized by cropping the input image into multiple grid cells (sub-
images) and identifying the grid cells containing weeds.

In the present study, original images (1,920 x 1,080 pixels) were
divided into 40 grid cells (sub-images with a resolution of 240 x 216
pixels) for training and testing the image classification neural
networks. Spraying areas can be localized by detecting if the grid
cells contain weeds. When developing a precision spraying system,
custom software can be programmed to generate grid cell maps on the
input images and realize precision herbicide application by detecting
if the grid cells contain weeds susceptible to the herbicides. To realize
precision herbicide spraying, a binary (on/off) input command can be
implemented via a nozzle control system to turn off the spray nozzles
over the weed-free cells while the nozzles corresponding to the grid
cells containing weeds need to be turned on.

TABLE 2 Hyperparameters used for training the convolutional neural networks.

Deep learning architecture Optimizer Base learning rate Learning rate policy Batch size Training epochs
DenseNet SGD 0.001 LambdaLR 16 30
EfficientNet-v2 SGD 0.01 LambdaLR 16 30
ResNet Adam 0.0001 StepLR 16 30

SGD, stochastic gradient descent.
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TABLE 3 Weed species detection and discrimination training results using various convolutional neural networks.

Deep learning architecture

Weed species

Validation dataset

Testing dataset

Precision = Recall F; score Precision = Recall F; score MCC

DenseNet Bermudagrass 1.000 0.998 0.999 0.999 0.999 0.999 0.999 0.999
Crabgrass 0.923 0.940 0.931 0.924 0.920 0.938 0.929 0.921

Dollarweed 0.998 1.000 0.999 0.999 0.996 0.998 0.997 0.997

Goosegrass 0.994 0.996 0.995 0.994 0.990 0.996 0.993 0.992

Old world diamond-flower 0.984 0.994 0.989 0.988 0.980 0.994 0.987 0.986

Purple nutsedge 0.994 0.998 0.996 0.996 0.996 0.994 0.995 0.994

Tropical signalgrass 0.937 0.920 0.928 0.921 0.937 0.916 0.926 0.918

Virginia buttonweed 0.996 0.984 0.990 0.989 0.994 0.978 0.986 0.984

EfficientNet-v2 Bermudagrass 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000
Crabgrass 0.924 0.942 0.933 0.925 0.920 0.938 0.929 0.921

Dollarweed 1.000 1.000 1.000 1.000 0.998 0.998 0.998 0.998

Goosegrass 0.998 0.996 0.997 0.997 0.992 0.996 0.994 0.993

Old world diamond-flower 0.986 0.996 0.991 0.990 0.982 0.994 0.988 0.987

Purple nutsedge 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

Tropical signalgrass 0.941 0.922 0.931 0.924 0.937 0.918 0.927 0.919

Virginia buttonweed 0.996 0.986 0.991 0.990 0.994 0.982 0.988 0.987

ResNet Bermudagrass 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999
Crabgrass 0.922 0.942 0.932 0.924 0.918 0.938 0.928 0.920

Dollarweed 1.000 0.998 0.999 0.999 0.998 0.998 0.998 0.998

Goosegrass 0.998 0.996 0.997 0.997 0.990 0.996 0.993 0.992

Old world diamond-flower 0.986 0.996 0.991 0.990 0.980 0.994 0.987 0.986

Purple nutsedge 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

Tropical signalgrass 0.941 0.918 0.929 0.921 0.937 0.916 0.926 0.918

Virginia buttonweed 0.992 0.986 0.989 0.988 0.994 0.978 0.986 0.984

While the convolutional neural networks achieved high classification
rates for detecting and distinguishing weeds susceptible to herbicides, it
should be noted that when weeds susceptible to different herbicides are
grown too close or occluded, the neural networks would not effectively
distinguish weed categories based on their susceptibility to the herbicides
because the grid cell contains multiple targets. Although such a case may
result in missed detection, this is hardly an issue in field applications
because the weed infestation zone has been detected, and one of the
herbicides will be sprayed onto the susceptible weeds.

It was reported that the training image size could significantly affect
the reliability of image classification neural networks for weed detection
(Zhuang et al,, 2021; Yang et al,, 2022b). For example, Zhuang et al.
observed increased classification accuracy (high recall values) with
AlexNet and VGGNet when they were trained with images of 200 x
200 pixels than 300 x 300 or 400 x 400 pixels; however, increasing
training image quantities diminished the differences in detection accuracy
(Zhuang et al,, 2021). In the present study, each sub-image (240 x 216
pixels) represented a physical size of 10 cm x 9 cm. When the
convolutional neural networks are integrated into the machine vision
sub-system of smart sprayers for precision herbicide application, the
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nozzles should generate the same or slightly larger spraying outputs to
cover the grid cells. An additional investigation is needed to investigate
the implications of training image sizes and quantities on the
performances of neural networks for weed detection in turf.

Conclusions

The present research demonstrated the reliability and effectiveness of
using convolutional neural networks to detect and distinguish weeds
growing in bermudagrass turf based on their susceptibility to herbicides.
All convolutional neural networks, including DenseNet, EfficientNet-v2,
and ResNet achieved excellent F; scores (= 0.995) and MCC values (>
0.994) in the validation and testing datasets to detect and distinguish
weeds susceptible to ACCase-inhibitors, ALS-inhibitors, and synthetic
auxin herbicides, or bermudagrass turf without weed infestation (no
herbicide). In addition, DenseNet, EfficientNet-v2, and ResNet had an
excellent detection speed (>77.94fps) when detecting and distinguishing
the sub-images with a resolution of 240 x 216 pixels. For detecting the
original/full images (1,920 x 1,080 pixels), ResNet demonstrated the
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TABLE 4 Training and testing results of various convolutional neural networks for detecting and discriminating the sub-images containing weeds
susceptible to herbicides, or bermudagrass without weed infestation (no herbicide).

Deep learning architecture Herbicides Validation dataset Testing dataset
Precision = Recall F;score MCC Precision Recall F;score MCC
DenseNet ACCase-inhibiting herbicides 0.999 0.999 0.999 0.998 0.997 0.998 0.997 0.997
ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994
No herbicide 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Synthetic auxin herbicides 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999
EfficientNet-v2 ACCase-inhibiting herbicides 0.999 0.999 0.999 0.999 0.998 0.998 0.998 0.997
ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994
No herbicide 0.999 0.999 0.999 0.999 1.000 0.999 0.999 1.000
Synthetic auxin herbicides 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.999
ResNet ACCase-inhibiting herbicides 0.999 0.998 0.998 0.998 0.998 0.995 0.996 0.995
ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994
No herbicide 0.998 1.000 0.999 0.999 0.997 0.999 0.998 0.997
Synthetic auxin herbicides 0.999 0.997 0.998 0.998 0.997 0.997 0.997 0.996

TABLE 5 The inference time of the convolutional neural networks evaluated in the study.

Deep
learning Image type Resolution Batch size
architecture
1 103.75
DenseNet Sub-image 240 x 216
40 61.79
1 77.94
EfficientNet-v2 Sub-image 240 x 216
40 38.77
1 276.08
ResNet Sub-image 240 x 216
40 93.38

FPS, frames per second.

fastest inference rate and outperformed the other convolutional neural
networks on detection efficiency (93.38fps). Effective detection and
discrimination of weeds susceptible to herbicides enable the smart
sprayer to spray particular herbicides to control susceptible weeds,
thereby significantly reducing herbicide input. Based on the high-level
performance, we conclude that the proposed method is highly suitable
for integrating into the machine vision sub-system of smart sprayers for
the precision control of weeds while growing in turf.
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The segmentation of pepper leaves from pepper images is of great significance
for the accurate control of pepper leaf diseases. To address the issue, we
propose a bidirectional attention fusion network combing the convolution
neural network (CNN) and Swin Transformer, called BAF-Net, to segment the
pepper leaf image. Specially, BAF-Net first uses a multi-scale fusion feature
(MSFF) branch to extract the long-range dependencies by constructing the
cascaded Swin Transformer-based and CNN-based block, which is based on
the U-shape architecture. Then, it uses a full-scale feature fusion (FSFF) branch to
enhance the boundary information and attain the detailed information. Finally, an
adaptive bidirectional attention module is designed to bridge the relation of the
MSFF and FSFF features. The results on four pepper leaf datasets demonstrated
that our model obtains F1 scores of 96.75%, 91.10%, 97.34% and 94.42%, and loU
of 95.68%, 86.76%, 96.12% and 91.44%, respectively. Compared to the state-of-
the-art models, the proposed model achieves better segmentation performance.
The code will be available at the website: https://github.com/fangchj2002/
BAF-Net.

KEYWORDS

convolution neural network, leaf segmentation, attention mechanism, multi-scale
network, Swin Transformer

1 Introduction

Pepper is a common crop in China and has become an important vegetable and
condiment in our daily life. However, pepper is a sensitive plant and pepper crops are
highly exposed to diseases, which easily cause the frontal disease of the pepper leaves. The
plant leaves can reflect plant growth, and pepper leaf diseases directly leads to the decline of
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pepper yield and quality. The visual characteristics of pepper leaf
diseases is very similar, so it is not easy to distinguish them. With
the advance of imaging technology, computer vision technologies
have been widely used in plant leaf extraction to guide the
agricultural expert to analyze the crop growth. By using image
processing technology to analyze two-dimensional leaf image
features, the plant growth stages could be dissected (Slaughter
et al., 2008; Koirala et al., 2019), and monitor the plant diseases
(Singh, 2019; Tian et al., 2019) by the analysis of the image various
plant organs. Therefore, the accurate segmentation of pepper leaves
from pepper images is of great significance for controlling pepper
leaf diseases. However, it is challenging to design a general model
for automatic segmentation of pepper leaves since the pepper leaves
and some crops have similar phenotypic features (Hasan
et al., 2021).

Broadly speaking, the existing literature for the plant leaf
segmentation can be classified into two categories as shown in
Figure 1: conventional and deep learning-based methods. For the
conventional methods, a statistical method with graph-based models
(Kumar and Domnic, 2019) was proposed to segment the plant image
and leaf counting, where the image enhancement techniques and the
transformation from RGB to HSV were used to improve the quality
of the input image. To avoid the problem of leaf over-segmentation,
green channel information (Wang et al., 2018) was used to remove
the background information, and the Sobel operator was improved to
segment cucumber leaves. To detect the occluded plant leaves, leaf
shape (Xia et al., 2013) was fused into the energy function to segment
the leaf images. To deal with the complex background and the strong
illumination, Larese et al. (2014) proposed a leaf vein analysis method
for leguminous leaf segmentation and classification. The automatic
segmentation method for plant leaf images under complex
background was proposed to obtain the segmentation results.
Scharr et al. (2016) uses the supervised classification with a neural
network along with color and watershed transform for plant leaf
segmentation and counting. Kuznichov et al. (2019) proposed a
schema to augment the training dataset and remain the geometrical
structure of the plant leaf by constructing a generation synthetic data.
To segment multiple leaves at the same time and deal with the leaf
over-segmentation, a deep extraction method for plant leaf (Amean
et al,, 2021) was proposed by incorporating multiple features, such as
color, shape, and depth information. Lin et al. (Lin et al, 2023)
proposed a self-supervised blade segmentation framework consisting
of a self-supervised semantic segmentation model, a color-based
blade segmentation algorithm, and a self-supervised color
correction model. A self-supervised semantic segmentation model
(Lin et al,, 2023) was proposed to deal with the complex lighting
conditions. The model was comprised of the features extracted from
the CNN-based network and the fully connected Conditional
Random Fields (CRFs), thus significantly reducing the impact of
complex backgrounds and variations within the leaf and non-
leaf regions.

In recent years, the deep learning-based method has
outperformed the conventional segmentation methods and shows
great potential in processing plant phenotypic tasks (Bhagat et al.,
2021; Chandra et al, 2020). The SegNet-based model (Aich and
Stavness, 2017) with the encoder-decoder architecture was used to
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segment plant leaves and leaf counting. Three RGB images and the
segmentation mask of leaf counting were used as four input channels
to build a regression model. Thus, the SegNet-based model can solve
the problem of leaf counting (Ubbens and Stavness, 2017). To
segment multiple objects, the instance segmentation model
(Romera-Paredes and Torr, 2016) was proposed based on an end-
to-end recurrent neural network (RNN). The model designed a
spatial attention module to extract small patches, and then uses a
convolutional long short-term memory (LSTM) network to build the
relation of these patches. By doing so, the model can finish plant leaf
segmentation and leaf counting. To solve the target occlusion
problem, Ren et al. (Ren and Zemel, 2017) used an RNN-based
architecture to generate continuous regions of interest and designed a
human-like counting process based on the attention mechanism, thus
making it a more accurate segmentation for each object in turn. Lin
et al. (Lin et al, 2019) proposed a self-supervised CNN-based
framework for leaf segmentation. The model first used self-
contained information to classify each pixel, and then the
segmentation algorithm for the color leaf images was used to
identify the leaf region. Finally, a self-supervised color-based
correction model was proposed to segment the complex images
taken under complex lighting conditions. As shown in Table 1, we
summarize the work related to plant leaf segmentation.

It is well-known that U-Net (Ronneberger et al., 2015) is one of
the most efficient models and widely used for specific object
extraction in image segmentation. U-Net and its variants (Shen
et al, 2017) have achieved competitive performance in many
computer vision tasks, such as ResU-Net (Zhang et al,, 2018), U-
Net++ (Zhou et al,, 2019), DenseNet (Huang et al., 2017), 3D U-Net
(Li et al.,, 2020), V-Net (Milletari et al., 2016). Bhagat et al. (2022)
proposed a modified U-Net architecture for plant leaf segmentation,
where an EffcientNet-B4 module was used as an encoder to extract
the image feature. Meanwhile, a redesigned skip connection and the
residual modules of the decoder were used to reduce computational
cost. However, these methods usually ignored the global context
information. To be exact, these models could not extract the long-
range correlation between pixels, especially for the pixels
surrounding the boundary of the objects. The effective method for
obtaining the precise location and boundary of the segmentation
object was to extract the global context information of the feature
map and the long-range correlation between pixels. Transformer
has been proved to be an efficient self-attention mechanism to
establish long-term dependencies in the field of natural language
processing (NLP). More recently, it was introduced into the visual
classification tasks. Ramachandran et al. (Ramachandran et al,
2019) explored a novel ResNet-based model by replacing all
spatial convolutional layers with the self-attention layers.
However, the local self-attention might still lose part of the global
structural information. In order to obtain global information of
visual images, Vision Transformer (ViT) (Dosovitskiy et al., 2020)
inspired by Transformer was proposed to solve the natural image
recognition task. ViT first divided the image into several non-
overlapping patches, and then used Transformer with the self-
attention mechanism to calculate the global information between
each token to obtain the global context information. To further
reduce the sequence length and computational complexity, Swin
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TABLE 1 The related works in plant leaf image.

Categories Author
Kumar and Domnic, 2019
Wang et al,, 2018
Xia et al., 2013
Conventional method

Larese et al., 2014

Kuznichov et al., 2019

10.3389/fpls.2023.1123410

Method
A statistical method with graph-based models
The Sobel-based model with green channel information
The modified active shape models for plant leaf detection
Automatic classification modle for legumes image

Augment dataset and the geometrical structure

Amean et al., 2021

Self-supervised blade segmentation framework

Lin et al., 2023
Aich and Stavness, 2017
Ubbens and Stavness, 2017
Deep learning-based method
Ren and Zemel, 2017

Lin et al.,, 2019

Transformer (Liu et al., 2021) used a shifted window to calculate the
local self-attention. By establishing a shifted window, two adjacent
windows could interact with each other, and cross connections were
established between the widows of the upper and lower layers,
which improved the effect of global context.

To address these problems, we built a pepper leaf dataset
focused on the disease detection segmentation, and propose a
bidirectional attention fusion network, named BAF-Net, to obtain
the for pepper leaf segmentation. BAF-Net is comprised of three
parts: multi-scale fusion feature (MSFF) branch, full-scale feature
fusion (FSFF) branch, and bidirectional attention feature fusion
(BAF) modules. The backbone of the MSFF branch is a U-shaped
network architecture. By incorporating the Swin-Transformer block
and the CNN-based module, a cascaded hybrid module (Swin-
Trans-Conv) is constructed, to obtain multi-scale fusion features. In
the FSFF branch, we first fuse the features of the five-layer encoder
from the MSFF branch. Then, the generated features pass through
several convolution blocks to obtain the full-resolution feature. The
BAF module adaptively fuses the output features of the MSFF and
FSFF branches, generating two corresponding features for each
branch. In short, the main contributions of our work are as follows:

(1) By incorporating the Swin Transformer and CNN-based
modules, we build a cascaded Swin-Trans-Conv block to
replace each convolutional layer of U-Net. The Swin
Transformer-based module can extract the long-range
dependencies while the CNN-based module is used to
obtain the local image information.

(2) An FSFF branch is designed to extract detailed information
and the boundaries. By incorporating the multi-scale
features which are from the outputs of the encoder in the
MSFF branch, the boundary information is retained.
Meanwhile, the multi-layer full-scale convolution block
can extract detailed information.
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Self-supervised semantic segmentation model for complex lighting conditions
The SegNet-based model for leaves and leaf counting
A deep learning platform for complex plant phenotyping
Recurrent instance segmentation
End-to-end instance segmentation with recurrent attention

A self-supervised CNN-based framework for leaf segmentation

(3) We propose a BAF module to adaptive share the multi-
scale and full-scale features, which can adaptively compute
the features of two corresponding branches according to the
output features of the MSFF and FSFF branches.

(4) By verifying on four dataset of pepper leaf images, the
results show that our model is superior to the state-of-the-
art models in terms of the evaluation indices such as IoU
and Flscore.

The rest of this paper is arranged as follows. Section 2 first
reviews the materials including the dataset and its labeling process.
Then, the proposed model including the overall architecture, the
formulation of the MSFF and FSFF branches, the BAF module, and
the loss function are discussed. Finally we introduce the evaluation
indices. Section 3 demonstrates the experimental results and

discussion. The conclusions are summarized in Section 4.

2 Materials and methods

2.1 Dataset

In our experiments, the images of pepper leaves were taken
from the farm of Nanchang Academy of Agricultural Sciences in
Jiangxi Province, China. We took photos for multi-view in the real
natural environment from the morning to the afternoon on August
12 and 13, 2021.Pepper leaves were seriously affected by a variety of
diseases during growth. Two common diseases of pepper leaf
destroyed the normal growth of pepper, such as the brown spot
disease and the early blight disease. Meanwhile, we also collect
healthy pepper leaves to expand our dataset. As shown in Table 2,
there are 3921 pepper leaf images in our dataset including the
healthy pepper leaves (HPL) and two different categories of
infection (2606 images): spot disease (SD) and early blight disease
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TABLE 2 Four datasets for the validating the proposed model on the pepper leaf.

Dataset Test
Spot Disease (SD) 186
Early Blight Disease (EBD) 164
Healthy Pepper Leaf (HPL) 176
Total Pepper Leaf (TPL) 526

Training Validation Total
1015 ‘ 184 1385
895 ‘ 162 1221
965 ‘ 174 1315
2875 ‘ 520 3921

Spot Disease

Early Blight Disease

FIGURE 1
The sample dataset with different background.

(EBD), and several examples are shown in Figure 1. As shown in
Table 2, the SD, EBD, and HPL datasets contain 1385, 1221, and
1315 images. The total pepper leaf (TPL) dataset is comprised of the
SD, EBD, and HPL datasets. In our experiment, the images of each
image dataset are split into the training set, the validation set and
the test set, and the image numbers of the training set. Meanwhile,
in order to evaluate the robustness of the BAF-Net, the images were
taken with different complex background as shown in Figure 1.

2.2 Dataset labeling

In the following section, we present a data labeling process, and
the labeled images are used for validating the proposed model. To
accurately annotate the given images, we use the open-source tool
named as LabelMe', which was developed by the computer science
and artificial intelligence laboratory of MIT university. It allows
users to annotate images manually to build image dataset for image
segmentation. The pixel-by-pixel way carefully delineated the
boundary of each leaf. All these images in the experiment are
marked using this tool. Thereafter, each annotated image generates

1 https://github.com/wkentaro/labelme
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a binary segmentation mask, where the intensity values of the
foreground and background are 1 and 0, respectively. During
annotating the dataset, we retain the same size as the input
image. In view of the computational cost in deep learning, we set
the size of the input image to 512x512.

2.3 Method

2.3.1 Overall architecture

In the field of image segmentation, U-Net has become one of the
most successful network frameworks. It consists of a contracting
path and an expanding path, where the contracting path is used to
capture the image feature while the expanding path can achieve
object localization. In each encoder-decoder layer, a skip
connection layer transforms the low-level and high-level
information. The model uses a convolution layer with fixed
kernel size to extract image features, However, it is difficult to
capture long-range semantic information. Although Transformers
(Dong et al,, 2019) can effectively encode the long-range
dependencies, it is difficult to obtain local details and accurate
boundaries of pepper leaves. To solve this problem, we propose a
bidirectional attention fusion network by combining CNN and
Transformer for pepper leaf segmentation, also named as BAF-Net,
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where CNN is used to extract the local image information while the
Transformer-based module can capture the long-range
dependencies. As shown in Figure 2, the multi-scale branch is
used to extract the global features while the full-scale feature can
retain the detailed boundary information. The bidirectional fusion
module is designed to concatenate the multi-scale features and the
full scale features.

Specifically, BAF-Net includes three parts: a multi-scale feature
fusion (MSFF) branch, a full-scale fusion feature (FSFF) branch,
and bidirectional attention fusion (BAF) modules. In the MSFF
branch, the network structure is similar to U-Net, composed of an
encoding path and a decoding path. Different from the U-Net
model, the encoder is replaced by a hybrid module by incorporating
the convolutional layer and the Swin Transformer (Liu et al., 2021)
module, and the decoder is composed of convolutional modules. In
the FSFF branch, we first upsample four features: the output
features of the encoder from the 2™ layer to the 4™ layer, and the
5™ layer of the decoder. Four output features are the same size as the
first layer’s output feature in the MSFF branch. Then, we fuse five
generated features, and the generated feature is passed through four
continuous convolutional modules. Each convolutional module is
activated by the convolution layer, batch normalization, and the
ReLU activation function. In the BAF module, the input features are
from the output feature of the decoder in the MSFF branch and the
output feature of the corresponding convolutional module in the
FSFF branch. By incorporating the MSFF and FSFF branches, the
improved model not only achieves the full resolution feature but
also extracts the comprehensive and multi-scale features.

10.3389/fpls.2023.1123410

2.3.2 Multi-scale feature fusion branch

The transformer-based model (Dosovitskiy et al., 2020; Cao et al,,
2021) has a more robust representation than the CNN-based model
while building the long-range dependencies. In order to extract the
global features, we explore a hybrid Swin-Trans-Conv block by
combining the Swin-Transformer encoder and the convolutional
layer, which is used to replace the convolutional layer of the encoder
in the MSFF branch. As shown in Figure 3A, the backbone network
including an encoder network and a decoder network is similar to U-
Net. In the encoder network, we use a hybrid module by combining the
convolutional layer and the Swin Transformer block, also called as
Swin-Trans-Conv block, to replace each convolutional layer of U-Net,
where an average pooling operator perform the downsampling process
and the size of the feature maps are changed into half of the original.
The decoder network is comprised of four convolutional layers and
four upsampling operators. The upsampling operation is achieved by
performing a deconvolutional operator with the stride of 2. The
convolutional layer consists of a convolutional operator, batch
normalization, and a ReLU activation layer. The number of channels
in five layers corresponding to the 1% layer to the 5™ layer is 32, 64, 128,
256 and 512, respectively.

Assuming that the input feature is XeR®”™"*C, where B, C, H
and W represent the batch size, the channel number, and the image
height and width of the input feature, respectively. In the Swin-Trans-
Conv block as shown in Figure 3A, we first transforms the input
feature X into X’ €RPPWXC Then, we perform a 1x1 convolution
operator on the generated feature, and split the generated feature Y
into two groups Fry,,s and F,,,, which can be expressed as:

. Hybrid Module . Full-scale Feature . Convolutional Layer

@ Add Operation

FIGURE 2

U 1
;9N 0l Bidirectional AttentionFusion Module === = PS3WPUNS

) Downsampling @) Convolution Operator

— Connection Operator

The overall framework of the proposed BAF-Net, which includes three main modules such as the multiscale feature fusion branch, GAM and
decoders, where the decoder includes the global context module (GAM) and FAM with LAM.
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FIGURE 3

The network structure of the Swin-Trans-Conv block. In each block, the input feature is first passed through a 1x1 convolution, and subsequently is
split evenly into two feature map groups, each of which is then fed into a Swin transformer block and a residual 3x3 convolutional (RConv) block,
respectively. Afterwards, the output features of the Swin-Trans-Conv block and the RConv block are concatenated and then passed through a 1x1

convolution to generate a novel feature via a residual path

Y = Convy, ( Reshape(X)) X, Y
= RB><C><H;XW (1)
thns’ FCOVIV = Split( Y) FTmns’Fcanv
= RB><C/2><H><W )

where Reshape( -) is a reshape operator on two feature matrix
Frans and Fy,,,,, Convy, (- ) denotes a 1x1 convolutional operator,
and Split( - ) represents a split operation on the multidimensional
matrix. Finally, the feature Fr,,,; is passed through a module based
on Swin Transformer (Swin-Trans) encoder, and the generated
feature map F;mm is written as:

3)

Similarly, the feature map F,, passes through a residual

/
Firans = SWInTranS(mens)

convolution module, and the generated feature F/mv is defined as:

Flon = RConv(F,,,) (4)

where RConv( - ) is the residual convolution module, which is
comprised of a 3x3 convolution filter, a ReLU activation layer, and a
3x3 convolution filter by a residual path, which is rewritten as:

F3 = Conv3><3(Fczmv)

©)

E.,,, = Convs,;(Relu(F?)) + F* )

where F? is the feature map performed a 3x3 convolution
operation on the feature map F.,,,, Convs,s is a 3x3
convolutional layer, and Relu(-) is a ReLU activation layer.
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Finally, we concatenate two features F;mm and F;onv, and then
perform a 1x1 convolution filter by a residual path, which is
represented as:

Xout = Conle 1 (Ftrans © Fconv) +X (7)

where O denotes the concatenation operation.

Meanwhile, to construct the Swin-Trans module as shown in
Figure 3B, the input feature Fyy,, is split into small patches, and
each patch size is set to P x P x P, where P is a positive integer and
the number of the patches is S=[H/P]x[ W/P]x[C/P]. For the feature
Fiyans Of the i-th layer with the 3D patches, we first compute the
multi-head self-attention in a small window (W-MSA), which can

be formulated as:

ﬁ;ut = W'MSA(LN(FI.Tmns)) + FiTmns (8)

Fip = MLP(LN(E () + F iy ©)

where W-MSA(-) denotes the window multi-head self-
attention, LN( - ) is the layer normalization operator, and MLP( -)
denotes a multilayer perceptron module with two fully-connected
layers and the GELU activation function. Then, the generated
feature F inlp is passed through the multi-head self-attention in the
shifted window (SW-MSA), which is represented as:

F{, = SW-MSA(LN(E},;,)) + F i,y (10)

(11)

where SW-MSA( -) denotes the shifted window multi-head
self-attention, and F., is the output feature of the i-th layer.

but = MLP(LN(F,)) + F{,,
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Finally, the output feature F., is reshaped into the same size of the
input feature in the Swin-Trans module.

It is worth noting that the Swin-Trans-Conv block has several
advantages. First, it integrates the local modeling capability of the
convolution module and the global modeling capability of the Swin-
Trans module. Secondly, the split and concatenation operations are
used for two branches to extract different features, reducing the
computational complexity and the number of parameters.

2.3.3 Full-scale feature fusion branch

The edge and detailed image information may be lost in the U-
shape network framework due to the continuous downsampling
operators. To solve this problem, we design an MSFF branch to
retain the detailed information, and the network structure is shown
in Figure 2B. We fuse the output features of the first 1*' to 4™ layer
in the encoder of the MSFF branch and the output feature of the
decoder of the 5™ layer in the decoder since the multi-scale features
can enhance the edge information (Liu et al., 2023). For four output
features from the MSFF branch, we first carry out a 1x1 convolution
filter to reduce the channel number. Then, we perform the
upsampling operator on the four features, and the four generated
features have the same size with the first channel feature. Then, we
integrate four generated features into the input feature by a residual
path, which can be expressed as:

10.3389/fpls.2023.1123410

Finally, the novel feature passes through four continuous
convolutional modules. Each convolutional module includes a 3x3
convolution layer, batch normalization, and a ReLU activation layer.
To reduce the computational cost and the parameters, we keep each
channel number of four features equal to that of the first layer in the
MSEFF branch. In this paper, the channel number is set at 32. The
operations for each convolution block are presented as follows:

{

2.3.4 Bidirectional attention fusion module
In order to achieve the multi-scale and full-scale features, we

X}l =Re lu(BN(ConV3><3(j/"use) ) )

X}-l =Re lu(BN(ConV3X3(X})))

designed a BAF module to generate the corresponding output
features for the MSFF and FSFF branches. As shown in Figure 4,
the BAF module includes multi-scale feature guidance (MSFG)
module and full-scale feature guidance (FSGM) module. For the
MSGM module, we first conduct the downsampling operation on
the input feature of the FSGM module, and the novel feature maps
have the same spatial dimensions with the same with that of the
MSGF map, which can be expressed as:

dn

: (15)

X = Convi ., | up (- up(X,)) 22,5 (12) where DN( - ) denotes the downsampling operation. Then, we
e e’ concatenate the output feature of the MSFF branch F,,; and the feature
i1
FJ‘ilg”, and perform a 1x1 convolution module on the novel feature map
5 wup to compress the number of channels, we can obtain the feature map:
Xfuse = Ei:ZXi +X (13)
c dn

where Convs,; denotes a 3x3 convolutional filter. Fins = Convyy (Fyrs € F) (16)
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FIGURE 4

The network structure of the BAF module. Two input features F,,s and Fy, are from the output features of the MSFF and FSFF branches, respectively.
The BAF module contains a multi-scale feature guided (MSFG) module and a full resolution feature guided (FRFG) module. The MSFG module is used
to generate the multi-scale feature while the FRFG module is used to generate the full-scale feature.
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At the same time, we project the feature F;; to compress the
feature map into a channel along the channel direction, and use the
Sigmoid activation function to obtain the global attention map,
which is defined as:

Olys = O ( Pr0j(Fy0)) (17)

ig

where Proj(-) denotes the linear projection function, oy, ( - )
denotes the Sigmoid function, and «,,,;€[0,1] is the spatial attention
map of the feature F;,. It is obvious that the spatial attention map
Os calculates the spatial weight of each pixel, and the calibrated
feature map is expressed as:

F;ust = 0 ® chs (18)

Finally, the feature F% is transformed to the next
convolution layer.

