& frontiers | Research Topics

Artificial intelligence -of-
things (AloT) in
precision agriculture

Edited by
Yagoob Majeed, Longsheng Fu and Long He

Published in
Frontiers in Plant Science



https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/research-topics/46706/artificial-intelligence-of-things-aiot-in-precision-agriculture
https://www.frontiersin.org/research-topics/46706/artificial-intelligence-of-things-aiot-in-precision-agriculture
https://www.frontiersin.org/research-topics/46706/artificial-intelligence-of-things-aiot-in-precision-agriculture

& frontiers | Research Topics

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject

to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers.

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version.

When exercising any right under

the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements

in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers’ Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-8325-4431-0
DOI 10.3389/978-2-8325-4431-0

Frontiers in

February 2024

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is
a pioneering approach to the world of academia, radically improving the way
scholarly research is managed. The grand vision of Frontiers is a world where
all people have an equal opportunity to seek, share and generate knowledge.
Frontiers provides immediate and permanent online open access to all its
publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-
access, online journals, promising a paradigm shift from the current review,
selection and dissemination processes in academic publishing. All Frontiers
journals are driven by researchers for researchers; therefore, they constitute
a service to the scholarly community. At the same time, the Frontiers journal
series operates on a revolutionary invention, the tiered publishing system,
initially addressing specific communities of scholars, and gradually climbing
up to broader public understanding, thus serving the interests of the lay
society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely
collaborative interactions between authors and review editors, who include
some of the world's best academicians. Research must be certified by peers
before entering a stream of knowledge that may eventually reach the public
- and shape society; therefore, Frontiers only applies the most rigorous

and unbiased reviews. Frontiers revolutionizes research publishing by freely
delivering the most outstanding research, evaluated with no bias from both
the academic and social point of view. By applying the most advanced
information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers
Jjournals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from
Original Research to Review Articles, Frontiers Research Topics unify the
most influential researchers, the latest key findings and historical advances
in a hot research area.

Find out more on how to host your own Frontiers Research Topic or
contribute to one as an author by contacting the Frontiers editorial office:


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

& frontiers | Research Topics February 2024

Artificial intelligence-of-things
(AloT) in precision agriculture

Topic editors

Yagoob Majeed — University of Agriculture, Faisalabad, Pakistan
Longsheng Fu — Northwest A&F University, China

Long He — The Pennsylvania State University (PSU), United States

Citation

Majeed, Y., Fu, L., He, L., eds. (2024). Artificial intelligence-of-things
(AloT) in precision agriculture. Lausanne: Frontiers Media SA.

doi: 10.3389/978-2-8325-4431-0

Frontiers in 2


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-4431-0

& frontiers | Research Topics

Table of

Frontiers in

05

08

29

47

61

73

87

104

126

151

166

February 2024

Editorial: Artificial intelligence-of-things (AloT) in precision
agriculture
Yagoob Majeed, Longsheng Fu and Long He

Al-based object detection latest trends in remote sensing,
multimedia and agriculture applications

Sagib Ali Nawaz, Jingbing Li, Uzair Aslam Bhatti,
Muhammad Usman Shoukat and Raza Muhammad Ahmad

YOLO-P: An efficient method for pear fast detection in
complex orchard picking environment
Han Sun, Bingging Wang and Jinlin Xue

Tree-level almond yield estimation from high resolution
aerial imagery with convolutional neural network
Minmeng Tang, Dennis Lee Sadowski, Chen Peng,

Stavros G. Vougioukas, Brandon Klever, Sat Darshan S. Khalsa,
Patrick H. Brown and Yufang Jin

Crop pest image classification based on improved densely
connected convolutional network

Hongxing Peng, Huiming Xu, Zongmei Gao, Zhiyan Zhou,
Xingguo Tian, Qianting Deng, Huijun He and Chunlong Xian

Mobile robotics platform for strawberry temporal—-spatial
yield monitoring within precision indoor farming systems

Guogiang Ren, Hangyu Wu, Anbo Bao, Tao Lin, Kuan-Chong Ting
and Yibin Ying

Machinery for potato harvesting: a state-of-the-art review
Ciaran Miceal Johnson and Fernando Auat Cheein

Unstructured road extraction and roadside fruit recognition
in grape orchards based on a synchronous detection
algorithm

Xinzhao Zhou, Xiangjun Zou, Wei Tang, Zhiwei Yan, Hewei Meng and
Xiwen Luo

Machine learning assisted remote forestry health
assessment: a comprehensive state of the art review

Juan Sebastian Estrada, Andrés Fuentes, Pedro Reszka and
Fernando Auat Cheein

Deep reinforcement learning enables adaptive-image
augmentation for automated optical inspection of plant rust
Shiyong Wang, Asad Khan, Ying Lin, Zhuo Jiang, Hao Tang,

Suliman Yousef Alomar, Muhammad Sanaullah and Uzair Aslam Bhatti

Extraction of soybean plant trait parameters based on
SfM-MVS algorithm combined with GRNN

Wei He, Zhihao Ye, Mingshuang Li, Yulu Yan, Wei Lu and
Guangnan Xing


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

& frontiers | Research Topics February 2024

182  Development of effective model for non-destructive
detection of defective kiwifruit based on graded lines

Feiyun Wang, Chengxu Lv, Lizhong Dong, Xilong Li, Pengfei Guo and
Bo Zhao

193  Animproved Deeplab V3+ network based coconut CT image
segmentation method
Qianfan Liu, Yu Zhang, Jing Chen, Chengxu Sun, Mengxing Huang,
Mingwei Che, Chun Li and Shenghuang Lin

Frontiers in 4


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY
Roger Deal,
Emory University, United States

*CORRESPONDENCE

Yagoob Majeed
yaqoob.majeed@uaf.edu.pk
yagoob.majeed@tamu.edu

RECEIVED 12 January 2024
ACCEPTED 22 January 2024
PUBLISHED 26 January 2024

CITATION

Majeed Y, Fu L and He L (2024) Editorial:
Artificial intelligence-of-things (AloT) in
precision agriculture.

Front. Plant Sci. 15:1369791.

doi: 10.3389/fpls.2024.1369791

COPYRIGHT

© 2024 Majeed, Fu and He. This is an open-
access article distributed under the terms of

the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)
are credited and that the original publication

in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science

TvpPE Editorial
PUBLISHED 26 January 2024
p0110.3389/fpls.2024.1369791

Editorial: Artificial intelligence-
of-things (AloT) in
precision agriculture

Yagoob Majeed™**, Longsheng Fu® and Long He*

tDepartment of Food Engineering, University of Agriculture Faisalabad, Faisalabad, Punjab, Pakistan,
?Texas AGM Agrilife Research, Texas AGM University System, Dallas, TX, United States, College of
Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China,
“Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park,
PA, United States

KEYWORDS

precision agriculture, internet-of-things (loT), artificial intelligence, deep learning,
digital agriculture, machine vision

Editorial on the Research Topic
Artificial intelligence-of-things (AloT) in precision agriculture

Precision agriculture is becoming critically important for sustainable food production to
meet the growing food demand. In recent decades, technical advances in Al (artificial
intelligence) and IoT (internet-of-things) can help solve various agricultural field problems
and optimize resource utilization (e.g. water, pesticide, fertilizer, seed, energy), improve
production management and productivity, and reduce labor dependency. Al and IoT-
enabled applications are increasingly implemented for precision agriculture applications such
as crop growth monitoring, weed removal control, pest and disease detection, planting, crop
yield estimation, targeted spraying and pollination, smart irrigation and nutrient management,
field analysis, and plant phenotyping. For example, IoT-based applications using machine
learning and deep learning models are widely used to recognize fruits, vegetables, weeds, pests,
and diseases, and measure soil quality and nutrients. Such information helps inform better crop
management practices. Despite the progress of Al and IoT technologies in precision agriculture,
the combined use of these technologies in the form of AIoT are still in early stages with
numerous challenges in the form of data acquisition and connectivity, and optimization of Al
algorithms based on edge computing processing capabilities that still need to be addressed.

This Research Topic focuses on the recent advancement in the area of Al and IoT
applications on precision agricultural technologies for both field and specialty crops. This
Research Topic attracted nine research articles and three review articles. These articles
reveal the research advancements and trends of applied machine learning and deep
learning techniques for various precision agriculture applications.

Robotic harvesting plays an important role in addressing the labor shortage problems for
manual labor-intensive and time-sensitive harvesting operations. For example, Sun et al.
propose the YOLO-P to detect the pears for robotic harvesting in natural orchard
environment. They propose the shuffle block integrated with convolutional block attention
module (CBAM) as the backbone of YOLOV5 network. A total of 5,257 images consisting of
various backgrounds and illumination conditions were used to train and test the proposed
approach. Different ablation experiments were performed to check the robustness and
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generalization and obtained the 0.961 F1-score with 32 FPS (frames per
second). To facilitate autonomous driving of robot and roadside fruit
harvesting, Zhou et al. proposed the framework for synchronous road
extraction and roadside fruit recognition. Gray factor optimization
approach was adopted to extract the unstructured roads from images
while YOLOv7 was employed to detect the wine grapes. The proposed
synchronous approach helped to increase fruit detection by 23.84%.

In another study, Tang et al. estimated the tree-level almond yield
using aerially captured multispectral images and convolutional neural
networks. They used approximately 2000 almond trees for the yield
monitoring. Multispectral aerial images were collected at a height of
6,000 ft with 0.3 m spatial resolution. Then, convolutional neural
network (CNN) with spatial attention module was proposed to
estimate the yield estimation at tree-level. Their proposed approach
achieved the R? and RMSE (root mean square value) of 0.96 and 6.6%,
respectively. Similarly, Ren et al. introduce the mobile robotic platform
for indoor farming to monitor strawberry yield. They first developed
the autonomous mobile robot platform (AMR) that uses the AprilTag
and inertial navigation to autonomously navigate the structural
environment of indoor farms. Then, they used the multilayer
perception robot (MPR), mounted on ARM, to collect the temporal-
spatial data of the strawberry plants within the strawberry indoor farm.
Their MPR achieved the positioning accuracy of 13.0 mm while
navigating the plant factory with 6.26% error rate in yield
monitoring performance.

Precision pest management is another area in precision agriculture
which involves accurate pest detection and identification for the precise
pesticide applications. For example, Peng et al. employed an ensemble
learning technique to fuse the selective kernel unit, representative batch
normalization module, and ACON activation with the Dense-Net-121
networks, naming it MADN, to detect and identify the crop pests.
Their proposed approach helped to achieve Fl-score of 0.7528 in
identifying the pests.

To optimize coconut breeding, Liu et al. introduced a non-
destructive approach to segment the internal organs of coconuts
using Computed Tomography (CT) scanning and semantic
segmentation. They scanned the coconut during different stages
using the CT scan and constructed the CIDCO dataset. Then
DeepLabv3+ based semantic segmentation was employed by
introducing dense atrous spatial pyramid pooling and CBAM
modules. Their improved model helped to achieve Fl-score of
0.905 to segment the internal organs of coconuts. Similarly, non-
destructive and automatic detection of defective kiwifruit is
critically important to maintain the postharvest quality of
kiwifruits and for consumer acceptability. To address this issue,
Wang et al. focused on detecting the defective kiwifruits for grading
lines by employing YOLOV5. They constructed a multiple-defect
kiwifruit dataset consisting of healthy, leaf-rubbing, damaged,
healed cuts or scarred, and sun-burn kiwifruits. Then, spatial-
depth and depth-wise separable convolutional modules were
combined with YOLOVS5 to improve the detection performance of
the defective kiwifruits. Their approach helped to achieve an
average detection accuracy of 97.7% with 8.0 ms detection time.

It has been always a challenge for dataset availability and its
manual labeling to train AI based algorithms to solve the specific
precision agriculture application. To address this problem, Wang
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et al. introduce a deep reinforcement learning based augmentation
framework for the leaf rust images. Their proposed approach
consists of Deep Q-Learning (DQN) for selecting optimal
augmentation approach based on individual image, extracting
geometric and pixel indicators, and DeepLabv3+ to authenticate
augmented image and feedback the rewards. Experimental results
showed that the proposed approach helped to achieve Intersection-
over-Union (IoU) of 0.8426 in correctly classifying leaf rust spots
compared to the union of expected and predicted rust spots.

Measurement of plant phenotypic traits is critical in selecting the
high-yield crop varieties and timely identifying the need in actions for
optimal plant growth. To measure the soybean plant phenotyping
traits, He et al. proposed a generalized regression neural network based
approach. First, SEM (structure from motion) algorithm was used to
reconstruct the soybean plants. Then, different filtering (lowpass filter
and gaussian filter) and Laplacian smoothing methods were used to
segment different parts of soybeans (e.g. plants, stem, and leaves).
Ultimately, a generalized regression neural network was employed to
measure the phenotypic traits of the soybeans. Results indicated that
their proposed approach helped to achieve R* of 0.9775, 0.9785, and
0.9487 for measuring the plant height, lead length, and leaf width,
respectively compared to ground truth measurements.

In addition to the above-mentioned studies, there are further
areas in which Al-assisted technologies could be used for precision
agriculture applications. For example, Nawaz et al. reviewed the
latest trends in applying data processing and deep learning
algorithms for remote sensing data. Furthermore, Estrada et al.
explored and reviewed machine learning applications for remote
forestry health assessment. Similarly, Johnson & Cheein presented a
comprehensive review on the use of mechatronics, AI and IoT
applications for potato harvesting.

With the papers published in this Research Topic ranging from
different precision agriculture applications and covering latest
advancements in the AI application to solve various agricultural
challenges, we hope readers will gain insights into the state-of-the-art
developments in rapidly growing precision and digital agriculture
domain and will provide further opportunities for scientists and
industries to take on the collective challenges faced by this sector.
The papers published in this Research Topic proved the critical role of
Al and IoT applications to address global food security issues and meet
the sustainable agriculture goals in the context of declining and aging
agricultural labor. However, more studies will be needed with
continuous innovations, and collective efforts from scientists and
industries working in the precision and digital agriculture domain.
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Object detection is a vital research direction in machine vision and deep learning.
The object detection technique based on deep understanding has achieved
tremendous progress in feature extraction, image representation, classification,
and recognition in recent years, due to this rapid growth of deep learning theory
and technology. Scholars have proposed a series of methods for the object
detection algorithm as well as improvements in data processing, network
structure, loss function, and so on. In this paper, we introduce the
characteristics of standard datasets and critical parameters of performance index
evaluation, as well as the network structure and implementation methods of two-
stage, single-stage, and other improved algorithms that are compared and
analyzed. The latest improvement ideas of typical object detection algorithms
based on deep learning are discussed and reached, from data enhancement, a
priori box selection, network model construction, prediction box selection, and
loss calculation. Finally, combined with the existing challenges, the future research
direction of typical object detection algorithms is surveyed.

KEYWORDS

deep learning, object detection, transfer learning, algorithm improvement, data
augmentation, network structure

1 Introduction

Computer vision, also known as machine vision, uses an image sensor that
replaces the human eye to obtain an image of an object, converts the image into a
digital image, and uses computer-simulated human discrimination criteria to
understand and recognize the image, to analyze the image, and draw conclusions.
This technology gradually emerged on the basis of the successful application of remote
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sensing image processing and medical image processing
technology in the 1970s and has been applied in many fields.
At present, the application of computer vision technology in
agriculture is increasing day by day. Object detection is widely
used in different areas of agriculture and getting importance
these days in fruits, diseases, and scene classification (Zhang
et al., 2020; Bhatti et al., 2021).

The primary goal of this work is to find all of the objects of
interest in a specified image with high accuracy and efficiency
and to use the rectangular bounding box to determine the spot
and size of the detected object, which is connected to object
classification, semantic segmentation, and instance. In the
process of object detection, due to the different appearance,
posture, shape, and quantity of various target objects in the
image, as well as the interference of multiple factors such as
illumination and occlusion, the target is distorted, and the
difficulty of object detection (Chen and Wang, 2014; Bhatti
et al,, 2019).

Deep learning-based object detection algorithms are
mainly divided into traditional and detection algorithms.
Traditional detection approaches rely on hand-crafted
features and shallow trainable architectures, which are
ineffective when creating complicated object detectors and
scene classifiers that combine many low-level image features
and high-level semantic information. Traditional object
detection algorithms mainly include the deformable parts
model (DPM) (Dollar et al., 2009), selective search (SS)
(Uijlings et al., 2013), Oxford-MKL (Vedaldi et al., 2009),
and NLPR-HOGLBP (Yu et al., 2010), etc. Traditional object
detection algorithm basic structure mainly includes the
following three-part: 1) region selector, first, a sliding
window of different sizes and proportions is set for a given
image, and the entire image is traversed from left to right and
top to bottom to frame a specific part of the image to be
detected as a candidate region; 2) feature extraction, extract
visual features of candidate regions, such as scale-invariant
feature transform (SIFT) (Bingtao et al., 2015), Haar
(Lienhart and Maydt, 2002), histogram of oriented
gradient (HOG) (Shu et al,, 2021) commonly used in face
and standard object detection, and other features to extract
features for each region; 3) classifier classification, use the
trained classifier to identify the target category of the feature,
such as the commonly used deformable part model (DPM),
adaboot (Viola and Jones, 2001), support vector machines
(SVM) (Ashritha et al., 2021) and other classifiers. However,
these three parts achieved certain results while exposing
their inherent flaws, such as using a sliding window for
region selection will result in high time complexity and
window redundancy, the uncertainty of illumination
change and the diversity of background will result in poor
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robustness of the guide design feature technique (Cao et al.,
2020a), poor generalization, and complex algorithm stages
will result in slow detection efficiency and low accuracy (Wu
et al.,, 2021). As a result, classic object detection approaches
have struggled to match people’s demands for high-
performance detection.

However, there are still some complications in applying
an object detection algorithm based on deep learning, such
as too small detection objects, insufficient detection
accuracy, and insufficient data volume. Many scholars have
improved algorithms and also formed a review by
summarizing these improved methods. Tong et al. (2020)
analyzed and outlined the improved techniques from the
aspects of multi-scale features, data enhancement and
context information but ignored the performance
improvement of the feature extraction network for small
object detection; moreover, the data enhancement part only
considers improving the small object detection performance
by increasing the number and type of small targets in the
data set, which lacks diversity. Xu et al. (2021) and Degang
etal. (2021) respectively introduced and analyzed the typical
algorithms of object detection for the detection framework
based on regression and candidate window. However,
because the optimization scheme of the algorithm is not
well classified in the text, they cannot clearly understand
when and how to apply the improvement idea to the
detection algorithm. The mainstream deep learning object
detection algorithms are mainly separated into two-stage
detection algorithms and single-stage detection algorithms,
as shown in Figure 1.

In Figure 1, the two-stage detection algorithm is based on
candidate regions represented by the R-CNN series; the
single-stage detection algorithm is a regression analysis-
based object detection algorithm defined by YOLO and
SSD. This review is based on different object detection
techniques approaches, and the main contribution of this
paper is as follows:

* Firstly, this review organized the standard data sets and
evaluation indicators. The list of datasets and their
evaluation methods are in-depth and highlighted from
different literature from recent years.

» Secondly, this review paper focused on deep learning
approaches for object detection, including two-stage and
single-stage object detection algorithms and generative
adversarial networks.

* The third part of this paper surveyed the deep learning-
based object detection algorithm applications in
multimedia, remote sensing, and agriculture. Finally
draws a conclusion and some future works.
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FIGURE 1

Object detection method based on deep learning (A) Single stage method (B) Two stage method.

2 Common data sets and evaluation
indicators

This section highlights the datasets used for objects in
remote sensing, agriculture, and multimedia applications.

2.1 Common datasets

In the task of object detection, a dataset with strong
applicability can effectively test and assess the performance of
the algorithm and promote the development of research in
related fields. The most widely used datasets for deep learning-
based object detection tasks are PASCAL VOC2007 (Ito et al,
2007), PASCAL VOC2012 (Marris et al., 2012), Microsoft
COCO (Lin et al, 2014), ImageNet (Deng et al., 2009) and
OICOD (Open Image Challenge Object Detection) (Krasin et al.,
2017). Different features and quantities of images in datasets are
listed in Table 1.

2.2 Evaluation indicators

The act of the object detection algorithm is mainly evaluated
by the following parameters: intersection over union (IoU)
(Rahman and Wang, 2016), frame per second (FPS), accuracy
(A), recall (R), precision (P), average precision (AP), and mean
average precision (mAP) (Tong et al., 2020). Where AP consists
of the area enclosed by the P-R curve and the coordinates, and
mAP is the mean of AP (Kang, 2019; Wang, 2021).

Frontiers in Plant Science

10

3 Deep learning approaches for
object detection in multimedia

3.1 Two-stage object detection
algorithm

In two-stage object detection, one branch of object detectors
is based on multi-stage models. Deriving from the work of R-
CNN, one model is used to extract regions of objects, and a
second model is used to classify and further refine the
localization of the object. To obtain test results, the two-stage
object detection approach primarily uses algorithms such as
Selective Search or Edge Boxes (Zitnick and Dollar, 2014) to
choose the candidate region (Region Proposal) (Hu and Zhai,
2019) that may include the object detection for the input image,
and then categorize and position the candidate region. The R-
CNN (Girshick et al,, 2014) series, R-FCN (Dai et al., 2016),
Mask R-CNN (He et al., 2017), and other algorithms
are examples.

3.1.1 OverFeat algorithm

The OverFeat algorithm was proposed by the author in
Sermanet et al. (2013), who improved AlexNet. The approach
combines AlexNet with multi-scale sliding windows (Naqvi
et al., 2020) to achieve feature extraction, shares feature
extraction layers and is applied to tasks including image
classification, localization, and object identification. On the
ILSVRC 2013 (Lin et al., 2018) dataset, the mAP is 24.3%, and
the detection effect is much better than traditional approaches.
The algorithm has heuristic relevance for deep learning’s object
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TABLE 1 Comparison of related data sets.

Features

Color pictures of everyday things in daily life; take up little storage space; objects detection in images is large; this dataset

Standardized datasets that can be used for image classification, object detection, and image segmentation; the standardized
process makes most of the self-made datasets use this format; most of them are real-world data, which is difficult to
detect; it has better image quality and complete Labels are mostly used to evaluate model performance; every image
resembles to its annotation file one-to-one, which is easy to manage;

Because this dataset has extremely rich variety information and can contain the underlying features of most detected
objects, it is often used as a dataset for pre-training models, which also makes the model extremely challenging in both

The image environment is complex and diverse, which increases the difficulty of detection; in addition to the category and
location information of the image, it also contains the scene description of the image; the number of categories is far from
the ImageNet, Open Image, and SUN datasets, but this also makes each category more difficult to detect. The larger the
number of images contained, the better the detection ability of the model during training.

The largest dataset with target location annotations currently available; the annotation information is manually reviewed
to ensure accuracy and consistency; The majority of the photographs are complex settings with several objects

The Places dataset is a scene-centric database, and the scene categories in the images represent the scene information of

Dataset Quantity Type Year

Name

CIFAR-10 60000 10 2009

(Krizhevsky is often used to measure the classification ability of the model
and Hinton,

2009)

PASCAL 9963 20 2010

VOC 2007 11530 20 2015

(Everingham

et al, 2010)

PASCAL

VOC 2012

(Everingham

et al, 2015)

ImageNet 14.19 21841 2015
(Russakovsky Million

et al., 2015) object detection and object classification.
Microsoft 328000 91 2014

COCO (Lin

et al., 2014)

Open Image 1.9 Million 600 2020

(Kuznetsova

et al., 2020)

Places (Zhou 2.5 Million 205 2017

et al,, 2017) each image
SUN (Xiao 130519 899 2016

et al., 2016)

Compared with the Places dataset, it has more scene category information, but the average category of the SUN dataset in
each scene is about 80 times different from the Places dataset, resulting in a weaker scene classification ability learned by
the model using the SUN dataset; In addition to scene recognition, object recognition under the scene can be performed.

detection algorithm; however, it is ineffective at detecting small
objects and has a high mistake rate.

3.1.2 R-CNN algorithm

The convolutional neural network (CNN) to the job of
object detection introduced the R-CNN Krizhevsky et al.
(2012), a standard two-stage object detection approach. Three
modules of deep feature extraction and classification and
regression based on CNN:

1. Use a selective algorithm to extract about 2000 regional
candidate frames that may contain target objects from
the individual image;

2. Normalize the applicant areas scale to a static
magnitude for feature mining;

3. Use AlexNet to input the candidate region features into
SVM one by one for classification, using Bounding Box
Regression and Non-Maximum Suppression (NMS).

The Hinge loss with the L, regularization term (Moore and
DeNero, 2011) is the loss function of the SVM classification
algorithm. The following is the definition of the function form:

L 2

Ly, = chax(O, l—p? . pi) +—w (1)

2
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where the proper category of the item is represented by p:, the
possibility of the projected object class is represented by p;, and
the index of the mini-batch is denoted by i. To improve the
prediction’s resilience, the main premise is to penalize the
distance variation among the predicted bounding-box and the
ground truth. The following is the definition of the function:

= -x/w, =G -y/h

ty = log(w*/w), t, = (h*/h) @)

Loe = 3 (t - who(®))’ 3)

i

where, the true coordinate is t* = (x*,y*,w*h*) the predicted
coordinate is t = (x,y,w;h), where (x, y) signifies the coordinate of
the box center, (w, h) denotes the width and height of the box.
wi is the learned limit, and ¢(t') is the feature vector. The
regional scores are adjusted and filtered for location regression
in a fully connected network (Girshick et al., 2014).

On the ILSVRC2013 dataset, the R-CNN algorithm
improves the mAP to 31.4% and 58.5% on the VOC2007
dataset. The performance is better than the typical object

detection algorithm. However, the following issues persist:
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1. Because every stage must be qualified separately,
training involves a multi-stage pipeline that is slow
and difficult to optimize.

2. Because CNN features should be derived from each
object proposal for each image, training of the SVM
classifier and bounding box regressor is time and disk
intensive. This is critical for large-scale detection.

3. The test speed is slow, because the CNN structures need
to be mined in each test image object proposal, and
there is no shared computation.

3.1.3 SPP-Net algorithm

He et al. (2015) presented the Spatial Pyramid Pooling
Network (SPP-Net) in 2015 as a solution to the problem that
R-CNN pulls features from all candidate regions separately,
which takes a lot of time. Between the last convolutional layer
and the fully connected layer, SPP-Net adds a spatial pyramid
structure, segments the image using numerous standard scales
fine-tuners, and fuses the quantized local features to form a mid-
level representation. To avoid repetitive feature extraction and
break the shackles of fixed-size input, a fixed-length feature
vector is built on the feature map, and features are extracted all at
once. On the PASCAL 2007 dataset, the SPP-Net algorithm is
24102 times faster than the R-CNN algorithm in detection, and
the mAP is increased to 59.2%. However, the following issues
want to be addressed:

1. A huge sum of features must be kept, which consumes a
lot of space;

2. the SVM cdlassifier is still utilized, which requires a lot of
training steps and takes a long time.

