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Editorial on the Research Topic

Artificial intelligence-of-things (AIoT) in precision agriculture
Precision agriculture is becoming critically important for sustainable food production to

meet the growing food demand. In recent decades, technical advances in AI (artificial

intelligence) and IoT (internet-of-things) can help solve various agricultural field problems

and optimize resource utilization (e.g. water, pesticide, fertilizer, seed, energy), improve

production management and productivity, and reduce labor dependency. AI and IoT-

enabled applications are increasingly implemented for precision agriculture applications such

as crop growth monitoring, weed removal control, pest and disease detection, planting, crop

yield estimation, targeted spraying and pollination, smart irrigation and nutrient management,

field analysis, and plant phenotyping. For example, IoT-based applications using machine

learning and deep learning models are widely used to recognize fruits, vegetables, weeds, pests,

and diseases, and measure soil quality and nutrients. Such information helps inform better crop

management practices. Despite the progress of AI and IoT technologies in precision agriculture,

the combined use of these technologies in the form of AIoT are still in early stages with

numerous challenges in the form of data acquisition and connectivity, and optimization of AI

algorithms based on edge computing processing capabilities that still need to be addressed.

This Research Topic focuses on the recent advancement in the area of AI and IoT

applications on precision agricultural technologies for both field and specialty crops. This

Research Topic attracted nine research articles and three review articles. These articles

reveal the research advancements and trends of applied machine learning and deep

learning techniques for various precision agriculture applications.

Robotic harvesting plays an important role in addressing the labor shortage problems for

manual labor-intensive and time-sensitive harvesting operations. For example, Sun et al.

propose the YOLO-P to detect the pears for robotic harvesting in natural orchard

environment. They propose the shuffle block integrated with convolutional block attention

module (CBAM) as the backbone of YOLOv5 network. A total of 5,257 images consisting of

various backgrounds and illumination conditions were used to train and test the proposed

approach. Different ablation experiments were performed to check the robustness and
frontiersin.org01
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generalization and obtained the 0.961 F1-score with 32 FPS (frames per

second). To facilitate autonomous driving of robot and roadside fruit

harvesting, Zhou et al. proposed the framework for synchronous road

extraction and roadside fruit recognition. Gray factor optimization

approach was adopted to extract the unstructured roads from images

while YOLOv7 was employed to detect the wine grapes. The proposed

synchronous approach helped to increase fruit detection by 23.84%.

In another study, Tang et al. estimated the tree-level almond yield

using aerially captured multispectral images and convolutional neural

networks. They used approximately 2000 almond trees for the yield

monitoring. Multispectral aerial images were collected at a height of

6,000 ft with 0.3 m spatial resolution. Then, convolutional neural

network (CNN) with spatial attention module was proposed to

estimate the yield estimation at tree-level. Their proposed approach

achieved the R2 and RMSE (root mean square value) of 0.96 and 6.6%,

respectively. Similarly, Ren et al. introduce the mobile robotic platform

for indoor farming to monitor strawberry yield. They first developed

the autonomous mobile robot platform (AMR) that uses the AprilTag

and inertial navigation to autonomously navigate the structural

environment of indoor farms. Then, they used the multilayer

perception robot (MPR), mounted on ARM, to collect the temporal-

spatial data of the strawberry plants within the strawberry indoor farm.

Their MPR achieved the positioning accuracy of 13.0 mm while

navigating the plant factory with 6.26% error rate in yield

monitoring performance.

Precision pest management is another area in precision agriculture

which involves accurate pest detection and identification for the precise

pesticide applications. For example, Peng et al. employed an ensemble

learning technique to fuse the selective kernel unit, representative batch

normalization module, and ACON activation with the Dense-Net-121

networks, naming it MADN, to detect and identify the crop pests.

Their proposed approach helped to achieve F1-score of 0.7528 in

identifying the pests.

To optimize coconut breeding, Liu et al. introduced a non-

destructive approach to segment the internal organs of coconuts

using Computed Tomography (CT) scanning and semantic

segmentation. They scanned the coconut during different stages

using the CT scan and constructed the CIDCO dataset. Then

DeepLabv3+ based semantic segmentation was employed by

introducing dense atrous spatial pyramid pooling and CBAM

modules. Their improved model helped to achieve F1-score of

0.905 to segment the internal organs of coconuts. Similarly, non-

destructive and automatic detection of defective kiwifruit is

critically important to maintain the postharvest quality of

kiwifruits and for consumer acceptability. To address this issue,

Wang et al. focused on detecting the defective kiwifruits for grading

lines by employing YOLOv5. They constructed a multiple-defect

kiwifruit dataset consisting of healthy, leaf-rubbing, damaged,

healed cuts or scarred, and sun-burn kiwifruits. Then, spatial-

depth and depth-wise separable convolutional modules were

combined with YOLOv5 to improve the detection performance of

the defective kiwifruits. Their approach helped to achieve an

average detection accuracy of 97.7% with 8.0 ms detection time.

It has been always a challenge for dataset availability and its

manual labeling to train AI based algorithms to solve the specific

precision agriculture application. To address this problem, Wang
Frontiers in Plant Science 02
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et al. introduce a deep reinforcement learning based augmentation

framework for the leaf rust images. Their proposed approach

consists of Deep Q-Learning (DQN) for selecting optimal

augmentation approach based on individual image, extracting

geometric and pixel indicators, and DeepLabv3+ to authenticate

augmented image and feedback the rewards. Experimental results

showed that the proposed approach helped to achieve Intersection-

over-Union (IoU) of 0.8426 in correctly classifying leaf rust spots

compared to the union of expected and predicted rust spots.

Measurement of plant phenotypic traits is critical in selecting the

high-yield crop varieties and timely identifying the need in actions for

optimal plant growth. To measure the soybean plant phenotyping

traits, He et al. proposed a generalized regression neural network based

approach. First, SfM (structure from motion) algorithm was used to

reconstruct the soybean plants. Then, different filtering (lowpass filter

and gaussian filter) and Laplacian smoothing methods were used to

segment different parts of soybeans (e.g. plants, stem, and leaves).

Ultimately, a generalized regression neural network was employed to

measure the phenotypic traits of the soybeans. Results indicated that

their proposed approach helped to achieve R2 of 0.9775, 0.9785, and

0.9487 for measuring the plant height, lead length, and leaf width,

respectively compared to ground truth measurements.

In addition to the above-mentioned studies, there are further

areas in which AI-assisted technologies could be used for precision

agriculture applications. For example, Nawaz et al. reviewed the

latest trends in applying data processing and deep learning

algorithms for remote sensing data. Furthermore, Estrada et al.

explored and reviewed machine learning applications for remote

forestry health assessment. Similarly, Johnson & Cheein presented a

comprehensive review on the use of mechatronics, AI and IoT

applications for potato harvesting.

With the papers published in this Research Topic ranging from

different precision agriculture applications and covering latest

advancements in the AI application to solve various agricultural

challenges, we hope readers will gain insights into the state-of-the-art

developments in rapidly growing precision and digital agriculture

domain and will provide further opportunities for scientists and

industries to take on the collective challenges faced by this sector.

The papers published in this Research Topic proved the critical role of

AI and IoT applications to address global food security issues and meet

the sustainable agriculture goals in the context of declining and aging

agricultural labor. However, more studies will be needed with

continuous innovations, and collective efforts from scientists and

industries working in the precision and digital agriculture domain.
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Object detection is a vital research direction in machine vision and deep learning.

The object detection technique based on deep understanding has achieved

tremendous progress in feature extraction, image representation, classification,

and recognition in recent years, due to this rapid growth of deep learning theory

and technology. Scholars have proposed a series of methods for the object

detection algorithm as well as improvements in data processing, network

structure, loss function, and so on. In this paper, we introduce the

characteristics of standard datasets and critical parameters of performance index

evaluation, as well as the network structure and implementation methods of two-

stage, single-stage, and other improved algorithms that are compared and

analyzed. The latest improvement ideas of typical object detection algorithms

based on deep learning are discussed and reached, from data enhancement, a

priori box selection, network model construction, prediction box selection, and

loss calculation. Finally, combined with the existing challenges, the future research

direction of typical object detection algorithms is surveyed.

KEYWORDS

deep learning, object detection, transfer learning, algorithm improvement, data
augmentation, network structure
1 Introduction

Computer vision, also known as machine vision, uses an image sensor that

replaces the human eye to obtain an image of an object, converts the image into a

digital image, and uses computer-simulated human discrimination criteria to

understand and recognize the image, to analyze the image, and draw conclusions.

This technology gradually emerged on the basis of the successful application of remote
frontiersin.org01
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sensing image processing and medical image processing

technology in the 1970s and has been applied in many fields.

At present, the application of computer vision technology in

agriculture is increasing day by day. Object detection is widely

used in different areas of agriculture and getting importance

these days in fruits, diseases, and scene classification (Zhang

et al., 2020; Bhatti et al., 2021).

The primary goal of this work is to find all of the objects of

interest in a specified image with high accuracy and efficiency

and to use the rectangular bounding box to determine the spot

and size of the detected object, which is connected to object

classification, semantic segmentation, and instance. In the

process of object detection, due to the different appearance,

posture, shape, and quantity of various target objects in the

image, as well as the interference of multiple factors such as

illumination and occlusion, the target is distorted, and the

difficulty of object detection (Chen and Wang, 2014; Bhatti

et al., 2019).

Deep learning-based object detection algorithms are

mainly divided into traditional and detection algorithms.

Traditional detection approaches rely on hand-crafted

features and shallow trainable architectures, which are

ineffective when creating complicated object detectors and

scene classifiers that combine many low-level image features

and high-level semantic information. Traditional object

detection algorithms mainly include the deformable parts

model (DPM) (Dollár et al., 2009), selective search (SS)

(Uijlings et al., 2013), Oxford-MKL (Vedaldi et al., 2009),

and NLPR-HOGLBP (Yu et al., 2010), etc. Traditional object

detection algorithm basic structure mainly includes the

following three-part: 1) region selector, first, a sliding

window of different sizes and proportions is set for a given

image, and the entire image is traversed from left to right and

top to bottom to frame a specific part of the image to be

detected as a candidate region; 2) feature extraction, extract

visual features of candidate regions, such as scale-invariant

feature transform (SIFT) (Bingtao et al., 2015), Haar

(Lienhart and Maydt, 2002), histogram of oriented

gradient (HOG) (Shu et al., 2021) commonly used in face

and standard object detection, and other features to extract

features for each region; 3) classifier classification, use the

trained classifier to identify the target category of the feature,

such as the commonly used deformable part model (DPM),

adaboot (Viola and Jones, 2001), support vector machines

(SVM) (Ashritha et al., 2021) and other classifiers. However,

these three parts achieved certain results while exposing

their inherent flaws, such as using a sliding window for

region selection will result in high time complexity and

window redundancy, the uncertainty of illumination

change and the diversity of background will result in poor
Frontiers in Plant Science 02
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robustness of the guide design feature technique (Cao et al.,

2020a), poor generalization, and complex algorithm stages

will result in slow detection efficiency and low accuracy (Wu

et al., 2021). As a result, classic object detection approaches

have struggled to match people ’s demands for high-

performance detection.

However, there are still some complications in applying

an object detection algorithm based on deep learning, such

as too small detection objects, insufficient detection

accuracy, and insufficient data volume. Many scholars have

improved algorithms and also formed a review by

summarizing these improved methods. Tong et al. (2020)

analyzed and outlined the improved techniques from the

aspects of multi-scale features, data enhancement and

context informat ion but ignored the performance

improvement of the feature extraction network for small

object detection; moreover, the data enhancement part only

considers improving the small object detection performance

by increasing the number and type of small targets in the

data set, which lacks diversity. Xu et al. (2021) and Degang

et al. (2021) respectively introduced and analyzed the typical

algorithms of object detection for the detection framework

based on regression and candidate window. However,

because the optimization scheme of the algorithm is not

well classified in the text, they cannot clearly understand

when and how to apply the improvement idea to the

detection algorithm. The mainstream deep learning object

detection algorithms are mainly separated into two-stage

detection algorithms and single-stage detection algorithms,

as shown in Figure 1.

In Figure 1, the two-stage detection algorithm is based on

candidate regions represented by the R-CNN series; the

single-stage detection algorithm is a regression analysis-

based object detection algorithm defined by YOLO and

SSD. This review is based on different object detection

techniques approaches, and the main contribution of this

paper is as follows:
• Firstly, this review organized the standard data sets and

evaluation indicators. The list of datasets and their

evaluation methods are in-depth and highlighted from

different literature from recent years.

• Secondly, this review paper focused on deep learning

approaches for object detection, including two-stage and

single-stage object detection algorithms and generative

adversarial networks.

• The third part of this paper surveyed the deep learning-

based object detection algorithm applications in

multimedia, remote sensing, and agriculture. Finally

draws a conclusion and some future works.
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2 Common data sets and evaluation
indicators

This section highlights the datasets used for objects in

remote sensing, agriculture, and multimedia applications.
2.1 Common datasets

In the task of object detection, a dataset with strong

applicability can effectively test and assess the performance of

the algorithm and promote the development of research in

related fields. The most widely used datasets for deep learning-

based object detection tasks are PASCAL VOC2007 (Ito et al.,

2007), PASCAL VOC2012 (Marris et al., 2012), Microsoft

COCO (Lin et al., 2014), ImageNet (Deng et al., 2009) and

OICOD (Open Image Challenge Object Detection) (Krasin et al.,

2017). Different features and quantities of images in datasets are

listed in Table 1.
2.2 Evaluation indicators

The act of the object detection algorithm is mainly evaluated

by the following parameters: intersection over union (IoU)

(Rahman and Wang, 2016), frame per second (FPS), accuracy

(A), recall (R), precision (P), average precision (AP), and mean

average precision (mAP) (Tong et al., 2020). Where AP consists

of the area enclosed by the P-R curve and the coordinates, and

mAP is the mean of AP (Kang, 2019; Wang, 2021).
Frontiers in Plant Science 03
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3 Deep learning approaches for
object detection in multimedia

3.1 Two-stage object detection
algorithm

In two-stage object detection, one branch of object detectors

is based on multi-stage models. Deriving from the work of R-

CNN, one model is used to extract regions of objects, and a

second model is used to classify and further refine the

localization of the object. To obtain test results, the two-stage

object detection approach primarily uses algorithms such as

Selective Search or Edge Boxes (Zitnick and Dollár, 2014) to

choose the candidate region (Region Proposal) (Hu and Zhai,

2019) that may include the object detection for the input image,

and then categorize and position the candidate region. The R-

CNN (Girshick et al., 2014) series, R-FCN (Dai et al., 2016),

Mask R-CNN (He et al., 2017), and other algorithms

are examples.

3.1.1 OverFeat algorithm
The OverFeat algorithm was proposed by the author in

Sermanet et al. (2013), who improved AlexNet. The approach

combines AlexNet with multi-scale sliding windows (Naqvi

et al., 2020) to achieve feature extraction, shares feature

extraction layers and is applied to tasks including image

classification, localization, and object identification. On the

ILSVRC 2013 (Lin et al., 2018) dataset, the mAP is 24.3%, and

the detection effect is much better than traditional approaches.

The algorithm has heuristic relevance for deep learning’s object
B

A

FIGURE 1

Object detection method based on deep learning (A) Single stage method (B) Two stage method.
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detection algorithm; however, it is ineffective at detecting small

objects and has a high mistake rate.

3.1.2 R-CNN algorithm
The convolutional neural network (CNN) to the job of

object detection introduced the R-CNN Krizhevsky et al.

(2012), a standard two-stage object detection approach. Three

modules of deep feature extraction and classification and

regression based on CNN:
Fron
1. Use a selective algorithm to extract about 2000 regional

candidate frames that may contain target objects from

the individual image;

2. Normalize the applicant areas scale to a static

magnitude for feature mining;

3. Use AlexNet to input the candidate region features into

SVM one by one for classification, using Bounding Box

Regression and Non-Maximum Suppression (NMS).
The Hinge loss with the L2 regularization term (Moore and

DeNero, 2011) is the loss function of the SVM classification

algorithm. The following is the definition of the function form:

Lcls = co
i
max 0,  1 − p*i   :   pi 

� �
+
1
2
w2 (1)
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where the proper category of the item is represented by p*i , the

possibility of the projected object class is represented by pi, and

the index of the mini-batch is denoted by i. To improve the

prediction’s resilience, the main premise is to penalize the

distance variation among the predicted bounding-box and the

ground truth. The following is the definition of the function:

t*x = (x* − x)=w, t*y = (y* − y)=h

t*w = logðw*=wÞ, t*h = (h*=h)  (2)

Lloc =o
i

ti* − wT
*f(t

i)
� �2

(3)

where, the true coordinate is t* = (x*,y*,w*,h*) the predicted

coordinate is t = (x,y,w,h), where (x, y) signifies the coordinate of

the box center, (w, h) denotes the width and height of the box.

wT
* is the learned limit, and f(ti) is the feature vector. The

regional scores are adjusted and filtered for location regression

in a fully connected network (Girshick et al., 2014).

On the ILSVRC2013 dataset, the R-CNN algorithm

improves the mAP to 31.4% and 58.5% on the VOC2007

dataset. The performance is better than the typical object

detection algorithm. However, the following issues persist:
TABLE 1 Comparison of related data sets.

Dataset
Name

Quantity Type Year Features

CIFAR-10
(Krizhevsky
and Hinton,
2009)

60000 10 2009 Color pictures of everyday things in daily life; take up little storage space; objects detection in images is large; this dataset
is often used to measure the classification ability of the model

PASCAL
VOC 2007
(Everingham
et al., 2010)
PASCAL
VOC 2012
(Everingham
et al., 2015)

9963
11530

20
20

2010
2015

Standardized datasets that can be used for image classification, object detection, and image segmentation; the standardized
process makes most of the self-made datasets use this format; most of them are real-world data, which is difficult to
detect; it has better image quality and complete Labels are mostly used to evaluate model performance; every image
resembles to its annotation file one-to-one, which is easy to manage;

ImageNet
(Russakovsky
et al., 2015)

14.19
Million

21841 2015 Because this dataset has extremely rich variety information and can contain the underlying features of most detected
objects, it is often used as a dataset for pre-training models, which also makes the model extremely challenging in both
object detection and object classification.

Microsoft
COCO (Lin
et al., 2014)

328000 91 2014 The image environment is complex and diverse, which increases the difficulty of detection; in addition to the category and
location information of the image, it also contains the scene description of the image; the number of categories is far from
the ImageNet, Open Image, and SUN datasets, but this also makes each category more difficult to detect. The larger the
number of images contained, the better the detection ability of the model during training.

Open Image
(Kuznetsova
et al., 2020)

1.9 Million 600 2020 The largest dataset with target location annotations currently available; the annotation information is manually reviewed
to ensure accuracy and consistency; The majority of the photographs are complex settings with several objects

Places (Zhou
et al., 2017)

2.5 Million 205 2017 The Places dataset is a scene-centric database, and the scene categories in the images represent the scene information of
each image

SUN (Xiao
et al., 2016)

130519 899 2016 Compared with the Places dataset, it has more scene category information, but the average category of the SUN dataset in
each scene is about 80 times different from the Places dataset, resulting in a weaker scene classification ability learned by
the model using the SUN dataset; In addition to scene recognition, object recognition under the scene can be performed.
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1. Because every stage must be qualified separately,

training involves a multi-stage pipeline that is slow

and difficult to optimize.

2. Because CNN features should be derived from each

object proposal for each image, training of the SVM

classifier and bounding box regressor is time and disk

intensive. This is critical for large-scale detection.

3. The test speed is slow, because the CNN structures need

to be mined in each test image object proposal, and

there is no shared computation.
3.1.3 SPP-Net algorithm
He et al. (2015) presented the Spatial Pyramid Pooling

Network (SPP-Net) in 2015 as a solution to the problem that

R-CNN pulls features from all candidate regions separately,

which takes a lot of time. Between the last convolutional layer

and the fully connected layer, SPP-Net adds a spatial pyramid

structure, segments the image using numerous standard scales

fine-tuners, and fuses the quantized local features to form a mid-

level representation. To avoid repetitive feature extraction and

break the shackles of fixed-size input, a fixed-length feature

vector is built on the feature map, and features are extracted all at

once. On the PASCAL 2007 dataset, the SPP-Net algorithm is

24102 times faster than the R-CNN algorithm in detection, and

the mAP is increased to 59.2%. However, the following issues

want to be addressed:
1. A huge sum of features must be kept, which consumes a

lot of space;

2. the SVM classifier is still utilized, which requires a lot of

training steps and takes a long time.
3.1.4 Fast R-CNN algorithm
Girshick (2015) introduced the Fast R-CNN technique

grounded on bounding box and multi-task loss classification

to solve the difficulties of SPP-Net. The algorithm streamlines

the SPP layer and creates a single-scale ROI Pooling layer

assembly, in which the applicant region of the entire image is

tested into a static size, a feature map is created for SVD

decomposition, and the Softmax classification score and

BoundingBox are obtained via the ROI Pooling layer. As follow;

Lðp, u, tu, vÞ = Lcls(p, u) + l½u ≥ 1�Lloc(tu, v) (4)

where, Lcls(p,u) = -log pu computes the log loss for ground truth

class u, and pu is determined from the separate chance dispersal

p = (p0,· ·,pc) over the C+1 outputs from the last FC layer. Lloc(t
u,

v) is well-clear over the forecast offsets tu  =  (tux  , t
u
y  , t

u
w, t

u
h  ) and

ground-truth bounding-box regression objects v = (vx,vy,vw,vh),

where x, y, w, and h mean the two synchronizes of the box center,

width, and height, respectively. To stipulate an object proposal
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with a log-space height/width change and scale-invariant

conversion, each tu uses the parameter settings (Zitnick and

Dollár, 2014). To omit all backdrop RoIs, the Iverson bracket

indicator function [u ≥ 1] is used. A smooth L1 loss is used to fit

bounding-box regressors in order to give additional robustness

against outliers and remove sensitivity in exploding gradients:

Lloc(t
u, v) =oi∈x,y,w,hsmoth   L1 tui − við Þ (5)

And

smoothL1(x) =
0:5x2                   if xj j < 1

xj j − 0:5         otherwise
  

(
(6)
3.1.5 Faster R-CNN algorithm
The employment of candidate region generating methods

such as bounding boxes, selective search, and others stymies

accuracy progress. Ren et al. (2015) presented Faster R-CNN in

2017 as a solution to this problem and introduced a Region

Proposal Network (RPN) to replace the selective search

algorithm. Comparing suggestions to reference boxes,

regressions toward actual BBs can be accomplished (anchors).

Anchors of three scales and three feature ratios are used in the

Faster R-CNN. The loss function resembles that of (4);

L(pi, ti) =
1

Ncls
oiLcls(pi, p

*
i ) + l

1
Nreg

oip
*
i Lreg(ti, t

*
i ) (7)

where, pi denotes the likelihood that the ith anchor will be an

object. If the anchor is positive, the ground truth label p*i is 1,

otherwise, it is 0. t*i is related to the ground-truth box overlying

with a positive anchor, while ti contains four parameterized

coordinates of the predicted bounding box. Lcls is a binary log

loss, while Lreg is a smoothed L1 loss, both of which are similar to

(5). On the PASCAL VOC 2007 dataset, faster R-CNN achieves

73.2% mAP using the VGG-16 backbone network. However,

there are still issues:
• The scale chosen by the selection box on the feature map

when the anchor mechanism is employed is not

adequate for all objects, notably for small object

identification;

• Only the last layer of the VGG-16 network is used. The

accumulation layer’s output features are predicted. The

network topographies lose conversion invariance and

accuracy after the RoI Pooling layer;
3.1.6 R-FCN algorithm
The idea and performance of the R-CNN series of

algorithms determine the milestones of object detection. This

series of structures is essentially composed of two subnets (Faster

R-CNN adds PRN, which is composed of three subnets), the
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former subnet is the spine network for feature withdrawal, and

the latter subnet is used to complete the classification and

localization of object detection. Between the two subnetworks,

the RoI pooling layer turns the multi-scale feature map into a

static-size feature map, but this step breaks the network’s

translation invariance and is not favorable to object

classification. Using the ResNet -101 He et al. (2016) backbone

network, Dai et al. (2016) developed a position-sensitive score

map (Position-Sensitive Score Maps) containing object location

info in the R-FCN (Region based Fully Convolutional

Networks) algorithm.

3.1.7 Mask R-CNN algorithm
MaskR-CNN, proposed by He et al. (2017) is a Faster R-

CNN extension that uses the ResNet-101-FPN backbone

network. Multi-task loss is combined with segmentation

branch loss, arrangement, and bounding box regression loss in

Mask R-CNN. A Mask network branch for RoI calculation and

division is added to the object classification and bounding box

regression to enable real-time object identification and instance

segmentation. Lin et al. (2017a) projected the RoIAlign layer to

replace the RoI pooling layer and used bilinear difference to plug

the pixels of non-integer situations to tackle the problem of

rounding the feature map scale in the downsampling and RoI

pooling layers. The COCO dataset’s mAP has been increased to

39.8% with a detection speed of 5 frames per second. However,

meeting real-time criteria for detection speed is still problematic,

and the cost of instance segmentation and labeling is too high.

3.1.8 Comparison and analysis
On the COCO dataset, the two-stage object detection uses a

cascade structure and has been successful in instance
Frontiers in Plant Science 06
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segmentation. Although detection accuracy has improved

over time, detection speed has remained poor. On the

VOC2007 test set, VOC 2012 test set, and COCO test set,

Figure 2 reviews the spine network of the two-stage object

detection method, as well as the detection accuracy (mAP) and

detection speed. “—” signifies no relevant data. Performance

comparison of two-stage object detection algorithms as shown

in Figure 2.

The two-stage object detector, as shown in Figure 2, presents

profound pillar networks such as ResNet (Allen-Zhu and Li,

2019) and ResNeXt (Hitawala, 2018), and the detection

precision can reach 83.6%, but the expansion of the algorithm

model causes an increase in the amount of calculation, and the

detection speed is only 11% frame/s, which cannot meet the real-

time requirements. Table 2 outlines the benefits, drawbacks, and

contexts in which certain object detection techniques can

be used.

It can be realized from Table 2, that the two-stage object

detection algorithm has been making up for the faults of the

preceding algorithm, but the problems such as large model scale

and slow detection speed have not been solved. In this regard,

some researchers put forward the idea of transforming Object

detection into regression problems, simplifying the algorithm

model, and improving the detection accuracy while improving

the detection speed.
3.2 Single-stage object detection
algorithm

The single-stage object detection technique, also known as

the object detection algorithm based on regression analysis, is
FIGURE 2

Performance comparison of two-stage object detection algorithms.
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based on the principle of regression analysis. The single-stage

object detector, which is generally represented by the YOLO and

SSD series, skips the applicant area generation stage and obtains

object classification and position information directly.
3.2.1 YOLO object detection algorithm
Redmon et al. (2016) proposed the YOLO (You Only Look

Once) target detector in 2016. The YOLO architecture comprises

of 24 convolutional layers and 2 FC layers, with the topmost

feature map predicting bounding boxes and the P-Relu

activation function explicitly evaluating the likelihood of each

class. The following loss function is optimized during training:

lcoordo
S2

i=0
o
B

j=0
〛

obj
ij ½(xi − x̂ i)

2 + (yi − ŷ i)
2�

+ lcoordo
S2

i=0
o
B

j=0
〛

obj
ij

ffiffiffiffiffi
wi

p
−

ffiffiffiffiffi
x̂ i

p� �2
+

ffiffiffiffi
hi

p
−

ffiffiffiffiffi
ĥ i

q� �2� �

+o
S2

i=0
o
B

j=0
〛

obj
ij (Ci − Ĉ i)

2 + lnoobjo
S2

i=0
o
B

j=0
〛

noobj
ij (Ci − Ĉ i)

2

+o
S2

i=0
〛

noobj
ij o

c∈classes

(pi(c) − p̂ i(c))
2

(8)

where, n is a certain cell of i,(xi,yi) and denotes the center of the

box relative to the grid cell limits, (wi,hi) are the standardized

width and height relative to the image size. The confidence

scores are represented by Ci, the existence of objects is indicated

by 〛
obj
i , and the prediction is made by the jth bounding box

predictor is indicated by 〛
obj
ij .

The technique eliminates the stage of generating candidate

regions and combines feature extraction, regression, and

classification into a single volume. The YOLO detection speed
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in real-time is 45 frames per second, and the average detection

accuracy mAP is 63.4%. YOLO’s detection effect on small-scale

objects, on the other hand, is poor, and it’s simple to miss

detection in environments where objects overlap and occlude.

Zhou et al. (2022) proposed YOLOv5 with total of four

network models: YOLOv5s, YOLOv5m, YOLOv5l, and

YOLOv5x. The detection speed of YOLOv5 is very fast, and

the inference time of each picture reaches 0.007 s, which is 140

frame/s. The generalization process of the YOLO series is not

good in dealing with uncommon scale objects, and multiple

down sampling is required to obtain standard features.

Moreover, due to the influence of space limitation in bounding

box prediction, the detection effect of small object detection is

not good.

3.2.2 SSD object detection algorithm
Liu et al. (2016) introduced the SSD (Single Shot multi-box

Detector) algorithm to balance detection accuracy and detection

speed by combining the advantages of Faster RCNN and YOLO.

For feature extraction, SSD uses the VGG-16 backbone network.

Convolutional layers take the place of FC6 and FC7 and add four

different levels. SSD also employs a target prediction method to

distinguish between target types and positions based on

candidate frames collected by the anchor at various scales. The

following are some of the benefits of this mechanism: (1) The

convolutional layer predicts the target location and category,

reducing the amount of computation; (2) the object detection

process has no spatial limitations, allowing it to detect clusters of

small target items effectively. The running speed of SSD on

Nvidia Titan X is increased to 59 frame/s, which is significantly

better than YOLO; the mAP on the VOC2007 dataset reaches

79.8%, which is 3 times that of Faster R-CNN.
TABLE 2 Advantages, disadvantages, and applicable scenarios of two-stage Object detection algorithms.

Model Advantage Disadvantage Applicable References of
Applications in

Agriculture, Multimedia
and Remote Sensing

OverFeat Feature extraction using CNN Using a sliding window, the time and
space overhead is large

Object Detection (Diwan et al., 2022; Li K. et al.,
2020)

R-CNN Combining CNN with the candidate box method Feature extraction is complex, time-
consuming, fixed image input size

Object Detection (Yan et al., 2019; Jiao et al.,
2020)

SPP-Net Perform convolution operation on the entire image to
realize multi-scale convolution calculation

High space cost Object Detection (Karim et al., 2020; Kumar and
Kumar, 2022)

Fast R-
CNN

Extract features with ROI Pooling layer, saving time and
feature loading space

The selection of candidate regions is
computationally complex

Object Detection (Li M. et al., 2020; Yi et al.,
2021)

Faster
R-CNN

Replacing region proposals with RPN to speed up training
and accuracy

The model is complex and the spatial
quantification is rough

Object Detection (Cynthia et al., 2019; Zhang
et al., 2022)

R-FCN Improved positioning accuracy The model process is multifaceted and
the amount of calculation is large

Object Detection (Gera et al., 2022; Nguyen,
2022; Cai and Zhang, 2022)

Mask R-
CNN

Solve the misalignment between the feature map and the
original image, combining detection and segmentation

Instance segmentation is expensive Object detection,
instance
segmentation

(Jian et al., 2022; Storey et al.,
2022)
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3.2.3 RetinaNet algorithm
Lin et al. (2017b) borrowed the ideas of Faster R-CNN and

multi-scale Object detection Erhan et al. (2014) to design and

train a RetinaNet Object detector. The chief idea of this module

is to explain the previous detection model by reshaping the Focal

Loss Function. The problem of class imbalance of positive and

negative samples in training samples during training. The

ResNet backbone network and two task-specific FCN

subnetworks make up the RetinaNet network, which is a single

network. Convolutional features are computed over the entire

image by the backbone network. On the output of the backbone

network, the regression subnetworks conduct image

classification tasks. Convolutional bounding box regression is

handled by the network.

In one-stage detectors, the class imbalance of foreground

and background is the main reason for the convergence of

network training. During the training phase, Focal Loss

avoids many simple negative examples and focuses on hard

training samples. By training unbalanced positive and

negative instances, the speed of single-stage detectors is

inherited. The experimental results show that on the MS

COCO test set, the AP of RetinaNet using the ResNet-101-

FPN backbone network is increased by 6% compared with the

DSSD513; using the ResNeXt-101-FPN, the AP of RetinaNet

is increased by 9%.

3.2.4 Tiny RetinaNet algorithm
Cheng M. et al. (2020) planned Tiny RetinaNet, which

customs MobileNetV2-FPN as the backbone network for

feature extraction, primarily composed of Stem block

backbone network and SEnet, as well as two task-specific

subnets, to improve accuracy and reduce information. The

mAPs for the PASCAL VOC2007 and PASCAL VOC2012

datasets are respectively 71.4% and 73.8%.

3.2.5 M2Det algorithm
Zhao et al. (2019) proposed M2Det based on Multi-Level

Feature Pyramid Network (ML-FPN), which solved the

problem of scale variation between target instances. The

model achieves the final incremental feature pyramid

through three steps: (1) extract multi-layer features from a

huge number of layers in the backbone network and fuse them

into basic features; (2) send the base layer features into TUM

(Thinned U-shape Modules) In a block formed by connecting

the module and the FFM (Feature Fusion Modules) module,

the TUM decoding layer is obtained as the input of the next

step; (3) The decoding layer of equivalent scale is integrated to

construct a feature pyramid of multi-layer features. M2Det

adopts the VGG backbone network and obtains 41.0% AP at a

speed of 1.8 frame/s using the single-scale inference strategy on

the MS COCO test dataset, and 44.2% AP using the multi-scale

inference strategy.
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3.2.6 Comparison of single-stage object
detection algorithms

The single-stage object detection algorithm was developed

later than the two-stage object detection algorithm, but it has

piqued the interest of many academics due to its simplified

structure and efficient calculation, as well as its rapid

development. Single-stage object detection algorithms are

frequently rapid, but their detection precision is much

substandard to that of two-stage detection methods. With the

rapid advancement of computer vision, the present single-stage

object detection framework’s speed and accuracy have

substantially increased. Figure 3, reviews the backbone

network of the single-stage detection algorithm and the

detection accuracy (mAP) and detection speed on the

PASCAL VOC2007 test set, PASCAL VOC2012 test set and

COCO test set, as well as Table 3 recaps the advantages,

disadvantages and applicable situations of the single-stage

object detection algorithm. The Performance assessment of

single-stage Object detection algorithms as shown in Figure 3.

Table 3 shows how the single-stage object detection

algorithm improves object detection performance by

employing pyramids to pact with pose changes and small

object detection problems, novel training tactics, data

augmentation, a mixture of changed backbone networks,

multiple detection frameworks, and other techniques. The

YOLO series is not practical for small-scale and dense object

detection, and the SSD series has improved this to achieve high-

precision, multi-scale detection.
3.3 Object detection algorithm based on
Generative Adversarial Networks

Goodfellow et al. (2014) proposed Generative Adversarial

Networks (GANs), which are unsupervised generative models

that work based on the maximum likelihood principle and use

adversarial training. The objective behind adversarial learning is

to train the detection network by using an adversarial network to

generate occlusion and deformed image samples, and it is one of

the most used generative model methods for generating data

distribution. GAN is more than just an image generator; it also

uses training data to perform object detection, segmentation,

and classification tasks across various domains.
3.3.1 A-Fast-RCNN algorithm
Wang et al. (2017) introduced the idea of adversarial

networks and proposed the A-Fast-RCNN algorithm that

uses adversarial networks to generate complex positive

samples. Different from the traditional method of directly

generating sample images, this method adopts some

transformations on the feature map: (1) In the Adversarial

Spatial Dropout Network (ASDN) dealing with occlusion, a
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Mask layer is added to realize the part of the feature

Occlusion, select Mask according to loss; (2) In the

Adversarial Spatial Transformer Network (ASTN) that

deals with deformation, partial deformation of features is

achieved by manipulating the corresponding features.

ASDN and ASTN provide two different variants, and by

combining these two variants (ASDN output as ASTN

input), the detector can be trained more robustly. In
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comparison with the OHEM (Online Hard Example

Mining) method, on the VOC 2007 dataset, the method is

slightly better (71.4% vs. 69.9%), while on the VOC 2012

dataset, OHEM is better (69.0% vs. 69.8%). The introduction

of adversarial network into object detection is indeed a

precedent. In terms of improvement effect, it is not as

good as OHEM, and some occlusion samples may lead to

misclassification. Table 4 shown the data Augmentation-
TABLE 3 Advantages, disadvantages, and applicable situations of single-stage Object detection algorithms.

Model Advantage Disadvantage Applicable

YOLO Divide the image into grid cells for fast detection Not good for dense and small object detection Object Detection

YOLOv2 Use clustering to make anchor boxes to improve classification
precision

Using pre-training, difficult to transfer Object Detection

YOLOv3 Using the residual learning idea to realize multi-scale detection The model is complex, and the detection effect of medium and
large-scale objects is poor

Multi-scale object
detection

YOLOv4 Excellent trade-off of detection accuracy and detection speed Detection precision needs to be better High-precision real-
time object detection

YOLOv5 Small model size, lower deployment costs, high flexibility, and
high detection speed

Performance needs to be improved Object Detection

SSD Multi-scale anchor box discretization of boundary space The accuracy rate is low, the model is difficult to converge, and
the detection effect of small targets is not improved.

Multi-scale object
detection

DSSD Use ResNet-101 as the backbone network to improve the
detection consequence of small objects

Slow detection speed compared to SSD Object Detection

R-SSD Improved feature fusion method to improve detection accuracy The model calculation is complex, and the detection speed is
average

Object Detection

F-SSD Reconstruct the pyramid feature map to fuse features of different
scales, which is beneficial to small object detection

Slow detection speed compared to SSD Multi-scale object
detection

DSOD No pretraining required Normal detection speed Object Detection

RetinaNet Optimize the ratio of positive and negative samples through
Focal Loss

When training with dense samples, it will cause sample
imbalance

Lightweight, multi-
scale object detection
FIGURE 3

Performance assessment of single-stage Object detection algorithms in different datasets.
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based object detection in Multimedia, Agriculture and

Remote sensing.

3.3.2 SOD-MTGAN algorithm
Bai et al. (2018) developed an end-to-end multi-task

generative adversarial network (Small Item Detection via

Multi-Task Generative Adversarial Network, SOD-MTGAN)

technique in 2018 to increase small object detection accuracy.

It uses a super-resolution network to up trial small muddled

photos to fine images and recover comprehensive information

for more accurate detection. Furthermore, during the training

phase, the discriminator’s classification and regression losses are

back-propagated into the generator to provide more specific

information for detection. Extensive trials on the COCO dataset

demonstration that the method is operative in recovering clear

super-resolved images from blurred small images, and that it

outperforms the state-of-the-art in terms of detecting

performance (particularly for small items).

3.3.3 SAGAN algorithm
Traditional Convolutional Generative Adversarial Networks

(CGANs) only generate functions of spatially local points on

low-resolution feature maps, thereby generating high-resolution

details. The Self-Attention Generative Adversarial Network (SA-

GAN) proposed by Zhang et al. (2019) allows attention-driven

and long-term dependency modeling for image generation tasks.

It can generate details from cues at all feature locations, and also

applies spectral normalization to improve the dynamics of

training with remarkable results.

3.3.4 Your local GAN algorithm
Daras et al. (2020) proposed a two-dimensional local

attention mechanism for generative models (2DLAMGM), and

introduced a new local sparse attention layer that preserves 2D

geometry and locality. It replaces the dense attention layer of

SAGAN (Self-Attention Generative Adversarial Networks), and

on ImageNet, the FID score is optimized from 18.65 to 15.94.
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The sparse attention pattern of the new layers proposed in this

method is designed using the new information-theoretic

criterion of the information flow graph, and a new method for

reversing the attention of adversarial generative networks is

also proposed.

3.3.5 MSG-GAN stabilized image synthesis
algorithm

GANs although partially successful in image synthesis tasks,

were unable to adapt to different datasets, in part due to

unpredictabi l i ty during training and sensit ivity to

hyperparameters. One cause for this instability is that when

the supports of the real and virtual distributions do not overlap

enough, the gradients passed from the discriminator to the

generator will become underinformed. In response to the

above problems, Karnewar and Wang (2019) planned a Multi-

Scale Gradient Generative Adversarial Network (MSG-GAN),

which consents gradients to flow from the discriminator to the

generator at multiple scales for high resolution Rate image

synthesis provides a stable method. MSG-GAN converges

stably on datasets of different sizes, resolutions, and domains,

as well as on different loss functions and architectures.
4 Deep learning-based object
detection algorithm improvement

The rapid development of deep learning has increased the

feasibility of improving various classical object detection

algorithms in many ways. This section summarizes the main

popular improvement methods from the aspects of data

processing, model construction, prediction object and loss

calculation, and discusses their characteristics, so that different

algorithms can express different problems for different problems.

The improved scheme corresponding to the algorithm detection

process is shown in Figure 4.
TABLE 4 Data Augmentation-based object detection in Multimedia, Agriculture and Remote sensing.

Reference (Multimedia,
Agriculture and Remote
sensing)

Method description

(Haruna et al., 2022) To improve the accuracy of deep learning models for identifying rice leaf disease, we built a GAN-based data augmentation
pipeline with the state-of-the-art StyleGAN2-ADA and the variance of Laplace filter to generate high-quality synthetic rice leaf
disease images.

(Bhakta et al., 2022) Using state-of-the-art Generative Adversarial Network (GAN) technology, we can simulate thermal images of a rice plant with
bacterial leaf blight.

(Liu W et al., 2021) A multiscale attention module that boosts the Cycle-Consistent Adversarial Network (CycleGAN) in both spatial and channel
dimensions to boost the quality of synthetic images.

(Yan et al., 2019) The dataset trained a faster region-based convolutional neural network (Faster R-CNN) built on Res101netwok, which was then
used to classify both synthetic and real images.

(Bosquet et al., 2022) Synthetic data of superior quality achieved by combining a GAN with image inpainting and mixing.
DS-GAN can create believable miniature things.
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4.1 Data processing

4.1.1 Data augmentation
In the object detection algorithm based on deep learning,

data augmentation techniques are divided into two types:

supervised and unsupervised. Supervised data augmentation

methods can be separated into three classes: geometric

changes, color transformations, and hybrid transformations;

unsupervised data augmentation methods can be divided into

two sorts : generat ing new data and learning new

augmentation strategies.

Currently, the research on supervised data augmentation

strategies has tended to be perfect, and it has become the main

requirement to combine multiple data augmentation

techniques to improve model performance. The main reasons

are as follows:
Fron
1. The widespread use of supervised data enhancement

methods makes unsupervised data enhancement

methods less valued to a certain extent;

2. The Object detection algorithm is gradually

developing towards an end-to-end network,

integrating data enhancement methods. It has

become a requirement in the algorithm, but the

unsupervised data enhancement method has certain

difficulties in integration due to its complexity and

large amount of calculation, and its application scope

is limited;

3. The generative adversarial network or reinforcement

learning-related technologies required for unsupervised

data augmentation methods are complex and diverse,

which hinders researchers’ exploration.
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4.2 Model construction

4.2.1 Improve the network structure
In 2015, the ResNet network first proposed the residual

block (Residual block), which made the convolutional network

deeper and less prone to degradation. As an improvement of the

ResNet network, the DenseNet network Huang G. et al. (2017)

achieves feature reuse by establishing dense connections among

all former layers and the current layer, which can achieve well

performance than the ResNet network with fewer parameters

and less computational cost. The core part of the GoogLeNet

network is the Inception module, which extracts the feature

information of the image through different convolution kernels,

and uses a 1×1 convolution kernel for dimensionality reduction,

which significantly reduces the amount of computation. Feature

Pyramid Networks Lin et al. (2017) (Feature Pyramid Networks,

FPN) have made outstanding contributions to identifying small

objects. As an improvement of the FPN network, the PANet

network Liu et al. (2018) adds a bottom-up information transfer

path based on the FPN to make up for the insufficient utilization

of the underlying features. The structure is shown in Figure 5.

The existence of the fully connected layer leads to the fact that

the size of the input image must be uniform, and the proposal of

SPP-Net He et al. (2015) solves this problem, so that the size of the

input image is not limited. Efficient-Net Tan and Le (2019) does

not pursue an increase in one dimension (depth, width, image

resolution) to improve the overall precision of the model but

instead explores the best combination of these three dimensions.

Based on EfficientNet, Tan et al. (2020) suggested a set of Object

detection frameworks, EfficientDet, which can achieve good

performance for different levels of resource constraints. The

comparison of the above networks is shown in Table 5.
B CA

FIGURE 4

The corresponding improvement scheme of algorithm detection flow (A) Augmentation (B) Deep Learning (C) Results.
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Some scholars have introduced the above optimization

scheme in the improvement of the network structure of

related models to make the detection results more ideal. The

related literature of the GoogLeNet network is a typical

optimization method of the Inception module (Shi et al., 2017)

and the optimization process is shown in Figure 6.

In order to better improve the model detection accuracy,

today’s network structure is gradually increasing the depth

(residual module), width (Inception module) and context

feature extraction capabilities of the network model (Li et al.,

2016; Ghiasi et al., 2019; Cao et al., 2020b), etc. However, the

resulting model is complicated and redundant, making the

improved algorithm more difficult to apply in real life scenarios.
4.3 Other improved algorithms

At present, researchers have done a lot of study on the two-

stage object detection algorithm and the single-stage object

detection algorithm, so that they have a certain theoretical

basis. The two-stage object detection algorithm has an

advantage in detection accuracy, and needs to be continuously

improved to enhance the detection speed; the single-stage object

detection algorithm has an advantage in detection speed, and the

model needs to be continuously improved to increase the

detection accuracy, so some researchers put the two types of

algorithm models such as detection accuracy and detection

speed, as shown in Figure 7.

In 2017, the RON (Reverse connection with Objectness prior

Networks) Kong et al. (2017) algorithm is an efficient and

efficient algorithm based on the two-stage detection framework

represented by Faster R-CNN and the single-stage detection

framework signified by YOLO and SSD. Under the fully

convolutional network, similar to SSD, RON uses VGG-16 as

the backbone network, the difference is that RON changes the
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14th and 15th fully connected layers of the VGG-16 network

into a kernel size of 2 × 2. In tests, RON achieves state-of-the-art

object detection performance, with input 384×384 size images,

the mAP reaches 81.3% on the PASCAL VOC2007 dataset, and

the mAP improves to 80.7% on the PASCAL VOC 2012 dataset.

Zhang et al. (2018) designed the RefineDet algorithm, which

inherited the advantages of single-stage detectors and two-stage

detectors. RefineDet uses VGG-16 or ResNet-101 as the

backbone network for feature extraction, and integrates the

neck structure (feature pyramid and feature fusion) into the

head structure.
5 Object detection and recognition
applications in agriculture using AI

The use of computer vision technology to inspect

agricultural products has the advantages of real-time, objective,

and no damage, so it is favored by people. Saldaña et al. (2013)

discussed the method of applying computer vision technology to

detect mango weight and fruit surface damage, analyzed the

algorithm to determine the required image area, and established

the correlation between mango weight and its projected image.

Experiments show that the accuracy rate of fruit surface damage

classification is 76% and 80%, respectively. Slaughter and Harrell

(1989) and others first studied using the chromaticity and

brightness information of images taken under natural light

conditions to guide the citrus harvesting manipulator, and

established a classification model for identifying citrus from

trees using color information in color images. The classifier was

75 percent accurate in identifying oranges from the orchard’s

natural environment.

Huang X. et al. (2017) realized the detection and

localization of apples through pattern recognition, mainly

using an algorithm to realize the identification of apples,
B C
D

E

A

FIGURE 5

PANet model steps (A) FPN Backbone Network (B) Bottom Up Path Enhancement (C) Adaptive feature pooling (D) Fully Connected fusion.
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filtering and boundary extraction of the original image of the

apple tree, and calculating Determines the outline of the apple

relative to the shape of the image. Wang and Cheng (2004)

studied the identification method of apple fruit stem and fruit

body and the search method of fruit surface defect. According

to the characteristics of apple fruit stalk, it is proposed to use

block scanning to judge whether the fruit stalk exists; the
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different reflection characteristics of the damaged surface and

the non-damaged surface of the apple, as well as the statistical

characteristics of the pixel points of different gray values, are

analyzed to find out the damaged surface. The damaged area

was separated from the fruit pedicel and the fruit calyx. The

judging accuracy rate of 15 images without fruit stems was

100%, and the accuracy rate of 90 pictures with intact fruit
TABLE 5 Comparison of advantages and disadvantages of related networks.

Network
name

Advantage Disadvantage References
of applica-
tions in

Multimedia,
Agriculture
and Remote
Sensing

SPP-Net Facilitate multi-scale training Requires huge storage space for feature
extraction and SVM classification tasks

(Ding et al.,
2018; Gao et al.,
2019; Hespeler
et al., 2021)

GoogLeNet Use a 1×1 convolution kernel to reduce the amount of computation; increase the width
of the single-layer convolution to improve the network’s ability to extract features

There is still 5×5 convolution kernels to
increase the network operation; including
more complex hyperparameters, each
transformation needs to specify the size and
number of convolution kernels

(Ding et al.,
2019; Eser, 2021;
Diwan et al.,
2022)

ResNet The residual module adopts skip connection, which alleviates the problem of gradient
disappearance and degradation caused by the network being too deep.

The number of limits is large, and the
hardware requirements are slightly higher;
when the number of network layers is too
deep, the mitigation effect of problems such
as gradient disappearance will be greatly
reduced

(Zhong et al.,
2018; Pan et al.,
2021; Storey
et al., 2022)

DenseNet Compared with ResNet, the amount of parameters and computation is greatly reduced,
and the accuracy is improved; it effectively solves the problem of overfitting caused by
too few data sets; dense connections are used to strengthen feature propagation

During training, since the splicing operation
will re-open a new memory storage space to
save the spliced feature information, it
consumes a lot of memory.

(Zhu et al., 2019;
Dubey et al.,
2023; Huang X.
et al., 2017)

FPN Multi-scale feature fusion to improve the accuracy of small Object detection Top-down structure, the underlying features
are not fully utilized

(Hu et al., 2022;
Gunturu et al.,
2022;Liu N.
et al., 2021)

PANet Make full use of high-level semantic information and low-level location information In addition to the top-down structure, a
bottom-up structure is also constructed,
which requires a lot of additional
computational overhead

(Cheng G. et al.,
2020;Chen et al.,
2021; Piao et al.,
2021)

ResNeXt The multi-branch network structure is simplified by grouping convolution; the overall
performance is better than ResNet when the parameter quantity remains basically
unchanged; the modular structure is easy to transplant;

Compared with the overall operation,
grouped convolution is less efficient in
hardware execution.

(Lin et al., 2020;
Savarimuthu,
2021; Shi et al.,
2021)

EfficientNet The three dimensions of network depth, width and image resolution are well balanced;
in the case of reducing the amount of parameters, the detection accuracy has been
qualitatively improved

There are too many network layers, and the
intermediate results of all layers need to be
saved during gradient calculation, which
requires high hardware and occupies a large
amount of video memory; when the image
size is too large, the training speed will be
slowed down

(Alhichri et al.,
2021; Nguyen
et al., 2021;
Chatterjee et al.,
2022)

EfficientDet The Bidirectional Feature Pyramid Network (BiFPN) proposed on the basis of PANet
has the characteristics of cross-scale connection and weighted feature fusion, which is
more efficient for feature detection; compound scaling is performed on multiple aspects
at the same time to find the depth, width, and resolution. The best combination results
in more accurate and objective results; it is ahead of common target detection models
in terms of accuracy and computational complexity, such as: Yolo v3, Mask-RCNN, etc.

In view of its characteristics of using neural
network to search for the optimal
architecture, the time and hardware cost
required for training the model will be
extremely high; the target detection
framework has poor modular structure,
which is not conducive to integration

(Wei et al., 2021;
Chatterjee et al.,
2022;
Basavegowda
et al., 2022)
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stems was 88%. Mahanti et al. (2021) used line scanning and

analog cameras to detect apple damage, respectively, and

showed that using digital image processing technology to

detect apple damage can at least reach the accuracy of

manual classification.
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Ying et al. (2000) used computer vision for a new method of

huanghua pear fruit stalk recognition. The computer vision

system was used to capture images of huanghua pear, and

image processing technology was used to complete the

segmentation of the image and the background. The stem
B

C

D

A

FIGURE 6

Inception modules (A) Inception original module (B) Replacing the 5*5 convolution kernel with a 3*3 convolutional kernal (C) Single * n kernel
(D) Inception V4.
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speed is slow, so a fast algorithm is proposed. This method uses

the small diameter of the stem of the pear, selects templates of

different sizes, determines whether there is a stem in the image,

and obtains the coordinates of the intersection of the head of the

stem and the bottom of the pear. The tangent slope information

is used to judge the integrity of the fruit stalk. The test results

show that the algorithm can 100% judge whether the fruit stalk

exists, and the correct rate of judging whether the fruit stalk is

intact is more than 90%. Li et al. (2018) applied computer vision

technology to detect the bruising injury of pears, and proposed

to distinguish multiple bruising injuries by regional marking

technology. In order to improve the measurement accuracy of

the bruising area, a mathematical model for measuring the

bruising area was established according to the shape of the

pear and the characteristics of the bruising. This method can
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accurately detect multiple crush injuries of pears, and the relative

error of most measurements can be controlled within 10%. Patel

et al. (2012) conducted an experimental study on Huanghua

pear’s machine vision technology to detect the external

dimension and performance status. By determining the image

processing window, using the Sobel operator and Hilditch to

refine the edge, and determining the centroid point to find the

representative fruit diameter, the test results show that the

correlation coefficient between the predicted fruit diameter

and the actual size can reach 0.96. For the detection of fruit

surface defects, it is proposed to use the mutation of red (R) and

green (G) color components at the junction of damaged and

non-damaged to obtain suspicious points, and then to obtain the

entire damaged surface through regional growth. Chang (2022)

developed a machine vision system for the quality inspection of
FIGURE 7

The Evolution of mainstream GAN.
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Huanghuali, taking Huanghuali as the research object, and

compared the influence of different intensity light sources and

different backgrounds on the collected images, and developed a

system suitable for Huanghuali and different backgrounds.

Machine vision systems for other fruit quality inspections.

Cubero et al. (2011) developed a machine vision system

suitable for the quality inspection of Huanghuali by studying

the spectroscopic reflection characteristics of Huanghuali. In

order to adapt to the randomness of fruit orientation and the

irregularity of fruit shape in actual production According to the

requirements of the fruit size detection method, the method of

fruit size detection has better adaptability. A method of using the

minimum circumscribed rectangle (MER) method of fruit to

find the maximum transverse diameter is designed, and the

experimental verification is carried out, and the actual maximum

transverse diameter is obtained. The regression equation of the

relationship between the diameter and the predicted transverse

diameter, the relationship between the two The coefficient is

0.996 2. The variation characteristics of the gray levels of R, G,

and B components in the defect area of Huanghuali were

analyzed, and finally the maximum combined set of defect

pixels and all defect areas were found.

Li et al. (2022) put forward a method for identifying germ

and endosperm with saturation S as a characteristic parameter

by analyzing the color characteristics of germ rice and color

images, in order to realize the automatic computer vision of rice

germ retention rate detection. Experiments are carried out with

the established identification indicators and methods, and the

results show that the coincidence rate between the identification

results of the computer vision system and the manual detection

is over 88%.
6 Object detection and recognition
applications in agriculture using AI

The detection and recognition of objects based on remote

sensing images is a current research focus in the field of target

detection. AI brings much improvement in different

applications of computer vision and a lot of latest progress in

all applications improve it methods (Nawaz et al., 2020; Nawaz

et al., 2021). The detection and recognition methods used can

be divided into two types: target detection algorithms based on

traditional methods and target detection algorithms based on

deep learning. Commonly used target detection algorithms

based on traditional methods include HOG feature algorithm

combined with SVM algorithm, Deformable Parts Model

(DPM), etc.; target detection and recognition algorithms

based on deep learning can be roughly summarized into two

categories, namely R-CNN series algorithm based on two stage

method and YOLO series algorithm based on one stage method
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(Han et al., 2022), SSD (Single Shot Multibox Detector) series

algorithm (Arora et al., 2019).

Initially, the detection of remote sensing images to obtain

information is mainly through manual visual analysis, and the

amount of information obtained in this way completely depends

on the professional ability of technicians. After more than ten

years of development, a new technology has appeared to be

applied to the reading of remote sensing image information. This

new method detects and recognizes targets through statistical

models. For example, Peng et al. (2018) is in order to achieve

higher classification accuracy using the maximum likelihood

method for remote sensing image classification, etc. Kassim et al.

(2021) proposed a multi-degree learning method, which first

combined feature extraction with active learning methods, and

then added a K-means classification algorithm to improve the

performance of the algorithm. Du et al. (2012) proposed the

adaptive binary tree SVM classifier, which has further improved

the classification accuracy of hyperspectral images. Luo et al.

(2016) studied an algorithm called small random forest, the

purpose is to solve the problem of low accuracy and overfitting

of decision trees. In addition, due to the problems of low

detection accuracy and long time consumption, the traditional

target detection method cannot meet the real-time requirements

of the algorithm in practical applications.

In 2006, Geoffrey Hinton and his students published a paper

related to deep learning (Hinton and Salakhutdinov, 2006),

which opened the door to object detection and recognition

using deep learning. In recent years, with the breakthrough of

deep learning theory, the detection accuracy and detection speed

of target detection algorithms have been effectively improved, so

that the feature information in images can be extracted by deep

learning, which gradually replaces the information based on

manual methods and traditional methods. Extraction has

become the main direction of object detection research.

In the 2017 ImageNet competition, trained and learned a

million image datasets through the design of a multi-layer

convolutional neural network structure. The classification

error rate obtained in the final experiment was only 15%, and

the second place in the competition. That’s nearly 11% higher. In

addition, many researchers have used deep learning to detect

and recognize remote sensing image targets, and have achieved

good results and achieved many breakthroughs (Krizhevsky

et al., 2017). Mnih and Hinton (2010) used two datasets of

remote sensing images to conduct research on deep learning

technology. They extracted road features from images for

training and achieved good experimental results. This is the

first time that deep learning is used. applied to remote sensing

technology. Zou et al. (2015) developed a new algorithm for

extracting features in images. The algorithm designed a deep

belief network structure and conducted experiments on feature

extraction, and finally achieved an accuracy of 77%. Ienco et al.
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(2019) used a combination of deep learning and a patch

classification system to detect ground cover, and achieved

good detection results. Wei et al. (2017) developed a more

accurate convolutional neural network for road structure

feature extraction, and this algorithm has a remarkable effect

on road extraction from aerial images. Cheng et al. (2018)

proposed a rotation-invariant CNN (RICNN) model, which

effectively addresses the technical difficulties of object

detection in high-resolution remote sensing images. From the

object detection experiment of remote sensing images using deep

learning, it can be concluded that the extraction of target features

by constructing a deep model structure can effectively improve

the detection effect. (Bhatti et al., 2021) used edge detection for

identification of objects in remote sensing images by using

geometric algebra methods.
7 Challenges for object detection in
agriculture

7.1 Insufficient individual feature layers

Deep CNN plannings generate hierarchy feature maps due

to pooling and subsampling operations, resulting in changed

layers of feature maps with differing 3D resolutions. As is

generally known, the feature maps of the early-layer feature

maps have a higher resolution and signify smaller response

fields. They also lack high-level semantic information, which is

necessary for object detection. The latter-layer feature maps, on

the other hand, contain additional semantic information that is

required for detecting and classifying things like distinct object

placements and illuminations. Higher-level feature maps are

valuable for classifying large objects, but they may not be enough

to recognize small ones.
7.2 Limited context information

Small items usually have low resolutions, which makes it

difficult to distinguish them. Contextual information is crucial in

small item detection because small objects themselves carry

limited information. From a “global” picture level to a “local”

image level, contextual information has been utilized in object

recognition. A global image level takes into account image

statistics from the entire image, whereas a local image level

takes into account contextual information from the objects’

surrounding areas. Contextual characteristics can be divided

into three categories such as local pixel context, semantic

context, and spatial context.
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7.3 Class imbalance

The term “class imbalance” refers to the unequal distribution

of data between classes. There are two different sorts of class

disparities. One issue is a disparity between foreground and

background instances. By densely scanning the entire image,

region proposal networks are utilized in object detection to

create possible regions containing objects. The anchors are

rectangular boxes that have been extensively tiled throughout

the full input image. Anchor scales and ratios are pre-

determined based on the sizes of target items in the training

dataset. When detecting little items, the number of anchors

generated per image is higher than when recognizing large

things. Positive instances are only those anchors that have a

high IoU with the ground truth bounding boxes. Anchors are

considered bad examples since they have little or no overlap with

the ground truth bounding boxes. The sparseness of ground-

truth bounding boxes and IoU matching procedures between

ground-truth and anchors are both drawbacks of the anchor-

based object identification methodology, and the dense sliding

window strategy has a high temporal complexity, making

training time consuming.
7.4 Insufficient positive examples

Most object detection deep neural network models were

proficient with objects of varying sizes. They usually work well

with huge objects but not so well with small ones. A lack of

small-scale anchor boxes produced to match the small objects, as

well as an inadequate number of examples to be properly

matched to the ground truth, could be the cause. The anchors

are feature mappings from certain intermediate layers in a deep

neural network that are projected back to the original image.

Anchors for little objects are difficult to come by. In addition, the

anchors must match the ground truth bounding boxes. The

following is an example of a widely used matching method. A

positive example is one that has a high IoU score in relation to a

ground truth bounding box, such as more than 0.9.

Furthermore, the anchor with the highest IoU score for each

ground truth box is designated as a positive example. As a result,

small objects usually have a limited number of anchors that

match the ground truth bonding boxes.
8 Conclusion

Deep learning-based object detection techniques have become

a trendy research area due to their powerful learning capabilities
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and superiority in handling occlusion, scale variation, and

background exchange. In this paper, we introduce the

development of object detection algorithms based on deep

learning and summarize two types of object detectors such as

single and two-stage. In-depth analysis of the network structure,

advantages, disadvantages, and applicable scenarios of various

algorithms, we compare the analysis of standard data sets and

experimental results of different related algorithms onmainstream

data sets. Finally, this study summarizes some application areas of

object detection to comprehensively understand and analyze its

future development trend.
Future work

Based on the analysis and summary of the above knowledge,

we propose the following directions for future research.
Fron
• Video object detection has problems such as uneven

moving targets, tiny targets, truncation, and occlusion,

and it isn’t easy to achieve high precision and high

efficiency. Therefore, studying multi-faceted data

sources such as motion-based objects and video

sequences will be one of the most promising future

research areas.

• Weakly supervised object detection models aim to detect

many non-annotated corresponding objects using a

small set of fully annotated images. Therefore, using

many annotated and labeled pictures with target objects

and bounding boxes to train the network to achieve high

effectiveness efficiently is an essential issue for future

research.

• Region-specific detectors tend to perform better,

achieving higher detection accuracy on predefined

datasets. Therefore, developing a general object

detector that can detect multi-domain objects without

prior knowledge is a fundamental research direction in

the future.
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• Remote sensing photos are frequently employed in

military and agricultural industries and are detected in

real-time. The rapid development of these fields will be

aided by automatic model detection and integrated

hardware components.
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Introduction: Fruit detection is one of the key functions of an automatic

picking robot, but fruit detection accuracy is seriously decreased when fruits

are against a disordered background and in the shade of other objects, as is

commmon in a complex orchard environment.

Methods: Here, an effective mode based on YOLOv5, namely YOLO-P, was

proposed to detect pears quickly and accurately. Shuffle block was used to replace

the Conv, Batch Norm, SiLU (CBS) structure of the second and third stages in the

YOLOv5 backbone, while the inverted shuffle block was designed to replace the

fourth stage’s CBS structure. The new backbone could extract features of pears from

a long distancemore efficiently. A convolutional block attentionmodule (CBAM) was

inserted into the reconstructed backbone to improve the robot’s ability to capture

pears’ key features. Hard-Swish was used to replace the activation functions in other

CBS structures in the whole YOLOv5 network. A weighted confidence loss function

was designed to enhance the detection effect of small targets.

Result: At last, model comparison experiments, ablation experiments, and daytime

and nighttime pear detection experiments were carried out. In the model

comparison experiments, the detection effect of YOLO-P was better than other

lightweight networks. The results showed that themodule’s average precision (AP)

was 97.6%, which was 1.8% higher than the precision of the original YOLOv5s. The

model volume had been compressed by 39.4%, from 13.7MB to only 8.3MB.

Ablation experiments verified the effectiveness of the proposed method. In the

daytime and nighttime pear detection experiments, an embedded industrial

computer was used to test the performance of YOLO-P against backgrounds of

different complexities and when fruits are in different degrees of shade.

Discussion: The results showed that YOLO-P achieved the highest F1 score

(96.1%) and frames per second (FPS) (32 FPS). It was sufficient for the picking

robot to quickly and accurately detect pears in orchards. The proposedmethod

can quickly and accurately detect pears in unstructured environments. YOLO-P

provides support for automated pear picking and can be a reference for other

types of fruit detection in similar environments.
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deep learning, pear, fruit detection, YOLOv5, convolutional neural network
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1 Introduction

Pears are a common fruit which have rich nutrition and

good taste. China grows the most pear trees, with a pear tree

planting area that accounts for 67.30% of the global total pear

tree planting area (Food and Agriculture Organization of the

United Nations, 2022). However, the continuous loss of

agricultural labor in recent years has led to a substantial

increase in the cost of manual picking. The problem became

more prominent after the COVID-19 pandemic (Nawaz et al.,

2021). Therefore, efficient picking machines are a current

research focus and an area of importance in orchard

intelligence. Automated picking can increase the income of

fruit farmers and promote economic development (Galvan

et al., 2022).

Fruit detection is one of the most important steps for

orchard picking robots working autonomously. At present,

some scholars have used machine learning methods, especially

based on color features, to detect fruits which are significantly

different from the background color. For example, Si et al. (2010)

proposed a method based on the red–green differential

separation which used the contour formed by the shape of

fruit to segment the red apple and green background. But this

method is no longer effective when the target is similar to the

background color, because some fruits (like some varieties of

apples and mangoes) are green even when they are ripe. Xiang

et al. (2012) used the curvature of overlapping tomato boundary

lines to detect shaded tomatoes, but the accuracy for large

shaded areas was only 76.9%. Compared with the deep

learning technology that has developed rapidly in recent years,

traditional machine learning methods exposed more limitations,

such as low speed, low detection accuracy, and poor universality.

Also, the designed algorithm can detect only a single target. As

far as computers are concerned, the low-level features that

machine learning uses are difficult to extract deep semantic

information (Arrieta et al., 2020), making it unsuitable for online

equipment and fruit detection in the complex and changeable

environment of orchards.

Deep learning technology has been widely used in target

detection in orchards. Object detection based on deep learning is

mainly divided into a two-stage algorithm and a one-stage

algorithm. Two-stage algorithms have been extensively studied

due to high accuracy in the field of agriculture. Zhang et al.

(2020) developed a detection system for apples and branches

based on VGG-19 and Faster R-CNN for the vibration harvest.

The mean average precision (mAP) for detecting apples was

82.4% and the fitting degree to the branches and trunks was over

90%. Tu et al. (2020) used a red, green, blue plus depth (RGB-D)

camera to obtain the red, green, blue (RGB) image and depth

information of passion fruit and combine them. A multi-scale-

based Faster Region-based Convolutional Neural Network (R-

CNN) network (MS-FRCNN) was proposed, which achieved an

F1 score of 90.9%. Yan et al. (2019) improved the Region of
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interest (ROI) pooling layer of Faster R-CNN and combined

VGG16 to detect 11 types of Rosa roxbunghii with different

shapes; an average precision of 92.01% was obtained. The

accuracy of two-stage detection is high. However, the huge

number of parameters leads to increased computation costs

and decreased detection speeds, which make it difficult to

apply to online detection tasks.

The one-stage detection algorithm can greatly improve

detection speed while maintaining detection accuracy because

there is no process of generating candidate regions. Peng et al.

(2018) used ResNet-101 to improve Single shot detector (SSD)

for four kinds of fruit detection: citrus, apple, orange, and lychee.