In the FSFG module, we first perform a 1x1 convolutional filter
on the multi-scale feature map F,,; to compress the number of
channels. The expression is as follows:

F,ms = Conlel(Fms) (19)

Then, we upsample the multi-scale feature map to make the
generated features have the same spatial dimension as that of the
full-scale feature. The expression is as follows:

F = up(F,,) (20)

where up( - ) denotes the upsampling operator. Afterwards, two

features Fy; and Fy are fed into the convolutional layer to generate a
new feature chg, which is written as:

Fi = Convs,3(Fif @ Fp) (21)

where @ represents the pixel-wise addition operation.
Meanwhile, we use linear projection to compress the feature into
a channel along the channel direction, and then use the sigmoid
activation function to obtain the global attention map:

0 = Oy (Proj(Fy)) (22)

where ang[O, 1] is the spatial attention map of F}g, which is
used to calculate the spatial position weight of each pixel. The
calibrated feature map can be represented as:

out

FY! (23)

= o ®F

Finally, it is input to the convolution layer of the next
FSFG module.

2.3.5 Training loss

The network should be trained to obtain the best training
parameters. It is known that the loss function is essential to the
predicted performance of the segmentation model. The loss
function is used to measure the deviation between the model
prediction and the ground truth. The binary cross entropy (BCE)
is a loss function widely used in binary image segmentation tasks.
Assuming that the input predicted result is p, and the corresponding
ground truth label is g, the BCE loss function is defined as:
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Lie(py 8 =-SN [glog(p) + (1 —g)log(1-p)]  (24)

The intersection over union (IoU) loss is defined as:

Ef’il ‘gx Px‘ )
)=-1 (25)
¢ Og(Zﬁl(gx*'px_'gx'Px')

Therefore, our final loss includes L., and L;,y, which can be

Liu(ps

expressed as:

mel(P) g) = aLbec(p’g) + (1 - a)LIuU(p’g) (26)

The weight o, is a coefficient to balance the importance of two
loss functions, and we set 0:=0.5.

2.4 Performance evaluation

In order to verify the segmentation performance, we use six
evaluation indices to evaluate the accuracy of the model on the
pepper leaf datasets. Six evaluation indices include: pixel accuracy
(PA), pixel recall (PR), pixel precision (PP), pixel specificity (PS),
intersection over union (IoU) and F1 score. We assume that TP
(True Positive) represents the number of pixels that are both 1 in
the predicted value and the label value, TN (True Negative)
represents the number of pixels that are both 0 in the predicted
value and the label value, FP (False Positive) represents the number
of pixels that are 1 in the predicted value and 0 in the label value,
and FN (False Negative) represents the number of pixels that are 0
in the predicted value and 1 in the label value. The expression of the
pixel accuracy is written as follows:

TP + TN

PA = 27
TP+ TN + FP + FN @7
PR is defined as follows:
PR = P (28)
" TP+FN
PP is defined as follows:
pp-_1F (29)
" TP + FP
F1 score is defined as:
- 2XPR-PP 30)
~ PR+PP
PS is defined as follows:
TN
PS=—— 31
TN + FP (1)

From Equations (27)-(31) and the IoU as defined in Equation
(25), it can be seen that six evaluation indices range from 0 to 1. The
higher the index values are, the best segmentation performance is
obtained. Generally speaking, the mean IoU (mloU) is used to
evaluate the segmentation performance on a given dataset.
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3 Experiments

In this section, we present the experimental results including
the experimental settings, the comparison with the state-of-the-arts
models, the ablation study and the discussion.

3.1 Experimental settings

All models in the experiment are carried out on Intel (R) Core
(R) i7-8700K CPU 3.70GHz CPU and Nvidia GeForce TITAN XP
12 GB GPU with 48G RAM. The programs are conducted on the
Ubuntu 16.04 with the Conda environment. In the BAF-Net,
the parameter settings are as follows: the batch size is set to 4, the
number of iterations (epoch) is set to 60, and each epoch contains
350 batches. During the training process, the network is optimized
using stochastic gradient descent (SGD), the initial learning rate is
set to 0.01.

3.2 Comparison with the state-of-the-arts
models

We compared BAF-Net with the state-of-the-art methods on four
pepper leaf datasets, such as the SD, EBD, HPL, and TPL datasets. For
fairness, these models are running on the same training dataset, the
validation dataset, and the test dataset. The comparative models on
the pepper leaf dataset involve U-Net (Ronneberger et al., 2015),
AttU-Net (Oktay et al., 2018), Swin-UNet (Cao et al., 2021), SCUNet
(Zhang et al., 2022) and the proposed BAF-Net. We set the training
epochs to 60 for each trained model.

Table 3 shows the test results on the SD dataset using five
different state-of-the-art models. Compared with U-Net, the
proposed model has a precision increase of 7.48%, IoU increase
of 3.88%, and F1 score increase of 5.0%. It also shows that PA score
has the relative improvement of 0.5% on the SD dataset. For the
attention U-Net model, the segmentation results on five indices are
close to that of the U-Net. In addition, Swin-UNet and SCUNet
have the similar segmentation performance. However, the
segmentation performance of U-Net exceeds two models in terms
of six evaluation indices. The reason is that Swin-UNet and SCUNet
containing the transformer-based modules attain better
segmentation results only if more efficient pre-trained model is
provided. From Table 3, where the highest score for each indicator
is shown in bold, our model can obtain the best segmentation

10.3389/fpls.2023.1123410

performance in terms of five evaluation indices including PA, PP,
PS, IoU, and F1 scores compared with other models. By evaluating
the segmentation performance of five models, we also give several
examples of the segmentation results using these compared
methods as shown in Figure 5.

Table 4 presents the segmentation results of five segmentation
models on EBD pepper leaf dataset, in which the highest score of
each index is shown in bold. From the experimental results, the
proposed model has the highest scores among the six indices
including PA, PR, PP, PS, IoU and F1 scores. Specifically,
compared with U-Net, BAF-Net increased PA by 0.62%, PR by
0.06%, PP by 3.44%, PS by 1.7%, IoU by 5%, and F1 score by 7.04%.
Attention U-Net is only lower than BAF-Net in terms of the indices
IoU and F1-score, with a decrease of 4.92% and 6.59%, respectively.
Compared with Swin-Unet and SCUNet, the proposed model has
significant improvement in terms of six indices. The proposed BAF-
Net have significant improvement in terms of PP, reaching the
increase by 7.25% and 14.29%, respectively. By evaluating the
segmentation performance of five deep learning-based models, we
find these models can obtain better segmentation results than the
traditional methods. Meanwhile, we also give the examples of the
segmentation results using these compared methods as shown
in Figure 6.

Table 5 shows the validation results of five different models on
the HPL data set, with the highest score for each indicator shown in
bold. From the experimental results, the proposed model can obtain
the best segmentation accuracy in terms of PA, PP, PS, mIoU and
F1 score. Compared with U-Net, the proposed model has increased
PA by 0.21%, PP by 1.51%, PS by 1.52%, IoU by 0.01%, and F1 score
by 0.27%. The attention U-Net has the similar segmentation results
with U-Net. Our model has significant improvement than Swin-
UNet and SCUNet in terms of the PP, mIoU and F1 score.
Compared with the Swin-UNet, the PP, mIoU and F1 scores have
increased by 4.95%, 3.60% and 2.43%, respectively. Compared with
the SCUNet, the PP, mIoU and F1 score has increased by 2.51%,
2.22% and 1.58%, respectively. Meanwhile, we also give the example
of the segmentation results for qualitative comparison, and the
representative examples are shown in Figure 7.

The experimental results on the TPL dataset are shown in
Table 6, with the highest score in each indicator represented in bold.
It can be seen that our model obtains the best segmentation results
in terms of the six indices among five models. Compared with U-
Net, the proposed model has IoU increased by 0.01%, PA increased
by 0.13%, PR increased by 0.03%, and PP increased by 0.87%. The
PS score is 0.01% higher than that of U-Net, and F1 score is 0.48%

TABLE 3 The segmentation results on the SD dataset using five different models.

Model PA(%) PR(%) PP(%) PS(%) mloU(%) F1(%)
UNet 98.70 99.09 91.10 98.65 91.80 94.93
Attention U-Net 98.24 98.11 88.72 98.26 90.09 93.18
Swin-UNet 97.68 97.90 85.36 97.65 86.76 91.20
SCUNet 97.42 98.14 83.68 97.32 87.34 90.33
Ours 99.20 98.74 98.58 99.80 95.68 96.75
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Examples of the predicted results using five different models on the SD dataset. From the 1°* column to 7" column: the original images, the
predicted results using the U-Net, attention U-Net, Swin-UNet, SCUNet, the proposed model and ground truth (GT), respectively.

higher than that of U-Net. Compared with attention U-Net, the
proposed model has significant improvement in terms of six
indices. However, Swin-UNet and SCUNet do not improve the
segmentation results compared with the U-Net. In summary, BAF-
Net has obvious advantages in segmenting the pepper leaf from the
natural images.

3.3 Ablation study

In this section, we perform an ablation study to validate the
effectiveness of each module. Especially, we consider the basic U-
Net architecture as the baseline, namely the simple U-Net (SU-Net),
which is similar to U-Net with half of the channel number of U-Net.

In the ablation experiments, we take SU-Net, MFF, MRF, and BAF
as four basic modules. Our experimental strategy is to add a module
each time, and it is proven to be effective. We approve that it is
effective in subsequent studies. Strictly speaking, we selected four
unique models, such as SU-Net, SU-Net-MFF, SU-Net- MFE-MREF,
and BAF-Net, to verify that different modules are still valid when
each model is added to SU-Net each time.

, we first experiment SU-Net-MSFF by
replacing the convolution layer of the encoder in the SU-Net model

As shown in

with the Swin-Trans-Conv block, which is formulated by adding the
MSFF module into SU-Net. Experiments show that PA, PR, PP, PS,
mloU and F1 score of the SU-Net-MSFF model are 98.94%, 96.87%,
96.90%, 99.36%, 95.63% and 96.88, respectively. Then, by adding
the FSFF module to SU-Net-MSFF, the results show that the PA,

TABLE 4 The segmentation results on the EBD dataset using different models.

T T

UNet 96.98 98.11
Attention U-Net 95.57 96.63
Swin-Unet 96.02 95.55
SCUNet 94.49 95.70
BAF-Net(ours) 97.60 98.17
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Examples of the predicted results using five different model on the EBD dataset. From the 1 column to 7" column: the original image, the
predicted results using the U-Net, attention U-Net, Swin-UNet, SCUNet, and our model, respectively.

PA, PP, PS, IoU and F1 scores of the SU-Net-MSFF-FSFF are
98.94%, 96.62%, 97.14%, 99.42%, 95.68% and 96.98%, respectively.
Compared with the SU-Net-MSFF, PR, PS, IoU and F1 score of the
SU-Net-MSFF-FSFF model are increased by 0.24%, 0.06%, 0.05%
and 0.10%, respectively. Finally, we experiment BAF-Net by fusing
the output features of the decoder in the MSFF and FSFF branches
to the BAF modules. The results show that PA, PR, PP, PS, IoU and
F1 score of BAF-Net are 98.98%, 6.82%, 97.20%, 99.43%, 95.86%
and 97.01%, respectively, which are increased by 0.04%, 0.2%,
0.06%, 0.01%, 0.18% and 0.03%, respectively. From the
segmentation results, we can see that the addition of the Swin-
Trans-Conv block expands the receptive field and enhances the
feature extraction ability of SU-Net, enabling it to obtain different
levels of information at the same time. The full-resolution features

enable the proposed model to retain image local details. By
combining multi-scale information and full scale information, it
can extract deeper structural information. Therefore, the
combination of the three modules can obtain the best performance.

3.4 Discussion

The above analysis shows that the segmentation results of these
deep learning-based segmentation models are suitable. Compared with
the classical methods based on the variational statistics theory (

), the deep-learning-based models can obviously obtain

TABLE 5 The segmentation results on the HPL dataset using different models.

T T

U-Net 99.09 98.51
Attention U-Net 99.21 97.69
Swin-UNet 98.63 97.57
SCUNet 98.88 96.69
BAF-Net(ours) 99.30 97.32
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95.84 99.02 96.11 97.07
96.34 99.44 95.53 97.01
92.40 98.79 92.52 94.91
94.84 99.21 93.90 95.76
97.35 99.60 96.12 97.34
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Examples of the predicted results using five different model on the HPL dataset. From the 15 column to 7" column: the original image, the predicted
results using the U-Net, attention U-Net, Swin-UNet, SCUNet, and our model, respectively

better classification results. In our work, to capture the long-range
dependencies between different pixels, we propose a bidirectional
adaptive attention fusion network called BAF-Net by exploring an
adaptive attention mechanism to extract multi-scale and full-scale
features simultaneously. Specifically, we first design an MSFF branch
based on the encoder-decoder structure, which can not only extract
local information of the target, but also learn the spatial attention to
increase the receptive field. To further retain the boundary information
of the segmented object, we propose a FSFF branch, and design
adaptive bidirectional attention modules to achieve the bidirectional
connection between the MSFF module and the FSFF module.

shows that
progressive network such as SU-Net, SU-Net-MSFF, SU-Net-

The results of the ablation experiment in

MSFE-FSFF and BAF-Net can improve the predicted performance
of the baseline (SU-Net). Compared with the baseline, three models
by progressively adding the MSFF, FSFF and BAF modules increase
mloU by 0.28%, 0.33% and 0.51%, respectively, and F1 score
increased by 0.02%, 0.02% and 0.36%, respectively. From the
segmentation results, it can be seen that BAF-Net has achieved
the best performance. Compared with the baseline, the mIoU and
F1 score of BAF-Net reaches 95.86% and 97.01%, respectively.
Although the proposed BAF-Net can obtain better performance
on the four pepper leaf datasets, there are disadvantages in this
work. (1) In the training process, the epoch number in our model is
set to 60. Therefore, we need explore a schema to stop the training
process for the deep learning-based model automatically. (2) Our

TABLE 6 The segmentation results on the pepper leaf dataset using different models.

T T

U-Net 98.40 98.59
Attention U-Net 97.73 97.51
Swin-UNet 97.48 97.06
SCUNet 97.00 96.88
BAF-Net(ours) 98.53 98.62
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89.70 98.37 91.43 93.94
86.28 97.76 89.31 91.55
85.07 97.54 86.87 90.67
82.40 97.01 86.32 89.06
90.57 98.52 91.44 94.42
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TABLE 7 Comparison of pepper segmentation results of four models on the dataset.

Model MSFF FSFF BAF
SU-Net
SU-Net-MSFF v
SU-Net_MSFF-FSFF v v
BAF-Net v v y

model is supervised learning, which requires many training
samples. Accordingly, in our future work, we will focus on the
semi-supervised or self-supervised segmentation methods to reduce
the requirements for training samples.

4 Conclusion

In our work, we propose a bidirectional adaptive attention
fusion network for automatic segmentation of pepper leaves. The
proposed model consists of the MSFF branch with the like-U-Net
network structure, the FSFF branch, and the BAF modules with an
adaptive attention mechanism. This MSFF branch fuses the Swin-
Transformer-based and CNN-based modules to construct the Swin-
Trans-Conv block, which replaces the convolution layer of the
encoder of U-Net to expand the receptive field. In the MSFF branch,
the CNN-based layer can extract the local image features while the
Swin-Transformer-based module is used to extract the long-range
dependencies of the channel and spatial information to expand
receptive field. The FSFF branch performs multiple convolution
layers keeping the same size with the original image, which is used
to retain the boundary information and detail information of the
segmented object. In addition, the BAF modules are used to fuse
the output features of the MSFF and FSFF branch, which output the
corresponding features for each branch. Compared with the existing
model, our model obtain the highest evaluation indices on four
pepper leaf datasets. In addition, the ablation experiment shows that
the proposed three modules including MSFF, FSFF and BAF are
effective. In the future, we will explore a weak-supervised model for
pepper leaf segmentation since the small dataset may cause over-
segmentation. Meanwhile, we study the construction of loss
function and the method for augmentation dataset.
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Grasping and cutting points
detection method for the
harvesting of dome-type planted
pumpkin using transformer
network-based instance
segmentation architecture

Jin Yan, Yong Liu*, Deshuai Zheng and Tao Xue

School of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing, China

An accurate and robust keypoint detection method is vital for autonomous
harvesting systems. This paper proposed a dome-type planted pumpkin
autonomous harvesting framework with keypoint (grasping and cutting points)
detection method using instance segmentation architecture. To address the
overlapping problem in agricultural environment and improve the segmenting
precision, we proposed a pumpkin fruit and stem instance segmentation
architecture by fusing transformer and point rendering. A transformer network
is utilized as the architecture backbone to achieve a higher segmentation
precision and point rendering is applied so that finer masks can be acquired
especially at the boundary of overlapping areas. In addition, our keypoint
detection algorithm can model the relationships among the fruit and stem
instances as well as estimate grasping and cutting keypoints. To validate the
effectiveness of our method, we created a pumpkin image dataset with manually
annotated labels. Based on the dataset, we have carried out plenty of
experiments on instance segmentation and keypoint detection. Pumpkin fruit
and stem instance segmentation results show that the proposed method reaches
the mask mAP of 70.8% and box mAP of 72.0%, which brings 4.9% and 2.5% gains
over the state-of-the-art instance segmentation methods such as Cascade Mask
R-CNN. Ablation study proves the effectiveness of each improved module in the
instance segmentation architecture. Keypoint estimation results indicate that our
method has a promising application prospect in fruit picking tasks.

KEYWORDS

keypoint detection, stem instance segmentation, transformer, point rendering,
pumpkin harvesting
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1 Introduction

Agriculture is the foundation of people’s livelihood. To
effectively harvest crops, fruits and vegetables, researchers have
made efforts from different aspects, for instance, nutrient supply
(Sun et al., 2022), disease prevention (Yang et al., 2022), postharvest
preservation (Pan et al., 2023) and so on. Crop, fruit and vegetable
picking is often the most labor-intensive part of the entire
production chain. Therefore, intelligent picking robots have
become a research hotspot. Among them, accurate detection is a
prerequisite for intelligent picking, and many vision-based fruit and
vegetable detection works have been launched.

In recent years, deep learning applications have attracted great
attention and made great breakthroughs in image processing tasks
(Liu et al., 2021a; Bhatti et al.,, 2023), the research on learning-based
fruit and vegetable detection also moves forward. Liu et al. (2019a)
trained a Support Vector Machine (SVM) classifier utilizing the
Histograms of Oriented Gradients (HOG) descriptor to detect
mature tomatoes. The proposed machine learning method’s
recall, precision, and F1 scores are 90.00%, 94.41%, and 92.15%,
respectively. Sun et al. (2019) designed a GrabCut model based on
the visual attention mechanism for fruit region extraction, then
applied the Ncut algorithm to segment the extracted fruits. The
recognition method achieves the F1 score of 94.12% and an error of
7.37%. Deep learning (DL) has developed rapidly in these years, and
because of its excellent performance, DL has been applied in many
fields, including agriculture. Yuan et al. (2020) applied SSD to detect
tomatoes in the greenhouse with the backbone of Inception V2, and
the network achieves an average precision of 98.85%. Bresilla et al.
(2019) set up a fruit detection network based on YOLO. The
network can be trained to detect apples and pears without
classifying them. The architecture shows an accuracy of more
than 90% fruit detection. Fu et al. (2020) compared two Faster R-
CNN based architectures ZFNet and VGG16, employed to detect
apples in images. The results indicate that the network with VGG16
achieves the highest average precision (AP) of 0.893.

It can be seen that the accuracy and speed of fruit and vegetable
detection can meet the requirements of practical applications.
However, deep learning-based detection frameworks only
generate coarse boundaries, and many pixels irrelevant to the
detected fruit or vegetable are also included in the bounding box.
In order to obtain more abundant information, some scholars have
carried out researches on fruit or vegetable instance segmentation.
Instance segmentation combines the advantages of semantic
segmentation and object detection and identifies each object
instance of each pixel for every known object within an image.
With the help of instance segmentation, fruits or vegetables can be
assigned to different instances with pixel accuracy.

Ganesh et al. (2019) presented a deep learning approach, named
Deep Orange, to detect and pixel-wise segment oranges based on
Mask R-CNN. Gonzalez et al. (2019) proposed a network based on
Mask R-CNN for blueberry detection and instance segmentation.
The authors tested the performances of several backbones such as
ResNet101, ResNet50, and MobileNetV1. Jia et al. (2020) improved
Mask R-CNN through the fact as the feature extraction, Rol
acquisition, and mask generation so that the network is more
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suitable for recognizing and segmenting overlapped apples. Also
based on the well-known Mask R-CNN network, Perez-Borrero
et al. (2020) designed a new backbone and mask network, removed
the object classifier and the bounding-box regressor and replaced
the non-maximum suppression algorithm with a new region
grouping and filtering algorithm to better segment instances of
strawberry. The same research team (Perez-Borrero et al., 2021)
proposed another strawberry instance segmentation methodology
based on the use of a fully convolutional neural network. Instance
segmentation is achieved by adding two new channels to the
network output so that each strawberry pixel predicts the
centroid of its strawberry. The final segmentation of each
strawberry is obtained by applying a grouping and filtering
algorithm. Liu et al. (2019b) improved Mask R-CNN to detect
and segment cucumbers by designing a logical green operator to
filter non-green backgrounds and adjusting the scales and aspect
ratios of anchor boxes to fit the size and shape of cucumbers.

In the actual picking applications, the key operating points are
often generated in the fruit stem area, so the detection of stems
should be taken seriously. Some scholars have focused their
attention on fruit stem detection.

Sa et al. (2017) made use of an RGB-D sensor to acquire color
and geometry information and utilized a supervised-learning
approach for the peduncle detection task. Yoshida et al. (2018)
used the support vector machine to classify the point cloud data,
clustering to obtain fruit stem pixels, and then looking for cutting
points. Luo et al. (2018) studied the detection of cutting points on
stems of overlapping grape clusters. After segmenting individual
clusters using machine learning method, a geometric constraint
method is then used to determine the cutting point in the region of
interest of each cluster’s stem. Sun et al. (2021) developed a deep
learning-based top-down framework to detect keypoint on the
bearing branch, enabling branch pruning during fruit picking.
This work only detects citrus branch keypoint without
segmentation. Kalampokas et al. (2021) applied a regression
convolutional neural network (RegCNN) for executing a stem
segmentation task and determined the cutting point on the stem
based on a geometric model. Chen et al. (2021) proposed a banana
stalk segmentation method based on a lightweight multi-feature
fusion deep neural network. The methods in both (Kalampokas
et al, 2021) and (Chen et al,, 2021) can only segment the stem of a
single cluster of grape or banana. Wan et al. (2022) proposed a real-
time branch detection and reconstruction method applied to fruit
harvesting. To segment the branches separately, the authors first
detect branch region boxes using YOLOv4, then utilize image
segmentation to locate the branch boundaries. Next, the division
of precise boxes belonging to the same branch is achieved based on
the branch growth trend constraints. Rong et al. (2021) proposed a
method to localize the peduncle cutting point and estimate the
cutting pose. The authors first detect tomatoes via YOLOv4 and
then segment fruit and peduncle masks by YOLACT++. The
segmented peduncle mask is fitted to the curve using least squares
and three key points on the curve are found. Chen and Chen (2020)
proposed a methodology to identify the plucking points of tea
shoots using machine vision and deep learning. The authors first
localize the one tip with two leaves regions through Faster-RCNN,
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then identify the plucking areas using FCN. The plucking point is
determined as the centroid of the plucking area. The approaches in
(Wan et al,, 2022) (Rong et al., 2021), and (Chen and Chen, 2020)
treat detection and stem instance segmentation as two
separate networks.

As a nutritious crop, there are few studies on pumpkin
detection. Wittstruck et al. (2020) and Midtiby and Pastucha
(2022) have conducted researches on large-scale pumpkin yield
estimation. The datasets are captured by UAVs from the air. To the
best of the authors’ knowledge, there is currently no dataset
consisting of close-range pumpkin images and devoted to
autonomous pumpkin harvesting. In this paper, we established a
dataset on two varieties of pumpkin, and the instance masks of
pumpkin fruit and pumpkin stem are labeled manually. The
pumpkin stem is thick and it is hard to tear off or twist off the
pumpkin fruit with one end effector. As is illustrated in Figure 1B,
an ideal way to pick the pumpkin is utilizing two arms or one arm
with two end effectors, one to grasp and another to cut. The
detection of pumpkin stems cannot be ignored during automatic
picking. This paper presents a pumpkin autonomous picking
framework with keypoint detection and instance segmentation
method. Firstly, pumpkin fruit and stem masks can be generated
by instance segmentation method as shown in Figure 1A. Then,
through the keypoint detection algorithm, relationships among the
fruit and stem instances are determined and keypoints are localized
as marked in Figure 1, where red points are cutting points, blue
points are grasping points, and yellow lines link one stem and one
fruit that belong to one pumpkin instance. Main contributions of
our work are three folds:

1) We propose a novel pumpkin autonomous picking
framework with grasping and cutting point detection
method using instance segmentation architecture. The
keypoint detection algorithm can model the relationships
among the fruit and stem instances as well as estimate
grasping and cutting keypoints.

2) This paper presents a pumpkin fruit and stem instance
segmentation architecture based on deep learning and
applying a transformer backbone and point rendering

10.3389/fpls.2023.1063996

mask head. Compared with several state-of-the-art
instance segmentation methods, the proposed method
shows significant performance advantages in both metric
evaluation and visualization analysis.

3) To validate the effectiveness of our method, we created a
pumpkin image dataset with manually annotated labels.
Downstream tasks such as image classification, pumpkin
detection and instance segmentation can be deployed on
the database.

The remainder of this paper is arranged as follows. Section 2
introduces the dataset and our method. Section 3 presents the
results and analyses. Finally, conclusions are summarized in
Section 4.

2 Materials and methods

In this paper, we perform instance segmentation on pumpkin
fruit and stem. Then, we detect and localize the grasping points and
cutting point using the proposed keypoint detection algorithm. To
complete this research, we first collect pumpkin images to establish
the dataset.

2.1 Data acquisition

This paper establishes a pumpkin dataset containing two
varieties of pumpkin (Bebe pumpkin and Hazel pumpkin). The
dataset was collected in Tangshancuigu modern agriculture
demonstration zone, Nanjing, China. We used three different
capture devices (Intel RealSense D435i, One Plus 6T smartphone,
and Apple iPhone 13 Pro smartphone) to collect a total of 679 ripe
pumpkin images. The original image pixels are 1280x720,
4608x3456, and 4032x3024, respectively. To better train the
images, we resized the high-resolution images from 4608x3456
and 4032x3024 to 640x480. The resolutions of final images in the
dataset are 1280x720 and 640x480. The dataset collection
environment and real image examples are shown in Figure 2.

® : Cutting point

FIGURE 1

Grasping
arm

Cutting
arm

%ﬁ

@® : Grasping point

Example of pumpkin keypoint detection framework output (A) and pumpkin picking illustration (B).
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Through the review above, the pixel-wise segmentation of fruits
and the labeling of fruit stems are very important. Therefore, we
manually annotated the pixel-level instances of the pumpkin fruit
and stem, as well as the pumpkin box containing one fruit and stem
(see Figure 3). The labeling software we used is Labelme. Table 1
shows the distribution of the dataset.

The data is split into a training set and a testing set with a ratio of
80:20, where 543 images belong to training set and 136 images are in
the testing set. Differing from the general structured scene, agricultural
environment is a typical unstructured scene. The key problems faced
during image collection in agricultural environment are large changes
in illumination, a lot of dust, and frequent overlaps of fruit branches
and leaves. To simulate the agriculture environment and enhance the
generalization and robustness of deep neural network, we augment
the dataset by changing brightness, blurring the image, adding noise,
and cutout operation as shown in Figure 4. In addition, the horizontal
flip is operated with a probability of 0.5 during training. After data
augmentation, the training set contains 3258 images.

2.2 Pumpkin fruit and stem instance
segmentation

The agricultural environment is a typical unstructured environment
with complex background. Due to ‘free growth’ and overlapped fruits,
stems, branches, and leaves, fine instance segmentation in fruit
harvesting environment becomes a challenging work. In this paper, we
proposed a pumpkin fruit and stem instance segmentation framework as
illustrated in Figure 5. The main feature of this framework is introducing
a transformer network to replace the commonly used convolutional

10.3389/fpls.2023.1063996

neural network (CNN). The transformer network helps effectively extract
image features, improve instance segmentation accuracy, and reduce
model computational complexity. In addition, to deal with the
overlapping phenomenon that often occurs in the harvesting
environment, we add a hard point selection module to the mask
branch. Coarse features are concatenated with fine features from the
output of the feature pyramid network (FPN) to classify those hard
points and then generate the final fine mask.