3.1.4 Fast R-CNN algorithm

Girshick (2015) introduced the Fast R-CNN technique
grounded on bounding box and multi-task loss classification
to solve the difficulties of SPP-Net. The algorithm streamlines
the SPP layer and creates a single-scale ROI Pooling layer
assembly, in which the applicant region of the entire image is
tested into a static size, a feature map is created for SVD
decomposition, and the Softmax classification score and
BoundingBox are obtained via the ROI Pooling layer. As follow;

L(p,u, ,v) = Lys(p>w) + Alu = 1L, (£, v) 4)

where, Ls(p,u) = -log p, computes the log loss for ground truth
class u, and p, is determined from the separate chance dispersal
p = (po> ~p.) over the C+1 outputs from the last FC layer. Lj,(t",
v) is well-clear over the forecast offsets t* = () .t} , .1, ) and
ground-truth bounding-box regression objects v = (vx,vy,vw,vh),
where x, y, w, and h mean the two synchronizes of the box center,
width, and height, respectively. To stipulate an object proposal
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with a log-space height/width change and scale-invariant
conversion, each t" uses the parameter settings (Zitnick and
Dollar, 2014). To omit all backdrop Rols, the Iverson bracket
indicator function [u > 1] is used. A smooth L; loss is used to fit
bounding-box regressors in order to give additional robustness
against outliers and remove sensitivity in exploding gradients:

Lloc (tu: V) = EiEx,y,w,h smoth Ll (tF - Vi) (5)
And
0.5x if|x| < 1
smoothL; (x) = (6)
|x| —0.5  otherwise

3.1.5 Faster R-CNN algorithm

The employment of candidate region generating methods
such as bounding boxes, selective search, and others stymies
accuracy progress. Ren et al. (2015) presented Faster R-CNN in
2017 as a solution to this problem and introduced a Region
Proposal Network (RPN) to replace the selective search
algorithm. Comparing suggestions to reference boxes,
regressions toward actual BBs can be accomplished (anchors).
Anchors of three scales and three feature ratios are used in the
Faster R-CNN. The loss function resembles that of (4);

1 1
L(pi’ti) = ﬁzil‘cls(pi’ Pj) + }‘NiEip:-Lreg(ti’ tl*) (7)
cls reg

where, p; denotes the likelihood that the i anchor will be an
object. If the anchor is positive, the ground truth label p: is 1,
otherwise, it is 0. t; is related to the ground-truth box overlying
with a positive anchor, while t; contains four parameterized
coordinates of the predicted bounding box. L is a binary log
loss, while L, is a smoothed L, loss, both of which are similar to
(5). On the PASCAL VOC 2007 dataset, faster R-CNN achieves
73.2% mAP using the VGG-16 backbone network. However,
there are still issues:

* The scale chosen by the selection box on the feature map
when the anchor mechanism is employed is not
adequate for all objects, notably for small object
identification;

*  Only the last layer of the VGG-16 network is used. The
accumulation layer’s output features are predicted. The
network topographies lose conversion invariance and
accuracy after the Rol Pooling layer;

3.1.6 R-FCN algorithm

The idea and performance of the R-CNN series of
algorithms determine the milestones of object detection. This
series of structures is essentially composed of two subnets (Faster
R-CNN adds PRN, which is composed of three subnets), the
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former subnet is the spine network for feature withdrawal, and
the latter subnet is used to complete the classification and
localization of object detection. Between the two subnetworks,
the Rol pooling layer turns the multi-scale feature map into a
static-size feature map, but this step breaks the network’s
translation invariance and is not favorable to object
classification. Using the ResNet -101 He et al. (2016) backbone
network, Dai et al. (2016) developed a position-sensitive score
map (Position-Sensitive Score Maps) containing object location
info in the R-FCN (Region based Fully Convolutional
Networks) algorithm.

3.1.7 Mask R-CNN algorithm

MaskR-CNN, proposed by He et al. (2017) is a Faster R-
CNN extension that uses the ResNet-101-FPN backbone
network. Multi-task loss is combined with segmentation
branch loss, arrangement, and bounding box regression loss in
Mask R-CNN. A Mask network branch for Rol calculation and
division is added to the object classification and bounding box
regression to enable real-time object identification and instance
segmentation. Lin et al. (2017a) projected the RoIAlign layer to
replace the Rol pooling layer and used bilinear difference to plug
the pixels of non-integer situations to tackle the problem of
rounding the feature map scale in the downsampling and Rol
pooling layers. The COCO dataset’s mAP has been increased to
39.8% with a detection speed of 5 frames per second. However,
meeting real-time criteria for detection speed is still problematic,
and the cost of instance segmentation and labeling is too high.

3.1.8 Comparison and analysis
On the COCO dataset, the two-stage object detection uses a
cascade structure and has been successful in instance

10.3389/fpls.2022.1041514

segmentation. Although detection accuracy has improved
over time, detection speed has remained poor. On the
VOC2007 test set, VOC 2012 test set, and COCO test set,
Figure 2 reviews the spine network of the two-stage object
detection method, as well as the detection accuracy (mAP) and
detection speed. “—” signifies no relevant data. Performance
comparison of two-stage object detection algorithms as shown
in Figure 2.

The two-stage object detector, as shown in Figure 2, presents
profound pillar networks such as ResNet (Allen-Zhu and Li,
2019) and ResNeXt (Hitawala, 2018), and the detection
precision can reach 83.6%, but the expansion of the algorithm
model causes an increase in the amount of calculation, and the
detection speed is only 11% frame/s, which cannot meet the real-
time requirements. Table 2 outlines the benefits, drawbacks, and
contexts in which certain object detection techniques can
be used.

It can be realized from Table 2, that the two-stage object
detection algorithm has been making up for the faults of the
preceding algorithm, but the problems such as large model scale
and slow detection speed have not been solved. In this regard,
some researchers put forward the idea of transforming Object
detection into regression problems, simplifying the algorithm
model, and improving the detection accuracy while improving
the detection speed.

3.2 Single-stage object detection
algorithm

The single-stage object detection technique, also known as
the object detection algorithm based on regression analysis, is

R-CHN{Girshick et
al., 2014} (AlexMet)
100

&0
Mask R-CNN{He et 60,8, SPP-Net [He et
al.,2017) (ResNeXt-.. gg*"40  *+ al., 2015) {ZF-5)
»'eg :
:otwy -
b e 0.5 .l
RFCN(Daiet al,2016) @, @ Fast R-
{ResNet-101) Mgt CMN{Girshick,2015)...
Faster R-CMN{Ren &t
al.,2015) (VGG-16)
coes VOC2007 (MAP)  +uo@e« VOC2012 (MAP}  ...e.. COCO(MAP)

FIGURE 2
Performance comparison of two-stage object detection algorithms.
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space overhead is large

consuming, fixed image input size

the amount of calculation is large

Disadvantage

Using a sliding window, the time and
Feature extraction is complex, time-
High space cost

The selection of candidate regions is

computationally complex

The model is complex and the spatial
quantification is rough

The model process is multifaceted and

Instance segmentation is expensive
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References of
Applications in
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(Diwan et al., 2022; Li K. et al.,
2020)

Object Detection

(Yan et al., 2019; Jiao et al.,
2020)

Object Detection

(Karim et al., 2020; Kumar and
Kumar, 2022)

Object Detection

(Li M. et al., 2020; Yi et al.,
2021)

Object Detection

Object Detection (Cynthia et al., 2019; Zhang

et al,, 2022
Object Detection (Gera et al., 2022; Nguyen,

Cai and Zhang, 2022)

Object detection, (Jian et al.,, 2022; Storey et al.,
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TABLE 2 Advantages, disadvantages, and applicable scenarios of two-stage Object detection algorithms.

Model Advantage

OverFeat Feature extraction using CNN

R-CNN  Combining CNN with the candidate box method

SPP-Net  Perform convolution operation on the entire image to
realize multi-scale convolution calculation

Fast R-  Extract features with ROI Pooling layer, saving time and

CNN feature loading space

Faster Replacing region proposals with RPN to speed up training

R-CNN  and accuracy

R-FCN  Improved positioning accuracy

Mask R-  Solve the misalignment between the feature map and the

CNN original image, combining detection and segmentation

based on the principle of regression analysis. The single-stage
object detector, which is generally represented by the YOLO and
SSD series, skips the applicant area generation stage and obtains
object classification and position information directly.

3.2.1 YOLO object detection algorithm

Redmon et al. (2016) proposed the YOLO (You Only Look
Once) target detector in 2016. The YOLO architecture comprises
of 24 convolutional layers and 2 FC layers, with the topmost
feature map predicting bounding boxes and the P-Relu
activation function explicitly evaluating the likelihood of each
class. The following loss function is optimized during training:

£ 3 obj 2 ~\2
)VcoordEE]l ij [(-xi—xi) +(yi_yi)]

=0j=0
s B . 5 —\ 2
81 (- ) (ViR
i=0j=
+SEZ§]]”bj(C_C)2+A SzB]]nouhjC_Cz
L j ot "oobjEE i (G-C))
i=0j=0 i=0=0
s .
1S (00 - piloy
i=0 cEclasses

where, n is a certain cell of i,(x;,y;) and denotes the center of the
box relative to the grid cell limits, (w;,h;) are the standardized
width and height relative to the image size. The confidence
scores are represented by C;, the existence of objects is indicated

by 1 ?bj , and the prediction is made by the j' bounding box
obj
The technique eliminates the stage of generating candidate

predictor is indicated by ]

regions and combines feature extraction, regression, and
classification into a single volume. The YOLO detection speed
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instance 2022)

segmentation

in real-time is 45 frames per second, and the average detection
accuracy mAP is 63.4%. YOLO’s detection effect on small-scale
objects, on the other hand, is poor, and it’s simple to miss
detection in environments where objects overlap and occlude.

Zhou et al. (2022) proposed YOLOv5 with total of four
network models: YOLOv5s, YOLOv5m, YOLOv5], and
YOLOV5x. The detection speed of YOLOV5 is very fast, and
the inference time of each picture reaches 0.007 s, which is 140
frame/s. The generalization process of the YOLO series is not
good in dealing with uncommon scale objects, and multiple
down sampling is required to obtain standard features.
Moreover, due to the influence of space limitation in bounding
box prediction, the detection effect of small object detection is
not good.

3.2.2 SSD object detection algorithm

Liu et al. (2016) introduced the SSD (Single Shot multi-box
Detector) algorithm to balance detection accuracy and detection
speed by combining the advantages of Faster RCNN and YOLO.
For feature extraction, SSD uses the VGG-16 backbone network.
Convolutional layers take the place of FC6 and FC7 and add four
different levels. SSD also employs a target prediction method to
distinguish between target types and positions based on
candidate frames collected by the anchor at various scales. The
following are some of the benefits of this mechanism: (1) The
convolutional layer predicts the target location and category,
reducing the amount of computation; (2) the object detection
process has no spatial limitations, allowing it to detect clusters of
small target items effectively. The running speed of SSD on
Nvidia Titan X is increased to 59 frame/s, which is significantly
better than YOLO; the mAP on the VOC2007 dataset reaches
79.8%, which is 3 times that of Faster R-CNN.
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3.2.3 RetinaNet algorithm

Lin et al. (2017b) borrowed the ideas of Faster R-CNN and
multi-scale Object detection Erhan et al. (2014) to design and
train a RetinaNet Object detector. The chief idea of this module
is to explain the previous detection model by reshaping the Focal
Loss Function. The problem of class imbalance of positive and
negative samples in training samples during training. The
ResNet backbone network and two task-specific FCN
subnetworks make up the RetinaNet network, which is a single
network. Convolutional features are computed over the entire
image by the backbone network. On the output of the backbone
network, the regression subnetworks conduct image
classification tasks. Convolutional bounding box regression is
handled by the network.

In one-stage detectors, the class imbalance of foreground
and background is the main reason for the convergence of
network training. During the training phase, Focal Loss
avoids many simple negative examples and focuses on hard
training samples. By training unbalanced positive and
negative instances, the speed of single-stage detectors is
inherited. The experimental results show that on the MS
COCO test set, the AP of RetinaNet using the ResNet-101-
FPN backbone network is increased by 6% compared with the
DSSD513; using the ResNeXt-101-FPN, the AP of RetinaNet
is increased by 9%.

3.2.4 Tiny RetinaNet algorithm

Cheng M. et al. (2020) planned Tiny RetinaNet, which
customs MobileNetV2-FPN as the backbone network for
feature extraction, primarily composed of Stem block
backbone network and SEnet, as well as two task-specific
subnets, to improve accuracy and reduce information. The
mAPs for the PASCAL VOC2007 and PASCAL VOC2012
datasets are respectively 71.4% and 73.8%.

3.2.5 M2Det algorithm

Zhao et al. (2019) proposed M2Det based on Multi-Level
Feature Pyramid Network (ML-FPN), which solved the
problem of scale variation between target instances. The
model achieves the final incremental feature pyramid
through three steps: (1) extract multi-layer features from a
huge number of layers in the backbone network and fuse them
into basic features; (2) send the base layer features into TUM
(Thinned U-shape Modules) In a block formed by connecting
the module and the FFM (Feature Fusion Modules) module,
the TUM decoding layer is obtained as the input of the next
step; (3) The decoding layer of equivalent scale is integrated to
construct a feature pyramid of multi-layer features. M2Det
adopts the VGG backbone network and obtains 41.0% AP at a
speed of 1.8 frame/s using the single-scale inference strategy on
the MS COCO test dataset, and 44.2% AP using the multi-scale
inference strategy.
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3.2.6 Comparison of single-stage object
detection algorithms

The single-stage object detection algorithm was developed
later than the two-stage object detection algorithm, but it has
piqued the interest of many academics due to its simplified
structure and efficient calculation, as well as its rapid
development. Single-stage object detection algorithms are
frequently rapid, but their detection precision is much
substandard to that of two-stage detection methods. With the
rapid advancement of computer vision, the present single-stage
object detection framework’s speed and accuracy have
substantially increased. Figure 3, reviews the backbone
network of the single-stage detection algorithm and the
detection accuracy (mAP) and detection speed on the
PASCAL VOC2007 test set, PASCAL VOC2012 test set and
COCO test set, as well as Table 3 recaps the advantages,
disadvantages and applicable situations of the single-stage
object detection algorithm. The Performance assessment of
single-stage Object detection algorithms as shown in Figure 3.

Table 3 shows how the single-stage object detection
algorithm improves object detection performance by
employing pyramids to pact with pose changes and small
object detection problems, novel training tactics, data
augmentation, a mixture of changed backbone networks,
multiple detection frameworks, and other techniques. The
YOLO series is not practical for small-scale and dense object
detection, and the SSD series has improved this to achieve high-
precision, multi-scale detection.

3.3 Object detection algorithm based on
Generative Adversarial Networks

Goodfellow et al. (2014) proposed Generative Adversarial
Networks (GANs), which are unsupervised generative models
that work based on the maximum likelihood principle and use
adversarial training. The objective behind adversarial learning is
to train the detection network by using an adversarial network to
generate occlusion and deformed image samples, and it is one of
the most used generative model methods for generating data
distribution. GAN is more than just an image generator; it also
uses training data to perform object detection, segmentation,
and classification tasks across various domains.

3.3.1 A-Fast-RCNN algorithm

Wang et al. (2017) introduced the idea of adversarial
networks and proposed the A-Fast-RCNN algorithm that
uses adversarial networks to generate complex positive
samples. Different from the traditional method of directly
generating sample images, this method adopts some
transformations on the feature map: (1) In the Adversarial
Spatial Dropout Network (ASDN) dealing with occlusion, a
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FIGURE 3

Performance assessment of single-stage Object detection algorithms

Mask layer is added to realize the part of the feature
Occlusion, select Mask according to loss; (2) In the
Adversarial Spatial Transformer Network (ASTN) that
deals with deformation, partial deformation of features is
achieved by manipulating the corresponding features.
ASDN and ASTN provide two different variants, and by
combining these two variants (ASDN output as ASTN
input), the detector can be trained more robustly. In

10.3389/fpls.2022.1041514
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in different datasets.

comparison with the OHEM (Online Hard Example
Mining) method, on the VOC 2007 dataset, the method is
slightly better (71.4% vs. 69.9%), while on the VOC 2012
dataset, OHEM is better (69.0% vs. 69.8%). The introduction
of adversarial network into object detection is indeed a
precedent. In terms of improvement effect, it is not as
good as OHEM, and some occlusion samples may lead to
misclassification. Table 4 shown the data Augmentation-

TABLE 3 Advantages, disadvantages, and applicable situations of single-stage Object detection algorithms.

Model

YOLO
YOLOvV2

YOLOv3

YOLOv4

YOLOvV5

SSD

DSSD

R-SSD

F-SSD

DSOD

RetinaNet

Advantage

Divide the image into grid cells for fast detection

Use clustering to make anchor boxes to improve classification
precision

Using the residual learning idea to realize multi-scale detection
Excellent trade-off of detection accuracy and detection speed

Small model size, lower deployment costs, high flexibility, and
high detection speed

Multi-scale anchor box discretization of boundary space

Use ResNet-101 as the backbone network to improve the
detection consequence of small objects

Improved feature fusion method to improve detection accuracy

Reconstruct the pyramid feature map to fuse features of different
scales, which is beneficial to small object detection

No pretraining required

Optimize the ratio of positive and negative samples through
Focal Loss

Frontiers in Plant Science

Disadvantage

Not good for dense and small object detection

Using pre-training, difficult to transfer

The model is complex, and the detection effect of medium and
large-scale objects is poor

Detection precision needs to be better
Performance needs to be improved

The accuracy rate is low, the model is difficult to converge, and
the detection effect of small targets is not improved.

Slow detection speed compared to SSD

The model calculation is complex, and the detection speed is
average

Slow detection speed compared to SSD
Normal detection speed

When training with dense samples, it will cause sample
imbalance
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Applicable

Object Detection
Object Detection

Multi-scale object
detection

High-precision real-
time object detection

Object Detection

Multi-scale object
detection

Object Detection
Object Detection

Multi-scale object
detection

Object Detection

Lightweight, multi-
scale object detection

frontiersin.org


https://doi.org/10.3389/fpls.2022.1041514
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Nawaz et al.

based object detection in Multimedia, Agriculture and
Remote sensing.

3.3.2 SOD-MTGAN algorithm

Bai et al. (2018) developed an end-to-end multi-task
generative adversarial network (Small Item Detection via
Multi-Task Generative Adversarial Network, SOD-MTGAN)
technique in 2018 to increase small object detection accuracy.
It uses a super-resolution network to up trial small muddled
photos to fine images and recover comprehensive information
for more accurate detection. Furthermore, during the training
phase, the discriminator’s classification and regression losses are
back-propagated into the generator to provide more specific
information for detection. Extensive trials on the COCO dataset
demonstration that the method is operative in recovering clear
super-resolved images from blurred small images, and that it
outperforms the state-of-the-art in terms of detecting
performance (particularly for small items).

3.3.3 SAGAN algorithm

Traditional Convolutional Generative Adversarial Networks
(CGANSs) only generate functions of spatially local points on
low-resolution feature maps, thereby generating high-resolution
details. The Self-Attention Generative Adversarial Network (SA-
GAN) proposed by Zhang et al. (2019) allows attention-driven
and long-term dependency modeling for image generation tasks.
It can generate details from cues at all feature locations, and also
applies spectral normalization to improve the dynamics of
training with remarkable results.

3.3.4 Your local GAN algorithm

Daras et al. (2020) proposed a two-dimensional local
attention mechanism for generative models (2DLAMGM), and
introduced a new local sparse attention layer that preserves 2D
geometry and locality. It replaces the dense attention layer of
SAGAN (Self-Attention Generative Adversarial Networks), and
on ImageNet, the FID score is optimized from 18.65 to 15.94.

10.3389/fpls.2022.1041514

The sparse attention pattern of the new layers proposed in this
method is designed using the new information-theoretic
criterion of the information flow graph, and a new method for
reversing the attention of adversarial generative networks is
also proposed.

3.3.5 MSG-GAN stabilized image synthesis
algorithm

GAN:Ss although partially successful in image synthesis tasks,
were unable to adapt to different datasets, in part due to
unpredictability during training and sensitivity to
hyperparameters. One cause for this instability is that when
the supports of the real and virtual distributions do not overlap
enough, the gradients passed from the discriminator to the
generator will become underinformed. In response to the
above problems, Karnewar and Wang (2019) planned a Multi-
Scale Gradient Generative Adversarial Network (MSG-GAN),
which consents gradients to flow from the discriminator to the
generator at multiple scales for high resolution Rate image
synthesis provides a stable method. MSG-GAN converges
stably on datasets of different sizes, resolutions, and domains,
as well as on different loss functions and architectures.

4 Deep learning-based object
detection algorithm improvement

The rapid development of deep learning has increased the
feasibility of improving various classical object detection
algorithms in many ways. This section summarizes the main
popular improvement methods from the aspects of data
processing, model construction, prediction object and loss
calculation, and discusses their characteristics, so that different
algorithms can express different problems for different problems.
The improved scheme corresponding to the algorithm detection
process is shown in Figure 4.

TABLE 4 Data Augmentation-based object detection in Multimedia, Agriculture and Remote sensing.

Reference (Multimedia,
Agriculture and Remote
sensing)

(Haruna et al., 2022)

Method description

To improve the accuracy of deep learning models for identifying rice leaf disease, we built a GAN-based data augmentation

pipeline with the state-of-the-art StyleGAN2-ADA and the variance of Laplace filter to generate high-quality synthetic rice leaf

disease images.
(Bhakta et al., 2022)
bacterial leaf blight.
(Liu W et al,, 2021)

Using state-of-the-art Generative Adversarial Network (GAN) technology, we can simulate thermal images of a rice plant with

A multiscale attention module that boosts the Cycle-Consistent Adversarial Network (CycleGAN) in both spatial and channel

dimensions to boost the quality of synthetic images.

(Yan et al., 2019)

used to classify both synthetic and real images.

(Bosquet et al., 2022)
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The dataset trained a faster region-based convolutional neural network (Faster R-CNN) built on Res101netwok, which was then

Synthetic data of superior quality achieved by combining a GAN with image inpainting and mixing.
DS-GAN can create believable miniature things.
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4.1 Data processing

4.1.1 Data augmentation

In the object detection algorithm based on deep learning,
data augmentation techniques are divided into two types:
supervised and unsupervised. Supervised data augmentation
methods can be separated into three classes: geometric
changes, color transformations, and hybrid transformations;
unsupervised data augmentation methods can be divided into
two sorts: generating new data and learning new
augmentation strategies.

Currently, the research on supervised data augmentation
strategies has tended to be perfect, and it has become the main
requirement to combine multiple data augmentation
techniques to improve model performance. The main reasons
are as follows:

1. The widespread use of supervised data enhancement
methods makes unsupervised data enhancement
methods less valued to a certain extent;

2. The Object detection algorithm is gradually
developing towards an end-to-end network,
integrating data enhancement methods. It has
become a requirement in the algorithm, but the
unsupervised data enhancement method has certain
difficulties in integration due to its complexity and
large amount of calculation, and its application scope
is limited;

3. The generative adversarial network or reinforcement
learning-related technologies required for unsupervised
data augmentation methods are complex and diverse,
which hinders researchers’ exploration.

10.3389/fpls.2022.1041514

4.2 Model construction

4.2.1 Improve the network structure

In 2015, the ResNet network first proposed the residual
block (Residual block), which made the convolutional network
deeper and less prone to degradation. As an improvement of the
ResNet network, the DenseNet network Huang G. et al. (2017)
achieves feature reuse by establishing dense connections among
all former layers and the current layer, which can achieve well
performance than the ResNet network with fewer parameters
and less computational cost. The core part of the GoogLeNet
network is the Inception module, which extracts the feature
information of the image through different convolution kernels,
and uses a 1x1 convolution kernel for dimensionality reduction,
which significantly reduces the amount of computation. Feature
Pyramid Networks Lin et al. (2017) (Feature Pyramid Networks,
FPN) have made outstanding contributions to identifying small
objects. As an improvement of the FPN network, the PANet
network Liu et al. (2018) adds a bottom-up information transfer
path based on the FPN to make up for the insufficient utilization
of the underlying features. The structure is shown in Figure 5.

The existence of the fully connected layer leads to the fact that
the size of the input image must be uniform, and the proposal of
SPP-Net He et al. (2015) solves this problem, so that the size of the
input image is not limited. Efficient-Net Tan and Le (2019) does
not pursue an increase in one dimension (depth, width, image
resolution) to improve the overall precision of the model but
instead explores the best combination of these three dimensions.
Based on EfficientNet, Tan et al. (2020) suggested a set of Object
detection frameworks, EfficientDet, which can achieve good
performance for different levels of resource constraints. The
comparison of the above networks is shown in Table 5.
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FIGURE 4

The corresponding improvement scheme of algorithm detection flow (A) Augmentation (B) Deep Learning (C) Results.
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A FPN backbone network

FIGURE 5

L Y
C Adaptive Feature
Pooling

B Bottom-up path enhancement

10.3389/fpls.2022.1041514

D Fully connected fusion

PANet model steps (A) FPN Backbone Network (B) Bottom Up Path Enhancement (C) Adaptive feature pooling (D) Fully Connected fusion.

Some scholars have introduced the above optimization
scheme in the improvement of the network structure of
related models to make the detection results more ideal. The
related literature of the GoogLeNet network is a typical
optimization method of the Inception module (Shi et al., 2017)
and the optimization process is shown in Figure 6.

In order to better improve the model detection accuracy,
today’s network structure is gradually increasing the depth
(residual module), width (Inception module) and context
feature extraction capabilities of the network model (Li et al.,
20165 Ghiasi et al., 2019; Cao et al., 2020b), etc. However, the
resulting model is complicated and redundant, making the
improved algorithm more difficult to apply in real life scenarios.

4.3 Other improved algorithms

At present, researchers have done a lot of study on the two-
stage object detection algorithm and the single-stage object
detection algorithm, so that they have a certain theoretical
basis. The two-stage object detection algorithm has an
advantage in detection accuracy, and needs to be continuously
improved to enhance the detection speed; the single-stage object
detection algorithm has an advantage in detection speed, and the
model needs to be continuously improved to increase the
detection accuracy, so some researchers put the two types of
algorithm models such as detection accuracy and detection
speed, as shown in Figure 7.

In 2017, the RON (Reverse connection with Objectness prior
Networks) Kong et al. (2017) algorithm is an efficient and
efficient algorithm based on the two-stage detection framework
represented by Faster R-CNN and the single-stage detection
framework signified by YOLO and SSD. Under the fully
convolutional network, similar to SSD, RON uses VGG-16 as
the backbone network, the difference is that RON changes the
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14th and 15th fully connected layers of the VGG-16 network
into a kernel size of 2 x 2. In tests, RON achieves state-of-the-art
object detection performance, with input 384x384 size images,
the mAP reaches 81.3% on the PASCAL VOC2007 dataset, and
the mAP improves to 80.7% on the PASCAL VOC 2012 dataset.
Zhang et al. (2018) designed the RefineDet algorithm, which
inherited the advantages of single-stage detectors and two-stage
detectors. RefineDet uses VGG-16 or ResNet-101 as the
backbone network for feature extraction, and integrates the
neck structure (feature pyramid and feature fusion) into the
head structure.

5 Object detection and recognition
applications in agriculture using Al

The use of computer vision technology to inspect
agricultural products has the advantages of real-time, objective,
and no damage, so it is favored by people. Saldana et al. (2013)
discussed the method of applying computer vision technology to
detect mango weight and fruit surface damage, analyzed the
algorithm to determine the required image area, and established
the correlation between mango weight and its projected image.
Experiments show that the accuracy rate of fruit surface damage
classification is 76% and 80%, respectively. Slaughter and Harrell
(1989) and others first studied using the chromaticity and
brightness information of images taken under natural light
conditions to guide the citrus harvesting manipulator, and
established a classification model for identifying citrus from
trees using color information in color images. The classifier was
75 percent accurate in identifying oranges from the orchard’s
natural environment.

Huang X. et al. (2017) realized the detection and
localization of apples through pattern recognition, mainly
using an algorithm to realize the identification of apples,
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TABLE 5 Comparison of advantages and disadvantages of related networks.

Network Advantage

name

SPP-Net Facilitate multi-scale training

GoogLeNet  Use a 1x1 convolution kernel to reduce the amount of computation; increase the width
of the single-layer convolution to improve the network’s ability to extract features

ResNet The residual module adopts skip connection, which alleviates the problem of gradient
disappearance and degradation caused by the network being too deep.

DenseNet Compared with ResNet, the amount of parameters and computation is greatly reduced,
and the accuracy is improved; it effectively solves the problem of overfitting caused by
too few data sets; dense connections are used to strengthen feature propagation

FPN Multi-scale feature fusion to improve the accuracy of small Object detection

PANet Make full use of high-level semantic information and low-level location information

ResNeXt The multi-branch network structure is simplified by grouping convolution; the overall
performance is better than ResNet when the parameter quantity remains basically
unchanged; the modular structure is easy to transplant;

EfficientNet The three dimensions of network depth, width and image resolution are well balanced;
in the case of reducing the amount of parameters, the detection accuracy has been
qualitatively improved

EfficientDet  The Bidirectional Feature Pyramid Network (BiFPN) proposed on the basis of PANet

has the characteristics of cross-scale connection and weighted feature fusion, which is
more efficient for feature detection; compound scaling is performed on multiple aspects
at the same time to find the depth, width, and resolution. The best combination results
in more accurate and objective results; it is ahead of common target detection models
in terms of accuracy and computational complexity, such as: Yolo v3, Mask-RCNN, etc.