Compared with the original SSD, the average accuracy increased

by 3.15%, and performance improved in shaded conditions. The

“You Only Look Once” (Redmon et al., 2016; Redmon and

Farhadi, 2017; Redmon and Farhadi, 2018; and Bochkovskiy

et al., 2020) series of algorithms was born in 2015. This series has

reached its fifth iteration and shows the trend and potential of

continuous updating and strengthening. Due to the continuous

integration of the latest network optimization tricks, both speed

and accuracy can be maintained at a high level. The YOLO

algorithm is considered to be one of the most successful one-

stage detection networks. Bresilla et al., 2019 established an apple

detection model based on YOLOv2. By adding computer-drawn

images to assist training, the author found that synthesized

images can reduce the position loss of the network and better

locate the target. Pear detection was performed by transfer

learning and the model achieved an F1 score of 0.87%. Liu

et al. (2022) improved YOLOv3 to detect pineapples and

calculated the 3D coordinates based on binocular vision

cameras. The average precision (AP) value of fruit detection

was 97.55% and the average relative error of binocular camera

positioning was 24.4 mm. Xu et al. (2020) improved the

backbone of YOLOv3, modified the batch normalization layer

to group normalization, and used Soft-NMS to replace the

original network management system (NMS) bounding box

filter. The author proposed an image enhancement method to

improve backlit images. The model finally got an F1 score of

97.7%. Parico and Ahamed (2021) improved YOLOv4, realizing

fruit counting through a unique identity document (ID) method,

which could meet the requirements of online operation. Zheng

et al. (2022) used the improved YOLOv4 to detect tomatoes in a

natural environment, and accuracy was improved by 1.52%

compared with the original model. Jiang et al. (2022)

integrated a non-local attention module and a convolutional

block attention module (CBAM) into YOLOv4 to detect growing

apples. Improved extraction ability of advanced features and

perception of regions of interest. The test achieved an AP of

97.2%. Lu et al. (2022) used the improved YOLOv4 to calculate

the number and the size of fruits on the whole apple tree. The

network had the highest detection rate during fruit picking. This

research enhanced the management ability of fruit trees. Zhang

et al. (2022) proposed real-time strawberry detection network
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(RTSD-Net) by improving YOLOv4-tiny’s cross stage partial

network (CSPNet). The detection of strawberries with the

embedded system Jetson Nano had a detection speed of 25.2

FPS; hence, the real-time performance of the network was good.

Chen et al. (2022) used YOLOv5 to detect citrus fruits and

proposed a citrus ripeness detection algorithm that combined

visual saliency with residual network (RESNet)-34. The accuracy

of the model could reach 95.07%. Yan et al. (2021) used an

improved YOLOv5 to detect apples and judge whether the fruit

could be grasped by the picking machine. The model obtained a

mAP of 86.75% and an F1 score of 87.49%. Yao et al. (2021)

improved YOLOv5 by adding a small object detection layer,

inserting a squeeze and excitation (SE) layer, and using a

complete intersection over union (CIoU) loss function. The

model achieved a mAP of 94.7% in an experiment detecting

kiwifruit defects. Sozzi et al. (2022) utilized multiple networks to

detect white grapes under different lighting conditions, against

different backgrounds, and at different growth stages. The F1

score of YOLOv5x in the experiment was 0.76% and the

detection speed was 31 FPS. Summarizing the above studies,

using a one-stage algorithm such as YOLOv5 has become the

most common method of fruit detection. However, the detection

speed and accuracy of the network is still one of the problems to

be solved urgently, and the existing research rarely considers the

complex natural environment of the orchard.

YOLOv5 can achieve good results in datasets such as

PASCAL VOC (Everingham et al., 2015) and COCO (Lin

et al., 2014). However, for detection tasks in agriculture, the

complete YOLOv5 network produces more performance

redundancy. Even the light version of YOLOv5s struggles to

achieve satisfactory results in orchards. At the same time, the

background in orchards can be complex and fruits are easily

shaded by other objects. The nighttime environment also has a

significant impact on the effectiveness of detection. The existing
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YOLOv5 algorithm is facing great challenges, especially in low-

performance devices, such as industrial computers, in online

detection. Therefore, the purpose of this research was to design

the YOLO-P network for fast and efficient detection of pears

against complex backgrounds, in shade and during night

picking. This method was based on YOLOv5. We designed a

new module, named an inverted shuffle block, which can be

applied in deeper layers to solve the problem of small targets

missing in detection. We replaced some of the CBS structure in

the YOLOv5 backbone with a shuffle block and an inverted

shuffle block to form a new backbone. A CBAM was inserted

into the new backbone to improve the ability to capture key

features of pears. In addition, the activation functions in the

remaining CBS of the entire network were replaced by Hard-

Swish to improve the running speed. The detection effect of this

method had been verified under different degrees of shade and

background complexity during daytime and nighttime. YOLO-P

can be used for fast and accurate detection of pears in orchards

and can a references for other types of fruit detection in

similar environments.
2 Pear detection framework

As one of the most mature, stable, and effective target

detection algorithms currently available, YOLOv5 consists of

three main parts: a backbone network, neck network, and

classifier. The backbone is cross stage partial (CSP)-

DarkNet53, which is used to extract different scale feature

information from images. The neck network is path

aggregation network (PANet) (Liu et al., 2018) with feature

pyramid network (FPN), which is used to fuse feature

information. The classifier outputs bounding boxes of large,

medium, and small scales to complete the target detection. The
FIGURE 1

The network structure of YOLO-P.
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YOLO-P method proposed in this paper is based on YOLOv5

and the structure is shown in Figure 1. The CBS structure in the

second and third stages of the YOLOv5 backbone were replaced

with a shuffle block. An inverted shuffle block was designed and

used to replace the CBS structure of the fourth stage. This new

backbone could extract features of distant pears in images more

efficiently. CBAM was inserted in the new backbone to improve

the important information perception capability of pears. The

sigmoid linear unit (SiLU) activation function in the rest of the

CBS structure was replaced with Hard-Swish to improve the

running speed of the network. A weighted confidence loss

function was designed to strengthen the detection effect of

small targets. The details of the improvements are

described below.
2.1 Backbone network

Ma et al. (2018) proposed that making the input and output

feature maps equal, reducing convolution and element-wise

operations, and integrating the network structure would help

improve the inference speed of the network. Tan and Le (2020)

suggested that increasing the depth of the network could result

in richer features but may cause gradients to disappear.

Increasing the width of the network results in finer-grained

features, but it may fail to learn deep features. Therefore, it is

necessary to balance the depth and width of the network to

achieve the best results. Figure 2 shows the backbone of YOLO-

P, built following the above lightweight network design

principles, and lists the size of the output feature map

(C×H×W). The input image size of the network is

3 × 640 × 640. The first stage is downsampling through two

convolutional layers to obtain a feature map with a size of

64 × 160 × 160. The second and third stages use the shuffle block

to extract features in the middle and shallow layers and

downsample twice to obtain a feature map with a size of

256 × 40 × 40. The fourth stage uses the inverted shuffle block

to extract features in deeper layers of the network and

downsamples to obtain a 512 × 20 ×20 feature map. The fifth

stage uses the improved spatial pyramid polling (SPPF) module
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in the deepest layer of the network to fuse the receptive field

information of different scales. Finally, the SPPF output of the

fifth stage and the output after the third and fourth stages’

CBAMs are sent to the neck network of YOLO-P.

2.1.1 Feature extraction
The CSP-DarkNet53 of the YOLOv5 backbone uses a large

number of CBS (Conv, Batch Norm, SiLU) structures which are

suitable for target detection of complex features. However, this

combination occupies a large amount of computation, and it is

difficult for the application to run online in embedded devices.

Therefore, this part needed to be optimized first. Xie et al. (2017)

proposed the concept of group convolution in ResNeXt, which

can effectively reduce the computational load of the network, as

shown in Figure 3A. But there was no information exchange

between groups and reduced the feature extraction ability. Based

on the idea of group convolution, Ma et al. (2018) proposed a

lightweight neural network ShuffleNetv2 that added channel

shuffle in shuffle block. Figure 3B shows the group convolution

process with channel shuffle. The channels between groups are

shuffled before output. The resulting information exchange

enables feature extraction to be done more efficiently.

2.1.1.1 Shuffle block

The shuffle block includes two cases where the stride is 1 and

2, respectively, as shown in Figure 4. First, the input feature

matrix channels was divided into two groups by channel split

and pass through two branches. If stride was 1, a residual

structure containing 1×1Conv, 3×3DwConv and 1×1Conv in

one branch was performed. If stride was 2 (downsampling), an

additional 3×3DwConv and a 1×1Conv on the other branch was

performed. The two branches were concatenated and the feature

map was outputted through channel shuffle.
2.1.1.2 Inverted shuffle block

The residual structure in CSP-DarkNet53 is shown in

Figure 5A. First, increases the dimension of the feature map

increased and the dimension was reduced to extract features.

However, there could be more zeros in the convolution kernel’s
FIGURE 2

YOLO-P’s backbone. k is convolutional kernel size, s is stride, and n is the number of module’s repetitions. Unspecified k is 3, s is 1, and n is 1.
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parameter of deeper layers. Directly increasing dimension brings

difficulties to deep layers’ feature extraction. In MobileNet

(Howard et al., 2017), an inverted residual structure that first

reduced the dimension of the feature map and then increased the

dimension was proposed to extract more information, as shown

in Figure 5B. Inspired by lightweight networks such as

ShuffleNet and MobileNet, this study designed the inverted

shuffle block used in deeper layers of network (the fourth

stage of backbone), as shown in Figures 5C, D. The reversed

structure made it easier to extract features from small objects. It

was similar to shuffle block, but the residual structure of the

branch was changed to an inverted residual structure. Similarly,

if the stride was 2 (downsampling), an additional 3×3DwConv

and a PwConv on the branch of the inverted residual structure

was performed. The two branches were concatenated together

and output the feature map was outputted through

channel shuffle.
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2.1.2 Attention module
Attention mechanism is a way to reinforce important

information and suppress secondary information in a neural

network. Application in the field of image object detection had

proved attention mechanism’s effectiveness. The CBAM is a

lightweight soft attention module that is divided into channel

and spatial parts (Woo et al., 2018). The channel attention

module (CAM) when the inputs were C × H × W is shown in

Figure 6A. We then performed global average pooling (GAP)

and global maximum pooling (GMP) to the feature map in order

to obtain two C × 1 × 1 feature matrices and send them to a

multi-layer perceptron which has two layers. This was then

summed and activated to get the channel attention vector. CAM

focuses on what is in the feature map. The Spatial Attention

Module (SAM) is shown in Figure 6B; we then performed GAP

and GMP on the channel dimensions of the feature map to

obtain a 2 × H × W feature matrix, then a 7 × 7 convolutional
A B

FIGURE 4

(A) Shuffle Block (s=1); (B) Shuffle Block (s=2). a * b means the width and height of the convolution kernel.
A B

FIGURE 3

(A) Group Convolution; (B) Group Convolution with Channel Shuffle.
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layer and activation to get a 1 × H × W spatial attention vector.

The purpose of SAM is to more prominently express the

characteristics of key regions. Each pixel of the feature map

generates a weighted mask and outputs it, which reinforces

where the key target is. Figure 6C shows CBAM. The channel

attention vector obtained by CAM was first multiplied with

input feature map. Then the resulting feature map was
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multiplied by spatial attention matrix obtained by SAM.

Finally, the output of CBAM is obtained through the residual

structure. The sequence of using CAM and then SAM to correct

the feature maps was based on the characteristics of the human

cerebral cortex, Woo et al. (2018) experiments also verified this.

We applied CBAM to the second, third, and fourth stages of

YOLO-P’s backbone. Following experiments by Park et al.
A

B

C

FIGURE 6

Schematic diagram of the CBAM structure in YOLO-P. (A) Channel Attention Module (CAM) (B) Spatial Attention Module (SAM) (C) Convolutional
Block Attention Module (CBAM).
DA B C

FIGURE 5

(A) Residual Block; (B) Inverted Residual Block; (C) Inverted Shuffle Block (s=1); (D) Inverted Shuffle Block (s=2). a * b means the width and
height of the convolution kernel.
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(2018), we inserted the attention module at the bottleneck of the

network, i.e., before the downsampling layer. We then connected

the output of CBAM to the neck network of YOLO-P for better

feature fusion.
2.2 Activation function

The activation function of the network was mainly improved

in two aspects. First was to replace the SiLU activation function

for all CBS structures in YOLOv5 with Hard-Swish, and the

second was to use the linear activation function for the last

convolution layer in the inverted shuffle block.

First, all CBS structures in YOLOv5 used SiLU as an

activation function. For the network applied to embedded

devices, obviously the linear activation function could make

the network faster. Hard-Swish (Howard et al., 2019) activation

function was bounded up and down. The non-monotonic and

piecewise linear characteristics reduced the amount of

calculation. It was beneficial to eliminate saturation and make

the feature expression ability better. All Conv, Batch Norm,

Hard-swish (CBH) structures in YOLO-P’s backbone and neck

network used Hard-Swish as an activation function. Equation

(1) is the Hard-Swish expression where xin represents the input

of the activation function. Second, ReLU was used as an

activation function after most convolutional layers in the

original shuffle block. However, due to the inverted residual

structure of the inverted shuffle block, first an increase in

dimension and then a reduction in dimension made the final

output a low-dimensional feature vector. Although ReLU can

better express high-dimensional features, it has serious loss of

low-dimensional feature information (Sandler et al., 2018). In

order to ensure the feature information was not lost and to better

match the complete output of the inverted residual, each branch

of the last convolutional layer of inverted shuffle block’s used a

linear activation function.

Hard-SwishðxinÞ ¼xin
ReLU6ðxin + 3)

6
(1)

ReLU6ðxinÞ ¼min (max (xin, 0), 6) (2)
2.3 Loss function

Since the detection target type of the model was only pear,

we did not set the class loss. The loss function of YOLO-P

consists of confidence loss and location loss. Equation 3 shows

confidence loss which was used to measure the probability that

the predicted bounding box contained the real target. It was

calculated by using binary cross entropy (BCE). In In Equations

3 and 4, I is the intersection area of the ground-truth box and

predicted bounding box, U is the area of the union, Ci is the
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prediction confidence, N is the total number of samples, and spl

represents all samples. According to the structure of the YOLO-

P predictor, different weights K1, K2, and K3 are adopted on the

three prediction layers of small, medium, and large to strengthen

the targets’ detection ability of different scales. The confidence

loss is shown in Equation 5. Since pears with a greater distance

(small objects on the image) are more difficult to detect, we took

K1, K2, and K3 as 6.0, 1.0, and 0.5 in YOLO-P, respectively.

L
0
conf = −

o
i∈spl

(
I
U
ln (C

0
i) + (1 −

I
U
) ln (1 − C

0
i))

N
(3)

C
0
i = sigmoidðCi) (4)

Lconf = 6:0 · Lsmall
conf + 1:0 · Lmedium

conf + 0:5 · Llargeconf (5)

The location loss measures the location error between

predicted bounding box and ground-truth box. Zheng et al.

(2020) pointed out that the regression loss of bounding box

should take the overlapping area, the distance between center

points of the box, and the aspect ratio into account. In this study,

we used CIoU loss as the location loss of YOLO-P, as shown in

Equations 6–8, where wgt and bgt are the length and width of

ground-truth box, wp and bp are the length and width of the

predicted bounding box, d is the Euclidean distance between the

predicted box and the ground-truth box, and c is the diagonal

distance of the union of the predicted box and the ground-truth

box. The CIoU loss can directly minimize the distance between

two boxes (Zheng et al., 2020), so it has a faster convergence rate.

Lloc = 1 − (
I
U

− (
d2

c2
+ av)) (6)

a =
v

(1 − I
U ) + v

(7)

v =
4
p
( arctan

wgt

bgt
− arctan

wp

bp
)2 (8)

Combined with confidence loss and location loss, the loss

function of YOLO-P is shown in Equation 9.

Loss = Lconf + Lloc (9)
3 Experiments

3.1 Dataset

Images required for the experiment were collected at a pear

planting base located in Gaochun District, Nanjing City, Jiangsu

Province, China. In this research, Akidzuki pears were used as

detection targets. In August 2022, images were captured using a
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Sony FDR-AX60 4K camera with a sensor type of 1/2.5 stacked

complementary metal-oxide-semiconductor (CMOS), and a

total of 533 images containing Akidzuki pears were captured

as training samples while 118 images different from the training

samples were taken for model testing. In addition to normal

daytime lighting, the dataset also contained samples at night.

The images at night were taken with the aid of a 1000 lm light

source. Images contained shaded pears and complex

backgrounds. We used ImageLabel to annotate images and

perform data augmentation by randomly selecting three of the

following augmentation strategies: (1) 50% probability of

horizontal mirror flip, (2) 50% probability of vertical mirror

flip, (3) random scaling 80–95%, (4) random brightness

adjustment to 35–150%, (5) randomly added Gaussian blur, or

(6) randomly added Gaussian noise. The images that could not

be used for training were eliminated, and the training dataset

was finally expanded to 5257 images. The expanded image

inherited the previous annotations with 55496 labels in total.

According to the ratio of 8 : 2, the dataset was divided into a

training set and a validation set, which had 4206 and 1051

images, respectively. All images were stored in JPG format. The

details of the dataset are shown in Table 1.

The difference in the distance between the camera and the

pear will result in different scales of the collected images. The

further the distance, the smaller the target. At this time, most

areas of the image will be covered by useless background and

increase the image’s background complexity. The disordered

background in the orchard makes it more challenging for the

model to detect objects. Also, the number of smaller objects will

increase significantly. According to the distance between the

camera and the fruit, we divided the background of the image

into three cases: uncomplicated, moderately complicated, and

extremely complicated. Among them, the distance of 0.3–0.5 m

was set for uncomplicated, while 0.5–1 m for moderately

complicated, and farther than 1m for extremely complicated.

The pears on the fruit trees photographed by camera were

sometimes shaded by leaves or other objects, and there were also

cases where the pears might be shaded by each other. The shaded

target would bring difficulties to detection. In order to

specifically verify the reliability of YOLO-P in detecting such

targets, we proposed a method for calculating the pears’ shaded

degree. Ks was used to evaluate the degree of shade, which was

the ratio of the shaded area to the total area of the pear in images.

According to our previous experiments, it was extremely difficult

to detect when Ks was higher than 0.6, so only the case of Ks< 0.6

was considered in this study, as shown in Table 2.
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3.2 Experimental environment and
parameters

Training of YOLO-P was carried out in a Windows 10

environment. The graphics processing unit (GPU) was Nvidia

GeForce RTX 3060, the central processing unit (CPU) was AMD

Ryzen 7 5800, and the memory was 32 GB. We used the

Pytorch1.8.1 framework, CUDA 11.1 computing platform and

CUDNN 8.1 deep neural network acceleration library.

The momentum decay and weight decay of all models

during training were designed to be 0.9 and 0.0005,

respectively, and the initial learning rate was 0.01. At the same

time, the cosine annealing algorithm was used to optimize the

learning rate. We used three rounds of epoch to warmup in

order to stabilize the early training model. The warmup

momentum was 0.8 and the batch size was set to 32. We used

Adam as the optimizer with 500 training epochs. To prevent

overfitting, the model would automatically stop training if there

was no accuracy improvement in the last 50 training epochs.
3.3 Evaluation indicators

A variety of indicators could be used to evaluate the quality

of the model in different experimental contexts, such as precision

(P), recall (R), F1 score, AP, mAP, FPS, FLOPs, model volume,

etc. The higher the P, R, F1 score, and AP, the more reliable the

model would be. Their computation consists of true positives

(TP), false positives (FP), and false negatives (FN), as shown in

Equations 10-13 respectively. The intersection over union (IoU)

threshold in AP took 0.5 (AP@0.5). It is worth mentioning that

there was only one category of pears in this study, so AP and

mAP were equal.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 =
2PR
P + R

(12)

AP =
Z 1

0
P(R)dR (13)
TABLE 1 Details of the pear image dataset.

Uncomplicated
background

Moderately complex
background

Extremely complex
background Daytime Nighttime Total

images

Number of
images

1209 1630 2418 3680 1577 5257
f
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Model volume refers to the size of weight file obtained after

training. FPS refers to the number of images the model can

process per second. FLOPs is the total floating-point operations

of the model, as shown in Equation (14), where N represents all

convolutional layers, Li and Ci are the output feature layer size

and number of channels of the current layer, respectively, Ki is

the number of convolution kernels of the current layer, and Ci-1

is the number of input channels of the current layer. Like the

model volume, the higher the FLOPs and the more complex the

model, the slower the operation speed and the lower the FPS.

FLOPs ¼ o
i∈½1,N�

L2i � K2
i � Ci � Ci−1 (14)
3.4 Experiments results

3.4.1 Model comparison experiments
Since YOLO-P is a one-stage model, the purpose is to run at

high speed on low-performance devices, so it is not meaningful

to compare with the two-stage model. We selected several

mainstream lightweight networks including RegNet,

MobileNetv3, and EfficientNetv2 to compare with YOLO-P.

RegNet (Radosavovic et al., 2020) optimized design space of

the network to obtain optimal solution. MobileNetv3 (Howard

et al., 2019) added squeeze excitation attention to the inverted

residual module, and reduced the amount of computation

without losing accuracy by improving the structure of the last

stage. EfficientNetv2 (Tan and Le, 2021) improved feature

extraction efficiency by introducing Fused-MBConv. In order

to make the model volume more similar to YOLO-P, we replaced

the backbone of YOLOv5s with the above three networks. At the

same time, the classic YOLOv5s model was used for comparison.
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In the model comparison experiments of this section, we selected

P, AP@0.5, FLOPs, and module volume as evaluation indicators.

The test results are shown in Table 3.

From the data in Table 3, it can be seen that YOLO-P

achieved the best AP in section’s experiments, which was 97.6%

and it was 1.8% higher than its original network. RegNet-YOLO

had the lowest AP. Although the FLOPs of YOLO-P was not the

lowest, we got the smallest model volume which was only

8.3 MB. Compared with YOLOv5s, it was 39.4% smaller.

MobileNet-YOLO had the lowest FLOPs of only 7.3 G, which

is related to the reduction of last stage in this network. Model

comparison experiments showed that the combination of shuffle

block and inverted shuffle block was reliable. The proposed

YOLO-P model could detect pears in orchards with a smaller

model volume and high accuracy.

3.4.2 Ablation experiments
We conducted ablation experiments on YOLO-P and

discussed the performance improvement of YOLOv5s with

new modules and new structures. New operations included

shuffle block, inverted shuffle block, Hard-Swish activation

function used in CBH, and inserted CBAM. We designed four

sets of experiments in this section. In the T1 experiment, the four

CBS groups and their corresponding downsampling modules in

the YOLOv5s backbone network were replaced with shuffle

blocks. In the T2 experiment, the four CBS groups and their

corresponding downsampling modules in the YOLOv5s

backbone network were replaced with an inverted shuffle

block. The number of module repetitions in both T1 and T2

was the same as YOLO-P. In the T3 experiment, all four CBS

groups were replaced with the same shuffle block and inverted

shuffle block as YOLO-P. The T4 experiment used Hard-Swish

on the basis of the T3. Finally, full YOLO-P network was

CBAM’s insertion. In the model ablation experiments of this

section, we selected precision, AP0.5and FLOPs as evaluation

indicators: the test results are shown in Table 4.

It can be seen from Table 4 that only using a shuffle block or

an inverted shuffle block in the backbone was not as good as the

AP obtained by YOLOv5s, because the inverted structure is not

suitable for shallow networks. Also, the use of upsampling in

deep networks reduced the ability to detect small objects. We
TABLE 3 Results of model comparison experiments.

Precision (%) AP@0.5 (%) FLOPs (G) Model Volume (MB)

RegNet-YOLO 92.8 90.3 13.4 14.6

MobileNet-YOLO 95.4 95.2 7.3 9.2

EffiecientNet-YOLO 95.6 95.0 14.4 17.8

YOLOv5s 96.0 95.8 15.9 13.7

YOLO-P 98.1 97.6 10.1 8.3

Bold means the best score achieved in that category.
TABLE 2 Index of shaded pear’s degree in the dataset.

Evaluation indicators

Not shaded or slightly shaded 0≤Ks≤0.2

Medium shaded 0.2<Ks≤0.4

Serious shaded 0.4<Ks≤0.6
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used different structures in shallow and deep layers of the

network to deal with different sized targets. It would be easier

to detect targets with inconspicuous feature expressions by

combining the characteristics and advantages of the two

modules. The AP obtained by the T3 experiment was similar

to original network, which was only 0.1% higher than YOLOv5s.

However, due to the influence of the channel shuffle, the

calculation amount of model was reduced which made the

FLOPs reduce, and the detection speed was also be improved.

The model’s AP was improved by 0.6% after optimizing the SiLU

activation function to Hard-Swish. On this basis, the feature

extraction ability was further strengthened by inserting CBAM,

which made AP increase by 1.1%, reaching 97.6%. The

comparison of four sets of experiments above proved that the

proposed improved application is feasible in the pear

detection network.
3.4.3 Pear detection experiments
Pear detection experiments were carried out on an industrial

computer with limited computing resources in order to verify

the feasibility of YOLO-P online work. We chose the embedded

industrial computer of model DTB-3049-H310 produced by

Dongtintech. The operating environment was Ubuntu 18.04,

CPU was i7 9700 with 16 GB memory and it was without GPU.

Detection experiments considered many situations of an

intelligent picking robot in orchard. Different types of picking

machinery working at different distances resulted in different

degrees of background complexity. Dense foliage made pears

shaded. For efficiency purposes, picking should be done not only

during the daytime, but also at night. The experiment used 59

daytime and 57 nighttime pear images that different from the

training samples, with a total of 649 labels. Three models

(YOLOv5s, MobileNet-YOLO, YOLO-P) were selected in this

section’s experiments. The models’ detection abilities under

different background complexities and different degrees of

shaded were respectively studied. We set the confidence

threshold of the detection model to 0.4, i.e., confidence below

0.4 was not annotated in the image. The P, R, and F1 score were

calculated by counting TP, FP and FN. FPS of the model
Frontiers in Plant Science 10
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operation were recorded. The overall test results are shown in

Table 5. Pears that were detected by YOLO-P are shown

in Figure 7.

3.4.3.1 Experiments during daytime

There was sufficient sunlight during the daytime: pears were

easily detected when the background was not complicated (the

target was obvious) and the degree of shade was low. However,

the shade led to reduction of features or the image taken from a

long distance led to fewer pixels on the target which would

weaken the feature representation of pears. In this section,

detection experiments were carried out on pears in different

situations according to the proposed method of calculating

background complexity and shaded degree under sufficient

light during daytime.

First, experiments of different background complexities were

carried out. We measured the background complexity by the

distance between camera and pears. The F1 score obtained in

this section is shown in Table 6. The experiments images are

shown in Figure 8. Figures 8A–C are images of pears in

uncomplicated backgrounds. YOLO-P detected all objects

accurately. There were two false detections in YOLOv5s.

MobileNet-YOLO did not detect a pear that had been shaded

below. Figures 8D–F are images of pears in moderately complex

backgrounds. All three networks detected all targets, but both

YOLOv5s and MobileNet-YOLO mistakenly marked a dead leaf

as a pear. Figures 8G–I are images of pears in extremely complex

backgrounds. The environment of these images was relatively

harsh. There were 15 valid targets in the image and many pears

were seriously shaded. MobileNet-YOLO missed four targets.
TABLE 4 Results of ablation experiments.

Shuffle Block Inverted Shuffle Block Hard-Swish CBAM Precision (%) AP@0.5 (%) FLOPs (G)

YOLOv5s 96.0 95.8 15.9

T1 √ 94.3 93.9 10.6

T2 √ 94.8 94.7 9.3

T3 √ √ 96.2 95.9 10.0

T4 √ √ √ 96.9 96.5 10.0

YOLO-P √ √ √ √ 98.1 97.6 10.1

Bold means the best score achieved in that category.
f

TABLE 5 Result of Akidzuki pear detection experiments.

Precision (%) F1 (%) FPS

MobileNet-YOLO 90.1 89.6 28

YOLOv5s 94.8 92.8 19

YOLO-P 97.3 96.1 32

Bold means the best score achieved in that category.
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YOLOv5s and YOLO-P both missed two targets, but YOLOv5s

had two false detections. It can be seen from the experiment in

this section that YOLO-P had strong anti-interference ability.

Although YOLOv5s could also detect targets accurately, it often

misidentified other objects such as dead leaves as pears due to

similar features. Even in the case of extremely complex

backgrounds and few pixels, YOLO-P hardly had false

detections and missed detections.

In the experiment of different degrees of shade, the degree

was measured by the shaded area of pears. The more severely

shaded, the more difficult feature expression of pears in the

image, and the more difficult to it was detect accurately. The F1

score obtained in this section is shown in Table 7. The

experimental images are shown in Figure 9. Figures 9A–C are

not shaded or slightly shaded pear images and Figures 9D–F are

medium-shaded pear images. As can be seen from the figure, all

three networks could detect the shaded pears, but YOLO-P
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always had the highest confidence in detecting shaded targets.

Figures 9G–I are serious-shaded pear images. Only MobileNet-

YOLO failed to detect serious shaded objects. YOLO-P was more

stable against shade problems during the day due to its

higher confidence.

3.4.3.2 Experiments during nighttime

The problem of nighttime detection is the presence of

shadows. Shadows are very similar in color to the background,

so shadows can also be considered as a form of detection.

Shadows may have pixel values very similar to the external

environment due to the uncertain lighting direction. The

boundaries between the outline of pear and the environment

become blurred. Therefore, detecting pears at night will be more

difficult than during the day. In this section, detecting

experiments were carried out under the illumination of an

auxiliary light source at night.
TABLE 6 F1 score (%) in different background complexities experiments during daytime.

Uncomplicated back-
ground Moderately complex background Extremely complex background Average

YOLOv5s 95.5 95.1 93.2 94.6

MobileNet-
YOLO

92.5 91.8 89.5 91.3

YOLO-P 96.9 96.6 95.5 96.3

Bold means the best score achieved in that category.
fro
FIGURE 7

The detecting effect of Akidzuki pear in complex environment.
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The F1 scores obtained by the experiments of different

background complexity at night are shown in Table 8. The

experiment images are shown in Figure 10. Figures 10A–C are

images of pears in an uncomplicated background. It can be seen

from the figure that MobileNet-YOLO missed a target. Both

YOLOv5s and YOLO-P detected each objects successfully. But

YOLOv5s had lower confidence and the location of the bounding

box was not accurate. Figures 10D–F are images of pears in

moderately complex backgrounds. The situation was similar to
Frontiers in Plant Science 12
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the previous group; although both YOLOv5s and YOLO-P

detected all targets, YOLO-P had significantly higher confidence.

Figures 10G–I are images of pears in extremely complex

background. Both YOLOv5s and YOLO-P had a false detection,

but they all detected a target in the middle of the image which was

interfered with by a more complex shadow, while MobileNet-

YOLO did not detect this target. The unclear edge of pears caused

by nighttime illumination is one of the important reasons that

affect the stability of the model. It can be concluded from the
TABLE 7 F1 score (%) in different shaded degrees experiments during daytime.

Not shaded or slightly shaded Medium shaded Serious shaded Average

YOLOv5s 94.8 94.3 94.2 94.4

MobileNet-YOLO 94.5 93.4 90.7 92.9

YOLO-P 97.2 96.6 96.4 96.7

Bold means the best score achieved in that category.
fro
D E

A B

F

G IH

C

FIGURE 8

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A–C) Uncomplicated background; (D–F) Moderately
complex background; (G–I) Extremely complex background.
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experiments that the performance of YOLO-P is better than other

models in the complex background situation at night.

The F1 scores obtained by the experiments of different shade

degrees at night are shown in Table 9. The experiment images of

at night are shown in Figure 11. Figures 11A–C are not shaded
Frontiers in Plant Science 13
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or slightly shaded pear images. All three networks detected the

target accurately. Figures 11D–F are medium-shaded pear

images. YOLOv5s and YOLO-P detected all targets. Neither of

the two shaded fruits was successfully detected by MobileNet-

YOLO. Figures 11G–I are serious-shaded pear images. YOLOv5s
TABLE 8 F1 score (%) in different background complexities experiments during nighttime.

Uncomplicated back-
ground Moderately complex background Extremely complex background Average

YOLOv5s 92.8 92.5 88.9 91.4

MobileNet-
YOLO

87.3 86.8 86.4 86.8

YOLO-P 97.8 95.6 93.9 95.8

Bold means the best score achieved in that category.
fro
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FIGURE 9

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A–C) No shaded or slightly shaded; (D–F) Medium
shaded; (G–I) Serious shaded.
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and YOLO-P detected all pears. But MobileNet-YOLO only

detected one of the two targets. Likewise, YOLO-P had the

highest confidence in this section’s experiment.

It can be seen that YOLO-P could accurately detect pears in

various situations according to the above experiments. Although

YOLOv5s could also accurately detect most targets, there were
Frontiers in Plant Science 14

42
many false detections and lower confidence. Another weakness

is that YOLOv5s needs more computing resources. MobileNet-

YOLO was difficult to extract high-semantic features due to the

insufficient feature extraction ability. Therefore, there was a high

degree of missed detection which is especially evident in the case

of high complexity and seriously shaded. In summary, YOLO-P
TABLE 9 F1 score (%) in different shaded degrees experiments during nighttime.

Not shaded or slightly shaded Medium shaded Serious shaded Average

YOLOv5s 91.5 90.6 90.2 90.8

MobileNet-YOLO 89.2 86.9 85.7 87.3

YOLO-P 95.7 95.6 95.1 95.5

Bold means the best score achieved in that category.
fro
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FIGURE 10

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A–C) Uncomplicated background; (D–F) Moderately
complex background; (G–I) Extremely complex background.
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had the best reliability in detecting pears in complex

environments. YOLO-P had the best reliability in detecting

pears under complex environments.
4 Discussion

Extensive research work has proved that building more

complex datasets is the key to further improving the accuracy

and robustness of deep learning models. For the automatic

picking work in orchards, there are different shade patterns and

backgrounds for each step the robot moves. Therefore, the scene it

sees is far more complex than the images used for training.

Although we collected as many complex images as possible, the

variety of shaded fruits is too numerous. If a similar pattern of

shaded fruits is not trained, the model will most likely be unable to
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recognize this object (although it looks remarkably easy to

recognize). In this study, only the case where the fruit was

shaded below 60% was considered. More diverse image data

should be obtained in future work to deal with the more

severely shaded fruit detection.

In experiments at night, we found that pixels in shadow-

covered locations might be very similar to the outside

environment, especially when the angle of the light source to the

target was uncertain. This is one of the most important barriers to

detecting pears at night. At present, some studies (Xu et al., 2020;

Wang et al., 2022) have proved that the use of image enhancement

can improve the accuracy of deep learning in harsh environments,

especially in low light. If the models use some kind of machine

learning method to preprocess the image and enhance the target

boundary then input to neural network for recognition, the night

detection ability of the model could be further improved.
D E

A B

F
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FIGURE 11

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A–C) No shaded or slightly shaded; (D–F) Medium
shaded; (G–I) Serious shaded.
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Furthermore, only the detection of fully ripe pears was

investigated in this study. In practice, picking in orchards should

be done in batches. There may be cases that some pears are mature

and some are not. Therefore, the intelligent detection of fruit

ripeness is also one of the main research directions. Fruit ripeness

can be judged by directly detecting the appearance characteristics

(Chen et al., 2022). In addition, remote sensing can also be used for

detection. From a macro perspective, the leaves of pear trees will

become darker during the ripening season, and the fruits on pear

trees may also have different characteristics. Remote sensing

detection combined with deep learning may better judge fruit

ripeness, thereby helping intelligent picking in orchards.
5 Conclusions

The cost of manual picking has gradually increased with the

continuous loss of agricultural labor. In order to improve the

economic benefits of fruit farmers and the automation degree of

orchards, it is imperative to study the intelligent picking

technology. Accurate and fast fruit detection is one of the

most critical steps for orchard robot automatic picking. The

robustness of fruit detection in complex backgrounds and

shaded environments is a key factor affecting the work of

automated picking robots. This study aimed to improve the

accuracy and speed of fruit detection by improving the existing

methods. The results will improve the reliability of pear

detection in unstructured environments and enable it to be

applied to online detection tasks in an industrial computer.

Based on YOLOv5, we proposed a deep learning model

YOLO-P for detecting pears in complex orchard environments.

The research carried out the following design and

improvements. A new module named inverted shuffle block

was designed. The inverted shuffle block was used in deeper

networks. Combined with the shuffle block used in the shallow

networks, the backbone of YOLOv5 was reconstructed. The new

backbone had a good ability to detect small targets. The

activation function was replaced with Hard-Swish to reduce

the computational load of the network. CBAM was inserted to

improve the capture of key information. Finally, a weighted loss

function was designed to further improve the feature extraction

ability of small targets.

We used the Akidzuki pears as detection object of the model.

We compared YOLO-P with somemainstream lightweight models.

The detection effect of YOLO-P was significantly better than others.

Compared with the original YOLOv5s, AP increased from 1.8% to

97.6%, and the volume of the model was compressed by 39.4% to

only 8.3MB. Ablation experiments on YOLO-P demonstrated the

effectiveness of these improvements. In daytime and nighttime

Akidzuki pear detection experiments, we used an embedded

industrial computer to test the performance of the model under

different background complexities and different shade degrees. The

experimental results showed that YOLO-P achieved the highest F1
Frontiers in Plant Science 16
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score and FPS of 96.1% and 32, respectively which were 3.3% and

68.4% higher than YOLOv5s, respectively. The YOLO-P developed

in this paper can provide technical support for intelligent picking in

pear orchards, and can also provide a reference for other types of

fruit detection in complex environments.

In this research, we only considered the situation that the

degree of shade is less than 60%. In the real orchard environment,

there may be fruits that are more seriously shaded and difficult to

be detected. Efficiently obtain high-quality and more abundant

data to train models will be our next research goal. In detection at

night, border of the fruit may be similar to the environment due to

the lack of light. This is one of the reasons why the accuracy at

night is lower than that during the day. In follow-up research, we

will consider using image enhancement algorithms to further

improve the reliability of the model.
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Introduction: Estimating and understanding the yield variability within an individual

field is critical for precision agriculture resource management of high value tree

crops. Recent advancements in sensor technologies and machine learning make it

possible to monitor orchards at very high spatial resolution and estimate yield at

individual tree level.

Methods: This study evaluates the potential of utilizing deep learning methods to

predict tree-level almond yield with multi-spectral imagery. We focused on an

almond orchard with the ‘Independence’ cultivar in California, where individual

tree harvesting and yield monitoring was conducted for ~2,000 trees and summer

aerial imagery at 30cmwas acquired for four spectral bands in 2021. We developed

a Convolutional Neural Network (CNN) model with a spatial attention module to

take the multi-spectral reflectance imagery directly for almond fresh weight

estimation at the tree level.

Results: The deep learning model was shown to predict the tree level yield very

well, with a R2 of 0.96 (±0.002) and Normalized Root Mean Square Error (NRMSE)

of 6.6% (±0.2%), based on 5-fold cross validation. The CNN estimation captured

well the patterns of yield variation between orchard rows, along the transects, and

from tree to tree, when compared to the harvest data. The reflectance at the red

edge band was found to play the most important role in the CNN yield estimation.

Discussion: This study demonstrates the significant improvement of deep learning

over traditional linear regression and machine learning methods for accurate and

robust tree level yield estimation, highlighting the potential for data-driven site-

specific resource management to ensure agriculture sustainability.

KEYWORDS

CNN, deep learning, yield prediction, multispectral imagery, almond, UAV/drone
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1 Introduction

Over 2.2 million ha of land produces about 4.1 million metric tons

of almonds in 2020 globally, with United States (US) as the largest

producer (FAO, 2022). About 80 percent of the world’s almonds are

produced in California’s irrigated land, generating about $5bn “farm

gate value” and an additional $3 billion of indirect and induced values

(CDFA, 2022). In the last two decades, the total acreage of almond

orchards in California doubled and became the state’s second largest

agricultural commodity. The continued expansion of water and

fertilizer-intensive tree crops, coupled with climate change, poses a

threat to the long-term sustainability of almond industry, despite

ongoing research and outreach efforts focused on tree crops (Khalsa

et al., 2022). Excessive groundwater pumping especially during

drought years, for example, has caused a significant drop of

aquifer’s water depths in Central Valley (Fulton et al., 2019).

Groundwater has also been degraded due to nitrogen leaching from

agricultural fields (Harter, 2009). One out of ten public water supply

wells in California have nitrate levels exceeding the maximum

contamination level (Harter, 2009).

In response to these challenges, various regulatory programs have

been implemented in California over the past decade, requiring

growers to increase the efficiency of irrigation and nitrogen use

(Rudnick et al., 2021). Meeting these regulations will require more

precise and adaptive irrigation and nitrogen management strategies.

In particular, a change from whole-field management to zonal and

even tree-specific precision agricultural practices is critical for

maximizing ‘crop per drop or lb of N’, considering large yield

variability within an individual almond orchard (Jin et al., 2020).

Accurate yield estimation and prediction is a missing link in current

nitrogen management tool, although the guidance is available on N

fertilization given the expected almond yield for a particular orchard.

An improved understanding of within-field yield variability is also

needed for adaptive on-farm management to close the yield gap (Jin

et al., 2020). Reliable yield estimation can also help with insurance

and market decisions, which rely on the understanding of mean and

variability of yields at the field scale (Lobell et al., 2015).

Both mechanistic simulation models and statistical approaches

have been used for yield estimation (Hodges et al., 1987; Dzotsi et al.,

2013; Burke and Lobell, 2017; Kang and Özdoğan, 2019; Sidike et al.,

2019). The process models simulate crop growth, nutrient cycling,

soil-plant dynamics, and energy and water balance under various

climate and management scenarios (Zhang et al., 2019; Archontoulis

et al., 2020), such as the Agricultural Production Systems Simulator

(APSIM) model (Keating et al., 2003). Although powerful, it is

challenging to calibrate these models across different sites, because

of the complexity of the biological processes (Jagtap and Jones, 2002).

These models often require extensive biotic and abiotic data as input,

such as soil properties, which may not be available at the field or finer

scale (Sakamoto et al., 2013; Zhang et al., 2019). Moreover, the

majority of crop models focus on row crops such as corn, soybean,

barley, and etc., while the simulation of tree crops with complicated

physiological processes is very limited (Keating et al., 2003).

Statistical models, on the other hand, are based on the empirical

relationships learned from the observed yield data and the factors

affecting production, instead of simulating complex biophysical

processes (Medar and Rajpurohit, 2014). Regression models, for
Frontiers in Plant Science 0248
example, have been developed to quantify the impact of climate on

agriculture production at county and state level (Lobell et al., 2007;

Lobell and Field, 2011; Mourtzinis et al., 2015; Xu et al., 2016). Studies

have shown that the recent climatic trends have mixed effects on tree

crop yields in California (Lobell et al., 2007; Lobell and Field, 2011).

Across the US, it has been estimated that warming will lead to

reduction in soybean and maize production in the Midwest

(Mourtzinis et al., 2015; Xu et al., 2016). All these statistical studies

provide guidance for county, state or nation-wide climate mitigation

and adaptation strategies. However, the utility of these coarse scale

empirical models is limited in terms of informing growers for their

on-farm resource management for individual fields or trees.

Recent advancement of remote sensing technologies enables plant

monitoring across a range of spatial and temporal resolutions,

opening doors for data-driven yield estimation at the field scale

(Shahhosseini et al., 2020; van Klompenburg et al., 2020; Rashid

et al., 2021; Muruganantham et al., 2022). Both traditional and

machine learning methods have been developed to relate field

surveyed yield data with remote sensing metrics and other

environmental drivers (Burke and Lobell, 2017; Lambert et al.,

2018; Hunt et al., 2019; Zhang et al., 2019). Burke and Lobell

(2017) found that the linear regression model, driven by vegetation

indexes (VIs) derived from high resolution multi-spectral images

from Terra Bella satellite at 1m, predicted well the yield for maize

fields in west Kenya. Machine learning models such as random forest

and gradient boosting trees have also been developed to predict yield

for individual fields over almond tree crops by integrating Landsat

VIs and weather data in California (Zhang et al., 2019), over wheat in

United Kingdom using Sentinel-2 VIs (Hunt et al., 2019), and over

cotton, maize, millet and sorghum in Mali using Sentinel-2 VIs

(Lambert et al., 2018).

Most recently more complex deep learning models such as Deep

Neural Network, Convolutional Neural Network (CNN), and

Recurrent Neural Network have been introduced to improve yield

estimation with large remote sensing datasets, due to their improved

performance over traditional statistical approaches (Ball et al., 2017;

You et al., 2017; Cai et al., 2018; Kang and Özdoğan, 2019; Khaki and

Wang, 2019; Sidike et al., 2019; Kang et al., 2020; Khaki et al., 2020;

Ma et al., 2021). The Bayesian neural network model, for example, has

been shown to predict county-level corn yield well in twelve

Midwestern states of US (R2 = 0.77), using VI time series from

MODIS imagery, climate variables, soil properties, and historical

average yield (Ma et al., 2021). A limited studies applied recurrent

neural network framework such as Long Short Term Memory models

to take into account of sequential imagery and weather for county-

level corn yield in combination with CNN; their models outperform

the traditional regression and machine learning models (You et al.,

2017; Khaki et al., 2020). Shahhosseini et al. (2021) also explored a

hybrid approach to integrate features from crop modeling to machine

learning models and found the importance of hydrological inputs for

yield estimation in the US corn belt. At field scales, data assimilation

technique has been explored to incorporate the remote sensing

observations of canopy development into the Decision Support

System for Agrotechnology Transfer (DSSAT) crop model for corn

yield mapping over the US corn belt (Kang and Özdoğan, 2019).

However, most of the studies still use human-engineered index-based

feature extraction method, such as some widely used vegetation index
frontiersin.org
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and contextual information derived from imagery, to predict yield

and do not explore the potential of learning-based feature extraction

with deep learning models that directly use multi-spectral imagery

as input.

In order to capture variations of crop yield among individual

plants for precision management, higher spatial resolution

observations of canopy structure and conditions are required, such

as those from very high-resolution commercial satellite and aerial

imagery (Sidike et al., 2019; Maimaitijiang et al., 2020). Recent

advances in computer vision and deep learning technology further

unlock the power of centimeter imagery for fine scale yield estimation

at individual plant or sub-field level. Chen et al. (2019) developed a

region-based CNN model to detect and count the number of flowers

and strawberries at plant level from the RGB drone imagery and

found an overall counting accuracy of 84.1%. Another study

integrated multi-spectral and thermal drone imagery with machine

learning and deep neural network models to estimate the sub-field

soybean yield in US (Maimaitijiang et al., 2020). However, the study

on plant-level yield variation is still very limited and the majority

focuses on row crops, mostly due to the lack of field-based yield

database for individual plants, especially for tree crops.

We here took advantage of a unique individual tree harvesting

data and aerial imagery of multiple spectral bands at 30cm spatial

resolution over an almond orchard in California’s central valley, to

explore the potential of deep learning for tree level almond yield

estimation. Specifically, we aimed to address the following questions:

(i) how CNN model can be used to estimate almond yield for each

individual tree, based on very high resolution multi-spectral imagery;

and (ii) what is the capability of the trained CNNmodels in capturing

the within-field almond yield variation; and (iii) what is the relative

importance or added value of the observations in the red edge part of

the spectrum, a spectral band increasingly available in recent imaging

systems, with regard to almond yield estimation.
2 Materials

2.1 Study orchard and Individual
tree harvest data

This study was conducted over an almond orchard with a size of 2

squared kilometers in Vacaville, California, USA (Figure 1). Under a

typical Mediterranean climate, the area experiences hot dry summer

with average daily max temperature in July of 34 °C and cool winter

with average daily minimum temperature in January of 3.7 °C. Mean

annual precipitation is 63 ( ± 21) cm and the majority rainfall occurs

from November to March (BestPlaces, 2022; Cedar Lake Ventures,

2022; WRCC, 2022). For almond tree, the water usage increases

gradually from March to July, and decreases from July to October

(Athwal, 2021). The hot and dry summer requires large amount of

irrigation water usage to support crop growing, which mainly comes

from groundwater and surface water including Lake Berryessa and

Putah Creek (SID, 2012; BoR, 2022).

The orchard was planted with a self-fertile productive almond

cultivar, ‘Independence’, between 2015 and 2017. Within the orchard,

rows are oriented northeast to southwest in parallel with prevailing

winds, and the average row spacing is about 6 m and the average
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spacing between trees along the same row is about 4.5 m. Almond

trees bloom between late February and early March, followed by leaf

out, fruit set and rapid growth, reaches full canopy typically in June or

early-July, and fruit maturity progresses through summer. Almonds

are typically harvested from August to October, and trees become

dormancy during the winter season.

We designed an automatic weighing system attached to the

commercial almond harvester to measure the almond yield of an

individual tree (Figure S1). The yield (including wet hulls and shells)

measurements were made for each individual tree every seven rows in

the north-west portion of the orchard between August 23 and August

27 in 2021 (Figure 1). A total number of 1,893 trees were individually

harvested, with an average fresh weight yield of 53.1 ± 17.6 kg per tree.

The location of each sampled trees was also recorded. Large yield

variation was found among individual trees with a coefficient of

variation of 33.1% and interquartile range of 24.3 kg per tree.
FIGURE 1

Study orchard as shown by the color infrared composite of CERES
aerial imagery acquired on July 29, 2021. Individual trees with yield
measurements were shown as green dots. The inset shows the
location of the study orchard among all almond orchard fields (green)
in California’s Central Valley (black polygon).
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2.2 Aerial imagery acquisition
and processing

Multi-spectral aerial imagery was acquired on July 29, 2021, about

one month ahead of the harvest, by CERES Imaging (Oakland, USA.)

A multi-spectral imaging camera was integrated with a crop duster

plane flying at 6,000 ft above the ground, resulting in images with a

0.3-meter spatial resolution. Four spectral bands are centered around

800 nm (near infrared), 717 nm (red edge), 671 nm (red), and 550 nm

(green), with a spectral resolution of 10 nm (the full width at half

maximum). The image was acquired near local solar noon to

minimize the shadow effects.
2.3 Tree identification and location
extraction from imagery

For each individual tree, extracting its center location from

CERES imagery is needed in order to match the tree yield record

from the harvester and to clip the corresponding image block as CNN

input. We developed a multi-stage segmentation method to identify

all individual crowns with varying canopy sizes, especially over a

mature orchard. First, Normalized Difference Vegetation Index

(NDVI) was calculated for each pixel from the red and near

infrared bands of the CERES aerial imagery (Figure 2A). Second,

NDVI imagery was segmented based on the NDVI threshold to

identify potential tree crowns automatically (Figure 2B). Lower

NDVI threshold tended to be more inclusive in identifying canopy
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pixels and resulted in a tree crown boundary with multiple inter-

connected trees in it; whereas higher NDVI threshold separated

individual tree crowns better but may miss smaller trees

(Figure 2B). We therefore applied seven NDVI thresholds ranging

from 0.60 to 0.83 (Table S1), producing seven layers of potential tree

crown polygon maps. Third, for each layer, those polygons that

actually had multiple trees were removed, based on the comparison

of the polygon major axis length and the orchard tree spacing

(Figure 2C). The assumption is that one single tree crown diameter

can’t exceed the spacing between adjacent trees. Finally, by taking

advantage of higher threshold’s capability of separating individual

trees and lower NDVI threshold’s capability of identifying small trees,

we combined those seven potential single tree crown polygons

iteratively, based on their spatial relationships, into one final tree

crown boundary optimal for tree center extraction. The goal was to

remove the redundancy among those layers yet maintain the largest

crown size. Starting from the crown polygons (smallest size), typically

associated with higher NDVI threshold value, if it was spatially within

the crown polygon (larger) identified by the lower threshold value, it

was deleted; otherwise, it was added to the final single tree crown

polygons map. By iterating this step, we created a final version of

single tree crown polygons map (Figure 2D). Finally, the tree

locations were extracted from the centroid coordinates of all the

segmented tree crown polygons.

For quality control, the extracted tree locations were plotted over

the CERES imagery for visual examination. For example, those trees

with very small or large crowns were carefully examined against

CERES imagery to ensure the location accuracy. To further ensure the
A B

DC

FIGURE 2

Illustration of individual tree identification workflow: (A). NDVI map from CERES imagery; (B). Segmented tree crowns with various NDVI threshold values,
e.g., the blue polygon represents the boundaries from the segmentation with a NDVI threshold of 0.6; (C). For each polygon layer identified using a
particular NDVI threshold, remove those crown polygons whose major axis (dashed blue line) were longer than the expected maximum tree crown
diameter, roughly the tree planting spacing along the orchard row; (D). Final tree crowns by combining all layers of potential crown polygons and center
locations of all individual trees.
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alignment with the locations of the individually harvested trees, a

visual check of the locations of starting, ending, and some randomly

selected trees within the harvested rows was also conducted. All these

processes were done in Python and QGIS.
3 Methods

3.1 Convolutional neural
network architecture

The Convolutional neural network (CNN), a most established

deep learning algorithm, is developed to estimate fresh almond yield

with multi-spectral aerial images as inputs. CNN has a unique ability

to automatically and adaptively learn spatial hierarchies of important

features that summarize the presence of detected features in the input

image for a particular predictive modeling problem (LeCun et al.,

2015). The extreme efficiency in dimensionality reduction of the CNN

model makes it unnecessary to conduct any feature extraction work,

which increases computation efficiency and improves estimation

accuracy. A surge of interest in CNN deep learning has emerged in

recent years due to its superior performance in various fields (Lobell

et al., 2015; Yamashita et al., 2018; Kattenborn et al., 2021; Li

et al., 2021).

A CNN is typically composed of a stacking of three types of layers,

i.e., convolution, pooling, and fully connected layers (LeCun et al.,

2015). The first two perform feature extraction, whereas the third

maps the extracted features into final output, such as yield. As a

fundamental component of the CNN architecture, a convolutional

layer typically consists of a combination of linear and nonlinear

operations, i.e., convolution operation and activation function. A

convolution is a simple application of a spatial filter (or kernel) to an

input image that results in an activation. Repeated application of the

same filter to an input result in a map of activations called a feature

map. A small grid of parameters called kernel, an optimizable feature

extractor, is applied at each image position, which makes CNNs

highly efficient for image processing. The kernel values are optimized

during the model training process to extract features from input data

based on the model’s task. The outputs of a linear operation such as

convolution are then passed through a nonlinear activation function,

e.g., the most commonly used rectified linear unit (ReLU). Batch

normalization can also be applied as an optimization strategy to

increase the model training efficiency, although it is not a solid

requirement of the CNN model. To reduce the dimensionality of

the extracted feature maps, a pooling layer provides a down-sampling

operation by aggregating the adjacent values with a selected

aggregation function, such as taking maximum value within the

predefined window size. Similar to convolution operations,

hyperparameters including filter size, stride, and padding are set in

pooling operations. As one layer feeds its output into the next layer,

extracted features can hierarchically and progressively become

more complex.

To improve CNN model’s overall performance, the spatial

attention module is recently introduced into the CNN architecture

by combining a global average pooling layer and the following dense

layers (Woo et al., 2018; Sun et al., 2022; Zhang et al., 2022). Global

average pooling layer is usually applied once to downscale the feature
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maps into 1-D array by averaging all the elements in each feature

map, while retaining the depth of the feature maps. Dense layer then

connects the final feature maps to the final output of the model with

learnable weights via model training. The combination of a global

average pooling layer and the following dense layers helps the CNN

model focus more on the relevant features and thus improves.
3.2 CNN configuration and optimization

TensorFlow (Abadi et al., 2016), Keras (Chollet, 2015), and

KerasTuner (O’Malley et al., 2019) libraries in Python were used

for CNN model tuning and training processes. The CNN model took

the image blocks, centered around each individual almond tree

crown, from CERES images at 0.3 m resolution, for 4 reflectance

bands (R, G, NIR, and RE) as inputs to estimate the individual tree

almond yield (Figure 3). We started with the minimum block size of

21 × 21 pixels, equivalent to a 3m radius centered around each tree

crown center and thus representing areas slightly bigger than one tree

crown size. For each tree sample, we first identified the corresponding

CERES pixel containing the tree center (as described in Section 2.3

location), and then clipped an image block extending 10 pixels

towards all four directions from the center, for each band. This step

resulted in 21 × 21 × 4 multi-spectral imagery associated with each

individual tree crown as the input to the CNN model.

The CNN model training process is to find kernels in the

convolutional layers and weights in the dense layers to minimize

the differences between model estimations and ground measurements

on a training dataset. The Mean Squared Error (MSE) loss function

was applied for the CNN model training, which calculates the average

of the squared differences between model estimations and actual

values. To efficiently optimize the kernels and weights within the

CNN model, the Adam optimization algorithm (Kingma and Ba,

2014) is used, which extends the stochastic gradient descent algorithm

by calculating individual learning rates for different parameters based

on the estimates offirst and second moments of gradients. 5-fold cross

validation (CV) is applied to randomly split the data into separate

training and testing sets. The overall model performance is evaluated

based on the average performance over the testing set in each fold.

The Bayesian optimization algorithm is developed to select the CNN

hyper-parameters automatically.

The general setup of the possible CNN structures for the Bayesian

optimization algorithm are as follows: three to four convolutional

blocks followed by a spatial attention module with a global average

pooling layer and two fully connected dense layers. For the first dense

layer, there are 30 to 100 neurons followed by a dropout layer. For

each convolutional block, there are 16 to 128 convolutional layers

(kernels) followed by a batch normalization and pooling layers, then

another 16 to 128 convolutional layers followed by a batch

normalization, pooling and ReLU activation layers. The pooling

layers in each convolutional block can be either average pooling or

max pooling. The overall architecture of the CNN model for the

Bayesian optimization algorithm is shown in Figure S3. For model

compiler, the Bayesian optimization algorithm selects learning rate

varying from 10-4 to 10-2 with Adam optimizer. For the Bayesian

optimization algorithm itself, the maximum trail number was set to

50, and for each trail, the batch size is 128 with 100 epochs.
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To investigate the impact of input image block size used for the

CNN model and explore how the neighboring trees potentially

influence yield estimation, another two separate CNN models were

built with an input image size of 41 × 41 pixels (roughly 6m radius)

and 61 × 61 pixels (9m radius), respectively. To understand the

contribution of the red edge band to the yield estimation, a reduced

CNN model was constructed by excluding red edge reflectance as

input, hereafter called “reduced CNN model”, considering that red

edge band is not as widely used for aerial imaging as the other three

bands. Similarly, another 14 sets of reduced CNNmodels were further

built with all the combinations of different reflectance bands as input

and compared how they influenced model’s yield estimation accuracy

(Table S2).
3.3 Traditional machine learning
model estimations

For comparison purposes, Other statistical models were also built

for individual tree level almond yield estimation, including stepwise

linear regression as a baseline for linear relationships and four

traditional machine learning approaches. The Scikit-learn (Buitinck

et al., 2013) and hyperopt (Bergstra et al., 2013) libraries were used for

building support vector regressor (SVR) (Platt, 1999), random forest

(RF) (Breiman, 2001), and extreme gradient boosting (XGB) models

(Chen and Guestrin, 2016). Additionally, a DNN model was also

developed using the same libraries as CNN model. The traditional

machine learning models use the human-engineered index-based

feature extraction method to predict almond yield, which differs
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from the CNN model that directly takes imagery as input. By

comparing traditional machine learning models against CNN

model, it helps to evaluate the advantages of applying learning-

based feature extraction in yield prediction.

Regression models were built using features at individual tree level

as inputs, including VIs and texture. 13 commonly used vegetation

indices (VIs) were calculated from CERES multi-spectral imagery,

including those sensitive to structure, greenness, and chlorophyll

content (as described and summarized in Table S3 in the

supplementary material). A circular buffer with a 2.5-meter radius

was used to calculate the zonal statistics of remote sensing metrics,

since most tree crowns have diameters less than 5 meters. Tree crown

pixels were identified with NDVI greater than 0.5, and the fractional

coverage of tree crown within the buffer area was then calculated to

represent the size of crown. The average of VI values over the

identified crown pixels within the buffer area were also derived to

represent the overall biomass of an individual tree. In total, 14

variables were calculated including 13 VIs and one fractional

coverage variable.

To extract textural features for each of the four band images, the

gray level co-occurrence matrix (GLCM) (Haralick et al., 1973) was

applied. The GLCMs were constructed with a moving distance of one

pixel and four moving directions. Eight texture measures were

calculated from reflectance imagery with a 2x2 moving window,

including contrast, dissimilarity, homogeneity, angular second

moment, correlation, mean, variance, and entropy (Nichol and

Sarker, 2011; Wood et al., 2012). For each individual tree, the

corresponding texture features were extracted and averaged from

textural images, resulting in a total of 32 texture features.
FIGURE 3

CNN model structure for tree-level yield estimation with multi-spectral aerial imagery. Input size represents total number of tree samples × image block
height × image block width × number of bands. For each tree sample, an image block was clipped for each one of the four band imagery, with 21 by 21
pixels (at a 30cm resolution) centered at the identified tree center location.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1070699
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2023.1070699
3.4 Accuracy assessment and yield
variability analysis

To evaluate models’ performance in predicting almond yield, the

predicted and observed individual tree yield from the reserved testing

samples were compared, and the coefficient of determination (R2),

Root Mean Squared Error (RMSE), and RMSE normalized by

averaged yield measurement (NRMSE) were calculated. Statistics of

these metrics were reported based on 5-fold cross validation.

For the model with highest accuracy, its capability to capture the

within-field yield variations, such as overall spatial patterns, row to

row variations, and tree to tree variations along selected transects was

also evaluated. For all harvested rows, the yield distribution for all

trees within each individual row was analyzed based on CNN

estimations. Furthermore, three transects that are perpendicular to

the row orientation of the orchard were randomly selected to examine

the inter-row yield variations. The locations of the selected transects

are shown in Figure 4 highlighted in blue lines.
4 Results

4.1 Optimized CNN model and performance

After 50 iterations of Bayesian optimization process during model

training, the final optimized CNN model had eight convolutional layers,

each of which was followed by a batch normalization and an ReLU

activation function. Four max pooling layers were deployed after every

two convolutional layers to extract spatial features and reduce image

dimension. A global average pooling layer further flatten the image into

one-dimension array. A 100-neuron dense layer is introduced. The final
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one neural dense layer further reduces the input data into a single output

value, which directly connects to the tree level yield data (Figure 3).

The trained CNN full model, with four spectral band imagery as

inputs, performed very well in predicting almond yield at the individual

tree level. The 5-fold cross validation with the testing data showed that it

captured 96% ( ± 0.2%) of tree-to-tree variation in almond yield, with a

RMSE of 3.5 kg/tree ( ± 0.11) and a normalized RMSE of 6.60% ( ± 0.2%)

(Figure 5). The scatter plot of predicted vs. observed tree yield also

showed a good agreement (Figure 6). The predicted yield by the full CNN

model for all individually harvested trees followed very similar

distribution as shown by the measurements (Figure 5), with a mean

yield of 52.9 ± 17.2 vs. 53.1 ± 17.6 kg/tree and the interquartile ranges of

23.8 vs. 24.3 kg/tree. No statistically significant difference was found

between predicted and observed tree yield based on the two-tailed t-test

(p-value of 0.75).

The performance of the full CNNmodels with all four bands varied, very

slightly, with the size of input image blocks (Table 1). For example. when

using image blocks covering nine tree crowns, the re-trained CNN model

captured 97% of yield variability and had slightly larger uncertainty with a

NRMSE 5.2%. However, the estimation bias is larger for CNN models with

image blocks covering more tree crowns. Hereafter only the results from the

CNN model with 21 × 21 pixels image block size was reported.
4.2 Impact of spectral information

When removing the red edge imagery from the input imagery, the

accuracy of the reduced CNN model was reduced significantly, with a

lower R2 of 0.68 ( ± 0.08) and higher NRMSE of 18.7% ( ± 2.3%) than

the full CNN model with four band imagery as input (Figure 7).

Among the reduced models with all possible combinations of three
A B

FIGURE 4

Maps of (A) individual tree yield estimated by the CNN mode, showing within-field yield variation, and (B) red edge reflectance. A close-up of the yield
map shows detailed spatial distribution of the estimated tree yield (those trees with ground yield measurement were indicated by black circles). Also
shown are three transects (blue lines) for detailed tree-to-tree yield variation analysis.
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bands, the CNN model driven by red edge, NIR, and red reflectance

performed the best, with a R2 of 0.85 ( ± 0.01) and NRMSE of 12.6%

( ± 0.7%). For two band combinations, the reduced model with NIR

and red edge bands or NIR and green bands had similar performance

(R2 0.85 ( ± 0.02) and 12.6% ( ± 0.8%)). When driven by only one

single band imagery, the red edge based CNN model still captured

83% ( ± 2%) of yield variability among individual trees, and NRMSE

only increased slightly to 13.8% ( ± 1.0%). These results demonstrated

the importance of red edge imagery in almond yield estimation.
4.3 Comparison with machine
learning models

Our comparison showed that CNN model significantly

outperformed the linear regression model and the other machine
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learning models, based on the 5-fold CV, regardless of

combinations of input features such as VIs, texture, and raw

multi-spectral reflectance (Figure 7). XGB and RF models

captured only up to 54% ( ± 3.8%) of yield variability, similar to

linear regression models. In addition to achieving the highest R2, the

CNN model was found more robust and stable as shown by much

lower standard deviation of R2 among different folds of test sets,

compared with other models (Figure 7). The scatter plots of

predicted vs. measured yield further showed better performance

of the CNN model (Figure 6).
4.4 Predicted yield map and spatial patterns

The CNN full model, once trained and validated, allowed us to

estimate yield for every individual almond tree in the orchard. The
TABLE 1 Performance of CNN models with different image block sizes of the input aerial image clipped around each individual tree crown center.

Image block size Test R2 RMSE (kg/tree) NRMSE IQR (kg/tree) Bias (kg/tree)

21×21 pixels 0.96 ( ± 0.002)
3.50

( ± 0.11)
6.6% ( ± 0.2%) 23.82 -0.181

41×41 pixels 0.95 ( ± 0.017)
4.02

( ± 0.53)
7.6% ( ± 1.0%) 23.55 1.46

61×61 pixels 0.97 ( ± 0.005)
2.77

( ± 0.34)
5.2% ( ± 0.6%) 22.69 -2.35
All four spectral bands were used as input.
FIGURE 5

Distributions of almond tree yield predicted by the full CNN model (red) vs. measured by individual tree harvester (blue). Dashed vertical lines represents
the 25th percentile, median, and 75th percentile respectively.
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yield map showed within-field variations of almond yield from tree to

tree (Figure 4A). Trees with higher yield were mostly located in the

northeast corner of the orchard, while least productive trees were

mainly distributed around the orchard boundary. The overall spatial

pattern was consistent with the pattern captured by the red edge

reflectance (Figure 4B).

When row to row yield variation was examined, the CNN model

predicted yield followed similar distribution with the ground

measured yields for every seven rows with individual tree yield

measurement (Figure 8). Row 14 had the highest yield as shown by

both estimation (66.9 ± 15.0 kg per tree) and measurements (68.4 ±

13.3 kg per tree); in contrast, the production of Row 84 was 25% lower

(50.3 ± 16.1 kg per tree) and 30% lower (47.6 ± 15.4 kg per tree) for

both estimation and ground measurements, respectively. The

estimation showed large within-row yield variability, with

coefficient of variation (CV) ranging from 20.0% to 44.9% and

inter-quantile range (IQR) ranging from 16.4 to 31.1 kg per tree,

similar to the variability observed by the measurements (Figure 8).

For rows without ground measurements, the predicted yield also

captured similar general trend of row-to-row variation as that from

the measurements over the sampled rows.

Furthermore, along the transect lines across rows, the inter-row

variability from the CNN predicted tree level yield agreed relatively

well with that from the ground measurements (Figure 9). Among the

measured rows, for example, the most productive trees were found in

Rows 77 (104.1 kg/tree), 7 (85.4 kg/tree), and 77 (84.4 kg/tree), for

each transect, respectively, based on the predicted yield map. In

contrast, the least productive trees had much lower yield, i.e., 38.7 kg/

tree in Row 91 for transect 1, and 35.9 kg/tree in Row 84 for transect 3.