Compared with the literature in the previous review, our
framework achieves the end-to-end fruit and stem instance
segmentation. The specific implementation is as follows. First, we
introduce the Swin Transformer (Liu et al., 2021b) to the task of
pumpkin fruit and stem instance segmentation and replace CNN
(such as ResNet) to extract features. The feature extraction structure
of this transformer network combined with a feature pyramid
network (FPN) (Lin et al. (2017)). Hierarchical transformer and
FPN are applied to generate a pyramid of feature maps with
different sizes of a fixed number of channels (set to 256).
Specially, we use four levels of feature maps denoted as {P2,P3,P4,
P5}. P2, P3, P4 and P5 are generated by four transformer feature
maps T2, T3, T4 and T5, convolving with 1x1 kernel via top-down
connection mechanism. As a result, P2, P3, P4 and P5 have strides 4,
8, 16 and 32 respectively. Then a region proposal network (RPN)
(Ren et al, 2015) is deployed to generate the feature map with
anchors. Via RolAlign (He et al., 2017) operation, fixed-size feature
maps can be obtained. After fully connected (FC) layers, prediction
results of the bounding box and classification are output. In a
general way, fixed-size feature maps can generate mask predictions
after several convolution operations. However, since the fixed size
of the feature map is generally 7*7, it is tough to generate an

FIGURE 2

Image collection environment and pumpkin images. (A) Image capture scene. (B) Original Bebe pumpkin image. (C) Original Hazel pumpkin image.
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FIGURE 3

lllustration of the image annotation process. (A) Original image. (B) Polygonal annotation and extraction of the pumpkin fruit mask. (C) Polygonal
annotation and extraction of the pumpkin stem mask. (D) Annotated images, red polygons are pumpkin fruits, green polygons are pumpkin stems,

yellow boxes are pumpkins.

accurate mask, especially at the fruit boundary. Therefore, we select
the hard points in the edge area and combine the coarse features
from the fixed-size feature map and the fine features from high-
resolution feature map output by FPN to generate more refined
point-wise label predictions. Details of transformer network and
mask branch will be introduced in subsections.

2.2.1 Transformer network

Transformer has a great impact on the field of natural language
processing (NLP) before. The proposal of vision transformer (ViT)
(Dosovitskiy et al., 2020) breaks the gap between NLP and vision, and
replaces the convolutional neural network with a pure transformation
module to perform image classification tasks. Liu et al. (2021b)
proposed a new visual transformer, called Swin Transformer,
whose multi-scale and computationally inexpensive properties
make it compatible with a wide range of vision tasks (image
classification, object detection, semantic segmentation, etc.). An
overview of the transformer architecture and transformer blocks we

TABLE 1 Distribution of the dataset.

Images Fruit instances
Bebe 354 608
Hazel 325 676
Total 679 1284

Frontiers in Plant Science

applied are presented in Figure 6. It first splits an input RGB image
into non-overlapping patches (raw-valued features) by a patch
partition operation. Then a linear embedding layer is applied to the
raw-valued features to project them to an arbitrary dimension (set to
96). Several transformer blocks are applied to these patch tokens. To
produce a hierarchical representation, the number of tokens is
reduced by patch merging layers as the network gets deeper.
Specific implementations are demonstrated in (Liu et al., 2021b).

2.2.2 Mask branch

In the instance segmentation task of agricultural environment,
due to the large-scale overlapping problem, fine segmentation of the
target edges and overlapping edges is challenging. Research in (Li
et al. 2017) shows that in the segmentation task, most of the hard
pixels (about 70%) are at the edge of the object. Point rendering
method (Kirillov et al., 2020) we applied is devoted to segmenting
these blurry pixels finely. Figure 7 depicts the main idea of point
rendering. Point rendering includes three steps:

Stem instances Pumpkin bounding boxes

552 608
516 676
1068 1284
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FIGURE 4

Data augmentation. (A) Original image; (B) Brightness enhancement; (C) Brightness reduction; (D) Gaussian blur; (E) Noise; (F) Cutout; (G) horizontal

flip.

2.2.2.1 Candidate point selection

First, via upsampling, the low-resolution segmentation map is
converted to high-resolution, and N hard points with low
confidence are filtrated in the high-resolution segmentation map.
Most of these points are concentrated near the edge. This process
iterates step by step to obtain a segmentation map of the desired
resolution. In the implementation of this paper, the N value we
choose is 28*28.

2.2.2.2 Point feature extraction

Coarse and fine features for each candidate point are extracted.
The coarse features are extracted from the low-resolution
segmentation map, and the fine features are taken from the P2
layer of the FPN. The two sets of features are concatenated to obtain
the feature expression of the candidate points.

2.2.2.3 Point prediction

After obtaining the features of the candidate points, through a
set of multi-layer perceptions (MLP), the final segmentation
prediction results of the candidate points are obtained. More
implementation details can be seen in Kirillov et al. (2020).

2.2.3 Training and inference
2.2.3.1 Training

In our implementation, we apply a multi-scale training mechanism
(He et al. 2015). To address the issue of varying image sizes in training.
In each epoch, a scale is randomly selected for training.

In the proposed pumpkin fruit and stem instance segmentation
network, we define the training loss function as Equation (1):

L= Lclasszﬁcation + ALhox + yLma:k (1)

Feature Extraction
Transformer Network
1/32, 768
112 Feature Pyramid Network
1/16,384 1

M5 PS5

Feature | RolAlign

FC layers

T4
/8,192 |

%y
M4
A

- P4
BK
M3

)

1/4,9% 1 B3

T2

P2
4,48

Region Proposal
Network

Point
Selection

Part partition

Input

FIGURE 5
Pumpkin fruit and stem instance segmentation framework.
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The architecture of transformer network

where Lejgification 18 the loss for fruit or stem classification, Ly
is the loss for the bounding box coordinates prediction, and Ly, is
the loss for mask prediction.

In our implementation, we apply cross entropy loss to calculate
Letassificationad Lya50 L1 loss to calculate Ly, We set A to 1 and yto
2 because mask is more difficult to train and is more important in
our implementation.

2.2.3.2 Inference

The inference of the pumpkin fruit and stem instance
segmentation network is a straightforward process. We forward
input images through the transformer backbone and FPN. We select
the points from the 224x224 resolution feature map refined by the
coarse 7x7 prediction in 5 steps. We select the N=28” most uncertain
points based on the absolute difference between the predictions and 0.5.

2.3 Cutting and grasping point estimation

The proposed pumpkin keypoint detection framework is illustrated
in Figure 8. Firstly, fruit and stem masks are generated via instance
segmentation method as shown in Figure 8B. After obtaining the
instance segmentation result, the fruit instances and the stem instances
can be separated as depicted in Figure 8C. Among these instances, there
are corresponding relationships among the fruits and the stems, and only

Two successive transformer blocks

one-to-one fruit and stem can be labeled as the pumpkin picking target.
Then, we apply a geometric model to determine the cutting and grasping
points. Finally, by modeling the robot and its coordinate systems,
calibrating the camera parameters, the target pixel in 2D image can be
transformed a position in 3D space. In practical operations, Birrell et al.
(2020); Wang et al. (2022) and Kang et al. (2020) proposed approaches to
tackle the coordinate transformation problem. Two pivotal steps of the
keypoint estimation algorithm are fruit and stem correspondence
determination and keypoint determination.

2.3.1 Fruit and stem correspondence
determination

To determine the corresponding relationships among the fruit
and stem instances, we take advantage of the apriori knowledge.
Three requirements should be satisfied. 1) The masks of fruit and
stem are adjacent. 2) Under the force of gravity, the center point of the
stem is above the center point of the fruit. 3) One fruit corresponds to
at most one stem. Algorithm 1 shows the matching process.

2.3.2 Keypoint determination

After obtaining the mask of a whole pumpkin includes a fruit
and a corresponding stem by the proposed correspondence
determination algorithm, a geometric model is employed to

RolAlign

FIGURE 7
Scheme of point rendering mask head.
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Keypoints estimation

Example images

Raw RGB image

Instance
segmentation

Pumpkin fruit and
stem instances

Geometric model to
separate each
pumpkin

Keypoint 3D
coordinates

FIGURE 8

Block diagram of cutting and grasping point estimation method along with example images. (A) Pumpkin RGB image. (B) Pumpkin fruit and ste
instance segmentation result. (C) Visualization of pumpkin fruit and stem instances. The left column instances are fruits, and the right column
instances are stems. (D) The separate pumpkins with keypoints. The red points between the stem and the fruit are adjacent points. The red dot in
the stem is the cutting point, and the blue points in the fruit are the grasping points. (E) Pumpkin depth image. Best viewed zoom in

estimate the exact location of the grasping points and

cutting point. i ]
Denote fruit mask as F: {(x/,yf)} %, stem mask as S: {(x}, y} . = 2&1 xi _ Ef\g%l . = Eﬁ\g x; Ef\flyf @)

)}, where Ni and Ny represents number of fruit pixels and stem 7 Np K Np T7° Ns Y Ny

pixels respectively. As illustrated in Figure 9, first, the center of mass

of the 2D fruit and stem is calculated as Equation (2), labeled as

{Cr: (g, yor)} and {Cs: (x5, yes) } respectively.

>

A straight line denoted as [, passes through Cp and Cis.
Considering two conditions:
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Input:

Fruit' € N**W: The i-th fruit mask in the image;
Stem! & NI*W ; The j—th stemmask in the image;
M: Number of fruits detected in the image;

N: Number of stems detected in the image;
Output:

Kmatchedpairs, eachpairhasa fruitmaskanda
stem mask,

K < min{M, N}

1: for i=0 to Mdo

2: Calculate center point of Fruiti:CFi = (x5, )

3: for j=0 to Ndo

4: Calculate center point of Sterrt/:CSJ = (x5, %))

5: if x; >x; (To ensure the center point of stem
is above the center point of fruit) then

6: count adjacent mask point: num(dis < dis_ thr)
7: if num(dis < dis_thr) > num_thr (To ensure the
masks of fruit and stem are adjacent) then

8: Fruit' and Stem’ is a matching candidate

9: end if

10: end if
11: for i=0 to Mdo
12: if There is one or more than one match

candidates with stem then

13: Calculate the degree of pumpkin matching
candidate: D = arctan%

14: The matching candidate with the minimum D
value is determined as the match pair. (To
ensure one fruit corresponds to at most one
stem)

15: end if

16: end for

17: end for

18:end for

ALGORITHM 1
Matching pumpkin fruit masks with their corresponding stem masks.

Case 1: I, is a vertical line (slope of [, is o).

Denote [, as x=c. Index of grasping points G; and G, from fruit
mask F can be calculated as Equation (3):

G, = arg max ‘xf—c!, x<c
1

3)

F
G, = arg max |xi —c’, x>c
1

Case 2: I, is not a vertical line (slope of [, is not ).

Assume line equation as I,:y = kx +b. Denote D; as the
distance from ith point in F to [,. G; and G, can be calculated as
Equation (4):

G, =arg max D, yf Skxf+b
’ (4)

G, =arg max D, vkl +b
1

Finally, keypointg, :xél,yg1 and keypointg, :xéz,y}é2 are
determined as two grasping points that distribute in two sides of
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l,. Cutting point keypoint is the center point of stem mask, that is
{CS : (xcs’ycs)}'

3 Results and discussion
3.1 Evaluation metrics

3.1.1 Average precision

According to whether the true sample and the predicted result
match, the prediction results can be divided into four types: true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN). Precision and recall are defined as follows:

Precisi TP
recision = —————
(TP + FP)
Recall = L
" (TP + EN)

The average precision metric is used to measure the quality of
the detections and the segmentations obtained by the models.
Average precision computes the average precision value for recall
values over 0 to 1. Specifically, mean average precision (mAP) is
defined as the primary metric. As in (Lin et al. (2014)), mAP is
calculated using 10 intersection over union (IoU) thresholds from
0.50 to 0.95. The IoU measures the overlap between two boundaries
or masks and measures how much the box boundary or mask
predicted by the algorithm overlaps with the ground truth (the real
object boundary or real object mask).

3.1.2 Model complexity and inference speed

The model complexity usually relates to parameter number and
calculation amount, two metrics that describe how many
parameters the model defines and how many floating point

FIGURE 9
Estimation of pumpkin grasping and cutting points.
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operations(FLOPs) are required when running the model.
1GFLOPs = 10°FLOPs. The metric to define the model inference
speed is the average number of frames per second (FPS). Model
complexity and FPS are vital indicators to evaluate the performance
of the model.

3.2 Instance segmentation result

3.2.1 Experiment setup

In this paper, the training and evaluation of the proposed
network are conducted on a server, which consists of an Intel i9-
10900X CPU with 20 cores, 32G RAM, and an RTX 3090 GPU with
24G memory. The network implementation was carried out using
Pytorch 1.7.0.

3.2.2 Performance comparison with state-of-the-
art methods

We performed a series of experiments to compare our method
with the state-of-the-art methods, namely YOLACT (Bolya et al.,
(2019), Querylnst (Fang et al., 2021), Mask R-CNN (He et al,
(2017) and Cascade Mask R-CNN (Cai and Vasconcelos, 2019). All
algorithms are trained for 100 epochs, and when every training
epoch ends, the mAP values of mask segmentation and box
detection are calculated as shown in Figures 10, 11. The detection
mAP of our proposed method outperforms these state-of-the-art
methods, and the segmentation mAP is significantly superior to the
existing methods. Fortunately, in this application, segmentation
precision is more important than detection precision.

The evaluation results are listed in Table 2. Our architecture
achieves a high instance segmentation accuracy of 0.708 mask mAP
and 0.720 box mAP, which brings 4.9% and 2.5% gains over the
second-best results. From the parameter comparison, except
Querylnst (the model is too large) and YOLACT (the accuracy is
not satisfactory), the margin among parameter numbers of Mask R-
CNN, Cascade Mask R-CNN and the method we proposed is
narrow. It’s worth noting that although the parameter size of our
method is larger than Mask R-CNN (59.27M Vs 43.76M), the
computational complexity is lower than Mask R-CNN (213.01
GFLOPs Vs 258.19 GFLOPs). Our method achieves 13.5 FPS on
a single RTX 3090 GPU, which can meet the requirements of
agricultural applications.

3.2.3 Visualization result analysis

To highlight the superiority of the proposed architecture
more intuitively, the visual analysis of the outstanding networks
and our network is conducted. As can be seen in Figure 12, all
methods can detect the majority of pumpkin instances, whereas
our method achieves higher confidence. As is shown in the third
column, YOLACT and Querylnst fail to detect the pumpkin in
red circle covered by the leave, while Mask R-CNN, Cascade
Mask R-CNN and our method detect the pumpkin with the
confidence of 0.38, 0.97 and 1.0, respectively. It is obvious that
our method generates finer masks compared with other methods.
To emphasize the contribution of point rendering mask branch,
we compared the visualization results of our method and our
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0.1 —&— Querylnst
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0.0

0 10 20 30 40 50 60 70 80 90 100
Epoch
FIGURE 10

Mask segmentation mAP of the model

method without point rendering as shown in the last two rows,
where can be seen that the finer masks benefit more from the
point rendering mechanism.

3.2.4 Ablation study of improved models

In order to prove the effectiveness of the improved modules in
the proposed pumpkin fruit and stem instance segmentation
method, the ablation study on different modules is performed in
this section. The comparisons are conducted on seven cases, as
shown in Table 3. As can be seen from the table, replacing the
original CNN module with the transformer network and the
mechanism of multi-scale training have greatly improved the
results, and the mask mAP and box mAP have increased by 2.5%,
2.4% and 1.7%, 3.3% respectively. Although the improvement of
replacing the original mask branch with the point rendering mask
branch takes no remarkable superiority in mAP results, it only
increases by 0.6% in mask mAP, and the box mAP has a slight

Box mAP
0.7
\,Q‘n
0.6
0.5
0.4
0.3
0.2 —e— Cascade_Mask_R-CNN
~&— Mask_R-CNN
0.1 —e— Querylnst
—— YOLACT
0.0 —e— Ours
0 10 20 30 40 50 60 70 80 90 100

Epoch

FIGURE 11
Box detection mAP of the model.
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TABLE 2 Performance comparison with state-of-the-art methods.

10.3389/fpls.2023.1063996

mask mAP box mAP #param. GFLOPs FPS
YOLACT (Bolya et al. (2019)) 0.596 0.572 34.74M 186.57 213
QuerylInst (Fang et al. (2021)) 0.559 0.554 172.23M 464.29 6.2
Mask R-CNN (He et al. (2017)) 0.656 0.669 43.76M 258.19 16.4
Cascade Mask R-CNN (Cai and Vasconcelos (2019)) 0.659 0.695 76.8M 389.03 13.6
Ours 0.708 0.720 59.27M 213.01 13.5

The best performances of each metrics are in bold format.

increase of 0.3%, but from the visualization results, point rendering
mask branch greatly optimizes the boundary masks, which cannot
be ignored. Finally, the architecture with transformer network,
point rendering mask branch, and the multi-scale training
network improves 5.3% mask mAP and 5.1% box mAP over the
Mask R-CNN Baseline network. The inference speed decreased
from 16.4 FPS to 13.5 FPS, but this is acceptable.

RGB image

YOLACT

Querylnst

Mask R-CNN

Cascade
Mask R-CNN

Ours w/o
point rendering

Ours

FIGURE 12
Example of pumpkin fruit and stem instance segmentation results.
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3.3 Keypoint estimation results

3.3.1 Pumpkin fruit and stem correspondence
determination result

Figure 13 shows some example results of fruit and stem
matching algorithm. It can be seen that in most conditions,
including one image with single or multiple pumpkins, existing
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TABLE 3 Ablation study on the pumpkin fruit and stem instance segmentation method.

m transformer network multi-scale training point rendering mask
16.4

Baseline model

Model-A V

Model-B Y

Model-C

Model-D v v

Model-E y
Model-F (Ours) N v

The best performances of each metrics are in bold format.

fruit, leave, or branch overlaps, our algorithm can match the fruits
and stems successfully. To analyze the results accurately, we count
all the matched pumpkin instances in the test images, the number of
TP is 215, FP is 4, and TN is 2. The precision and recall reach 98.2%
and 99.1% respectively. Some negative matched examples are listed
in Figure 14. The reason for the faults is that in the instance
segmentation step, missing and erroneous detections happen
sometimes. The pumpkin is too small or interference of branches
may cause false detection.

Single
pumpkin

Multiple
pumpkins

Fruit
overlap

Leave
overlap

Branch
overlap

FIGURE 13
Pumpkin fruit and stem matching result.
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0.656 0.669
0.681 0.686 154
0.680 0.702 165
0 0.665 0.672 14.3
0.705 0718 15.1
y 0.701 0.709 13.7
y 0.708 0.720 135

3.3.2 Keypoint determination result

Figure 15 presents the visualized results of grasping and cutting
keypoint detection. In the figure, red points are the cutting points,
blue points are the grasping points. Yellow lines linking the cutting
points and grasping points signify that the 3 points attach to one
pumpkin instance. Specially, the occlusion problem is usually not
negligible in fruit picking task. One of the advantages of this
approach is that if a pumpkin is occluded seriously, for instance,
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FIGURE 14
Wrong examples of pumpkin fruit and stem matching result

if we can only see the fruit part or the stem part in the image, our
algorithm can filter this pumpkin autonomous as shown in the first
image from the second row in Figure 15. If the pumpkin is only
occluded part of the fruit or stem by leaves, branched or other fruits,
our algorithm also determines the grasping point and cutting point
reasonably as shown in the right three columns from Figure 15. The
results show that our algorithm is promising for the pumpkin
picking task.

4 Conclusion

In this paper, we presented a pumpkin autonomous picking
framework with keypoint detection and instance segmentation
method. A transformer network is utilized as the architecture

backbone to replace CNN, which helps achieve a higher detection
and segmentation precision. To tackle the overlapping problem,
point rendering is applied so that finer masks can be acquired.
Sufficient experimental results indicate that our method
significantly outperforms several state-of-the-art instance
segmentation methods. In addition, a novel keypoint detection
algorithm is proposed to model the relationships among the fruit
and stem instances as well as estimate grasping and cutting
keypoints. The effectiveness and applicability of the proposed
method are verified through plenty experiments on pumpkin
image dataset we created. In this work, we applied traditional
geometric method to model the fruit-stem relationships and
estimating the keypoints. Our future work will expand into
learning-based method to detect the fruit-stem pairs and directly
generate the keypoints using deep neural networks.

FIGURE 15
Visualized results of grasping and cutting keypoint detection.
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Different leafy vegetable
cropping systems reqgulate
growth, photosynthesis, and PSII
functioning in mono-cropped
eggplant by altering chemical
properties and upregulating the
antioxidant system
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Mohammad Abass Ahanger®, Xiaoyulong Chen™*®*
and Zhihui Cheng*

*College of Agriculture, Guizhou University, Guiyang, China, ?Key Laboratory of Karst Georesources
and Environment, Ministry of Education, College of Resources and Environmental Engineering,
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Yangling, China, “Horticultural Research Institute, National Agricultural Research Centre,

Islamabad, Pakistan, *College of Life Sciences, Northwest A&F University, Yangling, China, ¢College of
Ecology and Environment, Tibet University, Lhasa, Tibet, China

Continuous cropping of eggplant threatened regional ecological sustainability by
facilitating replanting problems under mono-cropping conditions. Therefore,
alternative agronomic and management practices are required to improve crop
productivity at low environmental cost for the development of sustainable
agricultural systems in different regions. This study examined changes in soil
chemical properties, eggplant photosynthesis, and antioxidant functioning in five
different vegetable cropping systems over a 2-year period., 2017 and 2018. The
results showed that welsh onion-eggplant (WOE), celery-eggplant (CE), non-
heading Chinese cabbage-eggplant (NCCE), and leafy lettuce-eggplant (LLE)
rotation systems significantly impacted growth, biomass accumulation, and yield
than fallow-eggplant (FE). In addition, various leafy vegetable cropping systems,
WOE, CE, NCCE, and LLT induced significant increases in soil organic matter
(SOM), available nutrients (N, P, and K), and eggplant growth by affecting the
photosynthesis and related gas exchange parameters with much evident effect
due to CE and NCCE. Moreover, eggplant raised with different leafy vegetable
rotation systems showed higher activity of antioxidant enzymes, resulting in
lower accumulation of hydrogen peroxide and hence reduced oxidative damage
to membranes. In addition, fresh and dry plant biomass was significantly
increased due to crop rotation with leafy vegetables. Therefore, we concluded
that leafy vegetable crop rotation is a beneficial management practice to improve
the growth and yield of eggplant.

KEYWORDS

continuous cropping, crop rotation, sustainable vegetable production, lipid
peroxidation, plant defense system, soil available nutrients, eggplant
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1 Introduction

The consistent increase in the global population has increased
the demand for food and cash crops. Due to limited agricultural
land worldwide and the decreasing number of new crop areas,
monoculture is a common model for large-scale, intensive
agricultural production, especially in the horticultural industry
(Tan et al, 2021; Bhatti et al, 2022). Even with a good field
management regime, the crop may still experience growth and
yield reduction and promote disease incidence (Zeng et al., 2020).
Mono-cropping refers to the practice of growing the same type of
crop every year for a long period of time (Scarascia-Mugnozza et al.,
2011; Xiao et al,, 2012). The overuse of synthetic fertilizers and
agrochemicals is inevitable in the mono-cropping system, which
leads to mono-cropping obstacles (Ghani et al., 2019b; Ali et al,
2021; Ghani et al, 2022b). The mono-cropping obstacles are
attributed to soil salinization, acidification, nutrient imbalance,
and autotoxicity (Lyu et al., 2020; Zeng et al., 2020).

Eggplant (Solanum melongena L.) is a valuable vegetable cash
crop mostly grown under plastic shed (Wang et al., 2015; Ghani
et al,, 2022a). Eggplant production in plastic shed heavily relies on
mono-cropping systems. Like other crops, consecutive eggplant
cultivation could occur mono-cropping obstacles, including an
upsurge in autotoxins in the soil, which hampers plant growth
and development, reduces resistance to harsh environmental
conditions, and ultimately reduces plant yield and quality (Wang
et al., 2015). One of the beneficial practices that ameliorate the
negative impact of mono-cropping is crop rotation. To enhance
productivity and optimize the profitability of a rotation system,
rotated crops should be appropriately selected (Li et al., 2017; Ali
et al., 2019). Diversified crop rotation during the fallow period
mitigates the adverse effects of mono-cropping obstacles by
sustaining the soil quality via nutrient deposit (St. Luce et al,
2020), greater SOM input (Ali et al., 2021), soil carbon
sequestration (Song et al., 2018), and minimizing pest and disease
attacks, particularly compared with mono-cropping systems (Ali
et al, 2021; Ghani et al,, 2022b). Different leafy vegetable plants
have legacy effects on soil through root exudation, suppress soil-
borne pathogens, and enhance soil fertility, improving plant growth
and yield of the subsequent crop (Ali et al, 2019; Ghani et al,
2022b). Numerous studies have demonstrated yield advantages of
crop rotation to subsequent crops, including tomato-onion,
tomato-chrysanthemum, hairy vetch-eggplant, and cow pea-
broccoli significantly improved tomato, eggplant, and broccoli
yield compared with mono-cropping planting (Tian et al., 2009;
Radicetti et al., 2016; Sanchez-Navarro et al., 2020). Furthermore,
crop rotation also enhanced plant tolerances to different types of
stresses (Gaudin et al., 2015).

Plants might be subjected to a wide range of external stresses
during their growth period, including salt and heat stress and water
deficit. However, crops grown in mono-cropping suffer from
additional stresses such as evolving diseases and pests, various
biotic and abiotic stresses, reduced soil physical-chemical
characteristics, and the gradual buildup of root exudates in the
soil. All of these stresses pose a constant threat to plant growth.
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(Chen et al,, 2011; Wang et al,, 2015). Moreover, physiological and
biochemical alterations following mono-cropping involve reduced
growth underlined by a significant decline in photosynthetic rate. In
addition, changes in soil pH adversely affect growth by declining
photosynthesis and gas exchange parameters (Long et al., 2017).
During stressful conditions, plants promote the production of
reactive oxygen species (ROS) and cause significant damage to
DNA, lipid peroxidation, the cell membrane, and proteins
However, plants develop efficient adaptive strategies such as
generating antioxidants, secondary metabolite, and osmolyte
metabolism to overcome these stresses (Ahanger and Agarwal,
2017b; Ahanger et al., 2017; Ghani et al., 2022c). These
biochemical pathways serve as an early signaling molecule of the
plant’s defense response to a variety of environmental stresses and
as a secondary messenger for subsequent defense reactions (Yin
et al, 2015; Chen et al,, 2022). Increased activity of the antioxidant
system and the metabolism of secondary metabolites avoid
oxidative damage to membranes and other important
macromolecules in the cell, hence keeping important mechanisms
such as photosynthesis from being disrupted (Ahanger et al., 2017;
Ahanger et al., 2018)

Previous studies have figure out the importance of crop rotation
on pathogen suppression and soil stability (Thorup-Kristensen
et al,, 2012; Tian et al., 2013; Ali et al., 2019). More recently, we
reported that leafy vegetables used as a crop rotation and their
residue retention (above and below-ground biomass) significantly
influenced soil nitrogen, microbial biomass, and soil enzymatic
activity (Ghani et al., 2022b). However, limitation may still exist
that dead roots and leaves were maintained in the field and well
incorporated into the soil, and then influence on plant growth and
development, as well as plant resistance-related enzymes. In this
study, we postulated that executing different leafy vegetable plants
would help to increase the eggplant’s production capacity.
Therefore, the aim of the study was to evaluate the capacities of
different leafy vegetables, welsh onion, celery, non-heading Chinese
cabbage, and leafy lettuce to alleviate mono-cropping obstacles of
eggplant cultivation that generally occur due to mono-cropping, as
well as to determine a sustainable vegetable cropping system to
enhance eggplant production. Hence, the influence of different leafy
vegetables on soil chemical properties, plant morphological and
physiological observations, lipid peroxidation (MDA), and H,0,
level and, correlations between plant growth, physiology, and soil
chemical properties were assessed.

2 Material and methods

2.1 Experimental site description and
experimental design

Two years of field experiment under a plastic shed was
conducted at the research station of Northwest A&F University
Yangling, China. From March 2013 to November 2016, the eggplant
was continuously cultivated under this plastic shed for four years.
The eggplant was cultivated once a year with a mono-cropping
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regime. The growing season of eggplant starts from 1% week of
March to mid-November. The plastic shed’s soil is sandy loam soil.
The specific details of basic soil properties were reported previously
by (Ghani et al., 2022b). After four years of consecutive eggplant
cultivation, a rotational experiment was performed with four
different winter leafy vegetables, including (I) welsh onion
(Allium fistulosum L.), (II) celery (Apium graveolens L.), (III)
non-heading Chinese cabbage (Brassica rapa L.), and (IV) leafy
lettuce (Lactuca sativa L.) during the fallow period of eggplant from
mid-November to 1°* week of March. These leafy vegetables were
harvested at the full leaf growth stage in 1% week of March, followed
by the immediate planting of eggplant. The leafy vegetables root left
over were mixed in the soil before eggplant seedlings were
transplanted. With a factorial randomized complete block design,
the eggplant seedlings were transplanted to the field in both years
on the second week of March and harvested on 2™ week of
November in both years. The experiment consisted of five
different planting systems with three replications: fallow-eggplant
(FE), welsh onion-eggplant (WOE), celery-eggplant (CE), no-
heading Chinese cabbage-eggplant (NCCE), and leafy lettuce-
eggplant (LLE) with three replications.

Each cropping system and fellow eggplant was assigned three
plots and each plot consist of three beds. The size of each plot was
12.60 m? (3.6 m long . 3.5 m wide) and each bed was 4.20 m?(3.5m
long . 1.2 m wide). A thin, impermeable plastic sheet was inserted at
a depth of 50 cm into the soil among experimental plots and
extended to 5 cm above the ground, intended to prevent the passage
of water and nutrients between plots and stop the interplay of
various treatments. Three-week-old uniform eggplant seedlings
(Solanummelongena L. Cv.Tai Kong Qie Wang) with 3 leaves
were transplanted to the above-prepared beds; each bed consists
of two rows. There were 7 seedlings in each row, and 14 in each bed,
with 0.8 m distance between rows and 0.5 m between plants. Each
year, before eggplant planting, each bed was fertilized with organic
fertilizer (PengDiXin) at the rate of (50.65 kg ha™'), “SaKeFu”
(119.04 kg ha™"). The detailed information is previously reported in
(Ghani et al,, 2022b). In addition, JinBa fertilizer was top-dressed
(0.5kg/bed) according to local recommendations for vegetable
production. No chemical fertilizers were used during the winter
leafy vegetable growth period, and the same amount of irrigation,
fertilization, and management practices were carried out
throughout the experiment.