10.3389/fpls.2022.1041514

Disadvantage

Requires huge storage space for feature
extraction and SVM classification tasks

There is still 5x5 convolution kernels to
increase the network operation; including
more complex hyperparameters, each
transformation needs to specify the size and
number of convolution kernels

The number of limits is large, and the
hardware requirements are slightly higher;
when the number of network layers is too
deep, the mitigation effect of problems such
as gradient disappearance will be greatly
reduced

During training, since the splicing operation
will re-open a new memory storage space to
save the spliced feature information, it
consumes a lot of memory.

Top-down structure, the underlying features
are not fully utilized

In addition to the top-down structure, a
bottom-up structure is also constructed,
which requires a lot of additional
computational overhead

Compared with the overall operation,
grouped convolution is less efficient in
hardware execution.

There are too many network layers, and the
intermediate results of all layers need to be
saved during gradient calculation, which
requires high hardware and occupies a large
amount of video memory; when the image
size is too large, the training speed will be
slowed down

In view of its characteristics of using neural
network to search for the optimal
architecture, the time and hardware cost
required for training the model will be
extremely high; the target detection
framework has poor modular structure,
which is not conducive to integration

References
of applica-
tions in
Multimedia,
Agriculture
and Remote
Sensing

(Ding et al.,
2018; Gao et al.,
2019; Hespeler
et al., 2021)
(Ding et al,,
2019; Eser, 2021;
Diwan et al,,
2022)

(Zhong et al,,
2018; Pan et al.,
2021; Storey

et al., 2022)

(Zhu et al.,, 2019;
Dubey et al.,
2023; Huang X.
et al., 2017)

(Hu et al., 2022;
Gunturu et al.,
2022;Liu N.

et al., 2021)
(Cheng G. et al,
2020;Chen et al.,
2021; Piao et al.,
2021)

(Lin et al., 2020;
Savarimuthu,
2021; Shi et al.,
2021)

(Alhichri et al.,
2021; Nguyen
et al., 2021;
Chatterjee et al.,

2022

(Wei et al., 2021;
Chatterjee et al.,
20225
Basavegowda

et al., 2022)

filtering and boundary extraction of the original image of the
apple tree, and calculating Determines the outline of the apple
relative to the shape of the image. Wang and Cheng (2004)
studied the identification method of apple fruit stem and fruit
body and the search method of fruit surface defect. According
to the characteristics of apple fruit stalk, it is proposed to use
block scanning to judge whether the fruit stalk exists; the
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different reflection characteristics of the damaged surface and
the non-damaged surface of the apple, as well as the statistical
characteristics of the pixel points of different gray values, are
analyzed to find out the damaged surface. The damaged area
was separated from the fruit pedicel and the fruit calyx. The
judging accuracy rate of 15 images without fruit stems was
100%, and the accuracy rate of 90 pictures with intact fruit
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D Inception V4 (Inception-ResNet-V2 17x17 grid module)
FIGURE 6
Inception modules (A) Inception original module (B) Replacing the 5*5 convolution kernel with a 3*3 convolutional kernal (C) Single * n kernel
(D) Inception V4.

stems was 88%. Mahanti et al. (2021) used line scanning and
analog cameras to detect apple damage, respectively, and
showed that using digital image processing technology to
detect apple damage can at least reach the accuracy of
manual classification.
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Ying et al. (2000) used computer vision for a new method of
huanghua pear fruit stalk recognition. The computer vision
system was used to capture images of huanghua pear, and
image processing technology was used to complete the
segmentation of the image and the background. The stem
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GAN

GAN framework proposed

@=201
DCGAN

Unsupervised learning

StackGAN

Text to image synthesis

@=2017

CycleGAN

Unpaired image to image translation

StarGAN

Multi-domain in image to image translation

@=201

ESRGAN

Image super resulation

@=201

SAGAN

Long rang dependency modeling

FIGURE 7
The Evolution of mainstream GAN

speed is slow, so a fast algorithm is proposed. This method uses
the small diameter of the stem of the pear, selects templates of
different sizes, determines whether there is a stem in the image,
and obtains the coordinates of the intersection of the head of the
stem and the bottom of the pear. The tangent slope information
is used to judge the integrity of the fruit stalk. The test results
show that the algorithm can 100% judge whether the fruit stalk
exists, and the correct rate of judging whether the fruit stalk is
intact is more than 90%. Li et al. (2018) applied computer vision
technology to detect the bruising injury of pears, and proposed
to distinguish multiple bruising injuries by regional marking
technology. In order to improve the measurement accuracy of
the bruising area, a mathematical model for measuring the
bruising area was established according to the shape of the
pear and the characteristics of the bruising. This method can
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CGAN

Specific sample generation

2016m@)
Pix2Pix

Image to image translation

WGAN

Alternative to traditional training

ProGAN

Progressively growing training approach

DeepFakes

Creating fake videos with face

FlowGAN
Hybrid training

StyleGAN
Style transfer
E-GAN
Stable GAN training

2020m@)

accurately detect multiple crush injuries of pears, and the relative
error of most measurements can be controlled within 10%. Patel
et al. (2012) conducted an experimental study on Huanghua
pear’s machine vision technology to detect the external
dimension and performance status. By determining the image
processing window, using the Sobel operator and Hilditch to
refine the edge, and determining the centroid point to find the
representative fruit diameter, the test results show that the
correlation coefficient between the predicted fruit diameter
and the actual size can reach 0.96. For the detection of fruit
surface defects, it is proposed to use the mutation of red (R) and
green (G) color components at the junction of damaged and
non-damaged to obtain suspicious points, and then to obtain the
entire damaged surface through regional growth. Chang (2022)
developed a machine vision system for the quality inspection of
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Huanghuali, taking Huanghuali as the research object, and
compared the influence of different intensity light sources and
different backgrounds on the collected images, and developed a
system suitable for Huanghuali and different backgrounds.
Machine vision systems for other fruit quality inspections.
Cubero et al. (2011) developed a machine vision system
suitable for the quality inspection of Huanghuali by studying
the spectroscopic reflection characteristics of Huanghuali. In
order to adapt to the randomness of fruit orientation and the
irregularity of fruit shape in actual production According to the
requirements of the fruit size detection method, the method of
fruit size detection has better adaptability. A method of using the
minimum circumscribed rectangle (MER) method of fruit to
find the maximum transverse diameter is designed, and the
experimental verification is carried out, and the actual maximum
transverse diameter is obtained. The regression equation of the
relationship between the diameter and the predicted transverse
diameter, the relationship between the two The coefficient is
0.996 2. The variation characteristics of the gray levels of R, G,
and B components in the defect area of Huanghuali were
analyzed, and finally the maximum combined set of defect
pixels and all defect areas were found.

Li et al. (2022) put forward a method for identifying germ
and endosperm with saturation S as a characteristic parameter
by analyzing the color characteristics of germ rice and color
images, in order to realize the automatic computer vision of rice
germ retention rate detection. Experiments are carried out with
the established identification indicators and methods, and the
results show that the coincidence rate between the identification
results of the computer vision system and the manual detection
is over 88%.

6 Object detection and recognition
applications in agriculture using Al

The detection and recognition of objects based on remote
sensing images is a current research focus in the field of target
detection. AI brings much improvement in different
applications of computer vision and a lot of latest progress in
all applications improve it methods (Nawaz et al., 2020; Nawaz
et al,, 2021). The detection and recognition methods used can
be divided into two types: target detection algorithms based on
traditional methods and target detection algorithms based on
deep learning. Commonly used target detection algorithms
based on traditional methods include HOG feature algorithm
combined with SVM algorithm, Deformable Parts Model
(DPM), etc.; target detection and recognition algorithms
based on deep learning can be roughly summarized into two
categories, namely R-CNN series algorithm based on two stage
method and YOLO series algorithm based on one stage method
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(Han et al., 2022), SSD (Single Shot Multibox Detector) series
algorithm (Arora et al., 2019).

Initially, the detection of remote sensing images to obtain
information is mainly through manual visual analysis, and the
amount of information obtained in this way completely depends
on the professional ability of technicians. After more than ten
years of development, a new technology has appeared to be
applied to the reading of remote sensing image information. This
new method detects and recognizes targets through statistical
models. For example, Peng et al. (2018) is in order to achieve
higher classification accuracy using the maximum likelihood
method for remote sensing image classification, etc. Kassim et al.
(2021) proposed a multi-degree learning method, which first
combined feature extraction with active learning methods, and
then added a K-means classification algorithm to improve the
performance of the algorithm. Du et al. (2012) proposed the
adaptive binary tree SVM classifier, which has further improved
the classification accuracy of hyperspectral images. Luo et al.
(2016) studied an algorithm called small random forest, the
purpose is to solve the problem of low accuracy and overfitting
of decision trees. In addition, due to the problems of low
detection accuracy and long time consumption, the traditional
target detection method cannot meet the real-time requirements
of the algorithm in practical applications.

In 2006, Geoffrey Hinton and his students published a paper
related to deep learning (Hinton and Salakhutdinov, 2006),
which opened the door to object detection and recognition
using deep learning. In recent years, with the breakthrough of
deep learning theory, the detection accuracy and detection speed
of target detection algorithms have been effectively improved, so
that the feature information in images can be extracted by deep
learning, which gradually replaces the information based on
manual methods and traditional methods. Extraction has
become the main direction of object detection research.

In the 2017 ImageNet competition, trained and learned a
million image datasets through the design of a multi-layer
convolutional neural network structure. The classification
error rate obtained in the final experiment was only 15%, and
the second place in the competition. That’s nearly 11% higher. In
addition, many researchers have used deep learning to detect
and recognize remote sensing image targets, and have achieved
good results and achieved many breakthroughs (Krizhevsky
et al,, 2017). Mnih and Hinton (2010) used two datasets of
remote sensing images to conduct research on deep learning
technology. They extracted road features from images for
training and achieved good experimental results. This is the
first time that deep learning is used. applied to remote sensing
technology. Zou et al. (2015) developed a new algorithm for
extracting features in images. The algorithm designed a deep
belief network structure and conducted experiments on feature
extraction, and finally achieved an accuracy of 77%. Ienco et al.
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(2019) used a combination of deep learning and a patch
classification system to detect ground cover, and achieved
good detection results. Wei et al. (2017) developed a more
accurate convolutional neural network for road structure
feature extraction, and this algorithm has a remarkable effect
on road extraction from aerial images. Cheng et al. (2018)
proposed a rotation-invariant CNN (RICNN) model, which
effectively addresses the technical difficulties of object
detection in high-resolution remote sensing images. From the
object detection experiment of remote sensing images using deep
learning, it can be concluded that the extraction of target features
by constructing a deep model structure can effectively improve
the detection effect. (Bhatti et al., 2021) used edge detection for
identification of objects in remote sensing images by using
geometric algebra methods.

7 Challenges for object detection in
agriculture

7.1 Insufficient individual feature layers

Deep CNN plannings generate hierarchy feature maps due
to pooling and subsampling operations, resulting in changed
layers of feature maps with differing 3D resolutions. As is
generally known, the feature maps of the early-layer feature
maps have a higher resolution and signify smaller response
fields. They also lack high-level semantic information, which is
necessary for object detection. The latter-layer feature maps, on
the other hand, contain additional semantic information that is
required for detecting and classifying things like distinct object
placements and illuminations. Higher-level feature maps are
valuable for classifying large objects, but they may not be enough
to recognize small ones.

7.2 Limited context information

Small items usually have low resolutions, which makes it
difficult to distinguish them. Contextual information is crucial in
small item detection because small objects themselves carry
limited information. From a “global” picture level to a “local”
image level, contextual information has been utilized in object
recognition. A global image level takes into account image
statistics from the entire image, whereas a local image level
takes into account contextual information from the objects’
surrounding areas. Contextual characteristics can be divided
into three categories such as local pixel context, semantic
context, and spatial context.
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7.3 Class imbalance

The term “class imbalance” refers to the unequal distribution
of data between classes. There are two different sorts of class
disparities. One issue is a disparity between foreground and
background instances. By densely scanning the entire image,
region proposal networks are utilized in object detection to
create possible regions containing objects. The anchors are
rectangular boxes that have been extensively tiled throughout
the full input image. Anchor scales and ratios are pre-
determined based on the sizes of target items in the training
dataset. When detecting little items, the number of anchors
generated per image is higher than when recognizing large
things. Positive instances are only those anchors that have a
high IoU with the ground truth bounding boxes. Anchors are
considered bad examples since they have little or no overlap with
the ground truth bounding boxes. The sparseness of ground-
truth bounding boxes and IoU matching procedures between
ground-truth and anchors are both drawbacks of the anchor-
based object identification methodology, and the dense sliding
window strategy has a high temporal complexity, making
training time consuming.

7.4 Insufficient positive examples

Most object detection deep neural network models were
proficient with objects of varying sizes. They usually work well
with huge objects but not so well with small ones. A lack of
small-scale anchor boxes produced to match the small objects, as
well as an inadequate number of examples to be properly
matched to the ground truth, could be the cause. The anchors
are feature mappings from certain intermediate layers in a deep
neural network that are projected back to the original image.
Anchors for little objects are difficult to come by. In addition, the
anchors must match the ground truth bounding boxes. The
following is an example of a widely used matching method. A
positive example is one that has a high IoU score in relation to a
ground truth bounding box, such as more than 0.9.
Furthermore, the anchor with the highest IoU score for each
ground truth box is designated as a positive example. As a result,
small objects usually have a limited number of anchors that
match the ground truth bonding boxes.

8 Conclusion

Deep learning-based object detection techniques have become
a trendy research area due to their powerful learning capabilities
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and superiority in handling occlusion, scale variation, and
background exchange. In this paper, we introduce the
development of object detection algorithms based on deep
learning and summarize two types of object detectors such as
single and two-stage. In-depth analysis of the network structure,
advantages, disadvantages, and applicable scenarios of various
algorithms, we compare the analysis of standard data sets and
experimental results of different related algorithms on mainstream
data sets. Finally, this study summarizes some application areas of
object detection to comprehensively understand and analyze its
future development trend.

Future work

Based on the analysis and summary of the above knowledge,
we propose the following directions for future research.

* Video object detection has problems such as uneven
moving targets, tiny targets, truncation, and occlusion,
and it isn’t easy to achieve high precision and high
efficiency. Therefore, studying multi-faceted data
sources such as motion-based objects and video
sequences will be one of the most promising future
research areas.

*  Weakly supervised object detection models aim to detect
many non-annotated corresponding objects using a
small set of fully annotated images. Therefore, using
many annotated and labeled pictures with target objects
and bounding boxes to train the network to achieve high
effectiveness efficiently is an essential issue for future
research.

* Region-specific detectors tend to perform better,
achieving higher detection accuracy on predefined
datasets. Therefore, developing a general object
detector that can detect multi-domain objects without
prior knowledge is a fundamental research direction in
the future.
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YOLO-P: An efficient method
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environment
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Information Center, Department of Agriculture and Rural Affairs of Jiangsu Province, Nanjing, China

Introduction: Fruit detection is one of the key functions of an automatic
picking robot, but fruit detection accuracy is seriously decreased when fruits
are against a disordered background and in the shade of other objects, as is
commmon in a complex orchard environment.

Methods: Here, an effective mode based on YOLOV5, namely YOLO-P, was
proposed to detect pears quickly and accurately. Shuffle block was used to replace
the Conv, Batch Norm, SiLU (CBS) structure of the second and third stages in the
YOLOV5 backbone, while the inverted shuffle block was designed to replace the
fourth stage’s CBS structure. The new backbone could extract features of pears from
a long distance more efficiently. A convolutional block attention module (CBAM) was
inserted into the reconstructed backbone to improve the robot's ability to capture
pears’ key features. Hard-Swish was used to replace the activation functions in other
CBS structures in the whole YOLOV5 network. A weighted confidence loss function
was designed to enhance the detection effect of small targets.

Result: At last, model comparison experiments, ablation experiments, and daytime
and nighttime pear detection experiments were carried out. In the model
comparison experiments, the detection effect of YOLO-P was better than other
lightweight networks. The results showed that the module’s average precision (AP)
was 97.6%, which was 1.8% higher than the precision of the original YOLOvV5s. The
model volume had been compressed by 39.4%, from 13.7MB to only 8.3MB.
Ablation experiments verified the effectiveness of the proposed method. In the
daytime and nighttime pear detection experiments, an embedded industrial
computer was used to test the performance of YOLO-P against backgrounds of
different complexities and when fruits are in different degrees of shade.

Discussion: The results showed that YOLO-P achieved the highest F1 score
(96.1%) and frames per second (FPS) (32 FPS). It was sufficient for the picking
robot to quickly and accurately detect pears in orchards. The proposed method
can quickly and accurately detect pears in unstructured environments. YOLO-P
provides support for automated pear picking and can be a reference for other
types of fruit detection in similar environments.
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1 Introduction

Pears are a common fruit which have rich nutrition and
good taste. China grows the most pear trees, with a pear tree
planting area that accounts for 67.30% of the global total pear
tree planting area (Food and Agriculture Organization of the
United Nations, 2022). However, the continuous loss of
agricultural labor in recent years has led to a substantial
increase in the cost of manual picking. The problem became
more prominent after the COVID-19 pandemic (Nawaz et al,
2021). Therefore, efficient picking machines are a current
research focus and an area of importance in orchard
intelligence. Automated picking can increase the income of
fruit farmers and promote economic development (Galvan
et al.,, 2022).

Fruit detection is one of the most important steps for
orchard picking robots working autonomously. At present,
some scholars have used machine learning methods, especially
based on color features, to detect fruits which are significantly
different from the background color. For example, Si et al. (2010)
proposed a method based on the red-green differential
separation which used the contour formed by the shape of
fruit to segment the red apple and green background. But this
method is no longer effective when the target is similar to the
background color, because some fruits (like some varieties of
apples and mangoes) are green even when they are ripe. Xiang
etal. (2012) used the curvature of overlapping tomato boundary
lines to detect shaded tomatoes, but the accuracy for large
shaded areas was only 76.9%. Compared with the deep
learning technology that has developed rapidly in recent years,
traditional machine learning methods exposed more limitations,
such as low speed, low detection accuracy, and poor universality.
Also, the designed algorithm can detect only a single target. As
far as computers are concerned, the low-level features that
machine learning uses are difficult to extract deep semantic
information (Arrieta et al., 2020), making it unsuitable for online
equipment and fruit detection in the complex and changeable
environment of orchards.

Deep learning technology has been widely used in target
detection in orchards. Object detection based on deep learning is
mainly divided into a two-stage algorithm and a one-stage
algorithm. Two-stage algorithms have been extensively studied
due to high accuracy in the field of agriculture. Zhang et al.
(2020) developed a detection system for apples and branches
based on VGG-19 and Faster R-CNN for the vibration harvest.
The mean average precision (mAP) for detecting apples was
82.4% and the fitting degree to the branches and trunks was over
90%. Tu et al. (2020) used a red, green, blue plus depth (RGB-D)
camera to obtain the red, green, blue (RGB) image and depth
information of passion fruit and combine them. A multi-scale-
based Faster Region-based Convolutional Neural Network (R-
CNN) network (MS-FRCNN) was proposed, which achieved an
FI score of 90.9%. Yan et al. (2019) improved the Region of
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interest (ROI) pooling layer of Faster R-CNN and combined
VGG16 to detect 11 types of Rosa roxbunghii with different
shapes; an average precision of 92.01% was obtained. The
accuracy of two-stage detection is high. However, the huge
number of parameters leads to increased computation costs
and decreased detection speeds, which make it difficult to
apply to online detection tasks.

The one-stage detection algorithm can greatly improve
detection speed while maintaining detection accuracy because
there is no process of generating candidate regions. Peng et al.
(2018) used ResNet-101 to improve Single shot detector (SSD)
for four kinds of fruit detection: citrus, apple, orange, and lychee.
Compared with the original SSD, the average accuracy increased
by 3.15%, and performance improved in shaded conditions. The
“You Only Look Once” (Redmon et al, 2016; Redmon and
Farhadi, 2017; Redmon and Farhadi, 2018; and Bochkovskiy
etal,, 2020) series of algorithms was born in 2015. This series has
reached its fifth iteration and shows the trend and potential of
continuous updating and strengthening. Due to the continuous
integration of the latest network optimization tricks, both speed
and accuracy can be maintained at a high level. The YOLO
algorithm is considered to be one of the most successful one-
stage detection networks. Bresilla et al., 2019 established an apple
detection model based on YOLOV2. By adding computer-drawn
images to assist training, the author found that synthesized
images can reduce the position loss of the network and better
locate the target. Pear detection was performed by transfer
learning and the model achieved an F1 score of 0.87%. Liu
et al. (2022) improved YOLOV3 to detect pineapples and
calculated the 3D coordinates based on binocular vision
cameras. The average precision (AP) value of fruit detection
was 97.55% and the average relative error of binocular camera
positioning was 24.4 mm. Xu et al. (2020) improved the
backbone of YOLOvV3, modified the batch normalization layer
to group normalization, and used Soft-NMS to replace the
original network management system (NMS) bounding box
filter. The author proposed an image enhancement method to
improve backlit images. The model finally got an F1 score of
97.7%. Parico and Ahamed (2021) improved YOLOVA4, realizing
fruit counting through a unique identity document (ID) method,
which could meet the requirements of online operation. Zheng
etal. (2022) used the improved YOLOV4 to detect tomatoes in a
natural environment, and accuracy was improved by 1.52%
compared with the original model. Jiang et al. (2022)
integrated a non-local attention module and a convolutional
block attention module (CBAM) into YOLOV4 to detect growing
apples. Improved extraction ability of advanced features and
perception of regions of interest. The test achieved an AP of
97.2%. Lu et al. (2022) used the improved YOLOV4 to calculate
the number and the size of fruits on the whole apple tree. The
network had the highest detection rate during fruit picking. This
research enhanced the management ability of fruit trees. Zhang
et al. (2022) proposed real-time strawberry detection network
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(RTSD-Net) by improving YOLOv4-tiny’s cross stage partial
network (CSPNet). The detection of strawberries with the
embedded system Jetson Nano had a detection speed of 25.2
EPS; hence, the real-time performance of the network was good.
Chen et al. (2022) used YOLOV5 to detect citrus fruits and
proposed a citrus ripeness detection algorithm that combined
visual saliency with residual network (RESNet)-34. The accuracy
of the model could reach 95.07%. Yan et al. (2021) used an
improved YOLOVS5 to detect apples and judge whether the fruit
could be grasped by the picking machine. The model obtained a
mAP of 86.75% and an F1 score of 87.49%. Yao et al. (2021)
improved YOLOv5 by adding a small object detection layer,
inserting a squeeze and excitation (SE) layer, and using a
complete intersection over union (CIoU) loss function. The
model achieved a mAP of 94.7% in an experiment detecting
kiwifruit defects. Sozzi et al. (2022) utilized multiple networks to
detect white grapes under different lighting conditions, against
different backgrounds, and at different growth stages. The F1
score of YOLOv5x in the experiment was 0.76% and the
detection speed was 31 FPS. Summarizing the above studies,
using a one-stage algorithm such as YOLOv5 has become the
most common method of fruit detection. However, the detection
speed and accuracy of the network is still one of the problems to
be solved urgently, and the existing research rarely considers the
complex natural environment of the orchard.

YOLOVS5 can achieve good results in datasets such as
PASCAL VOC (Everingham et al., 2015) and COCO (Lin
et al., 2014). However, for detection tasks in agriculture, the
complete YOLOvV5 network produces more performance
redundancy. Even the light version of YOLOV5s struggles to
achieve satisfactory results in orchards. At the same time, the
background in orchards can be complex and fruits are easily
shaded by other objects. The nighttime environment also has a
significant impact on the effectiveness of detection. The existing
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YOLOVS5 algorithm is facing great challenges, especially in low-
performance devices, such as industrial computers, in online
detection. Therefore, the purpose of this research was to design
the YOLO-P network for fast and efficient detection of pears
against complex backgrounds, in shade and during night
picking. This method was based on YOLOv5. We designed a
new module, named an inverted shuffle block, which can be
applied in deeper layers to solve the problem of small targets
missing in detection. We replaced some of the CBS structure in
the YOLOv5 backbone with a shuffle block and an inverted
shuffle block to form a new backbone. A CBAM was inserted
into the new backbone to improve the ability to capture key
features of pears. In addition, the activation functions in the
remaining CBS of the entire network were replaced by Hard-
Swish to improve the running speed. The detection effect of this
method had been verified under different degrees of shade and
background complexity during daytime and nighttime. YOLO-P
can be used for fast and accurate detection of pears in orchards
and can a references for other types of fruit detection in
similar environments.

2 Pear detection framework

As one of the most mature, stable, and effective target
detection algorithms currently available, YOLOV5 consists of
three main parts: a backbone network, neck network, and
classifier. The backbone is cross stage partial (CSP)-
DarkNet53, which is used to extract different scale feature
information from images. The neck network is path
aggregation network (PANet) (Liu et al, 2018) with feature
pyramid network (FPN), which is used to fuse feature
information. The classifier outputs bounding boxes of large,
medium, and small scales to complete the target detection. The

CBH ] = [(Conv }»{(_BN_}—{Hard-Swish}->
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FIGURE 1
The network structure of YOLO-P.

Frontiers in Plant Science

31

CBH

frontiersin.org


https://doi.org/10.3389/fpls.2022.1089454
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

YOLO-P method proposed in this paper is based on YOLOvV5
and the structure is shown in Figure 1. The CBS structure in the
second and third stages of the YOLOv5 backbone were replaced
with a shuffle block. An inverted shuffle block was designed and
used to replace the CBS structure of the fourth stage. This new
backbone could extract features of distant pears in images more
efficiently. CBAM was inserted in the new backbone to improve
the important information perception capability of pears. The
sigmoid linear unit (SiLU) activation function in the rest of the
CBS structure was replaced with Hard-Swish to improve the
running speed of the network. A weighted confidence loss
function was designed to strengthen the detection effect of
small targets. The details of the improvements are
described below.

2.1 Backbone network

Ma et al. (2018) proposed that making the input and output
feature maps equal, reducing convolution and element-wise
operations, and integrating the network structure would help
improve the inference speed of the network. Tan and Le (2020)
suggested that increasing the depth of the network could result
in richer features but may cause gradients to disappear.
Increasing the width of the network results in finer-grained
features, but it may fail to learn deep features. Therefore, it is
necessary to balance the depth and width of the network to
achieve the best results. Figure 2 shows the backbone of YOLO-
P, built following the above lightweight network design
principles, and lists the size of the output feature map
(CxHxW). The input image size of the network is
3 x 640 x 640. The first stage is downsampling through two
convolutional layers to obtain a feature map with a size of
64 x 160 x 160. The second and third stages use the shuftle block
to extract features in the middle and shallow layers and
downsample twice to obtain a feature map with a size of
256 x 40 x 40. The fourth stage uses the inverted shuftle block
to extract features in deeper layers of the network and
downsamples to obtain a 512 x 20 x20 feature map. The fifth
stage uses the improved spatial pyramid polling (SPPF) module

10.3389/fpls.2022.1089454

in the deepest layer of the network to fuse the receptive field
information of different scales. Finally, the SPPF output of the
fifth stage and the output after the third and fourth stages’
CBAMs are sent to the neck network of YOLO-P.

2.1.1 Feature extraction

The CSP-DarkNet53 of the YOLOv5 backbone uses a large
number of CBS (Conv, Batch Norm, SiLU) structures which are
suitable for target detection of complex features. However, this
combination occupies a large amount of computation, and it is
difficult for the application to run online in embedded devices.
Therefore, this part needed to be optimized first. Xie et al. (2017)
proposed the concept of group convolution in ResNeXt, which
can effectively reduce the computational load of the network, as
shown in Figure 3A. But there was no information exchange
between groups and reduced the feature extraction ability. Based
on the idea of group convolution, Ma et al. (2018) proposed a
lightweight neural network ShuffleNetv2 that added channel
shuffle in shuffle block. Figure 3B shows the group convolution
process with channel shuffle. The channels between groups are
shuffled before output. The resulting information exchange
enables feature extraction to be done more efficiently.