These findings were similar to the observations from the harvesting

data. The yield distributions along each row and the inter-row yield

variations demonstrated the consistent performance of CNN model

over space with less spatial dependency and variations.
Frontiers in Plant Science 0955
5 Discussions

5.1 Yield estimation model performance

As a first study on tree level almond yield estimation, our findings

showed the high accuracy of the CNN model in capturing the spatial

yield variability from tree to tree, when driven by multi-spectral

reflectance from high resolution aerial imagery. The comparative

analysis in this study showed that the CNN model outperforms the

traditional machine learning models. First of all, the CNN model

framework is able to automatically learn the complex associations

from the multi-spectrum tree crown imagery to fully capture the

complexity of tree physiology. The spatial pattern of multi-spectral

reflectance over the whole crown plays an important role in yield

estimation, which cannot be acquired by the average values. For the

traditional MLmodels, the models’ performance generally agrees with

literatures using similar features as input for soybean and corn yield

estimations. One study focusing on soybean yield estimation with

multi-spectrum UAV images shows that models with VIs and thermal

information have R2 varying from 0.520 to 0.625 (Maimaitijiang

et al., 2020). Based on linear, RF, and XGB results, adding texture

features improve model’s ability to explain almond yield variation by

1%, 3%, and 3%, respectively. Some literatures focusing on row crops

also have similar finding, but the texture features play a more

important role than tree-based plants (Maimaitijiang et al., 2020;

Wang et al., 2021). In the soybean study, the VIs, thermal, and

structure information explain 52% to 63% of the yield variation with

different methods, but adding texture features improves the

estimation to explain 65% to 72% of the yield variation, which

means that adding the texture features improves about 20% of the

estimation accuracy (Maimaitijiang et al., 2020); another rice yield

estimation study shows that growing stage VIs explain 56.6% of yield

variation and adding extra texture features helps to explain 65.5%
FIGURE 6

Scatter plots of predicted yield by the full CNN model, XGB, and Linear models vs. measured yield.
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yield variation, which increases estimation accuracy by 16% (Wang

et al., 2021).

Second, the human-engineered features commonly used by

traditional statistical approaches may not fully capture the

characteristics influencing yield variation. Most of previous studies

focused on crop yield estimation with human-engineered features

including VIs and textures, with both ML and AI models showing R2s

between 0.7 to 0.9 for mostly row crops including wheat, soybean, corn

and so on (Kuwata and Shibasaki, 2016; Hunt et al., 2019; Jin et al., 2019;
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Maimaitijiang et al., 2020; Ma et al., 2021; Wang et al., 2021) and almond

orchards at the block level (Zhang et al., 2019). Although these studies use

various indices frommulti-spectral and thermal UAV images to satellite-

based radar backscatter, the estimation accuracy are in general lower than

our CNN model with multi-band reflectance as direct inputs. This

suggests that human-engineered features may not be comprehensive to

fully capture the canopy structures and conditions and yield variations.

For example, some information may be lost by only using the well-

known remote sensing indices.
FIGURE 8

Yield variation within each row as represented by the boxplots of the tree-level yield estimated by the CNN model (blue), and across individual rows. The
boxplots of measured yield record for those rows with individual tree harvesting are also shown here in orange for comparison.
FIGURE 7

Model performance in predicting tree level yield, quantified by R2 with the test data set, for CNN models with different spectral bands and machine
learning models with different combinations of input features.
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Third, super high spatial resolution imagery may improve yield

estimation accuracy with more details, especially for deep learning

approaches. Gavahi et al. (2021) developed a DeepYield model, which

combines convolutional long-short term memory for soybean yield

estimation using MODIS Terra and Aqua surface reflectance, land

cover type, and surface temperature products. Their results show that

the DeepYield model outperforms CNN model with R2s of 0.864 over

0.80, which are generally better than many indices-based yield estimation

studies. But their yield estimation accuracy is still lower than our CNN

model, which is possibly due to their low spatial resolution of input image

(500 m and 1 km of MODIS Terra and Aqua products).

5.2 Importance of red edge band

From the CNN model result, reflectance in the red edge band was

found to play a vital role in almond yield estimation. The red edge

spectral band covers a transitional wavelength region from the red

band, where the absorption by chlorophyll is dominant, to near

infrared where strong scattering by leaf cell structure is further

enhanced by multiple scattering among layers of leaves. Reflectance

in the red edge band serves as a critical proxy for canopy size and leaf

volume. Previous study shows that the red edge band is less saturated

at high biomass condition than its adjacent wavelengths and the

common vegetation indices such as NDVI (Todd et al., 1998;

Mutanga and Skidmore, 2004; Aklilu Tesfaye and Gessesse Awoke,

2021). Moreover, the change in the red edge reflectance may capture

some stress conditions of plants, as shown by a recent study on

grapevine water stress detection with drone imagery (Tang et al.,

2022). Our finding also indicates the potential utility of red edge

imagery from Sentinel 2A and 2B satellites for scaling up yield

estimation at a large scale.
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5.3 Uncertainties and future work

This is the first study attempted for the tree-level yield estimation,

especially capturing the spatial variability of almond yield within an

individual orchard. Although it proves the concept of integrating aerial

and drone-based images with deep learning techniques for high resolution

yield estimation, some uncertainties still exist. Potential errors, for example,

may exist in the harvest yield records used for the model training and

testing, as this was the first time the individual tree harvester was designed

and tested in the almond field. The sampling strategy, designed by the

other group for individual tree harvesting, i.e., every seventh row, prevented

us from taking full advantage of the spatial information from neighboring

trees for yield estimation in the model building process.

The success of integrating the CNN model with multi-spectral

imagery in estimating the within field variability is likely because the

imagery at various wavelengths captures the information on the tree

structure and plant conditions due to the light-matter interaction. The

structural variability such as canopy size can result from cumulative

impacts on plant growth by soil properties and long-term climate, while

weather variability can also affect the plant health during a particular

season. Nonetheless, our study was still constrained by the availability of

the yield records for individual trees in one orchard over one single year.

Although the unique yield dataset provided sample data covering the

gradient of spatial yield variation within a single orchard, it does not

represent the yield variability across different orchards where climate and

soils may vary significantly. Similarly, the lack of yield record at the tree

level from multiple years has prevented us to incorporate weather

information in our modeling approach. Future work is needed to

collect more ground truthing data and include additional predictors

such as soil properties and weather variables for more robust yield

estimation and prediction (Zhang et al., 2019).
FIGURE 9

Almond yield variation from tree to tree along three selected transects as shown in Figure 4. CNN-estimated yield is represented by red while harvest
data in blue; red open circles are for CNN estimation at rows without individual tree yield measurements.
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With rapid advancement in deep learning technology, an important

next step is to explore the potential and utility of other powerful approaches

such as transformer networks (Vaswani et al., 2017; Liu et al., 2022) and

generative adversarial network (Goodfellow Ian et al., 2014). This is

particularly helpful for developing a scalable yield estimation workflow,

when integrating the time series of high-resolution satellite-based or aerial-

based imagery, sometimes at different spatial scales and from different

sensors. Remote sensing imagery during the whole growing season and

possibly from previous year, for example, can be utilized to integrate the

phenological information, e.g., bloom development (Chen et al., 2019), to

further improve yield estimation accuracy.

6 Conclusion

Individual tree level yield estimation is critical for precision on-farm

management and for improving our understanding of yield variability

within a field. The challenge of matching efficient supply of inputs like

water and fertilizer with tree scale demand is hampered by a lack of

understanding of yield variation within orchard blocks. Our work makes

a significant step toward bringing awareness to the problem by coupling

high-resolution imagery and modeling and paves the way for future

innovation in precision orchard management. A CNN deep learning

models in estimating almond yield was developed and evaluated, by

taking advantage of a unique tree yield data and super high resolution of

multi-spectral aerial imagery in 2021 over a single cultivar almond

orchard in California’s Central Valley. The 5-fold cross validation

showed that the CNN model with spatial attention module, driven by

4-band block imagery of 21 by 21 pixels, captured 96% (±0.2%) of tree-

to-tree variation within the study almond orchard with a very low RMSE

3.50 kg/tree and NRMSE of 6.6% ( ± 0.2%). The reduced CNN model

with the red edge band reflectance alone had a R2 of 0.83 ( ± 0.02) and

NRMSE of 13.8% ( ± 1.0%). The CNN model performed significantly

better than traditional machine learning methods and stepwise linear

regression driven by tree-level features such as VIs and texture.

The almond yield for all individual trees predicted by the CNN

model also captured well the spatial patterns and variability of

almond yield from row-to-row and from tree-to-tree both within a

row and along a transect perpendicular to the row orientation. Our

findings demonstrated the potential of applying deep learning

technology to integrate high resolution multi-spectral aerial images

for accurate and robust tree level yield estimation. The data-driven

approach developed here fills an important gap in tree level yield

estimation critical for site-specific orchard resource management,

ultimately contributing to agriculture sustainability.
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Introduction: Crop pests have a great impact on the quality and yield of crops.

The use of deep learning for the identification of crop pests is important for crop

precise management.

Methods: To address the lack of data set and poor classification accuracy in current

pest research, a large-scale pest data set named HQIP102 is built and the pest

identification model named MADN is proposed. There are some problems with the

IP102 large crop pest dataset, such as some pest categories are wrong and pest

subjects are missing from the images. In this study, the IP102 data set was carefully

filtered to obtain the HQIP102 data set, which contains 47,393 images of 102 pest

classes on eight crops. The MADNmodel improves the representation capability of

DenseNet in three aspects. Firstly, the Selective Kernel unit is introduced into the

DenseNet model, which can adaptively adjust the size of the receptive field

according to the input and capture target objects of different sizes more

effectively. Secondly, in order to make the features obey a stable distribution, the

Representative Batch Normalization module is used in the DenseNet model. In

addition, adaptive selection of whether to activate neurons can improve the

performance of the network, for which the ACON activation function is used in

the DenseNet model. Finally, the MADNmodel is constituted by ensemble learning.

Results: Experimental results show that MADN achieved an accuracy and F1Score

of 75.28% and 65.46% on theHQIP102 data set, an improvement of 5.17 percentage

points and 5.20 percentage points compared to the pre-improvement DenseNet-

121. Compared with ResNet-101, the accuracy and F1Score of MADN model

improved by 10.48 percentage points and 10.56 percentage points, while the

parameters size decreased by 35.37%. Deploying models to cloud servers with

mobile application provides help in securing crop yield and quality.

KEYWORDS

pest image classification, selective kernel unit, representative batch normalization,
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1 Introduction

Agricultural pests have long posed a severe threat to the growth of

crops and the storage of agricultural products (Cheng et al., 2017). The

Food and Agriculture Organization (FAO) reported that these pests

cause between 20 and 40 percent loss of global crop production every

year. Because of relatively cheaper operational cost, farmers use a

variety of chemicals such as pesticides to control pests, which has a

negative impact on the agroecosystem (Geiger et al., 2010). If the

location, time and listing of species and populations of invertebrate in

the fields were available, instead of heavily relying upon pesticide,

integrated pest management would use the optimized combination of

mechanical, chemical, biological and genetic tools to mitigate harmful

effects and enhance beneficial effects (Liu et al., 2016). Timely and

accurate pest detection and classification are of great significance to its

prevention and control, and early detection is a prerequisite to making

an effective pest management plan and can reduce pollution.

Traditional crop pest classification relies mainly on manual

observation or expert guidance, which is slow, inefficient, costly,

and subjective. With the development of machine learning methods

and computer vision techniques, researchers are beginning to use

information technology to identify images of crop pests. The

traditional machine learning classification framework consists of

two main modules: the feature representation of the pest and the

classifier. The normal used hand-crafted features include GIST (Oliva

and Torralba, 2001), Scale Invariant Feature Transform (SIFT)

(Lowe, 2004), Speeded Up Robust Feature (SURF), etc. The main

classifiers commonly used include K-nearest neighbor classification

algorithms (KNN), Support Vector Machines (SVM), etc. It is

difficult to determine which of many features is optimal, and if the

feature extraction is not correct, the subsequent classifier will make

mistakes in identifying pests. With the advent of efficient learning

algorithms for deep learning, it has achieved significant

improvements in classification accuracy on many traditional

classification tasks (Krizhevsky et al., 2017). In particular,

convolutional neural networks (CNNs) are rapidly becoming the

method of choice for overcoming certain challenges (Barbedo, 2018).

Recently, smart agriculture has been introduced to apply

artificial intelligence (AI) technology, information and wireless

communication technology applications. In addition, crop health

monitoring is considered to be a major application of smart

agriculture (Ayaz et al., 2019). Researchers are gradually turning

their attention to designing mobile applications to identify pests.

Karar et al. (2021) designed a mobile application using technologies

such as Apache Cordova framework and Flask Web, and achieved

good results in pest identification using deep learning techniques,

but it used a relatively small dataset and identified only five

categories of pests. Deep learning-based pest detection requires a

large number of pest samples for supervised learning (Liu and

Wang, 2021), and building an application that can identify multiple

classes of pests in common crops is also in urgent need of

development. It is well known that the ImageNet Large Scale

Visual Classification Challenge (ILSVRC) (Deng et al., 2009)

marks the beginning of the rapid development of deep learning,

demonstrating that large-scale image data set play a key role in
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driving deep learning progress. However, most deep learning

methods on insect pests are limited to small data set, and most

public data set are collected indoor, which does not meet the needs

of insect pest classification in field conditions. The IP102 large pest

data set (Wu et al., 2019), which contains 75,222 images with a total

of 102 classes from 8 crops, has alleviated this problem to some

extent. However, the data set suffers from poor screening and

misplaced pest categories, with a reported classification accuracy

of only 49.4%. To address this issue, we invited agricultural experts

and volunteers to further screen the IP102 data set. The new data set

is of Higher Quality compared to IP102 and is named HQIP102.

The context of pest images in real environments is complex and

suffers from large intra-class variation and small inter-class variation

of pests. Existing models such as Densenet and ResNet do not work

well on large pest datasets. To better identify larger pest data set, the

DenseNet network (Huang et al., 2017), which performed well in the

ImageNet task, is used as the base network. To improve the pest

classification accuracy, we propose the MADN convolutional neural

network model, which improves DenseNet-121 in three aspects:

channel attention mechanism, input information feature

enhancement and adaptive activation function. These improvements

can improve the model’s pest classification performance.

The goal and objectives of our study are summarized as follows:
·Two criteria are used to further filter the IP102 large pest data

set and improve the overall quality of the original data set,

named HQIP102.

·Several techniques and the MADN convolutional neural

network model are proposed to improve the representation

capability of the DenseNet-121 network and improve its

classification accuracy on large pest data set.
2 Related work

Research on crop pest classification based on computer vision

has been a hot topic. In recent years, many computer-aided insect

pest classification systems (Rani and Amsini, 2016; ; Alfarisy et al.,

2018) are presented in the vision community. The methods

involved mainly include machine learning and deep learning.

Machine learning often uses hand-crafted features such as SIFT,

HOG (Dalal and Triggs, 2005), etc. Hand-crafted feature-based

methods are the primary solutions for insect pest classification

traditionally (Wu et al., 2019). Bisgin et al. (2018) used SVM to

classify feature information such as size, color, basic pattern and

texture extracted from 15 classes of food beetles, ultimately obtaining

good classification results on a data set of 6900 images. Ebrahimi et al.

(2017) designed an SVM structure with difference kernel function for

thrips detection using the ratio of major diameter to minor diameter as

region index as well as Hue, Saturation and Intensify as color indexes

with a mean error of less than 2.25% for the best classification. Xiao

et al. (2018) used SIFT image descriptor as well as SVM classifier to

identify four important vegetable pests Whiteflies, Phyllotreta Striolata,

Plutella Xylostella and Thrips with an average accuracy of 91.56% on 80
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experimental images. Traditional machine learning algorithms rely on

complex image processing techniques and handcrafted features, which

often have limited robustness and generalization on large data set.

The successful application of deep learning in other fields has

led to an increasing interest in agriculture, which is currently the

most cutting-edge, modern, and promising technology (Kamilaris

and Prenafeta-Boldú, 2018). Tetila et al. (2020) used transfer

learning strategy to fine-tune Inception-v3, Resnet-50, VGG-16,

VGG-19 and Xception to identify a data set containing 5000

soybean pest images. It has better performance compared to

traditional feature extraction methods such as SIFT and SURF.

Liu and Chahl (2021) used a novel approach to generate a virtual

database that was successfully used to train a deep residual CNN

with 97.8% accuracy in detecting four pests in agricultural

environments. Khanramaki et al. (2021) proposed an ensemble

classifier of deep convolutional neural networks to identify three

common citrus pests with 99.04% accuracy on a data set containing

1774 images of citrus leaves. Ayan et al. (2020) used a weighted

voting method to ensemble the pre-trained Inception-V3, Xception

and MobileNet, which was named GAEnsemble, and its

classification accuracy on the IP102 data set was 67.13%. Unlike

Ayan et al. (2020), which used a fine-tuning strategy to combine

existing models, this paper improves the DenseNet network and

uses ensemble learning to combine the improved models.
Frontiers in Plant Science 03
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Existing studies have shown that small datasets containing only

a few pest classes have higher identification accuracy, while

classification accuracy is low on the large data set IP102. To

address the problem of misplacing pest categories in the IP102

data set, we built a Higher Quality pest data set named HQIP102.

We also proposed the MADN convolutional neural network model

for improving classification accuracy of existing models.
3 Materials and methods

3.1 Data set construction

Since IP102 contains more than 70,000 images of 102

categories, it inevitably has problems such as misplacement of

some pest categories and lack of detailed screening.

To obtain a higher quality pest data set, we invited agricultural

experts and volunteers to further screen the IP102 data set according

to the following two criteria. (1) obviously misplaced categories; (2)

basically background, does not contain any target objects. The new

data set is of higher quality and is named HQIP102. Low quality

images are removed directly from the data set, Then the HQIP102

contains 102 pest categories for eight crops, including rice and wheat

etc. Some of the pest image samples are shown in Figure 1.
A B D

E F G

I

H

J K L

C

FIGURE 1

Sample images of some pests (A) rice leaf roller; (B) rice leaf caterpillar; (C) paddy stem maggot; (D) rice water weevil; (E) rice leafhopper; (F) grain
spreader thrips; (G) yellow cutworm; (H) red spider; (I) corn borer; (J) wheat blossom midge; (K) penthaleus major; (L) longlegged spider mite;.
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As can be seen in Figure 1, the pest background in the HQIP102

data set is complex, the main part of the pest is small, and the

similarity between some pest categories is high, which increases the

overall classification difficulty. HQIP102 was filtered for each

category of pests in IP102, with fewer images remaining for low

quality pest categories, and the final HQIP102 pest data set

contained 47,393 images. A comparison of HQIP102 with IP102

on eight crops corresponding to the pest category as well as the

number of pests is shown in Table 1.

As can be seen from Table 1, HQIP102 filtered out more images

on Rice, Corn, Beet, and Alfalfa, while fewer pest images were

removed on theWheat, Vitis, Citrus, and Mango categories. Among

Rice crops, the rice leaf roller and asiatic rice borer categories have a

higher number of deletions. In Corn crops, the corn borer and

aphids categories removed more images. There are more images

deleted from the beet army worm class in the Beet crop. In Alfalfa

crops, alfalfa plant bug and blister beetle classes have more

images deleted.
3.2 Data set split and dynamic
data augmentation

The data set is divided into training set, validation set and test set

according to the ratio of 7.5:1:1.5. The number of samples for certain

pests in the data set is insufficient, and the use of data augmentation

can increase the amount of data available for training, thus improving

the generalization ability of the model. After splitting the data set, a

dynamic data expansion method based on the number of pests in

each class is proposed in this paper in order to solve the data

imbalance problem in the HQIP102 training set, see Eq.1.

N =

12N,0< N ≤ 30

7N,30< N ≤ 60

4N,60< N ≤ 100

3N,100< N ≤ 150

2N,150< N ≤ 200

8>>>>>>>><
>>>>>>>>:

(1)
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Where Ndenotes the number of images in the training set for a

particular type of pest. Nis determined based on the average

number of images of the pest category in the data set. The

average number of images per pest category in the IP102 dataset

is 460. And the specific pest image increase multiplier in the Eq.1 is

adjusted manually, in which the range of the parameter N and the

number of additional images are obtained by manual setting, to

achieve the right amount of supplementary pest image data. With

dynamic data augmentation, the data imbalance can be mitigated

with a small amount of additional data, which is the basis for the

parameter determination in Eq.1.

The data augmentation methods used were mainly a

combination of center cropping, brightness contrast saturation

adjustment, random horizontal flip, and random vertical flip.

Specifically, the image is cropped to a size of 224 × 224 and has a

50% probability of random horizontal flipping and random vertical

flipping. The probability of brightness and contrast adjustment is

also 50%. The images are then saved to the original dataset after

using data augmentation.

Using dynamic data enhancement, the total number of

HQIP102 pest data set increased from 47,393 to 62,060 images,

with the training set increasing from 35,607 to 50,274 and the

validation and test sets remaining unchanged with 4734 and 7052.

After using data augmentation, the ratio of training set, test set and

validation set is about 8:1:1.
3.3 Dense convolutional
network (DenseNet)

DenseNets (DenseNet-121, DenseNet-169, DenseNet-201, and

DenseNet-264) alleviate the vanishing-gradient problem,

strengthen feature propagation, encourage feature reuse, and

reduces the number of parameters to some extent. In addition,

the structure used by DenseNets shows good performance on large

ImageNet datasets. For each layer, the feature-maps of all preceding

layers are used as inputs, and its own feature maps are used as

inputs into all subsequent layers. As shown in Figure 2, the network
TABLE 1 Comparison of HQIP102 and IP102 on 8 crops.

Crop Category Number of pest categories IP102 Total HQIP102 Total

Rice 14 8417 3006

Corn 13 14015 6373

Wheat 9 3418 2110

Beet 8 4420 1942

Alfalfa 13 10390 5611

Vitis 16 17551 14555

Citrus 19 7272 5173

Mango 10 9739 8623

Total 102 75222 47393
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structure of DenseNet consists mainly of Dense Block

and Transition.

In Dense Block, each layer has the same feature map size and

can be concatenated in the channel dimension. All layers in the

Dense Block output kfeature maps after convolution, where the

hyperparameter kis called the growth rate. We refer to each layer in

a Dense Block as its substructure. Assuming that the number of

channels in the feature map of the input layer is k0, then the number

of channels in the input of layer lis k0 + k(l − 1).

The Dense Block inside the DenseNet-B structure uses

bottleneck layers to reduce the amount of computation.

Transition layer, is mainly used to connect two adjacent Dense

Blocks, and to reduce the size of the feature map. Its structure is

Batch Normalization (BatchNorm) + ReLU + 1×1 Convolution +

2×2 AvgPooling. The Transition layer of the DenseNet-C structure

also introduces a compression factor q(<1), which reduces the

number of features in the output. When using bottleneck layers as

well as transition layers with q(<1), such a model is called

DenseNet-BC.
Frontiers in Plant Science 05
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3.4 MADN convolutional neural network

The MADN model focuses on improving the Dense Block

structure in DenseNet in three ways, while the rest of the model

is consistent with DenseNet. It introduces the Selective Kernel Unit

(MADN-SK), the Representative Batch Normalization (MADN-

RBN) module, and the ACON activation function (MADN-ACON)

into the DenseNet. It is worth noting that MADN is not an end-to-

end model, but combines 3 improved DenseNet models.

Specifically, Using DenseNet-121 as the base network, MADN-

SK, MADN-RBN and MADN-ACON are combined through

ensemble learning to form the entire MADN model as shown in

Figure 3. A detailed architectural comparison of DenseNet-121 with

MADN-SK, MADN-RBN and MADN-ACON is shown in Table 2.

Sections 3.4.1 to 3.4.3 are the improvements of three aspects of

DenseNet-121 in this study, each individual improvement is a

complete model, and the final three models named MADN-SK,

MADN-RBN, and MADN-ACON are obtained. Section 3.4.4 is an

introduction to the ensemble learning used in this paper.
FIGURE 2

Structure of DenseNet with three dense blocks.
FIGURE 3

Structure of the MADN network model. The dense connection lines are omitted from the diagram, and the connections are made in the same way
as the original DenseNet.
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3.4.1 MADN-SK
Li et al. (2019) proposes a dynamic selection mechanism in

CNNs that allows each neuron to adaptively adjust its receptive field

size based on multiple scales of input information. Figure 4 shows

the building blocks of the Selective Kernel (SK) unit.

In this building block, multiple branches with different kernel

sizes are fused with softmax attention guided by information from

these branches. The MADN-SK network is capable of adaptively

adjusting the size of the receptive field according to the input to

effectively capture target objects of different sizes, and its improved

Dense Block substructure is shown in Figure 4.
Frontiers in Plant Science 06
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3.4.2 MADN-RBN
The BatchNorm module is widely used as it allows for more

stable training of models. However, its centralization and scaling

steps need to rely on the variance obtained from the sample

statistics, ignoring the representation differences among

instances. Gao et al. (2021) propose to add a simple yet

effective feature calibration scheme into the centering and

scaling operations of BatchNorm, namely Representative

BatchNorm (RBN). The RBN is also divided into two steps:

centering calibration and scaling calibration. For the entire

process, see Eq.2.
TABLE 2 Structural comparison of DenseNet-121 and modified models.

Layers Output
Size DenseNet121 MADN_SK MADN_RBN MADN_ACON

Convolution 112×112 BN-ReLU-7×7 conv, stride 2

Pooling 56×56 3×3 max pool, stride 2

Dense Block(1) 56×56
BNReLU conv1;
BN ReLu conv2
(6x)

ReLu BN conv1;
ReLu BN SK;
ReLu BN conv2
(6x)

ReLU RBN conv1; ReLu RBN conv2
(6x)

ACON BN conv1; ReLu BN conv2
(6x)

Transition Layer
(1)

56×56 BN-ReLU-1×1 conv

28×28 2×2 average pool, stride 2

Dense Block(2) 28×28
BN ReLU conv1;
BN ReLu conv2
(12x)

ReLu BN conv1;
ReLu BN SK;
ReLu BN conv2
(12x)

ReLU RBN conv1; ReLu RBN conv2
(12x)

ACON BN conv1; ReLu BN conv2
(12x)

Transition Layer
(2)

28×28 BN-ReLU-1×1 conv

14×14 2×2 average pool, stride 2

Dense Block(3) 14×14
BN ReLU conv1;
BN ReLu conv2
(24x)

ReLu BN conv1;
ReLu BN SK;
ReLu BN conv2
(24x)

ReLU RBN conv1; ReLu RBN conv2
(24x)

ACON BN conv1; ReLu BN conv2
(24x)

Transition Layer
(3)

14×14 BN-ReLU-1×1 conv

7×7 2×2 average pool, stride 2

Dense Block(4) 7×7
BN ReLU conv1;
BN ReLu conv2
(16x)

ReLu BN conv1;
ReLu BN SK;
ReLu BN conv2
(16x)

ReLU RBN conv1; ReLu RBN conv2
(16x)

ACON BN conv1; ReLu BN conv2
(16x)

Classification
Layer

1×1 7×7 global average pool

102D fully-connected, softmax
where conv1 denotes a 1×1 convolution, and conv2 denotes a 3×3 convolution. MADN_SK, MADN_RBN, and MADN_ACON are the structures of the above modified DenseNet.
FIGURE 4

SK unit construction.
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Centering Calibration:

Xcm = X + wmKm ;

Centering:

Xm = Xcm − E(Xcm) ;

Scaling:

Xs =
Xmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Xcm) + ϵ
p ; (2)

Scaling Calibration:

Xcs = XsR(wvKs + wb) ;

Affine:

Y = Xcsg + b

Where the input features X ∈ RN�C�H�W , wm, wv , wbare the

learnable weight vector. Km, Ksrepresent the statistics of feature of

each instance, which can be obtained using global average pooling.

R()is a restriction function, often using sigmoid. E(X)and Var(X)

denote the mean and variance and are used for centering and

scaling. g and bare learned scale and bias factors for affine

transformation, and ϵ  is used to avoid zero variance.

The use of RBN to replace BN in DenseNet-121 allows better

identification of crop pests, and experiments were conducted to

verify this.

3.4.3 MADN-ACON
Ma et al. (2021) propose a simple, effective, and general

activation function ActivateOrNot (ACON), which learns to

activate the neurons or not. ACON-C, see Eq. 3. ACON-C is one

of the better-performing activation functions in ACON.

(p1 − p2)x · s(b(p1 − p2)x) + p2x (3)

where b , p1and p2are learnable parameters and are channel-

wise, the parameters are initialised randomly. We introduce ACON

into the MADN model, which can improve the performance of the

whole network.

3.4.4 Ensemble learning
In the area of decision and risk analysis, information from

several experts is aggregated by the decision maker, which can

improve the accuracy of forecasts. For the ensemble of MADN-SK,

MADN-RBN, MADN-ACON we considered the outputs of their

classification layers, which determined the confidence values for

each pest category. We used the sum of the normalized confidence

values for each pest category on these three models as the final

measure, see Eq.4.

p
0
i =

o
m

j=1
pij

o
n

i=1
o
m

j=1
pij

, i = 1,…, n (4)
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Where pijdenotes the confidence value of the j-th network

output for the i-th type of pest (in this paper m = 3, n = 102). p
0
i

denotes the normalized value of the combined three network

confidence values. The i-th pest label corresponding to the largest

p
0
iis chosen as the final prediction.
3.5 Experiment settings

To ensure fairness in the experimental comparisons, all

experiments were built under the same conditions. The

experiments were conducted on Ubuntu 18.04 with Intel(R)

Core (TM) i9-10900K CPU and NVIDIA RTX3090 GPU with

24G memory. The RAM used is 32GB of DDR4, the deep

learning tool is Pytorch 1.8, and the CUDA version is 11.4.The

size of the input image was fixed at 224 ×224 and the optimizers

were all used Adam (Adaptive momentum) (Kingma and Ba,

2014), the batch size was set to 64, the number of iterations was

set to 50, and the learning rate was initialized to 0.001.

The learning rate was reduced to half of the original rate if the

model showed an increase in loss on the validation set

during training.
3.6 Evaluation metrics

To better measure the classification performance of different

models on the HQIP102 dataset, we chose Accuracy, Precision,

Recall and F1Score as the evaluation metrics of the models.

Accuracy (Acc): The proportion of results predicted to be

correct to the total sample, see Eq.5.

Acc =
TP + TN

TP + TN + FP + FN
� 100% (5)

Precision (Pre): The probability that all samples with a positive

prediction are actually positive, see Eq.6.

Pr e =
TP

TP + FP
� 100% (6)

Recall (Rec): The probability of all samples that are actually

positive being predicted to be positive, see Eq.7.

Re c =
TP

TP + FP
� 100% (7)

F1Score (F1): The harmonic mean of precision and recall, see

Eq.8.

F1 =
2� Pr e� Re c
Pr e + Re c

� 100% (8)

In equations (5-7), TP indicates a true positive: the predicted is

a positive sample and the actual is also a positive sample. TN

indicates true negative: predicted negative sample, actual negative

sample. FP indicates false positive: predicted positive sample, actual

negative sample. FN indicates false negative: predicted negative

sample, actual positive sample.
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In addition, the model parameters, the GPU memory occupied

during training, and the total training time were also used to

measure the overall performance of the model. In particular, use

the nvidia command in ubuntu to view the model’s GPU memory

occupation, and the torch summary package in Pytorch to view the

model’s parameters. Also, the inference time of each model for a

single pest image is taken into account.
4 Results and discussion

4.1 Dynamic data
augmentation experiments

On the training set of the original HQIP102 data set, we

performed dynamic data augmentation based on the number of

images of each type of pest. Using DenseNet-121 as the base

network, the experimental results on the test set are shown in

Table 3, keeping all factors consistent except for the different

training data. As can be seen from Table 3, compared to the

original data set, the DenseNet-121 network improved

the accuracy by 0.41% and the F1 by 1.46%, the MADN network

improved the accuracy by 1.15% and the F1 by 1.81%.Experiments

show that the use of dynamic data augmentation techniques

alleviates the problems caused by data imbalance to some extent

with a small increase in the number of training samples.
4.2 Ablation experiments and
comparative analysis

Ablation experiments were conducted to demonstrate the

effectiveness of a series of improvements to the DenseNet-121
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model. Accuracy and F1Score on the test set were used as metrics.

The ablation experiments include the effect of using only SK

units, RBN modules, ACON activation function and the final

model after using ensemble learning. The Dense Block of

DenseNet has been modified. When the SK unit is introduced,

the model is named MADN-SK; when the RBN module is used,

the model is named MADN-RBN, and when the ACON

activation function is used to replace ReLU, the model is

named MADN-ACON. Using ensemble learning to combine

the advantages of the three modified models, the final model is

named MADN. The results of the ablation experiments on the

test set are shown in Table 4.

As can be seen in Table 4, the improved MADN-SK, MADN-

RBN, MADN-ACON and MADN all show better accuracy and

F1Score compared to the DenseNet-121 model. MADN-SK

obtained by introducing the Selective Kernel unit, which

improved the accuracy on the test set by 1.94 percentage points

and the F1Score by 2.1 percentage points compared to the pre-

modified DenseNet-121 ;MADN-RBN, obta ined us ing

Representative BatchNorm, improved the accuracy and F1Score

on the test set by 1.03 percentage points and 0.74 percentage points

respectively; The MADN-ACON using the ACON activation

function showed an accuracy improvement of 1.32 percentage

points and an F1Score improvement of 0.8 percentage points on

the test set. The MADN model using ensemble learning improved

better, with accuracy and F1Score improvements of 4.76 and 4.34

percentage points respectively. As can be seen in Figure 5, During

50 iterations of training, the accuracy of the model gradually

smoothed out on the validation set. And the improved MADN-

SK, MADN-RBN and MADN-ACON have higher accuracy on the

validation set compared to the original DenseNet-121 as the

number of training iterations increases. From the experimental

results in Table 4, it can be concluded that the improved MADN-
TABLE 3 Dynamic data augmentation comparison experiments.

Data set Method Acc (%) Pre (%) Rec (%) F1 (%)

HQIP102 DenseNet-121 70.11 61.43 58.96 59.66

HQIP102* DenseNet-121 70.52 63.21 60.09 61.12

HQIP102 MADN 74.13 67.94 60.78 63.65

HQIP102* MADN 75.28 69.56 62.91 65.46
front
HQIP102* indicates the HQIP102 data set after using dynamic data augmentation. The bold values indicate the best values in this experiment.
TABLE 4 Results of ablation experiments on the HQIP102 test set.

Model
Improvement method

Acc (%) F1 (%)
Selective Kernel unit Representative BatchNorm ACON activation

DenseNet-121 70.52 61.12

MADN_SK √ 72.46 63.22

MADN_RBN √ 71.55 61.86

MADN_ACON √ 71.84 61.92

MADN √ √ √ 75.28 65.46
MADN is composed by ensemble learning. The bold values indicate the best values in this experiment.
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SK, MADN-RBN, MADN-ACON and MADN are valid in

improving the accuracy and F1Score compared to the origin

DenseNet-121.

We compare the accuracy and training time of the DenseNet-

121 as well as the improved classification model in Figure 5.

As can be seen in Figure 5, the improved MADN-RBN, MADN-

ACON, and MADN-SK have improved accuracy on the test set at

the expense of training time. MADN uses an ensemble learning

strategy that requires pre-training of the MADN-RBN, MADN-

ACON and MADN-SK models, so it requires more training time,
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but also higher accuracy on the test set. Although the training phase

of a CNN model is usually time-consuming, it does not matter for

the classification task, since the classifier is trained offline.
4.3 Comparison experiments with
other models

To better evaluate the performance of the improved MADN-

SK, MADN-RBN, MADN-ACON, and MADN in this paper,
FIGURE 5

Comparison of training time and test set accuracy for DenseNet-121 and improved models.
FIGURE 6

Classification accuracy of the model for each iteration on the validation set.
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accuracy, precision, recall, F1Score, GPU memory, training time,

and parameters of the model were used as measures against ResNet-

101 (He et al., 2016), GoogLeNet (Szegedy et al., 2015), MobileNet

V2 (Sandler et al., 2018) for comparison experiments. The accuracy

of each iteration on the validation set during training is shown in

Figure 6, and the final experimental results on the test set are shown

in Table 5.

As can be seen in Figure 6, the performance of each model on

the validation set tends to stabilize as the iterations progress.

Compared to the ResNet-101 and GoogLeNet models, MobileNet

V2 performed relatively poorly. And compared to the other models,

the improved MADN-SK, MADN-RBN and MADN-ACON show

higher classification accuracy on the validation set.

As can be seen in Table 5, the lightweight model MobileNet V2

is optimal in terms of GPU capacity, training time and number of

parameters, but performs poorly in terms of accuracy and F1Score

on the test set; And compared to ResNet-101, GoogLeNet has a

somewhat better overall performance; Although the improved

MADN require more GPU memory and longer training time for

training, they have better accuracy and F1Score compared to other

models, and fewer number of parameters compared to the ResNet-

101 model, which is more suitable for the practical needs of

identifying pests and more suitable for deployment to cloud

servers. Although the inference time of the MADN proposed in

this paper is longer for a single pest image compared to other

models, the application scenario of this study is to deploy the model

to a cloud server, and the network transmission on the cloud server

is inherently delayed, so the focus task of this study is to achieve

better pest identification accuracy.
4.4 Experimental comparison of MADN and
DenseNet-121 at the crop level

Considering the need for pest classification at the specific crop

level, the test set accuracy of the improved MADN and DenseNet-

121 models were compared on eight crops, as shown in Table 6.

From Table 6 we can see that the MADN network has

improved accuracy for all eight crops, with classification

accuracy exceeding 80% for both Vitis and Mango crops, an

respective improvement of 3.91% and 5.2% compared to the

pre-improvement DenseNet-121. Accuracy improvements were

greater on Alfalfa and Wheat at 6.23% and 6.09% respectively. The
Frontiers in Plant Science 10
70
accuracy of the model on different crops may be related to the size

of the main part of the pest in different crops and the influence of

background disturbances.
5 Conclusion

In this study, we filtered the IP102 data set and proposed a

higher quality HQIP102 data set for pest classification, which

includes 102 pest categories from eight crops with more than

40,000 images. To address the data imbalance, a dynamic data

augmentation method is proposed, and the effectiveness of the

method is experimentally demonstrated. The accuracy of the

DenseNet-121 and MADN models on the HQIP102 dataset was

improved by 0.41 and 1.15 percentage points, respectively, after

using the data augmentation method. To resolve the issue of low

classification accuracy of existing deep learning models on large

pest data set, the DenseNet-121 was selected as the base network to

be improved. In details, the DenseNet-121 was improved in three

ways, i.e., MADN-SK, MADN-RBN and MADN-ACON networks.

Also, such networks were combined to propose the MADN

network. Validation experiments results showed the effectiveness

of these improved methods was potential via increased accuracy,

precision, recall and F1Score. Compared with the original

DenseNet-121, the accuracy and F1Score of the MADN model on
TABLE 5 Performance of the model on the test set.

Model
Test set Training phase Parameters

size
(MB)

Inference time
(ms)Acc (%) Pre (%) Rec (%) F1(%) GPU Memory (MB) Training time(h)

ResNet-101 64.8 56.88 54.19 54.9 11157 9.65 162.92 82.34

GoogLeNet 67.68 59.66 57.39 57.88 5687 2.85 21.76 17.67

MobileNet V2 63.63 55.65 53.79 54.25 6133 2.44 8.98 13.41

MADN 75.28 69.56 62.91 65.46 – 53.82 105.29 290.75
Since MADN is not an end-to-end network, it comes from combining 3 improved DenseNet networks by ensemble learning. Therefore, MADN cannot be trained alone, so “-” is used to indicate
that the item does not exist. The bold values indicate the best values in this experiment.
TABLE 6 Experimental results of MADN and DenseNet-121 on eight
crops test set.

Crop-Class
DenseNet-121 MADN

Test set Acc

Rice 59.68 63.51

Corn 70.54 75.82

Wheat 47.44 53.53

Beet 58.19 64.11

Alfalfa 61.08 67.31

Vitis 78.75 82.66

Citrus 68.54 72.98

Mango 75.37 80.57
front
The bold values indicate the best values in this experiment.
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the HQIP102 dataset improved by 4.76 and 4.34 percentage points,

respectively. We also carried out analysis at the crop species level,

and experiments showed that the MADN network was more

accurate for pest classification in Vitis and Mango, which could

also be useful for related crop studies. Overall, the proposed deep

networks will be helpful for crop pest precise management.

MADN is a combination of 3 improved DenseNet-121 models

by ensemble learning, which cannot be trained end-to-end, and

needs to train MADN-SK, MADN-ACON and MADN-RBN

models first, so the consumption of inference time and training

time are larger. In future work, we consider using end-to-end

lightweight networks to reduce the training and inference time in

scenarios with high requirements for recognition speed.

There are several possible reasons why MADN networks do not

significantly improve prediction accuracy.

1. the HQIP102 dataset contains a large number of pest

categories, and the similarity between different categories is large.

2. the background interference of pests is large, and the improved

method can only improve the classification accuracy to a certain extent.
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Kuan-Chong Ting1,2,6 and Yibin Ying1,3*

1College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou,
Zhejiang, China, 2Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC),
International Campus, Zhejiang University, Haining, Zhejiang, China, 3Key Laboratory of Intelligent
Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China, 4College of Control
Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China, 5Department of
Automation, Shanghai Jiao Tong University, Shanghai, China, 6Department of Agricultural and
Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Plant phenotyping and production management are emerging fields to facilitate

Genetics, Environment, & Management (GEM) research and provide production

guidance. Precision indoor farming systems (PIFS), vertical farms with artificial

light (aka plant factories) in particular, have long been suitable production scenes

due to the advantages of efficient land utilization and year-round cultivation. In

this study, a mobile robotics platform (MRP) within a commercial plant factory

has been developed to dynamically understand plant growth and provide data

support for growth model construction and production management by

periodical monitoring of individual strawberry plants and fruit. Yield

monitoring, where yield = the total number of ripe strawberry fruit detected, is

a critical task to provide information on plant phenotyping. The MRP consists of

an autonomous mobile robot (AMR) and amultilayer perception robot (MPR), i.e.,

MRP = theMPR installed on top of the AMR. The AMR is capable of traveling along

the aisles between plant growing rows. The MPR consists of a data acquisition

module that can be raised to the height of any plant growing tier of each row by a

lifting module. Adding AprilTag observations (captured by a monocular camera)

into the inertial navigation system to form an ATI navigation system has

enhanced the MRP navigation within the repetitive and narrow physical

structure of a plant factory to capture and correlate the growth and position

information of each individual strawberry plant. The MRP performed robustly at

various traveling speeds with a positioning accuracy of 13.0 mm. The temporal–

spatial yield monitoring within a whole plant factory can be achieved to guide

farmers to harvest strawberries on schedule through the MRP’s periodical

inspection. The yield monitoring performance was found to have an error rate

of 6.26% when the plants were inspected at a constant MRP traveling speed of

0.2 m/s. The MRP’s functions are expected to be transferable and expandable to

other crop production monitoring and cultural tasks.

KEYWORDS

mobile robotics platform, indoor vertical farming systems, GPS-denied navigation,
temporal–spatial data collection, yield monitoring
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1 Introduction

Strawberries (Fragaria × ananassa) are favored by consumers

due to their rich nutrition and distinctive flavor. Precision indoor

farming systems (PIFS), vertical farms with artificial light (aka plant

factories) in particular, have long been suitable plant production

scenes due to the advantages of efficient land utilization and year-

round cultivation. In recent years, some companies, including

Bowery Farming, Oishii Farm, and 4D Bios, successfully

cultivated strawberries in plant factories. Farmers and researchers

need to understand how plants grow and provide what plants need

to increase fruit yield and quality. Plant phenotyping, an emerging

science that describes the formation process of the functional plant

body (phenotype) under the influence of dynamic interaction

between the genotypic differences (genotype) and the

corresponding environmental conditions (Walter et al., 2015), can

provide valuable information for crop genetic selection and

production management. People usually go to fields or

laboratories to manually obtain plant phenotypic data. Such

practices are highly labor-intensive, time-consuming, non-robust,

and sometimes destructive and, therefore, may be limited by

experimental scale, collection accuracy, and human subjective

differences (Bao et al., 2019). A field-based, large-scale, and high-

throughput plant phenotyping approach to overcome the

bottleneck of manual operation is urgently needed (Araus

et al., 2018).

Internet of Things (IoT) devices, which focus on collecting

environmental data, are prevalent within PIFS as the monitoring

system. Experience-oriented growth regulation decision-making

can be built using environmental data by production managers.

However, the decision-making process based on experience is

indirect and delayed. The plant phenotypic data should be added

to form a closed-loop decision-making pipeline. Considering fine-

grained data collection is positively correlated with the number of

camera sensors, the coverage and accuracy of data acquired by

traditional IoT systems cannot be readily achieved within

reasonable budgets. Mobile robots equipped with multiple sensors

(the concept of quasi-IoT) present a great potential to acquire

desired phenotyping data automatically. In the past few years,

reported examples of phenotyping robots, emphasizing mobility-

enabled field trials, have been increasing (Mueller-Sim et al., 2017;

Shafiekhani et al., 2017; Higuti et al., 2019). However, there has been

limited published work on mobile robots that have the capability of

autonomously capturing phenotypic data within PIFS. We aimed to

develop a mobile robotics platform (MRP) with the capabilities of

periodical monitoring of individual strawberry plants and fruit

within the entirety of a commercial plant factory. Fine-grained

plant growth data captured by the MRP can provide production

guidance and facilitate integrated GEM research.

An MRP applied in agricultural scenarios should have two

primary capabilities: providing navigation for multiple-location

data acquisition and data-driven decision support. Navigation in

indoor scenarios is challenging due to the lack of GPS. As an

alternative approach to GPS used in indoor scenarios, ultra-

wideband (UWB) is high-precision but high-cost (Flueratoru

et al., 2022). The stability of the navigation is closely related to
Frontiers in Plant Science 02
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the strength of signals that suffer from occlusion and attenuation

errors under plant growing structures. Furthermore, UWB provides

relatively static information that cannot detect unexpected

obstacles. Light Detection and Ranging (LiDAR) sensors have

been widely used in agricultural navigation that can actively

acquire accurate depth information with an extensive detection

range and a low sensitivity to lighting changes compared to other

sensors (Debeunne and Vivet, 2020). A random sample consensus

(RANSAC) algorithm was applied to discern maize rows fast and

robustly while navigating in a well-structured greenhouse (Reiser

et al., 2016). However, in complex environments like plant factories

with repetitive shelves and narrow aisles, LiDAR can only obtain a

limited number of signals representing the presence of objects.

There is no semantic information for effectively completing the

scene restoration. In contrast, visual navigation is limited by the low

accuracy in depth estimation and the weak robustness against

lighting changes (Zhang et al., 2012). A robot cannot safely and

robustly navigate within plant factories using only one sensor as the

single perception source. Multi-sensor fusion approaches, which

can significantly improve the fault tolerance of a system while

increasing the system’s redundancy to increase the accuracy of

object localization, have been proven to show great potential to

solve navigation problems in complex scenes like urban traffic

(Urmson et al., 2008). In consideration of a GPS-denied

environment like PIFS, simultaneous localization and mapping

(SLAM) technology can be a feasible navigation approach (Chen

et al., 2020). The state-of-the-art LiDAR-SLAM Cartographer (Hess

et al., 2016) and visual–inertial system (VINS) (Qin et al., 2018) are

all open-source tools in the ROS (Robot Operating System)

community. These algorithms, which can be easily implemented

on a mobile robot, can potentially address navigation challenges.

However, SLAM has some limitations, such as computational cost

and lack of feature extraction ability; therefore, it is not directly

applicable to this research. In this study, we report our research on a

novel approach of fusing wheel odometry, inertial measurement

unit (IMU), and AprilTag observations (captured by a monocular

camera) to achieve accurate navigation within repetitive and narrow

passages of PIFS.

Providing data-driven decision support based on the plant

growth information is the other critical capability of the MRP.

There exist some common decision-making pipelines in both

academia and industry, including ripeness detection (Talha et al.,

2021), diseases and pest identification (Lee et al., 2022), and fruit

counting (Kirk et al., 2021). Image data captured by various

perception systems have been widely used to achieve the above

purpose (Gongal et al., 2015). In recent years, AlexNet brought

about a renewed understanding of deep CNN and evolved into the

foundation of contemporary computer vision (Krizhevsky et al.,

2012). The powerful end-to-end learning makes the decisions

possible, especially in the detection-based task from static images

(Zhou et al., 2020; Perez-Borrero et al., 2021). The computing

power of MRP limits the development of efficient CNN

architectures as the neural network deepens (Zhang et al., 2018).

Both occlusions from neighboring fruit and foliage and illumination

changes could cause variations in fruit appearance (Chen et al.,

2017). Compared to tasks, like ripeness and disease detection,
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counting from videos is challenging due to bias in fruit localization

and tracking errors originating from occlusions and illumination

changes (Liu et al., 2018b). Some traditional algorithms, including

Optical Flow, Hungarian algorithm, and Kalman Filters, were used

to track multiple fruits among sequential video frames. Liu et al.

combined fruit segmentation and Structure from Motion (SfM)

pipelines for counting apples and oranges grown on trees. The extra

introduction of relative size distribution estimation and 3D

localization could eliminate parts of double-counted fruits to

further enhance the counting accuracy. Strawberry fruit is of

small sizes and has complex ripe stages and dense growth scenes,

which bring real challenges to the detection and tracking process.

This paper reports the current state of development and testing

of the MRP’s abilities of periodical monitoring of individual

strawberry plants and fruit within a commercial plant factory.

The challenges of navigation within narrow and repetitive indoor

environments for temporal–spatial plant data acquisition and

accurate yield monitoring for production management and

harvesting scheduling in the MRP’s periodical inspection

operations need to be taken into consideration. In summary, the

objectives of our research are as follows:
Fron
1. To develop the software and hardware of an MRP,

consisting of an autonomous mobile robot (AMR) and a

multilayer perception robot (MPR), which can capture

temporal–spatial phenotypic data within a whole

strawberry factory.

2. To achieve accurate navigation within the repetitive and

narrow structural environments of a PIFS through an

AprilTag and inertial navigation (ATI navigation)

algorithm.

3. To evaluate the performance of strawberry yield

monitoring through a novel pipeline that combines

keyframes extraction, fruit detection, and postprocessing

technologies.
2 Mobile robotics platform

In this study, an MRP to operate within a PIFS with multiple

plant growing tiers has been developed to dynamically monitor

plant growth and provide data for supporting crop growth model

construction and production management. The modularly designed

MRP (Figure 1) consists of an AMR, i.e., the mobile base, and an

MPR, i.e., the lifting module + perception module, where MRP =

MPR installed on top of AMR. The AMR is capable of traveling

along the aisles between plant growing rows (i.e., x direction) with

high positioning accuracy (PA) and robust navigation capability.

The MPR has a perception module (for data acquisition) that can be

raised by a lifting module to reach the heights (z direction) of all

plant growing tiers of every row within the PIFS. The assembly of

the AMR and MPR can perform automatic acquisition, storage, and

transmission of phenotypic data of all individual plants within the

entirety of a plant factory. Furthermore, multiple fault detection

measures were designed and installed in the MRP. The MRP has
tiers in Plant Science 03
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been operating in a commercial strawberry production plant factory

since July 2022, and has been working as expected so far.

The AMR is a differential drive mobile robot with two 165-mm

hub motors, which has the ability to turn on the spot. The cylinder

shape mobile base has a diameter of 500 mm and a height of 240

mm, which can travel at a maximum speed of 1.5 m/s through an

aisle (with a minimum width of 600 mm) within a plant factory. An

Intel® Core™ i5-8265U/1.6 GHz industrial computer is mounted

inside the robot to run all navigation, data acquisition, and data

transmission programs. The speed control commands from the

industrial computer can be received by a low-level control board to

drive the AMR to move. Wheel encoders, an IMU (US$40)

mounted inside the mobile base, and a downward viewing

monocular camera (US$25) to detect AprilTags on the floor are

integrated to realize accurate localizations within PIFS, and a 2D

LiDAR is used to detect obstacles. An emergency button is directly

connected to the low-level control board to stop the motors

when necessary.

The MPR is for use to perform data acquisition. The perception

module of the MPR is an Intel® RealSense™ D435i depth camera

(Intel Corporation, California, USA) mounted on a servo motor

that provides the camera with the pitch motion to capture multiple

images from various camera angles. The perception module can be

raised to 2.8 m, the height of the top tier of each plant growing row,

by the lifting module. The phenotypic data of each plant within a

strawberry PIFS can be collected by the MRP’s periodical inspection

of the entire facility. Data of all plants on one of the five tiers were

collected on one inspection route. The data of plants and the MRP’s

motion can be recorded in the rosbag format at a unified timestamp,

which facilitates the data analysis and decision support processes.

During the experiments on data acquisition, the MRP traveled at

the speeds of 0.2, 0.3, and 0.4 m/s along the aisle between plant

growing rows. The distance between the center of the MRP and the

sides of the plant growing rows was kept at approximately 410 mm.
FIGURE 1

Hardware of the mobile robotics platform (MRP).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1162435
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ren et al. 10.3389/fpls.2023.1162435
The resolution of the RealSense camera was set to 1,280 × 720 at 30

frames per second (FPS). The camera was set to be parallel to the

side of a plant growing row by a servo motor and at the same height

as the fruit by the lifting module. The same procedure was

conducted to ensure the success of data acquisition on each tier.
3 Methods

This section presents two basic capabilities of the MRP:

navigation for multiple-location data acquisition and strawberry

yield monitoring.
3.1 Navigation

The navigation system installed in the AMR included

navigation sensors, an industrial computer, and a low-level

control system (Figure 2). The ROS was implemented in the

industrial computer to collect data and conduct the navigation

pipeline. There were five ROS nodes in the navigation pipeline,

including an obstacle detection node, a localization node, a

navigation node, a state machine node, and a low-level

communication node. The real-time poses (position and heading)

of MRP were calculated from the camera, IMU, and wheel encoders,

through the localization node. The poses were received by the

navigation node to conduct the global path planning and local path

tracking, which, in turn, generated the target angular velocity and

linear velocity of the MRP at a frequency of 50 Hz. The obstacle

information captured by a 2D LiDAR from the obstacle detection

node and the localization state (success or failure) from the

localization node were sent to the state machine node. The

updated state of the system from the state machine node and the

target velocity from the navigation node were transmitted to the

low-level communication node, which then calculated the target

speed of the two motors and sent them to the low-level control

board through serial communication.

An ATI navigation algorithm was developed to address the

challenges of accurate navigation within the repetitive and narrow

structural environments of a PIFS. The ATI navigation algorithm

consists of four parts: mapping, localization, planning, and control.

The purpose of mapping in this study was to chart the moving

route of MRP. The research was carried out at a commercial
Frontiers in Plant Science 04
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strawberry factory (4D Bios Inc., Hangzhou, China). A total of 45

AprilTags (Olson, 2011) of 40 × 40 mm in size were pasted on the

grounds of both sides of each plant growing row. An 875 Prolaser®

(KAPRO TOOLS LTD., Jiangsu Province, China) was used to

ensure that all tags were on a designated straight line. The

distance between the two neighboring tags was approximately 1.3

m. When collecting data for developing the ground map of a

production facility, the MRP was first moved to Tag 0, which is

the location of the charging pile (Figure 3). The MRP was controlled

by a joystick to pass above the tags in order while simultaneously

recording the data of the monocular camera, IMU, and wheel

encoders. The mapping dataset was built after MRP had traveled

along all the tags and returned to Tag 0.

The tag ID and the homogeneous transform of the tag relative

to the monocular camera mounted on the MRP were both

calculated by the AprilTag detection algorithm (Wang and Olson,

2016). The wheel encoders and IMU were fused to calculate the

trajectory of the MRP using Equation 1.

qk+1 = qk + Dqimu

xk+1 = xk + (Dsl + Dsr) cos (qk)=2

yk+1 = yk + (Dsl + Dsr) sin (qk)=2

8>><
>>: (1)

where Dqimu is the heading variation of IMU between

timestamps of k and k + 1. Dsl and Dsr represent the motions of

the left and right wheel obtained by optical encoder during two

timestamps, respectively.

The tag IDs were further used to conduct the loop closing

optimization through the pose graph optimization (PGO)

algorithm. The vertices were represented by processed global

poses of the tags, and the edges were denoted by relative pose

changes of the odometer while MRP accessed two neighboring tags.

We cast this as a nonlinear least squares problem

argmin
x

1
2oij

eTijWijeij 
FIGURE 2

Navigation system architecture.

FIGURE 3

The MRP is being charged in the commercial strawberry factory.
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where the state of the tag is denoted by a 2D coordinate vector

and a heading angle, x = fp,   qg. The information matrixWij is used

to assign weights to different errors. The error eij between the

expected observation and the real observation from Tag i and Tag j,

can be calculated by Equation 2.

eij = (
RT
i (pj − pi) − p̂ ij

qj − qi − q̂ ij 
) (2)

Ri is the rotation matrix corresponding to the heading angle in

xi. p̂ ij and q̂ ij represent the relative pose changes of edges.

Levenberg–Marquardt (L-M) algorithm was used to optimize the

poses of all tags and generate the map. The accurate poses of the

tags could be obtained in the process of mapping.

Based on whether one of the AprilTags was detected at the

current timestamp, the estimations of localization could be divided

into two situations. When the tag was correctly detected by the

monocular camera, the global pose of the MRP at this timestamp

could be calculated by the global pose of the tag in the existing map

and the pose transform of the tag relative to the MRP. Otherwise,

the detection result of the last tag in the existing map and the

odometry changes from the timestamp when the last tag was

detected to the current timestamp were used to estimate the

global pose of the MRP.

In path planning, based on the destination, on the mapped

route, entered by a human operator, a trajectory composed of a

sequential set of locations could be generated by MRP’s global path

planner as the waypoints. Based on whether the destination is a

tagged position, global path planning can be divided into two cases.

If the destination is the position of one of the tags on the undirected

map, the shortest path can be obtained through the breadth-first

search (BFS) algorithm. If not, a virtual tag representing the

destination will be temporarily inserted between two adjacent tags

on the undirected map. The optimal path could be calculated by the

BFS algor i thm performed on the newly constructed

undirected map.

After obtaining the global path, the MRP can be navigated

through a series of local paths at the angular and linear velocities

issued by the low-level control board (Figure 2). For a straight

global path consisting of more than or equal to three tags, the local

path target position is set to Tagi+2 with MRP passing Tagi, which

will keep the velocity of the MRP along the planned route stable.

Angular velocity is calculated by the anti-windup pi controller to

adjust the heading toward the target position. The linear velocity is

calculated by a proportional controller to prevent system overshoot.

The target speed of the left and right motors will be further obtained

according to the differential motion model.
3.2 Yield monitoring

The growth condition of strawberries on each tier of the plant

growing rows could be recorded in a video format after the

inspection by the MRP. In this study, we have developed a

strawberry yield monitoring method. The counting-from-video
Frontiers in Plant Science 05
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method consisted of two phases: detection and counting of

ripe fruit.

3.2.1 Fruit detection
Ripeness detection is the first step in the yield monitoring

pipeline. Considering that the detection task has high

requirements for speed and accuracy, the single-stage detector

YOLOv5 is chosen to detect the ripe strawberry (Jocher et al.,

2022). The framework of the detector can be divided into four parts:

Input with mosaic data augmentation, CSPDarknet53 (Bochkovskiy

et al., 2020) as Backbone, Neck applying Feature Pyramid Network

(FPN) (Lin et al., 2017) and Path Aggregation Network (PAN) (Liu

et al., 2018a), and Prediction using GIoU loss (Rezatofighi et al.,

2019). The framework extracts and aggregates semantically and

spatially strong features more efficiently. More efficient

representation improves the performance of multi-scale object

recognition. Various variants have been generated by adjusting

the depth and width of the network. YOLOv5l6 was used in this

research, with an inference time of 15.1 ms running on an

NVIDIA® V100 Tensor Core GPU.

3.2.2 Fruit counting
A fruit counting pipeline was presented to count ripe

strawberries on video, including keyframe extraction, fruit

detection, and postprocessing (Figure 4).

3.2.2.1 Keyframe extraction

Considering that any individual strawberry fruit could appear in

multiple frames of the video captured, the number of times a fruit

might be counted was not fixed. Therefore, fruit detection results

could not be directly accumulated to obtain the counting results.

The concept of keyframe extraction was applied to fix the number of

times of repetitive counting, r. The pixel distance of two

neighboring keyframes in the pixel coordinate system, dp, was

calculated by Equation 3.

dp =
w
r

(3)

where w was the image width. All strawberries in the video were

required to appear at least twice in all extracted frames; therefore, r

was greater than or equal to 2. Figure 5 shows example series of

keyframes at various values of r.

The pixel distance between keyframes was converted to the

movement of fruit in the camera coordinate system to further
FIGURE 4

The overall yield monitoring pipeline.
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calculate the interval between keyframes in the video. The

theoretical interval of keyframes, it  ,  could be calculated by

Equation 4.

it =
dp � d � fps

fx � v
            (4)

where fps is the frame rate of the video. fx denotes the intrinsic

parameters of the RealSense camera, v represents the traveling

speed of MRP, and d stands for the average distance between the

camera and the fruit. Equation 5 was used to calculate the nearest

integer of it to obtain the actual interval of keyframes, i.

i = int(it) = int(
w� d � fps
fx � v � r

)           (5)

where the variable d was assumed to be a constant in this study.

i is only related to values of v and r, where i = g(v � r). The

counting-from-video problem was transformed into the statistics of

fruit detection results of keyframes.
3.2.2.2 Postprocessing

Postprocessing approaches were integrated to further improve

the counting accuracy, including distance filtration, edge filtration,
Frontiers in Plant Science 06
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and multi-sequence average. Strawberries on other plant growing

rows might enter the camera’s field of view during the MRP

inspection process. The distance filtration approach based on the

bounding box (bbox) size of the detection results was developed to

eliminate the interference to counting by the strawberries located

outside experimental areas. An edge filtration approach was used to

prevent partially visible strawberries at the edge of the image from

being counted repeatedly. Only the strawberries that appeared on

the left edge were counted, and the strawberries that appeared on

the right edge were ignored. Figure 6 shows the two situations

described above.

There existed errors in frame extraction between the actual

interval of keyframes i and the theoretical interval of keyframes it ,

e = ji − it j. A multi-sequence averaging algorithm was developed to

reduce the counting errors caused by the errors that occurred in the

keyframe extraction process. The yield monitoring algorithm was

presented as Algorithm 1:
Input: Threshold of keyframe interval is,

Threshold of errors of frame extraction es,

Threshold of the number of repetitive

counting rs, MRP traveling speed v, Inspection
FIGURE 5

Example series of keyframes at various values of r: r = 2 in the upper row, r = 3 in the middle row, and r = 4 in the bottom row.
FIGURE 6

Upper row: Three example cases that needed to be processed by distance filtration. Strawberries annotated with yellow bboxes were not in the
experimental areas and were not counted. Bottom row: Edge filtration was applied to process three consecutive keyframes (r = 2). The ripe fruit A was
not counted since it was partly visible on the right edge of the left image. Fruit A was counted after it had moved to the left edge of the right image.
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video V
Output: The number of ripe fruits in the video

V , n

Initialize is =4, es =0.1, rs=15

Initialize R =  frjgr
s

j=2 = f2, 3,…, rsg
1 It : =  fit jjit j : = g(rj � v), rj ϵRgr

s

j :=2

// Calculated by Eq. (4)

2 I : = fijjij : = (itj), itj ϵ Itgr
s

j :=2

// Calculated by Eq. (5)

3 E : = fejjej : = jitj − ijj, itj ϵ It , ij ϵ Igr
s

j :=2

4 Re : = frjjrj ϵR, ej > es, ej ϵEgr
s

j :=2

5 Ri   : = frjjrj ϵR, ij < is, ij ϵ Igr
s

j :=2

6 Rs  R − Re ∩ Ri

7 Es : = fejjej ϵE, rj ϵRgr
s

j :=2

8 ~Es : = Sort(Es) // Sort: To sort Es to get an

ascending-order array ~Es

9 if ~Es½2� > esthen
Ec : = f~Es½0�, ~Es½1�g

else
Ec : = f~Es½0�, ~Es½1�, ~Es½2�g

10 Rc : = frjjrj ϵRs, ej ϵ Ecgrsj :=2
11 Ic   : = fijjij ϵ I, rj ϵRcgrsj :=2 // Rc: The group of

filtered intervals of keyframes

12 S   : = fsrj jsrj : = E(V, ij), rj ϵRc, ij ϵ Icg // E: To

extract keyframes from V at interval ij
13 SF : = fsFr jsFr : = F (sr), sr ϵ S,   r ϵRcg // F: To apply

distance and edge filtration

14 N   : = fnrjnr : = C(sr)
r , sr ϵ SF , r ϵRcg// C: To count

the ripe fruit in sr
15 n   : =  Average(N) // Average: To average all

the sequence results in N.
ALGORITHM 1
Yield monitoring.
4 Procedure of experiments

In this study, experiments were carried out at a commercial

strawberry plant factory (Figure 2) in December 2022. Fragaria ×
tiers in Plant Science 07
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ananassa Duch. cv. Yuexin plants bred by the Zhejiang Academy of

Agricultural Sciences (Hangzhou, Zhejiang, China) were cultivated

on four-tier planting structures. The experiments were conducted

on a row of three four-tier planting structures near a wall. There

were 12 planting pots in every tier of each planting structure, and

five strawberry plants were grown in each planting pot. Experiments

were carried out on a total of 720 strawberry plants (i.e., 5 plants/pot

× 12 pots/tier × 4 tiers/planting structure × 3 planting structures =

720 plants). Figure 7 shows the floor layout of the research facility

and the MRP inspection route.
4.1 Navigation capability

4.1.1 Mapping
The typical configuration of a plant factory is a corridor

environment with repetitive and narrow planting structures,

which brings significant challenges to the LiDAR-based SLAM

algorithm in mapping operations. LIO-SAM, one of the advanced

LiDAR-based SLAM algorithms, was implemented on the MRP to

compare and prove the advantages of the proposed mapping

algorithm. LIO-SAM is a real-time, tightly coupled Lidar-Inertial

odometry with high odometry accuracy and good mapping quality

(Shan et al., 2020). In order to satisfy the use of the LIO-SAM

algorithm, a VLP-16 3D LiDAR scanner (Velodyne Lidar,

California, USA) and a WitMotion HWT905 nine-axis attitude

and heading reference system (AHRS) sensor (WitMotion,

Shenzhen, China) were integrated within the MRP. The collection

of the mapping dataset was conducted using the same approach

mentioned in Section 3.1. The data of 3D LiDAR and nine-axis IMU

were used in the LIO-SAM algorithm for pose estimation. The data

of the monocular camera, IMU, and wheel encoders were used in

the mapping algorithm of the ATI navigation system developed in

this research. All optimization processes were conducted offline for

the two algorithms. Another experiment was conducted to compare

the mapping performances of the ATI navigation system, without

and with loop closing optimization, to show the impact of

optimization in this research. Mapping trajectories were used to

evaluate the mapping performances of the three approaches.
FIGURE 7

Schematic diagram of the experimental scene and inspection route.
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4.1.2 Localization
This experiment aims to test the ability of MRP to move to a

desired location as expected. PA was used to evaluate the navigation

performance in this research. The coordinate system is shown in the

lower left corner of Figure 7. The positive direction of the X-axis is

consistent with the movement direction of the MRP when

inspecting strawberry plants. In the autonomous navigation

mode, three tags at different positions (Tags 8, 12, and 21) were

selected for testing PA. The MRP started from Tag 5 and navigated

to the target tag at the traveling speed of 0.4 m/s after entering the

Tag ID. The current position of the tag in the image coordinate

system was recorded to compare with the tag’s position in the map

generated by the ATI navigation algorithm. The same operations

were repeated five times for each tag. Euclidean distance between

two positions was represented as distance deviation, err _ d. err _ x

represents the deviation in the x direction, and err _ y represents the

deviation in the y direction. The root mean squared error (RMSE)

of five trails per tag was computed by Equation 6, and the RMSE of

15 trails of three tags was computed as PA.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ko

l
l=1err _ d

2
l

r
(6)

where k is the number of trails. err _ dl represents the err _ d in

trail l.
4.2 Fruit detection and counting

4.2.1 Fruit detection
A total of 80 videos were captured along the plant growing rows

by farmers at a normal walking pace using an Intel® RealSense™

D435i depth camera and a smartphone, under various illumination

conditions, different strawberry growth scenes, and various

strawberry growth stages (from March to July 2021). The dataset

consisted of 1,600 frames that were extracted out of every 10 frames

from the videos, with the images without strawberries manually

removed. All strawberry fruits in the period of veraison were

annotated by growers. Of those, every fruit having an 80% or

more red area on its surface was annotated as a ripe fruit

(Hayashi et al., 2010). Other fruits were annotated as unripe ones.