2.2 Measurement of morphological indices

To evaluate morphological traits at different growth phases, we
randomly sampled three plants from each replication and 9 plants
from each treatment. The growth phases included the first
flowering, the first fruiting, the second flowering, and the second
fruiting. A measuring tape was utilized to get an accurate reading of
the plant height. The diameter of the stem was determined using an
electronic vernier caliper. The eggplant’s fresh weight (FW) was
measured using an electronic scale after the eggplant was harvested,
whereas the eggplant’s dry weight (DW) was determined after oven
drying at 70 °C for 72 hours.
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2.3 Quantification of photosynthetic
pigment and gas exchange parameters

Chlorophyll a, b, total chlorophyll, and carotenoids were measured
by placing 0.5 g of fresh leaf tissue into a 25 mL glass tube with 20 mL
80% acetone for 48 hours in the dark after that, and absorbance was
determined spectrophotometrically (UV-3802, UNICO, MDN, USA)
at 645 nm, 663 nm, and 652 nm, respectively (Arnon, 1949).

Net photosynthetic rate (pN), stomatal conductance (gs),
intercellular CO, concentration (Ci), and transpiration rate (E)
were measured in the uppermost leaf by using a LI-6400 portable
photosynthesis system (Li-Cor, Lincoln, NE, USA).

Measurement of the maximal photochemical efficiency (Fv/
Fm), photosystem II (®PSII), non-photochemical quenching
coefficient (NPQ) and, photochemical quenching (qP) were
determined using modulated chlorophyll fluorometer (PAM-2000
chlorophyll fluorometer) after 20 min of dark adaptation. The
recorded data were processed by PAM Win software.

2.4 Antioxidant enzymes assay

The eggplant leaves (0.5 g) were homogenized in a chilled 0.05 mM
(pH 7.8) phosphate buffer containing 0.1% polyvinylpyrrolidone and
0.5 M ethylenediaminetetraacetic acid (EDTA). The homogenate was
centrifuged at 12000 g for 15 min at 4°C, and the supernatant was used
for enzyme analysis. To estimate superoxide dismutase (SOD) activity,
we followed the method of (Dhindsa et al., 1981). The enzyme’s ability
to inhibit the photochemical reduction of nitroblue tetrazolium (NBT)
was monitored at 560 nm.

The reaction mixture was prepared by adding 0.5 mL enzyme extract
into 50 mL of 0.05 M phosphate buffer (pH 7.8), 28 mL guaiacol,and 19 mL
30% H,0, (v/v) were mixed. The prepared reaction mixture of 3.5 mL was
then transferred to a cuvette (1 cm) path length. An increase in absorbance
was recorded at 470 nm wavelength over 3 min at 30-s intervals.

For the Catalase (CAT) activity, an enzyme extract of (0.1 mL)
was added to 1.9 mL of reaction mixture containing phosphate
buffer 200 mM (pH 7.0) and 1 mL of 0.3% H,O,. The enzyme
activity was assessed by observing the decrease in absorbance at 240
nm for 2 min (Chance and Maehly, 1955).

Ascorbate peroxidase (APX) extraction was quantified by
observing a reduction in absorbance due to the oxidation of
ascorbic acid at 290 nm according to the method of (Nakano and
Asada, 1981). The enzyme mixture consisted of 50 mM potassium
phosphate buffer (pH 7.0), 0.2 mM EDTA, 0.5 mM ascorbic acid, 2
mM H,0,, and 100 pL enzyme extract.

Polyphenol oxidase (PPO) activity was assayed by measuring
the initial increase in absorbance during the first 3 min of the
reaction at 410 nm (Zheng et al,, 2007). PAL activity was assessed
according to the method of (Gao, 2006).

2.5 Measurement of oxidative
stress biomarkers

The concentration of H,O, was estimated following the method
of (Velikova et al., 2000). For lipid peroxidation, the content of
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malonaldehyde (MDA) was measured by incubating tissue extract
with thiobarbituric acid (TBA) at boiling temperature (Dhindsa
et al., 1981).

2.6 Assessment of protein content

The protein content was quantified using the method proposed
by (Bradford, 1976) using BSA as a standard.

2.7 Measurement of soil
chemical properties

Soil organic matter (SOM) was determined through the
procedure described by (Walkley and Black, 1934). We utilized
the alkali-hydrolyzed diffusion method to determine the amount of
available nitrogen (AN) (Shi, 1996). The development of a complex
that was blue in colour following the extraction of 0.5 M NaHCO3
at a pH of 8.5 was used to measure the amount of accessible
phosphorus (AP) in the soil (Murphy and Riley, 1962). The
following procedure was used to analyze the available K
(Knudsen et al., 1983).

2.8 Statistical analysis

Data presented are the mean of three replicates and were
statistically analyzed by two-way analysis of variance (ANOVA)
asa 5 x 2 (treatment X year) factorial design for the experiment, and
Tukey HSD test was used to analyze the mean separations among
treatments at p < 0.05. Using origin software, a Pearson correlation
was conducted to evaluate the relationship between plant growth,
physiological traits, and soil chemical properties. All statistical
analyses were performed with SPSS v.19.0 (SPSS Inc.,
Chicago, USA).

3 Results

3.1 Effect of different leafy vegetable
cropping systems on morphological
traits and chlorophyll pigments in
eggplant leaves

Results illustrated in Table 1 showed that plant height and stem
diameter were significantly (P < 0.05) affected by WOE, CE, NCCE
and, LLE cropping systems as compared to FE. The highest plant
height was observed for NCCE and LLE cropping systems than FE,
and the observed increase was 18.34% and 16.15%, respectively.
Regarding the growing stages, the eggplant height showed a rapid
increase from 1% flowering to 2" flowering stage and then slowed
down at later stages. The maximum increase was recorded at 2™
fruiting stage (297.38%) than other growth stages, whereas the year
factor exhibited a non-significant effect. Maximum stem diameter
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was observed for CE as compared to FE, and the increase was
15.54%. Regarding growth stages, stem diameter increased
gradually from 1% flowering to 2" flowering. The maximum stem
diameter was observed at 2™ fruiting stage as compared to other
growth stages, and the increase was 45.32%. The year factor also had
a significant effect, and the highest increase in stem diameter was
observed in 2018 as compared to 2017 (Table 1).

Leafy vegetable cropping systems significantly stimulated the
chlorophyll pigments. Maximum chlorophyll a content was
observed for NCCE as compared to FE rotation, and the increase
was 13.48% (Table 1). With respect to growth stages, maximum
content of chlorophyll a was recorded at 1°* flowering stage as
compared to other growth stages, and the increase was 41.27%, and
the minimum chlorophyll a was observed at 2™ fruiting stage. Year
factor was also significant, and maximum chlorophyll a was
observed in 2018. The interaction effect of three factors (Y x T x
S) on chlorophyll a was also significant. Winter leafy vegetables
significantly affected chlorophyll b pigment. The highest increase
(35.27%) in chlorophyll b content was observed for NCCE as
compared to FE rotation. Regarding growing stages, maximum
chlorophyll b was observed at 1% flowering stage, and an increase
was 52.24%, and minimum chlorophyll b was observed at 2"
fruiting stage. Year factor was also significant, and maximum
chlorophyll b was observed in 2018. The interaction effect of
three factors (Y x T x S) on chlorophyll b was also
significant (Table 1).

It is shown in Table 1 that chlorophyll a and b were significantly
(P < 0.05) affected by leafy vegetable rotation systems. It was shown
that the highest chlorophyll ab were recorded for NCCE, followed
by CE as compared to FE, and an increase was 9.20% and 7.69%,
respectively. Chlorophyll ab were observed maximum at 1°*
flowering stage, and an increase was 33.27%, and the minimum
increase (24.96%) was observed at the 2 fruiting stage. Year factor
was also significant, and maximum chlorophyll ab was observed in
2018. The interaction effect of three factors (Y x T x S) on
chlorophyll ab was also significant.

The effect of different leafy vegetable species on carotenoid
content is illustrated in Table 1. Leafy vegetables significantly (P <
0.05) enhanced the carotenoid contents compared to FE, and a
significant effect of NCCE was observed on carotenoid content.
Maximum carotenoid content was observed for NCCE as compared
to FE, and the increase was 26.7%. The growth stage also had a
significant effect on carotenoid content. The highest increase in
carotenoid content was observed at the 1st flowering stage, and the
lowest increase was observed at the 2™ fruiting stage. The year
factor was significant, and the highest carotenoid content was
observed in 2018.

3.2 Effect of different leafy
vegetable cropping systems on
gas exchange parameters

Leafy vegetable cropping systems significantly (P < 0.05)
affected gas exchange parameters (Table 2). pN was higher for CE

frontiersin.org


https://doi.org/10.3389/fpls.2023.1132861
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ghani et al.

10.3389/fpls.2023.1132861

TABLE 1 Effect of different leafy vegetable rotation systems on morphological indexes and photosynthetic pigments of eggplant at different growth
stages during the years 2017 and 2018.

Treatment Plant height Stem diameter Chloroghyll a Chloroghyll o] Chloropbyll ab Carotg?oids
(cm) (mm) (mg g~ FW) (mg g~ FW) (mg g~ FW) (mg g~ FW)
Year
2017 111.1 + 48.57a 14.200 + 2.64b 17.18 + 2.44b 6.77 + 2.23b 24.42 + 2.90b 2.96+ 1.35b
2018 112.2 + 48.32a 14.771 + 2.79a 18.16 + 2.46a 7.63 + 2.02a 25.63 + 2.66a 3.69 + 2.66a
Leafy vegetables
FE 100.3 + 43.95¢ 13.941 + 2.33¢ 16.84 + 2.36d 6.18 + 1.95¢ 23.90 + 3.05d 2.87+ 1.23d
WOE 107.1 + 41.35b 15.196 + 2.41b 16.98 + 2.34d 6.68 + 1.96d 24.49 + 2.82¢ 3.19 + 1.46¢
CE 115.8 + 51.16a 16.107 + 2.30a 18.00 + 2.27b 7.73 + 2.01b 25.74 + 2.68a 3.57 + 1.51ab
NCCE 118.7 + 52.01a 14.906 + 2.62b 19.11 + 2.74a 8.36 + 1.99a 26.10 + 2.30a 3.62 + 1.49a
LLE 116.5 + 50.31a 12.275 + 2.32d 17.41 + 2.04c 7.05 + 2.22¢ 24.89 + 2.77b 3.40% 2.77bc
Stage
1** flowering 39.81 + 3.69d 12.145 + 1.30¢ 2081 + 1.29a 9.80 + 1.03a 28.48 + 0.88a 5.50 + 0.62a
1* fruiting 97.95 + 6.37¢ 12.509 + 1.34c 18.57 + 0.88b 8.10 + 0.95b 26.14 + 0.85b 3.40 + 0.82b
2" flowering 150.8 + 11.34b 15.636 + 1.68b 16.56 + 1.02¢ 6.22 + 2.01c 24.10 + 1.19¢ 247 +0.28¢
2™ fruiting 158.2 + 12.34a 17.650 + 1.66a 14.73 + 0.98d 4.68 + 1.99d 21.37 + 1.50d 1.94 + 0.44d
F-test
Year (V) s whr _— -_— —_—
Leafy vegetable (LV) . - . . . .
Stage (S) - - —_— - —_— -—.
Y xLV xS ns ns * b * *

Data are presented as means with standard deviation (n=9). Different letters show significant difference at p<0.05 level. FE, fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant;
NCCE, non-heading Chinese cabbage-egglant; LLE, leafy lettuce-eggplant. *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant.

and NCCE than FE, with an increase of 15.28% and 11.18%,
respectively. Similarly, growth stages also had a significant effect
on net photosynthesis. pN increased at all stages, and the maximum
increase was observed at 1% flowering stage, which was 39.94%,
while the minimum increase was observed at 2™ fruiting stage,
which was 28.54%. Year factor was also significant, and maximum
PN was observed in 2018. The interaction effect of three factors (Y x
T x S) on pN was also significant (Table 2). In addition, leafy
vegetable species had a significant impact on Ci. Ci was increased in
all vegetable species as compared to FE. NCCE and CE exhibited
higher Ci than FE, and the increase was 11.15% and 10.17%,
respectively. The Ci increased at all growth stages, with the
highest values recorded at 1** flowering stage. The year factor had
a non-significant effect on Ci (Table 2).

Leafy vegetable rotations also had a significant (P < 0.05) effect
on gs and E. The highest increase in gs and E was observed in NCCE
as compared to FE, and the increase was 50% and 42.47%,
respectively (Table 3). Similarly, growth stages also significantly
affected gs and E. Maximum gs was observed at the 1st flowering
stage with an increase of 375%, and maximum E was observed at the
1% flowering stage 11.11%. The year factor had a non-significant
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effect on gs. Whereas, for E year factor was significant and
maximum E was observed in 2018 (Table 2).

3.3 Effect of different leafy vegetable
cropping systems on chlorophyll
fluorescence parameters

Crop rotation with leafy vegetable cropping systems significantly
(P < 0.05) affected Fv/Fm, ®PSIIL, NPQ, and gp (Table 3). Among
different leafy vegetable rotations, the maximum increase in Fv/Fm,
®PSII, and qP was observed for NCCE cropping system as compared
to FE, and the increase was 8.57,9.23, 25.92, and 14.47%, respectively.
At different growth stages, maximum Fv/Fm, ®PSIL, and qP were
observed at Ist flowering stage, and the increase was 8.69%, 9.23%,
and 9.09%, respectively. However, NPQ was higher in FE than other
leafy vegetables and increased by 6.89% compared to other leafy
vegetables (Table 4). The year factor was also significant for
chlorophyll fluorescence parameters, and maximum Fv/Fm, OPSII,
and NPQ were observed in 2017, and qP was observed maximum in
2018 (Table 3).
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TABLE 2 Effect of different leafy vegetable rotation systems on gas exchange parameters of eggplant at different growth stages during the year 2017

and 2018.
Treatment Ci E gs
(umol mol™) (mmol m™s™) (mol m2s™)
Year
2017 26.50 + 3.40a 281.0 + 30.04a 0.029 + 0.171a 1.38 + 0.21a
2018 25.37 + 3.55b 280.2 + 19.39a 0.008 + 0.006b 1.34 £ 0.22a
Leafy vegetables
FE 23.88 +2.90d 263.5 + 26.37d 0.006 + 0.006¢ 1.13 + 0.15d
WOE 25.52 + 3.09¢ 271.7 + 25.06¢ 0.007 + 0.006b 1.28 + 0.13¢
CE 27.53 + 3.59a 290.3 + 22.29ab 0.008 + 0.007a 1.43 + 0.18b
NCCE 26.55 + 3.76b 2929 +19.22a 0.009 + 0.007a 1.61 £ 0.13a
LLE 26.18 + 3.11b 284.5 + 19.42b 0.007 + 0.006b 1.36 + 0.13¢
Stage
1™ flowering 30.13 + 1.98a 308.0 + 8.98a 0.019 + 0.002a 1.40 £ 0.21a
™ fruiting 27.32 + 1.58b 287.5 + 15.60b 0.003 + 0.001c 1.40 £ 0.15a
ond flowering 24.75 + 1.24c 269.1 + 15.45¢ 0.004 + 0.001b 1.38 £ 0.22a
and fruiting 21.53 + 1.23d 257.8 + 23.32d 0.004 + 0.001b 1.26 + 0.24b
F-test
Year (Y) ok ns e ns
Leafy vegetable (LV) ok ek e i
Stage (S) ook - - -
Y xLV xS ns ns i ns

Main effect due to treatment (crop rotation), sampling year and their interaction was analyzed by Two-way ANOVA. Data are presented as means with standard deviation (n=9). Different letters
show significant difference at p<0.05 level. pN, net photosynthesis; Ci, internal CO, rate; E, transpiration rate. gs, stomatal conductance; FE, fellow eggplant; WOE, welsh onion-eggplant: CE,
celery-eggplant; NCCE, non-heading Chinese cabbage-egglant. **p < 0.01; ***p < 0.001; ns, non-significant.

3.4 Effect of different leafy vegetable
cropping systems on antioxidant system
and soluble protein

Results for the antioxidant enzymes observed are depicted in
Table 4. The results revealed that WOE, CE, NCCE and, LLE
cropping systems used as a crop rotation enhanced the antioxidant
enzyme of eggplant. Among different winter leafy vegetable species,
NCCE rotation had shown maximum activity of SOD, POD, PAL,
PPO, APX, and CAT as compared to FE, and the increase was 38.36%,
53.68%, 27.78%, 21.44%, 18.90%, and 28.00%, respectively.
Furthermore, with respect to different growth stages, various

enzymatic activities were observed maximum at 2™

fruiting stage
than other growth stages, and a significant increase of SOD (47.01%),
POD (36.55%), PAL (56.43%), PPO (77.48%), APX (42.22%) and CAT
(27.70%) was observed (Table 4). Year factor was also significant, and
maximum SOD, POD, PAL, APX, and CAT were observed in 2017,
whereas maximum PPO was observed in 2018. The interaction effect of
three factors (Y x T x S) on SOD, PAL, PPO, APX, and CAT was also
significant, whereas POD activity was non-significant.

Leafy vegetable cropping systems significantly influenced the soluble

protein content of eggplant leaves (Table 4). A maximum increase in
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soluble protein content was observed for NCCE (26.37%) and CE
(25.41%) as compared to FE. A higher amount of soluble protein was
observed at different growing stages at 2" fruiting stage than in other
growth stages. The year factor was also significant, and higher soluble
protein content was observed in 2018 than in 2017 (Table 4).

3.5 Effect of different leafy vegetable
cropping systems on MDA and H,0,

Using different Leafy vegetable cropping systems as a crop
rotation significantly (P < 0.05) reduced MDA and H,0,
concentration compared to FE (Table 5). A higher reduction in
MDA concentration was recorded for CE and NCCE as compared
to FE, and an increase was 33.09% and 32.84%, respectively. The
year factor was also significant, and a higher concentration was
observed in 2018 than in 2017. Similarly, H,O, was also lower in all
leafy vegetable treatments as compared to FE. Compared to FE, the
maximum reduction was observed under NCCE (28.52%) and CE
(26.59%). Regarding different growth stages, a higher reduction in
MDA and H,0, concentration was recorded at the 2™ fruiting
stage, and a higher reduction of 60.45% and 51.16% in MDA and
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TABLE 3 Effect of different leafy vegetable rotation systems on chlorophyll fluorescence parameters of eggplant at different growth stages during the

year 2017 and 2018.

Treatment Fv/Fm OPSII NPQ qP
Year
2017 0.73 + 0.03a 0.70 + 0.03a 0.34 + 0.02a 0.79 + 0.03b
2018 0.71 + 0.03b 0.66 + 0.03b 0.26 + 0.02b 0.83 + 0.06a
Leafy vegetables
FE 0.70 + 0.02d 0.65 + 0.03d 0.34 + 0.04a 0.76 + 0.02¢
WOE 0.71 + 0.02¢ 0.68 + 0.02b 0.29 + 0.03¢ 0.78 + 0.02¢
CE 0.74 + 0.02b 0.70 + 0.02a 0.32 + 0.04b 0.85 + 0.05b
NCCE 0.76 + 0.02a 0.71 + 0.02a 0.27 £ 0.04d 0.87 + 0.05a
LLE 0.70 + 0.02d 0.67 = 0.02¢c 0.29 + 0.03¢ 0.78 £ 0.02d
Stage
™ flowering 0.75 + 0.02a 0.71 + 0.03a 0.31 + 0.05a 0.84 + 0.05a
™ fruiting 0.73 + 0.02b 0.69 + 0.03b 0.31 + 0.04b 0.82 + 0.05b
ond flowering 0.71 + 0.02¢c 0.67 = 0.02¢c 0.30 + 0.04c 0.80 + 0.05¢
and fruiting 0.69 + 0.02d 0.65 + 0.02d 0.29 + 0.04d 0.77 £ 0.05d
F-test
Year (Y) bk bk bk ok
Leafy vegetable (LV) o o o oex
Stage (S) ok ok ok ok
Y xLV xS ns ns ns ns

Data are presented as means with standard deviation (n=9). Different letters show significant difference at p<0.05 level. Fv/Fm, photochemical efficiency; ®PSII, photosystem II; NPQ, non-
photochemical quenching coefficient; qP, photochemical quenching. FE, fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant; NCCE, non-heading Chinese cabbage-egglant. ***

p<0.001; ns, non-significant.

H,O, respectively was recorded at the 2nd fruiting stage compared
to the 1st flowering stage (Table 5).

3.6 Effect of different leafy
vegetable cropping systems
on soil chemical properties

Different leafy vegetable cropping systems used as a crop
rotation showed a significant (P < 0.05) impact on soil chemical
properties such as pH, EC, SOM, and soil available nutrients in both
years (Table 6). A maximum increment in soil pH was recorded in
NCCE by (8.01%) and CE (6.61%) compared with FE. The highest
increase in pH was observed at 2™ flowering stage as compared to
other stages (Table 6). The year factor was also significant, and a
higher concentration was observed in 2018 than in 2017. The
interaction effect of three factors (Y x T x S) on pH was also
significant (Table 6). Soil EC showed a downward trend after the
inclusion of leafy vegetable cropping systems (Table 6). WOE and
NCCE exhibited the maximum reduction in EC. The highest
increase in EC was observed at 1** flowering stage as compared to
other stages (Table 6). The year factor was also significant, and a
higher concentration was observed in 2018 than in 2017. Similarly,
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leafy vegetables significantly impacted AN, AP, and SOM. The
NCCE exhibited a maximum increment in AN (24.31%), AP
(14.81%), and SOM (26.37%) compared with the FE. The year
factor was significant, with the highest increment in AP and SOM in
2018 than in 2017 (Table 6). The highest increase was observed at
2™ fruiting stage as compared to other stages (Table 6). However,
AK was higher in CE, which increased AK by 9.78% compared to
FE. The year factor was significant, with the highest increment in
AP in 2017 than in 2018 (Table 6). The highest increase was

observed at 2™ fruiting stage as compared to other stages.

3.7 Effect of different leafy vegetable
cropping systems on eggplant fresh and
dry biomass

Leafy vegetable cropping systems significantly (P < 0.05)
increased eggplant’s fresh and dry weight over FE. Both years, the
highest increment in eggplant biomass was observed in NCCE and,
CE rotation (Table 7). However, the highest enhancement was
observed in 2018, and the observed increase was 73.05% in NCCE
and 62.06% in CE rotation. The year factor also had a significant
effect; the highest increase in fresh weight was observed in 2018
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TABLE 4 Effect of different leafy vegetable rotation systems on the antioxidant system and soluble protein of eggplant at different growth stages during the year 2017 and 2018.

Treatment SOD activity POD activity PAL PPO APX activity CAT activity Soluble protein
(V) g’1 FW h™") (U mg’1 protein min™") (A290 g’1 h™) (0.001AA min™) Mm/(g. min) (V) mg’1 protein ) (mg g’1)
Year
2017 615.8 + 175.9b 18.76 + 4.51b 2758 + 819.9b 368.5 + 222.5a 7.96 + 1.52b 25.89 + 5.24b 15.82 + 2.88b
2018 659.3 + 157.5a 19.29 + 4.71a 2820 + 799.6a 324.0 + 187.0b 8.66 + 2.02a 27.68 + 4.16a 1630 + 2.81a
Leafy vegetables
FE 537.0 + 151.3e 15.20 + 2.70d 2462 + 723.6e 307.8 + 175.9d 7.51 + 1.80e 23.57 + 4.05d 14.14 + 2.14c
WOE 560.5 + 154.9d 16.39 + 2.91c 2642 + 761.4d 332.1 % 192.0¢ 7.87 + 1.90d 25.11 + 4.03cd 1526 + 1.77b
CE 692.3 + 142.6b 20.38 + 3.77b 2957 + 768.2b 369.3 + 220.9a 8.73 + 1.62b 28.17 + 4.06ab 17.68 + 3.33a
NCCE 743.0 + 153.0a 23.36 + 4.51a 3146 + 819.3a 373.8 + 227.6a 8.93 + 1.72a 30.17 + 4.72a 17.87 + 2.51a
LLE 654.7 + 143.7¢ 19.80 + 3.70b 2737 + 795.3¢ 348.0 + 205.7b 8.50 + 1.67c¢ 26.90 + 4.23bc 15.36 + 2.19b
Stage
1° flowering 4380 + 57.51d 15.03 + 2.14d 1635 + 191.9d 130.4 + 6.83d 6.28 + 0.80d 21.81 + 3.81c 13.00 + 1.56d
1% fruiting 594.0 + 125.5¢ 17.09 + 3.16¢ 2686 + 273.1c 161.3 + 18.44c 7.63 + 0.63¢ 25.65 + 3.36b 1552 + 1.92¢
2™ flowering 690.5 + 107.6b 20.30 + 3.37b 3082 + 318.4b 514.0 + 50.55b 8.46 + 0.48b 29.51 + 3.19a 17.43 + 2.03b
2" fruiting 827.6 + 45.81a 23.69 + 4.06a 3753 + 240.3a 579.2 + 69.96a 10.87 + 0.96a 30.17 + 3.44a 18.30 + 2.39a
F-test
Year (Y) - * ook - ook wonx *
Leafy vegetable (LV) - - . - ook - .
Stage (S) - - . - ook - .
Y XLV xS o ns ek i ek ns ns

Data are presented as means with standard deviation (n= 9). Different letters show significant difference at p<0.05 level. SOD, super oxidase; POD, peroxidase; PAL, phenylalanine ammonia-lyase; PPO, polyphenol oxidase; APX, ascorbate peroxidase: CAT, catalase. FE,
fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant; NCCE, non-heading Chinese cabbage-egglant. *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant.
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TABLE 5 Effect of different leafy vegetable rotation systems on the
oxidative markers of eggplant at different growth stages during the year
2017 and 2018.

Treatment MDA co_r11tent HzQ%
(nmol g FW) (umol g FW)
Year
2017 28.00 + 12.09 b 21.68 + 6.47a
2018 29.59 + 11.89a 21.36 + 6.12a
Leafy vegetables
FE 36.35 + 12.53a 25.87 + 7.23a
WOE 29.30 + 10.91b 22.81 + 6.39b
CE 24.32 +10.29¢ 18.99 + 4.33d
NCCE 24.41 +10.59¢ 18.49 + 4.35d
LLE 29.61 + 11.45b 21.43 + 5.60c
Stage
1% flowering 17.86 + 4.01d 13.37 + 1.60d
1** fruiting 21.58 £ 5.39¢ 20.73 + 2.96¢
2" flowering 30.46 + 5.90b 24.60 + 4.19b
2" fruiting 4530 + 7.17a 27.38 + 4.34a
F-test
Year (Y) * ns
Leafy vegetable (LV) ox ok
Stage (S) - bk
Y xLV xS§S ns ns

Data are presented as means with standard deviation (n=9). Different letters show significant
difference at p<0.05 level. MDA: malondialdehyde; H,O,: hydrogen peroxide. FE, fellow
eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant; NCCE, non-heading Chinese
cabbage-egglant. * p<0.05; *** p<0.001; ns, non-significant.

compared to 2017 (Table 7). Similarly, dry weight was highest in
NCCE and CE in both years, which increased by 51.01% in CE and
71.45% in NCCE over FE in 2018.

3.8 Correlation between plant
physiological, biochemical indexes, and soil
chemical properties

The correlation between various physiological, biochemical,
and soil chemical characteristics was examined using the Pearson
correlation (Figure 1). Based on Pearson correlation PFB, PDB
showed a highly significant positive correlation with SOM, AN, AP,
and AK. However, these traits showed a highly negative correlation
with NPQ, MDA, HD, and EC. Similarly, plant enzymes such as
SOD, POD, CAT, PAL, PPO, and APX showed a highly negative
correlation with NPQ, MDA, HD, and EC. SOD, POD, CAT, PAL,
PPO, and APX positively correlated with SOM. CAT exhibited a
positive correlation with AK, while PPO showed a positive
correlation with AK.
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4 Discussion

Our results demonstrated that two years of vegetable cover
crops used as a crop rotation significantly impacted soil pH
(Table 6). It is likely due to the incorporation of dead roots in the
soil after harvesting leafy vegetables. Aschi et al. (2017) reported
that the residues’ chemical properties could change the soil pH,
primarily due to their alkalinity and nitrogen content. Soil organic
carbon (SOC) is considered a good soil quality index Ghani et al.
(2022d) because it affects soil fertility. Many studies have reported
that in crop rotation, below-ground rhizodeposits and root addition
are the key factors of carbon accumulation in the soil, accounting
for up to 75% of soil organic matter (Jones et al., 2009; Ghani et al.,
2022d). Different types of crop stalks, twigs, dead roots as well as
fallen leaves are important sources of nutrients Aschi et al. (2017),
while leafy vegetables used as crop rotation can scavenge nutrients
from the soil, store it in their residues and return it to the soil for the
next crop through root decomposition and improved SOM
(Dorissant et al., 2022; Ghani et al., 2022b). Kong and Six (2012)
reported that living cover crops significantly improved soil organic
matter compared to bare fallow due to the rhizodeposition of low
molecular carbon into the soil. The rhizodeposition rate decreases
with plant age, but the addition of mature roots into the soil as
residue acts as a microbial substrate, thus increasing MBC as well as
soil organic matter (Chahal and Van Eerd, 2020). In line with this
concept, NCCE and CE modify the soil environment (Table 6) by
improving soil nutrients and SOM through root exudates and dead
roots, which were available for eggplant. Our results align with the
findings of Ali et al. (2021), where different winter leafy vegetables
cover crops used as a crop rotation can enhance soil nutrient
availability and SOM by incorporating plant and root residue.