2.1.1.1 Shuffle block

The shuffle block includes two cases where the stride is 1 and
2, respectively, as shown in Figure 4. First, the input feature
matrix channels was divided into two groups by channel split
and pass through two branches. If stride was 1, a residual
structure containing 1x1Conv, 3x3DwConv and 1x1Conv in
one branch was performed. If stride was 2 (downsampling), an
additional 3x3DwConv and a 1x1Conv on the other branch was
performed. The two branches were concatenated and the feature
map was outputted through channel shuffle.

2.1.1.2 Inverted shuffle block

The residual structure in CSP-DarkNet53 is shown in
Figure 5A. First, increases the dimension of the feature map
increased and the dimension was reduced to extract features.
However, there could be more zeros in the convolution kernel’s

Inverted n=>5

n=3 n=5 Shuffle Block | 256x40x40
B Shuffle Block 64x160x160 Shuffle Block 128x80%80
CBH 32x32;]x320 CBAM 256x40x40
CBAM | 64x160x160 CBAM 128x80x80 SPPF 512x20%20

CBH k=2,5=2 * Inverted s=2
64x160x160 s=2 §=2 Shuffle Block | 512x20x20

Shuffle Block 128x80x80 Shuffle Block 256x40x40 — —
Shuffle Block | 512x20x20

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
FIGURE 2

YOLO-P’s backbone. k is convolutional kernel size, s is stride, and n is the number of module’s repetitions. Unspecified k is 3, sis 1, and n is 1.
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Input
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FIGURE 3
(A) Group Convolution; (B) Group Convolution with Channel Shuffle.

parameter of deeper layers. Directly increasing dimension brings
difficulties to deep layers’ feature extraction. In MobileNet
(Howard et al., 2017), an inverted residual structure that first
reduced the dimension of the feature map and then increased the
dimension was proposed to extract more information, as shown
in Figure 5B. Inspired by lightweight networks such as
ShuffleNet and MobileNet, this study designed the inverted
shuffle block used in deeper layers of network (the fourth
stage of backbone), as shown in Figures 5C, D. The reversed
structure made it easier to extract features from small objects. It
was similar to shuffle block, but the residual structure of the
branch was changed to an inverted residual structure. Similarly,
if the stride was 2 (downsampling), an additional 3x3DwConv
and a PwConv on the branch of the inverted residual structure
was performed. The two branches were concatenated together
and output the feature map was outputted through
channel shuffle.

Channel Split

Y
1*1Conv
BN,ReLU

1*1Conv
BN,ReLU

FIGURE 4

10.3389/fpls.2022.1089454

Input

Output

2.1.2 Attention module

Attention mechanism is a way to reinforce important
information and suppress secondary information in a neural
network. Application in the field of image object detection had
proved attention mechanism’s effectiveness. The CBAM is a
lightweight soft attention module that is divided into channel
and spatial parts (Woo et al., 2018). The channel attention
module (CAM) when the inputs were C x H x W is shown in
Figure 6A. We then performed global average pooling (GAP)
and global maximum pooling (GMP) to the feature map in order
to obtain two C x 1 x 1 feature matrices and send them to a
multi-layer perceptron which has two layers. This was then
summed and activated to get the channel attention vector. CAM
focuses on what is in the feature map. The Spatial Attention
Module (SAM) is shown in Figure 6B; we then performed GAP
and GMP on the channel dimensions of the feature map to
obtain a 2 x H x W feature matrix, then a 7 x 7 convolutional

Channel Split

A
1*1Conv
BN,ReLU

k=3,s=2,DWConv

k=3,s=2,DWConv
BN, Rel
1*1Conv
BN,ReLU

(A) Shuffle Block (s=1); (B) Shuffle Block (s=2). a * b means the width and height of the convolution kernel.
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height of the convolution kernel.

(A) Residual Block; (B) Inverted Residual Block; (C) Inverted Shuffle Block (s=1); (D) Inverted Shuffle Block (s=2). a * b means the width and

layer and activation to get a 1 x H x W spatial attention vector.
The purpose of SAM is to more prominently express the
characteristics of key regions. Each pixel of the feature map
generates a weighted mask and outputs it, which reinforces
where the key target is. Figure 6C shows CBAM. The channel
attention vector obtained by CAM was first multiplied with
input feature map. Then the resulting feature map was

A CxHxW Cx1x1

I
GAP MLP

CxHxW

Channel Attention Module (CAM)
2xHXW

—>
GAP
Sigmoid
— —
—
GMP
SAM

Spatial Attention Module (SAM)

multiplied by spatial attention matrix obtained by SAM.
Finally, the output of CBAM is obtained through the residual
structure. The sequence of using CAM and then SAM to correct
the feature maps was based on the characteristics of the human
cerebral cortex, Woo et al. (2018) experiments also verified this.
We applied CBAM to the second, third, and fourth stages of
YOLO-P’s backbone. Following experiments by Park et al

Cx1x1

e
R

CAM

IxHxW IxHxW

7x7
Conv

o ——

FIGURE 6

Block Attention Module (CBAM).
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Convolutional Block Attention Module (CBAM)

Schematic diagram of the CBAM structure in YOLO-P. (A) Channel Attention Module (CAM) (B) Spatial Attention Module (SAM) (C) Convolutional
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(2018), we inserted the attention module at the bottleneck of the
network, i.e., before the downsampling layer. We then connected
the output of CBAM to the neck network of YOLO-P for better
feature fusion.

2.2 Activation function

The activation function of the network was mainly improved
in two aspects. First was to replace the SiLU activation function
for all CBS structures in YOLOv5 with Hard-Swish, and the
second was to use the linear activation function for the last
convolution layer in the inverted shuffle block.

First, all CBS structures in YOLOvV5 used SiLU as an
activation function. For the network applied to embedded
devices, obviously the linear activation function could make
the network faster. Hard-Swish (Howard et al., 2019) activation
function was bounded up and down. The non-monotonic and
piecewise linear characteristics reduced the amount of
calculation. It was beneficial to eliminate saturation and make
the feature expression ability better. All Conv, Batch Norm,
Hard-swish (CBH) structures in YOLO-P’s backbone and neck
network used Hard-Swish as an activation function. Equation
(1) is the Hard-Swish expression where x;, represents the input
of the activation function. Second, ReLU was used as an
activation function after most convolutional layers in the
original shuffle block. However, due to the inverted residual
structure of the inverted shuffle block, first an increase in
dimension and then a reduction in dimension made the final
output a low-dimensional feature vector. Although ReLU can
better express high-dimensional features, it has serious loss of
low-dimensional feature information (Sandler et al., 2018). In
order to ensure the feature information was not lost and to better
match the complete output of the inverted residual, each branch
of the last convolutional layer of inverted shuffle block’s used a
linear activation function.

Hard-Swish(x;,) =x;,

ReLUG6(x;, + 3)
+ 1)

ReLU6(x;,) = min ( max (x;,,0), 6) (2)

2.3 Loss function

Since the detection target type of the model was only pear,
we did not set the class loss. The loss function of YOLO-P
consists of confidence loss and location loss. Equation 3 shows
confidence loss which was used to measure the probability that
the predicted bounding box contained the real target. It was
calculated by using binary cross entropy (BCE). In In Equations
3 and 4, I is the intersection area of the ground-truth box and
predicted bounding box, U is the area of the union, C; is the
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prediction confidence, N is the total number of samples, and spl
represents all samples. According to the structure of the YOLO-
P predictor, different weights K, K5, and K; are adopted on the
three prediction layers of small, medium, and large to strengthen
the targets’ detection ability of different scales. The confidence
loss is shown in Equation 5. Since pears with a greater distance
(small objects on the image) are more difficult to detect, we took
K, K5, and Kj as 6.0, 1.0, and 0.5 in YOLO-P, respectively.

D (iln (C)+@ —é)ln(l -C))

4 i€spl

Lconf =" N (3)
C; = sigmoid(C;) (4)
Leon = 6.0+ Lig! + 1.0 - LI +0.5 - L0 (5)

The location loss measures the location error between
predicted bounding box and ground-truth box. Zheng et al.
(2020) pointed out that the regression loss of bounding box
should take the overlapping area, the distance between center
points of the box, and the aspect ratio into account. In this study,
we used CIoU loss as the location loss of YOLO-P, as shown in
Equations 6-8, where w,, and by, are the length and width of
ground-truth box, w;, and b, are the length and width of the
predicted bounding box, d is the Euclidean distance between the
predicted box and the ground-truth box, and c is the diagonal
distance of the union of the predicted box and the ground-truth
box. The CIoU loss can directly minimize the distance between
two boxes (Zheng et al., 2020), so it has a faster convergence rate.

I &
Lloczl_(U_(C_z+av)) (6)
a=—" 7)
aQ-5)+v
4 w w
v = — (arctan—* — arctan —2 )? (8)
T gt P

Combined with confidence loss and location loss, the loss
function of YOLO-P is shown in Equation 9.

)

Loss = Leons + Lige

3 Experiments

3.1 Dataset

Images required for the experiment were collected at a pear
planting base located in Gaochun District, Nanjing City, Jiangsu
Province, China. In this research, Akidzuki pears were used as
detection targets. In August 2022, images were captured using a
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Sony FDR-AX60 4K camera with a sensor type of 1/2.5 stacked
complementary metal-oxide-semiconductor (CMOS), and a
total of 533 images containing Akidzuki pears were captured
as training samples while 118 images different from the training
samples were taken for model testing. In addition to normal
daytime lighting, the dataset also contained samples at night.
The images at night were taken with the aid of a 1000 Im light
source. Images contained shaded pears and complex
backgrounds. We used ImageLabel to annotate images and
perform data augmentation by randomly selecting three of the
following augmentation strategies: (1) 50% probability of
horizontal mirror flip, (2) 50% probability of vertical mirror
flip, (3) random scaling 80-95%, (4) random brightness
adjustment to 35-150%, (5) randomly added Gaussian blur, or
(6) randomly added Gaussian noise. The images that could not
be used for training were eliminated, and the training dataset
was finally expanded to 5257 images. The expanded image
inherited the previous annotations with 55496 labels in total.
According to the ratio of 8 : 2, the dataset was divided into a
training set and a validation set, which had 4206 and 1051
images, respectively. All images were stored in JPG format. The
details of the dataset are shown in Table 1.

The difference in the distance between the camera and the
pear will result in different scales of the collected images. The
further the distance, the smaller the target. At this time, most
areas of the image will be covered by useless background and
increase the image’s background complexity. The disordered
background in the orchard makes it more challenging for the
model to detect objects. Also, the number of smaller objects will
increase significantly. According to the distance between the
camera and the fruit, we divided the background of the image
into three cases: uncomplicated, moderately complicated, and
extremely complicated. Among them, the distance of 0.3-0.5 m
was set for uncomplicated, while 0.5-1 m for moderately
complicated, and farther than 1m for extremely complicated.

The pears on the fruit trees photographed by camera were
sometimes shaded by leaves or other objects, and there were also
cases where the pears might be shaded by each other. The shaded
target would bring difficulties to detection. In order to
specifically verify the reliability of YOLO-P in detecting such
targets, we proposed a method for calculating the pears’ shaded
degree. K was used to evaluate the degree of shade, which was
the ratio of the shaded area to the total area of the pear in images.
According to our previous experiments, it was extremely difficult
to detect when Ks was higher than 0.6, so only the case of K;< 0.6
was considered in this study, as shown in Table 2.

TABLE 1 Details of the pear image dataset.

Uncomplicated Moderately complex

background

background

10.3389/fpls.2022.1089454

3.2 Experimental environment and
parameters

Training of YOLO-P was carried out in a Windows 10
environment. The graphics processing unit (GPU) was Nvidia
GeForce RTX 3060, the central processing unit (CPU) was AMD
Ryzen 7 5800, and the memory was 32 GB. We used the
Pytorch1.8.1 framework, CUDA 11.1 computing platform and
CUDNN 8.1 deep neural network acceleration library.

The momentum decay and weight decay of all models
during training were designed to be 0.9 and 0.0005,
respectively, and the initial learning rate was 0.01. At the same
time, the cosine annealing algorithm was used to optimize the
learning rate. We used three rounds of epoch to warmup in
order to stabilize the early training model. The warmup
momentum was 0.8 and the batch size was set to 32. We used
Adam as the optimizer with 500 training epochs. To prevent
overfitting, the model would automatically stop training if there
was no accuracy improvement in the last 50 training epochs.

3.3 Evaluation indicators

A variety of indicators could be used to evaluate the quality
of the model in different experimental contexts, such as precision
(P), recall (R), F1 score, AP, mAP, FPS, FLOPs, model volume,
etc. The higher the P, R, F1 score, and AP, the more reliable the
model would be. Their computation consists of true positives
(TP), false positives (FP), and false negatives (FN), as shown in
Equations 10-13 respectively. The intersection over union (IoU)
threshold in AP took 0.5 (AP@0.5). It is worth mentioning that
there was only one category of pears in this study, so AP and
mAP were equal.

TP

pP=—" 10
TP + FP (10)
TP
R=—— 11
TP + FN (D
2PR
Fl = (12)
P+R
1
AP:/ P(R)dR (13)
0

Extremely complex . S Total
background eyl | N images

Number of
R 1209 1630
images
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TABLE 2 Index of shaded pear’s degree in the dataset.

Evaluation indicators

Not shaded or slightly shaded 0<K<0.2
Medium shaded 0.2<K,<0.4
Serious shaded 0.4<K,<0.6

Model volume refers to the size of weight file obtained after
training. FPS refers to the number of images the model can
process per second. FLOPs is the total floating-point operations
of the model, as shown in Equation (14), where N represents all
convolutional layers, L; and C; are the output feature layer size
and number of channels of the current layer, respectively, K; is
the number of convolution kernels of the current layer, and C;;
is the number of input channels of the current layer. Like the
model volume, the higher the FLOPs and the more complex the
model, the slower the operation speed and the lower the FPS.

FLOPs = S L} x K} x C; x C;
i€[1N]

(14)

3.4 Experiments results

3.4.1 Model comparison experiments

Since YOLO-P is a one-stage model, the purpose is to run at
high speed on low-performance devices, so it is not meaningful
to compare with the two-stage model. We selected several
mainstream lightweight networks including RegNet,
MobileNetv3, and EfficientNetv2 to compare with YOLO-P.
RegNet (Radosavovic et al., 2020) optimized design space of
the network to obtain optimal solution. MobileNetv3 (Howard
et al., 2019) added squeeze excitation attention to the inverted
residual module, and reduced the amount of computation
without losing accuracy by improving the structure of the last
stage. EfficientNetv2 (Tan and Le, 2021) improved feature
extraction efficiency by introducing Fused-MBConv. In order
to make the model volume more similar to YOLO-P, we replaced
the backbone of YOLOV5s with the above three networks. At the
same time, the classic YOLOv5s model was used for comparison.

TABLE 3 Results of model comparison experiments.

Precision (%)

RegNet-YOLO 92.8
MobileNet-YOLO 95.4
EffiecientNet-YOLO 95.6
YOLOVS5s 96.0
YOLO-P 98.1

Bold means the best score achieved in that category.
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In the model comparison experiments of this section, we selected
P, AP@0.5, FLOPs, and module volume as evaluation indicators.
The test results are shown in Table 3.

From the data in Table 3, it can be seen that YOLO-P
achieved the best AP in section’s experiments, which was 97.6%
and it was 1.8% higher than its original network. RegNet-YOLO
had the lowest AP. Although the FLOPs of YOLO-P was not the
lowest, we got the smallest model volume which was only
8.3 MB. Compared with YOLOV5s, it was 39.4% smaller.
MobileNet-YOLO had the lowest FLOPs of only 7.3 G, which
is related to the reduction of last stage in this network. Model
comparison experiments showed that the combination of shuffle
block and inverted shuffle block was reliable. The proposed
YOLO-P model could detect pears in orchards with a smaller
model volume and high accuracy.

3.4.2 Ablation experiments

We conducted ablation experiments on YOLO-P and
discussed the performance improvement of YOLOv5s with
new modules and new structures. New operations included
shuffle block, inverted shuffle block, Hard-Swish activation
function used in CBH, and inserted CBAM. We designed four
sets of experiments in this section. In the T1 experiment, the four
CBS groups and their corresponding downsampling modules in
the YOLOv5s backbone network were replaced with shuffle
blocks. In the T2 experiment, the four CBS groups and their
corresponding downsampling modules in the YOLOv5s
backbone network were replaced with an inverted shuffle
block. The number of module repetitions in both T1 and T2
was the same as YOLO-P. In the T3 experiment, all four CBS
groups were replaced with the same shuffle block and inverted
shuffle block as YOLO-P. The T4 experiment used Hard-Swish
on the basis of the T3. Finally, full YOLO-P network was
CBAM’s insertion. In the model ablation experiments of this
section, we selected precision, AP0.5and FLOPs as evaluation
indicators: the test results are shown in Table 4.

It can be seen from Table 4 that only using a shuffle block or
an inverted shuffle block in the backbone was not as good as the
AP obtained by YOLOV5s, because the inverted structure is not
suitable for shallow networks. Also, the use of upsampling in
deep networks reduced the ability to detect small objects. We

FLOPs (G) Model Volume (MB)
134 146
7.3 9.2
144 17.8
15.9 137
10.1 8.3
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TABLE 4 Results of ablation experiments.

10.3389/fpls.2022.1089454

Shuffle Block Inverted Shuffle Block Hard-Swish CBAM Precision (%) AP@0.5 (%) FLOPs (G)
YOLOV5s 96.0 95.8 15.9
T1 v 94.3 93.9 10.6
T2 v 94.8 94.7 9.3
T3 v N 96.2 95.9 10.0
T4 v v v 96.9 96.5 10.0
YOLO-P v v v V 98.1 97.6 10.1

Bold means the best score achieved in that category.

used different structures in shallow and deep layers of the
network to deal with different sized targets. It would be easier
to detect targets with inconspicuous feature expressions by
combining the characteristics and advantages of the two
modules. The AP obtained by the T3 experiment was similar
to original network, which was only 0.1% higher than YOLOV5s.
However, due to the influence of the channel shuffle, the
calculation amount of model was reduced which made the
FLOPs reduce, and the detection speed was also be improved.
The model’s AP was improved by 0.6% after optimizing the SILU
activation function to Hard-Swish. On this basis, the feature
extraction ability was further strengthened by inserting CBAM,
which made AP increase by 1.1%, reaching 97.6%. The
comparison of four sets of experiments above proved that the
proposed improved application is feasible in the pear
detection network.

3.4.3 Pear detection experiments

Pear detection experiments were carried out on an industrial
computer with limited computing resources in order to verify
the feasibility of YOLO-P online work. We chose the embedded
industrial computer of model DTB-3049-H310 produced by
Dongtintech. The operating environment was Ubuntu 18.04,
CPU was i7 9700 with 16 GB memory and it was without GPU.
Detection experiments considered many situations of an
intelligent picking robot in orchard. Different types of picking
machinery working at different distances resulted in different
degrees of background complexity. Dense foliage made pears
shaded. For efficiency purposes, picking should be done not only
during the daytime, but also at night. The experiment used 59
daytime and 57 nighttime pear images that different from the
training samples, with a total of 649 labels. Three models
(YOLOvV5s, MobileNet-YOLO, YOLO-P) were selected in this
section’s experiments. The models’ detection abilities under
different background complexities and different degrees of
shaded were respectively studied. We set the confidence
threshold of the detection model to 0.4, i.e., confidence below
0.4 was not annotated in the image. The P, R, and F1 score were
calculated by counting TP, FP and FN. FPS of the model
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operation were recorded. The overall test results are shown in
Table 5. Pears that were detected by YOLO-P are shown
in Figure 7.

3.4.3.1 Experiments during daytime

There was sufficient sunlight during the daytime: pears were
easily detected when the background was not complicated (the
target was obvious) and the degree of shade was low. However,
the shade led to reduction of features or the image taken from a
long distance led to fewer pixels on the target which would
weaken the feature representation of pears. In this section,
detection experiments were carried out on pears in different
situations according to the proposed method of calculating
background complexity and shaded degree under sufficient
light during daytime.

First, experiments of different background complexities were
carried out. We measured the background complexity by the
distance between camera and pears. The F1 score obtained in
this section is shown in Table 6. The experiments images are
shown in Figure 8. Figures 8A-C are images of pears in
uncomplicated backgrounds. YOLO-P detected all objects
accurately. There were two false detections in YOLOVS5s.
MobileNet-YOLO did not detect a pear that had been shaded
below. Figures 8D-F are images of pears in moderately complex
backgrounds. All three networks detected all targets, but both
YOLOV5s and MobileNet-YOLO mistakenly marked a dead leaf
as a pear. Figures 8G-I are images of pears in extremely complex
backgrounds. The environment of these images was relatively
harsh. There were 15 valid targets in the image and many pears
were seriously shaded. MobileNet-YOLO missed four targets.

TABLE 5 Result of Akidzuki pear detection experiments.

Precision (%) F1 (%) FPS
MobileNet-YOLO 90.1 89.6 28
YOLOVS5s 94.8 92.8 19
YOLO-P 97.3 96.1 32

Bold means the best score achieved in that category.
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FIGURE 7
The detecting effect of Akidzuki pear in complex environment.

YOLOv5s and YOLO-P both missed two targets, but YOLOV5s
had two false detections. It can be seen from the experiment in
this section that YOLO-P had strong anti-interference ability.
Although YOLOV5s could also detect targets accurately, it often
misidentified other objects such as dead leaves as pears due to
similar features. Even in the case of extremely complex
backgrounds and few pixels, YOLO-P hardly had false
detections and missed detections.

In the experiment of different degrees of shade, the degree
was measured by the shaded area of pears. The more severely
shaded, the more difficult feature expression of pears in the
image, and the more difficult to it was detect accurately. The F1
score obtained in this section is shown in Table 7. The
experimental images are shown in Figure 9. Figures 9A-C are
not shaded or slightly shaded pear images and Figures 9D-F are
medium-shaded pear images. As can be seen from the figure, all
three networks could detect the shaded pears, but YOLO-P

always had the highest confidence in detecting shaded targets.
Figures 9G-I are serious-shaded pear images. Only MobileNet-
YOLO failed to detect serious shaded objects. YOLO-P was more
stable against shade problems during the day due to its
higher confidence.

3.4.3.2 Experiments during nighttime

The problem of nighttime detection is the presence of
shadows. Shadows are very similar in color to the background,
so shadows can also be considered as a form of detection.
Shadows may have pixel values very similar to the external
environment due to the uncertain lighting direction. The
boundaries between the outline of pear and the environment
become blurred. Therefore, detecting pears at night will be more
difficult than during the day. In this section, detecting
experiments were carried out under the illumination of an
auxiliary light source at night.

TABLE 6 F1 score (%) in different background complexities experiments during daytime.

Uncomplicated back-

Moderately complex background

Extremely complex background = Average

ground
YOLOVSs 95.5
MobileNet- 05
YOLO
YOLO-P 96.9 ‘

Bold means the best score achieved in that category.
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FIGURE 8

From left to right are the detection effects of YOLOV5s, MobileNet-YOLO and YOLO-P. (A—C) Uncomplicated background; (D—F) Moderately

complex background; (G-1) Extremely complex background

The F1 scores obtained by the experiments of different
background complexity at night are shown in Table 8. The
experiment images are shown in Figure 10. Figures 10A-C are
images of pears in an uncomplicated background. It can be seen
from the figure that MobileNet-YOLO missed a target. Both
YOLOvV5s and YOLO-P detected each objects successfully. But
YOLOVS5s had lower confidence and the location of the bounding
box was not accurate. Figures 10D-F are images of pears in
moderately complex backgrounds. The situation was similar to

the previous group; although both YOLOv5s and YOLO-P
detected all targets, YOLO-P had significantly higher confidence.
Figures 10G-I are images of pears in extremely complex
background. Both YOLOv5s and YOLO-P had a false detection,
but they all detected a target in the middle of the image which was
interfered with by a more complex shadow, while MobileNet-
YOLO did not detect this target. The unclear edge of pears caused
by nighttime illumination is one of the important reasons that
affect the stability of the model. It can be concluded from the

TABLE 7 F1 score (%) in different shaded degrees experiments during daytime.

Not shaded or slightly shaded

YOLOV5s ‘ 94.8
MobileNet-YOLO ‘ 94.5
YOLO-P ‘ 97.2

Bold means the best score achieved in that category.
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FIGURE 9

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A—C) No shaded or slightly shaded; (D—F) Medium

shaded; (G-1) Serious shaded.

experiments that the performance of YOLO-P is better than other
models in the complex background situation at night.

The F1 scores obtained by the experiments of different shade
degrees at night are shown in Table 9. The experiment images of
at night are shown in Figure 11. Figures 11A-C are not shaded

or slightly shaded pear images. All three networks detected the
target accurately. Figures 11D-F are medium-shaded pear
images. YOLOv5s and YOLO-P detected all targets. Neither of
the two shaded fruits was successfully detected by MobileNet-
YOLO. Figures 11G-I are serious-shaded pear images. YOLOV5s

TABLE 8 F1 score (%) in different background complexities experiments during nighttime.

Uncomplicated back-

Moderately complex background  Extremely complex background Average

ground
YOLOV5s 92.8
MobileNet- 873
YOLO
YOLO-P 97.8

Bold means the best score achieved in that category.
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FIGURE 10

From left to right are the detection effects of YOLOV5s, MobileNet-YOLO and YOLO-P. (A—C) Uncomplicated background; (D—F) Moderately

complex background; (G-I) Extremely complex background

and YOLO-P detected all pears. But MobileNet-YOLO only
detected one of the two targets. Likewise, YOLO-P had the
highest confidence in this section’s experiment.

It can be seen that YOLO-P could accurately detect pears in
various situations according to the above experiments. Although
YOLOV5s could also accurately detect most targets, there were

many false detections and lower confidence. Another weakness
is that YOLOv5s needs more computing resources. MobileNet-
YOLO was difficult to extract high-semantic features due to the
insufficient feature extraction ability. Therefore, there was a high
degree of missed detection which is especially evident in the case
of high complexity and seriously shaded. In summary, YOLO-P

TABLE 9 F1 score (%) in different shaded degrees experiments during nighttime.

T

r slightly shaded Medium shaded Serious shaded
91.5 90.6 90.2 90.8

YOLOV5s
MobileNet-YOLO 89.2 86.9 85.7 87.3
YOLO-P 95.7 95.6 95.1 95.5

Bold means the best score achieved in that category.

Frontiers in Plant Science

42

frontiersin.org


https://doi.org/10.3389/fpls.2022.1089454
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

pear 0.87

pear 0.79

pear 0.90 = 4 oear 0.95

¥heor 006

)

G

FIGURE 11

10.3389/fpls.2022.1089454

| \,‘
pear 0.8

e
pear 0.77 N [ 4

S

=
oear 0.91 =S 4

\ :eu‘r 0.89

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A—C) No shaded or slightly shaded; (D—F) Medium

shaded; (G-I) Serious shaded

had the best reliability in detecting pears in complex
environments. YOLO-P had the best reliability in detecting

pears under complex environments.

Extensive research work has proved that building more
complex datasets is the key to further improving the accuracy
and robustness of deep learning models. For the automatic
picking work in orchards, there are different shade patterns and
backgrounds for each step the robot moves. Therefore, the scene it
sees is far more complex than the images used for training.
Although we collected as many complex images as possible, the
variety of shaded fruits is too numerous. If a similar pattern of
shaded fruits is not trained, the model will most likely be unable to

Frontiers in
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recognize this object (although it looks remarkably easy to
recognize). In this study, only the case where the fruit was
shaded below 60% was considered. More diverse image data
should be obtained in future work to deal with the more
severely shaded fruit detection.

In experiments at night, we found that pixels in shadow-
covered locations might be very similar to the outside
environment, especially when the angle of the light source to the
target was uncertain. This is one of the most important barriers to
detecting pears at night. At present, some studies ( ;

) have proved that the use of image enhancement
can improve the accuracy of deep learning in harsh environments,
especially in low light. If the models use some kind of machine
learning method to preprocess the image and enhance the target
boundary then input to neural network for recognition, the night
detection ability of the model could be further improved.
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Furthermore, only the detection of fully ripe pears was
investigated in this study. In practice, picking in orchards should
be done in batches. There may be cases that some pears are mature
and some are not. Therefore, the intelligent detection of fruit
ripeness is also one of the main research directions. Fruit ripeness
can be judged by directly detecting the appearance characteristics
(Chen et al., 2022). In addition, remote sensing can also be used for
detection. From a macro perspective, the leaves of pear trees will
become darker during the ripening season, and the fruits on pear
trees may also have different characteristics. Remote sensing
detection combined with deep learning may better judge fruit
ripeness, thereby helping intelligent picking in orchards.