The dataset, including 2,327 ripe strawberries and 2,492 unripe

strawberries, was randomly divided into train, validation, and test

sets at the ratio of 8:1:1.

The strawberry ripeness detection model, YOLOv5l6, was

implemented using the PyTorch framework. The modeling

process was performed on a Linux workstation (Ubuntu 16.04

LTS) with two Intel Xeon E5-2683 Processors (2.1G/16 Core/

40M), 128 GB of RAM, and four NVIDIA GeForce GTX 1080Ti

graphics cards (11 GB of RAM). Taking a mini-batch size of 16, the

SGD optimizer was adopted with a decay of 0.0001 and a

momentum of 0.937. The best performance was achieved under

the initial learning rate of 0.01. The number of warmup epochs and

total training epochs were set to 3 and 90, respectively. The best

model weight was chosen according to the value of mean average
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precision (mAP) (Everingham et al., 2010) calculated on the

validation set. The chosen model was evaluated on the test set by

mAP@0.5 (at the IoU threshold of 0.5).

4.2.2 Fruit counting
False detections and missed detections of fruit in a particular

frame cannot be corrected by any other frames. Therefore, in this

study, a counting algorithm was developed to count every fruit

multiple times (a predetermined number of times that is equal to or

greater than 2) in order to improve the accuracy of the fruit

counting. The performance of the proposed algorithm was

affected by r, i, and e. As mentioned in Section 3.2, i and e were

related to the value of r. In this experiment, various values of r were

tested to build the fruit counting algorithm with a robust

performance. The MRP traveled at the speed of 0.3 m/s along the

aisle between plant growing rows to capture the phenotypic data of

each plant in the experimental region. Both video data captured by

the RealSense camera at the actual frame rate of 29.72 fps and data

from navigation sensors were recorded in the rosbag format at a

unified timestamp. The MRP inspected and recorded all the data

twice for each tier of plant growing rows. A total of eight videos

were collected in this experiment. Fruit detection was performed on

the eight videos. The number of ripe strawberry fruit in the results

produced by the detection algorithm, nCGT , was manually counted as

the ground truth of the fruit counting algorithm to exclude the

impact of the fruit detection algorithm and evaluate the

performance of the fruit counting algorithm alone. The yield

monitoring algorithm results, n, were then estimated using the

proposed algorithm without multi-sequence averaging (one of the

three postprocessing techniques mentioned in Section 3.2.2). The

thresholds es and is, mentioned in Algorithm 1, can be determined

by selecting a number of smaller relative error rates of fruit

counting, errC , calculated by Equation 7.

errC =
n − nCGT
�� ��

nCGT
� 100%         (7)
4.3 Inspection capability

In this experiment, the inspection capability of MRP was tested

at various traveling speeds of 0.2, 0.3, and 0.4 m/s. The inspection

capability was a system performance that included mobility for

multiple- location data acquisit ion and monitoring of

strawberry yield.

4.3.1 Motion control
The experiment in this study was conducted three times to test

the motion control performance of MRP at three different traveling

speeds. In the navigation mode, MRP was programmed to start

from the first tag (Tag 5) and stop at the last tag (Tag 23) position in

the aisle. The distance error, linear velocity, yaw error, and angular

velocity of the MRP were recorded in the rosbag format with a

frame rate of 50 Hz as the errors and outputs of the control system.
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Motion stability and angular tracking accuracy were considered to

evaluate the effectiveness of the proposed method.
4.3.2 Yield monitoring
The accuracy of the yield monitoring algorithm is a system

performance to evaluate both fruit detection and counting

processes. The variables   r, i, and e corresponding to three

different traveling speeds could be calculated by repeating the

operations mentioned in Section 4.2.2 in the same experimental

area on different dates. This experiment was conducted three times

to test the accuracy of the yield monitoring algorithm at three

traveling speeds of MRP. For each experiment, MRP inspected and

recorded all the data twice for one of the four tiers of the plant

growing rows. A total of 24 videos were collected in this experiment.

The number of ripe strawberries in the raw video, nYGT , was

determined by growers as the ground truth of the yield. The

relative error rate of yield monitoring, errY , could be calculated

by Equation 8.

errY =
n − nYGT
�� ��

nYGT
� 100%         (8)
Frontiers in Plant Science 09
81
5 Results and discussion

5.1 Navigation capability

5.1.1 Mapping
As shown in Figure 8, two continuous and smooth trajectories

were obtained using our ATI mapping approach (a and b). The two

trajectories almost coincided before Tag 27. The trajectory in

Figure 8B was the non-optimized result, which the MRP was not

able to return to the charging pile (origin) due to cumulative errors

of the system. Figure 8A shows the mapping trajectory processed by

the ATI mapping approach with the loop closing optimization that

was accomplished by making the path defined by Tags 0, 1, 2, and 3

the beginning segment and the path defined by Tags 3, 2, 1, and 0

the ending segment of the trajectory. The beginning tags (numbers

0, 1, 2, and 3) were detected in a reversed order when MRP was on

the way back to the starting point, Tag 0. The global PGO was

successfully performed to eliminate the cumulative errors and

obtain a consistent and undistorted trajectory during the mapping

process. The mapping trajectory coincided with the AprilTags

pasted on the ground in the experimental area (Figure 7).
B

C

A

FIGURE 8

Comparison of trajectories obtained by the three mapping approaches running in the experimental area. (A) shows the mapping trajectory
processed by the ATI mapping approach with the loop closing optimization. (B) shows the mapping trajectory processed by the ATI mapping
approach without the loop closing optimization. (C) shows the mapping trajectory processed by the LIO-SAM algorithm with optimized parameters.
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In contrast, a jittery mapping trajectory was obtained by LIO-

SAM under the same movement of MRP (Figure 8C). Degeneracy

occurred when MRP traveled back and turned to a new long aisle,

i.e., starting from the position of Tag 25 in Figure 7. The estimated

odometry oscillated around the same position. It is worth

mentioning that the mapping results presented in Figure 8C were

obtained by the LIO-SAM algorithm with optimized parameters.

The original LIO-SAM failed at the second turn of the inspection

route, i.e., starting from the position of Tag 4 in Figure 7. The

experimental results show that the LiDAR-based SLAM algorithm

failed in the environment of the plant factory. Our ATI navigation

algorithm was effective and robust in the mapping process.

5.1.2 Localization
In the PA experiment, Tags 8, 12, and 21 were selected as target

positions (Figure 7). Tests were repeated five times for each tag. The

range of RMSE of each tag was found to be between 8.6 and 14.8

mm (Table 1). The overall RMSE of PA was 13.0 mm. Each tag

could be effectively observed using the proposed ATI navigation

algorithm, which showed the robustness of the positioning system.

The positioning results of the algorithm in the x and y directions are

all biased to the same side (Tables 2, 3). The external parameters

among the wheel encoders, IMU, and monocular camera were

estimated from the mechanical drawings with no calibration

process in this research. The PA of the system could be further

improved by automatic and accurate calibration of the navigation

sensors and the optimization of fusion of wheel encoders and IMU.
5.2 Fruit counting capability

The best model weight was chosen according to the mAP@0.5

value of 0.994 for ripe strawberries calculated on the validation set.

We have found that an mAP@0.5 value of 0.945 could be obtained

on the test set. Strawberry growth scenes with occlusions could be

identified accurately by the fruit detection model.

We have found that there was little change in it and i when the

value of r was more than 15 and the value of v was 0.2, 0.3, or 0.4 m/

s. The value of r was set from 2 to 15, and the value of v was 0.3 m/s

in this experiment. The corresponding i and e values and the

relative error rate of fruit counting, errC , were computed and are

shown in Table 4 in ascending order according to e values. The

value of errC generally increased as the increase of e. When the value

of e was more than 0.1, the errC was relatively large and fluctuated.

When the value of i was relatively small, the impact of e on errC was
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more obvious. The value of isas set as 4 through the observation of

the experimental results. In this experiment, the values of r were

chosen as 15, 10, and 6. The final errC was computed as 3.3%. There

also existed several limitations. We assumed that the value of d was

constant. However, the variance in the distance between

strawberries and the RealSense camera existed in the production

scene, which affected the accuracy of the algorithm. The problem

could be addressed by dynamically introducing accurate values of d

captured by the depth camera into the algorithm. When v is high,

the overlaps of two neighboring frames will be fewer. This will, in

turn, limit the range of r values and the tolerable error rate will

become smaller.
5.3 Inspection capability

5.3.1 Motion control
The motion control system worked stably at the nominal MRP

traveling speeds of 0.2, 0.3, and 0.4 m/s. The performance of the

distance controller and heading controller at various speeds is

shown in Figure 9. The inspection durations at the three set

speeds are 113.6, 78.6, and 62.1 s, respectively. The overall

average speeds are 0.189, 0.273, and 0.346 m/s, respectively.

On the left of the figure, the blue lines represented the distance

between MRP and the target position in the local path planner

(Section 3.1), Dislocal , during the navigation process. At the start, the

value of Dislocal was approximately 2.4 m, which was the distance

between Tag 5 and Tag 7. As the robot moved forward, the value of

Dislocal decreased linearly. When the MRP reached Tag 6, the local

target was updated to Tag 8. At this time, the value of Dislocal
returned to approximately 2.4 m, which was the distance between

Tag 6 and Tag 8. When the MRP reached Tag 22, the local target

was no longer updated. The value of Dislocal faded to zero as the

robot moved towards the global target, Tag 23. MRP accelerated

from zero to a set traveling speed, maintained the speed during the

inspection, and gradually decelerated until reaching the global

target, Tag 23, without an overshoot. On the right of the figure,

the red lines represented the heading from MRP to the target

position in the local path planner, Yawlocal , during the navigation

process. The value of Yawlocal was within 0.01 rad most of the time

and occasionally rose to 0.03 rad due to the updates of the target

positions in the local path planner, which had little effect on the

phenotypic data acquisition. The control system ensured smooth

and low-error motions at various traveling speeds of MRP for stable

quality of video collection.
TABLE 1 Positioning accuracy of the ATI navigation algorithm.

Tag ID
err_d (mm) RMSE

(Tag)
RMSE
(All)1 2 3 4 5 Avg

8 9.6 10.5 8.5 7.2 6.9 8.5 8.6

13.012 17.2 16.8 12.6 12.5 14.0 14.6 14.8

21 13.1 16.6 17.1 16.6 6.6 14.0 14.5
fronti
err _ d, distance deviation is the Euclidean distance between the current position of the tag in the image coordinate system and the position of the tag in the map generated by the ATI navigation
algorithm.
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5.3.2 Yield monitoring
The errC and errY of 24 test videos (8 videos per MRP traveling

speed) were calculated and shown in Table 5. We found that the

system showed robust monitoring results at various MRP traveling

speeds, of which errC was between 2% and 3%, and errY was

between 6% and 10%. The best yield estimation performance was

found to have an error rate of 6.26% at the MRP traveling speed of

0.2 m/s. The four ties of plant growing row in the experimental area

corresponded to the four strawberry growth densities. Our
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algorithm had high robustness when dealing with scenes with

various fruit densities.

The same strawberry appeared differently in various frames due

to the changes in shooting angles during the movement of MRP. An

unripe strawberry might be detected as a ripe or unripe one from

various angles due to the distribution of red color on the fruit, which

made nYGT smaller than nCGT . The proposed yield monitoring

approach is a detection-based pipeline, in which false detections

caused the higher errY . In order to meet the above challenges and
TABLE 2 Positioning accuracy in the x direction of the ATI navigation algorithm.

Tag ID
err_x(mm) RMSE

(Tag)
PA
(x)1 2 3 4 5 Avg

8 −9.1 −10.4 −8.3 −5.9 −5.1 −7.8 8.0

11.212 −16.5 −14.4 −10.1 −11.1 −11.5 −12.7 12.9

21 −8.6 −15.2 −16.2 −11.7 5.2 −9.3 12.1
frontiers
TABLE 3 Positioning accuracy in the y direction of the ATI navigation algorithm.

Tag ID
err_y (mm) RMSE

(Tag)
PA
(y)1 2 3 4 5 Avg

8 −3.2 −0.8 −2.0 −4.1 −4.6 −2.9 3.2

6.512 −4.7 −8.7 −7.6 −5.8 −8.0 −7.0 7.1

21 −9.9 −6.7 −5.4 −11.8 −4.0 −7.6 8.1
i

TABLE 4 The relative error rate of fruit counting under different algorithm setups.

Setup Counting results of various videos
Avg errc

r it i e 1_1 1_2 2_1 2_2 3_1 3_2 4_1 4_2

15 2.029 2 0.029 28 29 31 31 43 46 37 36 0.032

10 3.044 3 0.044 28 29 31 31 43 46 37 36 0.032

6 5.073 5 0.073 29 29 30 31 43 46 37 35 0.035

5 6.088 6 0.088 28 29 31 31 43 47 37 35 0.038

3 10.146 10 0.146 30 26 29 30 44 46 36 35 0.052

14 2.174 2 0.174 30 31 33 34 46 49 40 38 0.049

8 3.805 4 0.195 27 27 30 30 41 42 35 34 0.072

2 15.219 15 0.219 28 29 31 29 44 49 36 33 0.059

11 2.767 3 0.233 25 26 28 28 39 42 34 32 0.116

13 2.341 2 0.341 33 33 36 36 50 53 43 41 0.133

7 4.348 4 0.348 31 31 34 34 46 48 40 39 0.058

9 3.382 3 0.382 31 32 34 34 48 51 41 40 0.083

4 7.610 8 0.390 27 27 30 30 41 42 35 34 0.072

12 2.537 3 0.4635 23 24 26 26 36 38 31 30 0.185

nCGT 30 30 32 32 44 44 37 37
1_1 and 1_2 are the first and second videos of strawberries grown on the first tier, respectively. Avg   errC is the average relative error rate of fruit counting, nCGT is the number of ripe strawberry
fruit in the detection results.
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obtain higher yield estimation accuracy, there exists a potential

solution, which is to process with the original video data. Videos

captured by the MRP could provide both spatial and temporal

information for better tracking and detecting a single fruit.

However, a large amount of needed computational time was the

limitation of this solution.
6 Conclusion

In this study, we have developed software and hardware of an

MRP, consisting of an AMR and an MPR, which can capture
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temporal–spatial phenotypic data within the whole strawberry

factory. This paper reported two basic capabilities of the MRP,

navigation for multiple-location data acquisition and strawberry

yield monitoring. An ATI navigation algorithm was developed to

address the challenges of accurate navigation within the

repetitive and narrow structural environments of a plant

factory. The MRP performed robustly at various traveling

speeds tested with a PA of 13.0 mm. A counting-from-video

yield monitoring method that incorporated keyframes

extraction, fruit detection, and postprocessing technologies was

presented to process the video data captured by MRP’s

inspection for production management and harvesting
FIGURE 9

The performance of distance and heading controller at various MRP speeds.
TABLE 5 Yield monitoring performance comparison at various speeds of MRP.

Setup Video
ID

n
Avg errc Avg errY

v (m/s) r i e T1 T2 T3 T4

0.2
15 3 0.044 1 34 52 87 70

0.0265 0.0626
9 5 0.073 2 35 55 88 69

0.3

15 2 0.029 1 37 54 88 71

0.0229 0.090510 3 0.044
2 36 53 90 72

6 5 0.073

0.4
11 2 0.075 1 37 51 85 71

0.0252 0.0711
6 4 0.195 2 38 52 84 70

nCGT 1 36 54 85 70

nYGT 2 32 51 83 65
fro
T1 is the first tier of the plant growing row in the experimental area. n is the result of the yield monitoring algorithm. nCGT is the number of ripe strawberry fruit in the detection results. nYGT is the

number of ripe strawberries in the raw video. errC is the relative error rate of fruit counting.  errY is the relative error rate of yield monitoring.
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schedules. The yield monitoring performance was found to have

an error rate of 6.26% when the plants were inspected at a

constant MRP traveling speed of 0.2 m/s. The temporal–spatial

phenotypic data within the whole strawberry factory captured by

the MRP could be further used to dynamically understand plant

growth and provide data support for growth model construction

and production management. The MRP’s functions are expected

to be transferable and expandable to other crop production

monitoring and cultural tasks.
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Potatoes are the fourth most important crop for human consumption. In the 18

century, potatoes saved the European population from starvation, and since

then, it has become one of the primary crops cultivated in countries such as

Spain, France, Germany, Ukraine and the United Kingdom. Potato production

worldwide reached 368.8 million tonnes in 2019, 371.1 million tonnes in 2020,

and 376.1 million tonnes in 2021, with production expected to grow alongside

the worldwide population. However, the agricultural sector is currently suffering

from urbanization. With the next generation of farmers relocating to cities, there

is a diminishing and ageing agricultural workforce. Consequently, farms urgently

need innovation, particularly from a technology perspective. As a result, this work

is focused on reviewing the worldwide developments in potato harvesting, with

an emphasis on mechatronics, the use of intelligent systems and the

opportunities that arise from applications utilising the Internet of Things (IoT).

Our work covers worldwide scientific publications in the last five years, sustained

by public data made available from different governments. We end our review by

providing a discussion on the future trends derived from our analysis.

KEYWORDS

potato harvesting, automation, machinery, internet of things, artificial
intelligence, robotics
1 Introduction

Around the world, the strain placed upon agriculture is compounding. A diminishing

pool of skilled laborers, the impact of climate change, and an ever-increasing human

population are a few of the challenges facing modern agriculture. Potatoes, as the fourth

most grown crop in the world behind wheat, rice, and corn, will play a large role in feeding

the increasing population [Zhang et al. (2017); Jennings et al. (2020); Issa et al. (2020)].

Ensuring an efficient potato production pipeline is of great importance. The stage of the

potato production pipeline which suffers the greatest losses is harvesting [Spang and

Stevens (2018)]. Potato harvesting is the process of separating and collecting potato tubers

from the soil. During this, losses occur as potatoes are damaged or left in the field.

There is not a single potato harvesting solution which generalizes well to all farms,

geographies, and soil types. The mechanical design of potato harvesters depends heavily on

the environment in which it operates. Regional factors along with the available harvesting

methods can greatly impact potato production [Wei et al. (2019)], as can be seen in

Figure 1. The production in the northern and central parts of the globe, which use

mechanical harvesting, is significantly higher than in the southern hemisphere. There is
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also a great variation within hemispheres which is worth exploring

in more detail. It is important not to simplify the problem, but to

view the geographical and political issues which may arise when

proposing certain solutions to potato harvesting.

Potatoes can be harvested using a variety of equipment. Themost

simplistic method of harvesting is manual. This can be done using a

hand hoe, spading fork or even without any equipment. Harvesting

by hand is a time-consuming and labor-intensive task [Gulati

(2019)]. Therefore animal-drawn harvesters, such as the traditional

plough, were deployed to solve these problems. Both methods of

harvesting are still common practice in many parts of the world,

despite draught animals being neglected and even sometimes

harmed. Many veterinarians and animal welfare organizations

continually advocate for an improvement in their living and

working conditions [Ramaswamy (1998); Mota-Rojas et al.

(2020)]. A step up in complexity introduces semi- and fully-

mechanised harvesters. The difference is that fully-mechanised

harvesters collect the potatoes in a trolley or bunker during

harvesting, saving the manual labor required to collect the potatoes

from the field by hand after harvesting. Mechanical harvesters are

considered an improvement on the first twomethods of harvesting as

they reduce harvesting time, cost, and losses [Nasr et al. (2019);

Soethoudt and Castelein (2021)]. Finally, there has been discussion

regarding the automation of potato harvesters, though there is no

working prototype in academic literature or at an industrial scale

implementation [McPhee et al. (2020)].

This review will begin by looking into the current state of global

potato harvesting, diving into the geographical differences and

discussing reasons for these differences. Followed by potato

harvesting constraints which may impact harvesting. These are

potato and soil characteristics. The technology used in potato

harvesting will be reviewed, starting with the mechanical harvester

specifications and design. Followed by the future trends of potato
Frontiers in Plant Science 02
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harvesting. Finally, a discussion will be provided on the state of potato

harvesting around the world, with the goal of specifying an automation

level for the top-producing potato countries in each continent.

This work only considers scientific journal articles released

from January 2017 – December 2022, and information available

from governmental agencies. For a fair analysis, we kept our

emphasis on articles from countries with available agricultural

information. The selected articles were obtained through the

Scopus database. Articles under the subject areas of Chemistry;

Medicine; and Biochemistry, Genetics and Molecular Biology were

automatically filtered out from the search. We also restricted the

articles to only those with an English version. The focus on the

selection of articles was put on the machinery for potato harvesting.
2 Potato harvesting: an
international assessment

Potato harvesting is complex, with various different factors

preventing farmers and scientists from finding an optimum –and

unique– harvesting solution. The geographical location for example

can impact the optimum harvesting solution due to variations in terrain,

climate and soil characteristics. Consequently, farmers around the world

require bespoke solutions to harvesting. The societal role of potatoes

around the world also varies. The majority of potato farms in Asia,

South America, and Africa are smallholders [Devaux et al. (2021)]. They

treat potatoes as a staple crop and not necessarily as a cash crop. A staple

crop is used to feed the general population and constitutes a significant

proportion of the nation’s diet. Cash crops on the other hand are grown

in order to generate profit. There is a drive for these smallholders to

increase their productivity by utilising modern farming techniques

[Devaux et al. (2021); Wu et al. (2018)]. However, such techniques

must be tailored to the farm in which they are deployed.
FIGURE 1

Heatmap of the global production of potatoes in 2020 (in millions of tonnes). Image taken from Ritchie et al. (2023) using data made available by
Dataset FAO (2022b).
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2.1 Potato production by continent
and country

The worldwide potato production landscape has changed in

recent years, as shown in Figure 2. Formerly the highest potato-

producing continent, Europe has experienced a large decline in

potato production being surpassed by Asia as the top-producing

continent. Africa also shows a rapid increase in potato production,

while Oceania, South and North America display steadier growth.

The top potato-producing countries in each continent will be

studied in this section. These are China, Ukraine, the USA, Peru,

and Australia. Another country included in this section is India, as

they are the second largest potato producer in the world after China.

Germany, as they are the largest Western European potato

producer. And the UK, as they recently left the European Union.

The potato production, in tonnes, for each of these countries from

1961–2021 can be found in Figure 3.

An in-depth study of these countries will be provided for the

years 2017–2021 since this review only considers scientific journal

articles released from 2017–2022. Data for 2022 is not provided as it

was not made available at the time of this review.

Potato production provides a one-dimensional view of a country’s

ability to grow and harvest potatoes. Larger countries can dedicate

more land to growing and ultimately will produce more potatoes. This

does not mean that they are efficient with their land use. In order to

provide an insight into their efficiency we look at yield. Yield is the

quantity of potatoes produced in a given area. Finally, the population of

a country is discussed. A higher populationmay result in a greater need

to produce potatoes in order to feed their population. Though a high

population may also restrict their land use.
2.2 Asia

China and India are the top potato-producing countries in the

world. Since China achieved the top spot in 1993, the nation has

been pushing campaigns to increase its consumption of this food
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group [Devaux et al. (2021)]. Harvesting in China is split between

fully- and semi-mechanized harvesters, with the majority of

harvesting being semi-mechanized [Wei et al. (2019); Issa et al.

(2020); Fu et al. (2022)]. Due to the heavy clay soil found in

Northern China, their research revolves around removing soil after

extraction [Fu et al. (2022); Wei et al. (2019)]. Currently, soil clods

and stones are removed manually after harvesting. Though China is

doing research into the use of computer vision to automate their

removal (see Fu et al. (2022) and the references therein). India is

also primarily a semi-mechanized harvesting nation [Gulati

(2019)]. Though they are moving towards fully-mechanised

harvesters, such as the one proposed by Gulati (2019).

By 2050, Rosegrant et al. (2017) predicts that China will be

surpassed by India as the top potato-producing country. The results

found by Rosegrant et al. (2017) was adapted by Devaux et al.

(2021) producing the bar chart seen in Figure 4. Currently, India

ranks second in potato production, population and area harvested.

Although India has a higher yield than China it is still far smaller

than other countries included in the survey. It is unclear whether

improving yield will lead to higher production, as the reduction in

yield may be due to factors such as continuous monoculture

growing. Continuous monoculture growing can lead to disease

107 which reduces yield however continually growing potatoes

may be the reason for higher production.
2.3 Western Europe

Before Brexit, 60% of the European (EU-28) potato production

was produced in five Northwestern European countries. These

countries are referred to in Goffart et al. (2022) and Devaux et al.

(2021) as the NWEC-05. The NWEC-05 is made up of Germany,

Belgium, France, Netherlands, and the UK. It is worth mentioning

that the UK is no longer a member of the European Union, and

therefore will be discussed separately.

The high level of mechanization seen in NWEC-05 is expensive

[Goffart et al. (2022)]. Such costs are justified as these are advanced
FIGURE 2

Potato production by continent for the years 1961 - 2021 (in millions of tonnes), using data made available by Dataset FAO (2022b).
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and profitable sectors for the countries. This high level of

automation in industrial farms is partially due to the fact that

potatoes are seen as cash crops as well as staple crops in these

countries. A high proportion of the crops are sold to processing

companies. For example, in Belgium, only 20% of the potatoes are

sold as fresh produce while the remaining 80% are sold for

processing [Devaux et al. (2021)].

The top potato-producing country in Western Europe is

Germany. As can be seen in Figure 2, potato production in

Europe is declining. This is evident in the data provided by

Germany. Between 2017–2021, a slight decline in production and

an increase in the harvested area saw a large reduction in Germany’s

yield. Germany also had the smallest variation in population across

the five years.

2.3.1 United Kingdom
As a member of NWEC-05, the UK was one of the top-

producing potato countries in Europe. Similar to Germany, it has

experienced a reduction in yield between 2017–2021. A noticeable

difference however is that while Germany produced slightly fewer

potatoes (-3.5%) by using more land (+3.1%); the UK produced

significantly fewer potatoes (-14.7%) while using less land (-6.2%).
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Figure 5, shows the potato production and yield for the three

European countries discussed in this review: Germany, the UK, and

Ukraine. Both Germany and the UK experience a local maximum in

2017 followed by a steep reduction in production and yield. These

values begin to recover towards 2021 with Germany’s recovering

more quickly. This data shows that production can be greatly

disrupted in one year and it may take several years to recover.
2.4 Eastern Europe

The third largest potato-producing country in the world behind

China and India is Ukraine. Ukraine is a very active member of the

potato harvesting research community. They are a fully-mechanised

industry, although a significant number of the machines used to

grow potatoes are imported from Russia, Belarus, and Germany

[Hrushetsky et al. (2019); Hrushetskyi et al. (2021)]. Due to their

heavy loam soil, the majority of research papers discuss the removal

of soil clods from the harvesting process [Bulgakov et al. (2017;

Bulgakov et al., 2019; Bulgakov et al., 2020; Bulgakov et al., 2021)].

The harvesting may be fully-mechanised however the removal of

soil clods is still done manually which can be labor-intensive and

expensive [Bulgakov et al. (2021)].

Referring back to Figure 5, it clearly shows that Ukraine

produces more potatoes than its European counterparts, with

drastically lower yet more stable yields. These low yields may be

indicative of the loss found when harvesting in the heavy loam soil.

Ukraine, like the UK, experienced a decrease in potato production,

yield, and the harvested area between 2017–2021. However;

Ukraine alone experienced a steady reduction in population

between 2017–2021.
2.5 North America

In North America, like NWEC-05, potatoes are treated as cash

crops: with US potato production in 2021 equating to 410 million

cwt and processing accounting for 281 million cwt [USDA (2022)].
FIGURE 3

Top potato-producing countries by continent, including India, Germany, and the United Kingdom for the years 1961 - 2021 (in millions of tonnes),
using data made available by Dataset FAO (2022b).
FIGURE 4

Prediction of future potato production taken from Devaux et al.
(2021) adapted from Rosegrant et al. (2017).
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Farmers can optimize their financial returns by meeting certain

incentives in their contracts with processing companies [Waxman

et al. (2018)]. Mechanical approaches to harvesting can help the

farmer meet these incentives.

The United States of America experienced the highest yield of

any country in the survey and even managed to increase their yield

by +1.4% between 2017–2021. They experienced a decrease in

production (-9.2%) however since their harvested area decreased

by a large amount (-10.4%), their yield was not negatively affected.

They also had an increase in population, which is the third largest

population in the world behind China and India. However, unlike

the other two, their potato production ranking does not equate to

their population ranking.
2.6 South America

In countries such as Argentina, Brazil and Peru, potatoes are

harvested mainly by semi-mechanised methods. In Argentina for

example, only 10% of fresh potatoes are harvested by fully-

mechanised approaches [The Bureau of the Netherlands

Agricultural Council in Buenos Aires, (2008)]. Fully-mechanised

approaches are more common in processed potato production,

these are also often performed on larger areas of land. Semi-

mechanised potato harvesters extract the potato from the soil and

leave them in rows on top of the soil. The potatoes are then collected

by hand and stored in large bags. These bags can remain in the field

for up to 12 weeks, which ultimately results in large losses. In The

Bureau of the Netherlands Agricultural Council in Buenos Aires

(2008), it is suggested that harvesting can be performed better in

fresh potato production systems with a mechanical method of

picking up, cleaning, grading and bagging the potatoes after

extraction from the soil.

Peru is the largest potato-producing country in South America.

They experienced the greatest percentage increase in yield (+11.3%)

while also having the smallest variation in yield across all countries

in the survey. Peru also greatly increased its production (+18.5%)

and harvested area (+6.5%) over the five years. Their population

almost grew by the largest percentage between 2017–2021, just

behind that of Egypt.
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2.7 Africa

The papers discussing the agricultural landscape of Egypt and

Eritrea state that it is constituted of many smaller farms [Nasr et al.

(2018); Ghebreagziabiher et al. (2022)]. Such smallholder farmers

will likely require smaller harvesters. This is the exact problem

addressed in Nasr et al. (2018), where they proposed a semi-

mechanised potato harvester for smallholder farms. Africa has the

potential to increase potato production in the next few years

through input intensification rather than area expansion, due to

the increasing population [Devaux et al. (2021)]. Increasing potato

production without increasing the area means an improvement in

yield. This is beneficial since Sub-Saharan Africa suffers from a yield

gap [Harahagazwe et al. (2018)].

Egypt experienced the highest percentage increase in production

(+42.6%), population (+50.7%), and harvested area (+7.3%) between

2017–2021. Despite their yield decreasing by -5.4% during this time

period, it remained higher than that of China, India, Ukraine and Peru

showing that Egypt does not suffer the same yield gap as that seen in

Sub-Saharan Africa.
2.8 Oceania

The top potato-producing country in the Oceanic continent is

Australia. Potatoes are of great importance to Western Australia, as

behind wine it is their second highest value-adding horticultural

industry and their second highest value vegetable crop behind

carrots [Dataset Government of Western Australia, A (2018)].

Nevertheless, compared globally, the country’s production is low.

Recent research conducted in Australia proposed the use of a fleet of

small to medium-sized fully-autonomous potato harvesters

[McPhee et al. (2020)]. Although this proposal displayed the

highest level of automation out of all papers considered for this

review, it was never implemented.

Australia experienced the smallest variation in production and area

harvested during 2017–2021. Along with India and Peru, it is one of the

only countries to experience a percentage increase in all four metrics

between 2017–2021. Additionally, Australia had the smallest average

production, harvested area and population of any country in the study.
FIGURE 5

Potato production (in tonnes) and yield (in hg/ha) for Germany, Ukraine and the United Kingdom from 2010–2021. Data extracted from Dataset FAO (2022b).
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3 Potato harvesting constraints

The efficiency of the potato harvesting process is affected by a

number of issues. These range from environmental issues to farm

management practices. This section will be focused on two specific

issues, those exclusively related to the plant and those related to

soil characteristics.
3.1 The potato characteristics that
impact harvesting

Understanding the characteristics of different potatoes can

result in better designed harvesters. Consideration of such

characteristics during the design of mechanical harvesters and

post-harvesting hardware can increase yield and reduce waste.

For example, Ahangarnezhad et al. (2019) studied the Agria

variety of potato and split the potato characteristics into physical

and mechanical properties. The physical properties include the

geometric and arithmetic mean diameter, which is important

when designing potato sorting and packaging machines in order

to reduce losses during transportation. The mass and volume of the

potatoes are also physical properties, which should be considered

when designing mechanisms for separating potatoes from other

materials during harvesting.

However, when reducing waste, Ahangarnezhad et al. (2019)

considers mechanical properties as the fundamental information

required to design harvesting or post-harvesting machinery.

Mechanical properties include the elasticity module, deformation

energy, and fracture force. These properties can be determined by a

uniaxial compression test. This test can generate a force-

deformation graph, which plots the impact force against the

penetration depth. When plotting the compression and restitution

within the same graph, the area under the graph represents the

energy absorbed by the potato. The energy absorbed by the potato is

relevant as high energy absorption equates to high bruise damage

[Surdilovic et al. (2018)].

It is to be noted that Ahangarnezhad et al. (2019) showed that

many physical properties such as length, width, mass, and

geometric mean diameter had a direct relationship to the potato

size, while density had an inverse relationship. Relative density, also

known as specific gravity, is one of the most important indicators of

potato quality (see Waxman et al. (2018) for further reading). This

is an estimate of the dry matter content of the potato, providing an

indication of its water content. The water content of potatoes is

relevant since, as stated by Surdilovic et al. (2018), potatoes with a

higher water content experience less force yet higher deformations.

Since higher levels of deformation equates to higher potato damage,

possessing a high specific gravity is a desirable characteristic. This

allows harvesters to move faster and exert more force on the

potatoes while maintaining the same level of damage.

The specific gravity of potatoes can be influenced by a variety of

factors. For example, Waxman et al. (2018) showed that the specific

gravity can be influenced by harvest time and species of potato.

Three potato varieties (Russet Burbank, Clearwater Russet, and

Alpine Russet) were grown with harvest timings standardized based
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on that of Russet Burbank, a popular variety of potato used in the

processing industry. There were three harvest timings used:

approximately 2 weeks prior to normal harvest (early), normal

Russet Burbank harvest time (normal), and approximately 2 weeks

past normal harvest (late). They determined the specific gravity of

the potatoes by two methods, weight-in-air and weight-in-water. A

low specific gravity was indicative of an early harvest and a

declining specific gravity was that of a late harvest. They also

found that the species of potato had an impact on the specific

gravity. Clearwater Russet exhibited the highest specific gravity in

both years of the experiment.

Potatoes can be bred to have desirable characteristics such as a

higher specific gravity. In Melito et al. (2017), an evaluation index is

proposed to support the selection of clones with interesting trait

combinations. As a result, they compared the tuber yield, specific

gravity, chipping ability and earliness. They found a 48% higher

productivity in clones compared to the best control. The various

clone families had significantly different tuber specific gravity, with

70% of clones having a higher score than 1.080 which is the

minimum required to be used in the processing industry. Potato

processing contracts often contain Incentive Adjusted Prices (IAP)

which provide farmers with financial incentives to produce higher

quality potatoes. A common criterion in IAPs is producing potatoes

over a certain specific gravity. Consequently, potatoes with a higher

specific gravity are not only easier to harvest but also financially

beneficial to the farmer.
3.2 The soil characteristics that
impact harvesting

Applying the correct agronomic practices for a potato species

can greatly improve the quality of potatoes produced. Agronomic

practices and potato characteristics, such as flesh color, can impact

the nutrition required to optimally grow and harvest potatoes

[Vaitkevičienė et al. (2020)]. Furthermore, throughout the growth

cycle, the nutritional demand and therefore availability of nutrients

in the soil varies. This temporal availability of nutrients can be

utilized by planting multiple species of crops in close proximity.

This is called intercropping.

The goal of intercropping systems is to achieve a Land

Equivalent Ratio (LER) > 1 [Dong et al. (2018)]. This would

suggest that the crops are temporally or spatially cooperating and

sharing resources. Conversely, an LER < 1 means the crops are in

competition for resources and no benefit is gained from the

intercropped system. Intercropping systems have multiple benefits

such as reducing weeds and disease. Potato harvester designs should

consider that there may be other crops, particularly above-ground

crops, in close proximity to the potatoes. Farmers can also get

similar benefits from crop rotation [Khakbazan et al. (2019)].

Reducing the load placed upon the farmer by maintaining

multiple crops concurrently.

Finally, the soil type and water content can greatly impact tuber

damage and loss when harvesting [Bulgakov et al. (2021); Wei et al.

(2019)]. Heavy loam soil is considered particularly difficult to

harvest as it is prone to compaction. This compaction leads to
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large soil clods getting extracted with the potatoes which in turn

bruise and damage the potatoes. A low water content can also

increase the probability of bruising and damaging the potato when

harvesting [Wei et al. (2019)]. Soil water content can be controlled

through irrigation [Tang et al. (2019)]. Irrigation can ensure that

potatoes grow optimally and do not experience water stress.

However, this can negatively impact the environment. As a result,

the environmental impact should be minimized while also

maximizing long-term yield [Tang et al. (2019)]. Table 1 displays

the soil type and water content of the soil in literature. As can be

seen in the table, several works discuss the soil type but fewer

discuss water content. Reporting these values can help to improve

the repeatability of experiments and also help identify trends that

arise due to these variables.
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4 Mechanical harvesters

4.1 Mechanical harvester specifications

When harvesting potatoes, a common design option is the

tunable parameters. These parameters can be adjusted in the field to

optimize the performance of the harvester. The characteristics of

the potato and the soil can influence the optimal parameters. This

review will focus on the forward and conveyor speed of the

harvesters as well as the digging depth and angle. Forward speed

is the velocity of the harvester as it moves along the farm when

harvesting. Conveyor speed is the velocity of the conveyor belt that

lifts the potatoes out of the soil and places them in a collection

device or in windrows. The digging angle is the angle of the digging
TABLE 1 Potato harvesting papers from 2017–2022, the country of their experiment, and soil characteristics that impact harvesting.

Publication Country Soil Type Water Content

Muneer and Dowell (2022) Scotland – –

McPhee et al. (2020) Australia Clay loam –

Issa et al. (2020) China Sandy clay 23.8

Fu et al. (2022) China Heavy clay –

Wei et al. (2019) China Sandy, clayey 15.6

Tang et al. (2019) China – –

Dong et al. (2018) China Orthic anthrosol –

Bulgakov et al. (2021) Ukraine Heavy loam 15–25

Hrushetskyi et al. (2021) Ukraine Average loam 16.5

Bulgakov et al. (2017) Ukraine Medium loamy 11

Hrushetsky et al. (2019) Ukraine Loamy and sandy –

Bulgakov et al. (2020) Ukraine – 11

Bulgakov et al. (2019) Ukraine – –

Poppa et al. (2020) Germany – –

Surdilovic et al. (2018) Germany – –

Schneider et al. (2019) Austria, Germany – –

Nasr et al. (2018) Egypt Clay loam –

Ghebreagziabiher et al. (2022) Eritrea – –

Melito et al. (2017) Italy – –

Sibirev et al. (2019) Russia Sandy 21.5

Gulati (2019) India Sandy to sandy loam –

Khakbazan et al. (2019) Canada Silty clay loam –

Vaitkevičienė et al. (2020) Lithuania – –

Vezirov et al. (2021) Bulgaria – –

Ahangarnezhad et al. (2019) Iran – –

Waxman et al. (2018) USA Silt loam –
The soil characteristics are soil type and water content.
- means no data reported.
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blade in the soil and the digging depth is the depth. In recent

literature, forward speed has varied from 0.9–7.9km/h, conveyor

speed from 0.2–2.37m/s, digger angle from 10–24°, and digging

depth from 12–27cm. The full list of publications discussing one of

these parameters –over the period under study– and the parameters

they used are presented in Table 2.

As much as soil and potato characteristics can help indicate the

optimal harvester parameters, the main criterion affecting these

parameters is the farmer’s optimization criterion. The farmer has to

balance several objectives such as reducing tuber damage and loss

while increasing their harvesting efficiency. Varying the forward

speed of the harvester can result in a variety of outcomes. One

outcome which is impacted by varying the forward speed is tuber

damage and loss. For example, Bulgakov et al. (2021) found that

increasing forward speed from 2.9–7.9km/h while increasing their

rotor diameter from 0.65–1m decreased their tuber damage rate

from 4.2% to 1.5%. This is in line with Bulgakov et al. (2017), which

shows an increase in forward speed decreases the percentage of

damaged tubers greatly, despite the percentage of tubers lost

increasing. However, contradictory results have been found by

Hrushetsky et al. (2019) and Issa et al. (2020), who found that

increasing forward speed increased tuber damage. Additionally,

Hrushetsky et al. (2019) witnessed an increase in both tuber loss and

damage percentage when increasing forward speed for their design

and that of the KST-1,4, which is a standard serial potato

digging machine.

Another factor impacted by forward speed is separation

efficiency. In Bulgakov et al. (2017); Bulgakov et al., (2021), the

impact of forward speed on separation efficiency is studied. In both

works, they notice that increasing forward speed up to a point can

improve separation efficiency, after which increasing forward speed

decreases performance. In Bulgakov et al. (2017), separation

efficiency increased slowly up to 2.4km/h after which there was a

slow decrease from 2.4 to 3.0km/h. As forward speed is further

increased to 4.0km/h a sharp drop in separation efficiency is
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observed. This is confirmed in Bulgakov et al. (2021), where

increasing forward velocity from 2.9–5.4 km/h while increasing

the rotor diameter from 0.65–1m improved soil separation.

However, when further increasing the forward speed from 5.4–

7.9km/h they found that soil separation decreased.

Finally, forward speed also impacts field capacity and harvesting

efficiency; Issa et al. (2020) found that in general increasing forward

speed, increased actual field capacity and the power required by the

harvester, while also decreasing field efficiency and the specific

energy consumption of the harvester. Another observation from

this paper was that increasing forward speed from 2.5–4.5km/h

increased the tuber lifting percentage. Although tuber lifting

percentage decreased when further increasing forward speed from

4.5–6.5km/h.

Digging angle and depth are similar as a greater digging angle

equates to a greater digging depth. We can reduce tuber loss by

varying the digging angle: Issa et al. (2020) found that the lifted

potato percentage increased from 87.63% to 95.14% with an

increase in digging angle from 12°to 22°. The total potato damage

also decreased with an increase in the digging angle. However,

increasing the digging angle increased the soil resistance resulting in

a decreased actual field capacity and field efficiency alongside an

increase in required specific energy and power.

Increasing conveyor speed can also increase tuber damage: Wei

et al. (2019) acknowledges that at various stages of the potato-soil

separation process, the potato will experience different levels of soil

cushioning. As a result, they vary soil-potato proportions, splitting

them into three groups: the primary clod-crushing stage (7.83% -

38.55%), intermediate clod-crushing stage (38.55% - 69.28%) and

fine clod-crushing stage (59.04% - 69.28%). They also experiment

with agitator frequency and amplitude measuring the number of

impacts, impact acceleration, impact duration, and velocity change

as an indicator of potato bruising and damage probability. Potato

bruising was broken into 4 groups: no bruising, slight bruising,

moderate bruising, and severe bruising. Varying the potato-soil
TABLE 2 Harvester specifications in papers from 2017–2022.

Publication Forward Speed (km/h) Digging Depth (cm) Digger Angle (°) Conveyor Speed (m/s)

Bulgakov et al. (2021) 2.9, 3.6, 5.4, 7.2, 7.9 27 10 1.91

Issa et al. (2020) 2.5, 4.5, 6.5 14–25 12, 17, 22 0.78, 1.11

Hrushetskyi et al. (2021) 7.92 14–25 16–24 –

Bulgakov et al. (2017) 1.9, 2.4, 3.0, 4.0 27 – 1.81–2.37

Sibirev et al. (2019) 3–5.2 12–18 – 1–1.78

Nasr et al. (2018) 1.5, 2.0, 2.5 16, 20, 24 – –

Hrushetsky et al. (2019) 0.9, 1.8, 2.7, 3.6, 4.5 – – –

Gulati (2019) 2.7 – – –

Fu et al. (2022) – – – 0.2, 0.4, 0.6, 0.8, 1.0

Poppa et al. (2020) – – – 0.33, 1.00

Wei et al. (2019) – – – 1.54, 1.80, 2.06
Forward speed of the harvester in km/h. Digging depth of the harvester blade in cm. Digger blade angle in °. Conveyor speed in m/s.
- means no data reported.
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proportion had a large influence on the harvest quality and the

impact characteristics experienced during the separation process.

As the potato-soil proportion increased and the soil cushion

decreased, the number of impacts and peak impact acceleration

increased. A slight increase was seen between the primary and

intermediate stages but a significant increase was observed between

the intermediate and fine clod-crushing stages. The movement of

potatoes on the conveying device also varied depending on the

stage. At the primary stage, there was little potato movement, at the

intermediate stage the potatoes were rolling, and at the fine stage,

potatoes were jumping and rolling increasing the damage

probability. As the agitator vibration intensity increased the

number of impacts and peak impact acceleration also increased

gradually. Consequently, vibration intensity should be selected in

order to reduce bruising and mechanical damage while maximizing

separation efficiency. The impact of potato-soil proportion was

more obvious than that of the conveyor running speed. Although at

2.06m/s, the peak impact acceleration at intermediate and fine

potato-soil separation was higher than when the conveyor speed

was 1.54 and 1.80m/s. The number of impacts was slightly smaller

at 2.06m/s compared to 1.80m/s. They do state that increasing

speed, increases separation efficiency, and if the rod-type conveyor

speed is too slow it will negatively impact harvesting efficiency.

However, increasing the conveyor speed will increase the linear

velocity of the potatoes as they fall into the windrows or containers

which can cause damage.

An opposing discovery is presented by Bulgakov et al. (2017),

who shows that the percentage of soil separation and separation

intensity both decrease with an increase in conveyor speed. Finally,

Issa et al. (2020) state that the actual field capacity and field

efficiency increase with conveyor speed, although they conclude

that varying conveyor speed had no significant impact on tuber

damage. They also find that an increase in conveyor speed

decreased tuber lifting percentage.
4.2 Mechanical harvester designs

There is a significant amount of research into the mechanical

design of potato harvesters. These designs vary in complexity, from

simple designs focused on harvester specifications such as digging

depth and forward speed to more complex designs with agitators

and rotary components to remove soil clods from the

production pipeline.

Designing mechanised potato harvesters has proven to be a

constant trade-off between efficiency and potato damage. Designs

which improve efficiency while minimizing damage are highly

desirable. One common design option which can be altered to

optimize this goal is the sub-cultivating working parts of the

harvester. These parts are important in breaking up the soil and

reducing tuber damage. Done effectively, tuber damage can be

reduced and efficiency increased: Hrushetsky et al. (2019)

proposed to improve harvesting efficiency with a digging

component that utilizes a passive blade with cutting discs and soil

compactors. The design reduces the tractive resistance of the potato

digger by 18% while improving the buckling rate of the potato-soil
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layer. Ultimately increasing productivity by 22%, achieving a yield

of 13.2 t/ha and a digging completeness of 99.1% compared to the

serial digger KST-1,4 which achieved 97.6%. This is similar to the

work of Hrushetskyi et al. (2021) who aimed at reducing tuber

mechanical damages while providing qualitative indicators of the

potato heap separation process. They achieved this by

mathematically modelling the movement of particles when the

share-board surface of the harvester collided with the potato

heap. Similar to the work done by Hrushetsky et al. (2019), they

compare their theoretical and experimental results, showing their

model to have a deviation within 5%. They concluded that this

indicates the adequacy of their mathematical model to simulate the

separation process of potato heaps.

A different approach to improving the time efficiency of potato

harvesting was taken by Gulati (2019) by designing a two row

combine harvester. Their harvester can reduce labor, time, and

expenses by harvesting two rows of potatoes at once. The design

works again by breaking the soil ridge, exposing the potatoes so they

can be easily and efficiently collected. These potatoes are then lifted

from the soil and conveyed to the following trolley using a rod-

chain separator-conveyor and a swan-neck elevator-conveyor. Two

sets of agitators are attached to the conveying system. The purpose

of the rod-chain separator-conveyor system with agitators is to

remove the soil, stems and debris from the collected potatoes with

minimal injuries. Their prototype was able to operate with a single

40 horsepower tractor and has an effective field capacity of 0.26 ha/

hr, tuber bruising of 6%, and 98.4% of the excavated potatoes made

it to the trolley with a field loss of 1.6%.

Finally, Bulgakov et al. (2017; Bulgakov et al., 2019; Bulgakov

et al., 2020; Bulgakov et al., 2021) published four articles during 2017–

2021 related to the use of rotary components in potato harvesting.

The goal of this research was to clean the potatoes and in particular

remove soil clods. This was achieved by a variety of designs however

the key connection was that of rotation. Their later publication from

2021, relates to the concept of breaking up the potato-soil layer and

therefore will be discussed first. They designed a rotary-type potato

harvester that improves soil-clod separation in heavy loam soil

[Bulgakov et al. (2021)]. The rotational component was added to

help break up the soil, reducing the number of soil clods lifted onto

the separation tool. Their proposed design can be seen in Figure 6.

They varied the translational velocity of the machine, the rotor

rotation frequency, the rotor diameter, the rotor circumference and

the distance between the spherical discs to determine their effects on

performance. They found that the soil separation improves as the

rotor diameter increases from 0.65 to 1.0m and translational velocity

increases from 0.8 to 1.5m/s. However, when velocity increases from

1.5 to 2.2m/s soil separation decreases. Also, tuber damage rates

decrease from 4.2 to 1.5% when rotor diameter increases from 0.65 to

1.0m and translational velocity increases from 0.8 to 2.2m/s. When

the distance between the rotors’ circumference and the spherical discs

increases, the tuber damage rate also increases. The maximum soil

separation reached was 93.5%.

Other approaches by the same authors, discuss the concept of a

spiral soil separator that can be included in the conveyor system. For

example, Bulgakov et al. (2017) proposed a novel design for a spiral

potato heap separator. This design can be seen in Figure 7. They believe
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that their spiral separator in conjunction with other technical solutions

such as agitators can self-clean the rollers resulting in improved soil

separation. Their initial experiments corroborated this belief. They

found the optimal parameters to be: a peripheral speed of rotation of

1.75–2.0m/s; an inclination angle of the separator to the horizon of 15–

19°; and the installation eccentricity of the spirals as 5–10mm. The

recommended forward speed was 0.6–0.8m/s (2.16–2.88km/h).

Increasing the inclination angle of the separator and eccentricity of

the spirals increased soil sifting and separation intensity. Conversely,

increasing the peripheral speed of rotation towards 2m/s gradually

decreased the percentage of sifted soil. After 2m/s a rapid decrease in
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the percentage of sifted soil was observed, this is due to a reduction in

the contact time between the potato-soil mixture and the separator.

The concept of a spiral separator was further developed in their

work, Bulgakov et al. (2019). In this paper, they discuss a theoretical

design with the goal of removing soil clods and unwanted debris.

They define a mathematical model for sieving potatoes on a spiral

separator and use Matlab to compare the impact of different

variables on the time taken to remove soil clods. They find that as

the angular velocity goes from 10 to 50 rad/s the time to complete

sieving goes from 0.07 to 0.025s. As the spiral’s radius goes from 0.1

to 0.3m the time to complete sieving goes from 0.04 to 0.01s.
FIGURE 6

The design of a rotary-type potato harvester to improve soil clod separation. Image is taken from Bulgakov et al. (2021).
FIGURE 7

The spiral potato heap separator design. Image taken from Bulgakov et al. (2017).
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Increasing the cleaning spiral’s helix angle from 10°to 30°at a radius

of 0.1m reduces the time to complete sieving from 0.75 to 0.026s, at

a radius of 0.28m it goes from 0.28 to 0.005s. Varying the amplitude

of oscillation of the spiral does not significantly impact the soil

clod’s residual mass.

Later in 2020, Bulgakov et al. (2020) implemented the spiral

separator with the goal of removing more clods, soil, plant debris,

and stones on the field so it is better environmentally. The spiral

potato cleaner contained three cleaning spirals mounted as

cantilevers. One end of each spiral is fixed on the hubs connected

to the driving shaft. The soil mixture is dropped from a small height,

which partially destroys the soil layer around the potato. Since the

spirals are cantilevers the free ends make oscillatory movements in

the longitudinal-vertical plane. There are gaps between the spirals

which allow small soil clods and plant debris to fall through. The

theoretical study of the motion and sifting of a body on the surface

of the spiral-type potato cleaner is based on the basic principles of

the dynamics of the motion of a body of variable mass. Their

equation takes into account that the mass of the soil clod will

decrease over time. Field experiments were used to determine the

performance of the potato cleaner. The following indicators were

used to determine the quality of the spiral-type potato cleaner: the

screening ability of the cleaner, the intensity separation of

admixtures, and the specific separation intensity. They then

performed regression on each quality indicator. The cleaning

ability of their design can be improved by altering the angular

velocity, the initial angle of inclination, and the radius of the spirals.

A soil clod reduction of 95% in the time range of 4.8–7.2s was

achieved. Similar to conveyor speed, too fast of an angular velocity

reduces the contact time between the soil clods and the spirals,

reducing the potato cleaner’s separation performance. Decreasing

the initial angle of contact between the potato-soil layer and the

spiral cleaner positively impacts the separation rate of the soil

admixtures from the potato heap.
5 Trends in potato harvesting

One trend identified during the review was the use of electronic

potatoes to understand the impact forces applied on the potato

throughout the harvesting process. This is important not only when

designing a potato harvester but also when selecting the harvester

specifications. Electronic potatoes are objects designed to be as

similar as possible to actual potatoes while containing sensors that

can record the forces exerted on them. They have been utilized by

Sibirev et al. (2019), to determine the impact forces experienced by

potatoes during the full harvesting process for three different potato

harvesters: AVR-Spirit-6200, Dewulf RA-3060 and Bolko. This

study varied the forward speed, depth of the ploughshare in the

soil, and the speed of the open-web elevator to determine their

influence. However, the difficulty with electronic potatoes revolves

around correctly modelling the potato in order to gain accurate

measurements. One paper using the coefficient of restitution and

the static modulus of elasticity to better model the impact

characteristics and elasticity of potatoes is Surdilovic et al. (2018).

The aim of this paper is to better understand the forces applied to
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potatoes when they fall. They found that all bar one of their

dummies did not accurately represent real potatoes. Noting that

the dummy potatoes had a higher maximum impact and

acceleration with a lower deformation.

Several publications, in the period under study, look to change

the status quo of potato harvesting procedures. The first of which is

that farmers are currently not accurately reporting the waste

generated during potato harvesting. As stated by Schneider et al.

(2019), undersized potatoes that get composted should be reported

as waste. Subsequently, they provide a practical approach for

determining potato losses directly on the field. Their study

included two farms, one in Austria, and the other in Germany.

They consider two types of loss, type one, those remaining in the

soil not collected by the harvester, and type two, those sorted out

due to technical or quality reasons. In Austria, they used a net to

catch type two, the net also helped to represent the area that needed

to be excavated to find type one. In the German farm, the farmer de-

haulms the potatoes prior to harvest and plants mustard plants. The

roots of the mustard plant loosen the soil and elevate the potatoes.

Due to this elevation, the potatoes are easier to extract from the soil

which allows the harvester to drive faster. Small potatoes at the root

of the plant are not economically viable for farmers to collect. As a

result, they set shallower digging angles to save fuel. These smaller

potatoes are often automatically filtered out by potato harvesters as

they fall through gaps in the conveyor system which are intended to

remove soil clods from the system. In Austria, loss two was higher

than loss one while in Germany loss one was higher than loss two.

The German farm on average produced larger potatoes which were

cut in half by the harvester. This in conjunction with several smaller

potatoes caused loss one to outnumber loss two. Overall, the loss in

Germany was 1.4% compared to 9.1% in Austria. They conclude

that losses during primary production are highly variable

depending on region, weather, type of crop as well as cultivator

and harvest method. They surmise that the harvester specifications

such as digging depth and forward speed have a big impact on tuber

loss. Their final proposal uses 2-4 people to determine loss, by

collecting and weighing the potatoes on the field.

Another trend potentially interrupting the status quo around

the world is the push to use more renewable energy. In particular,

the trend towards electric vehicles, and potato harvesting is not

exempt from such changes: Muneer and Dowell (2022) provides a

case study on the use of renewable energy on a potato farm in

Scotland, UK. In the case study, they compare the prices of different

energy sources. They show that the cost of generating one kWh of

energy using solar and wind power is lower than coal, gas,

geothermal and nuclear. And that the cost has dropped

significantly in the last 10 years as renewable technology

improves. In order to prove that renewable energy is appropriate

when potato harvesting they need to ensure that power is

consistently supplied to the farm year-round and that the

equipment used to generate the energy will not need to be

replaced frequently. To measure the performance of the wind

turbine they measure the average wind speed (m/s), average

power (kW), and capacity factor (ratio) for wind turbines across

the years of their experiment as well as across the months of 2015.

They also provide the energy generated and capacity factor for solar
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power. Solar power generates the most energy in summer, while

wind generates the most energy in the winter. In Scotland wind

power generates more energy than solar power. A combination of

the two can provide enough energy year-round to harvest and store

potatoes. They notice that the months from March to June produce

the most energy when combining both sources of energy. They also

state that if maintained correctly then the output from both solar

and wind energy does not deteriorate significantly in the first eight

years. With some countries signing on to meet specific climate

targets the pressure placed on agriculture to reduce its emissions

will increase. This may lead to more farms following the blueprint

provided in this article and therefore electronic tractors and potato

harvesters may increase in demand.

Finally, McPhee et al. (2020) attempts to model the impact of

low-mass autonomous vehicles on soil bulk density using

COMPSOIL. They also look at the critical soil bulk density and

what this means for harvesting two different crops, one of which is

potato. They determine suitability in terms of operational capacity

and what this means logistically for farming operations. They wish

to determine the correct size of machine which will reduce traffic-

induced soil compaction while still meeting a certain standard of

productivity. They determine that a medium-sized autonomous

fleet integrated into a Controlled Traffic Farming (CTF) approach

would be best equipped to meet these requirements. However, CTF

is not suitable for root and tuber farming as the harvester must

currently drive over the top of the crops. They also state that even

low-mass autonomous vehicles breach critical bulk density and

therefore are not a solution for avoiding soil compaction in potato

harvesting. They claim that alternative harvester designs must be

created to avoid soil compaction for potato harvesting.
6 Discussion

A better understanding of potato characteristics can improve the

design of the equipment involved in the harvesting and post-

harvest ing processes . However , publ icat ions such as

Ahangarnezhad et al. (2019) need to ensure they develop upon

previous work in the field so as to not waste time repeating the work
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of others. This paper for example only discussed one other paper

which explores the physical and mechanical properties of the potato.

Despite this being a common area of research, especially in the

creation of electronic potatoes. They could also help to further

develop the community and improve the repeatability of their

experiment by providing the soil type and growing conditions for

the potato they used in their experiments. The following subsections,

are the main outcomes of the analysis covered in this work.
6.1 Farming land vs. population

The average population, harvested area, production and yield are

used to produce Figures 8, 9. In Figure 8, the average potato

production for 2017–2021 is plotted against the average harvested

area for this time period. This graph shows that generally, the larger

the average harvested area the higher the average potato production.

The size of each circle equates to the average population of the

country. Countries with a larger population tend to produce more

potatoes than those with a smaller population.

The opposite relationship between potato production and

harvested area is seen when comparing the average potato yield

against the average harvested area for 2017–2021 (see Figure 9). As

the average harvested area increases the average potato yield

decreases. Again, the population size is represented by the size of

the circle. However in this case there appears to be no clear

relationship between the population size and yield.
6.2 Conflicting harvester specifications

Harvester specifications are specific to the field and design of the

potato harvester. Therefore research can often appear to contradict

one another. For example, Bulgakov et al. (2021) states that

increasing forward speed decreases tuber damage while Issa et al.

(2020) found that increasing forward speed increased damage. There

are two important factors to discuss here. Firstly soil type, Bulgakov

et al. (2021) performed their experiments in heavy loam soil which is

notoriously difficult to harvest in due to the high percentage of soil
FIGURE 8

The average potato production (tonnes) between 2017–2021, against the average harvested area dedicated to growing potatoes (ha) for the same
time period for each country displayed. The size of each circle equates to the size of that countries population. Data extracted from Dataset FAO
(2022a) and Dataset FAO (2022b).
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clods. In Issa et al. (2020), experiments were performed over sandy

clay, which is a more preferable environment for potato harvesters.

Most well-known potato combine harvesters are built to only operate

in sandy soils (see Bulgakov et al. (2021)]. The second is the design of

the harvester. The harvester design influences how forces are applied

to the soil and potato. Therefore changing the harvesting

specifications will vary their impact. Different designs will have

different optimal harvester specifications.
6.3 Levels of automation

This section looks at the current level of automation present in each

of the countries discussed in this review. The levels of automation

described here are based loosely on those presented by the SAE

International On-Road Automated Driving Committee, O (2021).

The levels however differ slightly and their definitions are presented

below: Level 0 equates to hand harvesting. Level 1 is a semi-mechanised

harvester. Level 2 is a fully-mechanised harvester. Level 3 is partial

automationof theharvestingprocess.Level4 is the full automationof the

harvesting process. Level 5 is the full automation of the potato

farming process.
Frontiers in Plant Science 13
99
The only work reporting on automated potato harvesting was

McPhee et al. (2020). However it was a hypothetical proposal, no

potato harvester was actually automated. As such the highest level of

automation was achieved by Fu et al. (2022), with their autonomous

potato cleaner. This devicewas not attached to a harvester and therefore

it is not considered part of the harvesting process. Since no other paper

discussed automation, the top level of automation inpotatoharvesting is

therefore Level 2. There were no potato harvesting papers produced by

Peru and therefore it was not assigned a level of automation. However,

based on surrounding countries, it is likely that Peru is Level 1. Table 3

summarizes the automation levels of potato harvesting in the different

countries under study (over the period covered in this review).

China, India, Germany, andAustralia were all assigned Level 2 due

to reviewed papers from these countries discussing fully-mechanised

harvesters [Fu et al. (2022); Gulati (2019); Schneider et al. (2019);

McPhee et al. (2020)]. Ukraine, the USA, and the UK were also

assigned Level 2, though this decision was arrived at based on

additional papers not included in the survey [Bulgakov et al. (2022);

Spang and Stevens (2018); Godwin et al. (1999)]. The UK and

Germany are also part of NWEC-05 which as discussed by Goffart

et al. (2022) has a very high level ofmechanization, this confirmed their

assignment as Level 2. Egypt was assigned Level 1 based on their
TABLE 3 The levels of potato harvesting automation, number of potato harvesting based journal publications between 2017–2022; as well as
production and yield in 2021 for the top potato producing countries by continent.

Countries Automation Level Number of Publications Potato Production (tonnes) Yield (hg/ha)

China 2 5 94,362,175.0 163,179.0

Ukraine 2 6 21,356,320.0 166,430.0

India 2 1 54,230,000.0 241,237.0

Germany 2 3 11,312,100.0 437,944.0

UK 2 1 5,306,719.8 387,352.0

Australia 2 1 1,267,638.6 403,372.0

USA 2 1 18,582,370.0 490,727.0

Egypt 1 2 6,902,817.0 262,758.0

Peru – 0 5,661,443.0 171,245.0
Bold values means larger value.
FIGURE 9

The average yield (hg/ha) between 2017–2021, against the average harvested area dedicated to growing potatoes (ha) for the same time period for each
country displayed. The size of each circle equates to the size of that countries population. Data extracted fromDataset FAO (2022a) and Dataset FAO (2022b).
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reviewed papers [Nasr et al. (2018; Nasr et al., 2019)] proposing a semi-

mechanised potato harvester.

The following arguments can be made to change the automation

level for China, India, and Ukraine. China and India are both primarily

semi-mechanisedharvesting countries [Wei et al. (2019);Gulati (2019)].

Despite this, they have both produced papers in the last five years

discussing theuseoffully-mechanisedharvesters [Gulati (2019); Fu et al.

(2022)]. As a result, both have been assigned an automation Level 2.

According to Hrushetskyi et al. (2021) and Hrushetsky et al.

(2019) the majority of Ukrainian potato harvesting is carried out

manually, despite previously most harvesting being mechanised.

The majority of potato harvesters are imported from Russia, Belarus

and Germany and are outdated. Nevertheless, since Ukrainian

research papers discuss fully-mechanised approaches [Bulgakov

et al. (2022)] they have been assigned an automation Level 2.
7 Conclusion and future work

Potato harvesting is a complex problem as the optimal solution

varies around the world. Potato and soil characteristics contribute

to the selection of an optimal harvesting technique and harvester

specification. In the last five years, automation in potato harvesting

has been discussed hypothetically but not implemented.