It was observed that eggplant grown on soils after the leafy
vegetable crop rotation exhibited increased growth in terms of plant
height, stem diameter, and greater biomass (Tables 1, 7) and
reflected in significantly increased yield (Ghani et al., 2022b)
compared with mono-cropping for two years. Higher eggplant
growth and biomass production directly correlated to improved
soil chemical properties, evident from the positive correlation
between plant growth and soil chemical parameters (Figure 1).
Similar findings were reported by D’Acunto et al. (2018), where
pea-maize crop rotation improved maize biomass which was
interlinked with different soil properties.

Furthermore, increased growth and yield in eggplant-leafy
vegetable cropping systems were correlated with enhanced
photosynthesis and gas exchange, which was confirmed by the
positive correlation between eggplant growth and photosynthetic
parameters (Figure 1). Earlier, it has been reported that mono-
cropping or intercropping systems negatively influence the
photosynthesis and growth of plants (Yao et al, 2017). Mono-
cropping results in the depletion of soil microbial population and
mineral status. Mono-cropping of cucumber reduces growth and
yield by declining beneficial microbial populations in the soil,
and crop rotation significantly increases the yield (Wu and Wang,
2007). Reduced photosynthesis directly results from the restricted
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TABLE 6 Effect of different leafy vegetable rotation systems on soil chemical properties of eggplant at different growth stages during the year 2017
and 2018.

Treatment
Year
2017 7.49+0.17b 162.14+60.43a 125.97 + 3.3% 34.37 £ 0.57b 360.58 + 9.43a 21.08 + 0.53b
2018 7.51£0.22a 160.36+71.71b 123.19 + 3.70b 37.67 + 0.65a 351.32 + 9.97b 22.93 + 0.35a
Leafy vegetables
FE 7.11+0.09d 288.58+11.42a 113.79 + 2.99¢ 34.42 +1.20b 338.53 + 3.63d 19.30 + 0.36e
WOE 7.56+0.06bc 113.80+5.81e 116.13 + 3.09¢ 35.19 + 1.16b 355.06 + 2.32¢ 22.06 +0.0.49¢
CE 7.58+0.05b 126.33+7.47¢ 136.06 + 3.59b 35.70 + 1.25b 371.64 + 2.90a 23.08 + 0.28b
NCCE 7.68+0.04a 120.59+5.98d 141.46 + 3.76a 39.52 + 1.42a 363.89 +2.23b 24.39 + 0.33a
LLE 7.57+0.06bc 154.42+4.98b 11545 + 3.11c 35.29 + 1.50b 350.61 + 1.58¢ 21.20 + 0.17d
Stage
1st flowering 7.49+0.18b 162.32+20.32a 123.77 + 1.98b 33.75 + 2.92bc 343.94 + 2.57d 21.65 + 0.56¢
Lst fruiting 7.50+0.20ab 161.58+21.76a 129.79 + 1.58a 35.49 + 2.62¢ 354.35 + 2.70c 21.54 +0.20c
2nd flowering 7.51£0.23a 159.59+22.40b 119.69 + 1.24¢ 36.46 + 2.92b 359.71 + 2.80b 22.16 + 0.25b
2nd fruiting 7.50+0.24ab 159.48+22.57b 125.05 + 1.23b 38.40 + 2.69a 365.80+ 2.61b 22.67 + 0.44ba
F-test
Year (Y) ok ok * * * -
Leafy vegetable (LV) ok ok - - - -
Stage (S) * ok ok ook ook -
Y xLV xS e ns ns ns ns ns

Data are presented as means with standard deviation (n= 9). Different letters show significant difference at p<0.05 level. AN, available nitrogen; AP, available phosphorus; AK, available
potassium; SOM, soil organic matter; FE, fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant; NCCE, non-heading Chinese cabbage-egglant. * p<0.05; *** p<0.001; ns, non-
significant.

stomatal conductance and internal CO, concentrations in mono-  of the photosynthetic system, growth, and yield are not available.
cropped eggplant. It is believed that increased stomatal conductance ~ The present investigation shows the protection of available mineral
leads to the maintenance of CO, reflected in increased  status and soil health due to crop rotation with leafy vegetables.
photosynthetic rate (Ahanger et al., 2018). Reports discussing the ~ Reduced photosynthesis in the mono-cropping or intercropping
role of leafy vegetables-eggplant cropping systems in the protection  system results in declined production of energy, carbohydrate

TABLE 7 Effect of different leafy vegetable rotation systems on fresh and dry weight of eggplant during the year 2017 and 2018.

Treatment Fresh Weight (g) Dry Weight (g)
2018 2018
FE 351.41+8.18e 342.13+11.48e 346.77+6.89¢ 140.70+2.95fg 127.66+4.47g 134.18+10.58e
WOE 448.74+9.00d 474.1248.05cd 461.43+10.94c 163.53+12.03de 174.12+5.69cd 168.83+4.14c
CE 521.35+12.39bc 454.47+15.86ab 537.91+5.49b 187.88+4.06¢ 192.79+4.27bc 190.34+7.12b
NCCE 553.35+10.49ab 592.08+11.22a 572.72+11.46a 208.40+5.14ab 218.88+5.34a 213.64+7.90a
LLE 370.74+9.03ef 389.28+9.49¢ 380.01+7.05d 148.23+4.00ef 153.28+3.89ef 150.76+5.30d
Year means 449.12+21.61b 470.42+25.65a 169.75+6.89a 173.35+8.58a
Tukey HSD test Treatment Year Interaction Treatment Year Interaction
ok ok NS ok NS *

Data are presented as means with standard deviation (n= 3). Different letters show significant difference at p<0.05 level. FE, fellow eggplant; WOE, welsh onion-eggplant: CE, celery-eggplant;
NCCE, non-heading Chinese cabbage-egglant. * p<0.05; *** p<0.001; ns, non-significant.
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FIGURE 1

Pearson correlation between eggplant growth, physiological and soil
chemical parameters. The brown color represents a positive
correlation while the blue color represents a negative correlation.
The lighter colors indicate the lower values of the correlation
coefficient, while darker colors indicate high positive correlation.
PH, Plant height; STD, stem diameter; PFB, plant fresh weight; PDB,
plant dry biomass; CA, chlorophyll a; CB, chlorophyll b; CAB,
chlorophyll ab; Car, carotenoids; pN, net photosynthesis; E,
transpiration rate; Ci, internal CO, rate; gs, stomatal conductance;
Fv/Fm, photochemical efficiency; ®PSII, photosystem II; NPQ, non-
photochemical quenching coefficient; qP, photochemical
quenching; SOD, super oxidase; POD, peroxidase; PAL,
phenylalanine ammonia-lyase; PPO, polyphenol oxidase; APX,
ascorbate peroxidase; CAT, catalase; MDA, malonaldehyde; HD,
hydrogen peroxide; EC, electrical conductivity; AP, available
phosphorus; AK, available potassium; SOM, soil organic matter The
stars indicate a significant correlation at (*) 0.05, (**) 0.01, (***), and
0.001 levels of significance.

metabolism and chlorophyll production (Table 2), (Su et al., 2014).
Crop rotation improves soil physical and chemical environment
(Table 6), including water holding capacity and aeration, and
ultimately increases plant growth attributes like root growth and
nutrient foraging. In the wheat-peanut crop rotation system,
increased nitrogen uptake and allocation resulted in greater
chlorophyll synthesis and photosynthesis rate (Liu et al., 2019).
Moreover, increased pigment synthesis and photosynthesis in the
crop rotation system were linked with improved PSII functioning.
Relative to FE, Fv/Fm, ®PSII, and qP increased in all cropping
systems while NPQ exhibited a reduction (Table 3). Photosystem
functioning was considerably enhanced during both experimental
seasons due to crop rotation with WOE, CE, NCCE, and LE.net
Increased fluorescence parameters reflect photosynthetic regulation
through non-stomatal modulations (Ahanger et al., 2020). The
present study envisaged that both stomatal and non-stomatal
enhancements in the different cropping systems influenced the
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growth and yield performance of eggplant. Increased access to
external CO, and reduced accumulation of toxic radicals in
intercropping systems significantly contributed to the functioning
of photosynthetic machinery (Yao et al,, 2017).

Increased growth and photosynthesis in plants raised in the
crop rotation system are due to reduced oxidative damage in them
(Table 5), resulting in a significant enhancement in the structural
and functional integrity of membranes and cells (Liu et al., 2019).
Reduced generation of reactive oxygen species prevents the
oxidative effects on the membranes reflecting in the maintenance
of plant functioning (Ahanger and Agarwal, 2017b). In the present
study, eggplant grown on soils following crop rotation with different
leafy vegetables also exhibited reduced lipid peroxidation due to a
significant decline in the accumulation of hydrogen peroxide during
both years. Our findings were further supported by a negative
correlation among growth, photosynthesis, and oxidative markers
(Figure 1). The declining oxidative effects of mono-cropping due to
the growth of leafy vegetables were observed due to up-regulation of
APX and CAT activities in them during both years and at both
developmental stages (Table 4). Relative to FE, activities of APX and
CAT increased in seedlings grown after leafy vegetable crops, with
the maximal increase in plants grown in NCCE system at both
developmental stages. APX and CAT act on the same substrate, i.e.,
hydrogen peroxide but at different sites, with APX eliminating
excess hydrogen peroxide from chloroplast while CAT from the
cytosol (Ahmad, 2010). Increased APX activity due to crop rotation
with leafy vegetables strengthened the key radical scavenging
pathways, including ascorbate-glutathione in chloroplasts leading
to increased protection of major cellular pathways, including
photosynthesis (Ahanger and Agarwal, 2017a; Ghani et al,
2022a). Up-regulation of the activities of APX due to crop
rotation prevents the formation of toxic hydroxyl radicals by
assisting in the maintenance of redox homeostasis and the
electron donors, including ascorbate and glutathione (Khan and
Khan, 2014). Greater ascorbate and glutathione content due to
improved ascorbate-glutathione functioning maintains the electron
transport in chloroplasts and mitochondria (Nahar et al., 2016).

In addition to this protein content of eggplant increased
significantly due to crop rotation with leafy vegetables. During
both years, maximal protein content was reported at the second
fruiting and second flowering stages. During both years of
experimentation, the influence of leafy vegetable crop rotation on
eggplant protein content slowly increased from 2017 to 2018 and
showed an increasing trend with the developmental stage (Table 6),
indicating the development of beneficial proteins under a crop
rotation system. Proteins form an important nutritional component
of plants, particularly in vegetables, and help plants maintain
growth and development under different growth conditions (Lee
and Yaffe, 2016). Proteins assist in signaling and maintaining
development from seed germination to flowering. Plants have
specific proteins maintaining key cellular functioning like
photosynthesis, signaling, and response elicitation. Intercropping
and crop rotation systems have been proposed to influence plant
development by modulating physiology and biochemistry and
reducing disease incidence; however, the effect has been reported
to be species-dependent (Crow et al., 2000; Ghani et al., 2019a).
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Such beneficial effects of crop rotation with leafy vegetables can be
due to the significant decline in the accumulation of allelopathic
compounds within the eggplant rhizosphere, thereby declining the
growth through auto-allelopathy (Cheng and Cheng, 2015).
However, eggplant crop rotation with leafy vegetables may have
reduced the accumulation of allelochemicals and improved the
synthesis of some specific proteins. Proteins mediate specific
defense pathways in plants (Chuang et al., 2016). In addition, the
activity of PAL is stimulated significantly due to crop rotation with
vegetable crops.

PAL regulates the synthesis of secondary metabolites in plants.
Increased PAL activity has been reported to contribute to greater
stress tolerance by enhancing antioxidant potential (Ahanger and
Agarwal, 2017b). Increased PAL activity due to crop rotation with
leafy vegetables may improve eggplant metabolite content with
significant health benefits (Gurbiiz et al,, 2018). Eggplant is rich in
some key metabolites contributing to its functional and
pharmaceutical properties (Rodriguez-Jimenez et al., 2018).
Increased PAL and PPO activity (Table 4) under crop rotation
with different vegetables justify the beneficial effect on secondary
metabolism. The accumulation of secondary metabolites is
regulated by PPO, which does this by oxidizing phenols. This, in
turn, mediates fruit harvesting and resistance to pathogens. On the
other hand, it has been reported that silencing PPO makes pathogen
infection more likely by modifying the accumulation of phenolic
compounds and their derivatives (Araji et al., 2014). However,
through metabolomics increase in individual metabolites can be
assessed to unravel the exact mechanisms involved.

5 Conclusion

Conclusively results of the study, which was carried out
underneath a plastic shed using sustainable practices, indicated
that different leafy vegetable species could be successfully used to
minimize external inputs without a reduction in yield. The study
was carried out within the context of the transition of agricultural
practices toward the cultivation of sustainable vegetables.
Conclusively, crop rotation of eggplant with leafy vegetable
cropping systems, including WOE, CE, NCCE, and LE, exhibited
greater yield and growth through improving soil chemical
properties, modulation in the photosynthetic efficiency and gas
exchange parameters. Increased activity of antioxidant enzymes
imparted reduced oxidative damage by lowering the generation of
reactive oxygen species. In addition, crop rotation with leafy
vegetables may have regulated the metabolism of secondary
metabolites through the upregulation of PAL and PPO. By
modulating ROS and altering the activity of antioxidant enzymes,
NCCE, and CE were more effective in improving growth and yield
than other leafy vegetable species assessed in this study, including
fallow eggplant. This was determined by comparing their results to
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those of other leafy vegetable plants. Further studies at
transcriptomic, metabolomic, and molecular levels would be
helpful in unraveling the exact mechanisms of the above findings.
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Major pests of corn insects include corn borer, armyworm, bollworm, aphid, and
corn leaf mites. Timely and accurate detection of these pests is crucial for
effective pests control and scientific decision making. However, existing
methods for identification based on traditional machine learning and neural
networks are limited by high model training costs and low recognition accuracy.
To address these problems, we proposed a YOLOvV7 maize pests identification
method incorporating the Adan optimizer. First, we selected three major corn
pests, corn borer, armyworm and bollworm as research objects. Then, we
collected and constructed a corn pests dataset by using data augmentation to
address the problem of scarce corn pests data. Second, we chose the YOLOv7
network as the detection model, and we proposed to replace the original
optimizer of YOLOvV7 with the Adan optimizer for its high computational cost.
The Adan optimizer can efficiently sense the surrounding gradient information in
advance, allowing the model to escape sharp local minima. Thus, the robustness
and accuracy of the model can be improved while significantly reducing the
computing power. Finally, we did ablation experiments and compared the
experiments with traditional methods and other common object detection
networks. Theoretical analysis and experimental result show that the model
incorporating with Adan optimizer only requires 1/2-2/3 of the computing power
of the original network to obtain performance beyond that of the original
network. The mAP@[.5:.95] (mean Average Precision) of the improved network
reaches 96.69% and the precision reaches 99.95%. Meanwhile, the mAP@[.5:.95]
was improved by 2.79%-11.83% compared to the original YOLOv7 and 41.98%-
60.61% compared to other common object detection models. In complex
natural scenes, our proposed method is not only time-efficient and has higher
recognition accuracy, reaching the level of SOTA.
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1 Introduction

In the past decade, due to the excellent performance of machine
learning and deep learning techniques on other tasks, scholars have
applied them to crop pests and disease identification and have made
good, progress in pests and disease identification. Scholars have
applied them to crop pests and disease identification and made
good progress. In 2010, Al-Bashish et al. (Al Bashish et al., 2010a).
Introduced proposed the use of K-means clustering with HSI color
space co-occurrence to extract color and texture features of plants,
ultimately classifying five different plant diseases with a simple
neural network. Since then, research works based on various
machine learning methods to identify plant diseases and pests
have emerged. In 2016, Sladojevic et al. (Al Bashish et al., 2010a).
developed a new method for identifying 13 different plant diseases
using deep convolutional neural networks, achieving a final
accuracy of 96.3%. The authors created a comprehensive database
and methodology for modeling, which is essential for future
research in this field. Scholars have gradually realized the great
potential of deep learning techniques, and research on pests and
disease identification based on various deep learning methods has
proliferated. For instance, Amara et al. (2017) identified and
classified banana leaf diseases in the natural environment by
using LeNet network, Nachtigall et al. (Bochkovskiy et al., 2020).
used CNN to recognize diseases, nutrient deficiencies and herbicide
damage in apple leaf images. Inspired by these previous works, our
team conducted research on corn borer and anthracnose spore
identification using different machine learning methods, all of
which yielded promising result. However, these traditional
machine learning and deep learning methods above still have
their own limitations, such as high model training cost and poor
robustness, which sharply increase the cost of academic research or
industrial implementation. Therefore, it is important to find a pests
identification method with low training cost, accurate identification
and good robustness.

1.1 Related work and motivation

With the development of digital image processing and machine
learning techniques, intelligent detection and identification of crop
diseases and pests have become increasingly prevalent. In plant
disease identification, Sasaki et al. (Girshick, 2015). utilized spectral
reflectance differences to distinguish healthy and diseased areas on
cucumber leaves, while Vizhanyo et al. (Girshick et al,, 2014). used
color point differences to identify diseased mushrooms. In China,
Guili Xu et al. (He et al., 2017). achieved over 70% accuracy in
identifying tomato leaves based on histogram-based color feature
extraction. Yuxia Zhao et al. (Li et al, 2022). used a Bayesian
classifier to successfully identify five diseases, including maize rust.
Our team has proposed several algorithms, such as the marker
watershed algorithm (Lin et al., 2017a) and the Otsu separation and
symbolic similarity-driven level set algorithm (Lin et al., 2017b), for
accurate statistics of anthracnose spore distribution density on
farms for better control. Additionally, our team proposed an
accurate segmentation method for diseased fruits based on log
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similarity-constrained Otsu and distance rule level set activity
profile evolution (Liu et al., 2019), which can achieve good
segmentation of diseased fruits.

In the field of plant pests identification, various methods have
been proposed to improve the accuracy and efficiency of the
identification process. However, most of these methods have
limitations that need to be addressed. For instance, In terms of
plant pests identification, Prof. Zorui Shen of China Agricultural
University (Liu et al., 2008) firstly used mathematical morphology
to solve the problem and achieved good result, but the variation of
the selection of structural elements in mathematical morphology
will affect the identification result, then it will cause the robustness
of the identification algorithm is not strong. For insects’ color
characteristics, Dr. Zhu used color histogram and double-tree
complex wavelet transform (Liu et al, 2016) and support vector
machine (Mohanty et al., 2016) to further improve the recognition
rate, but this method requires reliable data sets for training, so a
large number of images need to be acquired and the cost is high. In
addition, Dr. Zhu also proposed the color histogram combined with
Weber descriptors for insect recognition of Lepidoptera (Nachtigall
et al,, 2016), CART-based combined with LLC (Redmon et al,
2016), and color-based combined with OpponentSIFT features
(Redmon and Farhadi, 2017). However, these methods require
manual extraction of features and are not applicable to borer
moth family pests. To address these limitations, we propose an
automatic pests monitoring robotic vehicle with a Pyralidae
recognition scheme based on histogram and multi-template image
reverse mapping method (Redmon and Farhadi, 2018). This new
approach enables the automatic capture of pests images and
achieves a recognition accuracy of up to 94.3% in the natural
farm planting scenario. We also propose a pests image
segmentation method based on GMM and DRLSE (Ren et al,
2015), which can automatically identify positive and negative
samples of specific pests from a large number of scene images
with recognition accuracy of up to 95%. Additionally, our proposed
hybrid Gaussian model-based texture disparity representation and
texture disparity-guided DRLSE model (Sammany and Medhat,
2007) can also achieve accurate segmentation of crop pests
and diseases.

While the traditional machine learning methods have
contributed to the field of crop pests and disease identification,
they have certain limitations that prevent them from achieving the
desired result. The advancements in deep learning technology have
paved the way for researchers to apply deep learning algorithms to
pests recognition, resulting in significant progress in this field. Deep
learning algorithms can automatically extract image features,
making good use of this information to achieve high accuracy in
pests and disease identification. Several studies have used deep
learning techniques to identify and classify pests, achieving higher
robustness, generalization, and accuracy. For example, Sammany
et al. (Sasaki et al., 1998). utilized genetic algorithms to improve
neural networks, reducing the dimensionality of feature vectors and
improving pests recognition efficiency. Similarly, Al Bashish et al.
(Sladojevic et al., 2016). used the K-means clustering algorithm to
classify images into clusters, extracted feature values of color and
texture for each cluster, and inputted them into neural networks for
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classification. Mohanty et al. (Tian et al,, 2019). used the GoogleNet
convolutional neural network structure to build a pests
identification model with satisfactory result. Compared to
traditional machine learning methods, deep neural network-based
pests recognition methods have better accuracy, making them an
important research direction in pests recognition. As deep learning
technology continues to advance, we can expect more
breakthroughs in crop pests and disease identification, which will
undoubtedly benefit the agriculture industry.

Deep learning models have shown promising result in
identifying and detecting pests. However, there are still
limitations that need to be addressed. In recent years, various
sophisticated training methods have been developed to improve
the generalization and robustness of deep models. Nevertheless, the
cost of training these models has increased significantly due to the
higher computing power required. This increase in training cost has
a considerable impact on the research and industrial
implementations. One common approach to reduce the training
time is to increase the batch size and assist parallel training.
However, a larger batch size often leads to a decrease in
performance. The YOLOv7 method (Vizhanyo and Felfoldi,
2000), which is the current SOTA in object detection, also faces
the same challenge. In this context, a new YOLOV7 corn pests
identification method is proposed in this paper, which incorporates
the Adan optimizer. This new method uses Adan (Wang et al,
2022), a novel optimizer that can sense the surrounding gradient
information and efficiently escape from sharp local minimal areas.
By replacing the original optimizer of YOLOv7 with Adan, the
model can achieve faster and better training without compromising
its accuracy. The proposed YOLOv7 method can identify major
corn pests in complex natural environments quickly and accurately,
reducing the cost of practical application of model. With fewer
parameter updates, the deep model can achieve faster and more
accurate identification, making it suitable for various applications.
In summary, the YOLOV7 corn pests identification method
incorporating the Adan optimizer presented in this paper can
significantly reduce the training time and cost while maintaining
the accuracy of the model. It is expected to contribute to the efficient
and accurate identification of pests in agricultural production.

1.2 Contributions

1. To address the lack of maize pests data, we used data
augmentation techniques to construct a maize pests image
dataset, which effectively improved the training of the
model.

2. We replaced the original optimizer of YOLOv7 with a new
optimizer, Adan, which combines a rewritten Nesterov
momentum algorithm with an adaptive optimization
algorithm and introduces decoupled weight decay,
allowing the model to increase its speed without
degrading its accuracy, thus enabling faster and better
training of the model and reducing the cost of
implementing the model.
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3. From the theoretical analysis and experimental result, it can
be seen that the YOLOV7 network incorporating the Adan
optimizer can effectively alleviate the negative impact
caused by the increase of batch size, and solve the
problem that the training speed and training accuracy
cannot be achieved at the same time.

1.3 Paper organization

The rest of this paper is organized as follows. The second part
Section 2 mainly introduces the related network model; In the third
part Section 3, experimental scheme, process and results are
introduced in detail; The fourth part Section 4 discusses the
experimental results; The fifth part Section 5 summarizes the full
text and puts forward the existing deficiencies and the direction that
can be improved.

2 Materials and methods

This section first introduces the basic concepts of object
detection network. Then it describes the YOLOv7 network and
Adan optimizer used in this project, and finally introduces the
proposed improved network.

2.1 Object detection network

Object detection is one of the core problems in the field of
computer vision. It needs to find out all the objects of interest in an
image, and determine their classes and locations. Object detection is
always the most challenging problem in the field of computer vision
because of the different appearances, shapes and poses of various
objects, as well as the interference of illumination, occlusion and
other factors during imaging. A diagram of the object detection task
is shown in Figure 1.

The current popular algorithms can be divided into two
categories, one is the two-stage algorithm based on Region
Proposal, which find out some candidate regions primarily, and
then adjust the regions for classification, such as the series of R-
CNN (Regions with CNN features) algorithm (Xu et al., 2002; Zhao
and Hu, 2015; Wang et al., 2020; Xie et al, 2022). The other
category is one-stage algorithm, such as SSD (Zhao et al,, 2015)
(Single Shot Multibox Detector), the series of YOLO (You Only
Look Once) algorithm (Vizhanyo and Felfoldi, 2000; Zhao et al.,
2007; Zhu et al., 2015a; Zhu et al., 2015b; Zhao et al., 2019; Zhao
et al.,, 2020), RetinaNet (Zhu et al., 2010), FCOS (Zhu et al., 2012)
(Fully Convolutional One-Stage Object Detection) and other such
side-to-side networks. They only use a convolutional neural
network to directly predict classes and locations of different
objects. Comparing the two categories of object detection
algorithms, the former is more accurate but slower, while the
latter is faster but less accurate. In this paper, some representative
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FIGURE 1

Schematic diagram of object detection: (A) Original map. (B) Object detection map.

networks in the above two categories are selected for

comparative experiments.

2.2 YOLOv7

YOLOV7 is a new network framework based on the series
of YOLO algorithm, which mainly designs a better performance
detection model through the following four aspects:
backbone design with new ELAN module, composite model
scaling, deep supervision label assignment strategy and model
re-parameterization.

The first improvement is the design of new network structure.
YOLOV7 proposes such a view: the shortest and longest gradient
paths can be controlled to achieve more effective learning and
convergence of deep networks. Based on this idea, YOLOV7 designs
the E-ELAN network structure as shown in Figure 2 on the basis of
ELAN. In common ELAN module, the whole network reaches a
stable state regardless of the gradient path length and the number of
computing modules. However, if more ELAN modules are stacked
indefinitely, this stable state may be destroyed and the parameter
utilization may be reduced. Based on the above shortcomings,
YOLOV7 proposes the E-ELAN module. E-ELAN module adopts
the structure of expand, shuffle and merge cardinality, and it can
guide different computing blocks to learn more diversified
characteristics compared to common ELAN module, thus
improving the learning ability of the network without destroying
the original gradient path.

The second improvement is composite model scaling. The main
purpose of model scaling is to adjust certain properties of the model
and generate models of different sizes to meet the needs of different
inference speeds. If the E-ELAN method described above is applied
directly to a cascaded model, the action of directly scaling up the
depth of the model will result in a change in the scale of the input
and output channels. As a result, the model’s usage of hardware
may decrease. Therefore, for the cascaded model, a composite
model method must be proposed. The method must consider that
the width of the transition layer should also be changed by the same
amount when the depth of the computing module is scaled. Based
on these ideas, YOLOV7 proposes a network architecture as shown
in Figure 3. The network only needs to scale the depth in the
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computation block when performing the model scaling, and the rest
of the transport block will use the corresponding width scaling. The
composite scaling method can preserve the properties of the model
at the initial design and maintain the optimal structure.

The third improvement is deep supervision label assignment
strategy. Deep supervision is a common technique in deep network
training, it adds auxiliary head for loss calculation in the middle of
the network to assist training. In order to differentiate auxiliary
head for different functions, the final output head is called the Lead
Head and the auxiliary training head is called the Aux Head. The
core idea of deep supervision is to take shallow network weight and
auxiliary loss as guidance, combine the output result with Ground
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FIGURE 2
E-ELAN structure diagram. bold values means the better results.
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True (GT), and use some calculation and optimization methods to
generate reliable soft labels. For example, YOLO uses the bounding
box regression and GT and the IOU of the prediction box as soft
labels. The current common method of assigning soft labels to Aux
Head and Lead Head is shown in the Figure 4A, which separates
Aux Head and Lead Head, and uses their respective prediction
result and GT to perform label assignment. In contrast, YOLOv7
network uses the Lead Head prediction result as a guide to generate
coarse-to-fine hierarchical labels for Aux Heads and other Lead
Heads learning. The two proposed deep supervision label
assignment strategies are shown in Figures 4B, C. The reason for
this is that the Lead Head has strong learning ability, and the
generated soft labels should better represent the distribution and
correlation between the source and target data. By allowing the
shallow Aux Heads to directly learn the information that Lead
Heads has already learned, the Lead Heads will be better able to
focus on learning residual information that has not yet
been learned.

The last improvement is model re-parameterization. Re-
parameterization is a technique used to improve a model after
training, which increases the training time but improves the
inference result. Although model re-parameterization has
achieved excellent performance on VGG, when applied directly to
architectures such as ResNet and DenseNet, it instead causes a
significant decrease in accuracy. For these reasons, YOLOV7 uses
the constant connection-free RepConvN to redesign the
architecture of the reparameterized convolution by replacing the

Lead Head

Lead Head

Deep supervision label assignment strategies: (A) Common strategy. (B, C) Two proposed strategies of YOLOvV7. bold values means the better results.

FIGURE 4
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2.3 Adan optimizer

The most direct way to speed up the convergence of the
optimizer is to import momentums. The deep model optimizers
proposed in recent years all follow the same momentum paradigm
used in Adam - the reball method. However, with the advent of ViT,
researchers found that Adam was not able to train ViT. And
AdamW, an improved version of Adam, gradually became the
preferred choice for training ViT and even ConvNext. However,
AdamW does not change the momentum paradigm in Adam,
which tends to cause the performance of AdamW-trained
networks to drop dramatically when the batch size increases to a
certain threshold.

In the field of traditional convex optimization, there is an
momentum algorithm equal to the heavy ball method, the
Nesterov momentum algorithm. As shown in Equation 1.

AGD: g = Vf(6 = n(1 = Br)myy) + & my

= (1= B)my + g Oy = O — iy,

(1)

The Nesterov momentum algorithm has a faster theoretical
convergence rate than the heavy ball method for smooth and
generally convex problems, and can theoretically withstand larger
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batch size. Different from the heavy ball method, Nesterov
algorithm does not calculate the gradient at the current point, but
uses the momentum to find an extrapolation point, and then carries
on the momentum accumulation after calculating the gradient at
the point. Although Nesterov momentum algorithm has some
advantages, it is rarely applied and explored in depth optimizers.
One of the main reasons is that Nesterov algorithm needs to
calculate gradient at extrapolated points, which requires multiple
overloading of model parameters during updating at current points
and requires artificial back-propagation (BP) at extrapolated points.
These inconveniences greatly limit the application of Nesterov
momentum algorithm in depth model optimizer.