5 Conclusions

The cost of manual picking has gradually increased with the
continuous loss of agricultural labor. In order to improve the
economic benefits of fruit farmers and the automation degree of
orchards, it is imperative to study the intelligent picking
technology. Accurate and fast fruit detection is one of the
most critical steps for orchard robot automatic picking. The
robustness of fruit detection in complex backgrounds and
shaded environments is a key factor affecting the work of
automated picking robots. This study aimed to improve the
accuracy and speed of fruit detection by improving the existing
methods. The results will improve the reliability of pear
detection in unstructured environments and enable it to be
applied to online detection tasks in an industrial computer.

Based on YOLOV5, we proposed a deep learning model
YOLO-P for detecting pears in complex orchard environments.
The research carried out the following design and
improvements. A new module named inverted shuffle block
was designed. The inverted shuffle block was used in deeper
networks. Combined with the shuffle block used in the shallow
networks, the backbone of YOLOV5 was reconstructed. The new
backbone had a good ability to detect small targets. The
activation function was replaced with Hard-Swish to reduce
the computational load of the network. CBAM was inserted to
improve the capture of key information. Finally, a weighted loss
function was designed to further improve the feature extraction
ability of small targets.

We used the Akidzuki pears as detection object of the model.
We compared YOLO-P with some mainstream lightweight models.
The detection effect of YOLO-P was significantly better than others.
Compared with the original YOLOv5s, AP increased from 1.8% to
97.6%, and the volume of the model was compressed by 39.4% to
only 8.3MB. Ablation experiments on YOLO-P demonstrated the
effectiveness of these improvements. In daytime and nighttime
Akidzuki pear detection experiments, we used an embedded
industrial computer to test the performance of the model under
different background complexities and different shade degrees. The
experimental results showed that YOLO-P achieved the highest F1
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score and FPS of 96.1% and 32, respectively which were 3.3% and
68.4% higher than YOLOV5s, respectively. The YOLO-P developed
in this paper can provide technical support for intelligent picking in
pear orchards, and can also provide a reference for other types of
fruit detection in complex environments.

In this research, we only considered the situation that the
degree of shade is less than 60%. In the real orchard environment,
there may be fruits that are more seriously shaded and difficult to
be detected. Efficiently obtain high-quality and more abundant
data to train models will be our next research goal. In detection at
night, border of the fruit may be similar to the environment due to
the lack of light. This is one of the reasons why the accuracy at
night is lower than that during the day. In follow-up research, we
will consider using image enhancement algorithms to further
improve the reliability of the model.
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Introduction: Estimating and understanding the yield variability within an individual
field is critical for precision agriculture resource management of high value tree
crops. Recent advancements in sensor technologies and machine learning make it
possible to monitor orchards at very high spatial resolution and estimate yield at
individual tree level.

Methods: This study evaluates the potential of utilizing deep learning methods to
predict tree-level almond yield with multi-spectral imagery. We focused on an
almond orchard with the ‘Independence’ cultivar in California, where individual
tree harvesting and yield monitoring was conducted for ~2,000 trees and summer
aerial imagery at 30cm was acquired for four spectral bands in 2021. We developed
a Convolutional Neural Network (CNN) model with a spatial attention module to
take the multi-spectral reflectance imagery directly for almond fresh weight
estimation at the tree level.

Results: The deep learning model was shown to predict the tree level yield very
well, with a R2 of 0.96 (+0.002) and Normalized Root Mean Square Error (NRMSE)
of 6.6% (+0.2%), based on 5-fold cross validation. The CNN estimation captured
well the patterns of yield variation between orchard rows, along the transects, and
from tree to tree, when compared to the harvest data. The reflectance at the red
edge band was found to play the most important role in the CNN yield estimation.

Discussion: This study demonstrates the significant improvement of deep learning
over traditional linear regression and machine learning methods for accurate and
robust tree level yield estimation, highlighting the potential for data-driven site-
specific resource management to ensure agriculture sustainability.

KEYWORDS

CNN, deep learning, yield prediction, multispectral imagery, almond, UAV/drone
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1 Introduction

Over 2.2 million ha of land produces about 4.1 million metric tons
of almonds in 2020 globally, with United States (US) as the largest
producer (FAO, 2022). About 80 percent of the world’s almonds are
produced in California’s irrigated land, generating about $5bn “farm
gate value” and an additional $3 billion of indirect and induced values
(CDFA, 2022). In the last two decades, the total acreage of almond
orchards in California doubled and became the state’s second largest
agricultural commodity. The continued expansion of water and
fertilizer-intensive tree crops, coupled with climate change, poses a
threat to the long-term sustainability of almond industry, despite
ongoing research and outreach efforts focused on tree crops (Khalsa
et al, 2022). Excessive groundwater pumping especially during
drought years, for example, has caused a significant drop of
aquifer’s water depths in Central Valley (Fulton et al, 2019).
Groundwater has also been degraded due to nitrogen leaching from
agricultural fields (Harter, 2009). One out of ten public water supply
wells in California have nitrate levels exceeding the maximum
contamination level (Harter, 2009).

In response to these challenges, various regulatory programs have
been implemented in California over the past decade, requiring
growers to increase the efficiency of irrigation and nitrogen use
(Rudnick et al., 2021). Meeting these regulations will require more
precise and adaptive irrigation and nitrogen management strategies.
In particular, a change from whole-field management to zonal and
even tree-specific precision agricultural practices is critical for
maximizing ‘crop per drop or lb of N’, considering large yield
variability within an individual almond orchard (Jin et al, 2020).
Accurate yield estimation and prediction is a missing link in current
nitrogen management tool, although the guidance is available on N
fertilization given the expected almond yield for a particular orchard.
An improved understanding of within-field yield variability is also
needed for adaptive on-farm management to close the yield gap (Jin
et al., 2020). Reliable yield estimation can also help with insurance
and market decisions, which rely on the understanding of mean and
variability of yields at the field scale (Lobell et al., 2015).

Both mechanistic simulation models and statistical approaches
have been used for yield estimation (Hodges et al., 1987; Dzotsi et al.,
2013; Burke and Lobell, 2017; Kang and ()Z(i()gall, 2019; Sidike et al.,
2019). The process models simulate crop growth, nutrient cycling,
soil-plant dynamics, and energy and water balance under various
climate and management scenarios (Zhang et al., 2019; Archontoulis
et al,, 2020), such as the Agricultural Production Systems Simulator
(APSIM) model (Keating et al., 2003). Although powerful, it is
challenging to calibrate these models across different sites, because
of the complexity of the biological processes (Jagtap and Jones, 2002).
These models often require extensive biotic and abiotic data as input,
such as soil properties, which may not be available at the field or finer
scale (Sakamoto et al, 2013; Zhang et al, 2019). Moreover, the
majority of crop models focus on row crops such as corn, soybean,
barley, and etc., while the simulation of tree crops with complicated
physiological processes is very limited (Keating et al., 2003).

Statistical models, on the other hand, are based on the empirical
relationships learned from the observed yield data and the factors
affecting production, instead of simulating complex biophysical
processes (Medar and Rajpurohit, 2014). Regression models, for
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example, have been developed to quantify the impact of climate on
agriculture production at county and state level (Lobell et al., 2007;
Lobell and Field, 2011; Mourtzinis et al., 2015; Xu et al., 2016). Studies
have shown that the recent climatic trends have mixed effects on tree
crop yields in California (Lobell et al., 2007; Lobell and Field, 2011).
Across the US, it has been estimated that warming will lead to
reduction in soybean and maize production in the Midwest
(Mourtzinis et al.,, 2015; Xu et al.,, 2016). All these statistical studies
provide guidance for county, state or nation-wide climate mitigation
and adaptation strategies. However, the utility of these coarse scale
empirical models is limited in terms of informing growers for their
on-farm resource management for individual fields or trees.

Recent advancement of remote sensing technologies enables plant
monitoring across a range of spatial and temporal resolutions,
opening doors for data-driven yield estimation at the field scale
(Shahhosseini et al., 2020; van Klompenburg et al., 2020; Rashid
et al, 2021; Muruganantham et al, 2022). Both traditional and
machine learning methods have been developed to relate field
surveyed yield data with remote sensing metrics and other
environmental drivers (Burke and Lobell, 2017; Lambert et al,
2018; Hunt et al., 2019; Zhang et al., 2019). Burke and Lobell
(2017) found that the linear regression model, driven by vegetation
indexes (VIs) derived from high resolution multi-spectral images
from Terra Bella satellite at 1m, predicted well the yield for maize
fields in west Kenya. Machine learning models such as random forest
and gradient boosting trees have also been developed to predict yield
for individual fields over almond tree crops by integrating Landsat
VIs and weather data in California (Zhang et al., 2019), over wheat in
United Kingdom using Sentinel-2 VIs (Hunt et al., 2019), and over
cotton, maize, millet and sorghum in Mali using Sentinel-2 VIs
(Lambert et al., 2018).

Most recently more complex deep learning models such as Deep
Neural Network, Convolutional Neural Network (CNN), and
Recurrent Neural Network have been introduced to improve yield
estimation with large remote sensing datasets, due to their improved
performance over traditional statistical approaches (Ball et al., 2017;
You et al.,, 2017; Cai et al., 2018; Kang and Ozdoigan, 2019; Khaki and
Wang, 2019; Sidike et al., 2019; Kang et al., 2020; Khaki et al., 2020;
Ma et al,, 2021). The Bayesian neural network model, for example, has
been shown to predict county-level corn yield well in twelve
Midwestern states of US (R® = 0.77), using VI time series from
MODIS imagery, climate variables, soil properties, and historical
average yield (Ma et al,, 2021). A limited studies applied recurrent
neural network framework such as Long Short Term Memory models
to take into account of sequential imagery and weather for county-
level corn yield in combination with CNN; their models outperform
the traditional regression and machine learning models (You et al,
2017; Khaki et al., 2020). Shahhosseini et al. (2021) also explored a
hybrid approach to integrate features from crop modeling to machine
learning models and found the importance of hydrological inputs for
yield estimation in the US corn belt. At field scales, data assimilation
technique has been explored to incorporate the remote sensing
observations of canopy development into the Decision Support
System for Agrotechnology Transfer (DSSAT) crop model for corn
yield mapping over the US corn belt (Kang and Ozdogan, 2019).
However, most of the studies still use human-engineered index-based
feature extraction method, such as some widely used vegetation index
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and contextual information derived from imagery, to predict yield
and do not explore the potential of learning-based feature extraction
with deep learning models that directly use multi-spectral imagery
as input.

In order to capture variations of crop yield among individual
plants for precision management, higher spatial resolution
observations of canopy structure and conditions are required, such
as those from very high-resolution commercial satellite and aerial
imagery (Sidike et al, 2019; Maimaitijiang et al., 2020). Recent
advances in computer vision and deep learning technology further
unlock the power of centimeter imagery for fine scale yield estimation
at individual plant or sub-field level. Chen et al. (2019) developed a
region-based CNN model to detect and count the number of flowers
and strawberries at plant level from the RGB drone imagery and
found an overall counting accuracy of 84.1%. Another study
integrated multi-spectral and thermal drone imagery with machine
learning and deep neural network models to estimate the sub-field
soybean yield in US (Maimaitijiang et al., 2020). However, the study
on plant-level yield variation is still very limited and the majority
focuses on row crops, mostly due to the lack of field-based yield
database for individual plants, especially for tree crops.

We here took advantage of a unique individual tree harvesting
data and aerial imagery of multiple spectral bands at 30cm spatial
resolution over an almond orchard in California’s central valley, to
explore the potential of deep learning for tree level almond yield
estimation. Specifically, we aimed to address the following questions:
(i) how CNN model can be used to estimate almond yield for each
individual tree, based on very high resolution multi-spectral imagery;
and (ii) what is the capability of the trained CNN models in capturing
the within-field almond yield variation; and (iii) what is the relative
importance or added value of the observations in the red edge part of
the spectrum, a spectral band increasingly available in recent imaging
systems, with regard to almond yield estimation.

2 Materials

2.1 Study orchard and Individual
tree harvest data

This study was conducted over an almond orchard with a size of 2
squared kilometers in Vacaville, California, USA (Figure 1). Under a
typical Mediterranean climate, the area experiences hot dry summer
with average daily max temperature in July of 34 °C and cool winter
with average daily minimum temperature in January of 3.7 °C. Mean
annual precipitation is 63 ( + 21) cm and the majority rainfall occurs
from November to March (BestPlaces, 2022; Cedar Lake Ventures,
2022; WRCC, 2022). For almond tree, the water usage increases
gradually from March to July, and decreases from July to October
(Athwal, 2021). The hot and dry summer requires large amount of
irrigation water usage to support crop growing, which mainly comes
from groundwater and surface water including Lake Berryessa and
Putah Creek (SID, 2012; BoR, 2022).

The orchard was planted with a self-fertile productive almond
cultivar, ‘Independence’, between 2015 and 2017. Within the orchard,
rows are oriented northeast to southwest in parallel with prevailing
winds, and the average row spacing is about 6 m and the average
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spacing between trees along the same row is about 4.5 m. Almond
trees bloom between late February and early March, followed by leaf
out, fruit set and rapid growth, reaches full canopy typically in June or
early-July, and fruit maturity progresses through summer. Almonds
are typically harvested from August to October, and trees become
dormancy during the winter season.

We designed an automatic weighing system attached to the
commercial almond harvester to measure the almond yield of an
individual tree (Figure S1). The yield (including wet hulls and shells)
measurements were made for each individual tree every seven rows in
the north-west portion of the orchard between August 23 and August
27 in 2021 (Figure 1). A total number of 1,893 trees were individually
harvested, with an average fresh weight yield of 53.1 + 17.6 kg per tree.
The location of each sampled trees was also recorded. Large yield
variation was found among individual trees with a coefficient of
variation of 33.1% and interquartile range of 24.3 kg per tree.

Independence
orchard

AN
//42 California
//ﬂﬁm”ﬂ//ﬂmmﬂ/mﬂ”
FIGURE 1

Study orchard as shown by the color infrared composite of CERES
aerial imagery acquired on July 29, 2021. Individual trees with yield
measurements were shown as green dots. The inset shows the
location of the study orchard among all almond orchard fields (green)
in California’s Central Valley (black polygon)
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2.2 Aerial imagery acquisition
and processing

Multi-spectral aerial imagery was acquired on July 29, 2021, about
one month ahead of the harvest, by CERES Imaging (Oakland, USA.)
A multi-spectral imaging camera was integrated with a crop duster
plane flying at 6,000 ft above the ground, resulting in images with a
0.3-meter spatial resolution. Four spectral bands are centered around
800 nm (near infrared), 717 nm (red edge), 671 nm (red), and 550 nm
(green), with a spectral resolution of 10 nm (the full width at half
maximum). The image was acquired near local solar noon to

minimize the shadow effects.

2.3 Tree identification and location
extraction from imagery

For each individual tree, extracting its center location from
CERES imagery is needed in order to match the tree yield record
from the harvester and to clip the corresponding image block as CNN
input. We developed a multi-stage segmentation method to identify
all individual crowns with varying canopy sizes, especially over a
mature orchard. First, Normalized Difference Vegetation Index
(NDVI) was calculated for each pixel from the red and near
infrared bands of the CERES aerial imagery (Figure 2A). Second,
NDVI imagery was segmented based on the NDVI threshold to
identify potential tree crowns automatically (Figure 2B). Lower
NDVI threshold tended to be more inclusive in identifying canopy

FIGURE 2

Illustration of individual tree identification workflow: (A). NDVI map from CERES imagery; (B). Segmented tree crowns with various NDVI threshold values,
e.g., the blue polygon represents the boundaries from the segmentation with a NDVI threshold of 0.6; (C). For each polygon layer identified using a
particular NDVI threshold, remove those crown polygons whose major axis (dashed blue line) were longer than the expected maximum tree crown
diameter, roughly the tree planting spacing along the orchard row; (D). Final tree crowns by combining all layers of potential crown polygons and center

locations of all individual trees.
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pixels and resulted in a tree crown boundary with multiple inter-
connected trees in it; whereas higher NDVI threshold separated
individual tree crowns better but may miss smaller trees
(Figure 2B). We therefore applied seven NDVT thresholds ranging
from 0.60 to 0.83 (Table S1), producing seven layers of potential tree
crown polygon maps. Third, for each layer, those polygons that
actually had multiple trees were removed, based on the comparison
of the polygon major axis length and the orchard tree spacing
(Figure 2C). The assumption is that one single tree crown diameter
can’t exceed the spacing between adjacent trees. Finally, by taking
advantage of higher threshold’s capability of separating individual
trees and lower NDVI threshold’s capability of identifying small trees,
we combined those seven potential single tree crown polygons
iteratively, based on their spatial relationships, into one final tree
crown boundary optimal for tree center extraction. The goal was to
remove the redundancy among those layers yet maintain the largest
crown size. Starting from the crown polygons (smallest size), typically
associated with higher NDVT threshold value, if it was spatially within
the crown polygon (larger) identified by the lower threshold value, it
was deleted; otherwise, it was added to the final single tree crown
polygons map. By iterating this step, we created a final version of
single tree crown polygons map (Figure 2D). Finally, the tree
locations were extracted from the centroid coordinates of all the
segmented tree crown polygons.

For quality control, the extracted tree locations were plotted over
the CERES imagery for visual examination. For example, those trees
with very small or large crowns were carefully examined against
CERES imagery to ensure the location accuracy. To further ensure the
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alignment with the locations of the individually harvested trees, a
visual check of the locations of starting, ending, and some randomly
selected trees within the harvested rows was also conducted. All these
processes were done in Python and QGIS.

3 Methods

3.1 Convolutional neural
network architecture

The Convolutional neural network (CNN), a most established
deep learning algorithm, is developed to estimate fresh almond yield
with multi-spectral aerial images as inputs. CNN has a unique ability
to automatically and adaptively learn spatial hierarchies of important
features that summarize the presence of detected features in the input
image for a particular predictive modeling problem (LeCun et al,
2015). The extreme efficiency in dimensionality reduction of the CNN
model makes it unnecessary to conduct any feature extraction work,
which increases computation efficiency and improves estimation
accuracy. A surge of interest in CNN deep learning has emerged in
recent years due to its superior performance in various fields (Lobell
et al.,, 2015; Yamashita et al.,, 2018; Kattenborn et al., 2021; Li
et al,, 2021).

A CNN is typically composed of a stacking of three types of layers,
i.e., convolution, pooling, and fully connected layers (LeCun et al,
2015). The first two perform feature extraction, whereas the third
maps the extracted features into final output, such as yield. As a
fundamental component of the CNN architecture, a convolutional
layer typically consists of a combination of linear and nonlinear
operations, i.e., convolution operation and activation function. A
convolution is a simple application of a spatial filter (or kernel) to an
input image that results in an activation. Repeated application of the
same filter to an input result in a map of activations called a feature
map. A small grid of parameters called kernel, an optimizable feature
extractor, is applied at each image position, which makes CNNs
highly efficient for image processing. The kernel values are optimized
during the model training process to extract features from input data
based on the model’s task. The outputs of a linear operation such as
convolution are then passed through a nonlinear activation function,
e.g., the most commonly used rectified linear unit (ReLU). Batch
normalization can also be applied as an optimization strategy to
increase the model training efficiency, although it is not a solid
requirement of the CNN model. To reduce the dimensionality of
the extracted feature maps, a pooling layer provides a down-sampling
operation by aggregating the adjacent values with a selected
aggregation function, such as taking maximum value within the
predefined window size. Similar to convolution operations,
hyperparameters including filter size, stride, and padding are set in
pooling operations. As one layer feeds its output into the next layer,
extracted features can hierarchically and progressively become
more complex.

To improve CNN model’s overall performance, the spatial
attention module is recently introduced into the CNN architecture
by combining a global average pooling layer and the following dense
layers (Woo et al.,, 2018; Sun et al., 2022; Zhang et al., 2022). Global
average pooling layer is usually applied once to downscale the feature
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maps into 1-D array by averaging all the elements in each feature
map, while retaining the depth of the feature maps. Dense layer then
connects the final feature maps to the final output of the model with
learnable weights via model training. The combination of a global
average pooling layer and the following dense layers helps the CNN
model focus more on the relevant features and thus improves.

3.2 CNN configuration and optimization

TensorFlow (Abadi et al.,, 2016), Keras (Chollet, 2015), and
KerasTuner (O'Malley et al, 2019) libraries in Python were used
for CNN model tuning and training processes. The CNN model took
the image blocks, centered around each individual almond tree
crown, from CERES images at 0.3 m resolution, for 4 reflectance
bands (R, G, NIR, and RE) as inputs to estimate the individual tree
almond yield (Figure 3). We started with the minimum block size of
21 x 21 pixels, equivalent to a 3m radius centered around each tree
crown center and thus representing areas slightly bigger than one tree
crown size. For each tree sample, we first identified the corresponding
CERES pixel containing the tree center (as described in Section 2.3
location), and then clipped an image block extending 10 pixels
towards all four directions from the center, for each band. This step
resulted in 21 x 21 x 4 multi-spectral imagery associated with each
individual tree crown as the input to the CNN model.

The CNN model training process is to find kernels in the
convolutional layers and weights in the dense layers to minimize
the differences between model estimations and ground measurements
on a training dataset. The Mean Squared Error (MSE) loss function
was applied for the CNN model training, which calculates the average
of the squared differences between model estimations and actual
values. To efficiently optimize the kernels and weights within the
CNN model, the Adam optimization algorithm (Kingma and Ba,
2014) is used, which extends the stochastic gradient descent algorithm
by calculating individual learning rates for different parameters based
on the estimates of first and second moments of gradients. 5-fold cross
validation (CV) is applied to randomly split the data into separate
training and testing sets. The overall model performance is evaluated
based on the average performance over the testing set in each fold.
The Bayesian optimization algorithm is developed to select the CNN
hyper-parameters automatically.

The general setup of the possible CNN structures for the Bayesian
optimization algorithm are as follows: three to four convolutional
blocks followed by a spatial attention module with a global average
pooling layer and two fully connected dense layers. For the first dense
layer, there are 30 to 100 neurons followed by a dropout layer. For
each convolutional block, there are 16 to 128 convolutional layers
(kernels) followed by a batch normalization and pooling layers, then
another 16 to 128 convolutional layers followed by a batch
normalization, pooling and ReLU activation layers. The pooling
layers in each convolutional block can be either average pooling or
max pooling. The overall architecture of the CNN model for the
Bayesian optimization algorithm is shown in Figure S3. For model
compiler, the Bayesian optimization algorithm selects learning rate
varying from 10 to 107 with Adam optimizer. For the Bayesian
optimization algorithm itself, the maximum trail number was set to
50, and for each trail, the batch size is 128 with 100 epochs.
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CNN model structure for tree-level yield estimation with multi-spectral aerial imagery. Input size represents total number of tree samples x image block
height x image block width x number of bands. For each tree sample, an image block was clipped for each one of the four band imagery, with 21 by 21
pixels (at a 30cm resolution) centered at the identified tree center location.

To investigate the impact of input image block size used for the
CNN model and explore how the neighboring trees potentially
influence yield estimation, another two separate CNN models were
built with an input image size of 41 x 41 pixels (roughly 6m radius)
and 61 x 61 pixels (9m radius), respectively. To understand the
contribution of the red edge band to the yield estimation, a reduced
CNN model was constructed by excluding red edge reflectance as
input, hereafter called “reduced CNN model”, considering that red
edge band is not as widely used for aerial imaging as the other three
bands. Similarly, another 14 sets of reduced CNN models were further
built with all the combinations of different reflectance bands as input
and compared how they influenced model’s yield estimation accuracy
(Table S2).

3.3 Traditional machine learning
model estimations

For comparison purposes, Other statistical models were also built
for individual tree level almond yield estimation, including stepwise
linear regression as a baseline for linear relationships and four
traditional machine learning approaches. The Scikit-learn (Buitinck
etal, 2013) and hyperopt (Bergstra et al., 2013) libraries were used for
building support vector regressor (SVR) (Platt, 1999), random forest
(RF) (Breiman, 2001), and extreme gradient boosting (XGB) models
(Chen and Guestrin, 2016). Additionally, a DNN model was also
developed using the same libraries as CNN model. The traditional
machine learning models use the human-engineered index-based
feature extraction method to predict almond yield, which differs
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from the CNN model that directly takes imagery as input. By
comparing traditional machine learning models against CNN
model, it helps to evaluate the advantages of applying learning-
based feature extraction in yield prediction.

Regression models were built using features at individual tree level
as inputs, including VIs and texture. 13 commonly used vegetation
indices (VIs) were calculated from CERES multi-spectral imagery,
including those sensitive to structure, greenness, and chlorophyll
content (as described and summarized in Table S3 in the
supplementary material). A circular buffer with a 2.5-meter radius
was used to calculate the zonal statistics of remote sensing metrics,
since most tree crowns have diameters less than 5 meters. Tree crown
pixels were identified with NDVI greater than 0.5, and the fractional
coverage of tree crown within the buffer area was then calculated to
represent the size of crown. The average of VI values over the
identified crown pixels within the buffer area were also derived to
represent the overall biomass of an individual tree. In total, 14
variables were calculated including 13 VIs and one fractional
coverage variable.

To extract textural features for each of the four band images, the
gray level co-occurrence matrix (GLCM) (Haralick et al., 1973) was
applied. The GLCMs were constructed with a moving distance of one
pixel and four moving directions. Eight texture measures were
calculated from reflectance imagery with a 2x2 moving window,
including contrast, dissimilarity, homogeneity, angular second
moment, correlation, mean, variance, and entropy (Nichol and
Sarker, 2011; Wood et al, 2012). For each individual tree, the
corresponding texture features were extracted and averaged from
textural images, resulting in a total of 32 texture features.
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3.4 Accuracy assessment and yield
variability analysis

To evaluate models’ performance in predicting almond yield, the
predicted and observed individual tree yield from the reserved testing
samples were compared, and the coefficient of determination (Rz),
Root Mean Squared Error (RMSE), and RMSE normalized by
averaged yield measurement (NRMSE) were calculated. Statistics of
these metrics were reported based on 5-fold cross validation.

For the model with highest accuracy, its capability to capture the
within-field yield variations, such as overall spatial patterns, row to
row variations, and tree to tree variations along selected transects was
also evaluated. For all harvested rows, the yield distribution for all
trees within each individual row was analyzed based on CNN
estimations. Furthermore, three transects that are perpendicular to
the row orientation of the orchard were randomly selected to examine
the inter-row yield variations. The locations of the selected transects
are shown in Figure 4 highlighted in blue lines.

4 Results
4.1 Optimized CNN model and performance

After 50 iterations of Bayesian optimization process during model
training, the final optimized CNN model had eight convolutional layers,
each of which was followed by a batch normalization and an ReLU
activation function. Four max pooling layers were deployed after every
two convolutional layers to extract spatial features and reduce image
dimension. A global average pooling layer further flatten the image into
one-dimension array. A 100-neuron dense layer is introduced. The final
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one neural dense layer further reduces the input data into a single output
value, which directly connects to the tree level yield data (Figure 3).

The trained CNN full model, with four spectral band imagery as
inputs, performed very well in predicting almond yield at the individual
tree level. The 5-fold cross validation with the testing data showed that it
captured 96% ( + 0.2%) of tree-to-tree variation in almond yield, with a
RMSE of 3.5 kg/tree ( + 0.11) and a normalized RMSE of 6.60% ( + 0.2%)
(Figure 5). The scatter plot of predicted vs. observed tree yield also
showed a good agreement (Figure 6). The predicted yield by the full CNN
model for all individually harvested trees followed very similar
distribution as shown by the measurements (Figure 5), with a mean
yield of 52.9 + 17.2 vs. 53.1 + 17.6 kg/tree and the interquartile ranges of
23.8 vs. 24.3 kg/tree. No statistically significant difference was found
between predicted and observed tree yield based on the two-tailed t-test
(p-value of 0.75).