Subsequently, the highest level of automation is fully mechanised

harvesting (Automation Level 2). In recent literature, the design of

mechanical potato harvesters has revolved around the breaking up

and removal of soil clods. In addition to an improved ability to

remove soil clods, future harvesters may also be electric as the need

to reduce the environmental impact of farming increases. Intelligent

systems such as electronic potatoes can help to reduce tuber damage

and loss by understanding the forces exerted on the potato during

harvesting. Nevertheless, there is a gap for intelligent systems in

potato harvesting research. Introducing these intelligent systems

may help to ease the strain placed on the agricultural sector caused

by a shrinking workforce and an increasing population.
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Aleinikovienė, J., et al. (2020). Influence of agricultural management practices on the
soil properties and mineral composition of potato tubers with different colored flesh.
Sustainability 12. doi: 10.3390/su12219103

Vezirov, C., Atanasov, A., and Vladut, V. (2021). Calculation of field capacity and
fuel consumption of mobile machinery with bunkers, tanks or other containers for
agricultural goods. INMATEH- AGRICULTURAL ENGINEERING 63, 19–28.
doi: 10.35633/inmateh-63-02

Waxman, A., Stark, J., Guenthner, J., Olsen, N., Thornton, M., and Novy, R. (2018).
An economic analysis of the effects of harvest timing on yield, quality, and processing
contract price for three potato varieties. Am. J. Potato Res. 95. doi: 10.1007/s12230-018-
9663-z

Wei, Z., Li, H., Sun, C., Su, G., Wenzheng, L., and Li, X. (2019). Experiments and
analysis of a conveying device for soil separation and clod-crushing for a potato
harvester. Appl. Eng. Agric. 35, 987–996. doi: 10.13031/aea.13283

Wu, W., Yu, Q., You, L., Chen, K., Tang, H., and Liu, J. (2018). Global cropping
intensity gaps: increasing food production without cropland expansion. Land Use
Policy 76, 515–525. doi: 10.1016/j.landusepol.2018.02.032

Zhang, H., Xu, F., Wu, Y., Hu, H. H., and Dai, X. F. (2017). Progress of potato staple
food research and industry development in china. J. Integr. Agric. 16, 2924–2932.
doi: 10.1016/S2095-3119(17)61736-2
frontiersin.org

https://doi.org/10.1016/S0168-1699(99)00024-1
https://doi.org/10.1007/s11540-021-09535-8
https://doi.org/10.1515/opag-2018-0019
https://doi.org/10.1515/opag-2018-0019
https://doi.org/10.35633/INMATEH-59-11
https://doi.org/10.3389/fsufs.2020.519324
https://doi.org/10.1016/j.still.2019.104357
https://doi.org/10.1016/j.biosystemseng.2020.05.006
https://doi.org/10.13128/ahs-21953
https://doi.org/10.3390/ani11092683
https://doi.org/10.1093/ijlct/ctac012
https://doi.org/10.4271/J3016\s\do5(2)02104
https://doi.org/10.4271/J3016\s\do5(2)02104
https://doi.org/10.15150/lt.2020.3245
https://doi.org/10.1016/S0168-1591(98)00122-1
https://ourworldindata.org/agricultural-production
https://doi.org/10.1016/j.wasman.2019.01.020
https://doi.org/10.17221/96/2018-RAE
https://doi.org/10.3390/agronomy11091857
https://doi.org/10.3390/su10082854
https://doi.org/10.3390/su10082854
https://doi.org/10.1016/j.compag.2018.06.009
https://doi.org/10.1016/j.compag.2018.06.009
https://doi.org/10.1016/j.agrformet.2019.04.001
https://doi.org/10.3390/su12219103
https://doi.org/10.35633/inmateh-63-02
https://doi.org/10.1007/s12230-018-9663-z
https://doi.org/10.1007/s12230-018-9663-z
https://doi.org/10.13031/aea.13283
https://doi.org/10.1016/j.landusepol.2018.02.032
https://doi.org/10.1016/S2095-3119(17)61736-2
https://doi.org/10.3389/fpls.2023.1156734
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Johnson and Auat Cheein 10.3389/fpls.2023.1156734
Appendix A1
APPENDIX TABLE 1 China’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 88,536,429.0 182,085.0 4,862,361.0 1,442,041,109

2018 90,321,442.0 189,722.0 4,760,724.0 1,448,928,199

2019 89,562,447.0 221,750.0 4,038,885.0 1,453,801,543

2020 92,852,722.1 198,588.0 4,675,654.0 1,456,928,486

2021 94,362,175.0 163,179.0 5,782,738.0 1,457,934,562

Mean 91,127,043.0 191,064.8 4,824,072.4 1,451,926,779.8

Std. 2,411,031.0 21,553.6 625,113.2 6,544,906.9

% Change 6.6 -10.4 18.9 1.1
F
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The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
Appendix A2
APPENDIX TABLE 2 India’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 48,605,000.0 223,061.0 2,179,000.0 1,354,195,680

2018 51,310,000.0 239,542.0 2,142,000.0 1,369,003,306

2019 50,190,000.0 230,971.0 2,173,000.0 1,383,112,050

2020 48,562,000.0 236,772.0 2,051,000.0 1,396,387,127

2021 54,230,000.0 241,237.0 2,248,000.0 1,407,563,842

Mean 50,579,400.0 234,316.6 2,158,600.0 1,382,052,401.0

Std. 2,344,165.5 7,401.1 71,535.3 21,235,092.6

% Change 11.6 8.2 3.2 3.9
The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
Appendix A3
APPENDIX TABLE 3 Germany’s potato production (in tonnes), yield (in
hg/ha), area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 11,720,000.0 467,864.0 250,500.0 82,624,374

(Continued)
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APPENDIX TABLE 3 Continued

Year Production Yield Area
Harvested

Population

2018 8,920,800.0 353,719.0 252,200.0 82,896,696

2019 10,602,200.0 390,361.0 271,600.0 83,148,141

2020 11,715,100.0 428,340.0 273,500.0 83,328,988

2021 11,312,100.0 437,944.0 258,300.0 83,408,554

Mean 10,854,040.0 415,645.6 261,220.0 83,081,350.6

Std. 1,172,814.0 44,326.5 10,762.8 322,402.0

% Change -3.5 -6.4 3.1 1.0
The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
Appendix A4
APPENDIX TABLE 4 UK’s potato production (in tonnes), yield (in hg/ha),
area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 6,218,000.0 425,890.0 146,000.0 66,064,804

2018 5,060,000.0 361,429.0 140,000.0 66,432,993

2019 5,307,000.0 368,542.0 144,000.0 66,778,659

2020 5,512,813.1 388,226.0 142,000.0 67,059,474

2021 5,306,719.8 387,352.0 137,000.0 67,281,039

Mean 5,480,906.6 386,287.8 141,800.0 66,723,393.8

Std. 442,174.1 25,030.5 3,492.9 486,067.2

% Change -14.7 -9.1 -6.2 1.8
The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
Appendix A5
APPENDIX TABLE 5 Ukraine’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 22,208,220.0 167,837.0 1,323,200.0 44,657,257

2018 22,503,970.0 170,498.0 1,319,900.0 44,446,954

2019 20,269,190.0 154,869.0 1,308,800.0 44,211,094

2020 20,837,990.0 157,244.0 1,325,200.0 43,909,666

2021 21,356,320.0 166,430.0 1,283,200.0 43,531,422

(Continued)
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APPENDIX TABLE 5 Continued

Year Production Yield Area
Harvested

Population

Mean 21,435,138.0 163,375.6 1,312,060.0 44,151,278.6

Std. 930,361.5 6,890.6 17,333.2 444,301.4

% Change -3.8 -0.8 -3.0 -2.5
F
rontiers in Pl
ant Science
The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
Appendix A6
APPENDIX TABLE 6 USA’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 20,453,430.0 483,887.0 422,690.0 329,791,231

2018 20,421,560.0 497,274.0 410,670.0 332,140,037

2019 19,251,320.0 507,522.0 379,320.0 334,319,671

2020 19,051,790.0 516,365.0 368,960.0 335,942,003

2021 18,582,370.0 490,727.0 378,670.0 336,997,624

Mean 19,552,094.0 499,155.0 392,062.0 333,838,113.2

Std. 844,024.8 12,979.5 23,236.5 2,911,248.8

% Change -9.2 1.4 -10.4 2.2
The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
Appendix A7
APPENDIX TABLE 7 Peru’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 4,776,294.0 153,875.0 310,400.0 31,605,486

2018 5,133,927.3 159,012.0 322,864.0 32,203,944

2019 5,389,231.0 162,730.0 331,177.0 32,824,861

2020 5,515,378.0 165,551.0 333,153.0 33,304,756

2021 5,661,443.0 171,245.0 330,604.0 33,715,471

Mean 5,295,254.7 162,482.6 325,639.6 32,730,903.6

Std. 348,828.9 6,564.9 9,377.0 844,357.6

% Change 18.5 11.3 6.5 6.7
The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
17
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value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
Appendix A8
APPENDIX TABLE 8 Egypt’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 4,841,040.0 277,724.0 174,311.0 101,789,386

2018 4,960,062.0 289,282.0 171,461.0 103,740,765

2019 5,200,563.0 292,876.0 177,569.0 105,618,671

2020 6,786,340.0 246,203.0 275,640.0 107,465,134

2021 6,902,817.0 262,758.0 262,706.0 109,262,178

Mean 5,738,164.4 273,768.6 212,337.4 105,575,226.8

Std. 1,019,114.6 19,381.0 52,129.5 2,952,333.2

% Change 42.6 -5.4 50.7 7.3
The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
Appendix A9
APPENDIX TABLE 9 Australia’s potato production (in tonnes), yield (in
hg/ha), area harvested (in ha), and population for the years 2017–2021.

Year Production Yield Area
Harvested

Population

2017 1,105,194.2 389,534.0 28,372.0 24,590,334

2018 1,188,655.0 399,682.0 29,740.0 24,979,230

2019 1,225,273.6 378,022.0 32,413.0 25,357,170

2020 1,076,780.1 397,971.0 27,057.0 25,670,051

2021 1,267,638.6 403,372.0 31,426.0 25,921,089

Mean 1,172,708.3 393,716.2 29,801.6 25,303,574.8

Std. 80,295.6 10,133.2 2,181.7 532,074.5

% Change 14.7 3.6 10.8 5.4
The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).
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Unstructured road extraction
and roadside fruit recognition in
grape orchards based on a
synchronous detection algorithm

Xinzhao Zhou1,2, Xiangjun Zou2,3, Wei Tang2, Zhiwei Yan2,
Hewei Meng1*† and Xiwen Luo1,4,5*†

1College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China, 2Foshan-
Zhongke Innovation Research Institute of Intelligent Agriculture, Foshan, China, 3Foshan Sino-tech
Industrial Technology Research Institute, Foshan, China, 4College of Engineering, South China
Agricultural University, Guangzhou, China, 5Guangdong Provincial Key Laboratory of Agricultural
Artificial Intelligence (GDKL-AAI), Guangzhou, China
Accurate road extraction and recognition of roadside fruit in complex orchard

environments are essential prerequisites for robotic fruit picking and walking

behavioral decisions. In this study, a novel algorithm was proposed for

unstructured road extraction and roadside fruit synchronous recognition, with

wine grapes and nonstructural orchards as research objects. Initially, a

preprocessing method tailored to field orchards was proposed to reduce the

interference of adverse factors in the operating environment. The preprocessing

method contained 4 parts: interception of regions of interest, bilateral filter,

logarithmic space transformation and image enhancement based on the MSRCR

algorithm. Subsequently, the analysis of the enhanced image enabled the

optimization of the gray factor, and a road region extraction method based on

dual-space fusion was proposed by color channel enhancement and gray factor

optimization. Furthermore, the YOLOmodel suitable for grape cluster recognition in

the wild environment was selected, and its parameters were optimized to enhance

the recognition performance of themodel for randomly distributed grapes. Finally, a

fusion recognition framework was innovatively established, wherein the road

extraction result was taken as input, and the optimized parameter YOLO model

was utilized to identify roadside fruits, thus realizing synchronous road extraction and

roadside fruit detection. Experimental results demonstrated that the proposed

method based on the pretreatment could reduce the impact of interfering factors

in complex orchard environments and enhance the quality of road extraction. Using

the optimized YOLOv7 model, the precision, recall, mAP, and F1-score for roadside

fruit cluster detectionwere 88.9%, 89.7%, 93.4%, and 89.3%, respectively, all of which

were higher than those of the YOLOv5 model and were more suitable for roadside

grape recognition. Compared to the identification results obtained by the grape

detection algorithm alone, the proposed synchronous algorithm increased the

number of fruit identifications by 23.84% and the detection speed by 14.33%. This

research enhanced the perception ability of robots and provided a solid support for

behavioral decision systems.

KEYWORDS

non-structural environment, machine vision, fruit harvesting robot, deep learning,
roadside fruits detection
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1 Introduction

Around the world, fruit plays an increasingly vital role in

agriculture and economy. According to Food and Agriculture

Organization of the United Nations (FAO), the total value of grape

production has increased steadily since 1991, to more than $80 billion

by 2020. Fruit harvesting is characterized by having limited work

cycles and being labor intensive and time-consuming. With aging of

the population and lack of rural labor force, labor costs have

increased year by year (Wu et al., 2021; Li Y. J. et al., 2022). Under

the influence of the COVID-19 pandemic and related policies (Aamir

et al., 2021; Nawaz et al., 2021; Bhatti et al., 2022a; Bhatti et al.,

2022b), the contradiction between labor demand and labor costs has

become more prominent (Liang et al., 2021; Lin et al., 2022). This has

had a negative impact on traditional hand-picking operations. With

the deterioration of environmental issues (Bhatti et al., 2022; Galvan

et al., 2022; Tang et al., 2023a), all the above factors pose a great

challenge to China’s fruit industry. With the rapid development of

modern information technology and artificial intelligence technology,

fruit harvesting robots and their related technologies have attracted

extensive attention (Chen M. et al., 2020; Fu L. H. et al., 2020; Fu L.

et al., 2020; Rysz and Mehta, 2021; Yang, 2021; Kang et al., 2022;

Wang X. et al., 2022; Wu Z. et al., 2022).

As the basis of autonomous navigation, road detection is crucial

to the precise operation of fruit harvesting robots and has become

the focus of research in recent years (Ma et al., 2021; Sun et al.,

2022). The main objective of road extraction is to extract the road

regions from the background in a complex scene to lay the

foundation for determining the navigation path. According to the

characteristics of roads, they can be divided into two categories:

structured roads and unstructured roads. Structured roads are

standardized roads similar to urban roads and expressways, with

clear lane markings, regular road edges, and distinct geometric

features. Unstructured roads are those with irregular road edges,

unclear road boundaries, no lane lines, and similar to orchards and

rural areas. Compared to structured roads, unstructured roads have

a more complex environmental background. For the most part, the

surface of the unstructured road is mostly uneven, with a few

random weeds. In contrast, the problem of unstructured road

extraction is more complicated.

Research of road detection is usually divided into machine

learning segmentation methods and traditional algorithms based on

image features.

Road segmentation methods of machine learning are mainly

divided into clustering (Zhang Z. Q. et al., 2022b), seed support

vector machine (SVM; Liu et al., 2018), deep learning (Li et al.,

2020), and other methods. Yang Z. et al. (2022) have proposed a

visual navigation path extraction method based on neural network

and pixel scanning. They introduced Segnet and Unet networks to

improve the segmentation effect of orchard road condition

information and background environment and adopted sliding

filtering algorithm, a scanning method, and a weighted average

method to fit the final navigation path. Lei et al. (2021) have

combined improved SVM and two-dimensional lidar point cloud

data to detect and identify unstructured roads. Wang E. et al. (2019)

have realized road extraction of complex scenes by combining
Frontiers in Plant Science 02
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illumination invariant images and analyzing probability map and

gradient information. Kim et al. (2020) have implemented

automatic path detection in semi-structured orchards based on

patch and CNN neural network methods. Alam et al. (2021) have

implemented road extraction in structured and unstructured

environments by combining multi-nearest neighbor classification

and soft voting aggregation. Some scholars have also studied

methods for road extraction in remote sensing based on machine

learning methods (Xin et al., 2019; Chen et al., 2022; Guan et al.,

2022; Yang M. et al., 2022). However, relevant research has been

more on the basis of urban development analysis or traffic network

monitoring and other fields, which are not applicable to picking

robots. Machine learning usually does not require manual feature

selection. However, this method requires specific network training

and a large number of training sets and has certain limitations.

In the method based on image-feature analysis, some scholars

use color, texture and other features to distinguish road and

nonroad areas by establishing models and other methods. Zhou

et al. (2021) have used the H component to extract the target path

for the sky region. Chen J et al. (2020; 2021) have used an improved

gray scale factor and the maximum interclass variance method

(Otsu) method to extract gray scale images of soil and plants and

realized segmentation of soil and plants in the greenhouse

environment. Qi et al. (2019) have segmented the road region

based on a graph-based manifold ranking approach and used

binomial functions to fit the road region model, thus realizing

road recognition in rural environment. Some scholars have also

considered the vanishing point and other spatial structure features

in the process of road extraction. Su et al. (2019) have adopted the

Dijkstra method combined with single-line lidar to realize road

extraction on the basis of the constraints of pre-vanishing points of

illumination-invariant images. Phung et al. (2016) have realized

pedestrian lane detection based on an improved vanishing point

estimation method combined with geometry and color features.

However, the detection of vanishing points is time-consuming and

mostly applied to structured road detection (Xu et al., 2018), which

is not suitable for dealing with unstructured roads.

To realize autonomous walking and precise operation of fruit

harvesting robots in orchard environments and aiming at the

uncertainty of random distribution of roadside fruit and road

complexity, it is necessary to deeply study the problem of

synchronous road extraction and fruit identification. This study

enables robot perception of barrier-free road areas and roadside fruit

distribution in the current environment and can provide an inferential

basis for robot global operational behavior decisions in complex

orchard environments. Moreover, this study can lay the foundation

for the joint control and operation of navigation and picking based on

visual guidance in the panoramic environment of wild orchards.

However, current approaches have only focused on road extraction,

without considering the roadside fruit detection. In this case, the

autonomous decision-making function of the robot cannot perform

reasonable picking responses and navigation path planning based on

the random distribution of fruits along the road, which is detrimental to

the intelligent global continuous operation of the robot.

In terms of object detection, neural networks have been widely

used in the field of smart agriculture (Khaki and Wang, 2019; Tang
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et al., 2020; Feng et al., 2022; Fu et al., 2022), and You Only Look

Once (YOLO), as one of the fastest target detection models at

present, has also been rapidly developed (Ye et al., 2020; Ning et al.,

2022; Wang X. Y. et al., 2022). For example, due to the excellent

performance of the YOLOv5 model in terms of accuracy and

running time, it has been greatly valued by scholars in the

research of crop growth-morphology recognition (Lv et al., 2022;

Rong et al., 2022; Wu F. et al., 2022), detection and positioning

(Fang et al., 2022; Jintasuttisak et al., 2022; Li G. et al., 2022; Wang

H. et al., 2022), tracking counting (Lyu et al., 2022; She et al., 2022;

Zang et al., 2022), and pest recognition (Li S. et al., 2022; Qi et al.,

2022; Zhang et al., 2022).

Given the importance of detecting and locating fruit for picking

robots, researchers have explored various fruit detection and

location methods based on neural networks (Wang C. et al., 2019;

Ge et al., 2022; Jia et al., 2022; Zhou et al., 2022; Tang et al., 2023c).

To improve the operational efficiency and success rate of picking

robots, researchers have gradually shifted their focus to picking-

path planning algorithms and picking decision systems based on

fruit detection (Lin et al., 2021; Wang Y. et al., 2022). For example,

Xu et al. (2022) have proposed an efficient combined multipoint

picking scheme for tea buds through a greedy algorithm and ant

colony algorithm, which improved picking efficiency and overall

picking success rate. Ning et al. (2022) proposed a method for

recognition and planning robotic picking sequences for sweet

peppers based on an improved YOLOV4 model and a principle

of anticollision picking within picking clusters. The method can

accurately detects sweet peppers, reduces collision damage, and

improves picking efficiency in high-density orchard environments.

Rong et al. (2022) have proposed an obstacle avoidance method that

combines end-effector grasping-pose adjustment and harvesting

sequence planning based on a custom manipulator. Experiments

show that the method significantly reduced the impact of collision

on the picking and improved the success rate of tomato picking.

Although some progress has been made in the study of local target

detection and picking planning, there have been few reports on the

synchronization information perception needs of picking robots to

autonomously pick and walk.

To implement the behavioral decision-making function of the

picker robot to walk autonomously and pick accurately throughout

the entire process in a large-area orchard environment, road

extraction and roadside fruit identification should first be

implemented in the current working scenario. Currently, many

algorithms only focus on road extraction and ignore the fruit

distribution along the road, which leads to the serious problem

that picking robots are not robust enough to adapt to the changing

orchard environments. Therefore, a road extraction and roadside

fruit synchronous recognition algorithm based on unstructured

road was proposed in this study. The main contributions of this

study were as follows:
Fron
(1) Currently, numerous studies have focused on extracting

unstructured roads without considering the synchronous

recognition of roadside fruits, which is detrimental to

improving the ability of picking robots to obtain

environmental information. Motivated by the need for
tiers in Plant Science 03
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cooperative behavioral decision-making in fruit picking

robots, this study proposed a framework for unstructured

road extraction and synchronous recognition of roadside

fruit. This framework can effectively improve the ability of

fruit-picking robots to extract crucial information from the

picking environment and lay a foundation for multitask

parallel processing, thereby enabling cooperative behavioral

decision-making among fruit-picking robots.

(2) Due to the randomness and complexity of orchard

environments, the results of road extraction directly

from raw images were not very accurate and contained a

large number of misidentified regions. An image

preprocessing method based on image enhancement and

filtering preprocessing was designed here which reduced

the influence of interference existing in the complex

orchard environment. Simultaneously, this approach

enhanced the precision of road extraction results and was

of great importance for improving the quality of road

extraction.

(3) The irregular road edges of unstructured roads and various

interference factors in orchards considerably impacted the

stability of the road extraction results. To address this issue,

analyses of orchard images were conducted to optimize the

gray factor and enhance its adaptability to field orchards. A

two-space fusion unstructured road extraction algorithm

was proposed, which used color channel enhancement and

gray factor optimization and demonstrated great

adaptability to interference factors, such as shadow,

uneven lighting, grapevine on the side of the road, and

strong contrast between light and shade in the field complex

environment.

(4) A fusion algorithm based on the road extraction algorithm

and roadside fruit detection algorithm was constructed.

Based on the detection requirements for roadside grapes in

wide-field environments, YOLO models were compared,

selected, and optimized for their parameters. Subsequently,

the three functions of image preprocessing, road extraction,

and roadside grape recognition were integrated to construct

a synchronous recognition algorithm, allowing for the

simultaneous extraction of road and other key

information during the fruit-picking process. The

proposed algorithm provided information for decision-

making and reasoning of collaborative behavior of key

parts of the robot, so as to improve robot adaptability to

randomly distributed fruit.
This study will lay a foundation for the construction of robot

behavior decision control system, and it is of great significance for

improving the intelligence, accuracy, and stability of robot field

autonomous work.

The rest of this report is organized as follows. Section 2

introduced the materials and data. Section 3 explained the

structure and implementation of the algorithm. Section 4

presented the experimental results and comparative discussion.

Finally, Section 5 summarized the study and plans for future work.
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2 Materials and data acquisition

2.1 Experimental platform for wine grape
picking and moving

This study was based on the wine grape visual mobile picking

robot that was independently designed and developed. The overall

layout of the test platform is shown in Figure 1A. The test platform

was battery powered to operate in the orchard. The length and

width of the platform were 1.065 and 0.7 m, respectively, and the

maximum climbing capacity was 30°. Two cameras were installed

on the end-effector of the platform as picking camera and

navigation camera, separately.

The control process of the experimental platform was divided

into three main parts (Figure 1B). The first part of the control

system was to construct algorithms for unstructured road

extraction and roadside fruit synchronization recognition based

on the collected datasets A and B. Then, the industrial personal

computer (IPC) implemented the algorithm-based key

information acquisition, recognition, and behavioral decisions.

The second part of the control system was to use the IPC to

control the navigation camera for orchard road extraction and

roadside fruit recognition. By recognizing the distinction between

unstructured roads and chaotic backgrounds, as well as the

classification and recognition of roadside grapes and grapevines,

it provided a judgment basis for the IPC to distinguish the

presence of roadside fruit and lay the foundation for behavioral

decisions. Based on the above information, the third part of the

control system extracted the navigation path of the orchard and

judged the presence of fruit in the current roadside area. If there

were fruit on the roadside, the controller controlled the tracked

vehicle to approach the fruit area of the roadside fruit tree and
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fed the information to the robotic arm and another set of stereo

camera for precise positioning (the picking camera for short) for

picking operations. Using the picking camera, fruit could be re-

identified and accurately positioned to achieve fruit picking in

complex environments. The work of this study mainly

implemented the first part of the control system.
2.2 Experimental subjects

Wine grapes and non-structural orchards were taken as

experiment subjects in this research. Wine grape fruit are

clustered in shape and usually purple at maturity, with a clear

color difference from leaves. The planting mode is usually in rows

with a certain row spacing. As the fruit distribution and planting

patterns of wine grapes are similar to other row-grown crops, such

as tomato and dragon fruit, the results of this study are expected to

be extendable to other types of fruit.
2.3 Image acquisition

In August 2022, experimental images were obtained from Xinyu

Winehouse (Bohu County, Bazhou, Xinjiang). The device used for

dataset sampling was an OPPO R11 mobile phone with a 20-

megapixel rear camera. All images were taken under natural

daylight conditions without artificial light sources and saved in

Joint Photographic Expert Group (jpg) format with image size

4608×2128 pixels.

The collected images were divided into datasets A and B. The

original images of vineyards in dataset A included roads and vines.

As the algorithm proposed in this study was intended to provide a
BA

FIGURE 1

Overall layout and control flow of test platform. (A) Overall layout of test platform. Mechanical arm (AUBO-i5, AUBO), 1; Battery, 2; Controller, 3;
Camera for picking (HBV-1714, Huiber Vision Technology Co., Ltd), 4; Camera for navigation (ZED 2, Stereolabs), 5; End-effector, 6; Human Machine
Interaction, 7; Industrial Personal Computer (IPC), 8; and Track car, 9. (B) Control flow of the test platform.
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basis for behavioral decisions of grape-picking robots, the focus was

on the region of unstructured road and distribution of fruit in a

unilateral grape row. Therefore, during the collection process of

dataset A, the camera observation direction was biased to the right

of the road center line (Figure 2A). A total of 337 typical orchard

images were selected, in which the roads in the grape orchard

environment had features of shadow and irregular road edges

(Figure 2B). Dataset B was composed of 1081 valid images

showing wine grape clusters, including grape samples in

numerous cases, with images of grapes in front and backlight

(Figures 2C, D).
2.4 Image datasets

To simulate the vision system of the picking robot, valid grape

and orchard image samples were collected under different

conditions of illumination, weather, sampling distance, and

differing severity of fruit adhesion and occlusion, forming datasets

A and B.

Dataset A consisted mainly of orchard images with uneven

lighting, with multiple weeds, with large shadows, in different

weather conditions, and with different light and shade

contrasts (Figure 3A).

The natural images of grapes (dataset B) mainly included

images of single cluster grape, multiple clusters grape, slightly-

adhered grape, severely-adhered grapes, front and back

illumination, small string grapes, large cluster grapes, and grapes

on a sunny day, on a cloudy day, and in shadow as well as grapes at
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different sampling distances. Their representative images are shown

in Figure 3B.

Datasets A and B were challenging considering the effects of

complex background, light levels, shadows, randomly distributed

fruits, weeds, and different levels of fruit occlusion. Images of grapes

and vineyards in a typical complex environment were contained in

dataset A and B (Figure 3).

Dataset A was only employed for testing the performance of

unstructured road extraction and the overall algorithm, with 100

images in this dataset randomly selected as the test set for

algorithms in this study. To improve algorithm efficiency, the

processing image size of the algorithm was set to 1024×473 pixels.

Dataset B was used for training and validation of the fruit model

on the YOLOv7 roadside. Under LabelImg (https://github.com/

tzutalin/labelImg), grapes in images were manually annotated as

rectangles with the label “fruit,”which then saved annotation files in

“txt” format. Among them, the whole image set was randomly

divided into training and validation sets with a ratio of 9 to 1.
3 Methodology and algorithm
description

In this study, the algorithm content was mainly divided into two

parts: First, the road in the unstructured orchard environment was

extracted. Second, taking the road extraction results as input,

roadside fruit were identified through YOLOv7 to realize the

synchronous information extraction of the road extraction and

roadside fruit detection. The algorithm process of this study is

shown in Figure 4.
B

C

D

A

FIGURE 2

Schematic diagram of the acquisition process of test images. (A) The camera observation direction. (B) Example image of the wine vineyard.
(C) Examples of frontlight images. (D) Examples of backlight images.
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3.1 Image preprocessing

During image acquisition in the orchard, it was inevitable to be

disturbed by external environmental noise, such as uneven light and

dust, which made the image details unclear and led to road

extraction errors. Therefore, this study preprocessed the images in

dataset A, which was of great significance for improving the quality

of road segmentation (Wang et al., 2018; Zhang P. et al., 2022). The

image preprocessing method proposed in this study consisted offive

steps, with the processing procedure and image quality

enhancement results illustrated in Figure 5. Further details can be

found in Sections 3.3.1 - 3.1.5.

3.1.1 Interception of regions of interest
The images in dataset A were composed of sky, road, grapes,

and messy background, among which the sky and messy

background were mainly distributed at the top of an image. In

the image processing process, if the entire image captured by the

camera was merely taken as the research object, a substantial

amount of computation would be required and a significant

amount of interference inevitably occurs, which will reduce road

extraction accuracy. To this end, only the regions of interest (ROI)

of the image was extracted for subsequent processing. After a

number of experiments, it was found that the appropriate ROI

was at the lower 5/6 position of the image (Figure 5B). This ROI

selection not only significantly reduced the calculation volume, but

also ensured the accuracy and reliability of unstructured

road extraction.
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3.1.2 Bilateral filter
A bilateral filter can smooth the image while maintaining edge

details (Routray et al., 2020). To enhance and improve contrast

between the foreground and background of the road to facilitate

subsequent segmentation, a bilateral filter was used to process the

present images. To reduce the influence of minor areas, such as

vines, fruits, vine gaps, and cavities in subsequent segmentation, the

key parameters of the bilateral filter (Liu et al., 2017) in this study

were set to: diameter d of the pixel domain was 60, standard

deviation of spatial domain 120, and standard deviation of

intensity domain 60 (Figure 5C).

3.1.3 Logarithmic space transformation
To enhance the details in the shadowed regions and provide

images with enhanced details and uniform brightness for

subsequent MSRCR processing, a logarithmic transformation of

the V-component in hue, saturation, and value (HSV) space was

used here to expand the low gray values and compress high gray

values in this channel (Figure 5D). The standard form was

S = c ∗ log (1 + L) (1)

where S is the correction image, L the source image, and c the

gain adjustment parameter, which was set to 1.

3.1.4 Image enhancement based on the MSRCR
algorithm

After the above processing and observing the image under RGB

color space, the altering influence of illumination was found not to
B

A

FIGURE 3

Natural images of vineyards and wine grape clusters. (A) Natural images of vineyards. (B) Natural images of wine grape clusters.
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be entirely eliminated. Therefore, the MSRCR algorithm was

selected for image correction and enhancement here to obtain

realistic images with reduced illumination effects. The resulting

Equations 2–4 were expressed as:

RMSRCR(x, y) = Ci(x, y)RMSR(x, y) (2)

RMSR(x, y) =o
N

1
jn log Ii(x, y) −o

N

1
log F(x, y) ∗ Ii(x, y)½ �

� �
(3)

Ci(x, y) = b log aIi(x, y)½ � − log o
N

1
(Ii(x, y))

� �� �
(4)

The optimal functional form of MSRCR is shown in Equation 5,

expressed as:

RMSRCR(x, y) = G Ci(x, y) log Ii(x, y) −o
N

1
log (Ii(x, y) ∗ F(x, y)

" #
+ b

( )

(5)

where Ii(x, y) is the color component image corresponding to

each color channel, F(x, y) the Gaussian filter function, and Ci(x, y)

the color restoration factor of the ith color channel, jn the weight,

and N the number of spectral channel, where o
N

1
jn = 1, b a gain
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constant, and a the strength of nonlinearity, G and b the final gain

and offset values, respectively. The parameters of MSRCR in this

study were configured according to the reference (Jobson

et al., 1997).

3.1.5 S-component enhancement
To enrich color information, this study adjusted the saturation

channel S to enhance image quality, with the formulas described by

Equations 6–7 (Huang et al., 2022), expressed as:

Sopt = as ∗T ∗ Sori (6)

T =
mean(R,G,B) +Max(R,G,B) +Min(R,G,B)

mean(R,G,B)
(7)

where Sopt represents the enhanced saturation channel, Sori the

original saturation channel of S, mean(R,G,B), Max(R,G, B), and

Min(R,G,B) the average, maximum, and minimum values of pixels

corresponding to R, G, and B color channels, respectively, and as

and T the gain coefficients of the saturation channel, which control

the enhancement degree of S channel image.

Qualitative and quantitative evaluation is significant for the

evaluation of image quality. In the qualitative evaluation, the quality
FIGURE 4

Flow chart of the entire algorithm.
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of the enhanced image was evaluated in color, contrast, and detail.

By comparing the gain effect at different values, it was observed that,

if the value of as was too high or low, the image contrast was

reduced or saturation too strong, which affected the visual effect of

the image. When as = 0.2, the contrast of the image was low,

resulting in poor overall visual effect. When as was greater than 0.5,

there was significant color distortion despite the high contrast of

images, resulting in partial loss of detail in the image. When as =

0.3, although the tone of the image was better maintained, the

enhancement effect was not obvious compared with the image

without S-component enhancement. When as = 0.4, the contrast

of the image was improved significantly without obvious color

distortion and the visual effect was the best.

In the quantitative evaluation, this paper evaluated the

performance the processing results by three metrics Peak signal-to-
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noise ratio (PSNR, He et al., 2015), information entropy value (IE,

Wang et al., 2021) and average gradient (AG, Zhang X. et al., 2022).

PSNR has been widely used for measuring attributes like texture

details enhancement, details preservation and contrast enhancement.

A higher PSNR generally indicates that the processed image is of

higher quality (Gupta and Tiwari, 2019). IE is mainly an objective

evaluation index that measures how much information an image

contains. The enormous IE value indicates that the enhancement

image contains more image information. AG represents the degree of

change in the gray value of the image, and is one of the criteria for

judging the processing of image details and clarity. The large AG value

indicates that the enhancement image contains more gradient

information and detailed texture. The image enhancement quality

evaluation parameters under different values of as were shown in

Figure 5F, where the optimal parameter values were marked in red
B

C

D

E

F

G
A

FIGURE 5

Process and results of image preprocessing algorithm. (A) Original image. (B) Region of interest. (C) Bilateral filtering result. (D) Log space transformation.
(E) Image enhancement based on the MSRCR algorithm. (F) S-component enhancement. (G) Results of image preprocessing algorithm.
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and the second highest parameter values were highlighted in blue.

Figure illustrated that the value of AG increased as the value of as

increased, indicating that the sharpness of the image was also

enhanced progressively. However, color distortion occurred when

as was set to 0.5 or 0.6. Therefore, this paper eliminated the enhanced

images with these two parameters and only discussed the image

enhancement results with low as value(as< 0.5). Moreover, the

highest value and the second highest value of PSNR and IE were

mainly concentrated in the results of as =0.3 and as =0.4, which

indicates that under the above two parameter settings, the images had

a good performance in terms of image information, contrast

enhancement and detail preservation. Furthermore, for as=0.4, both

the IE and AG values were higher than those for as=0.3, while the

PSNR was slightly lower than the latter. Therefore, based on the

qualitative evaluation results and the requirements of enhanced

images in terms of clarity, information content, picture details and

contrast, as was finally set at 0.4 in this study.
3.2 Unstructured road extraction

In this section, unstructured road extraction was achieved by

fusing two parts, including the segmented road region after
Frontiers in Plant Science 09
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removing green regions from the HSV space and road region

based on improved gray factor.

3.2.1 Road extraction based on color enhancement
and HSV color space

HSV color space is composed of hue (H), saturation (S) and

luminance (V) channels. As HSV color space is more consistent

with human color perception, it has been widely used in multifield

research based on machine vision, such as medicine (Singh, 2020),

agriculture (Liao et al., 2022), and chemical industries (Safarik et al.,

2019). Therefore, the HSV color space was used here to extract

road regions.

First, the enhanced and optimized RGB image was converted

into an HSV image and the threshold range (Hmin, Hmax), (Smin,

Smax), and (Vmin, Vmax) of each channel set to binarize the image.

This completed the constraint and extraction of the green area, so as

to distinguish the road area from the plant area (vines, weeds, and

background trees). Based on Exploratory data analysis (EDA) and

empirical values (Guo et al., 2013; Peng et al., 2013; Camizuli and

Carranza, 2018), the HSV ranges were set at (35,77),(43,255),and

(46,255), respectively (Figure 6A). As can be seen from the image,

although the road extraction was relatively complete, the main
B C

DE
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H

A

I

FIGURE 6

Process and results of road extraction. (A) Road extraction results in HSV space. (B) Road extraction results based on ExG Gray factor. (C) Road
segmentation effect under different TB. (D) Road extraction results based on optimized grayscale factor. (E) Fused binary image. (F) Morphological
processing result. (G) Final extraction result. (H) Manual image segmentation. (I) Results of comparison between proposed algorithm and real situation.
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constraint in the HSV space was the green region, such that there

were still interference regions due to grapes and their vines, leaf

gaps, and other factors in extraction results.
3.2.2 Road extraction based on gray factor
optimization

Taking advantage of the significant color difference between

different objects in the image, numerous researchers have realized

object segmentation by examining different gray weights, such as

excessive red plant index (ExR, Meyer et al., 1999), excessive green

index (ExG, Woebbecke et al., 1995), and normalized difference

index (NDI, Woebbecke et al., 1993). The preprocessed image

mainly contained four areas: grape vines regions, soil areas,

background, and shadow areas. Therefore, through manual

segmentation of the above regions and obtaining the average

values of R, G, and B in different regions, the gray factor was

improved by a heuristic method based on the excessive green index

(ExG). The optimized gray factor and its binarized image

acquisition formula were expressed in Equations 8 and 9 as

gray(x, y) = 1:84G(x, y) − B(x, y) − R(x, y) (8)

f (x, y) =
0⋯⋯⋯ 1:84G(x, y) − B(x, y) − R(x, y) ≤ TB

255⋯⋯⋯ 1:84G(x, y) − B(x, y) − R(x, y) > TB

(
(9)

where gray(x,y) is the optimized gray level factor, f(x,y) the

binarized image, and G(x,y), B(x,y), and R(x,y) as the green, blue,

and red components of the color range, respectively. And TB is the

binarization threshold.

Based on the optimized grayscale factor, the grayscale image

and the grayscale histogram of the enhanced image after the S-

component were plotted in Figure 6C. As can be seen from the gray

histogram, most pixels in the image had a gray value of 0,

corresponding to the majority of black road areas in the gray

map. However, as shown by the red area in the grayscale image, a

few pixels in the road area had gray values that were not zero.

Therefore, the rationality of the binarization threshold TB directly

affected the integrity of the road segmentation. To determine the

optimal binarization threshold, a comparative experiment was

conducted in this paper, using the threshold value TB as the

independent variable and the road segmentation result as the

dependent variable. The initial value of the binarization threshold

was set to 0, and different binarization thresholds were used to

segment the road. The threshold of binarization was increased by 10

for each group until the segmentation result incorrectly included

the vine area on the side of the road.

When TB= 0, the segmentation result indicated a significantly

smaller road area than the actual road. With TB set at 10, the vast

majority of road area was accurately extracted from the

segmentation results. However, when TB was increased to 20,

while the extracted road area was more comprehensive, there

were numerous incorrectly extracted sections. Consequently, for

this article, TB was established at 10, the road extraction results were

shown in Figure 6D.

The extraction method of unoptimized gray factor based on

ExG was found to be affected by shadows and weeds, resulting in a
Frontiers in Plant Science 10
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large number of noise points and holes in the treatment results, and

only extracted a small number of road regions (Figure 6B). Thus,

the extracted area was significantly smaller than the real value. On

the other hand, the improved gray factor method exhibited superior

segmentation results for the grapevine area on the road and its

surroundings, showing great advantages in the accuracy and

integrity of road segmentation (as depicted in Figure 6D). The

above results indicated that compared with the unimproved gray

factor, the improved gray factor method was more adaptable to

unfavorable environmental conditions such as shadows and lighting

in the field.

3.2.3 Binary images fusion and morphological
processing

By fusing the above two binarized images in Figures 6A, D, most

of the disturbances (Figure 6E) were eliminated and road edges

constrained. The fused results were more consistent with the

real situation.

However, there were various tiny noises and irregularly-shaped

edges in the fused binary image. Therefore, morphological

processing was performed on fused binary images to remove non-

correlated structures (Figures 6F, G).

The road edge extracted by this algorithm was found to be in

line with the trend of the real road and fundamentally eliminated

the vine area on the side of the road (Figure 6I). This reduced

the interference of light, shadow, weeds, and dead branches

to road extraction, with high extraction integrity and good

comprehensive performance.

3.2.4 Performance evaluation indexes
In this study, the number of ROI image pixels (NRP) and the

ratio between the wrongly extracted pixels and the number of ROI

image pixels (RBP) were used as evaluation indices for verifying the

performance of the road extraction algorithm. And the calculation

equations of this evaluation index expressed in Equation 10 as

RBP =
NWP
NRP

� 100% (10)

where NWP is the number of wrongly extracted pixels by

the algorithm.
3.3 Roadside fruit detection based on
YOLOv7

3.3.1 Characteristics of the YOLOv7 network
structure

As the latest version of the YOLO series (Wang C. et al., 2022),

YOLOv7 has improved the existing model in many ways. First, it

offers extended efficient layer aggregation networks (E-ELAN)

based on ELAN structure, which can guide different computing

blocks to learn more different features and enhance the learning

ability of the model on the basis of maintaining the original gradient

path. Then, a compound model scaling method based on the

cascade model has been proposed to ensure the initial

characteristics and optimal structure of the model, which
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efficiently utilizes parameters and computation. Meanwhile, several

trainable bag-of-freebies methods have been designed for real-time

object detection, which significantly improves detection accuracy

without increasing inference cost. Based on the above

improvements, YOLOv7 shows great advantages in terms of

speed and accuracy over other detection algorithms. Its network

architecture is shown in Figure 7.

Based on the performance advantages of the YOLOv7 and

YOLOv5 models, both models were adopted in this research to

detect roadside fruits. The results were compared to identify the

roadside grape detection model that is better suited for large-field

environments. The selected model’s feasibility and detection

performance were then further verified for roadside

fruit recognition.

3.3.2 Network training and parameter
optimization

The experiment was conducted on a Windows 10 operating

system, with the Python framework, YOLOv7, and YOLOv5

environments built in the Anaconda environment. The program

was written in Python 3.9 and CUDA Ver. 11.7. In terms of

hardware, the processor is an Intel (R) Core (R) i5-1240F CPU@
Frontiers in Plant Science 11
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2.5 GHz, the dominant frequency is 2.5 GHz, internal storage 32.0

GB, and graphics card an NVIDIA GeForce RTX 3060.

Due to the complex orchard environment, directly applying

the default parameters of YOLO model to the roadside fruit

recognition model results in poor detection results. To adapt to

fruit recognition in complex field scenarios, the learning rate

parameter of the YOLO model was chosen as described in this

study. The initial value of the learning rate was set to 0.01 and the

model was trained with different learning rates. The learning rate

of each group was reduced by 0.002, respectively, until the optimal

parameters were detected and chosen. By comparison, it was

found that when the learning rate was larger than 0.002, the

loss curves for object detection in the results suffered from severe

oscillations, poor convergence or nonconvergence. Thus, the

learning rate of the wine grape orchard recognition model was

set to 0.002.

The training and verification sets were input into the network for

training, with a batch size of 16 and 150 epochs, respectively (Table 1).

3.3.3 Model evaluation
In this study, precision (P), recall (R), F1-score, and mAP were

used as the evaluation indices of roadside fruit detection
FIGURE 7

Network structure of YOLOv7.
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performance and the calculation equations of each evaluation index

expressed in Equations 11–14 as:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

F1� score =
2� P � R
(P + R)

(13)

mAP = o
c
1AP(c)

c
(14)

where TP, FP, and FN correspond to true positives (there is a grape

bunch in the image and the algorithmpredicts it correctly), false positives

(there are no grapes in the image, but the algorithm detects it), and false

negatives (the algorithm failed to detect a bunch of grapes which are

actually in the image), respectively, and C the number of detection

classes. As only one kind of fruit was identified in this study, C = 1.

4 Experiments and discussion

By achieving synchronous recognition of road extraction and

roadside fruit, this algorithm can considerably improve the ability of

robots to perceive critical information in the orchard environments

and lay the foundation for autonomous walking and picking

decisions based on machine vision. Therefore, the performance of

this algorithm was extremely critical for the robot’s picking rate,

navigation path extraction accuracy, and reliability of the decision

system in subsequent researches. At the same time, this study served

as a reference for other research in the same field.

In this section, the performance of image enhancement, road

extraction, roadside fruit recognition, and overall fusion algorithm

were verified and discussed.
4.1 Road extraction effects and ablation
tests

4.1.1 Road extraction results and analysis
To validate the image segmentation effect of the proposed road

extraction algorithm, the results obtained by fused segmentation
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were compared with those obtained by the conventional color

image method. This study adopted two traditional algorithms: a

method based on S component and Otsu and another based on the

Excess Green index (ExG) and Otsu. At the same time, 25 images

with pavement shadows, strong illumination variations, and

grapevines with different degrees of color were selected as test

samples to verify the adaptability of the above algorithms to

complex environments.

The results of multiple sample images were compared, in which

samples were original color images and other images obtained by

segmentation methods. The comparative findings for partial sample

images were illustrated in Figures 8A–F, while the comparative

results for additional images could be found in the Supplementary

Material. Figures 1–3 depict the image samples with the lowest

NWP value in the outcomes of Methods C, D, and E, while

Figures 4–6 depict the image samples with the highest NWP

value in the outcomes of Methods C, D, and E, respectively.

For simplicity, the proposed algorithm was abbreviated as

“Method C”, the method based on S component and Otsu was

abbreviated as “Method D”, and the method based on EXG and

Otsu was abbreviated as “Method E”.

In the qualitative evaluation, the quality of different

segmentation methods was assessed based on the completeness of

road segmentation and the distribution of error areas. Due to the

complexity of the field orchard, the primary environmental factors

that influence the precision of road segmentation outcomes include

the grapevine area, shadowed road area (Li et al., 2018), roadside

unevenly colored area, and high contrast between light and dark

areas (Tang et al., 2023b). As depicted in Figure 8A, strong lighting

caused the grapevine areas on the roadside to exhibit characteristics

such as uneven light and shade and varying color tones. This led to a

significant contrast between light and shade in the grapevine areas

on both sides of the road. Additionally, different lighting angles

resulted in distinct areas of shadow on the road surface, thereby

increasing the complexity involved in segmenting orchard roads.

Observationally, it was found that the extraction results of

methods D and E (Figures 8D, E) suffered from problems, such

as the large area errors in identification. Although the extraction

results were of great completeness, the results also contained a large

number of incorrect regions (Figure 8F). By comprehensive

comparison, the road obtained by the Method C was found to be

the closest to the real situation and had the best segmentation effect

among all considered methods.

To further analyze the adaptability of the above method to

complex vineyard scenarios, the extraction results of the proposed

algorithm were compared with real roads (Figures 8F, G). Based on

Figure 8F, it can be observed that the error areas of methods D and

E were primarily concentrated in the grapevine area on the side of

the road.

Method D was found to be sensitive to changes in brightness,

shade, and color uniformity of the grapevine region in the image,

which resulted in changes in the error area of the segmentation

result (Figure 8D). Due to the unpredictable and random nature of

illumination in field environments, it was difficult to guarantee the

accuracy and stability of the segmentation results achieved through

method D.
TABLE 1 YOLO basic parameters.

Parameters of model Value

Input image resolution 640×640

Learning rate 0.002

Momentum 0.937

Optimizer weight decay 0.0005

Warmup momentum 0.8

Batch size 16

Training epochs 150
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The primary error source of method E was the grapevine area

with strong contrast between light and shade, with the dark part of

it being incorrectly identified as the road area. This greatly reduced

the accuracy of the segmentation result. When the area of the dark

region of the grapevine on the side of the road was small, the error

rate of this algorithm decreased significantly. However, when faced

with areas that had uneven colors on the side of the road, the error

area of the segmentation result achieved through this method was

significantly smaller than that of method D.

Conversely, Method C adapted to the aforementioned

unfavorable factors, resulting in a smaller error in the segmented
Frontiers in Plant Science 13
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area, more stable road extraction performance, and the most

reliable segmentation results among the three methods.

Combined with the above analysis, the influence degree of

unfavorable factors on the accuracy and reliability of the results

obtained through different methods was comprehensively

evaluated, as presented in Table 2.

To quantitatively evaluate the extraction performance of the

above methods, NWP and RBP were taken as indices to achieve a

road extraction performance evaluation of different algorithms,

where NRP = 402,668 (Table 2; Figures 8H, I). To determine the

differences in road extraction performance among the three
B C DA E

F G

H I

FIGURE 8

Results and analysis of different segmentation methods. (A) Original images. (B) Manual image segmentation. (C) Proposed algorithm. (D) Method
based on S component and Otsu. (E) Method based on EXG and Otsu. (F) Error area results extracted by different methods. (G) RBP values of partial
images obtained by different methods. (H) Descriptive Statistics for NWP and RBP. (I) NWP values of 25 images obtained by different methods.
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methods, the non-parametric Kruskal-Wallis test was conducted

across the three groups using SPSS software version 27 (IBM

Corporation). The significance level was set at 0.05. The null

hypothesis in this test is that there is no difference between the

three methods in terms of the distribution of NWP and RBP. In fact,

for this test, the Sig values less than 0.05 indicate a significant

difference between the groups.

According to the descriptive statistical table of NWP, Method C

exhibited a generally low overall level of NWP value (Figure 8H).

Comparing the mean value of NWP across the three methods, it

was found that the mean value of NWP for Method C accounted for

only 14.3% and 20.67% of the mean value of NWP for Methods D

and E, respectively. Furthermore, the maximum and minimum

values of NWP for Method C were one order of magnitude smaller

than those of Methods D and E. Additionally, the standard

deviation of NWP value for Method C was significantly lower

than that of Methods D and E, indicating that the road extraction

performance of Method C was more stable in the face of variable

field interference factors. This observation was also validated in

Figure 8I, which illustrates that the NWP of Method C exhibits a

relatively mild fluctuation in comparison to the other two methods.

Moreover, the Kruskal-Wallis test results showed that the NWP
Frontiers in Plant Science 14
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values of Methods C and D (Sig<0.01), Methods C and E (Sig<0.01)

and Methods D and E (Sig = 0.008)were statistically significant

difference. Furthermore, it was confirmed that there were

substantial differences in the accuracy of road extraction among

the three methods.

Similar results were obtained from the descriptive statistical

table of RBP. Method C demonstrated favorable outcomes in

terms of the maximum, minimum, mean, and standard deviation

of RBP. Thereinto, Method C had an RBP of no more than 9.15%,

whereas Method D had an RBP of no more than 48.37%, and

Method E had a notably high RBP of 53.30%. The above data

suggested that the wrongly identified pixels in the road extraction

results of Method C only constituted a small portion of the

current image. Compared to the other two methods, Method C

was found to deliver better segmentation results for road

recognition in the field environment and exhibited greater

adaptability to the complex environmental interference factors

in the field orchard.

4.1.2 Ablation test
To verify the improvement of the image enhancement algorithm

on the overall performance of the road extraction algorithm, an
TABLE 2 Analysis of the influence degree of adverse factors on algorithms and extraction results.

Degree of influence of adverse factors on algorithm accuracy

Adverse environmental factors
Impact degree

Method C Method D Method E

Grapevine area Minor Severity Severity

Shadowed road area Minor Minor Minor

Roadside unevenly colored area Minor Severity Medium

Strong contrast between light & dark Minor Severity Severity

Methods
Descriptive Statistics for NWP

Minimum Maximum Mean Std. Deviation

Method C 8506 36831 19967.040 8425.727

Method D 73428 194780 139663.16 33567.358

Method E 41264 214634 96580.960 36276.122

Pairwise Comparisons of Methods (NWP)

Sig
Method C vs Method D Method C vs Method E Method D vs Method E

<0.001 <0.001 0.008

Methods
Descriptive Statistics for RBP/%

Minimum Maximum Mean Std. Deviation

Method C 2.11 9.15 4.959 2.092

Method D 18.24 48.37 34.684 8.336

Method E 10.25 53.30 23.9847 9.009

Pairwise Comparisons of Methods (RBP)

Sig
Method C vs Method D Method C vs Method E Method D vs Method E

<0.001 <0.001 0.008
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ablation experiment was conducted. The comparative findings for a

selection of sample images were illustrated in Figure 9, while the

comparative results for additional images could be found in the

Supplementary Material. For simplicity, the proposed algorithm

without preprocessing was abbreviated as “Method F”.

Ablation experiments were conducted on the proposed

preprocessing method. The extraction results after pretreatment were

shown in Figure 9B and the algorithm results without pretreatment

were shown in Figure 9C. By comparing the two extraction results, the

latter extraction results were found to contain a large number of error

regions, such as dark grape vines area, grapes, and other objects on the

roadside (Figure 9E). This phenomenon was confirmed by NWP

descriptive statistics (Figure 9F).

Based on Figures 9F, G, it can be observed that the majority of

segmentation results obtained using Method F had a higher NWP

value compared to those obtained using Method C. However, a few

image processing results showed an opposite result. The reason for

this phenomenon can be attributed to the fact that after image

preprocessing, the segmentation result of Method C had more

stringent restrictions on green areas, resulting in the removal of a
Frontiers in Plant Science 15
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large area of weeds from the road in the segmentation results,

thereby increasing the NWP value (4th row of Figure 9C).

After image preprocessing, the accuracy of the algorithm was

significantly improved at the cost of a small amount of

completeness, which reduced the impact of interference regions,

such as road shadows, dark fruits, branches, leaves, and gaps in

segmentation accuracy. Meanwhile, the Method C also suppressed

the interference of noncurrent road areas on the extracted results

and significantly reduced the number of misdetected pixels (3th row

of Figures 9C, D).

Differences in road extraction performance between the above

methods were determined using the non-parametric Mann-Whitney

U test. The significance level was set at 0.05. The null hypothesis in

this test is that there is no difference between the methods in terms of

the distribution of NWP. And the Sig values less than 0.05 mean a

significant difference between the groups. The Mann-Whitney U test

result showed that the NWP values of Methods C and F (Sig= 0.03)

were statistically significant difference (Figure 9F).

In conclusion, image preprocessing played a crucial role in

enhancing the accuracy and reliability of road segmentation results.
B C D EA

F G

FIGURE 9

Ablation test results from the proposed preprocessing method. (A) Original images. (B) Proposed algorithm. (C) Proposed algorithm without
preprocessing. (D) Error area results extracted by proposed algorithm. (E) Error area results extracted by proposed algorithm without preprocessing.
(F) Descriptive Statistics and significance analysis result. (G) NWP values of 25 images obtained by methods C and F.
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4.2 Comparison between YOLOv5 and
YOLOv7

Target location is an important task in target detection and is

normally represented by the coordinate position of the bounding box.

The models in this paper used CIoU (Lv et al., 2022) loss to calculate

the boundary frame position loss, which was calculated as follows:

Lbox = 1 − IOU +
r2(A, B)

c2d
+ aυ (15)

υ =
4
p2 arctan

wg

hg
− arctan

wp

hp

� �2

(16)

a =
υ

(1 + IOU) + υ
(17)

Where r2(A,B) is the Euclidean distance of the center points

between predicted box and ground truth box, cd is the diagonal

distance of the smallest rectangle containing predicted box and

ground truth box, a is the weight function, and υ is the function that

measures the consistency of the aspect ratio. wg and hg are the width

and height of the ground truth box, while wp and hp are the width

and height of the prediction box.

The confidence loss function is used to measure the difference

between the confidence score predicted by the model and the actual

label. In this paper, the confidence loss function was calculated

using a binary cross-entropy loss function (BCELoss, Zhao et al.,

2023), and its formula was as follows:

Lconf = −
1
No

N
n=1½yn � log xn + (1 − yn)� log (1 − xn)� (18)
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Where yn denotes the true category, which generally takes the

value of 0 or 1, xn denotes the prediction confidence or target

probability obtained by the Sigmoid function, and N is the number

of positive and negative samples.

After training, the loss function value curves for the training and

validation sets of the two YOLOmodels were obtained, including the

loss values of the detection box and detection object (Figures 10A, B).

In Figure 10A, “BOX” and “Val BOX” represented the box loss of the

training set and validation set, respectively. In Figure 10B,

“Objectness” and “Val Objectness” represented the confidence loss

of the training set and validation set, respectively. As shown in

Figure 10A, B, it can be observed that the change trend of the loss

curves for both models was similar. In particular, it was observed that

the values of box and object detection losses for the two YOLO

models decreased sharply during training batches 0 to 20, after which

the rate of decline slowed down. The sample distribution ratio of

model training set and verification set is shown in Figure 10D. In

addition, the box and the object detection loss values of the YOLOv7

algorithm on the training set were smaller than that of the YOLOv5

algorithm after 150 training epochs. The box detection loss value of

YOLOv7 finally stabilized around 0.029 and object detection loss

value eventually stabilized around 0.012.

In addition, although the loss value of box detection in the

validation set was slightly higher than that of YOLOv5, the loss

value of object detection in the validation set of YOLOv5 showed a

trend of fluctuation and rise after 50 training batches. Meanwhile,

the loss value of YOLOv7 algorithm decreased steadily and finally

the loss value tended to stabilize around 0.0025.

Under the same dataset B, the performance indices of YOLOv7

were better than those of YOLOv5 (Figure 10C). The P, R, mAP,

and F1-scores of YOLOv7 were 88.9, 89.7, 93.4, and 89.3%,
B

C D

A

FIGURE 10

Loss curves and detection results of the two YOLO models. (A) Box loss value curve of YOLOv5 and YOLOv7 model. (B) Confidence loss function
value curve of YOLOv7 model. (C) Detection results of YOLOv5 and YOLOv 7 on dataset B. (D) Training set and verification set introduction.
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respectively, which were 3.1, 2.9, 2.7, and 3% higher than

from YOLOv5.

Although the number of YOLOv7 targets detected in some

images was less than that of YOLOv5, the overall accuracy of the

former was higher than that of the latter (Figures 11A–C).

Moreover, in global images, YOLOv5 showed the phenomenon of

grape cluster misidentification (Figure 11, last row). Algorithm

detection confidence was the main evaluation metric in this

study. In summary, YOLOv7 was able to better perform the task

of detecting clusters of grapes in orchards and, hence,YOLOv7 was

used to identify grapes on the roadside.

The confidence level of grape clusters recognition results tested

by YOLOv7 on dataset B was mostly above 0.8, while it was mostly

above 0.5 on dataset A. There were two reasons for this

phenomenon. The first was that the grape clusters were smaller

on dataset A than those in the training set and the second that

dataset A contained a large number of backgrounds, such as sky,

trees, and roads, and the overall complexity of the image far greater

than that of the training set.
4.3 Recognition effects of the synchronous
detection algorithm

Furthermore, in order to evaluate the overall detection

performance of the synchronous detection algorithm proposed in
Frontiers in Plant Science 17
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this paper (Figure 4), simultaneous recognition of the road and

roadside fruit was conducted (Figure 12A).

The results demonstrate that the algorithm was able to

effectively segment the road area despite the complex outdoor

environment, and accurately recognize the grapes on the side of

the road. This provides valuable information for the intelligent

decision-making and control of the robot during subsequent

walking and fruit picking operations, and enhances the robot’s

ability to identify crucial targets within a complex environment.

Furthermore, the synchronous recognition algorithm demonstrated

better effectiveness in roadside grape recognition. To validate the

positive impact of image preprocessing and road segmentation in the

synchronous recognition algorithm on the recognition performance of

road test grapes, the images with and without above aforementioned

steps were identified using yolov7 model (Figure 12B). The results

revealed that, under identical circumstances, the former approach

detected more clusters of grapes on the road side.

To further demonstrate the superiority of the proposed

synchronous recognition algorithm in roadside grape detection,

66 images from dataset B were used to detect grape clusters. The

number of recognized fruits, recognition time and the promotion

ratio (Pr) were taken as evaluation parameters. The Pr was

calculated by the following formula.

Pr =
Vw − Vn

Vn
(19)
A B C

FIGURE 11

Comparison of partial detection results. (A) Original images. (B) Identification results of YOLOv5 model. (C) Identification results of YOLOv7 model.
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Here, Vw represents the evaluation parameters obtained

through image calculation based on image preprocessing and

road segmentation, while Vn represents the evaluation parameters

obtained without image preprocessing and road segmentation.

The number of recognized grape clusters in the former was 41

more than that in the latter, representing a 23.84% increase.

Additionally, the recognition speed of the former was 0.267

seconds faster than that of the latter, resulting in a speed increase

of 14.33%. The results indicated that the images with pre-processing

and road segmentation were able to identify more grape clusters

and at a faster detection speed compared to the images without pre-

processing and road segmentation (refer to Figure 12C). This

finding provided evidence that the synchronous recognition

algorithm proposed in this paper outperforms using YOLOv7

alone for identifying roadside grapes under the same scenario.

The reasons for the above phenomena were as follows: First, due

to the extraction and preprocessing of the ROI in the overall
Frontiers in Plant Science 18
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algorithm, a large number of backgrounds, such as sky and trees,

were eliminated, which improved the proportion of grape cluster

pixels in the whole image. In addition, after extracting the road in

the image, the interference of the road area on fruit cluster

recognition was reduced and grape features more pronounced,

which was beneficial for detecting fruit clusters on the roadside.
4.4 Discussion

Although the unstructured road extraction and roadside fruit

synchronous recognition algorithm proposed in this study had good

performance, it also had some limitations (Figures 13A–C). First, it was

difficult to distinguish the adhesive road areas between different rows

during road extraction. For example, when the death of grape plants

leads to a large area of vacancy on the road side, the road regions of

images consisted of two parts: the road part of the robot’s current row
B C

A

FIGURE 12

Recognition results of overall algorithm and comparison results between proposed algorithm and single YOLOv7 model. (A) The overall synchronous
detection algorithm recognition results. (B) Comparison results of roadside grape clusters identification results between proposed synchronous
detection algorithm and single YOLOv7 model. (C) Performance comparison between overall synchronous detection algorithm and the single
YOLOv7 model.
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and road part of the non-current row (Figure 13C). In this case, it was

difficult for the proposed algorithm to distinguish the correct region

from the wrong one. At the same time, when there were a large area of

weeds near the end of the road with a width of more than 1/2 of the

width of the road, the completeness of the extracted results was

reduced. Future research will consider optimization algorithms and

add constraints to improve result accuracy.

In addition, in the process of roadside fruit string identification,

there was still a situation of missing grape-cluster detection. Future

research will further optimize and improve the network structure

for the problems of missing fruit string detection and low

confidence of some detection target results.
5 Conclusions

In this study, an algorithm for unstructured road extraction and

roadside fruit synchronous recognition in a complex orchard

environment was developed to address the above issues. The

main conclusions could be obtained as follows:
Fron
(1) An unstructured road extraction and roadside fruit

synchronous recognition framework was constructed for

achieving simultaneous road extraction and roadside fruit

detection, which effectively improved the ability of fruit

picking robots to extract key information from the picking

environment. The algorithm also provided information for

decision-making and reasoning of collaborative behavior of

key parts of the robot, which improved the adaptability of

the robot to randomly distributed fruit.

(2) Based on the analysis of the orchard images, an image

enhancement preprocessing method was proposed to

reduce the interference of road shadows, dark fruits,

branches, and leaves as well as gaps in segmentation

results. The method also suppressed the influence of

noncurrent road areas on extraction results to a certain

extent, which improved result accuracy and reliability.

(3) By enhancing the color channel and optimizing the grayscale

factor, the dual spatial fusion road extraction was achieved.

Experimental results showed that, compared with the

extraction method based on S component and Otsu and

extraction method based on EXG and Otsu, the proposed

algorithm showed greater adaptability to adverse conditions,
tiers in Plant Science 19
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such as uneven illumination and road shadows under the

background of complex orchards. The proposed road

extraction algorithm also largely avoided the problems of

missing extraction of real road areas and identification of

large area errors, which had the best segmentation effect.

(4) The YOLOv7 and YOLOv5 algorithms, optimized with

grape cluster target data, were used to identify roadside

grape clusters. The optimized YOLOv7 model achieved a

precision of 88.9%, recall of 89.7%, mAP of 93.4%, and F1-

score of 89.3%, all of which were higher than those obtained

from the YOLOv5 model. Based on this comparison, the

YOLOv7 with optimized parameters was found to be more

suitable for roadside grape recognition in wide-field views.

(5) The proposed fusion algorithm took the road extraction

results as input and then identified fruit strings on the road

side. The performance of the proposed fusion algorithm

was superior to only using the YOLOv7 model. Compared

with the single YOLOv7 model, the number of grape string

detections and detection speed of the fusion algorithm were

increased by 23.84% and 14.33%.
Although the new algorithm has achieved satisfactory results,

there remains some room for progress. First, due to the similarity

between different lines of the roads, the algorithm in this case had

difficulty in segmenting the cohesive road area between different

lines. At the same time, the completeness of the extraction results

was reduced when there were a large area of weeds with a width

ratio of 1/2 near the end of the road.

Future work will focus on network structure optimization to

improve the accuracy and speed of road extraction and roadside

fruit detection algorithms. Constraints between road zones will also

been studied to enable the identification and segmentation of road

zones between different lines. Furthermore, environment-aware

robot behavioral decision control systems will be developed to

enable collaborative decision planning and response control of

picking and walking operations in complex orchard environments.
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FIGURE 13

Adverse Conditions. (A) Original image. (B) Result of road extraction. (C) Analysis of adverse factors.
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Forests are suffering water stress due to climate change; in some parts of the

globe, forests are being exposed to the highest temperatures historically recorded.

Machine learning techniques combined with robotic platforms and artificial vision

systems have been used to provide remote monitoring of the health of the forest,

including moisture content, chlorophyll, and nitrogen estimation, forest canopy,

and forest degradation, among others. However, artificial intelligence techniques

evolve fast associated with the computational resources; data acquisition, and

processing change accordingly. This article is aimed at gathering the latest

developments in remote monitoring of the health of the forests, with special

emphasis on the most important vegetation parameters (structural and

morphological), using machine learning techniques. The analysis presented here

gathered 108 articles from the last 5 years, and we conclude by showing the

newest developments in AI tools that might be used in the near future.

KEYWORDS

forestry health assessment, remote sensing, machine learning, vision system,
spectral information
1 Introduction

Climate change has increased the frequency and duration of droughts around the world

(Cook et al., 2014). This has a special impact on ecosystems, where it is estimated by the

United Nations Convention to Combat Desertification (UNCCD) that in the last 40 years

the percentage of vegetated areas affected by droughts has doubled, and around 12 million

hectares of agricultural land have been lost due to desertification (UNCCD, 2022). Another

issue caused by intense droughts is the increase in wildfires. According to UNCCD (2022)

more than 84% of terrestrial ecosystems are in danger due to more frequent and intensive

fires. Forests are particularly affected by longer droughts due to water stress; the

relationship between forestry health and posterior forest recovery is still being studied

(Xu et al., 2018).
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Forest management plays a fundamental role in the analysis of

forest health. Its main target is to reduce risks or negative impacts

derived from external disturbances (Migliavacca et al., 2021)

including wildfires (Hillman et al., 2021; Reilly et al., 2021;

Rodrıǵuez et al., 2021; Wells et al., 2021; Trencanová et al., 2022),

atmospheric pollution, forest stress (Cężkowski et al., 2020; Huo

et al., 2021), pests (Huo et al., 2021), climate change, and forest

diseases (Lin et al., 2018; Sapes et al., 2022). The scientific

community has established the use of forest indicators to ease

forest health assessment (Trumbore et al., 2015; Cai et al., 2021;

Kopacková-Strnadová et al., 2021; Migliavacca et al., 2021; Neuville

et al., 2021). These indicators comprise in their nucleus, a previous

examination of factors associated with the physical and chemical

forest attributes, such as greenness of the leaves, nitrogen content,

tree height, canopy height, diameter at breast height, and others.

Their importance lies in the study of water absorption, drought

response, moisture content, changes in vegetation, and detection of

tree diseases (Abdollahnejad and Panagiotidis, 2020; Raddi et al.,

2021; Malabad et al., 2022; Zhuo et al., 2022).

Technological developments have allowed researchers to

process massive data and obtain measurements of large portions

of land. Unmanned aerial vehicles have been used in recent years as

mechanisms to gather massive information about various

ecosystems (Eugenio et al., 2020; Osco et al., 2021; Sangjan and

Sankaran, 2021). Coupling UAVs with computer vision systems

(RGB, multi-spectral, hyper-spectral and thermal cameras) and

other sensors as LiDAR has allowed researchers to estimate forest

parameters like height, canopy cover, DBH, vegetation indexes

(Abdollahnejad and Panagiotidis, 2020; Kopacková-Strnadová

et al., 2021; Raddi et al., 2021; Malabad et al., 2022; Zhuo et al.,

2022). The promising use of UAVs in the assessment of forest health

allows the experimentation with larger-scale satellite monitoring

systems, particularly LANDSAT, SENTINEL, and even Google

Earth (Ahmad et al., 2021).

Likewise, the use of remotely sensed imagery has contributed to

the study of vegetation indices (Becker et al., 2018; Gallardo-Salazar

et al., 2021; Rodrıǵuez et al., 2021; Zhang Y. et al., 2021; Fakhri et al.,

2022; Qiu et al., 2022; Talavera et al., 2022; Xu et al., 2022; Yang

et al., 2022), forest mapping (Lin Y. Z. et al., 2021; Onishi and Ise,

2021; Fakhri et al., 2022; Li et al., 2022; Nasiri et al., 2022;

Trencanová et al., 2022; Xu et al., 2022), evaluation and detection

of diseased forests (Lin et al., 2018; Sapes et al., 2022), canopy

characterization(Furukawa et al., 2021; Ribas Costa et al., 2022), tree

species classification (Liu et al., 2021; Mäyrä et al., 2021; Onishi and

Ise, 2021; Zhang C. et al., 2021; Hell et al., 2022; Yang and Kan,

2022), identification of fire-prone ecosystems (Trencanová et al.,

2022), prediction of chlorophyll and nitrogen content (Yao et al.,

2021; Narmilan et al., 2022; Wan et al., 2022), recognition of

intrinsic forest factors (Xu et al., 2019; Dainelli et al., 2021),

wildfire prevention (Trencanová et al., 2022), and so on. The

analysis of these applications guarantees a comprehensive

assessment of woodland features which determines the current

forest health status and allows for better forest management.

In accordance with the data gathered by the different robotic

platforms and sensors, it is essential to know how to treat the

information. Although traditional methods such as statistical
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analysis are a viable option for post-processing data, currently the

use of machine learning techniques has been chosen in order to

generalize models, increase the accuracy of parameters estimation,

and provide better feature prediction to the ecosystems variability

and forest species involved (Corte et al., 2020; Wells et al., 2021;

Zhang Y. et al., 2021; Ilniyaz et al., 2022; Narmilan et al., 2022;

Nasiri et al., 2022; Qiu et al., 2022). In addition, some works have

considered the use of deep learning strategies to further improve

forest health monitoring capabilities and obtain more detailed

individual tree features (Mäyrä et al., 2021; Onishi and Ise, 2021;

Zhang C. et al., 2021; Hell et al., 2022; Li et al., 2022; Trencanová

et al., 2022).