In order to give full play to the advantages of the Nesterov
momentum algorithm, Adan researchers obtained the final Adan
optimizer by combining the rewritten Nesterov momentum with
the adaptive optimization algorithm and introducing decoupled
weight attenuation. In order to solve the problem of multiple model
parameter overloads in the Nesterov momentum algorithm, the
researchers first rewrote the Nesterov momentum algorithm as
shown in Equation 2.

8 = Ecop[Vf (6, O] + &
my = (1= B)my_y + [gk + (1= B)(gk _gkfl)]

Oe1 = O — Mmy

Reformulated AGD:

@)

Combining the rewritten Nesterov momentum algorithm with
the adaptive class optimizer - replacing the update of m_k from the
cumulative form to the moving average form and using the second-
order moment to deflate the learning rate - has resulted in a basic
version of Adan’s algorithm. As shown in Equation 3.

my = (1= Bmy_y + Bilg + (1= Br)(gk — gk1)]
e = (1= By + Bslgie + (1= Br)(gk _gk—l)}z
M =11/ /i T €

Ot = O = Mg oy

Vanilla Adan:

3)

Although it can be seen that the update of m_k combines the
gradient with the gradient’s difference, in real-world applications it
is frequently necessary to treat the two physically distinct
meaningful things separately. For this reason, the researchers
developed the gradient difference momentum v_k, as shown in
Equation 4.

my = (1= B)myy + Bigivi = (1= Bo)vics + Bolge — &) (4)

Here different momentum/average coefficients are set for the
momentum of the gradient and its difference. The gradient
difference term can slow down the optimizer update when
adjacent gradients are not consistent and, conversely, speed up
the update when the gradients are in the same direction.

Based on the idea of L2 regular decoupling, Adan introduces a
weight attenuation strategy, each iteration of Adan can be regarded
as minimizing some first-order approximation of the optimization
objective F, as shown in Equation 5.
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. _ 1
Oks1 = O — N oty = argmin (F(6)) + (g, B - 9k>+%H9* 6|2,
where Hfo/ﬂ::(x,\/nk+eox>, my = my + (1= By)vy
(5)

Because L2 weight regularization in F is too simple and smooth,
it is unnecessary to make a first-order approximation. Therefore,
only the first-order approximation of training loss can be performed
and L2 weight regularization can be ignored. Then the last iteration
of Adan will become as shown in Equation 6.

_ . _ 1
Oy = Op — Moty = argl(;mnF(@k) + g, 0 — 16, + o 116 6|

(6)

The final Adan optimization algorithm can be obtained by
combining the above two improvements Equation 4 and Equation 6
into the base version of Adan.

2.4 The proposed identification method

Since the network architecture is not changed, we still use the
original network structure of YOLOV7, as shown in Figure 5.

After replacing the optimizer inside YOLOv7 with Adan, the loss
function module will calculate the loss of this forward inference
according to the difference between the output of model and the real
label. Subsequently, the model will take the derivative of loss to obtain
the gradient of each learnable parameter. Then the Adan optimizer can
obtain the gradient and update parameters through the optimization
strategy described above, such as m_k, v_k, n_k, etc. The model keeps
the loss decreasing by updating these parameters after each inference,
thus gradually reducing the difference between the output of model and
the real label, and finally achieving the convergence. The whole model
training process is shown in Figure 6, and the pseudocode is shown in
algorithm 1.

Input: An image [HxWx3].

Output: Detection image.

Preprocessing: The input RGB image aligned to
an RGB image of size 640x640.

Training

for every image in training set do

Stage 1: The processed images are input into
the backbone module for feature
extraction, while the backbonemodulewill
output three feature maps in different
scales. And these feature maps will be
input into the head module together for
prediction.

Stage 2: In the head module, three types of
feature maps will be fused and input into
RepVGG block and detect block to predict
objects.

Stage 3: The loss function module will
calculate the loss of this inference
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FIGURE 5
Network structure diagram.

according to the difference between the
output of model and the real label.
Subsequently, the model will take the
derivative of loss to get the gradient and
pass it to the optimizer module.
Stage 4: Adan Optimizer will initialize the
following parameters: initialization 6,
step size n, average parameter
(B1s B2y Bs3,€[0,11°
weight decays €>O and restart condition A

, stable parameter,

x>0, and then start the optimizing
strategy.

for k<Kdo
compute the stochastic gradient estimator
gx at Oy;

mk = (1 - B1) mk— 1+ Blgk/+set m0 = g0/

= (1-B2) vk—1+ P2(gk — gk — 1) /xset v1 = g1 — g0x/;
nk = (1-83) nk—1+ B3[gk + (1 - B2)(gk — gk - 1)]?
nk = 1/(V/nk +€)

P AT LT8R R TS - k)]

get stochastlc gradient estimator go at 6y

end
end
end

ALGORITHM 1
Description of the algorithm of YOLOvV7 incorporating the Adan optimizer

3 Experiments and result
3.1 Experimental scheme

The experimental scheme proposed is shown as Figure 7. We
first pre-processed the original dataset, mainly including data
recovery, data filtering and data filling. In order to solve the
problem of scarce data, we used data augmentation and transfer
learning to ensure that the network can fully learn the features. The
two technologies will be introduced in detail in the following
sections. And then, the augmented dataset was divided into
training set, testing set and validation set. The training set and
validation set was input into the original YOLOV7 network, the
improved YOLOvV7 network and other comparative networks
respectively. If the performance of the model does not meet
expectations, we will adjust the network’s hyperparameters and
retrain it. After that, the testing set was input into trained models to

+17

mo=Go, Vo—0, ng= (go) 2, update 6, by Line test the performance of different models. Finally, we compared and
7, k=1; analyzed the experimental result.

YOLOvV7 Network
liUpdatmg model to reduce |
Forward inference
Network Network Loss :
bas i 444444 u+
-Updating model parameters to reduce loss:
FIGURE 6

Flow chart of model training.
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FIGURE 7

Flow chart of experimental scheme.

3.2 Evaluation metrics

For binary classification problem, A is called “positive” and B is
called “negative,” and the classifier correctly predicts “True” and
incorrectly predicts “False”. According to these four basic
combinations, the four basic elements of the confusion matrix are
TP (True Positive), FN (False Negative), TN ((True Negative), and
FP (False Positive), as shown in Table 1.

In object detection experiments, IoU, Precision, Recall, AP and
mAP are commonly used as evaluation indexes. Among them, IoU
represents the intersection ratio between the predicted result and
the true label for each category, as shown in Eq.7. Precision refers to
the proportion of data whose value is true indeed when the classifier
predicts it to be true, while Recall refers to the percentage of the
classifier predicts to be correct for all data that is true, respectively,
the formulas of the two is Eq.8 and Eq.9. However, all three indexes
have their limitations, therefore AP/mAP is often used to evaluate

the performance of object detection task.
IoU = b (7)
Precision = e (®)
Recall = 2o )

If we take different confidence levels, we can get different
Precision and Recall, and if we get the confidence level dense
enough, we will obtain the Precision-Recall curve(PR curve), as
shown in Figure 8. While AP refers to the area under the curve, and

TABLE 1 Confusion matrix.

Prediction
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mAP is the average of the AP values for all classes. In particular, the
mAP@].5:.95] refers to the mAP at different IoU thresholds (from
0.5 to 0.95, in steps of 0.05).

3.3 Dataset acquisition

Due to the scarcity of public corn pests dataset, we collected
some images of three major corn pests: corn borer, bollworm, and
armyworm on the web as our original dataset, including 31 images
of corn borer, 36 images of bollworm, 31 images of armyworm and
31 negative images. Prior to beginning the experiment, we used
data augmentation techniques to the technique expands a total of
129 images to 5160 images as our final dataset. During training, we
use a ratio of 8:1:1 to split the dataset into a training set, a
validation set and a testing set. And the training set has 4128
images, the validation set has 516 images and the testing set has
516 images.

1.0

0.8 1

0.6

Precision

0.44

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

FIGURE 8
Schematic diagram of PR curve.
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FIGURE 9
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Data augmentation effect display: (A) Original image. (B) Random crop. (C) Flip. (D) Decrease in brightness

3.4 Data augmentation

As deep learning requires a large amount of data for training, we
used data augmentation on the original dataset, such as random
rotation transform, blur transformation, flip transform, addition of
Gaussian noise and so on. The random rotation and flip
transformation models are able to simulate the different locations of
insect presence, while the blur transformation and Gaussian noise
could better simulate the various environment that may occur in
reality. Figure 9 shows the images which performing
data augmentation.

3.5 Transfer learning

Transfer learning is a popular method in the field of computer
vision, because it can build accurate models in less time. By using
transfer learning, model do not start training from scratch, but start
with the patterns of solving problems that learned from previous
problems. In the field of computer vision, transfer learning is usually
represented by the use of pre-trained models. Pre-trained models are
models that trained on large baseline datasets. For example, in object
detection tasks, backbone neural network is first used for feature
extraction. The backbone used here is generally a neural network
such as VGG, ResNet, etc. Therefore, when training an object detection
model, the parameters of the backbone can be initialized by using the
pre-trained weights of these neural networks so that more effective
features can be extracted at the beginning.

Frontiers in Plant Science

In this paper, we selected the IP102 public dataset as a pre-
trained dataset'. The IP102 dataset is a large-scale dataset for pests
identification, which contains more than 75,000 images of 102 pests
classes. These images exhibit a natural long-tailed distribution. In
addition, about 19,000 of these images have added bounding boxes
for object detection. We select these images with object detection
frames, and feed them into individual networks for training to
obtain pre-trained weights. The pre-trained weights will be
transferred to our own dataset for use, and it can make the final
model more robust and convincing in the pests identification task.

3.6 Experimental environment and
parameter settings

The experimental environment configuration of this paper is
as follows: OS is Linux, GPUs are two Tesla V100 with 80G
memories, training environment is python 3.7, Pytorch 1.11.0.
while Labelme is used to annotate the data. In training, to ensure
comparability across experiments and appropriateness of training,
each training epoch consists of 100 rounds and the img_size is
320%320. In order to verify the good performance of our proposed
algorithm under large batch size, we set the batch size to 512.
While for training of YOLOvV7, the weight_decay is 0.002 and
learning rate is 0.001.

1 https://github.com/xpwu95/IP102
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3.7 Experiment result

Figure 10 shows the prediction performance of the YOLOv7
network incorporating with the Adan optimizer when facing
different species of maize pests.

In order to verify the effectiveness of the algorithm proposed in
this paper, we compared the improved network with the original
network which using Adam, AdamW and SGD. We also tested
several other object detection networks: SSD (Zhao et al,, 2015),
RetinaNet (Zhu et al., 2010), FCOS (Zhu et al., 2012), Faster RCNN
(Xu et al,, 2002) and FPN (Zhu and Zhang, 2013). Finally, we put
these networks together and compared them with the result of our
previous works, and the performance evaluation indexes are
[mAP@.5:.95] and precision which are described above. The
result is shown in Table 2.

We also compared the differences between the YOLOv7
network loaded with Adan and other networks when face with
the same image. And the prediction result are shown in Figure 11.

10.3389/fpls.2023.1174556

4 Discussion

The experimental result in Table 2 shows that the YOLOv7
network incorporating the Adan outperforms traditional ML
algorithms and other comparative networks in the comparison of
both mAP@[.5:.95] and precision. Meanwhile, from Figure 10 we
can see that the improved network has a good performance on
different types of maize pests. What’s more, further comparison of
three different networks in Figure 11 shows that the YOLOv7
network incorporating Adan can still perform well in more
complex natural environment with no errors. SSD network and
the YOLOV7 network incorporating the Adam both have errors in
prediction of the same images. The YOLOvV7 network with the
Adam misidentified the background as insects in two images, while
SSD network misidentified insects as the background in both
images. The final comparison of performance indexes and
prediction result verifies that Adan optimizer can effectively
improve the model performance and help the YOLOv7 network

FIGURE 10
Test result: (A) bollworm. (B) armyworm. (C) corn borer.

TABLE 2 Performance comparison of different networks.

Networks mAP@][.5:.95] Precision
YOLOv7(Adam) (Vizhanyo and Felfsldi, 2000) 0.8646 99.66%
YOLOV7(AdamW) (Vizhanyo and Felfoldi, 2000) 0.9032 99.64%
YOLOV7(SGD) (Vizhanyo and Felfoldi, 2000) 0.9407 99.91%
Faster R-CNN (Xu et al., 2002) 0.6655 88.99%
SSD (Zhao et al., 2015) 0.6608 98.87%
RetinaNet (Zhu et al., 2010) 0.681 98.2%
FCOS (Zhu et al., 2012) 0.602 86.8%
FPN (Zhu and Zhang, 2013) 0.6337 87.6%
Histogram Reverse Mapping None 94.3%
and Invariant Moment (Redmon and Farhadi, 2018)

GMM and DRLSE (Ren et al., 2015) None 86.364%
Ours 0.9669 99.95%

The bold values means the better results.
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FIGURE 11

Comparison of the prediction effect of different networks when facing the same image: (A) YOLOv7(Adan). (B) YOLOv7(Adam). (C) SSD.

reduce the possibility of false recognition and missed recognition,
thus making the network more efficient and error-free in pests
recognition task. For further confirmation, we collected data of the
map|.5:.95] and precision of YOLOv7 networks which using
different optimizers in the experiment when the epoch changed,
as shown in Tables 3, 4. Based on these data, we plotted the
performance trends of four optimizers, as shown in Figure 12.
From Figure 12 we can see that the YOLOV7 incorporating with
Adan optimizer converges faster than YOLOv7 loaded with other
optimizers in both mAP@][.5:.95] and precision, and the result are
consistent with our theoretical analysis. In process of calculating
momentums, Adan uses the modified Nesterov momentum
algorithm, while Adam with AdamW use the traditional reballing
algorithm. The modified Nesterov momentum algorithm helps
Adan to sense the surrounding gradient information in advance,
which helps model to escape from the sharp local minimal regions
efficiently, thus speeding up the convergence of Adan. The
comparison of map[.5:.95] and precision shows that Adan can
obtain greater performance by using only 1/2-2/3 of the
computation of other optimizers. What’s more, the mAP®@].5:.95]
increases by 2.79%-11.83% compared to original optimizers. The
experimental result also confirm that Adan only needs less than 2/3
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of computation of the original network to obtain the performance
beyond it, which is proposed in the original paper of Adan.

5 Conclusions

In this paper, a new deep learning algorithm based on YOLOv7
network and Adan optimizer is proposed, and a feasible maize pests
identification scheme is proposed as well, which is successfully applied
to the identification task of maize pests. The mAP@[.5:95] of the
improved network reaches 96.69% and the precision reaches 99.95% in
this task, which breaks the bottleneck of the original networks. And it
also confirms the feasibility and effectiveness of applying deep
convolutional neural networks to the task of crop pests and disease
identification, and it has positive significance for crop pests and disease
prevention and control. We can quickly identify common corn pests
and take appropriate measures by using this model, and scientifically
carryout pests control methods to reduce possible economic losses and
promote agricultural modernization.

However, the environment is more complex in real life. There are
many other insects with similar characteristics, while the difficulty of
detection in complex environment will be greatly increased due to the
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TABLE 3 Comparison of [NAP@.5:.95] changes with epochs for different optimizers.

epochs Ours YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)
10/100 0.4202 0.342 02719 0.241
20/100 0.5444 0.2034 03086 0.3765
30/100 0.7107 0.4091 04758 0.3746
40/100 0.8681 0.5632 0.7297 0.5812
50/100 0.8691 0.7674 0.802 0.6337
60/100 0.9212 0.8176 0.8966 0.7758
70/100 0.9401 0.8409 0.8846 0.8022
80/100 0.9615 0.8699 0.9083 0.8103
90/100 0.9658 0.9089 0.9289 0.8916
100/100 0.9669 0.8646 0.9032 0.9407

The bold values means the better results.

TABLE 4 Comparison of precision changes with epochs for different optimizers.

YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)

10/100 0.3589 0.4026 0.2933 0.4015
20/100 0.8744 0.3229 0.5222 0.5031
30/100 0.968 0.6481 0.7153 0.6272
40/100 0.9717 0.7398 0.9332 0.9803
50/100 0.9974 0.9466 0.9774 0.995

60/100 0.9981 0.9823 0.9962 0.9979
70/100 0.9986 0.9825 0.9978 0.9967
80/100 0.9991 0.9918 0.9972 0.9989

(Continued)
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TABLE 4 Continued

10.3389/fpls.2023.1174556

YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)
90/100 0.999 0.9959 0.997 0.9997
100/100 0.9995 0.9966 0.9982 0.9991
The bold values means the better results.
A map@[. 5:. 95]/epochs B precision/epochs
—&— Adan —&— Adan
~—®— Adam ~®— Adam
0.8 —&— Adamif —&— Adami
—e— SGD 0.8 —e— SGD
g% 0.6
E 0.4 S04
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FIGURE 12

Comparison of precision changes with epoches for different optimizers. (A) mapa@l[.5:.95] (B) precision.

limitations of scarce data. Meanwhile, some corn pests will appear in
the form of eggs in real life, while these eggs are tiny and their
characteristics are difficult to distinguish, making identification more
difficult. What’s worse, pests data are scarce and difficult to collect, and
the cost of manual labeling is very high. Therefore, how to obtain
sufficient data and enough computing power is the key of future pests
controlling technology researches.
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Research of segmentation
recognition of small disease
spots on apple leaves based on
hybrid loss function and CBAM

Xiaogian Zhang', Dongming Li', Xuan Liu, Tao Sun,
Xiujun Lin and Zhenhui Ren*

College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China

Identification technology of apple diseases is of great significance in improving
production efficiency and quality. This paper has used apple Alternaria blotch and
brown spot disease leaves as the research object and proposes a disease spot
segmentation and disease identification method based on DFL-UNet+CBAM to
address the problems of low recognition accuracy and poor performance of
small spot segmentation in apple leaf disease recognition. The goal of this paper
is to accurately prevent and control apple diseases, avoid fruit quality degradation
and yield reduction, and reduce the resulting economic losses. DFL-UNet
+CBAM model has employed a hybrid loss function of Dice Loss and Focal
Loss as the loss function and added CBAM attention mechanism to both effective
feature layers extracted by the backbone network and the results of the first
upsampling, enhancing the model to rescale the inter-feature weighting
relationships, enhance the channel features of leaf disease spots and
suppressing the channel features of healthy parts of the leaf, and improving
the network’s ability to extract disease features while also increasing model
robustness. In general, after training, the average loss rate of the improved model
decreases from 0.063 to 0.008 under the premise of ensuring the accuracy of
image segmentation. The smaller the loss value is, the better the model is. In the
lesion segmentation and disease identification test, MloU was 91.07%, MPA was
95.58%, F1 Score was 95.16%, MloU index increased by 1.96%, predicted disease
area and actual disease area overlap increased, MPA increased by 1.06%,
predicted category correctness increased, F1 Score increased by 1.14%, the
number of correctly identified lesion pixels increased, and the segmentation
result was more accurate. Specifically, compared to the original U-Net model,
the segmentation of Alternaria blotch disease, the MloU value increased by
4.41%, the MPA value increased by 4.13%, the Precision increased by 1.49%, the
Recall increased by 4.13%, and the F1 Score increased by 2.81%; in the
segmentation of brown spots, MloU values increased by 1.18%, MPA values by
0.6%, Precision by 0.78%, Recall by 0.6%, and F1 Score by 0.69%. The spot
diameter of the Alternaria blotch disease is 0.2-0.3cm in the early stage, 0.5-
0.6cm in the middle and late stages, and the spot diameter of the brown spot
disease is 0.3-3cm. Obviously, brown spot spots are larger than Alternaria blotch
spots. The segmentation performance of smaller disease spots has increased
more noticeably, according to the quantitative analysis results, proving that the
model's capacity to segment smaller disease spots has greatly improved. The
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findings demonstrate that for the detection of apple leaf diseases, the method
suggested in this research has a greater recognition accuracy and better
segmentation performance. The model in this paper can obtain more
sophisticated semantic information in comparison to the traditional U-Net,
further enhance the recognition accuracy and segmentation performance of
apple leaf spots, and address the issues of low accuracy and low efficiency of
conventional disease recognition methods as well as the challenging
convergence of conventional deep convolutional networks.

KEYWORDS

hybrid loss function, CBAM, U-net, small spot segmentation, apple leaf disease

Introduction

Apples are rich in medicinal and nutritional value and are one
of the most widely planted fruit industries in the world (Khan et al,
2022). From the data of recent years, the growth rate of apple
production has been decreasing year by year (Liu et al., 2018), and
analyzing the reasons for this, diseases are one of the important
influencing factors. Diseases of apple trees occur in the roots,
branches, fruits, and leaves, and most of them initially spread
from the leaves, so accurate and effective identification of apple
leaf disease types and the degree of disease is a key aspect of apple
disease protection management. According to statistics, there are
more than 100 kinds of apple leaf diseases, among which Alternaria
blotch and brown spot disease are the two most common leaf
diseases of apple trees. In this paper, we have segmented the spots
and classified the diseases for the 2 common types of apple
leaf diseases.

The traditional method of judging fruit tree leaf diseases mainly
relies on expert experience by manually extracting the color, texture,
and shape characteristics of diseased leaf images (Ayaz et al., 2021).
However, in actual production activities, it is easy to misjudge the type
of disease and thus misuse pesticides, which affects apple production.
Therefore, a more convenient and accurate disease diagnosis method is
urgently needed to analyze and determine the type of disease which
provides researchers with a reasonable application strategy to prevent
and control the disease on time and reduce the planting management
pressure of fruit farmers. With the breakthrough progress of deep
convolutional neural networks in classification tasks on open data sets,
many scholars have applied image segmentation technology to the field
of disease spot recognition to segment disease images and identify them
in real-time, scientifically determine the type of leaf diseases and the
degree of disease, take timely and effective measures to improve apple
yield, and help fruit farmers achieve early disease control.

The current challenges of apple leaf and spot image
segmentation can be summarized into the following three types:

1. Unbalanced pixel ratio. The disease spot information is
readily lost in the disease spot segmentation task because
the pixels in the diseased region only make up a small
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portion of all the pixels in the entire image. Additionally,
because of the imbalanced pixel ratio, a lot of pixels in the
background that can be classified easily hide a lot of the
pixels in the rare diseased zone during the loss summing,
which negatively affects model training and, as a result, the
segmentation of diseased spots.

2. Hard example sample problem. The extraction of target leaf
edges and disease areas is problematic in the natural
environment due to leaf overlap, uneven lighting, and
shadows. These difficult-to-classify pixels directly affect
the outcomes of leaf segmentation, which in turn affects
the extraction of disease spots.

3. When an apple tree is infected in its early stages, the fruit
has not yet developed, and the illness first appears in the
leaves. Brown to dark brown little round spots with a
diameter of 2 to 3 mm was generated on the young leaves
during the early stages of spotted defoliation, and purple
haloes were frequently present surrounding the lesions with
obvious margins. Yellowish-brown dots that eventually
became circular emerged on the leaf surface in the early
stages of brown spot disease. The early stages of spotted
defoliation and brown spot are quite similar, making it
challenging to tell them apart. This makes it difficult to
identify the types of diseases, which has an impact on early
disease prevention and control.

In order to more precisely locate disease areas and identify
disease species, as well as to lay the groundwork for future
assessments of the severity of disease in fruit trees and effective
disease control methods, the main motivation for the current study
is to segment the smaller spots on apple leaves and classify similar
diseases. Smaller spots are challenging to identify in lesion
segmentation, necessitating model improvement to enhance
lesion segmentation performance. Early detection of apple leaf
diseases is essential for timely disease management, illness
prevention, and mitigation of effects on fruit quality and fruit
yield. Further, the performance of various semantic segmentation
models (such as Deeplabv3+, PSPNet (Pyramid Scene Parseing
Network), and U-Net) in spot segmentation has been the focus of
recent research, and performance evaluation measures like MIOU
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(Mean Intersection over Union), MPA (Mean Pixel Accuracy),
Precision, and F1 scores were taken into account in the
current work.

Too et al. (Too et al,, 2019) compared various convolutional
neural network models, including VGG16, InceptionV4, ResNet50,
ResNet101, ResNet152, and DenseNets121, using plant leaf diseases
from the publicly available Plant Village dataset as the research
object. The results of the experiment revealed that the DenseNets
network model performed the best in terms of classifying and
identifying plant leaf diseases. Lin et al. (Lin et al., 2019) improved
the UNet-based deep convolutional neural network model was
proposed for cucumber powdery mildew to segment and extract
the diseased areas of cucumber leaves with an average pixel
accuracy of 96.08%, which is better than traditional detection
methods such as K-means, random forest, and GBDT (Gradient
Boosting Decision Tree). Zhong Y et al. (Zhong and Zhao, 2020)
proposed three methods to identify apple leaf diseases: regression,
multi-label classification, and Focal Loss function based on
DenseNet-121 deep convolutional network, and the accuracy of
the method on the test set was 93.51%, 93.31%, and 93.71%,
respectively, which was better than the traditional CE (cross-
entropy) loss function-based multi-classification methods. Santos
et al. (Santos et al., 2020) used the Mask R-CNN instance
segmentation network model to segment, detect and count the
grape trees in the real scene, compared with other network models,
the F-score of the Mask R-CNN network model achieved an
optimal effect of 0.91. Ngugi et al. (Ngugi et al., 2020) modified
the encoder component of the UNet network model to offer the
network the ability of multi-scale feature extraction to achieve
tomato leaf disease spot segmentation on complicated backdrops,
thus increasing the segmentation accuracy of tomato leaf illnesses.
On the entire plant leaf specimen dataset, Hussein et al. (Hussein
et al, 2021) used DeepLabV3+ to conduct segmentation
experiments and found that utilizing a deep learning semantic
segmentation model produced superior semantic segmentation
outcomes than target detection techniques like Faster R-CNN
(Ren et al.,, 2017) and Yolo v5. Wang P et al. (Wang et al., 2021)
proposed to use CA-ENet to identify different apple diseases. This
method integrates a coordinate attention block in the EfficientNet-
B4 network, uses deep separable convolution in the convolution
module, and introduces the h-swish activation function. The
experimental results show that the accuracy of this method is
98.92%, and the average F1 score is 0.988, which is better than
ResNet-152, DenseNet-264, and ResNeXt-101. Tassis L M et al.
(Tassis et al,, 2021) used the Mask R-CNN network, U-Net, and
PSPNet networks to automatically detect identify disease spots in
field images containing some coffee trees and obtained 73.90%
accuracy and 71.90% recall in the instance segmentation task; for U-
Net and PSPNet networks, 94.25% and 93.54% average intersection
and union were obtained. Li X et al. (Li et al., 2022) used U-Net,
PSPNet, and DeepLabV3+ (Chen et al, 2018a) semantic
segmentation model for potato leaf segmentation, and the MIoU
of the model was 89.91% and MPA was 94.24%.

Studies have shown that plant leaf lesion segmentation based on
deep learning semantic segmentation models is feasible, but existing
studies have only used CNN-based models to identify crops and

Frontiers in Plant Science

10.3389/fpls.2023.1175027

plant diseases without improving the models, and there are fewer
studies on segmentation of apple leaf lesion regions based on
semantic segmentation. Liu et al. (Liu et al, 2022) used the
severity of apple Alternaria blotch assessed using DeeplabV3 +,
PSPNet, and UNet. The correlation coefficient and consistency
correlation coefficient were both 0.992 and the average accuracy
of severity categorization was 96.41%. The study’s lack of many
disease instances in a single leaf image was a drawback, even though
the reference value and anticipated value were in agreement. In
addition, in prior research, the loss function of the model is typically
a single loss function. In this study, to enhance the segmentation
performance and achieve more precise segmentation of leaves and
disease spots under natural conditions, we fused two loss functions
and added attention mechanisms to both the two effective feature
layers extracted by the backbone network and the outcomes of the
first upsampling.

Therefore, this paper has improved the U-Net model by
adopting a hybrid loss function and adding an attention
mechanism to perform pixel feature extraction and spot
segmentation for two common types of apple leaf diseases, so that
the disease can be recognized accurately. This method has improved
the recognition accuracy and segmentation effect for small targets
such as apple leaf spots while ensuring its feature extraction and
classification ability.

The main contributions of this work are as follows:

1. Dice Loss and Focal Loss are combined as the loss function
in this paper, causing the network to pay more attention to
the similarity of lesions, increase the accuracy of image
segmentation, and optimize the segmentation details.

2. The original U-Net model is proposed to be enhanced with
an attention mechanism in this research. By comparing the
segmentation accuracy after incorporating the three
attention mechanisms SENet (Squeeze-and-Excitation
Networks), ECANet (Efficient Channel Attention
Module), and CBAM (Convolutional Block Attention
Module), it is found that adding CBAM to the original
model improves the network’s capacity to extract illness
features and increases the robustness of the model.

3. The model in this work has the best segmentation
performance in smaller disease spots segmentation
recognition when the segmentation performances of
Deeplabv3+, PSPNet, U-Net, and DFL-UNet+CBAM are
compared.

4. The classification and identification of related diseases, as
well as the segmentation and recognition of smaller disease
spots in apple leaves, were accomplished. In general, the
results of this experiment can serve as a technical
foundation for the future segmentation, classification, and
precise management of plant leaf disease spots.

The structure of the whole document is as follows. The first
section of this essay provides an overview of the study context and
topic’s importance, the research’s driving forces, its current state, its
main contributions, and its primary ideas. In Section 2, the
suggested modeling strategy is introduced, with an emphasis on
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the U-Net algorithm, the attention mechanism, and the loss
function, as well as a description of the enhanced network
topology. The study’s materials and procedures are described in
Section 3, including the dataset preparation process, model training
environment, model implementation platform, and an explanation
of each model assessment metric’s parameter. The fourth section
examines the experimental findings, investigates the segmentation
impact of the model trained on smaller disease spots using a variety
of algorithms, loss functions, and attention processes, and discusses
the training strategy for the model with the best segmentation effect.
The discussion of the research is introduced in Section 5, which
mostly outlines the issues that need to be resolved. Section 6
summarizes the research of this paper and introduces the
research conclusions of the test.