The performance of the full CNN models with all four bands varied, very
slightly, with the size of input image blocks (Table 1). For example. when
using image blocks covering nine tree crowns, the re-trained CNN model
captured 97% of yield variability and had slightly larger uncertainty with a
NRMSE 5.2%. However, the estimation bias is larger for CNN models with
image blocks covering more tree crowns. Hereafter only the results from the
CNN model with 21 x 21 pixels image block size was reported.

4.2 Impact of spectral information

When removing the red edge imagery from the input imagery, the
accuracy of the reduced CNN model was reduced significantly, with a
lower R? of 0.68 ( + 0.08) and higher NRMSE of 18.7% ( £ 2.3%) than
the full CNN model with four band imagery as input (Figure 7).
Among the reduced models with all possible combinations of three
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TABLE 1 Performance of CNN models with different image block sizes of the input aerial image clipped around each individual tree crown center.

Image block size Test R? RMSE (kg/tree) NRMSE IQR (kg/tree) Bias (kg/tree)
21x21 pixels 0.96 ( % 0.002) 330 6.6% ( + 0.2%) 23.82 -0.181
AT (+0.11) chAeT : )
41x41 pixels 0.95 (+0.017) 402 7.6% (£ 1.0%) 2355 1.46
95 (+ 0. (£053) 6% ((+ 1. . .
61x61 pixels 0.97 ( + 0.005) 277 5.2% ( + 0.6%) 22.69 235
ceAET (+0.34) R : ’

All four spectral bands were used as input.

bands, the CNN model driven by red edge, NIR, and red reflectance
performed the best, with a R? of 0.85 ( + 0.01) and NRMSE of 12.6%
(£ 0.7%). For two band combinations, the reduced model with NIR
and red edge bands or NIR and green bands had similar performance
(R* 0.85 ( + 0.02) and 12.6% ( + 0.8%)). When driven by only one
single band imagery, the red edge based CNN model still captured
83% ( + 2%) of yield variability among individual trees, and NRMSE
only increased slightly to 13.8% ( + 1.0%). These results demonstrated
the importance of red edge imagery in almond yield estimation.

4.3 Comparison with machine
learning models

Our comparison showed that CNN model significantly
outperformed the linear regression model and the other machine

learning models, based on the 5-fold CV, regardless of
combinations of input features such as VIs, texture, and raw
multi-spectral reflectance (Figure 7). XGB and RF models
captured only up to 54% ( + 3.8%) of yield variability, similar to
linear regression models. In addition to achieving the highest R, the
CNN model was found more robust and stable as shown by much
lower standard deviation of R? among different folds of test sets,
compared with other models (Figure 7). The scatter plots of
predicted vs. measured yield further showed better performance
of the CNN model (Figure 6).

4.4 Predicted yield map and spatial patterns

The CNN full model, once trained and validated, allowed us to
estimate yield for every individual almond tree in the orchard. The
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FIGURE 5

Distributions of almond tree yield predicted by the full CNN model (red) vs. measured by individual tree harvester (blue). Dashed vertical lines represents

the 25th percentile, median, and 75th percentile respectively.
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Scatter plots of predicted yield by the full CNN model, XGB, and Linear models vs. measured yield.

yield map showed within-field variations of almond yield from tree to
tree (Figure 4A). Trees with higher yield were mostly located in the
northeast corner of the orchard, while least productive trees were
mainly distributed around the orchard boundary. The overall spatial
pattern was consistent with the pattern captured by the red edge
reflectance (Figure 4B).

When row to row yield variation was examined, the CNN model
predicted yield followed similar distribution with the ground
measured yields for every seven rows with individual tree yield
measurement (Figure 8). Row 14 had the highest yield as shown by
both estimation (66.9 + 15.0 kg per tree) and measurements (68.4 +
13.3 kg per tree); in contrast, the production of Row 84 was 25% lower
(50.3 + 16.1 kg per tree) and 30% lower (47.6 + 15.4 kg per tree) for
both estimation and ground measurements, respectively. The
estimation showed large within-row yield variability, with
coefficient of variation (CV) ranging from 20.0% to 44.9% and
inter-quantile range (IQR) ranging from 16.4 to 31.1 kg per tree,
similar to the variability observed by the measurements (Figure 8).
For rows without ground measurements, the predicted yield also
captured similar general trend of row-to-row variation as that from
the measurements over the sampled rows.

Furthermore, along the transect lines across rows, the inter-row
variability from the CNN predicted tree level yield agreed relatively
well with that from the ground measurements (Figure 9). Among the
measured rows, for example, the most productive trees were found in
Rows 77 (104.1 kg/tree), 7 (85.4 kg/tree), and 77 (84.4 kg/tree), for
each transect, respectively, based on the predicted yield map. In
contrast, the least productive trees had much lower yield, i.e., 38.7 kg/
tree in Row 91 for transect 1, and 35.9 kg/tree in Row 84 for transect 3.
These findings were similar to the observations from the harvesting
data. The yield distributions along each row and the inter-row yield
variations demonstrated the consistent performance of CNN model
over space with less spatial dependency and variations.
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5 Discussions

5.1 Yield estimation model performance

As a first study on tree level almond yield estimation, our findings
showed the high accuracy of the CNN model in capturing the spatial
yield variability from tree to tree, when driven by multi-spectral
reflectance from high resolution aerial imagery. The comparative
analysis in this study showed that the CNN model outperforms the
traditional machine learning models. First of all, the CNN model
framework is able to automatically learn the complex associations
from the multi-spectrum tree crown imagery to fully capture the
complexity of tree physiology. The spatial pattern of multi-spectral
reflectance over the whole crown plays an important role in yield
estimation, which cannot be acquired by the average values. For the
traditional ML models, the models’ performance generally agrees with
literatures using similar features as input for soybean and corn yield
estimations. One study focusing on soybean yield estimation with
multi-spectrum UAV images shows that models with VIs and thermal
information have R2 varying from 0.520 to 0.625 (Maimaitijiang
et al., 2020). Based on linear, RF, and XGB results, adding texture
features improve model’s ability to explain almond yield variation by
1%, 3%, and 3%, respectively. Some literatures focusing on row crops
also have similar finding, but the texture features play a more
important role than tree-based plants (Maimaitijiang et al., 2020;
Wang et al., 2021). In the soybean study, the VIs, thermal, and
structure information explain 52% to 63% of the yield variation with
different methods, but adding texture features improves the
estimation to explain 65% to 72% of the yield variation, which
means that adding the texture features improves about 20% of the
estimation accuracy (Maimaitijiang et al., 2020); another rice yield
estimation study shows that growing stage VIs explain 56.6% of yield
variation and adding extra texture features helps to explain 65.5%
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Model performance in predicting tree level yield, quantified by R? with the test data set, for CNN models with different spectral bands and machine

learning models with different combinations of input features.

yield variation, which increases estimation accuracy by 16% (Wang
et al., 2021).

Second, the human-engineered features commonly used by
traditional statistical approaches may not fully capture the
characteristics influencing yield variation. Most of previous studies
focused on crop yield estimation with human-engineered features
including Vs and textures, with both ML and AI models showing R’s
between 0.7 to 0.9 for mostly row crops including wheat, soybean, corn
and so on (Kuwata and Shibasaki, 2016; Hunt et al., 2019; Jin et al., 2019;

Maimaitijiang et al., 2020; Ma et al., 2021; Wang et al., 2021) and almond
orchards at the block level (Zhang et al., 2019). Although these studies use
various indices from multi-spectral and thermal UAV images to satellite-
based radar backscatter, the estimation accuracy are in general lower than
our CNN model with multi-band reflectance as direct inputs. This
suggests that human-engineered features may not be comprehensive to
fully capture the canopy structures and conditions and yield variations.
For example, some information may be lost by only using the well-
known remote sensing indices.
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Yield variation within each row as represented by the boxplots of the tree-level yield estimated by the CNN model (blue), and across individual rows. The
boxplots of measured yield record for those rows with individual tree harvesting are also shown here in orange for comparison.
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data in blue; red open circles are for CNN estimation at rows without individual tree yield measurements.

Third, super high spatial resolution imagery may improve yield
estimation accuracy with more details, especially for deep learning
approaches. Gavahi et al. (2021) developed a DeepYield model, which
combines convolutional long-short term memory for soybean yield
estimation using MODIS Terra and Aqua surface reflectance, land
cover type, and surface temperature products. Their results show that
the DeepYield model outperforms CNN model with R?s of 0.864 over
0.80, which are generally better than many indices-based yield estimation
studies. But their yield estimation accuracy is still lower than our CNN
model, which is possibly due to their low spatial resolution of input image
(500 m and 1 km of MODIS Terra and Aqua products).

5.2 Importance of red edge band

From the CNN model result, reflectance in the red edge band was
found to play a vital role in almond yield estimation. The red edge
spectral band covers a transitional wavelength region from the red
band, where the absorption by chlorophyll is dominant, to near
infrared where strong scattering by leaf cell structure is further
enhanced by multiple scattering among layers of leaves. Reflectance
in the red edge band serves as a critical proxy for canopy size and leaf
volume. Previous study shows that the red edge band is less saturated
at high biomass condition than its adjacent wavelengths and the
common vegetation indices such as NDVI (Todd et al., 1998;
Mutanga and Skidmore, 2004; Aklilu Tesfaye and Gessesse Awoke,
2021). Moreover, the change in the red edge reflectance may capture
some stress conditions of plants, as shown by a recent study on
grapevine water stress detection with drone imagery (Tang et al,
2022). Our finding also indicates the potential utility of red edge
imagery from Sentinel 2A and 2B satellites for scaling up yield
estimation at a large scale.
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5.3 Uncertainties and future work

This is the first study attempted for the tree-level yield estimation,
especially capturing the spatial variability of almond yield within an
individual orchard. Although it proves the concept of integrating aerial
and drone-based images with deep learning techniques for high resolution
yield estimation, some uncertainties still exist. Potential errors, for example,
may exist in the harvest yield records used for the model training and
testing, as this was the first time the individual tree harvester was designed
and tested in the almond field. The sampling strategy, designed by the
other group for individual tree harvesting, i.e., every seventh row, prevented
us from taking full advantage of the spatial information from neighboring
trees for yield estimation in the model building process.

The success of integrating the CNN model with multi-spectral
imagery in estimating the within field variability is likely because the
imagery at various wavelengths captures the information on the tree
structure and plant conditions due to the light-matter interaction. The
structural variability such as canopy size can result from cumulative
impacts on plant growth by soil properties and long-term climate, while
weather variability can also affect the plant health during a particular
season. Nonetheless, our study was still constrained by the availability of
the yield records for individual trees in one orchard over one single year.
Although the unique yield dataset provided sample data covering the
gradient of spatial yield variation within a single orchard, it does not
represent the yield variability across different orchards where climate and
soils may vary significantly. Similarly, the lack of yield record at the tree
level from multiple years has prevented us to incorporate weather
information in our modeling approach. Future work is needed to
collect more ground truthing data and include additional predictors
such as soil properties and weather variables for more robust yield
estimation and prediction (Zhang et al., 2019).
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With rapid advancement in deep learning technology, an important
next step is to explore the potential and utility of other powerful approaches
such as transformer networks (Vaswani et al., 2017; Liu et al., 2022) and
generative adversarial network (Goodfellow Ian et al, 2014). This is
particularly helpful for developing a scalable yield estimation workflow,
when integrating the time series of high-resolution satellite-based or aerial-
based imagery, sometimes at different spatial scales and from different
sensors. Remote sensing imagery during the whole growing season and
possibly from previous year, for example, can be utilized to integrate the
phenological information, e.g,, bloom development (Chen et al, 2019), to
further improve yield estimation accuracy.

6 Conclusion

Individual tree level yield estimation is critical for precision on-farm
management and for improving our understanding of yield variability
within a field. The challenge of matching efficient supply of inputs like
water and fertilizer with tree scale demand is hampered by a lack of
understanding of yield variation within orchard blocks. Our work makes
a significant step toward bringing awareness to the problem by coupling
high-resolution imagery and modeling and paves the way for future
innovation in precision orchard management. A CNN deep learning
models in estimating almond yield was developed and evaluated, by
taking advantage of a unique tree yield data and super high resolution of
multi-spectral aerial imagery in 2021 over a single cultivar almond
orchard in California’s Central Valley. The 5-fold cross validation
showed that the CNN model with spatial attention module, driven by
4-band block imagery of 21 by 21 pixels, captured 96% (+0.2%) of tree-
to-tree variation within the study almond orchard with a very low RMSE
3.50 kg/tree and NRMSE of 6.6% ( £ 0.2%). The reduced CNN model
with the red edge band reflectance alone had a R? of 0.83 ( + 0.02) and
NRMSE of 13.8% ( £ 1.0%). The CNN model performed significantly
better than traditional machine learning methods and stepwise linear
regression driven by tree-level features such as VIs and texture.

The almond yield for all individual trees predicted by the CNN
model also captured well the spatial patterns and variability of
almond yield from row-to-row and from tree-to-tree both within a
row and along a transect perpendicular to the row orientation. Our
findings demonstrated the potential of applying deep learning
technology to integrate high resolution multi-spectral aerial images
for accurate and robust tree level yield estimation. The data-driven
approach developed here fills an important gap in tree level yield
estimation critical for site-specific orchard resource management,
ultimately contributing to agriculture sustainability.
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Introduction: Crop pests have a great impact on the quality and yield of crops.
The use of deep learning for the identification of crop pests is important for crop
precise management.

Methods: To address the lack of data set and poor classification accuracy in current
pest research, a large-scale pest data set named HQIP102 is built and the pest
identification model named MADN is proposed. There are some problems with the
IP102 large crop pest dataset, such as some pest categories are wrong and pest
subjects are missing from the images. In this study, the IP102 data set was carefully
filtered to obtain the HQIP102 data set, which contains 47,393 images of 102 pest
classes on eight crops. The MADN model improves the representation capability of
DenseNet in three aspects. Firstly, the Selective Kernel unit is introduced into the
DenseNet model, which can adaptively adjust the size of the receptive field
according to the input and capture target objects of different sizes more
effectively. Secondly, in order to make the features obey a stable distribution, the
Representative Batch Normalization module is used in the DenseNet model. In
addition, adaptive selection of whether to activate neurons can improve the
performance of the network, for which the ACON activation function is used in
the DenseNet model. Finally, the MADN model is constituted by ensemble learning.

Results: Experimental results show that MADN achieved an accuracy and F1Score
of 75.28% and 65.46% on the HQIP102 data set, an improvement of 5.17 percentage
points and 5.20 percentage points compared to the pre-improvement DenseNet-
121. Compared with ResNet-101, the accuracy and F1Score of MADN model
improved by 10.48 percentage points and 10.56 percentage points, while the
parameters size decreased by 35.37%. Deploying models to cloud servers with
mobile application provides help in securing crop yield and quality.

KEYWORDS

pest image classification, selective kernel unit, representative batch normalization,
DenseNet-121, ensemble learning
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1 Introduction

Agricultural pests have long posed a severe threat to the growth of
crops and the storage of agricultural products (Cheng et al., 2017). The
Food and Agriculture Organization (FAO) reported that these pests
cause between 20 and 40 percent loss of global crop production every
year. Because of relatively cheaper operational cost, farmers use a
variety of chemicals such as pesticides to control pests, which has a
negative impact on the agroecosystem (Geiger et al, 2010). If the
location, time and listing of species and populations of invertebrate in
the fields were available, instead of heavily relying upon pesticide,
integrated pest management would use the optimized combination of
mechanical, chemical, biological and genetic tools to mitigate harmful
effects and enhance beneficial effects (Liu et al, 2016). Timely and
accurate pest detection and classification are of great significance to its
prevention and control, and early detection is a prerequisite to making
an effective pest management plan and can reduce pollution.

Traditional crop pest classification relies mainly on manual
observation or expert guidance, which is slow, inefficient, costly,
and subjective. With the development of machine learning methods
and computer vision techniques, researchers are beginning to use
information technology to identify images of crop pests. The
traditional machine learning classification framework consists of
two main modules: the feature representation of the pest and the
classifier. The normal used hand-crafted features include GIST (Oliva
and Torralba, 2001), Scale Invariant Feature Transform (SIFT)
(Lowe, 2004), Speeded Up Robust Feature (SURF), etc. The main
classifiers commonly used include K-nearest neighbor classification
algorithms (KNN), Support Vector Machines (SVM), etc. It is
difficult to determine which of many features is optimal, and if the
feature extraction is not correct, the subsequent classifier will make
mistakes in identifying pests. With the advent of efficient learning
algorithms for deep learning, it has achieved significant
improvements in classification accuracy on many traditional
classification tasks (Krizhevsky et al, 2017). In particular,
convolutional neural networks (CNNs) are rapidly becoming the
method of choice for overcoming certain challenges (Barbedo, 2018).

Recently, smart agriculture has been introduced to apply
artificial intelligence (AI) technology, information and wireless
communication technology applications. In addition, crop health
monitoring is considered to be a major application of smart
agriculture (Ayaz et al, 2019). Researchers are gradually turning
their attention to designing mobile applications to identify pests.
Karar et al. (2021) designed a mobile application using technologies
such as Apache Cordova framework and Flask Web, and achieved
good results in pest identification using deep learning techniques,
but it used a relatively small dataset and identified only five
categories of pests. Deep learning-based pest detection requires a
large number of pest samples for supervised learning (Liu and
Wang, 2021), and building an application that can identify multiple
classes of pests in common crops is also in urgent need of
development. It is well known that the ImageNet Large Scale
Visual Classification Challenge (ILSVRC) (Deng et al., 2009)
marks the beginning of the rapid development of deep learning,
demonstrating that large-scale image data set play a key role in
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driving deep learning progress. However, most deep learning
methods on insect pests are limited to small data set, and most
public data set are collected indoor, which does not meet the needs
of insect pest classification in field conditions. The IP102 large pest
data set (Wu et al., 2019), which contains 75,222 images with a total
of 102 classes from 8 crops, has alleviated this problem to some
extent. However, the data set suffers from poor screening and
misplaced pest categories, with a reported classification accuracy
of only 49.4%. To address this issue, we invited agricultural experts
and volunteers to further screen the IP102 data set. The new data set
is of Higher Quality compared to IP102 and is named HQIP102.

The context of pest images in real environments is complex and
suffers from large intra-class variation and small inter-class variation
of pests. Existing models such as Densenet and ResNet do not work
well on large pest datasets. To better identify larger pest data set, the
DenseNet network (Huang et al,, 2017), which performed well in the
ImageNet task, is used as the base network. To improve the pest
classification accuracy, we propose the MADN convolutional neural
network model, which improves DenseNet-121 in three aspects:
channel attention mechanism, input information feature
enhancement and adaptive activation function. These improvements
can improve the model’s pest classification performance.

The goal and objectives of our study are summarized as follows:

-Two criteria are used to further filter the IP102 large pest data
set and improve the overall quality of the original data set,
named HQIP102.

-Several techniques and the MADN convolutional neural
network model are proposed to improve the representation
capability of the DenseNet-121 network and improve its
classification accuracy on large pest data set.

2 Related work

Research on crop pest classification based on computer vision
has been a hot topic. In recent years, many computer-aided insect
pest classification systems (Rani and Amsini, 2016; ; Alfarisy et al,
2018) are presented in the vision community. The methods
involved mainly include machine learning and deep learning.

Machine learning often uses hand-crafted features such as SIFT,
HOG (Dalal and Triggs, 2005), etc. Hand-crafted feature-based
methods are the primary solutions for insect pest classification
traditionally (Wu et al, 2019). Bisgin et al. (2018) used SVM to
classify feature information such as size, color, basic pattern and
texture extracted from 15 classes of food beetles, ultimately obtaining
good classification results on a data set of 6900 images. Ebrahimi et al.
(2017) designed an SVM structure with difference kernel function for
thrips detection using the ratio of major diameter to minor diameter as
region index as well as Hue, Saturation and Intensify as color indexes
with a mean error of less than 2.25% for the best classification. Xiao
et al. (2018) used SIFT image descriptor as well as SVM classifier to
identify four important vegetable pests Whiteflies, Phyllotreta Striolata,
Plutella Xylostella and Thrips with an average accuracy of 91.56% on 80
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experimental images. Traditional machine learning algorithms rely on
complex image processing techniques and handcrafted features, which
often have limited robustness and generalization on large data set.

The successful application of deep learning in other fields has
led to an increasing interest in agriculture, which is currently the
most cutting-edge, modern, and promising technology (Kamilaris
and Prenafeta-Boldu, 2018). Tetila et al. (2020) used transfer
learning strategy to fine-tune Inception-v3, Resnet-50, VGG-16,
VGG-19 and Xception to identify a data set containing 5000
soybean pest images. It has better performance compared to
traditional feature extraction methods such as SIFT and SURF.
Liu and Chahl (2021) used a novel approach to generate a virtual
database that was successfully used to train a deep residual CNN
with 97.8% accuracy in detecting four pests in agricultural
environments. Khanramalki et al. (2021) proposed an ensemble
classifier of deep convolutional neural networks to identify three
common citrus pests with 99.04% accuracy on a data set containing
1774 images of citrus leaves. Ayan et al. (2020) used a weighted
voting method to ensemble the pre-trained Inception-V3, Xception
and MobileNet, which was named GAEnsemble, and its
classification accuracy on the IP102 data set was 67.13%. Unlike
Ayan et al. (2020), which used a fine-tuning strategy to combine
existing models, this paper improves the DenseNet network and
uses ensemble learning to combine the improved models.

FIGURE 1

Sample images of some pests (A) rice leaf roller; (B) rice leaf caterpillar; (C) paddy stem maggot; (D) rice water weevil; (E) rice leafhopper; (F) grain
spreader thrips; (G) yellow cutworm; (H) red spider; (I) corn borer; (J) wheat blossom midge; (K) penthaleus major; (L) longlegged spider mite;.
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Existing studies have shown that small datasets containing only
a few pest classes have higher identification accuracy, while
classification accuracy is low on the large data set IP102. To
address the problem of misplacing pest categories in the IP102
data set, we built a Higher Quality pest data set named HQIP102.
We also proposed the MADN convolutional neural network model
for improving classification accuracy of existing models.

3 Materials and methods
3.1 Data set construction

Since IP102 contains more than 70,000 images of 102
categories, it inevitably has problems such as misplacement of
some pest categories and lack of detailed screening.

To obtain a higher quality pest data set, we invited agricultural
experts and volunteers to further screen the IP102 data set according
to the following two criteria. (1) obviously misplaced categories; (2)
basically background, does not contain any target objects. The new
data set is of higher quality and is named HQIP102. Low quality
images are removed directly from the data set, Then the HQIP102
contains 102 pest categories for eight crops, including rice and wheat
etc. Some of the pest image samples are shown in Figure 1.
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As can be seen in Figure 1, the pest background in the HQIP102
data set is complex, the main part of the pest is small, and the
similarity between some pest categories is high, which increases the
overall classification difficulty. HQIP102 was filtered for each
category of pests in IP102, with fewer images remaining for low
quality pest categories, and the final HQIP102 pest data set
contained 47,393 images. A comparison of HQIP102 with IP102
on eight crops corresponding to the pest category as well as the
number of pests is shown in Table 1.

As can be seen from Table 1, HQIP102 filtered out more images
on Rice, Corn, Beet, and Alfalfa, while fewer pest images were
removed on the Wheat, Vitis, Citrus, and Mango categories. Among
Rice crops, the rice leaf roller and asiatic rice borer categories have a
higher number of deletions. In Corn crops, the corn borer and
aphids categories removed more images. There are more images
deleted from the beet army worm class in the Beet crop. In Alfalfa
crops, alfalfa plant bug and blister beetle classes have more
images deleted.

3.2 Data set split and dynamic
data augmentation

The data set is divided into training set, validation set and test set
according to the ratio of 7.5:1:1.5. The number of samples for certain
pests in the data set is insufficient, and the use of data augmentation
can increase the amount of data available for training, thus improving
the generalization ability of the model. After splitting the data set, a
dynamic data expansion method based on the number of pests in
each class is proposed in this paper in order to solve the data
imbalance problem in the HQIP102 training set, see Eq.1.

12N0< N < 30

7N30< N < 60

4N60< N < 100 (1)
3N100< N < 150

2N150< N < 200

TABLE 1 Comparison of HQIP102 and IP102 on 8 crops.

10.3389/fpls.2023.1133060

Where Ndenotes the number of images in the training set for a
particular type of pest. Nis determined based on the average
number of images of the pest category in the data set. The
average number of images per pest category in the IP102 dataset
is 460. And the specific pest image increase multiplier in the Eq.1 is
adjusted manually, in which the range of the parameter N and the
number of additional images are obtained by manual setting, to
achieve the right amount of supplementary pest image data. With
dynamic data augmentation, the data imbalance can be mitigated
with a small amount of additional data, which is the basis for the
parameter determination in Eq.1.

The data augmentation methods used were mainly a
combination of center cropping, brightness contrast saturation
adjustment, random horizontal flip, and random vertical flip.
Specifically, the image is cropped to a size of 224 x 224 and has a
50% probability of random horizontal flipping and random vertical
flipping. The probability of brightness and contrast adjustment is
also 50%. The images are then saved to the original dataset after
using data augmentation.

Using dynamic data enhancement, the total number of
HQIP102 pest data set increased from 47,393 to 62,060 images,
with the training set increasing from 35,607 to 50,274 and the
validation and test sets remaining unchanged with 4734 and 7052.
After using data augmentation, the ratio of training set, test set and
validation set is about 8:1:1.

3.3 Dense convolutional
network (DenseNet)

DenseNets (DenseNet-121, DenseNet-169, DenseNet-201, and
DenseNet-264) alleviate the vanishing-gradient problem,
strengthen feature propagation, encourage feature reuse, and
reduces the number of parameters to some extent. In addition,
the structure used by DenseNets shows good performance on large
ImageNet datasets. For each layer, the feature-maps of all preceding
layers are used as inputs, and its own feature maps are used as
inputs into all subsequent layers. As shown in Figure 2, the network

Crop Category Number of pest categories IP102 Total HQIP102 Total
Rice 14 8417 3006

Corn 13 14015 6373

Wheat 9 3418 2110

Beet 8 4420 1942

Alfalfa 13 10390 5611

Vitis 16 17551 14555

Citrus 19 7272 5173

Mango 10 9739 8623

Total 102 75222 47393

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2023.1133060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Peng et al.

Transition

10.3389/fpls.2023.1133060

Transition

Dense Blockl

UONN[OATI0))

Q
=)
]
=h
=
£
=]

Dense Block2

L0

Dense Block3

QLA

uonNoAU0)

FIGURE 2
Structure of DenseNet with three dense blocks

structure of DenseNet consists mainly of Dense Block
and Transition.

In Dense Block, each layer has the same feature map size and
can be concatenated in the channel dimension. All layers in the
Dense Block output kfeature maps after convolution, where the
hyperparameter kis called the growth rate. We refer to each layer in
a Dense Block as its substructure. Assuming that the number of
channels in the feature map of the input layer is ko, then the number
of channels in the input of layer lis ko + k(I - 1).

The Dense Block inside the DenseNet-B structure uses
bottleneck layers to reduce the amount of computation.
Transition layer, is mainly used to connect two adjacent Dense
Blocks, and to reduce the size of the feature map. Its structure is
Batch Normalization (BatchNorm) + ReLU + 1x1 Convolution +
2x2 AvgPooling. The Transition layer of the DenseNet-C structure
also introduces a compression factor 6(<1), which reduces the
number of features in the output. When using bottleneck layers as
well as transition layers with 6(<1), such a model is called
DenseNet-BC.

3.4 MADN convolutional neural network

The MADN model focuses on improving the Dense Block
structure in DenseNet in three ways, while the rest of the model
is consistent with DenseNet. It introduces the Selective Kernel Unit
(MADN-SK), the Representative Batch Normalization (MADN-
RBN) module, and the ACON activation function (MADN-ACON)
into the DenseNet. It is worth noting that MADN is not an end-to-
end model, but combines 3 improved DenseNet models.
Specifically, Using DenseNet-121 as the base network, MADN-
SK, MADN-RBN and MADN-ACON are combined through
ensemble learning to form the entire MADN model as shown in
Figure 3. A detailed architectural comparison of DenseNet-121 with
MADN-SK, MADN-RBN and MADN-ACON is shown in Table 2.

Sections 3.4.1 to 3.4.3 are the improvements of three aspects of
DenseNet-121 in this study, each individual improvement is a
complete model, and the final three models named MADN-SK,
MADN-RBN, and MADN-ACON are obtained. Section 3.4.4 is an
introduction to the ensemble learning used in this paper.