Machine learning (ML) models have been used as both

classifiers and predictors. Forest structure parameters and tree

phenotypic features are predicted using machine learning

techniques with input data gathered from LiDAR, RGB, and

Multi-spectral cameras (Shin et al., 2018; McClelland et al., 2019;

Puliti et al., 2019; Abdollahnejad and Panagiotidis, 2020; Fan et al.,

2020; Imangholiloo et al., 2020; Ahmad et al., 2021; Cai et al., 2021;

Neuville et al., 2021; Sangjan and Sankaran, 2021; Yu et al., 2021).

Predictions of leaf moisture, chlorophyll, and nitrogen content,

have been achieved using machine learning methods (Watt et al.,

2020; Lou et al., 2021; Raddi et al., 2021; Raj et al., 2021; Narmilan

et al., 2022; Zhuo et al., 2022). The most common predictor is linear

regression, but other common ones are support vector machine

regression, random forest regression, and gradient boost machines

(McClelland et al., 2019; Blanco-Sacristán et al., 2021; Fraser and

Congalton, 2021b; Yu et al., 2021; Torre-Tojal et al., 2022). Another

task that can be accomplished using ML methods is tree

classification, which is important for forest inventory and

mapping. The most common classifiers are random forests,

support vector machines, and artificial neural networks (Feng

et al., 2020; Guo et al., 2021; Hologa et al., 2021). Another use for

classifiers in forestry health assessment is the identification of live

trees and snags, the ratio between these two is an important

parameter to evaluate forest health (Shovon et al., 2022).

The use of high-resolution cameras has allowed researchers to

couple them with deep convolutional neural networks (Osco et al.,

2021). Using deep learning structures alongside high-resolution

aerial images has had good results in individual tree crown

segmentation (Lin and Chuang, 2021; Onishi and Ise, 2021; Li

et al., 2022). Other applications of deep convolutional neural

networks are tree identification from aerial RGB and multi-

spectral images, using temporal information has also been

explored by researchers with the aid of recurrent convolutional

neural networks (Feng et al., 2020). The most common deep

learning back-bones used to perform feature extraction are,

VGG19, RES-NET and Seg-Net (Pulido et al., 2020; Lin and

Chuang, 2021; Hao Z. et al., 2022). Other structures used in

semantic segmentation processes are U-NET and Mask-RCNN

(Pulido et al., 2020).

This work presents a systematic review of scientific articles from

the last five years (2017-2022) focused on forest health assessment

assisted by remote sensing and machine learning techniques. For

our analysis, we used Scopus (www.scopus.com) scientific database.

We intend to determine which forest properties are considered to
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assess forest health, and how remote sensing in conjunction with

machine learning strategies are used to estimate such features.

Other review works related to remote sensing for forestry

applications do not include information about the novel machine

learning algorithms to relate the data gathered by various sensors

and the expected metrics that are needed to evaluate forest health.

For example, (Torres et al., 2021) describes various applications of

remote sensing in the assessment of forest status and health

including stress factors, plagues, tree mortality, tree decline, and

tree health. However, there is no in-depth discussion about how the

data is processed in those studies. A similar case is the work

presented by (Guimarães et al., 2020), which covers other areas

for forest management including tree classification and mapping,

and tree parameter estimation; however, the processing techniques

are not addressed. In Eugenio et al. (2020) it is presented a similar

approach but focused on remotely piloted systems, and not

considering satellite platforms that are used for the assessment of

forests. A complete review of deep learning algorithms for forestry

was presented in Diez et al. (2021), focusing directly on the images

processing; however, such work does not present information about

machine learning for regression problems. A more complete review

including sensors and methods is discussed in Pérez-Cabello et al.

(2021); but it is limitedto the assessment of post-fire vegetation

recovery. To the best of our knowledge, our work is the only one

that offers a more in-depth discussion about machine learning

methods (including deep learning) and how they are

implemented alongside remote sensing techniques for the

assessment of forest health. Table 1 contains a comparison

between our work and previous reviews during the five-year

period under study.

This paper is organized as follows: Section 2 presents the main

issues and forestry problems studied using both remote sensing

techniques and machine learning methods. Section 3 presents the

hardware used in the assessment of forestry health, it includes both

sensors and platforms. Section 4 deals with the machine learning
Frontiers in Plant Science 03
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techniques that are used to process data. Section 5 includes the

discussion and the challenges that arise in the assessment of forestry

health using remote sensing aided by machine learning.
2 Vegetative problems

This section discusses the vegetative issues that are currently

being studied for forestry health assessment. In a broad sense,

Figure 1 shows the distribution of the prevalent issues that have

been studied the most in the reviewed articles; these were: tree

classification and identification, tree structure identification,

biomass estimation chlorophyll estimation, crown fuel estimation,

and water and moisture content prediction.

The first subsection is dedicated to Vegetation Indices

since they are one of the most important features that help

researchers predict forest and individual features from the
TABLE 1 Comparison between the present work and other similar reviews related to remote sensing in forestry applications.

Article Years Forest issue Sensors Platforms Methods

Our Work 2017-
2022

Vegetation indices, Biomass estimation, Tree structure
parameters, Tree identification, Tree recognition, Water

and moisture content, Chlorophyll estimation

Cameras (RGB, Hyperspectral,
Multispectral, Thermal); LiDAR;

TerrestrialLaser Scanning,
Spectrometer

UAV,
Satellite

Linear regression, Random
forest, SVM, K-nearest
neighbors, Deep learning

Pérez-
Cabello

et al. (2021)

N/A Post-fire vegetation recovery Cameras (RGB, Hyperspectral,
Multispectral, Thermal), LiDAR,

Terrestrial Laser Scanning,
Spectrometer

UAV,
Satellite

Not Specified

Eugenio
et al. (2020)

2000-
2019

Forest parameter estimation, Fire monitoring, Pest and
disease detection, Natural conservation

Cameras (RGB, Hyperspectral,
Multispectral, Thermal), LiDAR

UAV Not Specified

Torres et al.
(2021)

2015-
2020

Forest plague detection, Forest current health, Forest
health decline and mortality

Cameras (RGB, Hyperspectral,
Multispectral, Thermal), LiDAR

UAV,
Satellite

Random forest, SVM, K-
nearest neighbors, Neural

networks

(Guimarães
et al., 2020)

N/A Forest parameter estimation, Tree classification and
mapping, Forest health monitoring

Cameras (RGB, Hyperspectral,
Multispectral, Thermal), LiDAR

UAV Not specified

(Diez et al.,
2021)

2017-
2021

Forest parameter estimation, Tree classification and
mapping, Forest health monitoring

Cameras (RGB, Multispectral) UAV Deep learning
FIGURE 1

Distribution of the main vegetative problems that were studied in
the reviewed articles.
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reflected electromagnetic spectrum. The following subsection

discusses tree classification and identification, tree structure

parameters, biomass estimation, chlorophyll estimation, crown

fuel estimation, and water and moisture content prediction.
2.1 Vegetation indices

A vegetation index is a mathematical transformation of two or

more spectral bands that are designed to enhance a specific property

or characteristic of the vegetation (Munnaf et al., 2020).

Recently, these indices have been used as input data for

prediction and classification purposes alike, the spectrum of tree

canopies can be considered a distinctive feature of the specific

vegetation, thus making VIs useful for both vegetation identification

in aerial photographs and for tree classification (Abdollahnejad and

Panagiotidis, 2020; Imangholiloo et al., 2020; Yang and Kan, 2020;

Guo et al., 2021; Arevalo-Ramirez et al., 2022; Cabrera-Ariza et al.,

2022; Shovon et al., 2022). Photosynthetic pigments have a

distinctive reflectance in some bands, thus the prediction of

chlorophyll content and other pigments is suitable with the
Frontiers in Plant Science 04
129
appropriate VI (Watt et al., 2020; Kopacková-Strnadová et al.,

2021; Lou et al., 2021; Lu et al., 2021; Raddi et al., 2021; Raj et al.,

2021; Zhuo et al., 2022). Another application using VIs is the

prediction of biomass in different and (Morgan et al., 2021; Torre-

Tojal et al., 2022; Yan et al., 2022).

Tables 2A–D contain the main VIs used in different studies

regarding forest health, and their application; where R, G, B, NIR,

and RE denote the reflectance in the Red, Green, Blue, Near

Infrared, and Red Edge multi-spectral bands. Researchers focus

on these five bands since most of the reviewed works use

commercial infrared cameras that capture the radiation at these

wavelengths. Other indices take advantage of the full spectrum and

not only on specific bands but these indices are also obtained with

the aid of a hyper-spectral camera or by a laboratory or hand-held

spectrometer (Abdollahnejad and Panagiotidis, 2020; Watt et al.,

2020; Yang and Kan, 2020; de Almeida et al., 2021; Raj et al., 2021;

Villacrés and Cheein, 2022; Wan et al., 2022; Yang and Kan, 2022).

Li et al. (2021) uses spectral indices to estimate the leaf water

content. The authors specify five different indices: Simple Ratio,

Simple Difference, normalized difference, double difference index,

and difference ratio. Other indices are used to estimate the content
TABLE 2A Common VIs used in the reviewed articles.

Vegetation Index Formula Application Reference

Normalized Difference
Vegetation Index

(NVDI)

NIR − R
NIR + R

Predict forest vertical structure. Tree Recognition.
Chlorophyll Content Estimation. Fuel Content

Prediction.

Ahmed et al. (2021a); Raddi et al. (2021); Yu et al. (2021); Arevalo-
Ramirez et al. (2022); Qiao et al. (2022); Villacrés and Cheein

(2022); Zhuo et al. (2022)

Green normalized
difference vegetation
index (GNDVI)

NIR − G
NIR + G

Predict forest vertical structure. Soil Moisture Content
Prediction. Chlorophyll Content estimation. Fuel

Content Prediction

Yu et al. (2021); Raddi et al. (2021); Cheng et al. (2022); Arevalo-
Ramirez et al. (2022); Villacrés and Cheein (2022)

Normalized difference
red edge index (NDRE)

NIR − RE
NIR + RE

Predict forest vertical structure Yu et al. (2021)

Structure insensitive
pigment index (SIPI)

NIR − B
NIR − R

Predict forest vertical structure. Soil Moisture Content
Prediction. Chlorophyll Content Prediction

Yu et al. (2021); Cheng et al. (2022)

Normalized green blue
difference index

(NGBDI)

G − B
G + B

Tree Classification Guo et al. (2021)

Normalized green red
difference index

(NGRDI)

G − R
G + R

Tree Classification Guo et al. (2021); Cabrera-Ariza et al. (2022)

Green red difference
index (GRDI)

G − R Tree Classification Guo et al. (2021)

Normalized blue green
vegetation index

(NBGVI)

B − G
B + G

Tree Classification Guo et al. (2021)

Normalized excessive
green index (NEGI)

2G − R − B
2G + R + B

Tree Classification Guo et al. (2021)

Modified Green Blue
Vegetation Index

(MGRVI)

G2 − R2

G2 + R2

Biomass Prediction Morgan et al. (2021)

Modified Visible
Atmospheric Resistant

Index (MVARI)

G − B
G + R − B

Biomass Prediction Morgan et al. (2021)

Red-Green-Blue
Vegetation Index

(RGBVI)

G2 − B*R

G2 − B*R

Biomass Prediction Morgan et al. (2021)
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of phosphorus and nitrogen, which is related to photosynthetic

efficiency (Watt et al., 2020; Raj et al., 2021), the information

gathered by hyperspectral indices, allows the processing data

models to make more accurate predictions.

Comparisons between hyper-spectral information and multi-

spectral indices have been performed to evaluate drought responses

in various ecosystems (Raddi et al., 2021). Other studies show that

there is the possibility to recreate indices from hyper-spectral bands

with the information gathered from multi-spectral indices

(Villacrés and Cheein, 2022).

This section includes only a few of the most common VIs,

however, more extensive articles and reviews are available, and the

reader is encouraged to see (Tran et al., 2022).
2.2 Biomass estimation

From an ecological standpoint, biomass is defined as the mass of

living organisms in a determined area or ecosystem. Biomass

depending on the environment has multiple functions, for example,
Frontiers in Plant Science 05
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to know about carbon sinks and it is important in water exchange

with the atmosphere. However, ecosystems are constantly changing

due to climate change has strengthened environmental stressors for

various ecosystems, changing the natural composition of biomass;

thus estimating its value is a strong indicator of how an ecosystem

responds to external changes. Biomass is also an indicator of

biological fuel present in environments (Morgan et al., 2021).
2.3 Chlorophyll estimation

Chlorophyll concentration (CC) indicates the physiological and

structural basis by which leaves drive photosynthesis (Narmilan et al.,

2022) and its relationship to soil respiration (Yao et al., 2021). Likewise,

studies evidence a strong connection with nitrogen content. As a

matter of fact, a deficiency in nitrogen content implies a reduction in

CC which improves leaf transmittance at visible wavelengths. Several

findings have demonstrated that this pigment has diverse spectrum

behavior with particular absorption properties at different wavelengths,

thus the electromagnetic leaf reflection is an indicator of chlorophyll
TABLE 2B Common VIs used in the reviewed articles.

Vegetation Index Formula Application Reference

Triangular Greenness Index (TGI) G − 0:39R − 0:61B Biomass Prediction Morgan et al. (2021)

Visible atmospheric resistant index
(VARI)

G − R
G + R − B

Tree Structure. Biomass Prediction. Leaf Nitrogen
Concentration

Lu et al. (2021); Morgan et al. (2021); Qiao
et al. (2022)

Green red ration index (GRRI) G
R

Leaf Nitrogen Concentration Lu et al. (2021)

Normalized redness intensity (NRI) R
R + G + B

Leaf Nitrogen Concentration Lu et al. (2021)

Green Red Vegetation Index (GRVI) G − R
G + R

Leaf Nitrogen Concentration. Biomass Prediction K.C. et al. (2021); Lu et al. (2021)

Atmospherical Resistant Vegetation
Index (ARVI)

G − R
G + R − B

Leaf Nitrogen Concentration Lu et al. (2021)

Simple Ratio (SR) NIR
R

Tree Classification. Chlorophyll Content Estimation Abdollahnejad and Panagiotidis (2020); Zhuo
et al. (2022)

Soil Adjusted Vegetation Index (SAVI)
1:5

NIR − R
NIR + R + 0:5

Tree Classification.Soil Moisture Content Prediction Abdollahnejad and Panagiotidis (2020); Cheng
et al. (2022)

Chlorophyll index (CI) NIR
RE

− 1
Tree Classification Abdollahnejad and Panagiotidis (2020)

Plant Sense Reflectance Index (PSRI) R − G
RE

Tree Classification Abdollahnejad and Panagiotidis (2020)

Modified canopy chlorophyll content
index (M3CL)

NIR + R + RE
NIR − RED + RE

Tree Classification Abdollahnejad and Panagiotidis (2020)

Shadow Index (SI) R + G + B
3

Biomass Prediction K.C. et al. (2021)

Modified Simple Ratio Index (MSR) NIR=R − 1

(NIR=R + 1)
1
2

Soil Moisture Content Prediction Cheng et al. (2022)

Optimized Soil Adjusted Vegetation
Index (OSAVI)

1:16(NIR − R)
NIR + R + 0:16

Soil Moisture Content Prediction. Forest Structure Arevalo-Ramirez et al. (2022); Cheng et al.
(2022)

Ratio Vegetation Index (RVI) NIR
R

Soil Moisture Content Prediction Cheng et al. (2022)

Ratio Vegetation Index 2 (RVI2) NIR
G

Soil Moisture Content Prediction Cheng et al. (2022)
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content. CC can be altered by natural or man-made noxious agents as

well as stress factors. Additionally, an accurate measurement of CC

involves a good examination of plant health, regulation of fertilizer

application, and so on. CC ground measurements are used as an

indicator of fertilizer status (Narmilan et al., 2022). Due to its

importance in the agriculture field, current remote sensing efforts

contemplate the blending of vegetation indices and machine learning

techniques in order to find a well-established model that accurately

defines CC (Yao et al., 2021; Narmilan et al., 2022).
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2.4 Water and moisture content

Water and moisture content (WMC) is affected by tree species

type (Yao et al., 2021) and canopy cover attributes (Gale et al.,

2021). It is also a factor of soil respiration. In addition, WMC is

associated with the production of CO2 in soil and the transportation

of CO2 from soil to the atmosphere, so continuous or unexpected

changes in WMC can affect soil respiration behaviors (Yao et al.,

2021). Likewise, WMC is commonly used to assess wildfire risk in
TABLE 2C Common VIs used in the reviewed articles.

Vegetation Index Formula Application Reference

Triangular Vegetation Index (TVI) 60(NIR − G) − 100(G − R) Soil Moisture Content Prediction Cheng et al. (2022)

Enhanced Vegetation Index (EVI)
2:5

NIR − R
NIR + 6R − 7:5B + 1

Soil Moisture Content Prediction.
Forest Structure

Arevalo-Ramirez et al.
(2022); Cheng et al. (2022)

Green Index (GI) G
R

Soil Moisture Content Prediction Cheng et al. (2022)

Transformed Chlorophyll Absorption in
reflectance Index (TCARI)

3½(RE − R) − 0:2(RE − G)
RE
R
� Soil Moisture Content Prediction Cheng et al. (2022)

Simple Ratio Pigment Index (SRPI) B
R

Soil Moisture Content Prediction Cheng et al. (2022)

Normalized Pigment Chlorophyll Index (NPCI) R − B
R + B

Soil Moisture Content Prediction.
Chlorophyll Content Estimation

Cheng et al. (2022); Zhuo
et al. (2022)

Normalized Difference Vegetation Index 2
(NDVIGB)

G − B
G + B

Soil Moisture Content Prediction Cheng et al. (2022)

Plant Senescence reflectance Index 2 (PSRI) B − R
G

Soil Moisture Content Prediction Cheng et al. (2022)

Color Index of vegetation extraction (CIVE) 0:44R − 0:81G + 0:39B + 18:79 Soil Moisture Content Prediction Cheng et al. (2022)

Near Infrared Reflectance of Vegetation (NIRV) NIR*NDVI Chlorophyll Content Estimation Raddi et al. (2021)

Difference Vegetation Index (DVI) NIR − R Fuel Estimation Villacrés and Cheein (2022)

Modified Soil Adjusted Vegetation Index (MSAVI) ½2NIR + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NIR + 1

p
− 8(NIR − R)�=2 Forest Structure Arevalo-Ramirez et al. (2022)

Chlorophyll Absorption Reflectance Index (CARI) RE − R − 0:2(RE − G) Forest Structure Arevalo-Ramirez et al. (2022)
TABLE 2D Common VIs used in the reviewed articles.

Vegetation Index Formula Application Reference

Red Edge Modified Simple Ratio (REMSR) NIR=RE − 1ffiffiffiffiffiffiffiffi
NIR

p
=RE + 1

Forest Structure Arevalo-Ramirez et al. (2022)

Red Edge Normalized Difference Vegetation Index (RENDVI) NIR − RE
NIR + RE

Forest Structure Arevalo-Ramirez et al. (2022)

Leaf Chlorophyll Index (LCI) NIR − RE
NIR + R

Fuel Estimation Villacrés and Cheein (2022)

Normalized Difference Red Edge (NDRE) NIR − RE
NIR + RE

Fuel Estimation Villacrés and Cheein (2022)

Red Edge Modified Simple Ratio (REMSR) NIR=RE − 1ffiffiffiffiffiffiffiffi
NIR

p
=RE + 1

Forest Structure Arevalo-Ramirez et al. (2022)

Red Edge Normalized Difference Vegetation Index (RENDVI) NIR − RE
NIR + RE

Forest Structure Arevalo-Ramirez et al. (2022)

Leaf Chlorophyll Index (LCI) NIR − RE
NIR + R

Fuel Estimation Villacrés and Cheein (2022)

Normalized Difference Red Edge (NDRE) NIR − RE
NIR + RE

Fuel Estimation Villacrés and Cheein (2022)
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forested areas, (Barmpoutis et al., 2020; Gale et al., 2021) and

knowledge of its behavior are necessary for land management

decision-making (Barber et al., 2021).

Parameters such as moisture of forest canopy are used jointly

with the moisture of the soil-litter layer and forest temperature for

the early detection of forest fires. Therefore the development and

usage of aerial remote sensing platforms including radiometer

sensors, which is useful for determining and classifying areas of

forests that are prone to wildfires (Varotsos et al., 2020).

The WMC is highly dependent on temperature changes, so

predictive models to estimate WMC are altered by meteorological

conditions (Gale et al., 2021). Current efforts are mainly focused on

establishing more accurate and affordable measure systems; the

most remarkable developments which have enabled effective

estimation of WMC are related to the improvement of processing

software/techniques and computational power and the availability

of aerial imagery from satellite data, airplanes, or unmanned aerial

vehicles (UAVs) (Forbes et al., 2022). Furthermore, recent studies

have shown that reflectance data in a variety of wavelengths is a

promising alternative for WMC estimation (Barber et al., 2021).
2.5 Tree recognition

The tree identification problem is to identify each individual

tree from an aerial image. Its importance relies on the fact that tree

recognition is a key factor when evaluating biodiversity evolution

due to external factors such as climate change and natural disasters

(Hologa et al., 2021). Another important application for tree

identification is to evaluate the survival rate of seedlings, which is

vital to assess the efforts of afforestation, identifying seedlings across

several seasons is a difficult task, given the fact that each individual

tree crown needs to be identified in a complex vegetation

environment (Guo et al., 2021). Forest inventory and mapping

are crucial for forest managers, to ensure the preservation of the

different habitats (Neuville et al., 2021).
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2.6 Tree structure

Tree and forest structure is related to forest biodiversity and

productivity (Bohn and Huth, 2017). Tree structure identification is

related to the measurement of parameters that help to characterize

both individual trees and forests alike. The most common

parameters used to characterize tree structure are tree height,

diameter at breast height, basal area, total stem volume, crown

cover, crown height, and crown area (Lin and Herold, 2016; Shin

et al., 2018; Fraser and Congalton, 2021b; Guo et al., 2021; Hologa

et al., 2021; Neuville et al., 2021; Terryn et al., 2022). These

parameters are strong indicators of forest vigor and forest health

when facing stress due to climate change (Fraser and Congalton,

2021b). Tree structure is essential in studies such as forest

meteorology, botany, and ecology (Lin and Herold, 2016; Terryn

et al., 2022). There is also a correlation between tree structure and

the exchange of energy, carbon, and water between the forest

canopy and its environment. Figure 2 indicates the most common

parameters that are used to assess forest structure
2.7 Tree classification

In the assessment of forested areas, tree species present distinctive

traits such as textural characteristics and a specific spectral

reflectance; these traits allow researchers to identify each tree

species (Zhang C. et al., 2021). One of the purposes of tree

classification is to know which tree species are able to regulate

temperature and relative humidity in a certain environment, a fact

that helps to better understand forested ecosystems (Liu et al., 2021;

Zhang C. et al., 2021). Tree species classification is a crucial research

topic for effective forest management (Onishi and Ise, 2021).

Nevertheless, the most predominant factors that prevent a well-

performed tree classification procedure are due to the diversity of

tree species and the complexity of land (Zhang C. et al., 2021). Thus,

gathering this data usually requires carrying out in situmeasurements
BA

FIGURE 2

Tree structure parameters used to assess forestry health. In (A) are shown the parameters from a frontal view, (B) shows the parameters from an
aerial point of view, focusing on the tree crown.
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from sample plots and extrapolating to larger scales (Hell et al., 2022).

Overall, this shallow or deep mapping is processed by hand-crafted

features or specialized methods (Mäyrä et al., 2021). Currently, there

are some new developments in this field, where researchers have

introduced novel techniques related to computing various vegetation

indices and textural features (Mäyrä et al., 2021), machine learning-

based models, deep learning methods to extract tree features (Liu

et al., 2021; Onishi and Ise, 2021) and the full use of forest spectral

information (Zhang C. et al., 2021). Moreover, sensors and platforms

used for this task, have become more specialized in order to capture

enough information to accurately assess the type of tree (Mäyrä et al.,

2021; Onishi and Ise, 2021; Zhang C. et al., 2021).
2.8 Crown fuel estimation

Several forest fire prediction studies rely on empirical models

(Barber et al., 2021) using site-specific information on climate,

topography, and fuels (Arkin et al., 2021). This information is

strongly important for fire-prone countries in order to predict the

impact of fire in certain scenarios. Fuel management programs

(Wells et al., 2021) have been considered to reduce fire risk. The

behavior of wildfires can be predicted by Crown Fuel Estimation

(CFE). CFE is the assessment of fuel hazard layers. CFE is the

assessment of fuel hazard due to the spatial arrangement of

vegetation elements (branches, leaves, etc.); thus CFE helps

researchers assess the severity of wildfires (Hillman et al.,

2021), this task plays a key role since canopy fuels are the

primary fuel layer of initiation and spread of crown fire (Arkin

et al., 2021). It is worth mentioning that an accurate CFE can

infer in the total or partial wildfire mitigation (Hillman et al.,

2021; Wells et al., 2021). However, to completely assess the risk

of wildfire; models including not only CFE but other tree
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structure parameters are needed; for example, the measure of

live crown base height is critical this metric helps to estimate the

likelihood of fire propagating from the surface into tree crowns

(Arkin et al., 2021).
3 Hardware for remote
sensing applications

In remote sensing applications, hardware fulfills vital roles in

the data acquisition process, and choosing the correct sensors is

critical to the success of the desired task (Müllerová et al., 2021).

This section describes the different sensors, imaging systems, and

platforms used in the reviewed articles.
3.1 Sensors

Remote sensing platforms include various kinds of sensors for

gathering information about the environment. The most common

sensors for forestry health assessment include the following: Visible

Light Cameras (RGB Cameras), multi-spectral cameras, hyper-

spectral cameras, thermal cameras, Laser imaging Detection and

Ranging (LiDAR) systems, terrestrial laser scanning systems (TLS),

and other common sensors. This section will discuss the working

principle of the most common sensors in remote sensing for forestry

health assessment. Figure 3, contains a visual representation of the

most common sensors used for forestry health assessment.

3.1.1 RGB cameras
RGB cameras capture spectral information in visible light (400-

700 nm), which is the same spectrum perceived by the human eye

(Idrissi et al., 2022), the working principle of this kind of camera is
FIGURE 3

Most common sensors used for forestry health assessment, each column represents the number of articles that used each sensor in the data
collecting process.
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visualized in Figure 4. These cameras are designed to represent the

real colors of objects and nature using trichromatic red (620 - 750

nm), green (495-570 nm), and blue (450 -495 nm) wavelengths.

Overall, RGB cameras provide two-dimensional images (Lin et al.,

2022), and their performance tends to decrease in the presence of

adverse atmospheric conditions (fog, haze, heat waves, etc.). The

quality of an RGB camera is expressed in megapixels, which

determine the number of pixels (i.e. length x height) of a static

photo (Linhares et al., 2020). RGB cameras have been used for the

study of vegetation indices based on RGB information (Ilniyaz et al.,

2022; Talavera et al., 2022; Yang et al., 2022), forest canopy mapping

and modeling (Nasiri et al., 2022; Suwardhi et al., 2022; Trencanová

et al., 2022), tree identification and characterization(Onishi and Ise,

2021), and among others.

3.1.2 Multi-spectral cameras
Multi-spectral cameras collect color data and spectral monitoring.

They capture two or more bands in the visible and invisible spectrum

(Akkoyun, 2022). These cameras are able to cover parts of the infrared

and ultraviolet regions. The most common wavelengths for these

cameras are the Near-infrared wavelength (NIR) and red-edge

wavelength from the infrared spectrum. Likewise, multi-spectral

cameras hold a sensitive area detector used in conjunction with a

series of specific waveband filters or a waveband tunable light source

(Ramirez et al., 2022). The working principle of a multi-spectral

camera is shown in Figure 5, with a visual representation of an image

expected from this camera. In forestry health assessment, multi-

spectral cameras have been used to obtain spectral indices and the

derived applications as seen in previous sections.
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3.1.3 Hyper-spectral cameras
Hyperspectral sensors capture the radiation emitted by bodies

in many bands, that go from hundreds up to thousands of

wavelength bands, with narrower bandwidths than multi-spectral

cameras (from 5 to 20 nm). Other sensors like RGB or Near-

infrared (NIR) cameras only capture a minor number of bands

(three in the case of RGB) (Adão et al., 2017). A comparison of

multi-spectral and hyper-spectral cameras is shown in Figure 6,

the main difference is that the hyper-spectral captures a

continuous representation of the light spectrum, given the fact

that it collects the reflectance in narrow bands; but the multi-

spectral cameras only capture the reflectance in a selected number

of bands.

Hyperspectral cameras have been used in forestry, to obtain new

VIs to predict vegetation features such as leaf nitrogen content (Raj

et al., 2021), chlorophyll, and other photosynthetic plant traits (Watt

et al., 2020). Mapping forest hyperspectral characteristics have been

performed as well (Weinstein et al., 2021). The main advantage of

using hyperspectral cameras is the increased number of wavelengths,

thus more information is gathered about the environment, however,

the models created using this information might be overfitted and

thus not usable in general cases (Lee et al., 2004).

3.1.4 Infrared cameras
Infrared cameras are a specific type of sensor that captures the

infrared radiation that is emitted by all bodies with a temperature

above absolute zero. The range of wavelengths that is captured by these

sensors depends on the nature of each one, but common wavelengths

are Short-wave Infrared (SWIR) that ranges from 700 to 1400 nm,
FIGURE 4

RGB camera working principle: a typical image processing system.
FIGURE 5

Multi-spectral imaging: camera structure and a sample of spectral forestry images.
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Mid-wave, infrared (MWIR) from 3000 to 5000 nm, and Long Wave

infrared (LWIR) that ranges from 8000 to 14000 nm (Gade and

Moeslund, 2013), these sensors are also known as thermalcameras in

the reviewed studies (Xu et al., 2018; Cheng et al., 2022).

Figure 7 shows the common structure of a thermal camera used

in remote sensing applications. These sensors have been used in

forestry health assessment to create thermal mappings that are

coincident with RGB mapping information (Webster et al., 2018).

Other applications include the use of thermal indices to predict soil

moisture (Cheng et al., 2022) and for phenotyping (Xu et al., 2018).
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3.1.5 LiDAR sensor
LiDAR (Light Detection And Ranging or Laser Imaging

Detection and Ranging) sensor is a device widely used for remote

sensing. It is considered an active device due to its light emission and

detection (See Figure 8 for comparison with passive sensors).

Moreover, this sensor has two key elements to gather and analyze

data: photodetector and optics. The principle of LiDAR is to emit

laser light towards an object on the Earth’s surface and compute how

long it takes to return to the LiDAR emitter, this definition holds for

an airborne-based LiDAR system (Khairul and Bhuiyan, 2017).
FIGURE 6

Comparison between Multi-spectral and Hyper-spectral camera operation. The multi-spectral camera presents a discrete and reduced number of
bands, however, the hyper-spectral camera presents a continuous spectrum that ranges from wavelengths of 5 to 20 nm.
FIGURE 7

Internal Structure and expected forestry image from a thermal camera.
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The LiDAR point cloud is useful for obtaining physical

information about the surveyed area, the 3D measurements can

be used for generating terrain models, then by processing the

LiDAR point cloud information digital terrain models and digital

elevation models can be retrieved by thresholding the altitude of

each point and discerning which point can be considered from

terrain or from the top tree crowns. With this information,

elevation models are easily obtained by subtracting the digital

elevation modelsand digital surface models surface models

(Hologa et al., 2021). LiDAR point clouds are also useful for

obtaining geometric features of vegetation as slopes or texture

information; these metrics are then used as input data for

machine learning models with various tasks for example (Hologa

et al., 2021), uses geometric descriptions of vegetation obtained

from a point cloud to perform tree classification, a similar approach

is done in (Hell et al., 2022). Due to the resolution that the LiDAR

point cloud is capable of generating, individual trees can be

identified, and thus tree metrics can be directly computed. In

(Vizireanu et al., 2020; Neuville et al., 2021), DBH is estimated

based only on LiDAR retrieved data, other forest attributes

estimated by LiDAR cloud points are canopy cover (Cai et al.,

2021), which can be derived through the density of vegetation

points, this metric is also used to predict biomass near rivers (Resop

et al., 2021), and with the purpose of determining crown fuels

(Suwardhi et al., 2022). Morphological features derived from

LiDAR point cloud can be key factors to determine and

differentiate between alive trees and snags or deciduous and

evergreen trees, this study is done by Stitt et al. (2022). The use of

LiDAR has helped researchers investigate the following: tree

modeling (Suwardhi et al., 2022), biomass estimation (Torre-Tojal

et al., 2022), and tree classification (Hell et al., 2022) among others.

3.1.6 Terrestrial laser scanning systems
Terrestrial laser Scanning Systems (TLS) are instruments used

to obtain three dimension observation of the surface of objects. It

uses LiDAR sensing to obtain the distance from the surface to the

sensor, and precise angular measurements to obtain 3D information

from the objects. TLS systems are capable of reconstructing an area
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with high precision in the order of millimeters (Liang et al., 2016). A

representation of the TLS and its measurements are shown in

Figure 9. In forest health assessment, TLS systems are used to

determine tree features and structure (Miraki and Sohrabi, 2021;

Terryn et al., 2022; Yang et al., 2022), and to estimate crown fuel

and fuel hazard (Hillman et al., 2021).

3.1.7 Handheld spectrometer
A handheld spectrometer is a device that is capable to retrieve

the spectrum emitted by a body in many wavelength bands, the

same as a hyper-spectral camera, but this one is portable and

operated by hand. Another difference is that a hyperspectral

camera captures many pixels, and the spectrometer only captures

a single point. The main application for this device is to obtain

samples of an object that will serve as ground truth for mass data

obtained with a camera or by other means. Handheld spectrometers

have been used to gather information to estimate leaf water content

(Li et al., 2021), to monitor the chlorophyll response to droughts

(Raddi et al., 2021), and to perform tree recognition based on hyper-

spectral features (Yang and Kan, 2022).
FIGURE 8

Differences between Passive sensors and Active sensors.
FIGURE 9

TLS sensor variables needed for obtaining 3D cloud points.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1139232
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Estrada et al. 10.3389/fpls.2023.1139232
3.1.8 Others
There are other kinds of sensors used for forestry health

assessment. For instance, an ANAFI camera (Ribas Costa et al.,

2022), wireless sensors (Yang et al., 2022), a thermocouple (Yao

et al., 2021), and a SPAD-502 meter (chlorophyll meter) (Yao et al.,

2021; Narmilan et al., 2022). These sensors are used for very specific

scenarios, such as measuring chlorophyll in a single leaf, and thus

are not considered for further revision in this review.
3.2 Remote sensing platforms

This section presents a brief review of the most common remote

sensing platforms; highlighting their advantages, disadvantages, and

applications; for a most extensive review on the topic, see (Omasa

et al., 2006; Ashraf et al., 2011; Pajares, 2015; Toth and Jó´zków,

2016; Zhang K. et al., 2020; Chamola et al., 2021; Zhao et al., 2022).

Remote sensing platforms are understood as the platforms that

physically carry the different cameras and sensors used for the

assessment of forestry health. There are two major groups of

platforms that are identified: Unmanned Aerial Vehicles (UAVs)

and satellites. Figure 10, summarizes the number of appearances

that the different remote sensing platforms have in the reviewed

articles. Figure 11 shows a remote sensing platform using a UAV.

3.2.1 Satellites
Satellites are commonly used for remote sensing purposes

(Zhao et al., 2022). These devices are aimed at gathering data

from Earth using imaging sensors. Satellites tend to capture

electromagnetic radiation in the microwave, ultraviolet, and

visible wavelengths reflected by the Earth’s surface (Ashraf et al.,

2011). Overall, a remote-sensing satellite is able to take 4-5 photos

with different types of color filters, evidently, these color filters help
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to better assess vegetation features such as soil, leaves, stems, tree

crowns, under/over the canopy, and so on.

Satellites carry onboard high-resolution microsatellite cameras

(HR-250 and Raptor imagers) with advanced electronic detectors

known as CCDs (Charge-Coupled Devices). These devices not only

allow them to be more sensitive than a film but also convert the

multispectral photographs into electronic signals for further study

(Zhang K. et al., 2020).

According to the literature reviewed, Sentinel 1 and 2 (Huo et al.,

2021; Nasiri et al., 2022), Landsat-8 (Rodrıǵuez et al., 2021),

Worldview-2 (Becker et al., 2018), Triplesat (Fakhri et al., 2022) are

the most prominent satellite platforms used to assess forestry health.

3.2.2 UAVs
Unmanned Aerial Vehicles are the most common platforms in

remote sensing applications for forestry health assessment. The

typical UAV for remote sensing is an electric-propelled air vehicle,

with a navigation system and communication system, and a sensor

for remote sensing (Toth and Józków, 2016). The navigation and

flight control systems are composed of various onboard sensors in
FIGURE 10

Distribution of the most common UAV platforms in the reviewed journal articles.
FIGURE 11

A remote sensing platform mounted on a hexacopter.
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the UAV, the main ones are: Global Positioning System (GPS), an

Inertial Measurement System (IMU), and Micro-Electromechanical

System (MEMS) (Toth and Józków, 2016). The other components

of the remote sensing platform are the sensors needed for the data

acquisition process, the most common sensors in remote sensing

applications are the ones mentioned in section 3.1.

There are different kinds of UAVs, and according to their

configuration, they offer different features such as higher payload

capability, longer flight capacity, and better maneuverability among

others. We have identified the following classes:
3.2.2.1 Single-rotor

Single-rotor UAVs are formed by a single rotary wing, they are a

minority compared to other remote sensing platforms. Since they

only present a single rotor they present a much higher power

efficiency compared to multi-rotor UAVs, they are also used for

carrying heavy payloads (Chamola et al., 2021).

3.2.2.2 Multi-rotor

Multi-rotor UAVs are the most versatile and have been used in

a wide range of operations. This group includes quadcopters,

hexacopters, and octocopters. The main advantages of using these

UAVs are their commercial availability and affordability, the ease of

maneuverability, they don’t need a platform to take off, meaning

that they can take off and land on any surface; so they are preferred

for research purposes. The arrangement of multiple rotors provides

the UAV with better stability making them ideal for imaging

purposes (Toth and Józków, 2016; Chamola et al., 2021).
3.2.2.3 Fixed-wing UAV

These UAVs present a stationary wing, similar to a plane, the

advantage of using a fixed-wing is that lift forces are lower

compared to rotary wing UAVs. Since they are similar to a plane

they need some area for the takeoff and eventual landing. The main

advantage of fixed-wing drones is that they can fly for longer

periods of time, cover larger areas, and can carry heavier payloads

(Chamola et al., 2021).
3.2.2.4 Aircraft

Forestry studies have evoked their efforts to incorporate remote

sensing aircraft into the dynamics of forest surveys and data

collection. Aircraft remote sensing platforms rely heavily on

onboard sensors to leverage their advantages associated with

flexible use and high spatial resolution. In addition, images

captured from the aerial inspection can be used for rapid analysis

in different seasons of the year (Omasa et al., 2006).
4 Machine learning techniques used in
forestry health assessment

Machine learning is a set of algorithms that require the

computer or machine to infer and extract patterns from raw data

(Goodfellow et al., 2016); the effectiveness of machine learning
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heavily depends on the representation of the data fed to the model.

These algorithms can be used for regression tasks, which implies

predicting a number from a set of input data; classification

problems can also be accomplished by machine learning, in this

case, the algorithm predicts that the data representing a feature

belongs to a predefined class.

Learning is a key concept in machine learning, it can be

performed in these ways:
4.1 Supervised learning

In supervised Learning algorithms, the dataset containing

features also contains a number or a label that is the expected

output from the input features. In this case, the machine learning

algorithm needs to infer which is the relation between the set of

features and the expected output, then apply these found relations

in a set of testing data (Goodfellow et al., 2016).
4.2 Unsupervised learning

In these algorithms, the dataset contains a set of features and the

algorithm learns properties about how the data is structured, a

common task performed by unsupervised learning is to recreate the

probability distribution that generated the dataset; another

common function is to group data into clusters with similar

characteristics (Goodfellow et al., 2016).
4.3 Metrics

It is important to measure how the machine learning algorithm

is performing its task, thus it is important to describe the most

common metrics to quantitatively evaluate the algorithm’s

performance. The following are the most used metrics for

classification purposes:
4.3.1 Accuracy
It can be defined as the ratio between the number of correct

predictions and the number of total predictions made by the model

(Flach, 2019), it can be calculated with Eq. (1)

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Where TP, TN, FP, and FN stand for True Positive, True

Negative, False Positive, and False Negative respectively.
4.3.2 Precision
It is the ratio between correct positive predictions and total

prediction, it indicates the proportion of how many correct

predictions the model yields, it is calculated with Eq. (2)

Prec =
TP

TP + FP
(2)
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4.3.3 Recall
It measures the ratio of correct positive predictions and the total

predictions, it is obtained with Eq. (3)

Rec =
TP

TP + FN
(3)
4.3.4 F1 Score
It is a metric that combines both Precision and Recall, it is

useful when the classes in a dataset are unbalanced, and it is

computed with Eq. (4)

F1 = 2 ·
Prec · Rec
Prec + Rec

(4)
4.3.5 Root mean square error
It is a measure of the error between the predicted output of the

model and the real output of the model. This metric is used for

evaluating regression models. It is computed with Eq. (5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−N
i=1jjy(i) − ŷ (i) ‖2

N

s
(5)
4.3.6 Correlation factor (R2)
It is a number that indicates if there is a correlation between two

variables, in regression models it is a metric that helps to understand

if the output of the model is correlated with the input. It ranges from

0 to 1, where 0 indicates that there is no correlation between the

variables and 1 that there is a high correlation.

With the previous remarks, the section continues describing the

most common machine-learning techniques used in the reviewed

articles for the assessment of forestry health and the most critical

results supported by quantitative metrics, the discussed algorithms

in the section are: Linear Regression, Random Forests, Support

Vector Machines, K-Nearest Neighbours, deep learning approaches

and other not common machine learning techniques. Figure 12

shows the most common ML algorithms used in forestry health

assessment in articles from the last five years. Figure 13 shows a

visual representation of how three of the most common ML

methods divide the search space for classification purposes.
4.4 Linear regression

Linear Regression is one of the most common algorithms in

machine learning, for predicting results. Using an optimization

process,linear regression determines the appropriate equation that

maps the input features with the expected output (Goodfellow et al.,

2016). Linear regression has had a wide range of applications. It has

been used to find the correlation between the data derived from TLS

and airborne LiDAR; the study presented by Hillman et al. (2021)

demonstrated that estimations of canopy volume have a strong

correlation between the data from LiDAR and TLS which achieved

a value of 0.96, herein the ground-truth is the value obtained from

the TLS sensors, however other tree structure parameters such as
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canopy base height achieved only a correlation of 0.794. In other

studies canopy height volume reached a correlation of only 0.394,

thus it is not suitable for predicting crown fuel (Shin et al., 2018),

similar experiments were conducted by Arkin et al. (2021). For

predicting the moisture of leaf fuels, multi-spectral VIs were used as

input data for regression models, however, the correlation factor

reached 0.435, thus more studies are needed for practical

implementations for this model (Barber et al., 2021).

Other vegetative problems are investigated using linear

regression models. Resop et al. (2021) studied the correlation

between vegetation metrics, the distance from water sources, and

seasonal variation; the results show that there is no correlation

between the distance to the water stream and canopy height and

vegetation density. Using multi-spectral VIs, regression models

have been used to predict biomass in the tidal marsh; the best VI

was ExG however the correlation index only reached 0.376 (Morgan

et al., 2021). In coastal wetlands, the correlation between above-

ground biomass and flood depth was studied, and the regression

models follow a Gaussian distribution with a correlation factor of

0.54 (Yan et al., 2022). Xu et al. (2022) studied the correlation

between tree diversity and spectral indices. The correlation value

was 0.6; thus VIs could be used for tree classification purposes.

Estimating the correlation between tree features and point cloud

LiDAR data information, in the work presented by Fraser and

Congalton (2021a) RGB and LiDAR-derived metrics of DBH and

crown radius were studied in a coniferous forest. The results show a

correlation of 0.392 and RMSE which equates to 30% of the total

error. Fan et al. (2020) created tree models derived from LiDAR

point clouds, and then structure metrics were calculated, the

predictions were correlated with the ground truth collected in

situ, and the linear models achieved a correlation of more than

0.9 for DBH, tree height, and crown volume. In the article by

Imangholiloo et al. (2020), tree height was estimated using LiDAR
FIGURE 12

Distribution of the most common machine learning algorithms for
forestry health assessment in the reviewed journal articles.
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metrics, such as point density, in leaf-on and leaf-off seasons, and

the correlation factor achieved 0.98. A similar study conducted by

Puliti et al. (2019), compared tree height, stem volume, and basal

area; from data obtained via different aerial methods (UAV, and

manned aircraft); the results show correlation values in the range of

0.64 and 0.73. Another study combined RGB images and LiDAR

metrics to predict tree height and DBH in a eucalyptus forest,

combining both metrics as input data for the model achieved a

correlation of 0.94 (Liao et al., 2022). Xu et al. (2021) developed a

remote sensing platform and the method of validating its data was

to find the correlation of tree structure parameters with the ground

truth found in the field, this study also contemplated the creation of

thermal and multi-spectral VIs.

Leaf area index (LAI) is another parameter that can be predicted

using LiDAR metrics and linear regression models. In the work by

Tesfamichael et al. (2018) the highest correlation value was 0.83;

however, this model used several metrics as input data; a simple

model using only two metrics achieved a correlation of 0.63 but the

simplicity of the model was considered an advantage. A similar study

using RGB point clouds for calculating LAI was conducted by Lin L.

et al. (2021), and the models achieved a correlation of 0.92. Miraki

and Sohrabi (2021) estimated LAI from RGB images and terrain

model descriptors as input data, but the correlation was only 0.42, in

the same study canopy height was also estimated, and using linear

regression models the correlation achieved was 0.84. The study
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presented by (Qiao et al., 2022) also considered morphological

features from the soil and the vegetation to improve the prediction

of LAI, achieving correlation values of 0.93 but it depends on the

growth stage of the vegetation. Water and transpiration models are

also associated with LAI and canopy volume; Aboutalebi et al. (2019)

estimated these parameters using information derived from airborne

LiDAR and multi-spectral cameras; the LAI derived by machine

learning achieved correlations of 0.7.

Predicting the chlorophyll changes in response to environmental

changes has been explored with the aid of regression models. In the

study presented by Raddi et al. (2021), using hyper-spectral indices

and multi-spectral indices; leaf chlorophyll content in textit Quercus

Robur, Quercus Pubescens, and Quercus ilex was estimated with the

aid of linear regression models; using both kinds of indices achieved a

correlation of 0.97 in both cases, thus providing an excellent

alternative to assess drought responses using the change of

chlorophyll content as an indicator. Zhuo et al. (2022), conducted a

similar study to predict chlorophyll content, however, it considered

the effect of mixed vegetation in wetlands for the computation of the

spectral indices, in this case, the model reached a correlation of 0.82.

(Kopacková-Strnadová et al., 2021) presented a study aimed to

predict photosynthetic pigments in coniferous Spruce forests, using

multi-spectral VIs; however, the researchers showed that information

from the growth stage of the forests is needed since the spectrum

from two years’ leaves was the only VI that reached a correlation
FIGURE 13

A comparison between the most common machine learning methods, and how the space is divided to generate different classes.
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factor of 0.52 in a linear regression model. Watt et al. (2020)

conducted a similar procedure but with the purpose of predicting

nitrogen and phosphorus. Using hyperspectral VIs, regression

models were trained and the predictor for both P and N achieved

correlations of 0.75 and 0.83 respectively. Other studies predicting

chlorophyll in different ecosystems are done by Narmilan et al. (2022)

and Yao et al. (2021), with the purpose of evaluating soil respiration;

estimating nitrogen can be achieved with regression models and RGB

indices (Lu et al., 2021).

Problems related to moisture content, in general, can be

performed using linear regression. In the work presented by Li

et al. (2021), leaf water content estimation was performed using

hyper-spectral VIs in various growth stages of vegetation reaching a

correlation factor of 0.9 with the appropriate VI. Regression models

were also used to assess water evaporation models and trace element

uptake by trees growing on red gypsum landfill (Malabad et al.,

2022). Cężkowski et al. (2020) used thermal indices used to predict

various indicators of water stress in wetlands (soil moisture,

chlorophyll content, and photosynthetic active radiation

(fAPAR)), the correlation factors for soil moisture and fAPAR

were of 0.62 and 0.70 respectively, thus the index could be an

indicator of water stress.
4.5 Random forest

Random Forest is a machine learning method that combines

multiple tree classifiers. Each tree is tested with a random input

vector, which leads to selecting the most significant features from

the input data. Random Forest can be used for classification and

regression problems (Breiman, 2001).

For classification purposes random forest has been used in

conjunction with information derived from LiDAR point cloud and

with multi-spectral indices derived from spectral imagery; this

approach presented by Hologa et al. (2021) was used to perform

individual tree classification in a mixed forested area, the trained

random forest achieved an accuracy of 96% over eleven different

tree species when combining both inputs from LiDAR and multi-

spectral imagery. A similar approach was done by Fraser and

Congalton (2021a), but in this case, due to the nature of the

forest, the classification task using random forest achieved an

accuracy of 85%, but the authors highlight the capability of

random forest over traditional methods for tree delineation.

Imangholiloo et al. (2020) used random forest for classification

between coniferous and deciduous trees from information obtained

by LiDAR. In the work presented by Miyoshi et al. (2020), the input

data included hyperspectral multi-temporal imaging data to

perform tree classification in a diverse tropical forest, even though

the accuracy only reached 50%, the use of multi-temporal imaging

improved previous approaches using random forests as classifiers,

leaving the door open to future researches in the same field.

Fraser et al. Fraser and Congalton (2021b), performed a

classification of forest stands in three different categories: healthy,

stressed, and degraded trees; for this purpose, VIs from multi-

spectral imagery were derived and they were used to train the RF

model; the accuracy achieved a maximum of 71%, due to the fact
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that there is a high variation in the characteristics of each

healthy tree.

Classification tasks are not only needed to differentiate between

tree species. Another important task is to classify between live trees

and dead trees, the reason being this ratio is important for assessing

the response of the ecosystem to external disturbances; Stitt et al.

(2022) used information derived from a LiDAR point cloud to

classify different kinds of snags, the model achieved an accuracy of

77%, signifying that only LiDAR information is not enough to

identify some characteristics of snags. In the work by (Shovon et al.,

2022), the RF algorithm was trained to segment between alive and

dead trees in forest stands with an accuracy of 89.4%, using as input

variables tree height derived from LiDAR point clouds and RGB

spectral indices.

Identifying forest structure can be achieved by using random

forest, Yu et al. (2021) explored the feasibility of using multi-

seasonal data from LiDAR and multi-spectral images to perform

vertical forest structure classification. The results show that adding

information from different seasons as input variables to the models

increases its performance and its capability of reliably identifying

the forest structure, even though the random forest was not the best

algorithm according to the metrics presented.

Individual tree recognition can be accomplished by random

forest. Guo et al. (2021), with the purpose of assessing

afforestation models, trained random forests methods to

recognize areas of interest that could potentially be identified as

tree crowns, for this purpose several VIs were computed from

RGB images and they were used as training data for the random

forest algorithm; the individual crown recognition task achieved

an accuracy of 92%, when using more than two input variables to

train the model.

Random Forests were also used for regression purposes. In the

work presented by Lou et al. (2021), the feasibility of predicting

canopy chlorophyll content in marsh vegetation was evaluated

using multispectral images from UAVs, and from satellite

platforms including Landsat-8 and Sentinel-2. The predicted

canopy from the random forest was validated with the real value

through a linear regression achieving a correlation value of 0, 92.

Villacrés and Cheein (2022) used random forests to retrieve spectral

VIs from multispectral imagery essential for mapping moisture

content, however, the results were unsatisfactory, and other

regression methods were needed.

Biomass prediction using Random Forest was explored by

Torre-Tojal et al. (2022), for this purpose, a LiDAR point cloud

was obtained using a UAV; subsequently, digital terrain models and

canopy models were reproduced. Some of the metrics obtained were

height distribution, canopy cover, and canopy height. An analysis of

the importance of those metrics was performed resulting in that the

metrics related to the height of the trees were the most significant

when describing biomass; using these variables the RF was trained,

and the predicted result of the model achieved a correlation value of

0.7, improving previous estimations. Indices and aerial images from

satellite platforms are also promising sources of data for prediction

purposes, Nasiri et al. (2022) used Sentinel-2 derived Vegetation

indices with the purpose of mapping canopy cover in forested areas

using Random Forest Regression to predict the percentage of
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canopy according to the indices, the trained model achieved a

correlation of 0.69, showing the potential of combining satellite

platforms and random forest for mapping purposes. Sentinel-2

imagery was used to predict the biomass of fine fuels in dryland

ecosystems, and the training of the random forest yielded a

correlation factor of 0.63 over a six-year period, highlighting the

potential of machine learning techniques for mass land estimation

of fine fuels (Wells et al., 2021).
4.6 Support vector machines

A support vector machine is a method mainly used for

classification purposes, the objective of the SVM is to find a

hyperplane that divides in the “best way” two different classes of

data. The “best way” refers to the fact that the distance between the

hyperplane and each class is maximum (Goodfellow et al., 2016).

The main advantage of SVM is that it uses a kernel function that

assigns the input data to a higher dimensional space, where it is

easier to find the hyperplane that separates two classes.

In forestry health assessment SVMs are used to perform

classification and regression tasks. In (Mäyrä et al., 2021), SVMs

are used to perform the identification of tree species, using as input

vectors point clouds from LiDAR and images from hyperspectral

cameras from the SWIR region with 288 bands. From the point

clouds, individual tree segmentation was performed and the SVMs

were trained. This study shows that there are no major errors in tree

classification processes using SVM, achieving an accuracy of 82%;

although this method is outperformed by deep learning approaches

(Mäyrä et al., 2021), which achieved an accuracy of 87%.

The work by Blanco-Sacristán et al. (2021) uses SVM to

perform segmentation in images based on RGB and multi-

spectral images. Images were segmented based on their level of

dryness, it is important for monitoring possible fire-prone lands.

The accuracy reached 80% in most cases.

Tree structure classification has also been studied with the aid of

SVM (Yu et al., 2021), predicting the tree structure in a densely

forested area, for this purpose the authors used LiDAR and Multi-

spectral point clouds to generate height models which were used as

inputs to the SVM, in this case, the classification from the SVM was

outperformed by other methods. SVMs are used to evaluate carbon

models from tree parameters such as canopy height and DBH

(McClelland et al., 2019).

The segmentation of ground points based on VIs can be

considered as a classification algorithm, in this context Zhang Y.

et al. (2021) used vegetation indices as input data for SVM with the

purpose of classifying ground points and vegetation points in aerial

images; this method achieved an accuracy of 94% using only two

VIs as input.

As a regression technique, Support Vector Regressor (SVR) was

used to predict tree structure parameters such as DBH, tree height,

and volume using as input data high-density LiDAR point clouds

(Corte et al., 2020). The results show that the errors in the

prediction were lower when using SVR, compared to other

algorithms such as RF or neural networks. Nasiri et al. (2022)

processed VIs derived from Sentinel-2 information to model
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canopy cover, achieving significant correlation values of 0.64. A

similar task was performed by Abdollahnejad and Panagiotidis

(2020), but the tree classification was performed with inputs from

multi-spectral VIs.
4.7 K-nearest neighbors

K-nearest Neighbors is a non-parametric machine learning

technique, which means that the training does not generate the

optimum parameters for a mapping function or plane. It simply is a

function of the training data, in its simplest form, KNN computes

the expected output value from a new input, by averaging the

output from the K nearest neighbors in the training data of this new

entry (Goodfellow et al., 2016).

The KNN algorithm was used to perform tree classification

from hyper-spectral information. In the work presented by Yang

and Kan (2020), the input vectors were information from hyper-

spectral imaging, in this case, the KNN algorithm was the least

effective algorithm. Tuominen et al. (2017) used KNN to estimate

tree structures from the information gathered manually in plots and

predict them in aerial photos, the results show that the error is

below 30 percent. Another use of KNN algorithm is presented by

Zhang Y. et al. (2021), the model was used to segment ground

points from vegetation points, however, this model was

outperformed by SVM.
4.8 Deep learning

Deep learning (DL) refers to techniques that rely on multiple

layers of units (called neurons). Each neuron is a function that maps

the input data to the desired output. In the training process, the

network is capable of learning the parameters of such mappings.

Figure 14 shows the scheme of a network with two hidden layers.

The name “deep” refers to the number of layers employed in these

kinds of models (Goodfellow et al., 2016). The key feature of a deep

learning model is its capability to make representations of

unstructured data such as images or raw text (Osco et al., 2021).

Likewise, DL models are used in conjunction with RGB, multi-

spectral, and hyper-spectral images, to perform different tasks

concerning the assessment of forest health. Lin and Chuang

(2021) used deep convolutional neural networks ResNet50,

VGG19, and SegNet to extract features from aerial RGB pictures

to perform tree classification. However the initial results showed

poor performance based on accuracy; thus the authors proposed a

simplification of the images using Principal Component Analysis,

selecting only the most important features of the images. With this

approach, SegNet reached an accuracy of 95%. The same task was

performed by Onishi and Ise (2021), from aerial RGB images

individual tree crowns were segmented, and each individual tree

crown was used as the input data for the deep learning model, which

was capable of categorizing seven different tree species and achieved

an accuracy over 90%. Here the deep learning architectures were

AlexNet, VGG16, Resnet18, and Resnet152, these were used for

fine-tuning the model. A similar approach was done by Zhang C.
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et al. (2020), where a model using ResNet50 achieved an accuracy of

92.6%. In the work presented by (Feng et al., 2020), the authors

investigated the results of using multi-temporal information in a

recurrent convolutional neural network, for mapping vegetation

using multiple-seasons aerial images. Hell et al. (2022) used

PointCNN and 3DmFV-NET to perform the classification of

coniferous, deciduous, and dead trees; from a LiDAR 3D cloud

point, the results show that both networks are capable of

differentiating between coniferous and dead trees, and it can

reach an overall accuracy of more than 80%.

Pulido et al. (2020) used segmentation networks DetectNET,

Faster R-CNN, and Single Shot Multibox Detector (SSD) to perform

tree recognition from multi-spectral images in a forested area. The

results show that, while traditional methods are capable of identifying

trees, DL models outperform them and show improved metrics in

areas where trees are clustered together. A similar task was performed

by Hao Z. et al. (2022), herein the authors used Mask region-bases

convolutional neural networks (Mask R-CNN) and evaluated the

effect of reducing the number for training. The results show that by

randomizing the training dataset, thus training the model with

dissimilar samples each time, the metrics of the model are not as

affected; therefore the training images can be reduced.

The creation of segmented images of fire-prone vegetation areas

can be achieved with the use of deep learning techniques,

Trencanová et al. (2022), trained U-NET network to identify

these areas from RGB images, and the results show an F1 score of

0.7 in the validation dataset; however, due to the complex labeling

process, the authors suggest that further improvements are needed

to enhance this technique of identifying areas in landscapes.

Liu et al. (2021) proposed a 3D deep learning structure called

LayerNet to perform tree classification tasks, the network used as

input individual tree point clouds obtained from a LiDAR point

cloud, the advantage of the network is that it can be trained from

disorganized 3D point clouds. Compared to other algorithms such

as random forest or KNN, this method achieved an accuracy of

88%, greatly outperforming the other two more common methods,

which also need to pre-process the information to reduce the

dimensions of the data, thus reducing potentially valuable traits.
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Deep learning can be used to determine canopy cover in a

densely forested area. Li et al. (2022) use a deep learning approach

to distinguish background vegetation points from over-story

canopy points, to produce canopy maps from forests’ 3D

imagery.The results show that the deep learning approach

outperforms traditional canopy mapping methods, therefore it is

an accurate and robust method for creating canopy maps under

different illuminations and terrain conditions.

Regression tasks can be performed using deep neural networks,

Babaeian et al. (2021) used several machine learning methods and

compared them to neural networks with two or three depth layers;

the input data were multi-spectral VIs, and texture measurements

from the soil and the expected output was soil moisture content; the

results indicate an error below 5% and a high correlation value

between the machine learning models and the predicted output.
4.9 Other algorithms

Other machine learning algorithms have been sparsely applied in

different tasks. For example, gradient boosting machines (GBM) have

been used to estimate soil moisture content in vegetated areas.

Babaeian et al. (2021) tested several ML algorithms to predict soil

moisture content including GBM. The results yielded that Neural

Networks outperformed the other algorithms based on prediction

error and the correlation factor. In the study presented by Villacrés and

Cheein (2022), boosting gradient machines were used to reconstruct

vegetation indices. Another task accomplished by GBM is the

prediction of leaf nitrogen content based on hyperspectral indices,

this is done by Raj et al. (2021), where the model achieved a correlation

factor of 0.63, in areas with water-stressed vegetation; however, the

model didn’t achieve the same results in well-irrigated areas.

A more optimized version of gradient boosting is Extreme

Gradient Boosting machine (XGB), this approach was used by Yu

et al. (2021), to determine the forest structure and it was compared

to random forest and support vector machines algorithms, in this

studyit was determined that XGB was the best algorithm for this

task achieving an F1 score of 0.91.
FIGURE 14

Visual representation of a neural network with two hidden layers.
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For classification purposes, Yang and Kan (2020) studied the

use of Extreme learning machine (ELM) which is based on neural

networks; and a Linear Bayes Normal Classifier (LBNC); the

authors compared both algorithms with KNN; in this study ELM

and LBNC achieved an accuracy of 97.55% and 96.53% respectively,

both outperforming KNN in tree classification task.

The generation of digital terrain models was explored with

the aid of machine learning (Arevalo-Ramirez et al., 2022),

using conditional random field (CRF) to extract ground points;

this approach generated smoother terrain models than other

approaches not based on machine learning methods.
5 Discussion

There is a clear relationship between the discussed vegetative or

forest issues, the sensors, and the machine learning algorithms

selected to accomplish the research objectives. For tasks such as

tree recognition and classification, deep learning and other

classification algorithms prevail, and the selected sensors for this

task are mainly imaging systems, RGB, or multi-spectral. Other

tasks corresponding to determining and predicting phenotype

features of forests such as chlorophyll, water, and moisture

content often use regression algorithms, where input data are the

VIs gathered from RGB, multi-spectral, and hyperspectral cameras. In

the case of physical modeling of forests and determining its parameters,

sensors such as LiDAR or terrestrial laser scanning systems are more

suitable, due to their capability of creating 3d models from point

clouds. Figure 15 illustrates the relationship between the vegetative

issues, the sensors, and the data processing algorithms.

In general, all the reviewed works follow a somewhat similar

workflow described by Müllerová et al. (2021): a problem in forestry

health assessment is identified (chlorophyll prediction, water

content estimation, biomass estimation, forest structure
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parametersestimation, tree classification, crown fuel estimation).

Then the suitable sensors are selected depending on the needs of the

problem, for example, if the problem is related to the geometric

features of forests, a LiDAR sensor could fulfill the requirements.

RGB, multi-spectral, and hyper-spectral cameras are more suited

when spectral information is required and VIs are needed for

example in chlorophyll estimation. The specific spectral response

can also be used as an indicator of a specific tree speciesthus VIs are

ideal to perform tree segmentation. Once the sensors are chosen, the

data acquisition process is conducted. One of the most difficult parts

of assessing forest health is the information processing phase. There

is no clear pathway that leads to a correct decision when deciding

which algorithm is the best to process the information according to

the needs; as shown in the previous section, machine learning

algorithms are a powerful alternative to process data and reach

meaningful results.
5.1 Sensors used in remote sensing for
forestry health assessment

Forestry health assessment aided by machine learning and

remote sensing platforms is a promising trend in recent years.

With the evolution of technology and machine learning techniques,

better results in predictions of factors that affect forestry health have

been accomplished. It is now possible to determine features from

hyperspectral and multi-spectral imaging technologies, the use of

UAVs helps the survey of great areas in short time, contrasted with

a visual inspection from experts.

The use of LiDAR technology allows precise 3D reconstruction

of environments in the range of centimeters (Hologa et al., 2021),

allowing a complete geometrical characterization of forests, and the

retrieval of tree and forest structure parameters. Efforts of mapping

are important for forestry health assessment and to test algorithms;
FIGURE 15

Relation between the vegetative or forest issue studied, the sensors and the machine learning algorithm chosen to do the investigation.
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(Webster et al., 2018) performed thermal characterization of forest

canopies in a large survey area, the study also made a coincident

RGB mapping of the area, facilitating the access to public data to the

scientific community.

The use of multi-spectral and hyper-spectral cameras to detect

leaf reflectance and to compute different VIs has allowed an

improvement in prediction techniques with the aid of machine

learning algorithms. However, the information that can be gathered

from spectral imaging methods is vast, and most of it will not have

any correlation with the desired measurement, thus it is a current

challenge to discover which bands and VIs are suitable for the

different tasks in forestry health assessment. One way of reducing

the dimensionality of input data for machine learning algorithms is

the use of statistical methods to determine which information is

more valuable and will provide better insight into the process, a

common practice to reduce the dimensionality is to perform

principal component analysis (PCA). Shovon et al. (2022)

performed PCA in multi-spectral images, then a new VI with the

four principal components, which was useful for identifying trees

from snags. In the work presented by Kopacková-Strnadová et al.

(2021), PCA was performed to reduce four spectral bands to three

(three principal components), and with the selected bands, a VI was

computed to predict photosynthetic pigments (i.e Chlorophyll). A

similar process was performed by Barber et al. (2021), where the

authors reduced the number of bands to predict fuel moisture in

grasslands, again Ahmed et al. (2021b), reduced the number of

multi-spectral bands to three principal components that

represented the 86% variability of the images to generate VIs for

tree identification. There is a greater issue when using hyperspectral

imaging cameras since they can provide up to hundreds of bands;

Yang and Kan (2020) retrieved 114 bands from a hyper-spectral

camera, using a reduction process 14 bands were selected as

principal feature bands, greatly reducing the dimension of the data.

5.2 Machine learning in
forestry applications

The current trend in remote sensing for forestry health

assessment is to use machine learning methods to process the

information and find the desired correlations. These novel

techniques currently outperform other methods that do not involve

a training process, for example in the tree classification task Shovon

et al. (2022) presented a thresholding algorithm to perform tree

classification task, and even though the results were considered

satisfactory, they are greatly outperformed by deep learning

methods using convolutional layers. The accuracy is near a 90%

(Onishi and Ise, 2021) on the training dataset with seven different tree

species, whereas (Shovon et al., 2022) reported an accuracy of 80%.

The studies in classification tasks highlight that the use of deep

learning techniques greatly outperforms other classification

techniques (Onishi and Ise, 2021; Hell et al., 2022), and other

studies present the advantage that the data does not need pre-

processing (Liu et al., 2021). Hao Y. et al. (2022) performed

individual tree detection without using machine learning models,

and even though the proposed method improves the detection

accuracy, reaching 90% in some scenarios; it is outperformed by the
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deep learning algorithm conducted proposed by Hao Z.

et al. (2022).

The information needed as input data for deep learning

and machine learning techniques is not clear either; in some

cases, data extracted from UAV flights in a particular season of

the year is insufficient for regression and classification purposes;

thus recent articles investigate the use of multi-temporal data, for

example, the results presented by Kopacková-Strnadová et al.

(2021) suggest that temporal data is needed for predicting

photosynthetic pigments in trees, given the fact that VIs from

leaves of a certain age yielded the stronger correlated models.

Other studies (Imangholiloo et al., 2020), explored the option of

using data from different seasons for characterizing seedlings. Feng

et al. (2020) used multi-temporal data to train DL networks,

improving the accuracy of the model by more than 20%

compared to the model using mono-temporal information.

For regression purposes, there is no clear tendency in the

techniques that can be used to retrieve the desired data and make

the predictions with the least amount of error. Most of the studies

that rely on a prediction value, train different machine learning

algorithms and assess the performance of each one using

quantitative metrics. The performance of the algorithms varies

case by case.