Improved U-Net network structure
U-Net network structure

One of the earliest full convolutional network-based image
segmentation algorithms, U-Net is an upgraded semantic
segmentation network built on FCN (Fully Convolutional
Networks) (Shelhamer et al., 2017) and may maintain more local
features in the segmentation outcomes.

The “U-shaped” symmetric encoder-decoder structure of the U-
Net network’s second half, which is upsampling, is used for feature
extraction in the first half. The enhanced feature extraction part of the
process can be used to up-sample the five initial effective feature layers
obtained from the backbone part and perform feature fusion to obtain
an effective feature layer that fuses all features to classify each feature
point. The backbone feature extraction part makes up the first half.

Loss function

In this paper, a hybrid loss function was utilized to close the gap
between the prediction results and the true values and achieved high
confidence in the boundaries of segmented images. The commonly
used loss function was CE Loss, but its role was relatively small
when the examples were unbalanced. Lin, T.-Y. et al. (Lin et al.,
2020) proposed focal loss to improve the accuracy of dense object
detection. Dice Loss (Wang et al., 2020) and Focal Loss (Chen and
Qin, 2022) were taken into consideration in order to address the
issues of poor segmentation performance of smaller disease spots in
apple leaves and the challenge of classifying apple Alternaria blotch
and brown spot disease diseases with similar disease characteristics
at the early stage of disease onset.

The basic idea behind Dice Loss was to measure the regional
similarity between the prediction result and the true value during
training; however, using Dice Loss directly reduced training
stability. To avoid the problem of assigning different weights to
the same class while ignoring the presence of hard examples in both
positive and negative examples, such as pixels in the diseased area
covered by raindrops and light or other leaf pixels in the
background, the network was focused on learning hard examples
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by using a Focal Loss function that increases the loss value of
challenging examples. By increasing the loss value of hard examples
and forcing the network to concentrate on learning hard examples,
it addressed the issue of unbalanced positive and negative examples
as well as unbalanced hard and easy examples.

(1) CE loss is used to measure the difference between two
probability distributions and the gap between model learning and
reality. The traditional cross-entropy loss function is the most often
used loss function in classification. Equation (1) displays its formula.

CE Loss = —(y;logp; + (1 - y;)log (1 - p;)) (1)

(2) Dice Loss places more emphasis on identifying leaf regions
and gauges how well the outcomes anticipated and actual values in
the area match up. Equation (2) illustrates the formula.

2TP

Dice loss = —— 2
e O = TP+ FN + FP @

where, correspondingly, TP (True Positive), FP (False Positive),
and FN (False Negative) represent the total number of true
positives, false positives, and false negatives.

(3) Focal Loss focuses the network on learning hard examples
by enhancing the loss value of hard examples, balancing positive
and negative examples and difficult and easy classification examples,
as shown in equation (3).

1
Focal loss(Y, P) = —HE?zl[ocyi(l —p)'Inp; + (1 - )(1

-y)pi In(1-p))] 3)

In the equation, n stands for the total number of apple leaf
samples, y;for the input sample’s true category, p;for the likelihood
that the sample is 1, and yfor the modulation coefficient. The
average logarithmic loss for each sample is shown by the
logarithmic loss for all samples. To strengthen the focus on
positive examples and improve the imbalance of targets in the
case of extremely unbalanced categories, adding (1 — p;)"will cause
the loss value of samples with high prediction probability to
decrease while the loss value of samples with low prediction
probability to increase. Currently, image segmentation can only
use it for binary classification. The positive example in the binary
classification problem has a label of 1, and the negative example has
alabel of 0. For the positive example, the more 1 — p;, the harder it is
to categorize the sample. The more p;is greater, the more
challenging it is to classify negative examples.

In this study, the loss function employed a hybrid loss function
(DFL) that scaled both Dice Loss and Focal Loss to the same order
of magnitude to predict the input data, with Dice Loss emphasizing
similarity and Focal Loss improving segmentation specifics to
increase image segmentation accuracy.

Attentional mechanism
Jain et al. (Jain et al,, 2022) compared the Attention-UNet

model with the UNet, UNet + + and UNet3P models, the AUC
(Area Under Curve) value is 0.97, while the AUC values of other
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models are 0.964,0.966 and 0.965, respectively. The results show
that the attention mechanism is beneficial to segment very bright
and blurred plaque images that are difficult to diagnose using
other methods.

The inclusion of an attention mechanism was thought to
improve feature extraction because the leaf spot areas are smaller.
The model would then assign different weights to each location of
the input image and concentrate on the areas with crucial
information, which would help it make more accurate judgments
while using fewer resources. The attention mechanism has
demonstrated strong performance in previous research on tasks
like categorization, detection, and segmentation (Karthik et al.,
2020; Mi et al, 2020). In this study, we thoroughly examined
SENet (Hu et al., 2020), ECANet (Yu et al, 2022), and CBAM
(Ma et al., 2022), three attention mechanisms, and we chose the best
module to enhance apple leaf spot segmentation.

ECANet removed the two FC (Fully Connected) layers used in
SENet and performed global average pooling without
dimensionality reduction. It used the current channel and its k
neighboring channels for local cross-channel interaction. SENet
performed global average pooling of the input feature layer, took the
Sigmoid after completing two full joins, obtained the weight of each
channel of the input feature layer, and then multiplied that weight
by the original input feature layer. Compared to SENet’s attention
mechanism, which focused exclusively on channels, CBAM was a
lightweight attention module that could be integrated into virtually
any convolutional neural network, and almost negligible
computation and parameters were introduced. It combined the
channel attention mechanism and the spatial attention mechanism
to jointly learn the important local detail information in the image,
assign higher weights to the diseased spot region in the neural
network’s feature map and lower weights to the background,
improved the neural network’s attention to the diseased spot in
the image, and then enhanced the network’s capacity for feature
learning and expression.

In order to boost the network’s capacity to extract disease
features and the resilience of the model, an attention mechanism
was added to the two effective feature layers that the backbone
network extracted, as well as to the outcomes of the
initial upsampling.

Improved U-Net network structure

This paper proposed an improved model based on U-Net that
keeps the backbone feature extraction network but enhanced it by
adding CBAM modules to the two effective feature layers extracted
by the backbone network; after being subjected to feature fusion to
complete two convolution operations, the effective feature layers
obtained in the coding stage are then subjected to upsampling to
recover the original image accuracy and detail information pixel by
pixel. The CBAM attention module was then embedded after the
first upsampling. The model was designed to recalibrate the weight
relationships between features, amplify channel features of leaf
disease spots, and suppressed channel features of healthy regions
of leaves to improve the network’s ability to extract disease features
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and to increase the model’s robustness. The upper portion of the
improved U-Net network was the backbone feature extraction
network, and the lower portion was the enhanced feature
extraction network.

Additionally, the improved model predicts the input data using a
mixed loss function (DFL), which scales the focus loss and dice loss to
the same magnitude. During training, Dice Loss focuses more on
identifying the foreground region and assesses how closely the results
of the prediction match the actual value in the area. By strengthening
the loss value of hard examples (such as pixels in the diseased area
covered by raindrops and light or other leaf pixels in the background),
the Focal Loss function makes the network focus on the learning of
difficult samples and solves the problem of imbalance between positive
and negative examples and imbalance between difficult and easy
samples. The structure of the network is shown in Figure 1.

Materials and methods
Dataset source

The image samples of apple leaf diseases in this experiment
came from the public data set Plant Village (Geetharamani and
Pandian, 2019). The dataset manually collects images of indoor and
outdoor diseased apple leaves. In order to ensure the versatility of
the model, outdoor landscape images were taken on sunny and
rainy days, respectively.

The data set in this paper contains different situations of a single
leaf with a single disease and multiple diseases and multi-leaf
images in complex backgrounds. As seen in Figure 2, the leaf
diseases include single Alternaria blotch, brown spot, and
multiple diseases (including brown spot and mosaic) of apple
leaves. The samples in this dataset include pre-processing
operations on the acquired images, such as image rotation,
horizontal and vertical mirroring, a sharpness value, brightness
value, contrast adjustment, and Gaussian blur on the original
disease images. This pre-processing was done to prevent
overfitting issues in the later network training phase, to improve
the anti-interference ability of complex conditions as well as the
generalization ability of the model, to increase the diversity, and to
avoid generating problems during the network training phase, and
thus the model robustness is enhanced.

Also to ensure a balanced sample, 1200 images of a single
Alternaria blotch, 1200 images of a single brown spot, 600 images of
apple leaf diseases infected with multiple diseases (mosaic and
brown spot), a total of 3000 original images (JPG format) were
selected, with a 1:1 ratio of complex background images to simple
laboratory background images, which is more challenging than
laboratory images of diseased leaves with simple backgrounds, with
an original image size of 512 pixels * 512 pixels, and the dataset was
divided into training, validation and test sets in a 6:2:2 ratio. As
demonstrated in Figure 2, the image of apple leaf disease has the
traits of a smaller disease spot and high similarity, which presents
numerous difficulties for image segmentation.

For leaf segmentation, it is difficult to extract the target leaf’s
edge because there are multiple leaves overlapping in the
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FIGURE 1
Improved U-Net network structure diagram.

background of the image in the outdoor scene. Additionally, there
are shadows in the leaf image due to uneven illumination, self-
crimping, folding, and other factors, which makes the segmentation
more challenging. Diverse and challenging to extract features from
the target leaf scales. The extraction of disease spot features and the
precise detection of disease spots are greatly hampered by the
smaller disease spot pixels, which make up 0.2% to 0.4% of
the leaf pixels in spot segmentation. Outside, there are materials
that resemble spots that could prevent infections from being
extracted. The segmentation impact of disease spots is easily
influenced by the spots on raindrops and leaves.

Dataset production

The photos must be converted into a dataset in PASCAL VOC
format by the specifications of the model for the dataset.
JPEGImages, ImageSets, and Annotations were the three main
files that made up the PASCAL VOC format dataset.

The Segmentation folder of the ImageSets file contained four
text files: train.txt, val.txt, test.txt, and trainval.txt, which,
respectively, represented the training set, validation set, test set,
and summary of the training and validation sets required by the
model. The numbers of the photographs in each of the four text

FIGURE 2
Examples of apple leaf disease image.
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files’ respective sets, with each image number on a distinct line,
made up their contents. To ensure the generalizability of the model,
the image numbers were created at random.

The function of Annocations file was mainly to store the
annotation information corresponding to the leaf image. In order
to train the model, a large number of data annotations of the data
set must be performed; this work used Labelme as the data labeling
software. The annotation file is initially stored in.json format, and
then changed to a tag image in.png format by batch converting the
file, as shown in Figure 3.

Setting up the testing environment
and parameters

Intel Core i7-9700, 32 GB of RAM, and an Nvidia GeForce RTX
2080Ti graphics card were the specifications of the computer’s
processor. Model construction, training, and prediction were
performed in this deep learning environment using Tensorflow-
gpul.13.2, keras2.1.5, Windows 10, 64-bit operating system, Python
3.6.13 compiled environment, CUDA10.1 architecture, and
cuDNN7.4.1 Development library. When compared to other
adaptive learning rate algorithms, the Adam approach is simple
to use, very computationally efficient, memory-light has a quicker
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FIGURE 3
Examples image of a.png tag image

convergence time and is invariant to diagonal gradient rescaling. In
order to select the model with the best segmentation effect through
interaction, this experiment trains the models using the Adam
optimizer until convergence.

During training, the input image is 512¥512 pixels. Padding=1 is
utilized so that each input square can serve as the convolution
window’s center and stride=1 is used to limit the number of input
parameters and processing. The output size is the same as the input
when stride and padding are both set to 1. In order to nonlinearly
transform the input, the activation function needs to be introduced.
The activation function used in this paper is sigmoid. The whole
training is divided into two stages, the freezing stage and the
thawing stage. The quantity of images entered into the network at
once during training is referred to as the batch size. The model
training generation is known as an epoch. It can be regarded as a
suitable training generation when there is a minimal difference in
error between the training set and the test set. In order to ensure
that the model achieves the best effect in terms of accuracy and
training time, this paper sets the training generation to 200.
According to the graphics performance of the operating system
and the size of the image, the first 50 stages are the freezing stage,
the batch size is set to 4, and the last 150 stages are the thawing
stage, the batch size is set to 2, to ensure that the model achieves the
best effect in terms of accuracy and training time, and avoids
insufficient memory. The average value of the updated network
weight in the algorithm is the initial learning rate. The maximum
learning rate is set at 0.0001 in order to speed up the model
training’s transition into a stable learning state. The learning rate
is reduced by the cosine annealing attenuation method. Period = 5 is
set during training to attenuate the model once every 5 epochs and
preserve it, preventing the loss of the training model in the event of
a power outage or an abnormal exit during long-term training.

Model evaluation indicators

This study evaluated the classification accuracy of the model for
the disease classification problem using true positive (TP, the
number of times the model accurately predicts the disease type),
true negative (TN, the number of times the model accurately
predicts the leaf area), false positive (FP, the possibility of
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misjudging the leaf area as the spot area), and false negative (EN,
the possibility of misjudging the spot area as the leaf area).

After the establishment of the model, it was necessary to
evaluate its effectiveness. This work suggested using the mean
intersection ratio MIoU (Shoaib et al., 2022), the category average
pixel accuracy MPA, the precision rate Precision, and the
comprehensive evaluation index F1 Score (Shoaib et al., 2022) as
the evaluation index of the segmentation results in order to quantify
and assess the model’s performance.

To facilitate the interpretation of the evaluation metric
formulas, it is assumed that the data set has a total of k + 1
categories. p;; denotes the number of pixels for which category iis
predicted to category j, p;; denotes the number of pixels that are
correctly predicted, and p; and p; denote the number of false
negative and false positive pixels, respectively.

(1) MIoU

The average of the ratio between the intersection and
concatenation of the set of pixels whose true value is the spot and
the set of pixels whose predicted value is the spot is determined, as
indicated in equation (4). The higher the MIoU value, the higher the
overlapping degree between the projected spot area and the actual
spot area.

(4)

I Gk Pii
MIoU = D0 aF k
k+ LSS by + ol — Pii
(2) MPA
Equation (5) demonstrates that MPA is the average of the
percentage of total pixels that fall into the proper prediction
category.
1 kP
MPA=-——3" < — (5)
k+1 zj:(lp ij
(3) Precision
The accuracy rate is defined as the proportion of actual diseased
pixels to those predicted as such by the model, as indicated in
equation (6). Less false detection areas are seen in the prediction
results as the value increases.

TP
TP+FP

(6)

Precision =

(4) Recall
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The recall rate, also known as the check-all rate, is the
proportion of spots that are detected to all spots in the data set,
as is evident from equation (7).

TP

Recall =
A T TPIEN

™)

(5) F1 Score

The F1 Score metric combines the Precision and Recall outputs,
as given in equation (8). F1 Score accepts values between 0 and 1.
The model’s best output is represented by 1, while its worst output is
represented by 0. The more correctly recognized spot pixels, the
more accurate the segmentation result.

_ 2xPrecision+Recall

Fl = (8)

Precision+Recall

Test results and analysis
Test process

After 250 epochs of training the U-Net model, the Loss finally
converged to 0.022. Figure 4 depicts the Loss’s evolution throughout
training epochs. It is clear from the figure that the Loss stopped
dropping and stabilized around 200 epochs, indicating that the
model had progressively converged at that point. The U-Net model
with 200 and 250 epochs of training was chosen to compare the test
results in order to determine the best model for this experiment.
The findings are displayed in Table 1.

Table 1 shows that as training epochs increased, MIoU, MPA,
and Precision values fell at training 250 epochs, indicating the
occurrence of an overfitting phenomenon. As a result, the model in
this research was chosen for training 200 epochs.

In the experiment to segment unhealthy spots, the target pixel
points can be separated into two primary categories: diseased spots
and healthy parts. Since the background does not include any
diseased spots, it is likewise segmented into healthy parts. Three

1.0
0.8
0.6
—
0.4

0.2

0.0 T T T
50 100 150

Epoch

200 250

FIGURE 4
Loss curve.
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loss functions—CEL, CEDL, and DFL—are employed in this study’s
ablation experiments, with U-Net serving as the main body. The
experiment assesses the effectiveness of the loss functions using the
loss rate and accuracy of the validation set. Table 2 presents
the outcomes.

Table 2 compares the performance of the original U-Net and
the improved U-Net deep learning designs using various loss
functions. Verification loss, accuracy, MIoU, and MPA are
employed as evaluation indicators for these variables. As can be
observed, under the presumption that picture segmentation
accuracy is guaranteed, the outcomes of the four parameters are
0.008, 98.86%, 91.07%, and 95.58%, respectively, after adding the
DFL mixed loss function. The modified model’s average loss rate
dropped from 0.063 to 0.008; the lower the loss, the more accurate
the model, the MPA increased by 1.06%, the prediction category
correctness increased, the MIoU score rose by 1.96%, and the more
the predicted illness area overlapped with the actual disease region.
The challenge of distinguishing apple Alternaria blotch disease and
brown spot disease with high similarity in the early stage of disease
is resolved by the addition of the DFL mixed loss function, which
also addresses the issue of poor segmentation performance of
smaller disease points. Additionally, it lessens the disparity
between simple and difficult training examples as well as the
disparity between positive and negative training examples. The
process by which the effective loss value of the U-Net model
changes when different loss functions are applied is shown in
Figure 5. The outcomes demonstrate that the DFL mixed loss
function employed in this study has the smallest loss value, the
fastest decline rate, and the smoothest training procedure.

The model is trained by adding various attention mechanism
modules using the same experimental setting and training
parameters as U-Net combined with hybrid loss function DFL.
The experimental findings are displayed in Table 3 to compare the
various types of segmentation MIoU.

As shown in Table 3, the accuracy of disease identification can
be increased by adding SENet or ECANet, but the addition of the
CBAM attention mechanism results in superior disease
identification. The comparison shows that the MIoU value of
smaller Alternaria blotch disease spots increases by 2.97%,
indicating that the CBAM attention mechanism can effectively
focus on the disease spots in the image and suppress the
interference information. To address the issue of the DFL-UNet
model’s poor segmentation performance of smaller spots, we
decided to integrate the CBAM module in this study.

TABLE 1 Comparison of segmentation results for different epochs of

training.
Epoch MloU/(%) MPA/(%) Precision/(%)
200 89.11 94.52 93.53
250 88.96 94.30 93.24
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TABLE 2 Experimental results of loss function ablation.

10.3389/fpls.2023.1175027

Loss function Network Val-acc/(%) Val-loss MloU/(%) MPA/(%)
CEL Original U-Net 98.34 0.063 89.11 94.52
CEDL Original U-Net 98.37 0.055 89.33 94.85
DFL Original U-Net 98.40 0.010 90.09 95.14
CEL Improved U-Net 98.51 0.039 90.89 95.07
CEDL Improved U-Net 98.76 0.045 89.96 94.90
DFL Improved U-Net 98.86 0.008 91.07 95.58

Results analysis

The segmentation performance of the Deeplabv3+ model,
PSPNet model, original U-Net model, and DFL-UNet+CBAM
model was compared, and the results are shown in Table 4. In
this paper, MIoU, MPA, and F1 Score were all used as evaluation
metrics for segmentation results under the same research object and
the same experimental conditions.

As can be seen in Table 4, when comparing the four models, the
MIoU, MPA, and F1 Score of the DFL-UNet+CBAM model
proposed in this paper are the highest, increasing by 1.96% in
MIoU value, 1.06% in MPA value, and 1.14% in F1 Score when
compared with the original U-Net model. This shows that the
model in this paper correctly identifies the most diseased pixels and
can effectively optimize the segmentation results and obtain more.
The change in MIoU value during model training is depicted in
Figure 6, and it is also obvious from the change curve that the model
used in this paper has the greatest MIoU value, suggesting the
highest overlap between the predicted spot area and the actual
spot area.

Table 5 compares the segmentation performance of smaller
spots before and after model modification using MIOU, MPA,
Precision, Recall, and F1 scores as assessment metrics. This
comparison is done to indicate the benefit of the suggested
method in recognizing smaller spots.

0-67 —— CEL
—— CEDL
0.5 —— DFL

Loss
o
=~

1

0.0 T T T
0 50 100 150 200

Epoch

FIGURE 5
Loss curves of different loss functions.
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As can be seen from Table 5, compared to the original U-Net
model, the segmentation of Alternaria blotch disease, the MIoU
value increased by 4.41%, the MPA value increased by 4.13%, the
Precision increased by 1.49%, the Recall increased by 4.13%, and the
F1 Score increased by 2.81%; in the segmentation of brown spots,
MIoU values increased by 1.18%, MPA values by 0.6%, Precision by
0.78%, Recall by 0.6%, and F1 Score by 0.69%. The spot diameter of
the Alternaria blotch disease is 0.2-0.3cm in the early stage, 0.5-
0.6cm in the middle and late stages, and the spot diameter of the
brown spot disease is 0.3-3cm. Obviously, brown spot spots are
larger than Alternaria blotch spots. The segmentation performance
of smaller disease spots has increased more noticeably, according to
the quantitative analysis results, proving that the model’s capacity to
segment smaller disease spots has greatly improved.

Additionally, the proposed model’s training and validation
performance are assessed using the training set F1 score, validation
set F1 score, a training set loss, and validation set loss. This is done to
further validate the performance of the model segmentation. The loss
value is used to quantify the discrepancy between the model’s true
value and its predicted value, and the F1 score is calculated as a
weighted average of Precision and Recall metrics. Better model
robustness is associated with smaller loss functions. The training
score determines the generalization ability of the algorithm in its
training samples. The verification score determines the optimal
model (Srinivasu et al., 2022). Figure 7 displays the model’s
performance in relation to the hyperparameters.

In this study, we used a trained semantic segmentation model to
predict apple leaf disease in laboratory and field environments. The
image dataset must meet two criteria: first, it must allow for the
simultaneous occurrence of various illnesses on the same leaf; and
second, it must allow for the presence of complicated backgrounds
in some images to guarantee the data images’ excellent
generalization ability.

In comparison to the Deeplabv3+ model, the PSPNet model,
and the original U-Net model, the segmentation results of the DFL-
UNet+CBAM model utilized in this paper are shown in Figure 8 for
the test set of apple disease leaf photos.

The prediction outcomes of single-leaf spot segmentation
against various backgrounds are shown in Figure 8. Figure 8
shows it abundantly clear that the network structure suggested in
this paper achieves more accurate segmentation for apple leaf spots
and produces better segmentation results for both the disease
location on the leaf and the size of the spot area. This network
structure is also more accurate than other networks used in this
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TABLE 3 Comparison of the cross-merge ratio (MloU) for each category of the model after adding the attention mechanism.

Segmentation Model leaf/(%)
DFL-UNet 93.70
DFL-UNet+SENet 94.05
DFL-UNet+ECANet 93.43
DFL-UNet+CBAM 94.86

Alternaria blotch/(%) Brown spot disease/(%)

76.05 84.12
78.56 84.93
78.99 ‘ 85.11
79.02 ‘ 85.28

paper. When recognizing brown spot disease, the Deeplabv3+
model in Figure 8C incorrectly recognized the green halo area
surrounding the illness spot as the disease spot; the PSPNet model
in Figure 8D has a condition where the object boundary
segmentation is discontinuous and the segmentation result is
rough, the border between the leaf and the backdrop is hazy, and
there is a missing section for the area affected by the brown spot
disease. Analysis of the segmentation results of the model proposed
in this paper demonstrates that the model in this paper can segment
the semantic objects completely, finely, and accurately, and it is
apparent from Figure 8F that the recognition results of the disease
spots and the segmentation results of the edges of the disease spots
in this paper are more accurate.

Comparing Figure 8C and Figure 8D, it can be seen that the
network structure of the proposed model performs well in the
segmentation of smaller spots. Although the U-Net model in
Figure 8E identified smaller spots in the apple Alternaria leaf spot
and brown spot categories of foliar diseases, the identified spot area
was incomplete. In contrast, the model in Figure 8F accurately
identified the smaller spots in the categories of apple ringspot and
brown spot, and the recognition results were more accurate.

Discussion

Semantic segmentation and attention mechanisms have been
widely used in the realm of disease recognition. An ASPP (Atrous
Spatial Pyramid Pooling)-based DeepLabV3+ semantic
segmentation network model, for instance, was developed by Li L
et al. (Li et al,, 2023). The experimental findings revealed that the
model’s average pixel accuracy (MPA) and average intersection
(MIoU) reached 97.26% and 83.85%, respectively. Additionally, Li
Qetal. (Lietal, 2021) proposed an integrated U-Net segmentation
model for small sample datasets, merging U-edge Net’s features and
high-level features using ASPP. The experimental findings

demonstrated that the method significantly increased the
segmentation accuracy of the target fruits as well as the model’s
capacity for generalization.

The segmentation task of apple leaves and spot areas was
carried out in this study using three traditional semantic
segmentation network models (DeepLabV3+, PSPNet, and U-
Net). The segmentation performance of the model was evaluated
throughout the experiment. Also, the performance of the model is
addressed in relation to the implications of various loss functions
and attention mechanisms. Following are our findings:

1. Three semantic segmentation network models (DeepLabV3
+, PSPNet, and PSPNet) were compared and their
segmentation and convergence capabilities for the apple
leaf and speckle regions were examined. The findings
indicate that PSPNet and Deeplabv3+ are not as effective
in segmenting data as the U-Net network model.

2. Investigated is how the U-Net network model chooses its
loss function. According to the results, the addition of the
DFL hybrid loss function improves the segmentation
performance and classification capacity of the model. The
average loss rate val-loss lowers from 0.063 to 0.008, the
MIoU index increases by 1.96%, and the MPA increases by
1.06%.

3. Compare the different U-Net attention mechanism
modules. The findings demonstrate that the addition of
the CBAM attention mechanism improves the disease
recognition effect. Comparatively, it is discovered that the
MIoU value of the smaller speckle leaf spot disease spot is
increased by 2.97%, demonstrating that the CBAM
attention mechanism can concentrate on and pay
attention to the disease spot in the image, as well as
effectively suppress the interference information, which
enhances the model’s focus on the target channel and
spatial information.

TABLE 4 Comparison table of segmentation performance of different models.

Model MioU/(%) MPA/(%) F1 Score/(%)
Deeplabv3+ 85.94 92.04 91.80
PSPNet 83.49 86.81 90.40
U-Net 89.11 94.52 94.02
DFL-UNet+CBAM 91.07 95.58 95.16
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Comparison of different model segmentation mean intersection
over union.

In the prior research, the loss function of the model is typically a
single loss function. In this study, to enhance the segmentation
performance and achieve more precise segmentation of leaves and
disease spots under natural conditions, we fused two loss functions
and added attention mechanisms to both the two effective feature
layers extracted by the backbone network and the outcomes of the
first upsampling.

Overall, our technique demonstrates good adaptability in the
single background and complicated background segmentation and
detection of leaf spots. But because there are so many distractions in
the natural world (such as uneven lighting), incorrect detection and
missed detection will always happen there. In order to test the
segmentation performance of the model, Figure 9 uses the relatively
smaller and more challenging-to-identify Alternaria blotch disease
as an example. It then displays the segmentation prediction results
of the diseased leaves and disease spots in the multi-leaf image in
the natural environment. The findings demonstrate that the disease
spot segmentation effect is effective when the uneven light shadow
coverage is varied, however, there is a false detection part between
the leaf and the background.

The target leaves’ edges are difficult to extract because the
background of the image in the outdoor scene has multiple leaves
overlapping each other. Additionally, there are shadows in the leaf
images due to uneven lighting or because of curling and folding,
which makes the segmentation more challenging.

The area of light irradiation to the leaves is also diverse, as
illustrated in Figure 9, due to different shooting angles and self-

TABLE 5 Analysis of quantitative results of U-Net and improved U-Net.

10.3389/fpls.2023.1175027

curling factors. As a result, diseased leaves are concealed by other
leaves or object shadows, which causes the pigment imbalance
problem. Diagram 9 (a) (b) The disease leaf identification is
insufficient because only a small portion of the disease leaf’s edge
was impacted by other leaves, a phenomenon known as missed
detection; in Figure 9(c), the disease leaf edge segmentation is
inaccurate because there is cross-over between leaves and a light
uneven dual impact; as seen in Figure 9(d), the diseased leaf shadow
is heavier Part of the incorrect check for the background area, the
overall image tone is dark, the color of the measured target
is distorted.

The following issues still need to be resolved even though we
explored the segmentation recognition of smaller spots in apple
leaves in this work and increased the segmentation effect and
recognition accuracy of smaller spots.

1. The ability to quickly diagnose diseases in fruit trees is
crucial for practical production, so future research should
focus on enhancing the network structure to reduce the
model segmentation time. This will help fruit farmers
quickly confirm the diagnosis of diseases in fruit trees
and quickly apply pesticides.

2. In actual, there are frequently several leaves in a single
image and the leaves are set against a complicated
background. The presence of disease spots on many
leaves is not taken into account in this work.
Consequently, to enhance the segmentation performance
of disease leaves and thereby enhance the precision of
disease spot recognition, the model needs to be further
enhanced in the upcoming research.

3. The actual development of disease species is complex and
varied. Despite the fact that the method described in this
paper enhances the segmentation performance of smaller
spots in apple leaf diseases and the recognition precision of
difficult-to-classify diseases, the disease species in the
training data set still need to be increased, and the disease
species can be increased later to improve the recognition
and segmentation ability of the model for various diseases
and make the model broadly applicable.