Sclected
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FIGURE 3

Structure of the MADN network model. The dense connection lines are omitted from the diagram, and the connections are made in the same way

as the original DenseNet
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TABLE 2 Structural comparison of DenseNet-121 and modified models.

10.3389/fpls.2023.1133060

Output
Sizep DenseNet121 MADN_SK MADN_RBN MADN_ACON
Convolution 112x112 BN-ReLU-7x7 conv, stride 2
Pooling 5656 3x3 max pool, stride 2
BNReLU 1 ReLu BN convl;
L convs; ReLu BN SK; ReLU RBN convl; ReLu RBN conv2 ACON BN convl; ReLu BN conv2
Dense Block(1) 56%56 BN ReLu conv2
ReLu BN conv2 (6x) (6x)
(6x)
(6x)
L. 56x56 BN-ReLU-1x1 conv
Transition Layer
(Y 28x28 2x2 average pool, stride 2
Lu B H
BN ReLU convl; ReLu BN convl;
ReLu BN SK; ReLU RBN convl; ReLu RBN conv2 ACON BN convl; ReLu BN conv2
Dense Block(2) 28%28 BN ReLu conv2
ReLu BN conv2 (12x) (12x)
(12x)
(12x)
. 28x28 BN-ReLU-1x1 conv
Transition Layer
@ 14x14 2x2 average pool, stride 2
ReLu BN 1;
BN ReLU convl; ewu conv
ReLu BN SK; ReLU RBN convl; ReLu RBN conv2 ACON BN convl; ReLu BN conv2
Dense Block(3) 14x14 BN ReLu conv2
ReLu BN conv2 (24x) (24x)
(24x)
(24x)
. 14x14 BN-ReLU-1x1 conv
Transition Layer
@) 7x7 2x2 average pool, stride 2
ReLu BN 1;
BN ReLU convl; € o cony
ReLu BN SK; ReLU RBN convl; ReLu RBN conv2 ACON BN convl; ReLu BN conv2
Dense Block(4) 7x7 BN ReLu conv2
ReLu BN conv2 (16x) (16x)
(16x)
(16x)
Classification 1x1 7x7 global average pool
Layer 102D fully-connected, softmax

where convl denotes a 1x1 convolution, and conv2 denotes a 3x3 convolution. MADN_SK, MADN_RBN, and MADN_ACON are the structures of the above modified DenseNet.

3.4.1 MADN-SK

Li et al. (2019) proposes a dynamic selection mechanism in
CNNss that allows each neuron to adaptively adjust its receptive field
size based on multiple scales of input information. Figure 4 shows
the building blocks of the Selective Kernel (SK) unit.

In this building block, multiple branches with different kernel
sizes are fused with softmax attention guided by information from
these branches. The MADN-SK network is capable of adaptively
adjusting the size of the receptive field according to the input to
effectively capture target objects of different sizes, and its improved
Dense Block substructure is shown in Figure 4.

3.4.2 MADN-RBN

The BatchNorm module is widely used as it allows for more
stable training of models. However, its centralization and scaling
steps need to rely on the variance obtained from the sample
statistics, ignoring the representation differences among
instances. Gao et al. (2021) propose to add a simple yet
effective feature calibration scheme into the centering and
scaling operations of BatchNorm, namely Representative
BatchNorm (RBN). The RBN is also divided into two steps:
centering calibration and scaling calibration. For the entire
process, see Eq.2.

Dilated
Convolution [—* Batch Norm —| ReLU
5x5 a Select
Global Full
Softm:
Input Split a average [ connected [— Batch Norm — ReLU > connected |— (at(t)emi?;;)
pooling layerl layer2 Output
. 1-a
Con;’(:(l;ltlon —* Batch Norm [— ReLU é
Fuse

FIGURE 4
SK unit construction.
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Centering Calibration:
XC]'Il = X + Wme )
Centering:

X =X,

m = cm

- E(Xcm) )

Scaling:
,(2)

Scaling Calibration:

Xcs = XsR(Wva + Wh) )

Affine:

Y=X.7+p

Where the input features X € RV*OHXW 1y "4y wiare the
learnable weight vector. K,,, Krepresent the statistics of feature of
each instance, which can be obtained using global average pooling.
R()is a restriction function, often using sigmoid. E(X)and Var(X)
denote the mean and variance and are used for centering and
scaling. yand Pare learned scale and bias factors for affine
transformation, and e is used to avoid zero variance.

The use of RBN to replace BN in DenseNet-121 allows better
identification of crop pests, and experiments were conducted to
verify this.

3.4.3 MADN-ACON

Ma et al. (2021) propose a simple, effective, and general
activation function ActivateOrNot (ACON), which learns to
activate the neurons or not. ACON-C, see Eq. 3. ACON-C is one
of the better-performing activation functions in ACON.

3)

where f3, pand p,are learnable parameters and are channel-

(p1 = p2)x - o(B(py = p2)x) + prx

wise, the parameters are initialised randomly. We introduce ACON
into the MADN model, which can improve the performance of the
whole network.

3.4.4 Ensemble learning

In the area of decision and risk analysis, information from
several experts is aggregated by the decision maker, which can
improve the accuracy of forecasts. For the ensemble of MADN-SK,
MADN-RBN, MADN-ACON we considered the outputs of their
classification layers, which determined the confidence values for
each pest category. We used the sum of the normalized confidence
values for each pest category on these three models as the final
measure, see Eq.4.

2P
j=1
> >Pi

i=1j=1

’

pi=

vi=1,...,n
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Where p;denotes the confidence value of the j-th network
output for the i-th type of pest (in this paper m = 3, n = 102). p;
denotes the normalized value of the combined three network
confidence values. The i-th pest label corresponding to the largest
p;-is chosen as the final prediction.

3.5 Experiment settings

To ensure fairness in the experimental comparisons, all
experiments were built under the same conditions. The
experiments were conducted on Ubuntu 18.04 with Intel(R)
Core (TM) i9-10900K CPU and NVIDIA RTX3090 GPU with
24G memory. The RAM used is 32GB of DDR4, the deep
learning tool is Pytorch 1.8, and the CUDA version is 11.4.The
size of the input image was fixed at 224 x224 and the optimizers
were all used Adam (Adaptive momentum) (Kingma and Ba,
2014), the batch size was set to 64, the number of iterations was
set to 50, and the learning rate was initialized to 0.001.
The learning rate was reduced to half of the original rate if the
model showed an increase in loss on the validation set
during training.

3.6 Evaluation metrics

To better measure the classification performance of different
models on the HQIP102 dataset, we chose Accuracy, Precision,
Recall and F1Score as the evaluation metrics of the models.

Accuracy (Acc): The proportion of results predicted to be
correct to the total sample, see Eq.5.

TP+ TN

Acc =
TP + TN + FP + FN

x 100%

(5)

Precision (Pre): The probability that all samples with a positive
prediction are actually positive, see Eq.6.

Pre=— T 100% (6)
TP FP ’

Recall (Rec): The probability of all samples that are actually
positive being predicted to be positive, see Eq.7.

Rec x 100%

_ TP @)
" TP+ FP

F1Score (F1): The harmonic mean of precision and recall, see
Eq.8.

_2><Pre><Rec

F1= x 100%
Pre+ Rec

(8)

In equations (5-7), TP indicates a true positive: the predicted is
a positive sample and the actual is also a positive sample. TN
indicates true negative: predicted negative sample, actual negative
sample. FP indicates false positive: predicted positive sample, actual
negative sample. FN indicates false negative: predicted negative
sample, actual positive sample.
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In addition, the model parameters, the GPU memory occupied
during training, and the total training time were also used to
measure the overall performance of the model. In particular, use
the nvidia command in ubuntu to view the model’s GPU memory
occupation, and the torch summary package in Pytorch to view the
model’s parameters. Also, the inference time of each model for a
single pest image is taken into account.

4 Results and discussion

4.1 Dynamic data
augmentation experiments

On the training set of the original HQIP102 data set, we
performed dynamic data augmentation based on the number of
images of each type of pest. Using DenseNet-121 as the base
network, the experimental results on the test set are shown in
Table 3, keeping all factors consistent except for the different
training data. As can be seen from Table 3, compared to the
original data set, the DenseNet-121 network improved
the accuracy by 0.41% and the F1 by 1.46%, the MADN network
improved the accuracy by 1.15% and the F1 by 1.81%.Experiments
show that the use of dynamic data augmentation techniques
alleviates the problems caused by data imbalance to some extent
with a small increase in the number of training samples.

4.2 Ablation experiments and
comparative analysis

Ablation experiments were conducted to demonstrate the
effectiveness of a series of improvements to the DenseNet-121

TABLE 3 Dynamic data augmentation comparison experiments.

Data set Method Acc (%)
HQIP102 DenseNet-121 ‘ 70.11
HQIP102* DenseNet-121 ‘ 70.52
HQIP102 MADN ‘ 74.13
HQIP102* MADN ‘ 75.28

10.3389/fpls.2023.1133060

model. Accuracy and F1Score on the test set were used as metrics.
The ablation experiments include the effect of using only SK
units, RBN modules, ACON activation function and the final
model after using ensemble learning. The Dense Block of
DenseNet has been modified. When the SK unit is introduced,
the model is named MADN-SK; when the RBN module is used,
the model is named MADN-RBN, and when the ACON
activation function is used to replace ReLU, the model is
named MADN-ACON. Using ensemble learning to combine
the advantages of the three modified models, the final model is
named MADN. The results of the ablation experiments on the
test set are shown in Table 4.

As can be seen in Table 4, the improved MADN-SK, MADN-
RBN, MADN-ACON and MADN all show better accuracy and
F1Score compared to the DenseNet-121 model. MADN-SK
obtained by introducing the Selective Kernel unit, which
improved the accuracy on the test set by 1.94 percentage points
and the F1Score by 2.1 percentage points compared to the pre-
modified DenseNet-121;MADN-RBN, obtained using
Representative BatchNorm, improved the accuracy and FlScore
on the test set by 1.03 percentage points and 0.74 percentage points
respectively; The MADN-ACON using the ACON activation
function showed an accuracy improvement of 1.32 percentage
points and an F1Score improvement of 0.8 percentage points on
the test set. The MADN model using ensemble learning improved
better, with accuracy and F1Score improvements of 4.76 and 4.34
percentage points respectively. As can be seen in Figure 5, During
50 iterations of training, the accuracy of the model gradually
smoothed out on the validation set. And the improved MADN-
SK, MADN-RBN and MADN-ACON have higher accuracy on the
validation set compared to the original DenseNet-121 as the
number of training iterations increases. From the experimental
results in Table 4, it can be concluded that the improved MADN-

Pre (%) Rec (%) F1 (%)
61.43 58.96 59.66
63.21 60.09 61.12
67.94 60.78 63.65
69.56 62.91 65.46

HQIP102* indicates the HQIP102 data set after using dynamic data augmentation. The bold values indicate the best values in this experiment.

TABLE 4 Results of ablation experiments on the HQIP102 test set.

Improvement method

Selective Kernel unit

Representative BatchNorm

ACON activation

DenseNet-121 70.52 61.12
MADN_SK V 72.46 63.22
MADN_RBN v 71.55 61.86
MADN_ACON v 71.84 61.92
MADN y V v 75.28 65.46

MADN is composed by ensemble learning. The bold values indicate the best values in this experiment.
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Comparison of training time and test set accuracy for DenseNet-121 and improved models.

SK, MADN-RBN, MADN-ACON and MADN are valid in
improving the accuracy and FlScore compared to the origin

DenseNet-121.

but also higher accuracy on the test set. Although the training phase
of a CNN model is usually time-consuming, it does not matter for

the classification task, since the classifier is trained offline.

We compare the accuracy and training time of the DenseNet-
121 as well as the improved classification model in Figure 5.

As can be seen in Figure 5, the improved MADN-RBN, MADN-
ACON, and MADN-SK have improved accuracy on the test set at

the expense of training time. MADN uses an ensemble learning

strategy that requires pre-training of the MADN-RBN, MADN-
ACON and MADN-SK models, so it requires more training time,

4.3 Comparison experiments with
other models

To better evaluate the performance of the improved MADN-
SK, MADN-RBN, MADN-ACON, and MADN in this paper,

Accuracy on the validation set/%
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accuracy, precision, recall, F1Score, GPU memory, training time,
and parameters of the model were used as measures against ResNet-
101 (He et al,, 2016), GoogLeNet (Szegedy et al., 2015), MobileNet
V2 (Sandler et al., 2018) for comparison experiments. The accuracy
of each iteration on the validation set during training is shown in
Figure 6, and the final experimental results on the test set are shown
in Table 5.

As can be seen in Figure 6, the performance of each model on
the validation set tends to stabilize as the iterations progress.
Compared to the ResNet-101 and GoogLeNet models, MobileNet
V2 performed relatively poorly. And compared to the other models,
the improved MADN-SK, MADN-RBN and MADN-ACON show
higher classification accuracy on the validation set.

As can be seen in Table 5, the lightweight model MobileNet V2
is optimal in terms of GPU capacity, training time and number of
parameters, but performs poorly in terms of accuracy and F1Score
on the test set; And compared to ResNet-101, GoogLeNet has a
somewhat better overall performance; Although the improved
MADN require more GPU memory and longer training time for
training, they have better accuracy and F1Score compared to other
models, and fewer number of parameters compared to the ResNet-
101 model, which is more suitable for the practical needs of
identifying pests and more suitable for deployment to cloud
servers. Although the inference time of the MADN proposed in
this paper is longer for a single pest image compared to other
models, the application scenario of this study is to deploy the model
to a cloud server, and the network transmission on the cloud server
is inherently delayed, so the focus task of this study is to achieve
better pest identification accuracy.

4.4 Experimental comparison of MADN and
DenseNet-121 at the crop level

Considering the need for pest classification at the specific crop
level, the test set accuracy of the improved MADN and DenseNet-
121 models were compared on eight crops, as shown in Table 6.

From Table 6 we can see that the MADN network has
improved accuracy for all eight crops, with classification
accuracy exceeding 80% for both Vitis and Mango crops, an
respective improvement of 3.91% and 5.2% compared to the
pre-improvement DenseNet-121. Accuracy improvements were
greater on Alfalfa and Wheat at 6.23% and 6.09% respectively. The

TABLE 5 Performance of the model on the test set.

10.3389/fpls.2023.1133060

TABLE 6 Experimental results of MADN and DenseNet-121 on eight
crops test set.

DenseNet-121

Crop-Class
Test set Acc

Rice 59.68 63.51
Corn 70.54 75.82
Wheat 47.44 53.53
Beet 58.19 64.11
Alfalfa 61.08 67.31
Vitis 78.75 82.66
Citrus 68.54 72.98
Mango 75.37 80.57

The bold values indicate the best values in this experiment.

accuracy of the model on different crops may be related to the size
of the main part of the pest in different crops and the influence of
background disturbances.

5 Conclusion

In this study, we filtered the IP102 data set and proposed a
higher quality HQIP102 data set for pest classification, which
includes 102 pest categories from eight crops with more than
40,000 images. To address the data imbalance, a dynamic data
augmentation method is proposed, and the effectiveness of the
method is experimentally demonstrated. The accuracy of the
DenseNet-121 and MADN models on the HQIP102 dataset was
improved by 0.41 and 1.15 percentage points, respectively, after
using the data augmentation method. To resolve the issue of low
classification accuracy of existing deep learning models on large
pest data set, the DenseNet-121 was selected as the base network to
be improved. In details, the DenseNet-121 was improved in three
ways, i.e., MADN-SK, MADN-RBN and MADN-ACON networks.
Also, such networks were combined to propose the MADN
network. Validation experiments results showed the effectiveness
of these improved methods was potential via increased accuracy,
precision, recall and FlScore. Compared with the original
DenseNet-121, the accuracy and F1Score of the MADN model on

Test set Training phase Parameters .
Inference time
Acc (%) Pre (%) Rec(%) F1(%) GPU Memory (MB)  Training time(h) (ms)
ResNet-101 64.8 56.88 54.19 54.9 11157 9.65 162.92 82.34
GooglLeNet 67.68 ‘ 59.66 57.39 ‘ 57.88 ‘ 5687 ‘ 2.85 21.76 17.67
MobileNet V2 63.63 ‘ 55.65 53.79 ‘ 5425 ‘ 6133 ‘ 2.44 8.98 13.41
MADN 75.28 ‘ 69.56 62.91 ‘ 65.46 ‘ - 53.82 105.29 290.75

Since MADN is not an end-to-end network, it comes from combining 3 improved DenseNet networks by ensemble learning. Therefore, MADN cannot be trained alone, so

that the item does not exist. The bold values indicate the best values in this experiment.
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the HQIP102 dataset improved by 4.76 and 4.34 percentage points,
respectively. We also carried out analysis at the crop species level,
and experiments showed that the MADN network was more
accurate for pest classification in Vitis and Mango, which could
also be useful for related crop studies. Overall, the proposed deep
networks will be helpful for crop pest precise management.

MADN is a combination of 3 improved DenseNet-121 models
by ensemble learning, which cannot be trained end-to-end, and
needs to train MADN-SK, MADN-ACON and MADN-RBN
models first, so the consumption of inference time and training
time are larger. In future work, we consider using end-to-end
lightweight networks to reduce the training and inference time in
scenarios with high requirements for recognition speed.

There are several possible reasons why MADN networks do not
significantly improve prediction accuracy.

1. the HQIP102 dataset contains a large number of pest
categories, and the similarity between different categories is large.

2. the background interference of pests is large, and the improved
method can only improve the classification accuracy to a certain extent.
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Plant phenotyping and production management are emerging fields to facilitate
Genetics, Environment, & Management (GEM) research and provide production
guidance. Precision indoor farming systems (PIFS), vertical farms with artificial
light (aka plant factories) in particular, have long been suitable production scenes
due to the advantages of efficient land utilization and year-round cultivation. In
this study, a mobile robotics platform (MRP) within a commercial plant factory
has been developed to dynamically understand plant growth and provide data
support for growth model construction and production management by
periodical monitoring of individual strawberry plants and fruit. Yield
monitoring, where yield = the total number of ripe strawberry fruit detected, is
a critical task to provide information on plant phenotyping. The MRP consists of
an autonomous mobile robot (AMR) and a multilayer perception robot (MPR), i.e.,
MRP = the MPR installed on top of the AMR. The AMR is capable of traveling along
the aisles between plant growing rows. The MPR consists of a data acquisition
module that can be raised to the height of any plant growing tier of each row by a
lifting module. Adding AprilTag observations (captured by a monocular camera)
into the inertial navigation system to form an ATl navigation system has
enhanced the MRP navigation within the repetitive and narrow physical
structure of a plant factory to capture and correlate the growth and position
information of each individual strawberry plant. The MRP performed robustly at
various traveling speeds with a positioning accuracy of 13.0 mm. The temporal—
spatial yield monitoring within a whole plant factory can be achieved to guide
farmers to harvest strawberries on schedule through the MRP’s periodical
inspection. The yield monitoring performance was found to have an error rate
of 6.26% when the plants were inspected at a constant MRP traveling speed of
0.2 m/s. The MRP's functions are expected to be transferable and expandable to
other crop production monitoring and cultural tasks.

KEYWORDS

mobile robotics platform, indoor vertical farming systems, GPS-denied navigation,
temporal—spatial data collection, yield monitoring
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1 Introduction

Strawberries (Fragaria x ananassa) are favored by consumers
due to their rich nutrition and distinctive flavor. Precision indoor
farming systems (PIFS), vertical farms with artificial light (aka plant
factories) in particular, have long been suitable plant production
scenes due to the advantages of efficient land utilization and year-
round cultivation. In recent years, some companies, including
Bowery Farming, Oishii Farm, and 4D Bios, successfully
cultivated strawberries in plant factories. Farmers and researchers
need to understand how plants grow and provide what plants need
to increase fruit yield and quality. Plant phenotyping, an emerging
science that describes the formation process of the functional plant
body (phenotype) under the influence of dynamic interaction
between the genotypic differences (genotype) and the
corresponding environmental conditions (Walter et al., 2015), can
provide valuable information for crop genetic selection and
production management. People usually go to fields or
laboratories to manually obtain plant phenotypic data. Such
practices are highly labor-intensive, time-consuming, non-robust,
and sometimes destructive and, therefore, may be limited by
experimental scale, collection accuracy, and human subjective
differences (Bao et al., 2019). A field-based, large-scale, and high-
throughput plant phenotyping approach to overcome the
bottleneck of manual operation is urgently needed (Araus
et al., 2018).

Internet of Things (IoT) devices, which focus on collecting
environmental data, are prevalent within PIFS as the monitoring
system. Experience-oriented growth regulation decision-making
can be built using environmental data by production managers.
However, the decision-making process based on experience is
indirect and delayed. The plant phenotypic data should be added
to form a closed-loop decision-making pipeline. Considering fine-
grained data collection is positively correlated with the number of
camera sensors, the coverage and accuracy of data acquired by
traditional IoT systems cannot be readily achieved within
reasonable budgets. Mobile robots equipped with multiple sensors
(the concept of quasi-IoT) present a great potential to acquire
desired phenotyping data automatically. In the past few years,
reported examples of phenotyping robots, emphasizing mobility-
enabled field trials, have been increasing (Mueller-Sim et al., 2017;
Shafiekhani et al., 2017; Higuti et al., 2019). However, there has been
limited published work on mobile robots that have the capability of
autonomously capturing phenotypic data within PIFS. We aimed to
develop a mobile robotics platform (MRP) with the capabilities of
periodical monitoring of individual strawberry plants and fruit
within the entirety of a commercial plant factory. Fine-grained
plant growth data captured by the MRP can provide production
guidance and facilitate integrated GEM research.

An MRP applied in agricultural scenarios should have two
primary capabilities: providing navigation for multiple-location
data acquisition and data-driven decision support. Navigation in
indoor scenarios is challenging due to the lack of GPS. As an
alternative approach to GPS used in indoor scenarios, ultra-
wideband (UWB) is high-precision but high-cost (Flueratoru
et al, 2022). The stability of the navigation is closely related to
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the strength of signals that suffer from occlusion and attenuation
errors under plant growing structures. Furthermore, UWB provides
relatively static information that cannot detect unexpected
obstacles. Light Detection and Ranging (LiDAR) sensors have
been widely used in agricultural navigation that can actively
acquire accurate depth information with an extensive detection
range and a low sensitivity to lighting changes compared to other
sensors (Debeunne and Vivet, 2020). A random sample consensus
(RANSAC) algorithm was applied to discern maize rows fast and
robustly while navigating in a well-structured greenhouse (Reiser
etal., 2016). However, in complex environments like plant factories
with repetitive shelves and narrow aisles, LIDAR can only obtain a
limited number of signals representing the presence of objects.
There is no semantic information for effectively completing the
scene restoration. In contrast, visual navigation is limited by the low
accuracy in depth estimation and the weak robustness against
lighting changes (Zhang et al,, 2012). A robot cannot safely and
robustly navigate within plant factories using only one sensor as the
single perception source. Multi-sensor fusion approaches, which
can significantly improve the fault tolerance of a system while
increasing the system’s redundancy to increase the accuracy of
object localization, have been proven to show great potential to
solve navigation problems in complex scenes like urban traffic
(Urmson et al., 2008). In consideration of a GPS-denied
environment like PIFS, simultaneous localization and mapping
(SLAM) technology can be a feasible navigation approach (Chen
etal, 2020). The state-of-the-art LIDAR-SLAM Cartographer (Hess
et al., 2016) and visual-inertial system (VINS) (Qin et al., 2018) are
all open-source tools in the ROS (Robot Operating System)
community. These algorithms, which can be easily implemented
on a mobile robot, can potentially address navigation challenges.
However, SLAM has some limitations, such as computational cost
and lack of feature extraction ability; therefore, it is not directly
applicable to this research. In this study, we report our research on a
novel approach of fusing wheel odometry, inertial measurement
unit (IMU), and AprilTag observations (captured by a monocular
camera) to achieve accurate navigation within repetitive and narrow
passages of PIFS.

Providing data-driven decision support based on the plant
growth information is the other critical capability of the MRP.
There exist some common decision-making pipelines in both
academia and industry, including ripeness detection (Talha et al,
2021), diseases and pest identification (Lee et al., 2022), and fruit
counting (Kirk et al, 2021). Image data captured by various
perception systems have been widely used to achieve the above
purpose (Gongal et al., 2015). In recent years, AlexNet brought
about a renewed understanding of deep CNN and evolved into the
foundation of contemporary computer vision (Krizhevsky et al,
2012). The powerful end-to-end learning makes the decisions
possible, especially in the detection-based task from static images
(Zhou et al, 2020; Perez-Borrero et al, 2021). The computing
power of MRP limits the development of efficient CNN
architectures as the neural network deepens (Zhang et al., 2018).
Both occlusions from neighboring fruit and foliage and illumination
changes could cause variations in fruit appearance (Chen et al,
2017). Compared to tasks, like ripeness and disease detection,
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counting from videos is challenging due to bias in fruit localization
and tracking errors originating from occlusions and illumination
changes (Liu et al., 2018b). Some traditional algorithms, including
Optical Flow, Hungarian algorithm, and Kalman Filters, were used
to track multiple fruits among sequential video frames. Liu et al.
combined fruit segmentation and Structure from Motion (SfM)
pipelines for counting apples and oranges grown on trees. The extra
introduction of relative size distribution estimation and 3D
localization could eliminate parts of double-counted fruits to
further enhance the counting accuracy. Strawberry fruit is of
small sizes and has complex ripe stages and dense growth scenes,
which bring real challenges to the detection and tracking process.

This paper reports the current state of development and testing
of the MRP’s abilities of periodical monitoring of individual
strawberry plants and fruit within a commercial plant factory.
The challenges of navigation within narrow and repetitive indoor
environments for temporal-spatial plant data acquisition and
accurate yield monitoring for production management and
harvesting scheduling in the MRP’s periodical inspection
operations need to be taken into consideration. In summary, the
objectives of our research are as follows:

1. To develop the software and hardware of an MRP,
consisting of an autonomous mobile robot (AMR) and a
multilayer perception robot (MPR), which can capture
temporal-spatial phenotypic data within a whole
strawberry factory.

. To achieve accurate navigation within the repetitive and
narrow structural environments of a PIFS through an
AprilTag and inertial navigation (ATI navigation)
algorithm.

. To evaluate the performance of strawberry yield
monitoring through a novel pipeline that combines
keyframes extraction, fruit detection, and postprocessing
technologies.

2 Mobile robotics platform

In this study, an MRP to operate within a PIFS with multiple
plant growing tiers has been developed to dynamically monitor
plant growth and provide data for supporting crop growth model
construction and production management. The modularly designed
MRP (Figure 1) consists of an AMR, i.e., the mobile base, and an
MPR, i.e., the lifting module + perception module, where MRP =
MPR installed on top of AMR. The AMR is capable of traveling
along the aisles between plant growing rows (i.e., x direction) with
high positioning accuracy (PA) and robust navigation capability.
The MPR has a perception module (for data acquisition) that can be
raised by a lifting module to reach the heights (z direction) of all
plant growing tiers of every row within the PIFS. The assembly of
the AMR and MPR can perform automatic acquisition, storage, and
transmission of phenotypic data of all individual plants within the
entirety of a plant factory. Furthermore, multiple fault detection
measures were designed and installed in the MRP. The MRP has
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been operating in a commercial strawberry production plant factory
since July 2022, and has been working as expected so far.

The AMR is a differential drive mobile robot with two 165-mm
hub motors, which has the ability to turn on the spot. The cylinder
shape mobile base has a diameter of 500 mm and a height of 240
mm, which can travel at a maximum speed of 1.5 m/s through an
aisle (with a minimum width of 600 mm) within a plant factory. An
Intel® Core' " i5-8265U/1.6 GHz industrial computer is mounted
inside the robot to run all navigation, data acquisition, and data
transmission programs. The speed control commands from the
industrial computer can be received by a low-level control board to
drive the AMR to move. Wheel encoders, an IMU (US$40)
mounted inside the mobile base, and a downward viewing
monocular camera (US$25) to detect AprilTags on the floor are
integrated to realize accurate localizations within PIFS, and a 2D
LiDAR is used to detect obstacles. An emergency button is directly
connected to the low-level control board to stop the motors
when necessary.