5.2.1 Publicly available data
One of the biggest drawbacks of using machine learning is the

lack of curated available data to train the algorithms. In most forestry

health assessment applications, not only the data acquisition process

is necessary, but also generating the ground truthis needed. Generally,

the ground truth is acquired with the help of expert knowledge and in

situ measurements, which is an expensive and time-consuming

process; thus studies to create large datasets fulfill a vital role for

the scientific community. Weinstein et al. (2021) created a dataset

containing LiDAR, RGB, and hyper-spectral information, with

manual delineation of individual tree crowns. This dataset can be

used to train machine-learning algorithms for tree detection and

classification. Other studies compared how the reduction of samples

affects the performance of deep learning models. Hao Z. et al. (2022)

showed that by randomizing the training dataset and creating more

dissimilar samples it is possible to reduce the number of training

images without affecting the performance of the model. Research

about the retrieval of pigments, particularly chlorophyll, water, and

moisture content, is conducted through spectral information at the

leaf or canopy level. Several datasets containing samples of multiple

leaves and their reflectance are of great help when developing

machine learning models for regression purposes, using as input

some form of spectral data. Among the most used datasets for these

purposes are the following: ANGERS (Jacquemound et al., 2003),

which contains the spectral reflectance of 276 live, fresh leaves of 39

species of trees located in Angers, France; alongside chemical and

physical measurements such as chlorophyll content and water

content. Another dataset of similar characteristics is LOPEX dataset

(Hosgood et al., 1993), which presents reflectance data of 330 leaf

samples from 45 different tree species, this dataset also presents

biochemical properties for the dataset. Both datasets and other

similar ones can be found online (https://ecosis.org/). One
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important model for remote sensing applied to forestry applications

is the PROSPECT model (Feret et al., 2008), which recreates spectral

reflectance and transmittance at the canopy level, and could be of

great use when predicting biochemical properties of leaves including

pigment content (Feret et al., 2008). Information about publicly

available datasets, including ANGERS, LOPEX and the one

presented by Weinstein et al. (2021) is summarized in Table 3

Datasets for forestry applications using deep learning are scarce

and, in the reviewed works, every group of researchers created its

own databases with annotations, for their intended objectives.

However public information is available and it has been compiled

at Diez et al. (2021).

5.2.2 Big data approaches
Another future perspective for the assessment of forest health is

the use of big-data approaches; under this new perspective, it is

possible to use in conjunction with information retrieved from

various sources including satellite platforms, airborne and

terrestrial vehicles, and in-situ measurements to model the ever-

changing dynamic of forests. One approach is to use the geological

information-modeling system (GIMS), as presented by Varotsos

and Krapivin (2017), who used GIMS to perform simulations

evolution of the climate-nature-society system.
5.3 Future perspectives for machine
learning and remote sensing in forestry
health assessment

As shown in this current work, remote sensing aided by

machine learning algorithms for forestry health applications is an

active research field. As the methods of processing information

advance and become more sophisticated, there is the possibility of

highly improved forest management practices and contributing to

sustainable forest management. Various studies (Liu et al., 2021;

Onishi and Ise, 2021; Hell et al., 2022; Shovon et al., 2022), reported

improved results in the metrics for tree recognition and tree

classification, demonstrating the capabilities of machine learning

to generate more precise models.

Another area that will continue to benefit from the

improvement of models is the area of wildfire prevention (Jain

et al., 2020). Correctly predicting fuel moisture content and biomass

is of great help for predicting areas prone to wildfires. As seen in the

reviewed works (Cężkowski et al., 2020; Raddi et al., 2021; Wells
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et al., 2021; Yao et al., 2021; Narmilan et al., 2022; Nasiri et al., 2022;

Torre-Tojal et al., 2022), ˙ the use of machine learning algorithms

have helped researchers predict biomass of fine fuels and moisture

content at leaf and canopy level; thus helping identify dangerous

areas for wildfire prevention. Machine learning models, alongside

remote surveillance, carried out by UAV or satellite platforms will

be of great importance for the prevention of disasters and the

correct decision-making in disaster areas Jain et al. (2020).
6 Conclusions

The current state of the art suggests that for regression purposes

(i.e estimating tree features, chlorophyll content, water leaf content,

and soil moisture content among others); machine learning

techniques are suitable. Choosing the imaging systems or sensors

depends on the appropriate input data for the model it could be in

the form of multi-spectral indices or metrics derived from LiDAR

point clouds. However, there is no consensus on which regression

technique achieves better performance.

DL techniques are a common trend for tree identification and

classification tasks; these methods outperform other classification

algorithms such as SVM and random forests, but they present the

withdrawal of not enough data for training and validation purposes.

Most recent research is using multi-temporal information to

improve the classification of trees from aerial images since the

growing stage of trees affects their physical and chemical features.

The characterization of forests and their structure is a complex

task due to the nature of the terrain, mixed and dense vegetation,

constant evolution due to natural causes (different growth stages of

the trees), and external causes (droughts, wildfires, climate change);

therefore similar methodologies might not be suitable depending on

the ecosystem.

The reviewed articles suggest that assessing forest features

through remote sensing and machine learning techniques is a

viable trend; since many ML techniques are being used for

predicting forest health indices. Most recent works started

exploring the use of Deep Learning Models, particularly

convolutional neural networks to perform tree classification

and recognition; these algorithms show great promise in

reducing time for forest inventory and management, however;

generating data for the training process, and creating models for

general purposes are still some barriers in the use of deep

learning techniques.
TABLE 3 Publicly available datasets for forestry health assessment.

Dataset Content Information Case Application

ANGERS
Information from
276 leaves of

different species

Visible and infrared spectra. Physical
measurements. Biochemical analysis (Pigment

content)

Development of model PROSPECT5 for reconstructing leaf
reflectance (Feret et al., 2008). Testing machine learning algorithms

for pigment estimation (Koirala et al., 2020; Shi et al., 2022).

LOPEX
Information from
330 samples of
different species

Visible and infrared spectral. Physical
Measurements. Biochemical Analysis (Pigment

content).

Development of model PROSPECT5 (Feret et al., 2008). Training
machine learning algorithms for pigment estimation Koirala et al.

(2020)

Dataset presented by
Weinstein et al., 2021).

Multiple sensor
data and individual
crown delineation.

RGB images. Hyper-spectral images. LiDAR
point cloud. Individual image-annotated
crowns. Individual field annotated crowns.

Development of individual crown detection algorithms from RGB and
hyper-spectral images, and LiDAR point clouds Weinstein et al., 2021).
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their support in this work.
Frontiers in Plant Science 22
147
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Abdollahnejad, A., and Panagiotidis, D. (2020). Tree species classification and health
status assessment for a mixed broadleaf-conifer forest with UAS multispectral imaging.
Remote Sens. 12, 3722. doi: 10.3390/rs12223722

Aboutalebi, M., Torres-Rua, A. F., McKee, M., Kustas, W. P., Nieto, H., Alsina, M.
M., et al. (2019). Incorporation of unmanned aerial vehicle (UAV) point cloud
products into remote sensing evapotranspiration models. Remote Sens. 12, 50.
doi: 10.3390/rs12010050
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Deep reinforcement learning
enables adaptive-image
augmentation for automated
optical inspection of plant rust
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This study proposes an adaptive image augmentation scheme using deep

reinforcement learning (DRL) to improve the performance of a deep learning-

based automated optical inspection system. The study addresses the challenge

of inconsistency in the performance of single image augmentation methods. It

introduces a DRL algorithm, DQN, to select the most suitable augmentation

method for each image. The proposed approach extracts geometric and pixel

indicators to form states, and uses DeepLab-v3+ model to verify the augmented

images and generate rewards. Image augmentation methods are treated as

actions, and the DQN algorithm selects the best methods based on the images

and segmentation model. The study demonstrates that the proposed framework

outperforms any single image augmentation method and achieves better

segmentation performance than other semantic segmentation models. The

framework has practical implications for developing more accurate and robust

automated optical inspection systems, critical for ensuring product quality in

various industries. Future research can explore the generalizability and scalability

of the proposed framework to other domains and applications. The code

for this application is uploaded at https://github.com/lynnkobe/Adaptive-

Image-Augmentation.git.

KEYWORDS

adaptive image augmentation, deep reinforcement learning, deep Q-learning,
automated optical inspection, semantic segmentation
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1 Introduction

Automated optical inspection (AOI) provides a flexible and

efficient method of object monitoring. In agriculture, AOI can be

used for early screening of leaf diseases to support timely

intervention to prevent leaf rust. Leaf rust is a type of plant

disease also known as red spot disease or sheep beard. There are

4,000 known species of leaf rust that attack a wide range of crops

such as beans, tomatoes, and roses (Liu et al., 2022; Bhatti et al.,

2023). Disease spots first appear as white and slightly raised spots

on the lower cuticles of the lower (older) leaves of mature plants.

Over time, the disease spots become covered in reddish-orange

spore masses. Later, pustules form and turn yellow-green and

eventually black. Severe infestations can cause foliage to chlorosis,

deform, and eventually fall off (Jain et al., 2019; Bhatti et al., 2021;

Lu et al., 2023; Wang et al., 2023; Yang et al., 2022; Zhang et al.,

2022). The spread of this disease will seriously affect agricultural

production and cause huge losses. Thus, detecting plant disease and

rust is very important and effective for protecting plant growth and

development, improving crop yield and quality, reducing pesticide

use, and saving time and cost (Bhatti et al., 2022; Shoaib

et al., 2023).

Artificial intelligence-enhanced AOI methods based on

computer vision and deep learning are promising solutions for

the adaptive identification of plant diseases (Liu and Wang, 2021).

Algorithms that incorporate the two major computer vision tasks—

classification and detection—have been widely used in plant disease

detection. In terms of classification algorithms, Sethy et al. (2020)

used convolutional neural networks (CNNs), ResNet50, to extract

features, which were then fed to a support vector machine (SVM)

for the disease classification, achieving an F1 score of 0.9838. Zhong

and Zhao (2020) proposed three methods based on the DenseNet-

121 deep convolutional network: regression, multi-label

classification, and focal loss function to identify apple leaf

diseases and improve the detection accuracy in unbalanced plant

disease datasets. In terms of detection algorithms, Zhou et al. (2019)

proposed a fast rice disease detection method based on the fusion of

FCM-KM and Faster R-CNN to improve detection accuracy and

reduce detection time. Sun et al. (2020) proposed a CNN-based

multi-scale feature fusion instance detection method based on the

improved SSD to detect corn leaf blight on complex backgrounds,

with the highest average precision reaching 91.83%.

The classification and detection of plant diseases are only

possible to judge whether the disease occurs in certain locations

(Di and Li, 2022; Khan et al., 2022; Yan et al., 2022; Deng et al.,

2023; Wang et al., 2023). Using computer vision segmentation

algorithms, the size and shape of plant rust spots can be obtained

(Wang et al., 2021; Ban et al., 2022; Shoaib et al., 2022; Zhang et al.,

2022; Dang et al., 2023; Wang et al., 2023), and the severity of rust

occurrence can be quantitatively evaluated. He et al. (2021)

proposed an asymmetric shuffle convolutional neural network

(ASNet) based on Mask R-CNN to segment three diseases,

including apple rust, with an average segmentation accuracy of

94.7%. Lin et al. (2019) proposed a U-net-based CNN to segment

powdery mildew from cucumber leaf images at the pixel level.

Unfortunately, compared with the classification and detection of
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diseases, there is still little research on applying deep learning

segmentation networks for rust identification.

In the study of rust detection, the size of the available data set is

limited, and manual labeling requires a lot of time and effort. The

traditional solution to image augmentation is to perform simple

image processing, which has been verified to improve the

performance of plant image segmentation. Lin et al. (2019)

proposed improving the U-net segmentation network by using

image augmentation technology to expand the training set to

train the semantic segmentation model better. Zhang et al. (2022)

proposed the DMCNN model, which obtained twice the data after

image augmentation and achieved an average apple disease

detection rate of more than 99.5%. The research proves that

sample size and data quality are critical to improving detection

accuracy. Unfortunately, whether there is redundancy in the data

set obtained by image augmentation or whether the data quality is

good or bad (Elmore and Lee, 2021; Dang et al., 2023; Xiong et al.,

2023) is a question worth exploring. Blind pursuit of a sample size

for inappropriate image augmentation may adversely affect

the model.

Several image augmentation methods have been proposed, such

as rotation and cropping. However, no single approach can always

outperform others, and the image quality generated by these

augmentation methods is uncertain. In other words, the

bottleneck of current image augmentation methods is that it is

difficult to define the optimal augmentation operation to achieve the

most significant performance improvement for semantic

segmentation. Currently, multiple augmentation methods are

generally used together: all methods for the complete image set,

one for a separated subset, or one for a randomly sampled subset.

However, none of these assignment mechanisms can guarantee the

best match between an image and an available augmentation

method. To overcome this problem, deep reinforcement learning

(DRL)-based image augmentation methods have been proposed

(Yang et al., 2023). DRL is a machine learning technique that

enables a software agent to optimize its decision-making policy by

interacting with its environment (Zhou et al., 2021). Le et al. (2022)

stated that DRL can automatically learn how to augment datasets

effectively. Qin et al. (2020) developed a novel automatic learning-

based image augmentation method for medical image

segmentation, using DRL to model the augmentation task as a

trial-and-error process.

However, image augmentation and image segmentation were

previously trained in separate ways (Di and Li, 2022). The image

segmentation results cannot provide feedback to the DRL-based

image augmentation model. Therefore, we propose a DRL-enabled

adaptive image augmentation framework based on the Deep Q-

learning (DQN) algorithm and the semantic segmentation model,

DeepLab-v3+, for apple rust detection. DQN learns the Q-value

function with a deep neural network and uses the experience

playback and the target network to improve the stability and

learning effect (Xu et al., 2022). The main contributions of this

study are as follows:
(1) A DRL-enabled adaptive image augmentation framework is

proposed to adaptively select the best-matched image
frontiersin.org
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augmentation methods according to the image features.

This way, an effective augmented image set is constructed

from the original image set.

(2) The DeepLab-v3+ model is applied. It is pre-trained by the

original image set and retrained in conjunction with the

augmentation image set. The model is retrained in a

transfer-learning way, featuring fast fine-tuning. The

retrained model outputs average performance over the

test image set as an evaluation index for the augmented

image. Furthermore, the evaluation index provided

feedback to the DRL model as a reward.

(3) The superiority of the DRL-enabled adaptive image

augmentation framework is verified by comparing it with

other image augmentation methods and semantic

segmentation models over a set of performance indexes.

(4) The main finding is that the DRL-enabled adaptive image

augmentation framework can best match image

augmentation methods with the image features and the

underlying segmentation model.
This paper provides an end-to-end, robust, and effective

method for segmenting rust spots at the pixel level, providing a

valuable tool for farmers and botanists to assess the severity of rust.
2 Method

The DRL-enabled adaptive image augmentation framework is

depicted in Figure 1. The DQN model acts as the Agent, and the

image set is treated as the environment. The Agent and the

Environment repeatedly interact through the signals: state st ,

action at , and reward rt . The state st and the reward rt are output

by the environment to the Agent while the action at is determined

by the Agent and executed in the environment. The interaction

process consists of episodes, which in turn comprise multiple steps.

The experience data are collected during the interaction process and

used to train the Agent until the Agent can best match the

augmentation methods and the images. In this specific scenario,

the Agent can augment a given image appropriately so that the

augmented image set can enable the segmentation model to output

better performance.

The detailed interaction process is illustrated in Figure 2. A

group of objects, e.g., images, states, and actions, are represented as

a vector when the precedence relationship should be maintained;

otherwise, the group of things is encapsulated with a set. In any

round of interaction t, the geometric and pixel indicators are

applied to extract the image features of the father image vector

It−1, which are then used to construct the state vector st . After that,

the action vector at is determined based on the state vector st and

the Agent policy function pq(at jst). The actions in at represent

image augmentation methods selected individually for each image

in It−1. Therefore, at will produce a child image vector It after being

executed. After that, the child image vector is combined with the

pre-training image set I0 to construct a retraining image set. Then,

the retraining image set is used to retrain the pre-trained image
tiers in Plant Science 03
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segmentation model, DeepLab-v3+. Finally, the retrained model is

tested on the test image set Itest , and the testing results are used to

generate the reward rt . At this moment, the data (st , at , rt) can

be collected.

In the next round, the It is used as the father image vector, and

the above process is repeated so that the data (st+1, at+1, rt+1) can be

collected. In addition, the data (st , at , rt , st+1) need storing in the

experience replay buffer for training the Agent policy function pq(
at jst). After the process is repeated T times, an episode is said to be

completed. To begin the next episode, reset t to 1, and restore the

pre-training image set I0 as the father image vector. The number of

episodes, L, is another hyperparameter like the number of steps T

within an episode, which means a total of L by T steps should

be executed.

The Agent policy function pq(at jst) evolves during the above

interaction process. A number of S samples are extracted from the

experience replay buffer and applied to update the parameter q of

pq(at jst). The hyperparameters, e.g., L, T , and S need adjusting and

pq(at jst) need updating till the performance is satisfied.
2.1 Image set and image vector

The original image set is divided into two subsets. Twenty

percent of the images are sampled randomly from the original

image set, forming the test image set Itest that is used to test the

DeepLab-v3+ model. The remaining 80% of images are collected by

a subset denoted as I0, which is called the pre-training image set. Let

I0 = f I0,1, I0,2,…,  I0,mg = f(x01, y01), (x02, y02),…,  (x0m, y
0
m)g, where x0i

and y0i are the ith image and its corresponding label image, andm is

the total number of samples in the image set. Through the image

augmentation procedure, an image in It−1(t = 1… T) is applied to

an image augmentation method to produce an augmented image,

and all the augmented images make up the augmented image set

It = f It,1, It,2,…,  It,mg = f (xt1, yt1), (xt2, yt2),…,  (xtm, y
t
m)g.

During the DQN augmentation process, the image sets are

represented as vectors. In an image vector, the images are queued in

a line, each occupying a fixed and unique position. At the first step

of an episode, i.e., t = 1, I0 is used as the father image vector denoted

as It−1. Then the images in It−1 are augmented to produce the child

image vector denoted as It . The image vectors are used instead of

image sets because the corresponding relationship between It−1 and

It should be maintained. In other words, the first image in It is

produced from the first image in It−1 and so forth. It is noted that

the images in It−1 are applied to image augmentation

methods independently.

The pre-training image set I0 alone is used to pre-train the

DeepLab-v3+ model. In contrast, I0 is combined with the

augmented image set It to retrain the pre-trained DeepLab-v3+

model to verify the effect of It . In other words, the I0 and Itest are

used to pre-train and test the semantic segmentation model

DeepLab-v3+. The pre-trained DeepLab-v3+ model is retrained

and tested by I0U
​It and Itest to see the influence of the augmented

image set It on the pre-trained model.

In the next step, the newly produced image vector It instead of

It−1 is used as the father image vector to produce its child image
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FIGURE 1

DRL-enabled adaptive image augmentation framework.
FIGURE 2

DRL-enabled adaptive image augmentation process.
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vector It+1. Then, It+1 is united with I0 to construct another

retraining image set to test the augmentation effect of It+1 based

on the pre-trained DeepLab-v3+ model. To sum up, the newly

produced child image vector is used as the father image vector in the

next step until the episode ends. However, to begin a new episode,

the pre-training image set I0 is used as the father image vector again,

and the image vectors produced in the last episode are discarded. It

is noted that the pre-trained DeepLab-v3+ model is restored in

every retraining process and is used as a base model to observe the

effect of the augmentation methods on the augmented image sets.
2.2 MDP model for DRL

The DRL-based optimization features a Markov decision

process (MDP) (Han et al., 2021). The Agent selects an action

from the candidate’s actions based on the current state of the

environment. The execution of the action will introduce a state

change to the environment which in turn generates a reward to the

Agent. The Agent decides (i.e., selects an action) based on the

current state only, not depending on the previous states. This design

contributes to simplifying the Agent policy function but requires

sophisticated state representation. The reward guides the evolution

of the policy function. Therefore, maximizing cumulative

compensation should correspond to the best selection policy of

augmentation methods for any given image set. Although the

single-step reward can be positive (a prize), negative (a penalty),

or zero, the Agent should tolerate the short-term penalty while

pursuing the maximum cumulative reward. The actions are

candidate image augmentation methods that have been proven to

be effective in certain circumstances. The best state-action match,

however, is still unknown, leaving optimization space for DRL.

Therefore, the state, action, and reward design will significantly

influence DRL’s optimization quality (Ladosz et al., 2022).
2.2.1 State
An amount of information is extracted from the image vector to

describe the state of the environment. In this study, each image’s

geometrical information and pixel information comprise a state for a

given image vector. At first, one segmentation model, called

LeafIdentifier, is trained to separate a leaf from its background.

Furthermore, the other segmentation model, called RustIdentifier,

is trained to separate the rust from a leaf. The LeafIdentifier and the

RustIdentifier models are developed based on the DeepLab-v3+

model but prepared with different datasets. The image set I0 with

the leaf label is used to train the LeafIdentifier model, while the image

set I0 with the rust label is used to train the RustIdentifier model.

After that, the centroid and area of the leaf and the rust can be

calculated. In addition, the pixel values can be averaged according to

the RGB color channels for the leaf and the rust, respectively.

Therefore, a state element that describes the ith image is:

st,i = xl,i, yl,i,Al,i,Rl,i,Gl,i,Bl,i, xr,i, yr,i,Ar,i,Rr,i,Gr,i,Br,i

� �
where, xl,i and yl,i are the centroid coordinates of a leaf, Al,i is the

area of a leaf, and Rl,i, Gl,i, and Bl,i are the average pixel values of a
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leaf, corresponding to the RGB color channels, respectively; xr,i, yr,i,

Ar,i, Rr,i, Gr,i, and Br,i are the corresponding elements for the rusts

on the leaf.

Therefore, the state vector has the same number of elements as

the father image vector, and their elements have a one-to-one

corresponding relationship.

2.2.2 Action
Eight kinds of image augmentation methods are selected as

actions, as shown in Table 1. The original image operation does not

change the image. The vertical flip operation makes an image flip

vertically, while the horizontal flip operation makes an image flip

horizontally. However, the vertical and horizontal flip operations

apply the two operations together to a single image. The clockwise

rotation operation causes an image to rotate 30° clockwise around

the center point. The affine transformation is a type of geometric

transformation that preserves collinearity and the ratios of distances

between points on a line. The crop operation is to crop the original

image and then resize it to the original size. When applying the

noise-adding operation, random white Gaussian noise will be added

to a given image. Each image augmentation method is assigned a

unique number, i.e., 0, 1, 2,…7. In this study, ai(i = 0… 7) is used to

represent the eight candidates’ actions, and at(t = 1… T) is used to

indicate the action vector consisting of actions selected

independently for each image in the decision step t. Therefore,

the different elements of at possible correspond to the same ai.
2.2.3 Reward
The reward is a numerical evaluation of an action selected by

the Agent:

rt = 100(dt − dt−1) (1)

where, dt refers to the Dice ratio, defined as follows:

dt =
2
Itestj j o

(xj ,yj)∈Itest

PIoU (2)

where, jItest j is the number of elements in the test image set Itest ,

and PIoU ∈ ½0, 1� represents the segmentation effect of the retrained

DeepLab-v3+ model on an image of Itest :

PIoU =
ŷ j ∩ yj
�� ��
ŷ j ∪ yj
�� �� ,   yj ∈ (xj, yj) ∈ Itest (3)

where, ŷ j is the predicted label image output by the retrained

DeepLab-v3+ model, and yj is the expected label image, both for the

image xj in the test image set Itest ; jŷ j ∩
​ yjj and jŷ j ∪​ yjj are the

intersection and union area of the predicted and expected label

images, respectively:

ŷ j = f (xj; qI0∪It ),   xj ∈ (xj, yj) ∈ Itest (4)

where f denotes the retrained DeepLab-v3+ model, and qI0U​It

denotes the parameters updated by the retraining image set I0U
​It .

To sum up, dti indicates the overall influence of the selected

augmentation methods, at , for a given image vector It . As every It is

used to retrain the same pre-trained Deeplab-v3+ model, and the
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TABLE 1 Action definition.

ai Actions Examples Description

0 Original image
The resultant image is the
same as the original one.

1 Vertical flip

The resultant image
mirrors the original one
along the horizontal
center line.

2 Horizontal flip

The resultant image
mirrors the original one
along the vertical center
line.

3
Vertical and
horizontal flip

The original image is
flipped vertically and
horizontally to produce
the resultant image.

(Continued)
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TABLE 1 Continued

ai Actions Examples Description

4
Clockwise
rotation

The original image is
rotated 30° clockwise
around the center point
to produce the resultant
image.

5
Affine
transformation

The original image is
transformed with the
matrix [[1, 0.2, 0], [0, 1,
0]] to produce the
resultant image.

6 Crop

The first 25 rows and 25
columns of pixels of the
original image are
trimmed and then the
image is resized to 512 ×
512 pixels to produce the
resultant image.

7 Noise-adding

Some random white
Gaussian noise is added
to the original image to
produce the resultant
image.
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retrained DeepLab-v3+ model is tested on the same test image set

Itest , d
t
i can be used for augmentation effect comparison and

reward calculation.
2.3 Semantic segmentation model

A semantic segmentation model is integrated into the

framework to evaluate the image augmentation effect. Based on

the evaluation results, rewards can be produced, and feedback can

be provided to the DQN model, which adjusts the Agent policy

function accordingly.

2.3.1 Model selection
At present, plant disease segmentation methods based on deep

learning mainly include semantic segmentation and instance

segmentation. Instance segmentation is more potent as it can

distinguish different objects, while semantic segmentation can

only determine things from the background. However, the

semantic segmentation method is a better choice for this study, as

it can meet the verification requirements, is simple and requires less

computing resource consumption.

Deep learning-based semantic segmentation methods can

improve accuracy and efficiency significantly compared with

traditional methods. Currently, commonly used deep learning

semantic segmentation models include FCN (Long et al., 2015),

U-Net (Ronneberger et al., 2015), SegNet (Badrinarayanan et al.,

2017), and DeepLab (Chen et al., 2014). The specific analysis is

shown in Table 2 (Chen et al., 2017). It can be seen that the

DeepLab-v3+ model (Chen et al., 2018) has the highest accuracy

and the best application effect. Therefore, the DeepLab-v3+ model

is used in this study.

The DeepLab-v3+ model can convert an image into a prediction

highlighting diseased areas from the background (Tian et al., 2019).

In the rust detection application, each pixel in the apple rust leaf

image is assigned to one of the mutually exclusive classes: disease

spots VS background, to complete the segmentation of disease spots

from the background (Kuang and Wu, 2019).
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2.3.2 Deeplab-v3+ model
As shown in Figure 3, the DeepLab-v3+ model adds a simple

and effective decoder layer to the DeepLab-v3 model to refine

the segmentation results. Furthermore, in the Encoder part, the

Atrous Spatial Pyramid Pooling (ASPP) module is constructed

using Atrous convolution and the Spatial Pyramid Pooling

module (SPP). Atrous convolution is the process of adding

spaces between convolution kernel elements to expand the

convolution kernel. The SPP performs pooling operations at

different resolution levels to capture rich contextual

information. Consequently, five different outputs are obtained

through the five distinct processes of ASPP to produce a high-level

feature, and the Atrous convolution outputs a low-level

component. In the Decoder part, the high-level feature is first

up-sampled by 4 and then connected with the low-level quality.

The concatenation passes through 3  �   3 convolutions and is

then up-sampled by 4 to give the predicted label image.
2.3.3 Model evaluation
To evaluate the segmentation effect of the DeepLab-v3+ model

from multiple perspectives, the confusion matrix is calculated

(Chen and Zhu, 2019), as shown in Table 3.
• KTP is the true positive, indicating the number of disease spot

pixels that are correctly classified into the disease spot

region.

• KFP is the false positive, indicating the number of background

pixels that are wrongly classified into the disease spot

region.

• KTN is the true negative, indicating the number of

background pixels that are correctly classified into the

background region.

• KFN is the false negative, indicating the number of disease

spot pixels wrongly classified into the background region.
After that, five performance indexes are defined based on KTP,

KFP, KTN, and KTN (Wang et al., 2020).
TABLE 2 Performance comparison of deep learning-based semantic segmentation models.

Proposed
time

Network
model

Segmentation
accuracy

Training
time Algorithm Features

2014 FCN C B Based on the CNN network, it introduces a deconvolution layer.

2014 DeepLab-v1 B C
It combines dilated convolutions with DCNN networks and optimizes with fully connected
conditional random fields.

2015 U-Net B – It is completely symmetrical and the decoder is added with convolution and deepening.

2016 DeepLab-v2 B C
It uses dilated convolutional layers instead of up-sampling and uses multi-scale spatial
pyramid pooling.

2017 SegNet C C
It utilizes the encoder-decoder network structure and recovers the image size by up-
sampling.

2018 DeepLab-v3+ A C
It uses an encoder-decoder network structure to improve the segmentation of object edges
and introduces dilated convolutions.
A. Very Good, B. Good, C. Fair.
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PA =
KTP + KTN

KTP + KTN + KFP + KFN
(5)

where, PA ∈ ½0, 1� tells how many pixels are correctly classified

relative to the total number of pixels.

PMPA =
1
2

KTP

KTP + KFP
+

KTN

KTN + KFN

� �
(6)

where, PMPA ∈ ½0, 1� averages correctly classified disease spot

pixels and background pixels relative to the predicted total disease

spot pixels and the total background pixels, respectively.

PCPA =
KTP

KTP + KFP
(7)

where, PCPA ∈ ½0, 1� tells how many disease spot pixels are

correctly classified relative to the predicted total disease spot pixels.

PIoU =
KTP

KTP + KFN + KFP
(8)

where, PIoU ∈ ½0, 1� tells how many disease spot pixels are

correctly classified relative to the union of the predicted and

expected disease spot pixels.

PMIoU =
1
2

KTP

KTP + KFN + KFP
+

KTN

KTN + KFP + KFN

� �
(9)
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where, PMIoU ∈ ½0, 1� averages correctly classified disease spot

pixels and background pixels relative to the union of the predicted

and expected disease spot pixels and the union of the predicted and

expected background pixels, respectively.
2.4 Model training

According to the MDP mentioned above and semantic

segmentationmodels, themain training steps are summarized as follows:
• Preprocessing: Producing leaf labels and rust labels for the

original image set and dividing it into the pre-training

image set I0 and the test image set Itest ; pre-training the

DeepLab-v3+ model with I0, Itest , and the leaf labels to

generate the LeafIdentifier; pre-training the DeepLab-v3+

model with I0, Itest , and the rust labels to generate the

RustIdentifier; selecting DQN as the specific DRL model,

and initializing the decision-making Q-function Q1 and the

target Q-function Q2 for DQN.

• Image augmentation: Taking the child image vector in step

t − 1, i.e., It−1, as the father image vector in step t; using the

LeafIdentifier, RustIdentifier, and the geometric and pixel

indicators to process the images in It−1, one by one, to
FIGURE 3

The network structure of the DeepLab-v3+ model.
TABLE 3 Confusion matrix of disease spot detection.

Pixel point classification area
Expected class

Disease spot Background

Predicted class
Disease spot KTP KFP

Background KFN KTN
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Fron
generate the state vector st , i.e., the processing result of one

image contributes one element in st ; using Q1 to determine

one action for each state element, generating the action

vector at , and one state element corresponds to one action

element; executing the action elements in at to the

corresponding image elements in It−1 to produce the child

image vector It ; getting st+1 from It .

• Verification: Constructing the retraining image set, the

element of which is I0U
​It that means I0 plus It gives a

training image set; restoring the pre-trained DeepLab-v3+

model; fine retraining the model with I0U
​It ; testing the

retrained model against Itest , storing the results, and

calculating the reward rt ; storing (st ,  at ,  rt , st+1) into the

experience replay buffer.

• DQN network updating: Sampling a batch of data,

(si,  ai,  ri, si+1), from the experience replay buffer;

calculating the loss function, L(q), with Q1, Q2, and the

sampled data; updating Q1 with L(q) = ½ri + max
a

Q2(si+1,  a

) − Q1(si,  ai)�2 and the backpropagation algorithm; copying

the parameters of Q1 toQ2 every C steps to update Q2. Q2 is

updated C times slower than Q1 for improving stability.

• Starting the next step or a new episode: The above steps

except preprocessing are repeated for every step of an

episode until the episode ends. To start a new episode,

the pre-training image set I0 is restored as the father image

vector for the first step of the episode, and the above steps

except preprocessing are repeated until the episode ends.
In summary, the specific DRL algorithm, DQN, is used in this

study to organize an adaptive image augmentation scheme. The

DQN is assisted with the geometric and pixel indicators for state

extraction, the DeepLab-v3+ model for verifying the augmented

images and generating the reward, and the image augmentation

methods as actions. The image and its accompanying label image

are processed in the same way by the selected image augmentation

method. The DeepLab-v3+ model is pre-trained once and restored

for every retraining operation. DQN parameters keep updating

through all the steps and episodes, i.e., they are not reset or restored

from a previous step or episode.
3 Experimental results and discussion

3.1 Data sources and image preprocessing

The experimental data comes from the open-source apple leaf

disease image dataset on the Baidu AI Studio Development

platform, with a resolution of 512 × 512 pixels. Among them,

there are 438 images of apple leaf rust, including images collected in

various environments, all of which are used in this study. Some

representative images are shown in Figure 4A. The EIseg software

(Xian et al., 2016) uses the latest deep learning algorithms and

models to greatly reduce annotation effort. Therefore, it is used to
tiers in Plant Science 10
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mark the image, distinguishing the disease spot areas and the whole

leaf from the background, to produce labels, as shown in Figures 4B,

C. The label images have the same resolution as the original images.

The image set was divided according to the ratio of 8:2, and the

image and its label image would not separate during division. As a

result, there were 350 images in the pre-training image set I0, and 88

images in the test image set Itest , respectively.
3.2 DeepLab-v3+ model pre-training

The training hardware platform consisted of a Platinum 8358P

CPU, a GTX 3090 GPU, and 24 GB of running memory. The

software was built with the deep learning framework Pytorch. The

testing results indicated that the DeepLab-v3+ model could process

about 379 sets of images per second. During training, it took about 4

s to complete each epoch. As DeepLab-v3+ was set to 1,000 epochs

in our experiment, it took about 4,000 s in total to complete the pre-

training of the DeepLab-v3+ model.

The loss curve and the five performance indexes are shown in

Figure 5. The DeepLab-v3+ model converges after about 239

epochs, where the loss is about 3.42e−3. The average PA, PMPA,  

PMIoU , PCPA,  and PIoU are 0.9956, 0.9444, 0.9131, 0.8905, and

0.8307, respectively. In the verification stage, the pre-trained

DeepLab-v3+ model is retrained with I0U
​It in a fast-fine-tuning

way. If the retrained DeepLab-v3+ model can output better

performance, the augmented images It are said to improve

segmentation performance, which means the DRL model can

select proper augmentation methods.
3.3 DQN model training

The hardware platform for DQN training consisted of a 24

vCPU AMD EPYC 7642 48-Core processor and a single NVIDIA

GTX 3090 GPU with 24 GB of running memory. The DQN

algorithm was developed with PyTorch and Python 3.8.10. For

each training step of the proposed method, the image

augmentation set could be generated in 25 s, and it took about

165 s to complete the parameter fine-tuning of the DeepLab-v3+

model and about 0.003 s to update the parameters of DQN.

Therefore, it took about 3.16 min to complete each step and

9.48 min to complete one episode for the proposed method. As

DQN was set to 300 episodes in our experiment, it took about 2,844

min in total.

As shown in Figure 6, the reward is very small at the beginning,

i.e., −2.975. As the training process progresses, the reward increases

significantly and then fluctuates around zero. To sum up, the results

show that the reward increases from −2.975 to 0.9826 during DQN

training, achieving an improvement of nearly 3.958. That is to say,

the effect of the DQN model on disease spot segmentation is greatly

improved, which proves that the model can automatically learn how

to adopt reasonable and most effective image augmentation

methods according to the image features.
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3.4 Performance comparison of the image
augmentation methods

The DQN model was compared with every single method listed

in Table 1, i.e., No. 0: original image; No. 1: vertical flip; No. 2:

horizontal flip; No. 3: vertical and horizontal flip; No. 4: clockwise

rotation; No. 5: affine transformation; No. 6: crop; and No. 7: noise

adding. For the ith (i = 0… 7) image augmentation method, the

images in I0 were augmented by the same augmentation method to

produce an augmented image set. Then I0 was combined with the

augmented image set to construct a retraining image set. The

retraining image set was used to retrain the pre-trained DeepLab-
Frontiers in Plant Science 11
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v3+ model, and the retrained model was tested on the Itest . This way,

a separate set of performance indexes, e.g., PIoU and PCPA  ,   were

produced for each image augmentation method for comparison.

Figure 7 shows the augmentation effect of different methods.

The original image augmentation method achieves an average PIoU
value of 0.8117, which is the lowest. The affine transformation

augmentation method achieves an average PCPA value of 0.9059,

which is also the lowest. In contrast, the DQN augmentation

method achieves the best performance, with PIoU value of 0.8426

and PCPA value of 0.9255. Therefore, this experimental result

confirms the effectiveness of the DQN model in adaptively

selecting the augmentation methods according to the image
A

B

C

FIGURE 4

Samples of (A) the apple rust images, (B) the rust labels, and (C) the leaf labels.
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features. The testing results showed that the DQN model could

generate 12 augmentation image sets (with labels) per second, and

the performance was maximum.
3.5 Performance comparison of the
semantic segmentation models

The DeepLab-v3+ model (denoted as DQN-DeepLab-v3+) was

compared with the FCN and SegNet models. Firstly, the DQN-

DeepLab-v3+, FCN, and SegNet models were pre-trained with I0
and Itest , respectively. Secondly, let the proposed DQN model

output an augmentation image set. Thirdly, a retraining image set

was constructed with I0 and the augmented image set, and then the

retraining image set was used to retrain the DQN-DeepLab-v3+,

FCN, and SegNet models, respectively. Finally, the retrained DQN-

DeepLab-v3+, FCN, and SegNet models were respectively tested on

Itest to get a separate set of average performance indexes

for comparison.
Frontiers in Plant Science 12
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DeepLab-v3+ with random augmentation (denoted as RanAug-

DeepLab-v3+) was also constructed for comparison. RanAug-

DeepLab-v3+ was pre-trained, retrained, and tested following the

same procedure as the DQN-DeepLab-v3+, FCN, and SegNet

models. The only difference was that a random augmented image

set was used instead of the expanded image set output by the DQN

model. Furthermore, the test results of the pre-trained DeepLab-v3+

model were used as the baseline, as any augmented images did not

retrain it.

As shown in Figure 8, the proposed DQN-DeepLab-v3+ model

achieves the best performance on all the indexes. PA,   PMPA,   PMIoU

, PCPA,  and PIoU reaches 0.9959, 0.9617, 0.9192, 0.9255, and 0.8426,

respectively, which are up to 0.2%, 3.7%, 3.9%, 7.3%, and 7.6%

higher than other methods. In contrast, the SegNet achieves the

worst performance, mainly by focusing on optimizing memory

usage. The version of the FCNmodel is also relatively low due to the

limited size of the perceptual area, easy loss of edge information,

and low computational efficiency. These results confirm that the

DQN-DeepLab-v3+ model is superior to the FCN and SegNet

models. On the other hand, some performance indicators of

RanAug-DeepLab-v3+ are lower than those of DeepLab-v3+,

indicating that the random augmentation tends to harm the

segmentation performance. In contrast, the DQN-DeepLab-v3+

model surpasses DeepLab-v3+, showing adaptive augmentation

can improve segmentation performance.
4 Conclusion

Deep learning-based automated optical inspection can benefit

from image augmentation, which enlarges the image quantity for

training and testing. However, one significant challenge is that any

single image augmentation method cannot achieve consistent

performance over all the images. To address this issue, a DRL-

enabled adaptive image augmentation framework is proposed in

this paper. The specific DRL algorithm, DQN, is used in this study

to organize an adaptive image augmentation scheme. Given an

image vector, segmentation models and key indicators are used to

extract image features and generate the state vector; the Agent

policy function determines the action vector based on the state

vector; and the actions produce an augmented image vector. To
FIGURE 5

Training histories of (A) the loss and (B) the performance output on the test image set.
FIGURE 6

Training histories of the reward.
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evaluate the image augmentation effect, a raised image is used to

fine-tune a pre-trained semantic segmentation model, DeepLab-v3

+, and the resultant model is tested against a fixed test image set.

Based on the evaluation results, the reward is constructed, and

feedback is sent to the DQN model, which updates the Agent policy

function accordingly. Through iterations, the Agent policy

function is optimized. The proposed DRL-enabled adaptive image

augmentation framework achieves better augmentation

performance than any single image augmentation method
Frontiers in Plant Science 13
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and better segmentation performance than other semantic

segmentation models. The experimental results confirm that the

DRL-enabled adaptive image augmentation framework can

adaptively select augmentation methods that best match the

images and the semantic segmentation model.

Future work should consider more advanced image

augmentation methods, segmentation targets, and a more flexible

and efficient DRL framework to provide more effective detection

schemes for complex AOI application scenarios.
FIGURE 7

Augmentation effect of different methods.
FIGURE 8

Segmentation effect of different models.
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Soybean is an important grain and oil crop worldwide and is rich in nutritional value.

Phenotypic morphology plays an important role in the selection and breeding of

excellent soybean varieties to achieve high yield. Nowadays, themainstreammanual

phenotypic measurement has some problems such as strong subjectivity, high labor

intensity and slow speed. To address the problems, a three-dimensional (3D)

reconstruction method for soybean plants based on structure from motion (SFM)

was proposed. First, the 3D point cloud of a soybean plant was reconstructed from

multi-view images obtained by a smartphone based on the SFM algorithm. Second,

low-pass filtering, Gaussian filtering, Ordinary Least Square (OLS) plane fitting, and

Laplacian smoothingwere used in fusion to automatically segment point cloud data,

such as individual plants, stems, and leaves. Finally, Elevenmorphological traits, such

as plant height, minimum bounding box volume per plant, leaf projection area, leaf

projection length and width, and leaf tilt information, were accurately and

nondestructively measured by the proposed an algorithm for leaf phenotype

measurement (LPM). Moreover, Support Vector Machine (SVM), Back Propagation

Neural Network (BP), and Back Propagation Neural Network (GRNN) prediction

models were established to predict and identify soybean plant varieties. The results

indicated that, comparedwith themanualmeasurement, the rootmean square error

(RMSE) of plant height, leaf length, and leaf width were 0.9997, 0.2357, and 0.2666

cm, and the mean absolute percentage error (MAPE) were 2.7013%, 1.4706%, and

1.8669%, and the coefficients of determination (R2) were 0.9775, 0.9785, and

0.9487, respectively. The accuracy of predicting plant species according to the six

leaf parameters was highest when using GRNN, reaching 0.9211, and the RMSE was

18.3263. Based on the phenotypic traits of plants, the differences between C3, 47-6

and W82 soybeans were analyzed genetically, and because C3 was an insect-

resistant line, the trait parametes (minimum box volume per plant, number of leaves,

minimum size of single leaf box, leaf projection area).The results show that the

proposedmethod can effectively extract the 3D phenotypic structure information of

soybean plants and leaves without loss which has the potential using ability in other

plants with dense leaves.

KEYWORDS

structure from motion, soybean plant, 3D point cloud, plant phenotype, 3D
trait extraction
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1 Introduction

Soybean is an important grain and oil crop worldwide and is

rich in high-quality protein, unsaturated fatty acids, isoflavones,

and other nutrients (Zhang T et al., 2019). The phenotypic

morphological characteristics embodied in the growth process

play an important role in the selection of excellent soybean

varieties (Zhu et al., 2020), and the phenotypic state of plants is

the physical manifestation of the genotype (Alonge et al., 2020),

which is not only of great significance for the quantitative analysis

of genotype-environment interactions (Barker et al., 2019; Van

Eeuwijk et al., 2019), but also for breeding activities, such as

optimal cultivation, fertilization, and irrigation of plants

(Chawade et al., 2019; Li et al., 2021). Phenotypes are prone to

changes in response to genetic mutations and environmental

influences (Vogt, 2021), which are the main bottlenecks limiting

the expansion of genomics in plant sciences, animal biology, and

medicine. Different genes determine different insect resistance in

plants, affecting plant phenotypes (Tyagi et al., 2020). Therefore,

accurate and non-destructive acquisition of soybean phenotypic

parameters is essential for the study of soybean plants and breeding

of insect-resistant varieties.

Chen et al. (2021). constructed the 3D model of soybean

plant can efficiently obtain its geometric characteristics and

morphological traits, which is essential for understanding plant

growth and plant response to biotic and abiotic stresses, so as to

estimate the growth rate of soybean plants and predict the tolerance

of stress, it greatly reduces the marginal cost of collecting multiple

morphological traits across multiple time points, which has

important theoretical significance and practical value for soybean

variety selection and breeding, scientific cultivation and fine

management (Wang et al., 2022). By means of the 3D model of

the plant, the growth situation and specific changes of the plant can

be quickly understood, which contributes to screen out excellent

varieties with high quality and strong insect resistance, and can also

lay the foundation for the genetic improvement of soybean and

breed better varieties (Xue et al., 2023).

The traditional methods used to obtain plant phenotypic

parameters include manual measurement, two-dimensional (2D)

image measurements, and precision instrument measurements.

Manual measurements are slow, costly, and subjectively

inaccurate (Gage et al., 2019), which can easily damage plants

during measurement. When plant phenotypic parameters are

measured based on 2D image technology (Das Choudhury et al.,

2020; Li et al., 2020; Omari et al., 2020; Kuett et al., 2022), critical

spatial and volumetric information, such as thickness, bending, and

orientation, is easily lost during data conversion from three-

dimensional (3D) to 2D states, and the morphology will also be

blocked from different perspectives (Martinez-Guanter et al., 2019).

Precision instruments, such as handheld laser scanners (Artec EVA

laser scanners and FastSCAN laser scanners) (Ma et al., 2022), 3D

laser scanning, and radar technology (FARO Focus3D 120 laser

scanning of ground objects) (Junttila et al., 2021; Nguyen et al.,

2022), are often used to measure plant phenotypic traits. Although

it has a high resolution and can reconstruct the 3D model of the
Frontiers in Plant Science 02
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plant with high precision and record the phenotypic information of

the plant (Ao et al., 2022), its acquisition speed is slow, the

equipment is expensive, and the lack of color information for the

obscured parts of plants fails to accurately reflect phenotypic traits.

In addition, for automatic analysis of plant phenotypic information,

3D point clouds generated by laser scanners must be correctly

extracted from a large amount of 3D data and classified for this

purpose. The high cost and limited availability of laser-scanning

equipment hinder its wide applications.

Recently, scholars have been increasingly interested in the

structure from motion (SFM) algorithm based on multi-view

stereo measurement, and a series of exploratory studies have

been carried out in the fields of geographical environment and

agriculture. The 3D model can be automatically reconstructed

according to overlapping 2D digital image sets (Jiang et al.,

2020), which has the advantages of being self-calibrated, less

constrained by the environment, and functional both indoors

and outdoors, and has been widely used in 3D reconstruction

(James et al., 2019; Swinfield et al., 2019). Ewertowski et al.

(2019) used UAV combined with this technology to quickly and

ultra-high-resolution 3D reconstruction of glacier landforms,

and drew the terrain related to glaciers in detail. In the field of

agriculture, He et al. (2017) used this technology to obtain 3D

models of strawberries and used custom software to process

point cloud data and obtain seven agronomic traits of

strawberries. Huang et al. (2022) used the DoidiltenGAN

image enhancement algorithm combined with SFM-MVS

algorithm to develop a set of agricultural equipment that could

accurately perceive the growth of crops under low light. Hui et al.

(2018) used this technology to obtain 3D point clouds for

cucumbers with flat leaves, peppers with small leaves, and

eggplants with curly leaves. With the help of precision

instruments and Geomagic Studio software, they measured five

characteristic parameters of the plant, including leaf length, leaf

width, and leaf area, and analyzed the errors between them. In

(Xu et al., 2019), a UAV was used in combination with this

technology to obtain a 3D model of cotton, and a DEM was used

to measure four phenotypic traits, such as plant height and

canopy coverage. In (Piermattei et al., 2019), this technology was

used to obtain 3D point clouds of trees and four parameters, such

as DBH and the number of trees. With the rising demand for

different types of phenotypic information from 3D point clouds,

Rahman et al. (2017) explored future research on volume

measurement and modeling using this method to obtain

3D models.

These studies show that the SFM algorithm has good potential

in the field of plant phenotype detection. However, at present, the

analysis of phenotypic trait parameters of plants is limited, most

software is used, and there is a lack of technology for reconstruction

and phenotype measurement of plants with various and dense

leaves. Therefore, in this study, we combined structure from

motion (SFM) with multiple view stereo (MVS) methods to build

a platform for acquiring plant sequence images. Using the soybean

seedlings with different gene expression patterns of the same

soybean plant at the R4 stage as the research object, the point
frontiersin.org
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cloud models were obtained by 3D reconstruction using different

sequence images, the LPM algorithm was used to quickly perform

non-destructive phenotype measurements, and the accuracy of

phenotype measurement was evaluated. The feasibility of SFM-

MVS technology combined with the LPM algorithm is explored

and the phenotype and insect resistance of soybean plants

are analyzed.

At present, machine learning (ML) and deep learning (DL)

algorithms are widely used in the plant phenotype classification.

For machine learning (ML), Tan et al. (2021) used the machine

learning (ML), based on tomato cultivation as well as disease

datasets to classify plant diseases; Barradas et al. (2021) applied

different machine learning (ML) methods such as Decision Tree

(DT), Random Forest (RF), and Extreme Gradient Boosting

(XGBoost) to classify plants into three drought stress levels;

Alam et al. (2020) used random forests (RF) for detection and

classification of weeds as well as crops and accurate identification

and control of weeds. For deep learning (DL), Ferentinos et al.

(2018). made use of Convolutional Neural Networks (CNN) to

classify plant disease images; Brugger (2022). analyzed spectral

data of plant phenotypes based on deep learning (DL) to forecast

plant diseases and categories; Cardellicchio et al. (2023) used

YOLOv5 to recognize fruits, flowers and the colors of objects;

Azimi et al. (2021) took advantage of deep learning (DL) to

classify stress in plant shoots based on plant phenotype images;

Zhou et al. (2021) applied advanced deep learning (DL) methods

based on convolutional neural networks to carry out the analysis

of corn phenotype. The above researches show that DL/ML has

favorable potential in the classification of plant phenotype, but

the obtained plant morphological traits are comparatively single

and there are few studies to predict plant species and analyze

insect resistance genotypes based on the morphological traits of

leaves, and the related ML/DL models are highly susceptible to

the influence of environment, images, data sets, etc. during the

implementation of detection. In this paper, we will try to solve

the above problems.

To evaluate crops based on soybean plant phenotypic

information, the traditional popular machine learning (ML)

often uses Shallow Neural networks, such as support vector

machine (SVM), back propagation neural network (BP),

generalized regression neural network (GRNN), and other

models based on small datasets are often applied to construct

plant gene-insect resistance models in the field of agricultural

engineering (Kamilaris and Prenafeta-Boldú, 2018). Deep

learning techniques, such as deep neural networks (DNN) (Du

et al., 2019) , convolutional neural networks (CNN) (Cong et al.,

2019) , recurrent neural networks (RNN) (Yu et al., 2019), and

residual neural networks (Resnet) (Alom et al., 2019), require a

large amount of data for modeling and are significantly less

effective than shallow neural networks for small data

(Chlingaryan et al., 2018). Owing to the difficulty of soybean

phenotypic data collection, therefore, we constructed a small

data set between plant phenotypes and varieties. Based on this,

we used popular shallow neural networks such as Support Vector

Machine (SVM), Back Propagation Neural Network (BP) and
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Generalized Regression Neural Network (GRNN)to build the

model respectively to classify its species based on the phenotypic

characteristics of soybean leaves.

Therefore, the aim of this study is to accurately extract

phenotypic trait parameters from the leaves of plants with

different gene expression forms of the same variety using the

LPM algorithm based on the application of the SFM algorithm

combined with the MVS reconstruction technique in plants. It will

construct a triple linkage between genotype-phenotype-insect

resistance and establish a prediction and classification model of

soybean varieties. This study is organized as follows: (1) A 3D target

acquisition system based on the SFM algorithm combined with

MVS reconstruction technology is designed and constructed to

perform 3D reconstruction of soybean plants with different gene

expression forms (ko-Williams82, oe-Williams82, and Williams82)

of the same variety and obtain their 3D point cloud models. (2)

Point cloud data, such as individual plants, stems, and leaves, are

automatically segmented using low-pass filtering, Gaussian filtering,

ordinary least squares (OLS) plane fitting, and Laplacian

smoothing. (3) Eleven phenotypic parameters of the leaves,

including length, width, volume, projection area, projection

length, tilt information and so on, are obtained using the LPM

algorithm. (4) The reconstruction accuracy of the SFM-MVS

algorithm is analyzed using regression evaluation indicators

(RMSE, MAPE, R2), and the association between genotype,

phenotype, and insect resistance is constructed by combining the

plant penetrance parameters of different gene expression forms. (5)

Three models, SVM, BP, and GRNN, are constructed to compare

the prediction and classification models of soybean species based on

six characteristic phenotypic parameters of leaves.
2 Materials and methods

2.1 Experimental materials and
data acquisition

Three soybean varieties, ko-Williams82, oe-Williams82, and

Williams82 (hereinafter referred to as C3, 47-6, and W82,

respectively) were selected from the Baima Base of Nanjing

Agricultural University. There were 15 plants of each variety

(planted in three replicates, each in a separate row with five

plants of each variety in a row), and a total of 45 soybean plant

samples were collected. The soybean row spacing was 40 cm and

the plant spacing was 80 cm. For the convenience of data

processing in the later stage, the experimental samples were

planted with potted plants (diameter of 27 cm; height of 21 cm)

to avoid occlusion between plants. The soil used for soybean

planting was first dried in the sun, then the dried soil was first

crushed, and then the stones and weeds in the soil were removed

through a 6 mm mesh screen to ensure the homogeneity of the

soil. Finally, the sieved soil and nutrient soil (organic matter

content >15%, total N, P, and K content >0.88%, ph7~7.5) were

divided into 3:1 evenly mixed, loaded quantitatively into a plastic

pot with a diameter of 30 cm, and water added to make the
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absolute water content of the soil 30%. Five soybean seeds were

placed in each pot at a sown depth of 3.0 cm. The soybean plants

were placed in a net chamber and provided normal water and

fertilizer management during soybean growth. When the

soybean grew to R4 stage, the density of one spot bug per

plant was used for insect treatment. After 10 days of damage,

dynamic non-destructive measurement and manual comparison

verification of plant height, leaf length, leaf width, and other

parameters of soybean plants were carried out, and the

association between soybean plant genotype, phenotype, and

insect resistance was established.

A smartphone (iPhone 11) was used as the acquisition device to

capture the soybean plant for 40 s. The resolution was set to 1080p

HD, 60fps before video acquisition to ensure the universality of the

video acquisition device. To avoid the influence of smart phone

mirror shooting on 3D reconstruction, an electric turntable

(diameter of 26 cm) with a speed of 0.05 r/s and a load bearing of

40 KG was used as the plant bearing platform. The smartphone was

placed on a scaffold with a height of 45 cm at a distance of 25 cm

from the plant, and the data at different angles of the plant were

collected by tilting down 30° at a horizontal height of approximately

30 cm above the plant. The carrying platform was rotated for two

weeks for video shooting, and 300 multi-view images were extracted

by frame in JPG format with 1080×1920 resolution. The back and

bottom of the platform were covered with a black fleece to ensure a

stable and reliable recording environment and to minimize noise

interference (Figure 1).

The specific steps of the manual measurement of soybean plant

height, leaf width, and leaf length are as follows. Four workers

measured the height of the same soybean plant using a scale ruler as

the reference line along the basin and measured the leaf length

(from leaf base to leaf tip, excluding petiole) and leaf width (the

widest part on the leaf that is perpendicular to the main vein) of all

the leaves of each soybean plant using a standard calculation paper

with a straight ruler. The average of the readings of the four workers

was taken as the final manually measured value of the phenotypic

parameters of the soybean plant.

The software used for the experiment was Free Studio, the 3D

reconstruction open-source software Visual SFM, and MATLAB

2022a. The electric turntable worked continuously for 40 s at a

speed of 0.05 r/s to obtain the image video of the soybean plant.

Three hundred multi-view images were extracted from the video

obtained by frame. To ensure a large amount of accurate point

cloud data, the ROI were selected from the multi-view images of the

plant, and the point cloud data were generated by 3D

reconstruction. The point cloud data were sampled and denoised;

low-pass filtering, point cloud clustering, OLS fitting, and Laplacian

smoothing were used. Parameters, such as plant height, the number

of leaves, leaf length, leaf width, minimum bounding box volume of

a single plant, minimum bounding box volume of a single leaf, the

volume of a leaf, leaf projection area, projection length, projection

width, and angle were automatically measured using the maximum

traversal and greedy projection triangle algorithms. The accuracy

and robustness of the SFM reconstruction of soybean plants were

evaluated and compared with the manual measurement of plant

height, leaf length, and leaf width.
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2.2 Overall process of SFM-MVS
method for reconstructing 3D
model of soybean plants

In this study, the SFM-MVSmethod was used to reconstruct the

3D models of soybean plants. A workflow diagram is shown in

Figure 2. It consists of seven steps: (1) capturing multi-view images

of soybean plants; (2) selecting the Plant ROI; (3) finding key points

from multi-view images and reconstructing the 3D point cloud of

the plant; (4) filtering and segmentation algorithms to separate

leaves and stems; (5) reconstructing the smooth surface of the leaf

point cloud using the plane fitting algorithm and the Laplacian

smoothing algorithm; (6) extracting and evaluating plant structural

phenotype parameters based on the distance maximum traversal

algorithm and the greedy projection triangulation algorithm; and

(7) establishing the identification of soybean varieties based on

phenotypic information.
2.3 Extraction of ROI from soybean plants

This study proposes an improved detection and matching

strategy to accurately obtain the key feature points of multi-view

images and improve the efficiency of feature matching (Figure 3).

The proportion of the region of interest (ROI) is increased by

cropping the original image, and the scale of the image is reduced to

reduce the number of calculations for feature detection.

The preliminary segmentation of soybean plant regions in

multi-view images based on the ROI algorithm is a key part of

the 3D reconstruction. The multi-view image sequence is cropped

based on the ROI of each image, effectively reducing the resolution

of the image and increasing the proportion of the soybean plant in

the whole image. The rate of generation of dense point clouds was

increased by 81.62% by the SFM-MVS algorithm for the 3D

reconstruction of soybean plants after soybean plant

ROI extraction.
2.4 3D model reconstruction of
soybean plants

We used VisualSVM software to conduct the standard sfm-mvs

workflow and obtained the plant point clouds. The process of 3D

model reconstruction, as shown in Figure 4. The main steps in

soybean plant 3D model reconstruction are feature point extraction

and matching, sparse point cloud reconstruction, and dense point

cloud reconstruction.
2.5 Processing of soybean plants point
cloud data

As a result of the many dense leaves of soybean plants

(Figure 5A), the reconstructed data were large and interspersed

with a number of noisy background point clouds (Figure 5B). Point

cloud data sampling, denoising, optimization, coordinate
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correction, and other processes are required because the soybean

3D point cloud model is inconsistent with the actual plant in the

standard 3D space direction and scale (Figure 5C).

2.5.1 Sampling of point cloud data
Owing to the large redundancy, long reconstruction time, and

low efficiency of 3D point cloud data reconstructed using Visual SFM

software, a point cloud simplification algorithm based on voxelized

grid downsampling was used. Voxelized grid downsampling creates a

minimum 3D voxel grid based on the point cloud data (Han et al.,

2017), divides the point cloud data into a 3D voxel grid, selects a data

point as the center of gravity point of the grid, and retains the data

point closest to the center of gravity of the small grid. This method is

simple, efficient, and does not require the establishment of a complex

topological structure to simplify point cloud data, reduce operation

time, and improve the program running speed (Liang et al., 2020). As

shown in Figure 5B, the number of point clouds was reduced to 11%

of that presented in Figure 5A, and the soybean plant phenotype did

not show any change, which did not affect the extraction of its

phenotypic shape parameters.

2.5.2 Point cloud denoising
Owing to the influence of a series of external factors, such as

data sampling equipment, external environment, and experience of

experimental operators, noise points and outliers in the
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reconstruction process have adverse effects on trait extraction,

feature matching, and surface reconstruction (Li and Cheng,

2018). A low-pass filtering algorithm was used to locally fit the

soybean, and the appropriate threshold (Points/Radius was set to

0.098264, Maxerror was set to 2) was set to remove the points that

deviated from the fitting plane. The background noise and most of

the edge noise were removed by setting the RGB of the background

(the main background noise in this study was the point cloud of the

soil and basin along the color). The denoising effect of the 3D point

cloud of the soybean plant is shown in Figure 5C, where the number

of point clouds was reduced to 89% of the number of point clouds of

a single plant after sampling. As shown in Figure 5B, the reduced

points were background noise points.

2.5.3 Coordinate correction of point cloud data
(1) To accurately extract the phenotypic trait parameters of

soybean plants, coordinate correction is required for the 3D point

cloud of soybean, and the proportional coordinates are calculated

using the potted plant as the reference. The length of the potted

plant in the point cloud data was calculated using the Euclidean

distance algorithm and converted to obtain the transformation

coefficients to obtain the true coordinates of the soybean plant.

The calculation formula is as follows:

(x, y, z) = a(x 0, y 0, z 0 ) (1)
FIGURE 1

3D object acquisition platform.
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where (x, y, z)   is the length of reference in the point cloud, (x 0,
y 0, z 0 )   is the real length of reference, and a is the transformation

coefficient of point cloud coordinates.

(2) The random sample consensus algorithm (RANSAC) is

used to detect the ground and obtain the normal vector of the

ground ~m, and the rotation angle q is obtained by combining the

normal vector ~n(0, 0, 1)   of the Z-axis. The rotation matrix can be
Frontiers in Plant Science 06
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obtained by using the Rodriguez rotation formula, and the

calculation formula is as follows:

~m ·~n = m ∗ n ∗ cos q (2)

q = cos−1 (
~m ·~n
m ∗ n

) (3)
FIGURE 2

Workflow of 3D reconstruction and accuracy evaluation.
FIGURE 3

Clipping of the ROI.
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Rrot =~E ∗ cos q + (~m ·~n) ∗~d ∗R(q) + (~m ∗~n) ∗ sin q (4)

Rrot = ½
cos q + d1R(q) d1d2(R(q) − d3 sin q) d2 sin q + d1d3R(q)

d3 sin q + d1d2(q) cos q + d22R(q) −d1 sin q + d1d2R(q)

−d2 sin q + d1d3R(q) d1 sin q + d2d3R(q) cos q + d23R(q)

�

(5)

where defined R(q) = 1 − cos q , respectively, m and n are

respectively the lengths of ~m and ethe ~n, ~E is the third-order

identity matrix, q is the rotation angle, and ~d(d1, d2, d3) is the

unit vector of  ~m ∗~n.

2.5.4 Point cloud segmentation
The 3D point cloud segmentation of soybean plants mainly

aims to segment and extract the leaves and stems of soybean plants,

as shown in Figure 6. A gap exists between any two leaves, which is a
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prerequisite for individual leaf segmentation. A point cloud

clustering algorithm was used to segment different parts of the

leaves, a cylindrical fit to the stalk of the soybean plant based on a

random sampling consistency algorithm, and a statistical method to

remove noise and extraneous points from the root part of the leaves

was used.

2.5.5 Point cloud optimization
After the point cloud segmentation of leaves and stalks, white

noise generated by surface reflection or occlusion around leaves was

removed based on the difference between the color of the noise and

the characteristics of the leaf point cloud. The KD-Tree was used to

determine the point cloud data and the distance between the fields,

and the point cloud density was obtained by statistical analysis.

Clutter was eliminated using the data analysis method, and the

calculation formula is as follows:
FIGURE 4

3D model reconstruction process.
A B C

FIGURE 5

Down-sampling and denoising effect of soybean point cloud. (A) Original 3D point cloud image; (B) The 3D point cloud is downsampled; (C) 3D
point cloud denoising.
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di =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xij − xi)

2 + (yij − yi)
2 + (zij − zi)

2

k

s
(6)

di =
on

i=1di
n

(7)

s = o
n
i=1(di − di)

2

n
(8)

where, di is the distance between soybean point cloud and other

K adjacent areas, di is the average value of the di, s standard

deviation of soybean.
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To better realize the effect of Gaussian filtering, scalar fields

were used to establish the Z-coordinate axis and draw the

chromatographic diagram of the point cloud in Figure 7A.

The Gaussian filter algorithm was used to set the covariance of

the Gaussian filtering, draw the Gaussian distribution and filtering

result diagram of the soybean point cloud, which are shown in

Figures 7B, C.

The OLS plane fitting method was used to find the best

matching function by minimizing the square error (Rannik et al.,

2020) for the plane fitting of soybean leaves. The Laplacian

smoothing algorithm was used to smooth the edges and surfaces

of the soybean leaves after the initial fitting. A statistical filtering
FIGURE 6

Effect of point cloud segmentation.
FIGURE 7

Point cloud Gaussian filtering, (A) soybean point cloud chromatogram, (B) soybean Gaussian distribution, and (C) filtering result.
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algorithm was used to optimize the soybean stalks. A 3D soybean

point cloud model was obtained by splicing the optimized point

cloud leaf and stem models.
2.6 The LPM algorithm was used to extract
soybean plants traits

Based on the 3D point cloud of the soybean model, the LPM

algorithm is proposed in this study to calculate plant height, leaf

number, length and width, minimum bounding box volume of a

single plant, minimum bounding box volume of a single leaf and

leaf volume, projection area, projection length, and width. The

extraction process of the trait parameters is shown in Figure 8.

First, soybean plant point cloud is displayed, the height of
Frontiers in Plant Science 09
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soybean plant and minimum volume of bounding box per

plant were measured. Then, the phenotypic parameters of

leaves were extracted after segmentation. The specific

parameters were calculated as follows:

2.6.1 Height of soybean plants
Plant height is an important indicator of plant growth in

various environments (Xiao et al., 2020). The point clouds of

individual soybean plants (Figure 8A) were extracted, and all

points were traversed. After coordinate correction, the growth

direction of the soybean was consistent with the z-axis direction.

Therefore, the maximum value of the Z-axis coordinates

between soybean and potted plants was selected, and the

absolute value of the difference was the height of a single

soybean plant (Figure 8B).
FIGURE 8

Extraction of soybean plant trait parameters. (A) Point cloud of soybean plant; (B) Extract the height of the plant; (C) The minimum bounding box
volume per plant was obtained; (D) Segmentation of leaf point clouds by clustering; (E) Point cloud of soybean leaves; (F) The minimum bounding
box volume of a single leaf is obtained; (G) Extraction of leaf length; (H) Extracting leaf width; (I) Display leaf point cloud; (J) Leaf volume acquisition;
(K) Projection of leaf; (L) Leaf projection area; (M) Leaf projection length; (N) Leaf projection width; (O) Leaf tilt information.
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2.6.2 Minimum volume of bounding box
per plant

The individual soybean plants were corrected to the main

direction, and the cuboid composed of yellow lines was the

bounding box. The maximum x, y, and z coordinate values and

the minimum x, y, and z coordinate values of the point cloud of the

individual soybean plant after correction were determined, and

eight vertices were obtained. The cuboid volume formed by the

connection of the eight vertices corresponds to the minimum

bounding box volume of the individual plant (Figure 8C).

2.6.3 Number of soybean leaves
The non-stem point cloud was extracted to remove noise and

external points, and the point cloud clustering algorithm was used

to segment soybean leaves into different parts of a single plant

(different colors represent different classes), where the number of

different classes clustered was the number of leaves (Figure 8D).

2.6.4 Minimum bounding box volume of a
single leaf

The individual soybean plants were corrected to the main

direction, and any parts of the leaves were cut (Figure 8E). The

cuboid, which is composed of yellow lines, is the bounding box. The

maximum x, y, and z coordinates and the minimum x, y, and z

coordinates of the point cloud of the corrected individual soybean

plants were determined, and eight vertices were obtained. The

volume of the cuboid formed by the connection of these eight

vertices was the minimum bounding box volume of a single

plant (Figure 8F).

2.6.5 Length of soybean leaves
The length of soybean leaves were calculated by the distance

along the surface of the leaf, and any segmented leaf was

extracted. The Euclidean distance algorithm was used to obtain

the distance between the leaf base and leaf tip as the leaf

length (Figure 8G).

2.6.6 Width of soybean leaves
The width of soybean leaves were calculated by the distance along

the surface of the leaf, and any segmented leaf was extracted. The

Euclidean distance algorithm was used to obtain the maximum

distance perpendicular to the leaf length as the leaf width (Figure 8H).