Conclusion

In practice, the naked eye can easily misinterpret the type of
disease and thus overuse pesticides, which in turn affects apple

Disease types MloU/(%) MPA/(%) Precision/(%) Recall/(%) F1 Score/(%)
Alternaria blotch 74.61 84.93 86.02 84.93 85.47
Original U-Net
Brown spot ‘ 84.1 ‘ 92.7 ‘ 90.06 92.7 91.36
Alternaria blotch ‘ 79.02 ‘ 89.06 ‘ 87.51 89.06 88.28
Improved U-Net
Brown spot ‘ 85.28 ‘ 93.3 ‘ 90.84 93.3 92.05
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FIGURE 7

Training and validation set details. (A) Loss function curve. (B) F1 score curve

production. Therefore, disease diagnosis must be easier, faster, and
more accurate, while the type of disease must be analyzed and
determined. Apple leaf spot is very small and has similar
characteristics when the disease first appears, while the actual
orchard environment has different light conditions, overlapping
leaf shade, etc. A deep learning-based apple leaf disease spot
segmentation technique is suggested for apple leaf disease
recognition by utilizing CNN’s strong feature extraction
capabilities in order to minimize the influence on disease spot
segmentation. The core network architecture used by the method is
a convolutional neural network called U-Net, and to better extract
picture features, its structure and parameters have been modified
and optimized. The identification of apple leaf disease depends
directly on the precision of the segmentation method. In order to
address the issues of low recognition accuracy and subpar
performance of smaller spot segmentation in apple leaf disease
recognition, this paper uses apple leaf Alternaria blotch and brown

spot as its research object. It then proposes a method of spot
segmentation and disease recognition based on hybrid loss function
and CBAM. The following conclusions were obtained from
the study:

1. To deal with the issue of poor performance in segmenting
smaller spots in apple leaves, a model for apple leaf disease
segmentation based on hybrid loss function and CBAM
network has been developed. Firstly, the model using mixed
loss function of Dice Loss and Focal Loss has swapped out
the original cross entropy function, which has given larger
weight to the samples that are difficult to classify, making
the model pay more attention to the target with smaller
pixel proportion. Secondly, the backbone network’s two
useful feature layers and the outcomes of the first
upsampling have been combined with the CBAM module
to complete the extraction of pixel features and disease spot

N KKK
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+ GGG
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Comparison of segmentation results of various models. (A) Original images. (B) Ground truth. (C) Deeplabv3+ segmentation results. (D) PSPNet
segmentation results. (E) U-Net segmentation results. (F) Improved U-Net segmentation results
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FIGURE 9

Detection fault analysis. (A) Leaf occlusion. (B) Self-crimp factor. (C) Leaf folding. (D) Insufficient light.

segmentation for apple Alternaria blotch and brown spot.
This has caused the model to pay more attention to the
regions with important information.

2. MIoU values in DFL-UNet+CBAM model employed in this
study were 91.07%, MPA values o were 95.58%, and F1
Score values were 95.16%. These values were higher than
those of the original U-Net model by 1.96%, 1.06%, and
1.14% respectively, and the illness identification impact was
also enhanced. The segmentation result images have also
shown that the DFL-UNet+CBAM model has had better
segmentation and recognition capabilities, can more
precisely identify smaller disease spot areas, improves the
detection and recognition accuracy of smaller disease spots,
better satisfies the requirements of apple leaf disease
recognition, and provides a basis for the diagnosis of
apple leaf diseases.

3. In the multi-blade environment of nature, several leaves
may coexist on a single map, and various illnesses may be
present on the leaves. The experimental results
demonstrate that the semantic segmentation model of
apple leaf diseases trained in this paper using a single leaf
dataset can not only detect a single background in the
laboratory but can also be used to detect apple leaf diseases
in the complex background of the natural environment; it
can not only detect single objects of single and multiple
leaves, but it can also detect multiple objects of single
leaves, demonstrating powerful segmentation performance.

Research demonstrates that the model can ensure segmentation
accuracy in complicated orchard environments as well as
laboratores, particularly when it comes to the edge segmentation
accuracy of smaller disease spots. The suggested method performs
segmentation better than other methods, and the model has good
generalizability. In the future, it might serve as a technical
foundation for the segmentation, categorization, and precise
management of plant leaf disease spots.
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Introduction: Traditional evaluation procedure in National Turfgrass Evaluation
Program (NTEP) relies on visually assessing replicated turf plots at multiple testing
locations. This process yields ordinal data; however, statistical models that falsely
assume these to be interval or ratio data have almost exclusively been applied in
the subsequent analysis. This practice raises concerns about procedural
subjectivity, preventing objective comparisons of cultivars across different test
locations. It may also lead to serious errors, such as increased false alarms, failures
to detect effects, and even inversions of differences among groups.

Methods: We reviewed this problem, identified sources of subjectivity, and
presented a model-based approach to minimize subjectivity, allowing objective
comparisons of cultivars across different locations and better monitoring of the
evaluation procedure. We demonstrate how to fit the described model in a
Bayesian framework with Stan, using datasets on overall turf quality ratings from
the 2017 NTEP Kentucky bluegrass trials at seven testing locations.

Results: Compared with the existing method, ours allows the estimation of
additional parameters, i.e., category thresholds, rating severity, and within-field
spatial variations, and provides better separation of cultivar means and more
realistic standard deviations.

Discussion: To implement the proposed model, additional information on rater
identification, trial layout, rating date is needed. Given the model assumptions,
we recommend small trials to reduce rater fatigue. For large trials, ratings can be
conducted for each replication on multiple occasions instead of all at once. To
minimize subjectivity, multiple raters are required. We also proposed new ideas
on temporal analysis, incorporating existing knowledge of turfgrass.
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NTEP, visual ratings, cultivar evaluation, subjectivity minimization, Bayesian model
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1 Introduction

The National Turfgrass Evaluation Program (NTEP) is an
internationally renowned turfgrass research program. Starting from
1981, NTEP has coordinated trials and collected data on a variety of
turfgrass species at locations across the United States and Canada (Xie
et al, 2022). At each testing location, replicated turf plots of different
cultivars are established, maintained, and visually evaluated by trained
raters periodically on various traits of interest. Experienced raters
usually mentor new raters following rating guidelines set by NTEP.
Evaluated traits have traditionally included overall quality, color,
density, resistance to diseases and insects, tolerance to biotic or
abiotic stresses, and more recently expanded to drought and traffic
tolerance. Over the years, NTEP has created a unique data repository,
providing rich information for characterizing and selecting turfgrass
cultivars for various applications.

NTEP adopted a 1-9 integer scale to assess traits of selected
turfgrass cultivars (hereinafter referred to as the NTEP scale). It was
originally used by turfgrass researchers in the 1980s in the
northeastern region of the United States (personal
communication with Dr. Bill Meyer of Rutgers University), which
resembles the 9-point hedonic scale. Developed by David R. Peryam
and his colleagues (Peryam and Girardot, 1952; Peryam and
Pilgrim, 1957), the 9-point hedonic scale was originally used to
measure the food, i.e., the stimuli, preferences of soldiers, i.e., the
subjects, in the U.S. Armed Forces in the 1950s. Since then, it has
become the most widely used scale for testing consumer preferences
and acceptability of foods and beverages (Lim et al., 2009). The
original 9-point hedonic scale is a balanced bipolar scale centered
around a neutral position with four positive and four negative
categories on each side. The categories are labeled with phrases
ranging from “Dislike Extremely” to “Like Extremely” (Table 1),
representing a continuum from dislikes to likes.

Response to the 9-point hedonic scale is an ordinal variable as
its categories have a natural order (Seddon et al, 2001). In
subsequent analysis, the categories are generally assigned with
numerical values from 1 to 9, respectively, such that parametric
statistical models can be utilized. For the NTEP scale, a trained rater
walks through all plots in serpentine order in each rating event,
assigning an integer from 1 to 9 directly for a particular trait of

10.3389/fpls.2023.1135918

interest where 1 is typically the poorest/lowest and 9 is the best/
highest. Similar to analyzing responses to a 9-point hedonic scale,
the analysis of NTEP rating data treats the ordinal variables as
numerical values, which may lead to serious errors, such as
increased false alarms, i.e., detecting non-existing effects, failures
to detect effects, and even inversions of differences among groups
(Biirkner and Vuorre, 2019). There is abundant literature, e.g., Lim
et al. (2009), Liddell and Kruschke (2018), on the reasons for these
problems. Some important ones are summarized here.

1. The categories in the 9-point hedonic scale are not
equidistant, which was first discovered by the
Psychometric Laboratory at the University of Chicago
(Jones and Thurstone, 1955; Jones et al., 1955), and
confirmed in later studies (Moskowitz, 1971; Moskowitz
and Sidel, 1971; Moskowitz, 1977; Moskowitz, 1980).

2. The 9-point hedonic scale lacks an absolute zero point.
While there is a neutral position (i.e., the INDIFFERENT
category or the "5"), it varies from subject to subject, even
across different measurements by the same subject.

3. The general tendency of subjects to avoid using the extreme
categories (Hollingworth, 1910; Stevens and Galanter,
1957; Parducci and Wedell, 1986) makes the scale
vulnerable to ceiling and flooring effects. This truncates
the 9-point scale, limits the scale’s ability to identify
extreme stimuli, and skews the response data.

As a derivation of the original 9-point hedonic scale, the NTEP
scale also yields ordinal data. Such data only provide rudimentary
information on the hedonic magnitude and cannot directly be used
to compare hedonic perceptions across different raters. In the
current evaluation process, a turf plot’s rating for a specific trait,
e.g., turf quality, depends on the rater’s severity in the rating event.
Given the same plot, it will likely score higher when the rater is
lenient or lower when severe, giving rise to subjectivity. In other
words, for a specific rater’s turf quality ratings, we know a “3” plot
has better turf quality than a “2” plot. But we cannot conclude a “3”
plot rated by A is better than a “3” plot rated by B in turf quality
without adjusting for rater severity. Considering the temporal
nature of the evaluation process, even for the same rater on the

TABLE 1 Replication of the questionnaire designed for studying soldiers’ preferences in the field.

INDIFFERENT

DISLIKE

Not Cream Gravy Like Like Very Like Like
Tried Extremely =~ Much Moderately | Slightly
Not Bread Putting Like Like Very Like Like
Tried Extremely =~ Much Moderately | Slightly
Not Cheese Like Like Very Like Like
Tried Extremely =~ Much Moderately | Slightly
Not French Fried Like Like Very Like Like
Tried Onions Extremely =~ Much Moderately | Slightly
Not Lettuce Like Like Very Like Like
Tried Wedges Extremely =~ Much Moderately | Slightly

Neither Like Nor | Dislike Dislike Dislike Very Dislike
Dislike Slightly Moderately Much Extremely
Neither Like Nor | Dislike Dislike Dislike Very Dislike
Dislike Slightly Moderately Much Extremely
Neither Like Nor | Dislike Dislike Dislike Very Dislike
Dislike Slightly Moderately Much Extremely
Neither Like Nor | Dislike Dislike Dislike Very Dislike
Dislike Slightly Moderately Much Extremely
Neither Like Nor | Dislike Dislike Dislike Very Dislike
Dislike Slightly Moderately Much Extremely
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same trait, consistency is not guaranteed at different times of the
year. Another source of subjectivity relates to the scale categories,
which are not equal distances or of the same levels. To meaningfully
aggregate data collected from different rating events across different
testing sites, both sources of subjectivity need to be addressed.
However, current methods, e.g., the additive main effect and
multiplicative interaction (AMMI) method, analysis of variance
(ANOVA) (Ebdon and Gauch Jr., 2002a; Ebdon and Gauch Jr.,
2002b), and linear mixed model (LMM), are not adequate and suffer
the same errors when they were applied to ordinal data directly.
Inspired by Rasch Rating Scale Model (Andrich, 1978), we propose
a latent scale model to minimize subjectivity, hereinafter referred to
as NTEP RSM (NTEP Rating Scale Model), allowing more objective
comparisons of cultivars across different raters and research groups.
We also demonstrate how to fit the described model in a Bayesian
framework, using datasets on overall turf quality ratings in the 2017
NTEP Kentucky bluegrass trials. The model is programmed in Stan
(Lee et al., 2017) via Python. Stan is a probabilistic programming
language for statistical modeling, inference, and computation.
Although demonstrations are done for overall turf quality rating,
this approach works for other traits of interest evaluated using the
1-9 NTEP rating scale.

2 Model specifications

2.1 NTEP RSM

We started by constructing a latent scale based on the
probability distribution of raw ordinal data. The model predicts
the decision between two adjacent categories using a threshold
parameter on the latent scale. The 1-9 scale is re-indexed in the
following sections as 0-8 categories for conciseness in mathematical
notations. At a given test location, let Y,,; denote the rating assigned
to plot » in rating event i, the logarithmic ratio of the probability of
plot 7 assigned to category s to that of plot n assigned to s—1 can be
expressed by the following equation,

Pr(Yni =)

ln[Pr(Ym» —s-1)

]:en_ﬁi_rs (1)
where

i=1,2,...,1 is the index for each rating event during the trial;
n=1,2,...,N is the index for each plot;
s=1,2,...,M is the index for category thresholds;

M(M < 8) is both the maximum rating score after reindexing
and the number of thresholds;

0, is the perceived turf quality of plot n in a specific rating
event;

Bi measures rating severity in rating event i

T, is the threshold at which at Pr(Y=s-1) = Pr(Y=s).
Constraints were placed on ff; and 75 to add a meaningful zero

to the scale. Both parameters were constrained to be the negative
sum of the other parameters, respectively. We further assume 6, §,
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FIGURE 1

Hypothetical category probability curves for nine ordered categories
as used in NTEP rating scale.

and mbolt are normally distributed. For an unbiased rater in a
rating event ($=0), the probability density curves for each category
are illustrated in Figure 1. The vertical dash lines indicate category
thresholds located at the points where the probability of a cultivar
being assigned to two adjacent categories is equal. Note that these
thresholds are not necessarily equidistant. In Figure 1, if a cultivar
is located in a category (i.e., between two adjacent thresholds),
then the response in that category has the greatest probability. The
x-axis represents the constructed latent scale. It is continuous and
equidistant, with a zero indicating the average level of overall turf
quality. While the average level in individual rating events might
vary (f#0), we assume the average levels for each research group
at different test locations are the same, allowing scale matching
across different testing locations. Once subjectivity effects, i.e., B
and 7, were estimated and removed, 6 can be further analyzed. In
this study, we partitioned @ into cultivar and plot location effects,
that is,

0=nm+LOC )

where 7 is the cultivar effect, reflecting the intrinsic quality of a
cultivar, and L£OC is the plot location effect due to spatial
heterogeneity of the field. We further assume cultivar effects
follow normal distributions with a mean of 0 and a variance of
0. The plot location effect was modeled as a Gaussian process with
a zero mean and covariance function K,

LOC(-) ~N(O,K(-)) 3)

The covariance function K(-) implemented here is an
exponential quadratic function. For two plots i and j in the same
trial at a specific testing location,

&2

K(- o, p, Co)ij = o €xp (2—;2) + 51']'(73 (4)
where ¢, p, and o, are hyperparameters defining the covariance
function; 5;j is the Kronecker delta function with value 1 if i = j and
0 otherwise; dj; is the Euclidean distance between centers of the two
plots. As this is a Bayesian model, priors for parameters and
hyperparameters are required. We adopted weakly informative

priors: £3(0,1) for &, o and o,; Inv-Gamma(5,5) for p.
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2.2 Parameter recovery with NTEP RSM

To ensure that model parameters are identifiable, the following
parameter recovery test was performed to evaluate the model. We
first generated a synthetic dataset from 3 replications of 10 cultivars
rated monthly for 5 years by 5 raters. The entry effects are random
draws from a normal distribution with a mean of 0 and a standard
deviation of 0.7 (¢ = 0.7). Plot location effects are generated from a
Gaussian process with an assigned mean vector and covariance
matrix with a = 0.15, p = 2.5, 0, = 0.2. Rating severity is a vector of
five evenly spaced numbers over [-0.8,0.8], and category threshold
is a vector of eight evenly spaced numbers over [-2,2]. All
parameters, functions, and simulated data can be found in the
Github repository. The simulated data were fit to the NTEP RSM
for parameter recovery.

2.3 Linear mixed model

To compare with the existing method, we also implemented the
following LMM for each testing location,

Y=nm+u+e 5)

in which quality rating, Y, was treated as a continuous variable
and partitioned into a fixed effect of cultivars, 17, and a random effect
of rating event, u. € denotes the residual that the model does
not explain.

2.4 Model implementation

The NTEP RSM model is implemented in Stan (version
2.29.1) with a Python interface (version 3.10.4). The same
model was fitted to data collected from each trial location, and
posterior sampling of model parameters was generated by four
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Markov chain Monte Carlo chains, each with 1,000 iterations. The
first 500 iterations were discarded to minimize the effect of initial
values, and the rest were thinned by taking every other sample to
reduce sample autocorrelation. The convergence of chains was
confirmed via visual inspection and examining the R values of all
parameters and the log posteriors. Model codes and output files
can be found at https://github.com/QhenryQ/ntep-rsm. The
LMM is implemented with the Python package Statsmodels
(Seabold and Perktold, 2010).

3 Results and discussions
3.1 Preliminary data analysis

Kentucky bluegrass is a cool-season turfgrass that grows best
when temperatures are between 60-75°F and goes dormant in hot,
dry summer and cold winter. Given this behavior, turf quality data
is only collected from May to October in northern trial locations,
while in the southern trial locations, data is usually collected all year
round. Figure 2 presents monthly histograms for all the raw turf
quality rating data. In most months, the quality rating showed good
symmetry and central tendency around 5 or 6. In January and
February, turf quality ratings were only available from Raleigh, NC,
and Stillwater, OK. We noticed decreased turf quality ratings and
the number of categories assigned in both locations. For example,
the February overall turf quality ratings at Stillwater, OK, were
found to have a range of [3, 6], with a median of 4. This is
presumably due to raters’ adjustment to the dormancy of
Kentucky bluegrass. The significant reduction of turf quality in
dormancy makes it difficult for raters to distinguish cultivars.
Ceiling and flooring effects were also observed at other locations,
e.g., the overall turf quality data at East Lansing, MI, and Raleigh,
NC, ranged from 2 to 9, while that for data at West Lafayette, IN,
from 2 to 8.
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FIGURE 2

Histogram of raw overall turf quality ratings for each month at seven test locations.
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3.2 NTEP RSM results

3.2.1 Category thresholds

“How is Rater A’s 5 different from Rater B’s 52" This type of
question is inevitable when it comes to the comparison of cultivars
following the current NTEP procedure. However, such a question
cannot be answered without proper definitions of categories, which
in our model, are done by identifying category thresholds. These
thresholds are points on the latent scale at which a rater is equally
likely to select two adjacent response options (Andrich and Luo,
2003). We also assumed there are fixed distances among the
category thresholds for raters within the same research group at
the same location. This assumption is reasonable given that
experienced raters of the same research group usually train newer
raters. Estimation of category thresholds from the data provides
important feedback on category definitions and how the scale is
utilized by each research group, allowing us to ensure raters are
adequately differentiating cultivars. When adjacent thresholds are
too far apart, a category becomes too wide and less informative; on
the other hand, when adjacent thresholds are close, a category
becomes too narrow, indicating underutilization of the scale (see
Guidelines for Rating Scales and Andrich Thresholds). We
examined the non-terminal categories used at seven testing
locations (Figure 3) . Their widths spanned the range of [0.07,
4.76] on the logit scale, e.g., Category 2 at Adelphia, NJ, only
spanned 0.59 logits, while category 8 at Stillwater, OK, was 3.54
logits. Category thresholds are generally required to be in ascending
order concordant with the category numbers, i.e., ordered
thresholds (Andrich, 2011). Disordered thresholds imply a higher
rating may not be assigned as a turf cultivar advances along the
scale. Such inconsistency of raters is usually the result of too many
options or/and poor category definitions in scale development.
Estimated category thresholds from all testing locations, ranging
from -6.64 to 6.05, were in order. Large variations were observed in
the range of category thresholds. Category thresholds at East
Lansing, MI, and Stillwater, OK, spread more than 10 logits,
while those in Adelphia, NJ, only spanned 4.5 logits.

1234567809
NTEP Rating [N

St. Paul, MN

East Lansing, MI

Logan, UT

West Lafayette, IN

Adelphia, NJ

Stillwater, OK

Raleigh, NC

Latent Logit Scale

FIGURE 3
The latent scale partitioned by category thresholds into NTEP rating
categories at seven test locations.
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3.2.2 Rating severity

Defining category thresholds is not sufficient to answer the
question of rater variation. On the constructed latent scale, category
thresholds can still slide left (indicating a lenient rating event) or
right (indicating a severe rating event). In many fields, severity can
be treated as a constant for a given rater. That is to say, whenever
the rater conducts a rating, he/she is always the same in terms of
severity. However, this might not be true during the evaluation of
turfgrass. For new raters, it takes time to achieve consistency; for
trained raters, some may adjust their severity to credit cultivars that
perform well under harsh environmental conditions or at different
times of the year (personal communications with NTEP raters).
Historically, there have been two sets of rating criteria for reference
standards in NTEP. One is based on an optimal growth
environment (e.g., light, temperature, soil moisture) and
management regime (e.g., mowing height, fertilization rate), while
the other is based on the actual environment or management
regime. Using either criterion, the rater must idealize his/her
reference standards to compare against all treatments and assign
a quality score using a scale of 1 to 9. With the first criterion, we
expect consistency of raters regardless of the rating time of the year
since the best plot is defined considering all possible growth
environments and management regimes. With the second, raters
could be either severe or lenient depending on the environment or
management regimes at the rating time. We examined the
consistency in rating severity estimates of 10 raters who have
performed more than 3 ratings across different months. For each
rater, we fit a trend line for their rating severity across different
months of the year using the weighted scatterplot smoothing
(LOWESS) method. No strong trends were observed for raters in
St. Paul, MN, West Lafayette, IN, and Adelphia, NJ, while strong
seasonal patterns were seen for raters in the other four locations
(Figure 4). One potential confounding factor in the current
definition of rating severity is the seasonality of turfgrass quality.
It is also worth noting that while the model focuses on point
estimates for the average turf quality, the actual turf quality of cool-
season turfgrass is not a constant; instead, it varies over time with
strong annual seasonality. Unfortunately, the current data do not
provide sufficient information, e.g., the exact rating dates, for
investigation on how rating severity changes in response to the
seasonality of turf quality. Standard deviations of rating severity per
rater ranged from 0.13 to 0.97 on the logit scale. Considering the
category widths, such variation in severity for a given rater could
lead to changes in rating categories.

3.2.3 Field spatial variation

We implemented a Gaussian process to estimate the spatial
variation within a specific trial. The traditional cultivar comparison
method based on ANOVA or LLM assumes uniform growth
conditions within a trial, which is hardly achievable due to
heterogeneity in soil texture, seeding depth, elevation gradient,
etc. Thus, removing field spatial effect is important for reliable
cultivar comparison results. Figure 5 visualizes the spatial variation
estimated by our model at seven testing locations, in which every
pixel represents a plot as defined by row and column number. The
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Rating severity estimates and monthly trend lines of ten raters at seven test locations.

level of spatial heterogeneity varied from trial to trial; some were
higher, e.g., the trial at East Lansing, MI, while some were lower,
e.g., the trial at Adelphia, NJ. Noticeably, we observed large edge
effects from the trial at Logan, UT, the diagonal division from the
trial at St. Paul, MN, and the localized hot spots from trials at East
Lansing, MI, and Raleigh, NC. The estimated field spatial variation
provided turfgrass researchers with a high-level summary of their
trials, which can help improve experimental design and allow better
differentiation of cultivars.

St. Paul, MN

East Lansing, MI

Adelphia, NJ Stillwater, OK

FIGURE 5
Field spatial variation at seven test locations.

3.2.4 Cultivars comparison across testing
locations

Our model quantifies and removes confounding factors at each
location, i.e., rating severity and field spatial effect, allowing a more
reliable and accurate cultivar comparison. An additional
assumption is required for scale alignments to compare cultivars
across different testing locations. We assume the average levels for a
turfgrass cultivar, as perceived by raters at different NTEP testing
locations, are roughly the same. In Figure 6, we compared the

Logan, UT West Lafayette, IN

Raleigh, NC
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FIGURE 6
Performance of After Midnight and Kenblue at seven test locations.

performance of two example cultivars by aligning the average levels
at seven testing locations. Each angular axis represents the latent
logit scale at corresponding testing locations, where zero indicates
the average level. For ‘After Midnight,’ it performed above average
at Adelphia, NJ, Stillwater, OK, and Raleigh, NC, and below average
at St. Paul, MN, East Lansing, MI, Logan, UT, and West Lafayette,
IN. Kenblue’ performed below average at all locations. When
comparing the two, the distance between the logit values
estimates how much one cultivar is better than the other at each
location. After Midnight outperformed Kenblue at all testing
locations except East Lansing, MI, and West Lafayette, IN. The
comparison of all evaluated cultivars can be found in
Supplementary Materials and the GitHub repository.

3.2.5 Effect sizes

Effect size quantifies the strengths of relationships between
variables and determines their practical importance in the study.
One way to determine the effect size is by examining the percentage
of variance the effects explain. Figure 7 illustrates the variance
percentage explained by the model’s estimated parameters. At all
locations except Logan, UT, the effect of field spatial variation is the
smallest of the three. In contrast, the effect of rating severity is the
largest at all locations but at Adelphia, NJ. Notably, there are seven
raters at Adelphia, NJ, compared with 1 to 3 raters at other
locations, highlighting the importance of gathering opinions from
more raters during cultivar evaluation. The percentage of variance
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FIGURE 7

Percentage of explained variance by different effects estimated by
the model.
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explained by cultivar effect varied drastically, from a merely 4% at
Logan, UT, to as much as 79% at Adelphia, NJ. Quantifying and
removing these confounding factors is thus essential when
evaluating and comparing cultivars in field trials.

3.3 Comparison with LMM

The advantages of NTEP RSM over the currently-adopted
LMM are three-folded. First, it allows the estimation of additional
parameters, namely category thresholds, rating severity, and field
spatial variation. All three parameters are essential for rater
training, better utilization of the whole scale, and understanding
of the field conditions. Second, NTEP RSM separates mean
estimations of the evaluated cultivars better. To name a few of the
numerous examples, Blue Gem (NAI-13-9), MVS-130, Heartland
(NAI-14-187), AKB3241, and RAD 553 all received the same mean
estimation of -0.261 at East Lansing, MI, from LLM, while the mean
estimates from NTEP RSM were 0.030, -0.020, -0.145, -0.268, -0.580
respectively. Similar patterns were observed for DLFPS-340/3556,
Paloma (PST-K13-139), DLFPS-340/3552, J-1138 at St. Paul, MN;
DLFPS-340/3556, A16-2, NuRush (J-3510) at West Lafayette, IN;
and DLFPS-340/3548, A16-17, Barvette HGT®, NK-1 at Logan, UT.
Detailed comparison for all cultivars can be found in Among the
seven test locations, the largest discrepancies between the two
models’ output were seen at Logan, UT. At the same time, the
smallest were observed at Stillwater, OK (Table 2). It is important to
highlight the robustness of the current LMM approach despite all
the merits of NTEP RSM. Last but not least, RSM provides more
realistic standard deviation estimations, while the currently-
adopted LMM generates the same standard deviations for all
cultivars at each location. Given the different genetic backgrounds
of cultivars, they are unlikely to have the same standard deviations.

3.4 Parameter recovery with NTEP RSM

The highest value for R was 1.0 for all parameters and the log
posterior, suggesting that all four chains have converged. As shown
in Figure 8, all except three of the 95% credit intervals include zero,
indicating the model’s ability to recover the original values of
the parameters.

3.5 Discussions

Despite the promising results, there are at least two major
challenges that lie ahead for the successful implementation of the
proposed model. The first and foremost is the lack of data. While
NTEP has done a remarkable job of gathering, cleaning, organizing,
and storing historical data on cultivar evaluation, a significant
amount of valuable data are left out in this process. This includes
but is not limited to rater identification, trial layout, rating dates,
field gradient, etc. Luckily, researchers generally record and
preserve such information at each trial location. Additional work
is required to incorporate such data into the current NTEP
database. Second, there are too few raters at some trial locations.
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TABLE 2 Correlation coefficients between cultivar mean estimates from LMM and NTEP RSM.

Location Correlation coefficient between LMM and NTEP RSM
Pearson’s Spearman’s rank

St. Paul, MN 0.973614 0.970781
East Lansing, MI 0.928411 0.929173
Logan, UT 0.800883 0.756775
West Lafayette, IN 0.969092 0.955572
Adelphia, NJ 0.997716 0.997600
Stillwater, OK 0.999583 0.999022
Raleigh, NC 0.944150 0.951401

The fundamental debiasing mechanism of the proposed model is to
aggregate individuals’ opinions on the same cultivar into an
objective and collective opinion. Multiple raters are required to
ensure accurate estimations of the collective opinion on the tested
cultivar. As mentioned above, one limitation of the proposed model
is the absence of a seasonality component. As a cool-season
turfgrass, Kentucky bluegrass thrives during the fall and early
spring and slows significantly in growth during the hot summer
months. The proposed model focuses on estimating the overall
quality for a given cultivar over the entire testing period but cannot
provide a quality estimation at a given time of the year. We tested
year and month effects as independent Gaussian variables; however,
as pointed out by one reviewer, it was unrealistic that months have
the same effect across different years. We agree with the reviewer
and are exploring better ways to improve the proposed model. A
potential approach is the multiple-output Gaussian process model
(Li et al, 2021) that incorporates the seasonal grown pattern of
Kentucky bluegrass as a prior distribution. This requires additional
information on the rating dates. Once implemented, it will allow the
analysis of the temporal variation of cultivars, which caters to needs
such as mixing/blending cultivars based on spring green up,
comparison of cultivars on growth potential at a given time of the
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FIGURE 8
Mean estimation and 95% credit interval for the difference between
estimated values and original values of the parameters.
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year (Woods, 2013). Now that the model assumes raters are
consistent in all rating event, we encourage small trial sizes at
each testing location. Smaller trials reduce the risk of rater fatigue
during rating, thus helping raters to maintain better consistency.
For trials with too many cultivars, we recommend ratings be
conducted on each replication on separate occasions instead of
finishing all the plots at once. Regarding the rating scale, researchers
should attempt to achieve a uniform distribution (Bond and Fox,
2013) of category thresholds. NTEP is currently working towards a
data ingestion, analysis, and visualization pipeline, with the
objectives to provide timely feedback to raters during the reason,
to help raters to utilize the rating scale better, and to service a larger
audience. NTEP also need to set standards for cultivar average,
representing the zero point on the scale, such that results of cultivar
comparisons across time and location are accurate and reliable.
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