2.6.7 Leaf volume of soybean
After extraction and segmentation, any soybean leaf is displayed

(Figure 8I), and Gaussian filtering is used to de-noise the point

cloud, and the envelope of its 3D point cloud is extracted. Each

point cloud was divided into discrete grids, and the volume of the

corresponding cell of each grid was calculated and summed to

obtain the soybean leaf volume (Figure 8J).

2.6.8 Projected area of soybean leaves
The segmented arbitrary soybean leaves were projected onto the

oxy-plane, and the corresponding projected leaf point cloud was

generated (Figure 8K). The projected leaves were triangulated using
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a greedy projection algorithm (Zhang Y et al., 2019), and the

projected soybean leaves after triangulation were composed of

small triangles. The leaf projection area of a single leaf was

calculated based on the Helen formula and area summation

formula (Figure 8L). The formula used is given by

Si =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj(pi − aj)(pj − bj)(pj − cj)

q
(9)

S2D =om
j=0Sj (10)

where, pj is half of the perimeter of the triangulated triangle,

aj, bj and cj are the lengths of each side of the triangulated

triangle, m is the total number of triangulated triangles, j is the

index number of triangulated triangles, Sj   is the projection area

of a single planar triangulated facet, and S2D is the total

projection area of a single leaf.

2.6.9 Projection length of soybean leaves
The segmented soybean leaves were projected onto the oxy

plane to generate the corresponding projected leaf point cloud, and

the maximum and minimum values of the length-direction

coordinates were calculated. The absolute value of the difference

was the default length of the soybean leaf projections (Figure 8M).

2.6.10 Projection width of soybean leaves
The segmented soybean leaves were projected onto the oxy

plane to generate the corresponding projected leaf point cloud, and

the maximum and minimum values of the width-direction

coordinates were calculated. The absolute value of the difference

was the default width of the soybean leaf projections (Figure 8N).

2.6.11 Tilt information of leaves
The growth situation and environmental problems of soybeans

can be determined based on the tilt information of soybean leaves.

RANSAC plane fitting was used to obtain the plane, fitting variance

RMSE, and tilt matrix, which can judge the tilt direction from a series

of point cloud information using an iterative method (Figure 8O).
2.7 Modeling based on plant
phenotype prediction

In this study, for three soybean varieties (C3, 47-6, W82) in R4

stage, because it is difficult to obtain the information of leaves and

only a small data set is available, we used popular shallow neural

networks such Support Vector Machine (SVM), Back Propagation

Neural Network (BP) and Generalized Regression Neural Network

(GRNN) to construct the model and select the optimal one.

Support Vector Machine (SVM) (Deng et al., 2019) is based on

statistical theory and its learning model algorithm, which

determines the optimal classification hyperplane in the high-

dimensional feature space of data by solving optimization

problems. The least-squares support vector machine (LS-SVM)

overcomes the computational burden of its constrained

optimization programming based on SVM to handle complex

data classification more effectively.
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Back Propagation Neural Network (BP) (Ju and Feng, 2019)

neural network is a multi-layer feedforward network trained by an

error backpropagation algorithm. The phenotypic data of plant

leaves were used as the input of the BP neural network, and the

output was the predicted value of the plant varieties.

Generalized Regression Neural Network (GRNN) (Dai et al.,

2019) has strong nonlinear mapping ability and learning speed. In

terms of classification and fitting, the GRNN model performed

better when the accuracy of the plant phenotypic parameter data

was poor.

Since model prediction was made based on leaf morphological

traits and the light source maps the leaf vertically, the data of leaf

length and width are highly similar to the data of leaf projection

length and width. Therefore, Six experimental parameters (minimum

bounding box volume of a single leaf, leaf volume, projection length

of soybean leaves, projection width of soybean leaves, projected area

of soybean leaves and leaf tilt information) are preferably selected.

The input datatype for training (e.g., X is (447 x 6) array that records

6 traits of 447 leaves, Y is (447 x 1) array that records the cultivars of

corresponding, use integer as labels) to construct the models of

soybean sample variety prediction. For each prediction model, 80%

samples are randomly selected as the training set and 20% samples

are used as the test set to detect the prediction effect.
2.8 Accuracy evaluation

The soybean plant height, leaf length, and leaf width measured

by the algorithm were compared with manual measurement values

to evaluate the accuracy of the proposed method. The accuracy was

measured using the mean absolute percentage error (MAPE), root

mean square error (RMSE), and determination coefficient (R2) to

evaluate the accuracy of the SFM algorithm. Correlation coefficients

of calibration (Rc)、Root mean square error of calibration

(RMSEC)、Correlation coefficients of prediction (Rp) and Root

mean square error of prediction (RMSEP) are often used for

evaluating the accuracy of models.

Mean absolute percentage error (MAPE) (Chen et al., 2020)

is often used to evaluate the prediction of performance, which

intuitively reflects the difference between the real value and the

predicted value, usually in the range up to 100%. Root mean

square error (RMSE) (Hodson, 2022) is used to measure the

deviation between the predicted value and true value, and is

more sensitive to outliers in the data. Determination coefficient

(R2) (Piepho, 2019) is an important statistic that reflects the

goodness of fit of the model. The value ranges from 0 to 1, and

closer to 1 means better; Correlation coefficients of calibration

(Rc) (Wang et al., 2020) as the correlation coefficient of

determination for calibration, commonly used to evaluate

model results, and with the value closer to 1 being better;

Roo t me an s qu a r e e r r o r o f c a l i b r a t i o n (RMSEC)

(Hacisalihoglu et al., 2022) is often used as an evaluation of

quantitative models; Correlation coefficients of prediction (Rp)

(Wang et a l . , 2020) as the correlat ion coefficient of

determination for the prediction set, with the value closer to 1

means better; Root mean square error of prediction (RMSEP)
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(Cominotte et al., 2020) is commonly used to verify the

prediction error of the model internally or externally, and is

the most critical parameter for evaluating the goodness of

a model.
3 Results

3.1 Results and analysis of LPM algorithm

In this study, a total of 45 soybean samples from three

soybean varieties (C3, 47-6, W82) in the R4 stage were used for

3D reconstruction using the SFM algorithm, and the plant

height and leaf point clouds of soybean plants were

automatically segmented, measured, and analyzed. In the 3D

point cloud of the soybean plant, the plant trait parameters

measured by the algorithm were proportionally converted, and

the automatically measured plant height, leaf length, and leaf

width were compared with the manually measured values.

Figure 9 shows the results.

As shown in Figure 9A, R2=0.9775, MAPE = 2.7013%, RMSE =

0.9997 cm, and the accuracy of the plant height measurement by the

algorithm was 97.2987%. In addition, R2=0.9785, MAPE = 1.4706%,

and RMSE = 0.2357 cm, and the accuracy of the leaf length

measurement was 98.5294%, as shown in Figure 9B. As shown in

Figure 9C, R2 = 0.9487, MAPE= 1.8669%, and RMSE = 0.2666 cm,

and the accuracy of leaf width measurement by the algorithm was

98.1331%. According to Figure 9, the results show that the proposed

method has high accuracy, and the algorithm measurements are in

good agreement with human measurements.
3.2 Prediction results of plant varieties

In this study, three modeling methods, such as BP, SVM, and

GRNN were used to establish soybean plant variety prediction

models. Soybean leaf phenotypic parameters and the soybean plant

variety were used as model inputs and the output, respectively.

Among them, RMSEC is often used as an evaluation of quantitative

models; RMSEP is often used to validate the prediction error of a

model internally or externally; Rc as the correlation coefficient of

determination for calibration; Rp is used as the correlation

coefficient of determination of the prediction set. The modeling

results based on the six leaf phenotypic parameters are listed

in Table 1.

By modeling the leaf phenotypic parameters in Table 1 to

predict the types of soybean plants, the GRNN model had the

highest prediction accuracy. The training set Rc of soybean plants

was 0.9744, and the prediction set Rp was 0.9211.
4 Discussion

Zareef et al. (2019) used Partial Least Squares Regression

(PLSR) based on the phenolic compounds of Congo black tea to

predict and construct the model. The prediction accuracy of
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Gallic acid was 0.9111, and the prediction accuracy of Rutin was

0.8255; Hasan et al. (2021) applied six commonly ML methods

(SVM, Adaboost, Logistic Regression, etc.), the gene models of

Roaceae, rice and Arabidopsis were predicted and constructed,

and the prediction accuracy was 0.918,0.827,0.635, respectively;

Yoosefzadeh-Najafabadi et al. (2021) took advantage of three

common ML (MLP, SVM, RF) based on hyperspectral
Frontiers in Plant Science 12
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reflectance data to predict and construct a soybean seed yield

model, and the accuracy of the model was 0.87. The above

methods use multiple models to classify and predict the

phenotypes and compounds of multiple experimental objects

quickly and efficiently, but the accuracy is relatively low.

The LPM algorithm used in this paper is combined with

GRNN to construct a soybean prediction model, and the
A

B

C

FIGURE 9

Comparison of manual and algorithmic measurements of soybean plant traits, (A) Height of the plant, (B) Length of the leaf, (C) Width of the leaf.
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TABLE 1 Modeling results of leaf phenotypic parameters.

Model Rc RMSEC Rp RMSEP

LS-SVM 0.6934 0.5979 0.6536 0.6995

BPNN 0.7781 0.6419 0.5716 0.9528

GRNN 0.9744 18.3263 0.9211 18.9024
F
rontiers in Plant Science
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FIGURE 10

Measurement results of soybean plant trait parameters, (A) Minimum bounding box volume per plant, (B) Number of leaves, (C) Minimum bounding
box volume of a single leaf, (D) Leaf volume, (E) Leaf projection area, (F) Leaf projection length, (G) Leaf projection width, (H) Leaf tilt information.
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accuracy of model can reach 0.9211. In the paper, the 3D model

of soybean plant can be reconstructed quickly and accurately by

using motion restoration structure algorithm and multi-view

stereo vision algorithm; The LPM algorithm can effectively

measure the phenotypic parameters of 11 plant three-

dimensional models, and constructed the relationship between

phenotype and insect resistance; The optimal model GRNN was

established to accurately predict and identify plant varieties

based on the morphological traits of leaves.

In terms of individual plant character parameters (minimum

bounding box volume per plant, number of leaves, minimum

bounding box volume per leaf, leaf volume, leaf projection area,

leaf projection width, leaf projection length, and leaf tilt

information), the soybeans of the C3 variety were lower than that

of the 47-6 and W82 varieties, as shown in Figure 10. Soybean plant

variety 47-6 were higher than soybean of variety W82 in terms of

four trait parameters (minimum enclosing box volume per plant,

number of leaves, leaf projected width, and leaf projected area).

Soybean of varieties 47-6 and W82 were higher than soybean of

variety W82 in four trait parameters (minimum enclosing box

volume per plant, number of leaves, minimum enclosing box

volume per leaf, and leaf projection area). There were no highly

significant differences between the 47-6 and W82 varieties in terms

of four trait parameters (leaf projection length, leaf volume, leaf

projection width, and leaf tilt information).

C3, 47-6, and W82 are different gene expression forms of the

same variety, where 47-6 (oe-Williams82) is a certain gene

overexpression strain and C3 (ko-Williams82) is a gene knockout

strain. Differences in gene expression may be the reason for the

changes in the overall parameters, and the differences in gene

expression will lead to changes in the surface hairs of the

soybean. These hairs of soybean pods of the 47-6 overexpressed

variety were sparse, and the pods were easily fed on by stink bugs.

The stink bugs bite the soybean pods through the mouth, resulting

in the normal development of soybean seeds (Chen et al., 2018) and

the formation of aborted seeds. Here, the sink and source

relationship is confusing. Therefore, the plant will use more

nutrients to promote the vegetative growth and growth of its

node, make the plant taller, and increase the volume of the

minimum bounding box per plant and the number of leaves.

However, pod feeding of M. obstatus did not affect changes in

leaf morphology-related information, such as leaf projection length,

leaf volume, leaf projection width, and leaf tilt information. C3 is an

insect-resistant line, which is considerably slightly damaged by the

bug. Thus, the trait parameters of C3 are significantly less than 47-6,

and gene knockout affects the changes in leaf morphology-related

information parameters. Plant phenotypic traits can be divided into

physiological, morphological, and component traits (Danilevicz

et al., 2022). Among the three major targets of breeding, such as

the yield, quality, and resistance, the resistance target (biotic stress

or abiotic stress) is particularly important and indicates the core

productivity to ensure stable yield. Among them, changes in

morphological and structural traits, such as plant height and leaf

area, are the most intuitive reflections of plant resistance and they

play an important role in the study of insect resistance (Nelson

et al., 2018).
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5 Conclusion

The soybean plant 3D structure was successfully obtained by

SfM, and a good correction (R2>0.94) and small RMSE (<0.24) were

observed with manual measured. Compared to SVM and BPNN,

the GRNN showed the highest accuracy (0.9211) of the cultivar

classification tasks.

In this paper, we mainly focus on the 3D reconstruction of

soybean plants (ko-Williams82, oe-Williams82, and Williams82),

and analyze the relationship between phenotypic traits and insect

resistance genes. In the later stage, a whole set of machines will be

developed to expand the number of soybean varieties and monitor

the growth changes of soybean plants in real-time to further

enhance the practicability and realize more comparisons of

soybeans between species and genotypes to select superior insect-

resistant varieties.
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Development of effective model
for non-destructive detection of
defective kiwifruit based on
graded lines

Feiyun Wang †, Chengxu Lv, Lizhong Dong, Xilong Li,
Pengfei Guo and Bo Zhao*†

National Key Laboratory of Agricultural Equipment Technology, Chinese Academy of Agricultural
Mechanization Sciences Group Co., Ltd, Beijing, China
The accurate detection of external defects in kiwifruit is an important part of

postharvest quality assessment. Previous studies have not considered the

problems posed by the actual grading environment. In this study, we designed

a novel approach based on improved Yolov5 to achieve real-time and efficient

non-destructive detection of multiple defect categories in kiwifruit. First, a

kiwifruit image acquisition device based on grading lines was developed to

enhance the image acquisition. Subsequently, a kiwifruit dataset was

constructed based on the external defect characteristics and a new data

enhancement method was proposed to augment the kiwifruit samples.

Thereafter, the SPD-Conv and DW-Conv modules were combined to improve

Yolov5s, with EIOU as the loss calculation function. The results demonstrated

that the improved model training loss value was 0.013 lower, the convergence

was accelerated, the number of parameters was reduced, and the computational

effort was increased. The detection accuracies of the samples in the test set,

which included healthy, leaf-rubbing damaged, healed cuts or scarred, and

sunburned samples, were 98.8%, 98.7%, 97.6%, and 95.9%, respectively, with

an overall detection accuracy of 97.7%. The detection time was 8.0 ms, thereby

meeting real-time sorting demands. The average detection accuracy and model

size of SSD, Yolov5s, Yolov7, and Yolov5-Ours were compared. When the

confidence threshold was 0.5, the detection accuracy of Yolov5-Ours was 10%

and 6.4% higher than that of SSD and Yolov5s, respectively. In terms of the model

size, Yolov5-Ours was approximately 6.5- and 4-fold smaller than SSD and

Yolov7, respectively. Thus, Yolov5-Ours achieved the highest accuracy,

adaptability, and robustness for the detection of all kiwifruit categories as well

as a small volume and portability. These results can provide technical support for

the non-destructive detection and grading of agricultural products in the future.

KEYWORDS

kiwifruit, grading line, SPD-Conv, DWConv, real time, non-destructive detection
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1 Introduction

Kiwifruit is characterized by a soft texture, sweet and sour taste,

and richness in amino acids and minerals. The detection and

grading of kiwifruit are key aspects of postharvest processing and

provide important support for value-added commercialization (Fu

et al., 2018; Li et al., 2022).

In China, the grading of kiwifruits from different cities is

primarily conducted by manual sorting at present, which is

inefficient and subjective. Existing sorting equipment, such as

mechanical size grading and weight grading, cannot identify the

external defects of the fruit. Thus, computer vision is being applied

increasingly to agricultural products with the developments in

image processing technology (Liu et al., 2020; Tian et al., 2021).

Traditional image processing methods usually achieve fruit

recognition and detection by combining the extraction of shallow

information, such as the color, size, and texture of the target, using

techniques such as segmentation and discriminative models. Cui

et al. (2012) proposed the use of a near-infrared light source for

image acquisition and realized the extraction of scratch, decay, and

sun-burning defects using segmentation. Yang et al. (2021) used the

K-means clustering algorithm to segment the surface of kiwifruit

and reject defective fruits according to the darker color of surface

defects, such as fruit scars and disease spots, compared with those of

normal fruits. Subsequent studies (Zhou et al., 2012; Liu and Gai,

2020) used an image segmentation algorithm to extract the

contours of the fruit in an image to meet the detection and

grading needs. Li et al. (2020) used hyperspectral techniques for

deformed kiwifruit detection and compared three methods: the

partial least-squares linear discriminant model, back-propagation

neural network (BPNN), and least-squares support vector machine.

The experimental results showed that the BPNN model achieved

the highest accuracy at 97.56%. Fu et al. (2016) used a camera with a

weight sensor on a grading line that was equipped for kiwifruit

shape grading through a stepwise multiple linear regression

method. The grading accuracy when using a linear combination

of the cross-sectional diameter length was 98.3%. However,

traditional image processing techniques, which generally extract

feature targets manually, are only applicable to specific scene

studies, have weaker robustness, and are susceptible to

environmental influences during the extraction process.

Deep convolutional neural networks (CNNs) are superior to

traditional methods and have been applied to the class classification

and defect detection of fruits. Fan et al. (2020) improved the

parameters and number of connections in a CNN model to detect

the surface defects of apples in real time, with an accuracy of 92%.

Lu et al. (2022) used the Attention-YOLOv4 model to detect the

ripeness of different-colored apples. Zhang et al. (2020) improved

the VGG16 model by converting it into a fully convolutional

network and combining it with a spectral projection image to

segment the mechanical damage and calyx regions of blueberries.

Their method achieved an accuracy of 81.2%. Similarly, Wang et al.

(2018) combined hyperspectral images with deep learning methods,

and used the AlexNet and ResNet models to detect internal

mechanical damage in blueberries. Their results showed that the
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deep learning models could maintain a higher accuracy than that of

machine learning methods while reducing the calculation time

significantly. Yu et al. (2018) proposed a combined model

consisting of an autoencoder and a fully connected neural

network to predict the hardness and soluble solid contents of

Korla fragrant pears, resulting in a correlation coefficient of 0.89.

Momeny et al. (2020) combined maximum pooling with mean

pooling in a CNN to classify self-built regular and irregular cherry

databases with an accuracy of 99.4%. Luna et al. (2019) created a

dataset of healthy and defective tomatoes and evaluated the

accuracy of their model using VGG16. A high accuracy rate of

98.75% was achieved. Azizah et al. (2017) used a four-fold cross-

validation method to classify CNN mangosteen with an accuracy of

97.5%. Jahanbakhshi et al. (2020) proposed an improved CNN

model for healthy and damaged sour lemon detection, achieving an

accuracy of 100%. Xue et al. (2018) improved the YOLOv2 model

using the Tiny-yolo-dense network to detect unripe mangoes with

an accuracy of 97.02%. CNNs have achieved high detection

accuracy, application flexibility, and good performance rates in

many fruit quality detection studies. However, the detection of

small objects with a low resolution remains challenging. This is

because small objects with a low resolution provide few learning

features and often coexist with larger undetectable objects.

Therefore, in this study, a kiwifruit dataset was constructed

according to an image acquisition device based on grading lines for

the detection of external kiwifruit defects. The widely used Yolov5s

(Li et al., 2023) was selected as the base model. The network

structure was improved and the loss function was optimized to

achieve non-destructive and efficient external detection of kiwifruit.

The results of this study can provide technical support for kiwifruit

quality grading.
2 Materials and methods

2.1 Dataset production

2.1.1 Sample source
Kiwifruit samples were obtained from the Zhouzhi (108.20 °E,

34.17 °N) and Meixian counties (107.76 °E, 34.29 °N) in Shaanxi

Province. The kiwifruit varieties Xu Xiang and Cui Xiang were

selected as the subjects of the study, and multiple batches were

acquired in the field and online from November 2021 to November

2022. A total of 1,020 original samples were obtained, including 320

healthy samples, 240 leaf-rubbing damaged samples, 240 sunburned

samples, and 220 healed cuts or scarred samples. The various

sample types are presented in Figure 1.
2.1.2 Image acquisition
Image acquisition was performed using an MV-EM200C

camera (Microvision, Xi ’an, China) with a model BT-

23C0814MP5 industrial lens, an image resolution of 1,600 ×

1,200 pixels, and an acquisition frame rate of 39.93 fps. The

image acquisition device was constructed based on a grading line

(Li et al., 2018), as illustrated in Figure 2, and mainly included the
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FIGURE 2

Acquisition device diagram.
B

C D

A

FIGURE 1

Kiwifruit samples. (A) Healthy, (B) leaf-rubbing damaged, (C) sunburned, (D) healed cuts or scarred.
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camera, lens, camera obscura, light sources, and acrylic plate. The

camera height was adjusted to 32 cm above the tray level to capture

the information of the three trays completely in a single image for

the grading application scenario. When the grading line moved, the

roller tray could turn the kiwifruit, and three samples in a single

image could be obtained to acquire the full surface information of

the kiwifruit. The light source was emitted from the bottom and

reflected on the kiwifruit surface through a half-cylinder acrylic

plate, which helped to reduce the problems of uneven light exposure

and reflection at different locations owing to direct radiation. When

the graded line speed was adjusted to 3–5 pcs/sec, the pallet

information was captured by a counter-light sensor, which was

passed to the isolation plate, thereby driving the camera to trigger

synchronously. Thus, the quality of the images captured by the

device was improved. The captured images contained 1–3 unequal

samples, with a total of 2,220 images captured, as shown in Figure 3.
Frontiers in Plant Science 04
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2.1.3 Data processing
First, the collected images were divided into training (1,332),

validation (444), and test (444) sets by batch at a 3:1:1 ratio. A multi-

data-enhanced fusion method based on an adjustable range was

implemented to enhance the robustness of the model under

background differences in the kiwifruit images. The training set data

were randomly combined using six methods: contrast, brightness, and

rotation angle adjustment, mirroring, Gaussian noise addition, and

filtering. The training dataset was enhanced seven times, resulting in a

total of 10,656 images. The specific parameters are listed in Table 1. The

experiment was conducted using a dataset in the Pascal Voc format and

the dataset was labeled using labelImg. Four categories were labeled:

“Kiwifruit,” “Leaf-rubbing damaged,” “Sunburned,” and “Healed cuts

or scarred,”with the latter three categories corresponding to each defect

type. The sample labeled “Kiwifruit”was used to locate the kiwifruit, but

a single sample labeled “Kiwifruit” was considered as healthy.
B

C

A

FIGURE 3

Image acquisition. (A) Single sample, (B) two samples, (C) three samples.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1170221
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1170221
2.2 Model construction

2.2.1 Experimental environment
The experimental operating platform was a Dell Precision 7920

Tower workstation (Dell, Round Rock, TX, USA) with an Ubuntu

18.04 64-bit operating system. The central processor of the

workstation was an Intel Xeon Silver 4216 @ 2.10 GHz (X2; Intel,

Santa Clara, CA, USA) with 128 G of running memory. The GPU

was an NVIDIA GeForce RTX 3090 (Nvidia, Santa Clara, CA, USA)

with a 24 G display memory. A deep learning framework with a
Frontiers in Plant Science 05
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GPU was used to accelerate the dynamic neural network Pytorch

version 1.11, Anaconda 3.7 environment manager, and Python

version 3.8.

2.2.2 Model structure
The structure of Yolov5-Ours, which was based on Yolov5s, is

depicted in Figure 4. It included four parts: the input, backbone,

neck, and prediction.

(a) Input: The input was a three-channel RGB image of

kiwifruit, and the image size was uniformly adjusted from 1,600 ×

1,200 to 640 × 640 at the acquisition time using adaptive

picture scaling.

(b) Backbone: The backbone consisted of CBL, DWCBL, SPD-

Conv, C3, and SPP. CBL consisted of convolutional and BN layers

and leaky ReLU. The image size at the input was 640 × 640 × 3, and

the output was 320 × 320 × 32 after slicing by the first CBL. DWCBL

consisted of depth-wise separable convolution (DWConv) and BN

layers and a Leaky ReLU. The DWConv layer with SPD-Conv

(consisting of spatial-depth (SPD) and step-free convolutional

layers) was implemented as the improved structure (the

numbered part marked in Figure 4). The improved structure is

described in detail in Section 2.3. C3 consisted of a CBL, residual

structure, and convolutional layer connection, which could solve
FIGURE 4

Yolov5-Ours network structure.
TABLE 1 Data enhancement methods.

Methods Parameter range

Mirroring /

Contrast ratio (0.8, 1.2)

Gaussian noise /

Filtering /

Rotation angle (-20°, 20°)

Brightness (0.8, 1.2)
/, non-random variation.
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the problem of gradient repetition in the backbone network of the

large CNN framework. Furthermore, it integrated the gradient

changes into the feature map from beginning to end, thereby

reducing the number of model parameters and computation

values (Li et al., 2019) to ensure the speed and accuracy of the

inference. SPP concatenated the different scales of the feature maps

to expand the extraction of kiwifruit features using the maximum

down-sampling of different convolutional kernels.

(c) Neck: FPN+PAN (Lin et al., 2017; Liu et al., 2018) was used.

The FPN structure fuses and passes the feature information on the

upper layers from top to bottom by up-sampling. The PAN

structure is a bottom-up feature pyramid. The FPN+PAN

structure was fused with feature layers from different backbone

layers to improve the feature fusion capabilities further.

(d) Prediction: Output feature maps with sizes of 80 × 80, 40 ×

40, and 20 × 20 were used to localize the kiwifruit defects. The

training loss values were calculated using the loss calculation

function and were iteratively updated to obtain the best model.
2.3 Structure optimization

2.3.1 SPD-Conv module
The convolution and pooling layers that are used in

conventional methods lead to the loss of fine-grained information

and insufficient learned features in the image. This results in small

and low-resolution kiwifruit defect features that cannot be learned

effectively during the convolution process. To address this problem,

we incorporated the convolutional structure of SPD-Conv (Sunkara

and Luo, 2022) into Yolov5s instead of the convolutional and

pooling layers. When the feature size of the kiwifruit was a

feature mapping X with a size of M �M � C, to achieve a two-

fold down-sampling operation, the scale value S was selected as 2 in

Equation (1). Subsequently, the SPD layer was subjected to spatial

sub-mapping f0,0、f0,1、f1,0、f1,1 by slicing. These spatial sub-

mappings were spliced in the channel dimension to acquire the

dimensional mapping X 0 ( M
S=2 ,

M
S=2 , 4C), and a step-free

convolutional layer after SPD was added to obtain the final

mapping X 0 0 ( M2 ,
M
2 ,C

0 ). The SPD layer preserved the

information in the channel dimension when down-sampling was
Frontiers in Plant Science 06
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performed in the feature layer by retaining all information in the

channel dimension when down-sampling the feature layer. The

step-free layer retained the feature discriminant information in the

convolution and adjusted the number of output channels. As

illustrated in Figure 4, SPD-Conv was used as a substitute for

four convolutional layers with a step size of 2 to down-sample the

feature map in the backbone. Similarly, two alternative operations

were executed in the neck.

f0,0 = X½0 :M : S, 0 :M : S�,⋯ f0, S−1 = X½0 :M : S,  S − 1 :M : S�
f1,0 = X½1 :M : S, 0 :M : S�,⋯ f1, S−1 = X½1 :M : S,  S − 1 :M : S�
⋮

fS−1,0 = X½S − 1 :M : S, 0 :M : S�,⋯ fS−1, S−1 = X½S − 1 :M : S,  S − 1 :M : S�

(1)
2.3.2 DWConv
The number of model calculation parameters and calculation

amount increased following the structural improvement described

in Section 2.3.1. We used DWConv (Chollet, 2017) instead of

conventional convolution to solve this problem. The four regular

convolutions in the backbone were replaced with DWConv, as

indicated in Figure 4. As illustrated in Figure 5, the basic

implementation process of DWConv consisted of depth-wise and

point-wise convolution. Each convolution kernel of the depth-wise

convolution convolved a single channel to make the number of

input feature map channels the same as that of the output feature

map channels. The point-wise convolution generated a new output

feature map by linearly weighting the number of input feature map

channels in the depth direction. DWConv effectively reduced the

volume and computation of the parameters compared with

conventional convolution for the same input and output cases.
2.4 Loss function

The target detection regression loss function IOU (Yu et al.,

2016) cannot evaluate the distance information of the two frames

when the prediction and target frames do not intersect. Thus, the

gradient information cannot be passed back to the model, which

results in the model not being learned and trained further.
FIGURE 5

Schematic of DWConv.
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Moreover, when the prediction and target frames intersect, the

model cannot reflect the overlapping method of both frames. GIOU

(Rezatofighi et al., 2019) introduces the minimum outer rectangle

concept into the prediction and target frames. Although it solves the

problems of IOU, errors, difficult convergences, and horizontal and

vertical instability occur when the prediction and target frames have

inclusion relations. DIOU (Xu et al., 2023) improves the penalty

term in GIOU to calculate the distance between the minimized

center point of the prediction and target frames to accelerate the

convergence. However, DIOU does not consider the aspect ratio in

the regression process. CIOU adds the influence factor to the

penalty term based on DIOU and considers the prediction frame

aspect ratio as fitting the target frame aspect ratio. However, the

aspect ratio that is described by CIOU is a relative value and may be

ambiguous. EIOU (Zhang et al., 2022) replaces the aspect ratio with

the width-height difference value based on CIOU and introduces

the focal loss to solve the problem of imbalance between difficult

and easy samples. Therefore, EIOU was used as the loss calculation

function in this study. The implementation process is illustrated in

Figure 6 and the loss function value is calculated using Equation (2).

LEIOU = LIOU + Ldis + Lasp

= 1 − IOU + d2(bP ,bgt )
(wc)2+(hc)2

+ d2(wP ,wgt )
(wc)2

+ d2(hP ,hgt )
(hc)2

,
(2)

where LIOU is the overlap loss, Ldis is the center distance loss,

and Lasp is the scale loss. Furthermore, bP and bgt are the coordinates

of the center points of the prediction and target frames, respectively,

whereas d(bP , bgt) is the Euclidean distance between the frames. wc

and hc are the width and height of the smallest outer rectangle of

the prediction and target frames, respectively. Moreover, IOU is the

ratio of the intersection of the prediction and target frames to the

union, d(wP ,wgt) is the difference between the widths of

the prediction and target frames, and d(hP , hgt) is the difference

between the lengths of the prediction and target frames.
2.5 Evaluation indicators

To evaluate the effectiveness of the external defect detection

model for kiwifruit, multiple metrics were used, including the rate

of precision and recall, number of parameters (Params) and FLOPs
Frontiers in Plant Science 07
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(Li et al., 2021), model size, average precision (AP) of a single

sample, and average precision (mAP) of all categories. The

precision and recall are determined by Equations (3) and (4),

respectively.

P = TP=(TP + FP)� 100% (3)

R = TP=(TP + FN)� 100%, (4)

where P is the precision rate; that is, the proportion of predicted

targets that are the same as the labeled targets, and R is the recall

rate; that is, the proportion of correctly predicted positive samples

to all labeled positive samples. TP represents the predicted positive

and actual positive samples, FP represents the predicted positive

and actual negative samples, and FN represents the predicted

negative and actual positive samples.

The curve for PR was plotted with R and P as the horizontal and

vertical coordinates, respectively, and the area enclosed by the curve

was calculated to obtain AP. The calculation of mAP is shown in

Equations (5) and (6).

AP =
Z 1

0
P(R)dR� 100% (5)

mAP =
1
C oc∈C

AP(c)� 100%, (6)

where c is a single category and C is all categories.
3 Results and discussion

3.1 Model training results

A stochastic gradient descent optimizer with a momentum

of 0.937 and a weight decay of 0.0005 was selected to evaluate

the performance of the proposed network. The number of

training warm-up rounds, total number of rounds, and training

batches were set to 3, 200, and 32, respectively. The training

learning rate was set linearly from 0.003 to 0.01 following the

warm-up phase and decayed linearly to a final value of 0.0001 after

200 iterations.
FIGURE 6

Schematic of EIOU implementation.
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The loss value is a metric that is used to measure the effectiveness

of network training. Figure 7 shows the loss values of Yolov5s and

Yolov5-Ours in the training set. The loss value of Yolov5-Ours

decreased rapidly to approximately 0.08 from the beginning of the

iterations, and then steadily with an increase in iterations. The initial

loss value of Yolov5s was larger than that of Yolov5-Ours; the loss

value decreased more slowly and appeared to fluctuate with the

increase in iterations. After 200 iterations, the loss value of Yolov5-

Ours was 0.050 and that of Yolov5s was 0.063. Thus, Yolov5-Ours

reduced the loss value by 0.013 compared to Yolov5s.

The AP of the training detection provides an important

indication of whether the model has learned the features

effectively. Figure 8 depicts the average class detection accuracies

of Yolov5s and Yolov5-Ours in the training set. From the beginning

of the iterations, the detection mAP increased while Yolov5s and

Yolov5-Ours learned the kiwifruit defect features. Yolov5-Ours

reached convergence at 100 iterations and the detection mAP was

slightly higher than that of Yolov5s. After 200 iteration rounds, both

Yolov5s and Yolov5-Ours reached stability, and both had better

detection mAPs for kiwifruit defects, but that of Yolov5-Ours was

slightly higher than that of Yolov5s. The Yolov5-Ours model

achieved a detection accuracy of 99.4% for healthy kiwifruit,

99.3% for leaf-rubbing damaged kiwifruit, 97.7% for healed cuts

or scarred kiwifruit, and 99.2% for sunburned kiwifruit during the

validation phase on 444 kiwifruit images.

The number of parameters and computations were visualized in

terms of the spatial and temporal complexity for the model size and

speed, respectively. Spatial complexity refers to the consumption of

computer hardware memory resources, whereas temporal complexity

is the model computation time. The number of parameters and

amount of computation during the training process of Yolov5s,

Yolov5s+SPD-Conv, and Yolov5-Ours were determined, as

indicated in Table 2. The number of parameters of Yolov5s+SPD-

Conv increased by 1.54 M and the computation amount increased by

17.5 G compared to Yolov5s. The number of parameters of Yolov5-

Ours decreased by 1.56 M and the computation amount decreased by

15.1 G compared to Yolov5s+SPD-Conv. These results demonstrate
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the effectiveness of the model improvement described in

Section 2.3.1.
3.2 Model testing results

The 444 test set images contained 1,151 kiwifruit samples,

including 326 healthy, 268 leaf-rubbing damaged, 284 healed cuts

or scarred, and 273 sunburned samples. The samples in each

category were tested using Yolov5-Ours with optimal weights. As

indicated in Table 3, the precision rates for the four categories were

all higher than 99% and the recall rates were all higher than 95%.

The average detection precisions of the healthy, leaf-rubbing

damaged, healed cuts or scarred, and sunburned samples were

98.8%, 98.7%, 97.6%, and 95.9%, respectively, at a confidence

threshold of 0.5, whereas the detection mAP of all categories was

97.7%. Moreover, the detection time of the image was only 8.0 ms,

thereby meeting the real-time sorting requirements of the grading

line. As shown in a partial plot of the results (Figure 9), Yolov5-

Ours could effectively detect all categories at a confidence level

higher than 0.8 for each category, which suggests that the model is

highly adaptable and robust for each category of kiwifruit.
3.3 Model comparison

The sample mAP and model sizes of SSD, Yolov5s, Yolov7, and

Yolov5-Ours were compared to validate the performance of

Yolov5-Ours further. As shown in Table 4, the mAP of the
FIGURE 7

Training loss value.
FIGURE 8

Average accuracy of training categories.
TABLE 2 Number of parameters and calculated values.

Model Params (M) FLOPs (G)

Yolov5s 7.03 15.9

Yolov5s+SPD-Conv 8.57 33.4

Yolov5-Ours 7.01 18.3
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TABLE 3 Test results.

Category P (%) R (%) AP@0.5 (%) mAP@0.5 (%) Image (ms)

Healthy 99.8 97.1 98.8

97.7 8.0
Leaf-rubbing damaged 99.7 96.7 98.7

Healed cuts or scarred 99.5 98.3 97.6

Sunburned 1.0 95.1 95.9
F
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FIGURE 9

Test results. (A) Healthy, (B) leaf-rubbing damaged, (C) sunburned, (D) healed cuts or scarred.
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samples was compared at confidence threshold values of 0.5 and 0.8.

When the confidence level was 0.5, the mAP of Yolov5-Ours was

1.1% lower than that of Yolov7, but 10% and 6.4% higher than those

of SSD and Yolov5s, respectively. When the confidence level was

0.8, the mAP of Yolov5-Ours was 88.3%, 15.5%, and 10.1% higher

than those of SSD and Yolov5s, but 3.2% lower than that of Yolov7.

The model size of Yolov5-Ours was the same as that of Yolov5s,

which was approximately 6.5- and 4-fold smaller than those of SSD

and Yolov7, respectively.

SSD is mainly divided into the backbone network and multi-scale

prediction network. The backbone network adopts the VGG16 model,

which is used to realize the initial extraction of image features. The

multi-scale feature detection network extracts the feature layers that

are obtained from the backbone network at different scales, so that

different feature maps can detect different-sized features. Finally, the

detection results are regressed. Yolov7 introduces model

reparameterization into the network structure, includes a new label

assignment method, and incorporates multiple tricks for efficient

training compared to Yolov5. Yolov7 achieves higher computational

efficiency and accuracy than Yolov5, and can achieve better detection

accuracy with the same computational resources. However, Yolov5 is

much faster than Yolov7 in terms of the inference speed, because the

faster computational efficiency of Yolov7 leads to more memory-

occupied resources. Yolov5-Ours improves the detection of small

feature defects on the surface of kiwifruit by adding the SPD-Conv

module based on Yolov5s and reduces the parameters using

DWConv, which means that the model size does not increase even

with higher detection accuracy. In summary, the results verified that

Yolov5-Ours balances the model size and accuracy and achieves

efficient performance in kiwifruit defect detection.
4 Conclusions

We developed and validated the effectiveness of a non-destructive

detection method for kiwifruit defects. We applied the target detection

technique to multiple healthy and defective kiwifruits and improved

several aspects, including the data acquisition and methodology, to

detect kiwifruit defects in various categories efficiently. First, a

kiwifruit image acquisition device was constructed and improved to

solve the problem of uneven light exposure in the image, thereby

improving the image quality. Subsequently, a kiwifruit database was

established. To avoid the problem of overfitting, the training dataset

was increased seven-fold using a new data enhancement method. We

proposed Yolov5-Ours based on Yolov5s, in which we fused SPD-

Conv and DWConv and improved the loss calculation function. The

average detection accuracy of healthy, leaf-rubbing damaged, healed
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cuts or scarred and sunburned samples was 97.7%. The single-frame

image detection was run in 8.0 ms, thereby meeting the classification

line-sorting requirements. The results validated the effectiveness of

Yolov5-Ours in terms of both the accuracy and model size.

The external kiwifruit defects of sunburned and healed cuts or

scarred affect the flesh of the kiwifruit, and effective detection can

increase the commercial value of the kiwifruit. Leaf-rubbing damaged

kiwifruit only has defects in the skin and the flesh of the kiwifruit is

normal, and correct detection can increase the reuse of iso-extracted

fruits. Consequently, the proposed method can facilitate the effective

detection of kiwifruit defects, provide a theoretical basis for online

real-time detection and grading, and serve as a framework for future

non-destructive defect detection in agricultural products.

This study also has some shortcomings. Only three major

kiwifruit defects were selected for detection and sorting. We plan to

expand the categories of kiwifruit defects for detection in the future,

which will make the study more applicable to actual kiwifruit sorting.
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An improved Deeplab V3+
network based coconut CT
image segmentation method
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and Shenghuang Lin2
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Information and Communication Engineering, Hainan University, Haikou, China
Due to the unique structure of coconuts, their cultivation heavily relies on

manual experience, making it difficult to accurately and timely observe their

internal characteristics. This limitation severely hinders the optimization of

coconut breeding. To address this issue, we propose a new model based on

the improved architecture of Deeplab V3+. We replace the original ASPP(Atrous

Spatial Pyramid Pooling) structure with a dense atrous spatial pyramid pooling

module and introduce CBAM(Convolutional Block Attention Module). This

approach resolves the issue of information loss due to sparse sampling and

effectively captures global features. Additionally, we embed a RRM(residual

refinement module) after the output level of the decoder to optimize

boundary information between organs. Multiple model comparisons and

ablation experiments are conducted, demonstrating that the improved

segmentation algorithm achieves higher accuracy when dealing with diverse

coconut organ CT(Computed Tomography) images. Our work provides a new

solution for accurately segmenting internal coconut organs, which facilitates

scientific decision-making for coconut researchers at different stages of growth.

KEYWORDS

coconut, CT images, semantic segmentation, DASPP, CBAM, RRM
1 Introduction

As a plant native to tropical environments, coconuts not only serve as distinctive

landscape trees for tourism, but also contribute significantly to the local economy as a pillar

industry. The various structures within coconuts are essential materials in other industries

and closely linked to people’s lives (Arumugam and Hatta, 2022). As a result, the

development of the coconut industry has garnered high attention and research efforts

worldwide. However, the unique growth environment of coconuts, coupled with factors

such as extensive farming practices, limited processing enterprises, weak risk resilience, low

technological content, and backward deep processing capabilities, have led to insufficient
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raw materials and severe homogeneity issues in coconut products.

Currently, the global coconut market is facing a severe supply-

demand imbalance, with a significant shortage of high-quality

coconuts. Consequently, the cultivation of superior coconut seeds

has become a research hotspot in order to provide higher-quality

seedlings and resources for the coconut industry. Real-time

monitoring of the internal structural growth during the

cultivation process has become the key to addressing this issue.

Currently, growers can only resort to destructive methods, such as

cutting open coconuts for observation and documentation, which

not only hampers the normal growth of the coconut but is also

unsuitable for large-scale cultivation research. However, the use of

X-ray imaging methods can be effectively applied in this scenario.

Computed tomography (CT) imaging, widely used in clinical

medicine, provides clear visualization of internal structures in the

human body, aiding doctors in obtaining crucial information for

diagnosing organs or tissues. It holds significant importance in

quantitative pathological assessment, treatment planning, and

disease progression monitoring. By applying this method to

agricultural research, utilizing the penetrating characteristics of X-

rays, we can obtain clear internal organ images of coconuts without

disrupting their normal physiological structure and growth (Zhang

et al., 2023).

For image segmentation tasks, traditional segmentation methods

suffer from poor robustness, low efficiency, and low accuracy. With

the development of deep learning techniques, image segmentation

can be achieved without relying on manually designed features, as

neural networks can automatically learn the features required for

segmentation tasks. Therefore, methods based on deep learning have

become the primary choice for researchers in various image

segmentation tasks (Suk et al., 2023). However, existing deep

learning-based image segmentation algorithms have significant

limitations when it comes to organ segmentation tasks in coconut

CT images, failing to meet the high-precision segmentation

requirements in agriculture. In response to these issues, this paper

proposes corresponding improvement methods and validates the

effectiveness and superiority of the proposed methods through

ablation experiments and comparative experiments. The model

proposed in this paper can obtain higher-precision semantic

information when facing coconut CT images, facilitating a more

detailed analysis and evaluation of coconut development and growth.

Our work has made the following main contributions:
Fron
1. We conducted non-destructive observations of coconuts at

different stages and with different characteristics through

CT scanning. We obtained internal images of coconuts at

multiple time periods and multiple categories. Based on the

growth conditions of coconuts, we classified and labeled the

internal organs of coconuts, establishing a CT-based

coconut organ image dataset named “CIDCO.” These

data were used for training and testing the network

model we constructed and also provided image resources

for coconut research.

2. To achieve precise segmentation of the internal structure of

coconuts, we proposed an improved image segmentation

method based on the modified Deeplab V3+ network.
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Through model comparison, we demonstrated that the

improved network achieves higher segmentation accuracy

and can be effectively applied to coconut image

segmentation and growth development research.
The structure of this paper is as follows: In Section 2, we introduce

and analyze relevant research on non-destructive observations and

image segmentation for agricultural applications. In Section 3, we

summarize the research methods used in this work. Section 4 presents

the experiments we designed and compares the results with other

models. In Section 5, we provide a summary of the entire work and

discuss future directions and ideas.
2 Related work

The use of non-destructive methods to acquire images of target

objects has been receiving increasing attention and gradually being

applied in various research fields. CT, ultrasound, infrared laser,

nuclear magnetic resonance, and other methods have been used for

image scanning. For example, Yu et al. (2022) employed electron

microscopy CT for non-destructive observation of coconut variations,

aiming to explore growth and development. Li et al. (2020) conducted

terahertz imaging to observe changes in leaf water content in their

research on crop water status monitoring and diagnosis. These studies

demonstrate the feasibility of obtaining images of target objects

through non-destructive means. Regarding image segmentation,

traditional methods include threshold determination, region-based

similarity aggregation, edge operator calculations, and energy-

minimizing active contour-based approaches to accomplish various

segmentation tasks. For instance, Thorp and Dierig (2011) presented a

color image segmentation method to monitor the flowering status of

Lesquerella. This method converts the RGB color space to the HSI

color space and utilizes histogram equalization to enhance image

contrast. Then, threshold segmentation is used to separate the flower

parts from the background, and morphological operations and region-

growing algorithms are employed to remove noise and connect

discontinuous flower parts. Finally, the number of flowers is counted

based on the segmentation results, achieving automatic monitoring of

Lesquerella flowering. Xiang (2018) introduced an image segmentation

method for nighttime identification of the entire tomato plant. This

method first converts the image to the HSV color space and then

separates the plant from the background using threshold segmentation.

However, these traditional methods perform reasonably well when

dealing with images with simple linear features. But once other factors

increase, they can greatly affect the segmentation results. With the rise

of deep neural networks, various neural network methods have been

quickly applied to various image segmentation tasks. Deep learning-

based methods fundamentally transform semantic segmentation into

an image per-pixel classification problem. Van De Looverbosch et al.

(2021) proposed a non-destructive internal defect detectionmethod for

pears using deep learning techniques. X-ray CT scanning is employed

to acquire images, and semantic segmentation techniques are used for

internal defect detection and recognition. Ni et al. (2020) utilized deep

learning techniques to segment and extract features from blueberry

fruit images in order to better predict the harvest period and yield of
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blueberry fruits. This research provides a new method for accurately

predicting fruit harvest and yield. Sun et al. (2021) employed semantic

segmentation networks and shape-constrained level set methods to

detect and segment images of apple, peach, and pear flowers. The

research results demonstrate that this approach can more accurately

detect and segment the contours of flowers. Turgut et al. (2022)

proposed a deep learning architecture called RoseSegNet for plant

organ segmentation. This model, based on attention mechanisms, can

identify different organs of a rose, including petals, stamens, and leaves,

providing a new tool for botanical research. Singh et al. (2022)

proposed a method for semantic segmentation of cotton structures

from aerial images using deep convolutional neural networks. This

research achieved automatic identification and segmentation of cotton

bolls from the sky using deep convolutional neural networks. This

method can improve cotton harvesting efficiency, reduce costs, and

provide new technological support for modern agriculture. The

introduction of deep learning networks has brought faster and more

accurate solutions to image segmentation tasks. However, due to the

unique characteristics of coconuts, there is still limited research on the

application of high-precision semantic segmentation models in

coconut CT images. Therefore, our focus is on addressing this issue.
3 Method

3.1 Coconut data collection and scanning

Considering the suitable average temperature for coconuts to be

maintained between 24 to 27°C, with ample precipitation and an annual
Frontiers in Plant Science 03
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sunlight guarantee of more than 2000 hours, and in order to obtain

richer raw material resources in large-scale cultivation areas, after careful

consideration, the experimental fields of Wenchang Coconut Research

Institute and the coconut plantation in Leiming Town, Ding’an County

were selected as the collection sites. The experimental fields adopted a

triangular planting pattern to achieve higher yields per unit area, mainly

consisting of green coconuts, red coconuts, and yellow coconuts,

covering an age range of 3 to 12 months. The coconut trees in the

plantation are approximately 20 years old, with a height of 10meters and

30 leaves. The majority of coconuts produced are green coconuts at the

stage of 7 to 12 months. Refer to Figure 1 for illustration.

In the aforementioned field conditions, a total of 104 coconuts

were collected, categorized into different groups based on color,

type, and age. The coconuts were numbered according to their

growth months in sequential order. Using the anatomical scanning

of the human body as the reference position, they were scanned

using a Siemens 256 dual-source CT machine. X-rays were used to

obtain cross-sectional images in three directions: axial, coronal, and

sagittal. This process resulted in complete multi-angle sliced images

of each coconut. Considering that a single image may contain more

than one complete target coconut, additional coconuts with varying

representations were also included in the CT scan images. The

number of images obtained from each coconut scan ranged from

170 to 220, with approximately one-fourth of the images capturing

the complete structural information. An example of the coconut

scanning process is shown in Figure 2.

Each image is labeled in the format of “color_month_id” to

facilitate quick and accurate searching. The labeled images are then

stored and organized according to the major coconut varieties, with
FIGURE 1

Coconut collection area situation.
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corresponding annotation folders created. Coconut researchers and

project members were involved in the annotation process. The four

main organs of the coconut that are most relevant to its development

and growth are the absorber, solid endosperm (coconut meat), liquid

endosperm (coconut water), and embryo. These four organs were

annotated, with the background represented in black by default. The

absorber was annotated in yellow, the solid endosperm in red, and the

liquid endosperm in blue. Coconut CT images can be seen in Figure 3,

and the corresponding annotation results are shown in Figure 4.
3.2 Design of segmentation model

Given the limitations of the original Deeplab V3+ network, such

as insufficient utilization of inter-level feature information leading

to unclear segmentation boundaries and lack of detailed feature

map information, resulting in poor final results, we propose a new

semantic segmentation model for coconut CT images. The

improved model builds upon the advantages of the original

framework’s encoder-decoder architecture and enhances the

feature recognition and capture capabilities through module

replacement and addition.
Frontiers in Plant Science 04
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After the input of the task image, the Deeplab V3+model first uses

a deep convolutional network (DCNN) to extract features from the

input image, dividing them into two categories: high-level semantic

features and low-level semantic features. Some of the low-level features

directly enter the decoder, while other information enters the encoder

stage. At this point, the Atrous Spatial Pyramid Pooling (ASPP)

module is introduced to capture coconut organ features and requires

a sufficiently large receptive field. However, increasing the dilation rate

leads to sparser pixel sampling compared to traditional convolution,

resulting in more loss of detail information. As a result, the original

ASPP module experiences attenuation in the effectiveness of dilated

convolutions, and the effectiveness of atrous convolutions gradually

decreases, ultimately affecting the model’s capabilities.

Furthermore, the original network employs a 4x upsampling in

the decoder stage. For coconut organs, large-scale upsampling

adversely affects edge segmentation. Moreover, the fusion with only

low-level features from the base network may result in the loss of

some information, thus affecting the final segmentation accuracy.

To address these issues, the Dense Atrous Spatial Pyramid

module is used to replace the original ASPP module. The input-

output dense connections are established between each atrous

convolution layer, allowing for the coverage of multi-scale range
FIGURE 2

Example of coconut scan.
FIGURE 3

Example of CT image of coconut.
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feature information using appropriate dilation rates. Additionally, a

convolutional attention module is introduced to enhance effective

feature information, suppress irrelevant information responses, and

improve feature extraction and representation capabilities. Finally, a

residual refinement module is embedded after the decoder to map

the significant information transmitted from the upper layers,

optimizing organ boundaries and improving segmentation

accuracy. The improved model is illustrated in Figure 5.
3.3 Principle of the improvement module

3.3.1 DASPP module
DASPP stands for “Dense Atrous Spatial Pyramid Pooling.” In

the structure of the DASPP module, atrous convolutions are

combined into a cascaded fusion operation. The dilation rate
Frontiers in Plant Science 05
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increases layer by layer, with layers having lower dilation

rates placed in the lower-level parts and layers with higher

dilation rates placed in the higher-level parts. The subsequent

layers share information with the preceding layers, using their

features for information sharing. This dense connectivity allows

for more intensive pixel utilization. Each atrous layer concatenates

the input with the output of the previous lower-level layer as its

input, ultimately producing a feature map generated by multi-scale

atrous convolutions.

Compared to traditional ASPP, DASPP utilizes dense

connections to establish interconnections between layers with

different dilation rates. Each set can be considered as a

convolutional kernel of a different scale, representing different

receptive fields. This change brings about a denser feature

pyramid and a larger receptive field, allowing for better

recognition and integration of semantic features of target organs
FIGURE 4

Example of the corresponding labeled diagram.
FIGURE 5

Diagram of the improved model structure.
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of various scales. The structure of the module is illustrated

in Figure 6.

3.3.2 CBAM attention mechanism
CBAM is a lightweight and versatile module for feed-forward

convolutional neural networks. It concentrates attention resources

more on the key target areas in coconut image, allocating different

weights to information and background. It enhances the network’s

expressive power without significantly affecting its efficiency and

facilitates information propagation. CBAM consists of two main

parts: Channel Attention Module and Spatial Attention Module.

The input features pass through the Channel Attention Module and

the Spatial Attention Module sequentially, resulting in

recalibrated features.

In the Channel Attention Module, both average pooling and

max pooling are applied to the features. The pooled features are

then fed into a shared multi-layer perceptron with shared weights.

The output of the MLP is multiplied element-wise with the original

feature map after a sigmoid operation. In the Spatial Attention

Module, the feature map outputted by the Channel Attention

Module serves as the input. Two pooling operations are

performed along the channel dimension, resulting in feature maps

of size h * w * 1 each time. The feature maps from the two poolings

are then concatenated along the channel dimension, resulting in a

feature map of size h * w * 2. This feature map undergoes a

convolution operation with a kernel size of 7 * 7 and a convolutional

kernel count of 1 (channel compression). The result is then passed

through a sigmoid function and finally subjected to matrix

multiplication. The working principle of the entire CBAM

module is illustrated in Figure 7.

3.3.3 RRM module
The Residual Refinement Module (RRM) is a commonly used

module in deep neural networks that incorporates the idea of an

excellent encoder-decoder architecture (Qin et al., 2019). Its main

purpose is to refine the details in the optimized results that deviate

from the ground truth by learning to integrate features from both
Frontiers in Plant Science 06
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high and low layers. The RRM consists of four stages each for the

encoder and decoder. Each stage involves a convolution operation

to extract image features. Each layer has a set of 64 3×3

convolutional filters to capture specific feature information. Batch

normalization and ReLU activation functions are applied after each

convolution. The bridge connection layer follows the

same structure.

Upon receiving the fused feature map from the original

network’s decoder, the encoder utilizes non-overlapping max

pooling for downsampling to preserve global texture information.

The decoder employs up-sampling with bilinear interpolation to

restore the fine features to the original size. Finally, the module

outputs the result of the saliency feature map. This design enables

the continuous capture of detailed information at different scales

and enhances the completeness of boundary semantic features. The

structure of RRM is depicted in Figure 8.
3.4 CT image segmentation method based
on improved Deeplab V3+ network

After making improvements to the network model, and based

on the established dataset, the two main components are integrated

into the entire segmentation method. The logical flow of the process

is designed as shown in Figure 9. The diamond boxes represent the

results obtained before and after algorithm training and testing,

while the rectangular boxes represent the operations during the

training and testing process.

A self-built dataset of coconut CT images is used, including the

original images and the corresponding ground truth segmentation

images. The types and quantities of images can be selected and

divided into training and testing sets as needed. For network model

training, the original coconut CT images are used as inputs to

the entire model, with the ground truth segmentation images as the

supervision. The training process is end-to-end. After training,

the improved Deeplab V3+ model for coconut CT image

segmentation is obtained.
FIGURE 6

Diagram of DASPP module.
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FIGURE 8

Structure diagram of RRM module.
FIGURE 7

The structure of CBAM attention mechanism.
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Then, in the segmentation stage, a given original coconut CT

image from the testing set is used. With the trained improved

segmentation model, specific target organs can be segmented from

the image. If it is necessary to view a specific organ separately, the

pixel color values can be traversed to detect and extract the target

region. Since the CT scanner has a fixed scale set when generating

slice images, the values obtained from the semantic image can be

transformed according to the scale to obtain actual quantified data

of the target organ. Subsequently, segmentation experiments and

validations will be conducted using this method.
4 Experiment

4.1 Experimental environment

The CT images were captured using a dual-source CT scanner

(Somatom Definition Flash, Siemens, Germany). Each time, the

coconut was placed uniformly with the top facing upwards and the

bottom placed on a fixed mold. They were sequenced according to

the month of growth, and positions were marked with a marker on

both the fixed mold and the coconut to ensure data uniformity and

completeness throughout long-term scanning. The CT scan

parameters were as follows: slice thickness/increment = 0.6mm/

75%, tube voltage 120kV, tube current 250mAs, field of view (FOV)

400mm×400mm, gantry rotation speed 0.5s/rotation.

Model training was conducted on a Dell workstation with the

Ubantu 20.04 operating system. It includes 24G of video memory,

an RTX3090 graphics card, an Inter i7 CPU, and was developed on

the Pycharm platform. The version of Pytorch used was torch1.10,

with cuda version 11.4. The model was trained using our own

constructed Coconut CT Imaging Dataset (CIDCO).Since the

previously established coconut CT dataset was categorized and

stored in separate folders according to coconut variety and

growth stage, to ensure comprehensive training data, images were

randomly selected from each category. Five categories were chosen

for semantic segmentation: absorber, solid endosperm, liquid

endosperm, embryo, and background. Due to the large differences
Frontiers in Plant Science 08
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in the internal organs of coconuts at different developmental stages,

some organ categories were missing.Taking into account the

prevention of an excessive number of images with the same stage

and same features, in order to maintain a relatively balanced

number of categories in the experimental dataset, the number of

pictures containing various organs was adjusted flexibly. In the end,

a total of 1470 images were confirmed as experimental data and

were divided into a training set and a test set at a ratio of 8:2.
4.2 Training parameters and
evaluation metrics

The improved semantic segmentation algorithm adopts a fully

supervised learning approach during training. All methods are

conducted on the same hardware. The hardware environment for

this experiment consists of a workstation based on a 64-bit Ubuntu

20.04 operating system, Intel i7-1050H CPU, 16GB of RAM, 24G of

video memory, and an NVIDIA GeForce GTX3090 graphics card.

The software environment includes the Pytorch 1.1.0 framework,

CUDA version 11.4, Python 3.6, and the Pycharm development

platform. The input images are uniformly adjusted to a size of

256×256 pixels. The hyperparameters for the training of the

coconut CT image segmentation model are as follows: The Adam

optimizer is used with a learning rate of 0.0001, a training batch size

of 4, momentum set to 9, a weight in the loss function of 0.7, and the

loss function being a combination of Dice loss and focal loss. The

total number of training epochs is set to 150.

To validate the effectiveness and robustness of the improved

network model, we use IoU (Intersection over Union) and PA (Pixel

Accuracy) to measure the segmentation results of individual organs.

mIoU (mean Intersection over Union), mPA (mean Pixel

Accuracy), and F1_score are used to evaluate the model’s overall

semantic segmentation capability for coconut CT images. These are

commonly used evaluation metrics in semantic segmentation

tasks.IoU refers to the ratio of the intersection and union of the

model’s prediction results and actual values for a single category of a

coconut organ. PA refers to the proportion of correctly predicted
FIGURE 9

Flow chart of CT image segmentation based on improved Deeplab V3+ network.
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pixels in a single organ category to the total number of pixels. mIoU

represents the average of the ratios of intersections and unions of

prediction results and actual values for each category of coconut

organs. mPA is calculated by first computing the PA for each organ

class of the coconut, and then taking the average of the PAs for all

classes.F1_Score represents a comprehensive score for the

correctness of the final results. Thus, the larger the value of these

indicators, the better the segmentation effect of the model. Their

calculation formulas are as per Equations 1–7, where TP represents

the number of correct detections, FP is the number of false

detections, FN is the number of undetected quantities, k

represents the number of categories, pii indicates the number of

correctly classified pixels; pij is the number of pixels of class i

predicted as class j, Precision(i) represents the precision of class i,

Recall(i) represents the recall rate of class i, and ri represents the

proportion of the number of samples of class i in the total samples.

 Precision  =
TP

TP + FP
(Eq: 1)

Recall = Sensitivity = TPR =
TP

TP + FN
(Eq: 2)

F1−S core =
2∗ Precision  ∗  Recall
Precision  +  Recall

(Eq: 3)

PA =
o
k

i=0
pii

o
k

i=0
o
k

j=0
pij

(Eq: 4)

mPA =
1

k + 1o
k

i=0

pii
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j=0pij

(Eq: 5)

IoU =
o
k

i=0
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o
k

i=0
o
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 ! (Eq: 6)

mIoU =
1

k + 1o
k

i=0

pii

ok
j=0pij +ok

j=0pji − pii
(Eq: 7)
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4.3 Ablation study and model comparison

4.3.1 Module ablation study
To verify the effectiveness of our proposed improvements, we

designed an ablation study in which we run the model on the same

dataset, subtracting one of the three modules from the improved

model. ‘All’ represents the complete modules that we have added.

The training process uses the same parameter configuration, and

the final results are shown in Table 1.

According to the data in the table, the network structure

improved by the three modules shows the best overall

performance. When focusing on individual organs, the improved

new network has a higher pixel accuracy than the other comparative

modules. When faced with complete organ images showing

different features, the model’s mIoU, mPA, and F1_Score all

outperform structures missing a module. For the task of semantic

segmentation of coconut organs, focusing on the entire target area’s

features and supplementing with local boundary information is the

optimal solution. Thus, it is confirmed that this point of

improvement can significantly enhance the robustness and

accuracy of the segmentation method.

4.3.2 Comparison of segmentation results from
different models

In the same dataset, we compare our proposed model with

commonly used segmentation models to verify our model’s

excellent segmentation capability. We selected five models,

namely Basnet, Unet, Transfuse, MANet, and Deeplab v3+, using

IoU, PA, mIoU, mPA, and F1_Score as evaluation metrics. We

compare and analyze the results from both qualitative and

quantitative perspectives, as shown in Figure 10 and Table 2.

From Table 2, it is clear that the improved model performs better

than the majority of models in terms of Intersection over Union (IoU)

and Pixel Accuracy (PA) when facing segmentation of individual organ

classes. This is especially apparent for liquid endosperm and embryos.

Other models are only comparable to the improved model in one or

two data points. For the semantic segmentation of the entire image, the

improved model has a clear advantage in terms of mean Intersection

over Union (mIoU), mean Pixel Accuracy (mPA), and F1_Score. These

three metrics show that the values have improved compared to the

comparison models, proving the effectiveness of the improvement

method proposed in this chapter. Apart from quantitative results,
TABLE 1 Module ablation data table.

Keep the module Background Solid
Endosperm

Embryo Haustorium Liquid
Endosperm

mIoU mPA F1_Score

IoU PA IoU PA IoU PA IoU PA IoU PA

DASPP+CBAM 0.99 0.99 0.82 0.92 0.74 0.85 0.84 0.88 0.71 0.93 82.46 91.86 90.09

RRM+CBAM 0.99 0.99 0.82 0.92 0.75 0.85 0.85 0.90 0.72 0.91 82.99 92.02 90.43

DASPP+RRM 0.99 0.99 0.82 0.92 0.67 0.72 0.85 0.90 0.62 0.94 79.43 89.98 87.93

ALL(D+C+R) 0.99 0.99 0.82 0.93 0.75 0.85 0.84 0.89 0.72 0.92 83.10 92.05 90.50
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Figure 10 shows the segmentation effects of each model at the image

level, demonstrating that the improved model still has a higher

accuracy in segmentation at a qualitative level.
4.4 Organ extraction

Considering that in actual scenarios, it may be necessary to

extract a particular organ for analysis, we set up an organ extraction

and data quantification section. After inputting the images to be
Frontiers in Plant Science 10
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operated on into the model, we obtain the semantic images of

coconuts. We then create a corresponding number of blank images

of the same size, traverse all pixels in the semantic image, and follow

the principle of point-to-point correspondence in the target organ

based on the RGB value in the semantic image to make the

corresponding points in the blank image the same value. This

way, we can obtain the image of the target organ alone. In terms

of determining the growth and development quality of the coconut,

quantitative data of the organs is one of the reference pieces of

information, in addition to making judgements in the form of two-
FIGURE 10

Semantic segmentation effect of different models.
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dimensional images. Whether it’s the complete semantic image of

the coconut or a particular organ that has been extracted, data can

still be obtained through the RGB value of the pixel points. For

example, the height of the embryo can be determined because, in

the semantic image, the embryo is characterized by the color green.

One can start from the top of the image and gradually traverse

downwards in the form of a horizontal line. When the RGB value of

a pixel point becomes (0, 255, 0), it is marked as point A. Then,

using the same method, traverse from the bottom of the image

upwards, and when you encounter a pixel point with the same

value, mark it as point B. The distance between points A and B is the

height of the embryo. When dealing with an embryo with a

significant curvature, it can be rotated to be relatively parallel to

the y-axis, and then the point traversal method can be used.

Figure 11 shows an example of the extracted image results.
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5 Conclusion and prospects

This chapter starts from the perspective of the black box

phenomenon present in the development process of the coconut

fruit. We used CT non-destructive observation to acquire images of

coconuts at various stages and of various varieties, thus establishing a

CT image dataset for coconuts. This work fills the gap in image

resources for coconuts. On this basis, we addressed the issue of

traditional semantic segmentation models not performing well on

coconut CT images. We replaced the original Atrous Spatial Pyramid

Pooling (ASPP) block with a Dense Atrous Spatial Pyramid Pooling

(DASPP) module, resolving information loss due to sparse sampling.

Then, we added the Convolutional Block Attention Module (CBAM)

to the network, enabling it to better capture the features of coconut

organs and reduce the interference of irrelevant redundant

information. Finally, a residual refinement module was embedded

after the decoder to enhance the boundary information between

closely connected organs. This allows the network to acquire richer

global feature information and optimize boundary details, thereby

improving the semantic segmentation accuracy of coconut CT

images. During the model training process, we used multi-state

feature coconut images to improve the model’s robustness. Finally,

detailed model comparisons and ablation experiments were carried

out. The results of the evaluation indicators and the semantic

segmentation effect images both quantitatively and qualitatively

demonstrate the improved model’s high-precision segmentation

ability on coconut CT images. Furthermore, individual organ

morphology and quantitative data can be obtained from the

semantic segmentation images to increase reference information

during the development process of the coconut. This is beneficial

in assisting decision-makers to make scientific judgments on the

development status and growth stage of the coconut.

In our future research work, we will analyze the high-precision

organ morphology and quantitative data obtained from the

segmentation model to further mine the laws of coconut growth

and development. At the same time, we will incorporate image

morphology changes to construct a visualized standard

development process for the coconut, thereby making more

precise predictions of coconut intelligent development.

Furthermore, we aim to deploy our model on mobile devices to

provide more reference information and decision support for
TABLE 2 Model comparison table.

Network model Background Solid
Endosperm

Embryo Haustorium Liquid
Endosperm

mIoU mPA F1_Score

IoU PA IoU PA IoU PA IoU PA IoU PA

Basnet 0.99 0.99 0.84 0.93 0.39 0.41 0.84 0.89 0.48 0.93 71.30 83.69 81.00

Unet 0.99 0.99 0.82 0.91 0.46 0.50 0.85 0.89 0.51 0.91 72.80 84.57 82.55

Tranfuse 0.99 0.99 0.83 0.92 0.46 0.54 0.84 0.89 0.55 0.88 73.94 84.92 83.49

MANet 0.99 0.99 0.83 0.92 0.65 0.76 0.85 0.90 0.74 0.94 81.75 90.82 89.54

Deeplab v3+ 0.99 0.99 0.79 0.92 0.65 0.70 0.84 0.90 0.64 0.88 78.47 88.34 87.36

Improved model 0.99 0.99 0.82 0.93 0.75 0.85 0.84 0.89 0.72 0.92 83.10 92.05 90.50
FIGURE 11

Example of single class organ extraction.
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optimizing coconut breeding. This will aid coconut cultivators in

better managing their cultivation practices, with the goal of

achieving and continuously surpassing targets for high yield and

high-quality coconuts.
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