The MPR is for use to perform data acquisition. The perception
module of the MPR is an Intel® RealSense' " D435i depth camera
(Intel Corporation, California, USA) mounted on a servo motor
that provides the camera with the pitch motion to capture multiple
images from various camera angles. The perception module can be
raised to 2.8 m, the height of the top tier of each plant growing row,
by the lifting module. The phenotypic data of each plant within a
strawberry PIFS can be collected by the MRP’s periodical inspection
of the entire facility. Data of all plants on one of the five tiers were
collected on one inspection route. The data of plants and the MRP’s
motion can be recorded in the rosbag format at a unified timestamp,
which facilitates the data analysis and decision support processes.
During the experiments on data acquisition, the MRP traveled at
the speeds of 0.2, 0.3, and 0.4 m/s along the aisle between plant
growing rows. The distance between the center of the MRP and the
sides of the plant growing rows was kept at approximately 410 mm.

FIGURE 1
Hardware of the mobile robotics platform (MRP).
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The resolution of the RealSense camera was set to 1,280 x 720 at 30
frames per second (FPS). The camera was set to be parallel to the
side of a plant growing row by a servo motor and at the same height
as the fruit by the lifting module. The same procedure was
conducted to ensure the success of data acquisition on each tier.

3 Methods

This section presents two basic capabilities of the MRP:
navigation for multiple-location data acquisition and strawberry
yield monitoring.

3.1 Navigation

The navigation system installed in the AMR included
navigation sensors, an industrial computer, and a low-level
control system (Figure 2). The ROS was implemented in the
industrial computer to collect data and conduct the navigation
pipeline. There were five ROS nodes in the navigation pipeline,
including an obstacle detection node, a localization node, a
navigation node, a state machine node, and a low-level
communication node. The real-time poses (position and heading)
of MRP were calculated from the camera, IMU, and wheel encoders,
through the localization node. The poses were received by the
navigation node to conduct the global path planning and local path
tracking, which, in turn, generated the target angular velocity and
linear velocity of the MRP at a frequency of 50 Hz. The obstacle
information captured by a 2D LiDAR from the obstacle detection
node and the localization state (success or failure) from the
localization node were sent to the state machine node. The
updated state of the system from the state machine node and the
target velocity from the navigation node were transmitted to the
low-level communication node, which then calculated the target
speed of the two motors and sent them to the low-level control
board through serial communication.

An ATI navigation algorithm was developed to address the
challenges of accurate navigation within the repetitive and narrow
structural environments of a PIFS. The ATI navigation algorithm
consists of four parts: mapping, localization, planning, and control.

The purpose of mapping in this study was to chart the moving
route of MRP. The research was carried out at a commercial

Navigation
Sensors

Industrial Computer

(Robot Operating System) Low-level Control System

State Machine Node

V| Lowdevel
1 |Control Board

Left Motor
Controller

ow-level
Communication Node

Right Motor
Controller

FIGURE 2
Navigation system architecture.
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strawberry factory (4D Bios Inc., Hangzhou, China). A total of 45
AprilTags (Olson, 2011) of 40 x 40 mm in size were pasted on the
grounds of both sides of each plant growing row. An 875 Prolaser®
(KAPRO TOOLS LTD., Jiangsu Province, China) was used to
ensure that all tags were on a designated straight line. The
distance between the two neighboring tags was approximately 1.3
m. When collecting data for developing the ground map of a
production facility, the MRP was first moved to Tag 0, which is
the location of the charging pile (Figure 3). The MRP was controlled
by a joystick to pass above the tags in order while simultaneously
recording the data of the monocular camera, IMU, and wheel
encoders. The mapping dataset was built after MRP had traveled
along all the tags and returned to Tag 0.

The tag ID and the homogeneous transform of the tag relative
to the monocular camera mounted on the MRP were both
calculated by the AprilTag detection algorithm (Wang and Olson,
2016). The wheel encoders and IMU were fused to calculate the
trajectory of the MRP using Equation 1.

9k+1 = ek + Aez'mu
(1)

X1 = X + (As; + As,) cos (6,) /2
Vet = Yk + (Asy + As,) sin (6;) /2

where AB,,, is the heading variation of IMU between
timestamps of k and k + 1. As; and As, represent the motions of
the left and right wheel obtained by optical encoder during two
timestamps, respectively.

The tag IDs were further used to conduct the loop closing
optimization through the pose graph optimization (PGO)
algorithm. The vertices were represented by processed global
poses of the tags, and the edges were denoted by relative pose
changes of the odometer while MRP accessed two neighboring tags.
We cast this as a nonlinear least squares problem

ol
arg min e f2e;
x ij

FIGURE 3
The MRP is being charged in the commercial strawberry factory.
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where the state of the tag is denoted by a 2D coordinate vector
and a heading angle, x = {p, 60}. The information matrix €; is used
to assign weights to different errors. The error e; between the
expected observation and the real observation from Tag i and Tag j,
can be calculated by Equation 2.

R (p; - p) - b
eij:( N )
6-6,-0;

2

R; is the rotation matrix corresponding to the heading angle in
x;. p; and é,vj represent the relative pose changes of edges.
Levenberg-Marquardt (L-M) algorithm was used to optimize the
poses of all tags and generate the map. The accurate poses of the
tags could be obtained in the process of mapping.

Based on whether one of the AprilTags was detected at the
current timestamp, the estimations of localization could be divided
into two situations. When the tag was correctly detected by the
monocular camera, the global pose of the MRP at this timestamp
could be calculated by the global pose of the tag in the existing map
and the pose transform of the tag relative to the MRP. Otherwise,
the detection result of the last tag in the existing map and the
odometry changes from the timestamp when the last tag was
detected to the current timestamp were used to estimate the
global pose of the MRP.

In path planning, based on the destination, on the mapped
route, entered by a human operator, a trajectory composed of a
sequential set of locations could be generated by MRP’s global path
planner as the waypoints. Based on whether the destination is a
tagged position, global path planning can be divided into two cases.
If the destination is the position of one of the tags on the undirected
map, the shortest path can be obtained through the breadth-first
search (BFS) algorithm. If not, a virtual tag representing the
destination will be temporarily inserted between two adjacent tags
on the undirected map. The optimal path could be calculated by the
BFS algorithm performed on the newly constructed
undirected map.

After obtaining the global path, the MRP can be navigated
through a series of local paths at the angular and linear velocities
issued by the low-level control board (Figure 2). For a straight
global path consisting of more than or equal to three tags, the local
path target position is set to Tag;,, with MRP passing Tag;, which
will keep the velocity of the MRP along the planned route stable.
Angular velocity is calculated by the anti-windup pi controller to
adjust the heading toward the target position. The linear velocity is
calculated by a proportional controller to prevent system overshoot.
The target speed of the left and right motors will be further obtained
according to the differential motion model.

3.2 Yield monitoring

The growth condition of strawberries on each tier of the plant
growing rows could be recorded in a video format after the
inspection by the MRP. In this study, we have developed a
strawberry yield monitoring method. The counting-from-video
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method consisted of two phases: detection and counting of
ripe fruit.

3.2.1 Fruit detection

Ripeness detection is the first step in the yield monitoring
pipeline. Considering that the detection task has high
requirements for speed and accuracy, the single-stage detector
YOLOV5 is chosen to detect the ripe strawberry (Jocher et al,
2022). The framework of the detector can be divided into four parts:
Input with mosaic data augmentation, CSPDarknet53 (Bochkovskiy
et al,, 2020) as Backbone, Neck applying Feature Pyramid Network
(FPN) (Lin et al., 2017) and Path Aggregation Network (PAN) (Liu
et al,, 2018a), and Prediction using GIoU loss (Rezatofighi et al.,
2019). The framework extracts and aggregates semantically and
spatially strong features more efficiently. More efficient
representation improves the performance of multi-scale object
recognition. Various variants have been generated by adjusting
the depth and width of the network. YOLOV516 was used in this
research, with an inference time of 15.1 ms running on an
NVIDIA® V100 Tensor Core GPU.

3.2.2 Fruit counting

A fruit counting pipeline was presented to count ripe
strawberries on video, including keyframe extraction, fruit
detection, and postprocessing (Figure 4).

3.2.2.1 Keyframe extraction

Considering that any individual strawberry fruit could appear in
multiple frames of the video captured, the number of times a fruit
might be counted was not fixed. Therefore, fruit detection results
could not be directly accumulated to obtain the counting results.
The concept of keyframe extraction was applied to fix the number of
times of repetitive counting, r. The pixel distance of two
neighboring keyframes in the pixel coordinate system, d,, was
calculated by Equation 3.

dy

= 3
where w was the image width. All strawberries in the video were
required to appear at least twice in all extracted frames; therefore, r
was greater than or equal to 2. Figure 5 shows example series of
keyframes at various values of r.
The pixel distance between keyframes was converted to the
movement of fruit in the camera coordinate system to further

Input Pipeline Output

Fruit bbox

detection

Threshold size of bbox

FIGURE 4
The overall yield monitoring pipeline.
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FIGURE 5

Example series of keyframes at various values of r: r = 2 in the upper row, r = 3 in the middle row, and r = 4 in the bottom row.

calculate the interval between keyframes in the video. The
theoretical interval of keyframes, i, , could be calculated by
Equation 4.

. dyxd X fps

i, =
' fexv

where fps is the frame rate of the video. f, denotes the intrinsic

(4)

parameters of the RealSense camera, v represents the traveling
speed of MRP, and d stands for the average distance between the
camera and the fruit. Equation 5 was used to calculate the nearest
integer of i; to obtain the actual interval of keyframes, i.

wx d x fps
fe %

where the variable d was assumed to be a constant in this study.

i =int(i,) = int(

©)

vVXr

i is only related to values of v and r, where i=g(v x r). The
counting-from-video problem was transformed into the statistics of
fruit detection results of keyframes.

3.2.2.2 Postprocessing
Postprocessing approaches were integrated to further improve
the counting accuracy, including distance filtration, edge filtration,

and multi-sequence average. Strawberries on other plant growing
rows might enter the camera’s field of view during the MRP
inspection process. The distance filtration approach based on the
bounding box (bbox) size of the detection results was developed to
eliminate the interference to counting by the strawberries located
outside experimental areas. An edge filtration approach was used to
prevent partially visible strawberries at the edge of the image from
being counted repeatedly. Only the strawberries that appeared on
the left edge were counted, and the strawberries that appeared on
the right edge were ignored. Figure 6 shows the two situations
described above.

There existed errors in frame extraction between the actual
interval of keyframes i and the theoretical interval of keyframes i;,
e = |i — i;|. A multi-sequence averaging algorithm was developed to
reduce the counting errors caused by the errors that occurred in the
keyframe extraction process. The yield monitoring algorithm was
presented as Algorithm 1:

Input: Threshold of keyframe interval #*,
Threshold of errors of frame extraction e°,
Threshold of the number of repetitive

counting 7¥, MRP traveling speed v, Inspection
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FIGURE 6
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A

.93
0.97 13.36
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91
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Upper row: Three example cases that needed to be processed by distance filtration. Strawberries annotated with yellow bboxes were not in the
experimental areas and were not counted. Bottom row: Edge filtration was applied to process three consecutive keyframes (r = 2). The ripe fruit A was
not counted since it was partly visible on the right edge of the left image. Fruit A was counted after it had moved to the left edge of the right image.

Frontiers in Plant Science

78

frontiersin.org


https://doi.org/10.3389/fpls.2023.1162435
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
Brenda
Note
Marked set by Brenda


Ren et al.

videoV
Output: The number of ripe fruits in the video
V,n
Initialize =4, ¢=0.1, =15
Initialize R= {r]}]'iz = {2,3,.;.,1"}
1 1= {ijlij:=g(r; x v),rje R}
// CalculatedbyEqg. (4)

2 I:={ilij:= (i), ige L},

// CalculatedbyEq. (5)
3 Bi={glg: =iy il igel iel},
4 R"::{rj\rjeR,ej>es,ejeE}j’Z:2
5 R :={rreRij<i,iel},
6 R R-R°NR

’;

7 I:]S::{ej\ejeE,rjeR}j;z
8 [E':=S8ort(E) // Sort: To sort E° to get an

ascending-order array &
9 if E°[2] > ¢then

| B = (B0} B1]}

else

B = {B[0), BO1) B2}
10 R°:={rj|reR%eeE},
11 I¢:= {ij\ijel,rjeR‘}J'-;z // R°: The group of
filtered intervals of keyframes
12 S := {s,j|s,j i= E(V,i-),rjeRc,ijeIC} // E: To
extract keyframes fromV at interval i
13 SF:={sf|sf: = F(s,),5,€S, reR} // F: To apply
distance and edge filtration
14 N :={n,n,:= @,s,eSF,reR‘}// C: To count
the ripe fruit ins,
15 n
the sequence results in N.

:= Average(N) // Average: To average all

ALGORITHM 1
Yield monitoring.

4 Procedure of experiments

In this study, experiments were carried out at a commercial
strawberry plant factory (Figure 2) in December 2022. Fragaria x

10.3389/fpls.2023.1162435

ananassa Duch. cv. Yuexin plants bred by the Zhejiang Academy of
Agricultural Sciences (Hangzhou, Zhejiang, China) were cultivated
on four-tier planting structures. The experiments were conducted
on a row of three four-tier planting structures near a wall. There
were 12 planting pots in every tier of each planting structure, and
five strawberry plants were grown in each planting pot. Experiments
were carried out on a total of 720 strawberry plants (i.e., 5 plants/pot
x 12 pots/tier x 4 tiers/planting structure x 3 planting structures =
720 plants). Figure 7 shows the floor layout of the research facility
and the MRP inspection route.

4.1 Navigation capability

4.1.1 Mapping

The typical configuration of a plant factory is a corridor
environment with repetitive and narrow planting structures,
which brings significant challenges to the LiDAR-based SLAM
algorithm in mapping operations. LIO-SAM, one of the advanced
LiDAR-based SLAM algorithms, was implemented on the MRP to
compare and prove the advantages of the proposed mapping
algorithm. LIO-SAM is a real-time, tightly coupled Lidar-Inertial
odometry with high odometry accuracy and good mapping quality
(Shan et al,, 2020). In order to satisfy the use of the LIO-SAM
algorithm, a VLP-16 3D LiDAR scanner (Velodyne Lidar,
California, USA) and a WitMotion HWT905 nine-axis attitude
and heading reference system (AHRS) sensor (WitMotion,
Shenzhen, China) were integrated within the MRP. The collection
of the mapping dataset was conducted using the same approach
mentioned in Section 3.1. The data of 3D LiDAR and nine-axis IMU
were used in the LIO-SAM algorithm for pose estimation. The data
of the monocular camera, IMU, and wheel encoders were used in
the mapping algorithm of the ATI navigation system developed in
this research. All optimization processes were conducted offline for
the two algorithms. Another experiment was conducted to compare
the mapping performances of the ATI navigation system, without
and with loop closing optimization, to show the impact of
optimization in this research. Mapping trajectories were used to
evaluate the mapping performances of the three approaches.

Charging pile D AprilTag

FIGURE 7
Schematic diagram of the experimental scene and inspection route.
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4.1.2 Localization

This experiment aims to test the ability of MRP to move to a
desired location as expected. PA was used to evaluate the navigation
performance in this research. The coordinate system is shown in the
lower left corner of Figure 7. The positive direction of the X-axis is
consistent with the movement direction of the MRP when
inspecting strawberry plants. In the autonomous navigation
mode, three tags at different positions (Tags 8, 12, and 21) were
selected for testing PA. The MRP started from Tag 5 and navigated
to the target tag at the traveling speed of 0.4 m/s after entering the
Tag ID. The current position of the tag in the image coordinate
system was recorded to compare with the tag’s position in the map
generated by the ATI navigation algorithm. The same operations
were repeated five times for each tag. Euclidean distance between
two positions was represented as distance deviation, err _d. err _x
represents the deviation in the x direction, and err _ y represents the
deviation in the y direction. The root mean squared error (RMSE)
of five trails per tag was computed by Equation 6, and the RMSE of
15 trails of three tags was computed as PA.

1
RMSE = /EELlerr_d,Z (6)

where k is the number of trails. err _d, represents the err _d in
trail .

4.2 Fruit detection and counting

4.2.1 Fruit detection

A total of 80 videos were captured along the plant growing rows
by farmers at a normal walking pace using an Intel® RealSense'"'
D435i depth camera and a smartphone, under various illumination
conditions, different strawberry growth scenes, and various
strawberry growth stages (from March to July 2021). The dataset
consisted of 1,600 frames that were extracted out of every 10 frames
from the videos, with the images without strawberries manually
removed. All strawberry fruits in the period of veraison were
annotated by growers. Of those, every fruit having an 80% or
more red area on its surface was annotated as a ripe fruit
(Hayashi et al., 2010). Other fruits were annotated as unripe ones.
The dataset, including 2,327 ripe strawberries and 2,492 unripe
strawberries, was randomly divided into train, validation, and test
sets at the ratio of 8:1:1.

The strawberry ripeness detection model, YOLOV5I6, was
implemented using the PyTorch framework. The modeling
process was performed on a Linux workstation (Ubuntu 16.04
LTS) with two Intel Xeon E5-2683 Processors (2.1G/16 Core/
40M), 128 GB of RAM, and four NVIDIA GeForce GTX 1080Ti
graphics cards (11 GB of RAM). Taking a mini-batch size of 16, the
SGD optimizer was adopted with a decay of 0.0001 and a
momentum of 0.937. The best performance was achieved under
the initial learning rate of 0.01. The number of warmup epochs and
total training epochs were set to 3 and 90, respectively. The best
model weight was chosen according to the value of mean average
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precision (mAP) (Everingham et al, 2010) calculated on the
validation set. The chosen model was evaluated on the test set by
mAP@0.5 (at the IoU threshold of 0.5).

4.2.2 Fruit counting

False detections and missed detections of fruit in a particular
frame cannot be corrected by any other frames. Therefore, in this
study, a counting algorithm was developed to count every fruit
multiple times (a predetermined number of times that is equal to or
greater than 2) in order to improve the accuracy of the fruit
counting. The performance of the proposed algorithm was
affected by r, i, and e. As mentioned in Section 3.2, i and e were
related to the value of r. In this experiment, various values of r were
tested to build the fruit counting algorithm with a robust
performance. The MRP traveled at the speed of 0.3 m/s along the
aisle between plant growing rows to capture the phenotypic data of
each plant in the experimental region. Both video data captured by
the RealSense camera at the actual frame rate of 29.72 fps and data
from navigation sensors were recorded in the rosbag format at a
unified timestamp. The MRP inspected and recorded all the data
twice for each tier of plant growing rows. A total of eight videos
were collected in this experiment. Fruit detection was performed on
the eight videos. The number of ripe strawberry fruit in the results
produced by the detection algorithm, n&y, was manually counted as
the ground truth of the fruit counting algorithm to exclude the
impact of the fruit detection algorithm and evaluate the
performance of the fruit counting algorithm alone. The yield
monitoring algorithm results, n, were then estimated using the
proposed algorithm without multi-sequence averaging (one of the
three postprocessing techniques mentioned in Section 3.2.2). The
thresholds e and #*, mentioned in Algorithm 1, can be determined
by selecting a number of smaller relative error rates of fruit
counting, err©, calculated by Equation 7.

_c
C—wxm% %)

ner

4.3 Inspection capability

In this experiment, the inspection capability of MRP was tested
at various traveling speeds of 0.2, 0.3, and 0.4 m/s. The inspection
capability was a system performance that included mobility for
multiple-location data acquisition and monitoring of
strawberry yield.

4.3.1 Motion control

The experiment in this study was conducted three times to test
the motion control performance of MRP at three different traveling
speeds. In the navigation mode, MRP was programmed to start
from the first tag (Tag 5) and stop at the last tag (Tag 23) position in
the aisle. The distance error, linear velocity, yaw error, and angular
velocity of the MRP were recorded in the rosbag format with a
frame rate of 50 Hz as the errors and outputs of the control system.
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Motion stability and angular tracking accuracy were considered to
evaluate the effectiveness of the proposed method.

4.3.2 Yield monitoring

The accuracy of the yield monitoring algorithm is a system
performance to evaluate both fruit detection and counting
processes. The variables r, i, and e corresponding to three
different traveling speeds could be calculated by repeating the
operations mentioned in Section 4.2.2 in the same experimental
area on different dates. This experiment was conducted three times
to test the accuracy of the yield monitoring algorithm at three
traveling speeds of MRP. For each experiment, MRP inspected and
recorded all the data twice for one of the four tiers of the plant
growing rows. A total of 24 videos were collected in this experiment.
The number of ripe strawberries in the raw video, nly, was
determined by growers as the ground truth of the yield. The
relative error rate of yield monitoring, err?, could be calculated
by Equation 8.

10.3389/fpls.2023.1162435

5 Results and discussion
5.1 Navigation capability

5.1.1 Mapping

As shown in Figure 8, two continuous and smooth trajectories
were obtained using our ATI mapping approach (a and b). The two
trajectories almost coincided before Tag 27. The trajectory in
Figure 8B was the non-optimized result, which the MRP was not
able to return to the charging pile (origin) due to cumulative errors
of the system. Figure 8A shows the mapping trajectory processed by
the ATI mapping approach with the loop closing optimization that
was accomplished by making the path defined by Tags 0, 1, 2, and 3
the beginning segment and the path defined by Tags 3, 2, 1, and 0
the ending segment of the trajectory. The beginning tags (numbers
0, 1, 2, and 3) were detected in a reversed order when MRP was on
the way back to the starting point, Tag 0. The global PGO was
successfully performed to eliminate the cumulative errors and
obtain a consistent and undistorted trajectory during the mapping

Y
-n . . I~ . .
err? = ! ; GT| % 100 % (8)  process. The mapping trajectory coincided with the AprilTags
nGr pasted on the ground in the experimental area (Figure 7).
A
1]} T—— N SRRt (USRS SO —— ATl (w/ loop)
E?]
>
—4
-6 , : . . .
0 5 10 15 20
x [m]
B
04-— - - ~ I __—— ATI (w/o loop)
E7]
" 1
—4 4 R —
-6 , . ; : ,
0 5 10 15 20
x [m]
C
0+ | — LI0-SAM
E7 !
~ Jm
_4 -
-6 ; ; : ; ,
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FIGURE 8

Comparison of trajectories obtained by the three mapping approaches running in the experimental area. (A) shows the mapping trajectory
processed by the ATI mapping approach with the loop closing optimization. (B) shows the mapping trajectory processed by the ATl mapping
approach without the loop closing optimization. (C) shows the mapping trajectory processed by the LIO-SAM algorithm with optimized parameters.
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In contrast, a jittery mapping trajectory was obtained by LIO-
SAM under the same movement of MRP (Figure 8C). Degeneracy
occurred when MRP traveled back and turned to a new long aisle,
i.e., starting from the position of Tag 25 in Figure 7. The estimated
odometry oscillated around the same position. It is worth
mentioning that the mapping results presented in Figure 8C were
obtained by the LIO-SAM algorithm with optimized parameters.
The original LIO-SAM failed at the second turn of the inspection
route, i.e., starting from the position of Tag 4 in Figure 7. The
experimental results show that the LIDAR-based SLAM algorithm
failed in the environment of the plant factory. Our ATI navigation
algorithm was effective and robust in the mapping process.

5.1.2 Localization

In the PA experiment, Tags 8, 12, and 21 were selected as target
positions (Figure 7). Tests were repeated five times for each tag. The
range of RMSE of each tag was found to be between 8.6 and 14.8
mm (Table 1). The overall RMSE of PA was 13.0 mm. Each tag
could be effectively observed using the proposed ATI navigation
algorithm, which showed the robustness of the positioning system.
The positioning results of the algorithm in the x and y directions are
all biased to the same side (Tables 2, 3). The external parameters
among the wheel encoders, IMU, and monocular camera were
estimated from the mechanical drawings with no calibration
process in this research. The PA of the system could be further
improved by automatic and accurate calibration of the navigation
sensors and the optimization of fusion of wheel encoders and IMU.

5.2 Fruit counting capability

The best model weight was chosen according to the mAP@0.5
value of 0.994 for ripe strawberries calculated on the validation set.
We have found that an mAP@0.5 value of 0.945 could be obtained
on the test set. Strawberry growth scenes with occlusions could be
identified accurately by the fruit detection model.

We have found that there was little change in i, and i when the
value of r was more than 15 and the value of v was 0.2, 0.3, or 0.4 m/
s. The value of r was set from 2 to 15, and the value of v was 0.3 m/s
in this experiment. The corresponding i and e values and the
relative error rate of fruit counting, errC, were computed and are
shown in Table 4 in ascending order according to e values. The
value of err generally increased as the increase of e. When the value
of e was more than 0.1, the err® was relatively large and fluctuated.
When the value of i was relatively small, the impact of e on err® was

TABLE 1 Positioning accuracy of the ATI navigation algorithm.

err_d (mm)

10.3389/fpls.2023.1162435

more obvious. The value of i°as set as 4 through the observation of
the experimental results. In this experiment, the values of r were
chosen as 15, 10, and 6. The final err® was computed as 3.3%. There
also existed several limitations. We assumed that the value of d was
constant. However, the variance in the distance between
strawberries and the RealSense camera existed in the production
scene, which affected the accuracy of the algorithm. The problem
could be addressed by dynamically introducing accurate values of d
captured by the depth camera into the algorithm. When v is high,
the overlaps of two neighboring frames will be fewer. This will, in
turn, limit the range of r values and the tolerable error rate will
become smaller.

5.3 Inspection capability

5.3.1 Motion control

The motion control system worked stably at the nominal MRP
traveling speeds of 0.2, 0.3, and 0.4 m/s. The performance of the
distance controller and heading controller at various speeds is
shown in Figure 9. The inspection durations at the three set
speeds are 113.6, 78.6, and 62.1 s, respectively. The overall
average speeds are 0.189, 0.273, and 0.346 m/s, respectively.

On the left of the figure, the blue lines represented the distance
between MRP and the target position in the local path planner
(Section 3.1), Dis,,> during the navigation process. At the start, the
value of Dis),,; was approximately 2.4 m, which was the distance
between Tag 5 and Tag 7. As the robot moved forward, the value of
Disy,. decreased linearly. When the MRP reached Tag 6, the local
target was updated to Tag 8. At this time, the value of Disy,
returned to approximately 2.4 m, which was the distance between
Tag 6 and Tag 8. When the MRP reached Tag 22, the local target
was no longer updated. The value of Dis,,; faded to zero as the
robot moved towards the global target, Tag 23. MRP accelerated
from zero to a set traveling speed, maintained the speed during the
inspection, and gradually decelerated until reaching the global
target, Tag 23, without an overshoot. On the right of the figure,
the red lines represented the heading from MRP to the target
position in the local path planner, Yaw,,, during the navigation
process. The value of Yawy,,; was within 0.01 rad most of the time
and occasionally rose to 0.03 rad due to the updates of the target
positions in the local path planner, which had little effect on the
phenotypic data acquisition. The control system ensured smooth
and low-error motions at various traveling speeds of MRP for stable
quality of video collection.

8 9.6 10.5
12 17.2 16.8 ‘ 12.6 12.5
21 13.1 16.6 17.1 16.6

‘ 8.5 7.2

6.9 8.5 8.6
14.0 ‘ 14.6 14.8 13.0
6.6 14.0 14.5

err _d, distance deviation is the Euclidean distance between the current position of the tag in the image coordinate system and the position of the tag in the map generated by the ATI navigation

algorithm.
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TABLE 2 Positioning accuracy in the x direction of the ATI navigation algorithm.

err_x(mm)

8 -9.1 -10.4 -8.3 =59 =5.1 -7.8 8.0
12 -16.5 -14.4 -10.1 —-11.1 -11.5 -12.7 12.9 11.2
21 -8.6 -15.2 -16.2 -11.7 5.2 -9.3 12.1

TABLE 3 Positioning accuracy in the y direction of the ATl navigation algorithm.

21 -9.9 -6.7 =54 ‘

5.3.2 Yield monitoring

The err® and err? of 24 test videos (8 videos per MRP traveling
speed) were calculated and shown in Table 5. We found that the
system showed robust monitoring results at various MRP traveling
speeds, of which err® was between 2% and 3%, and err’ was
between 6% and 10%. The best yield estimation performance was
found to have an error rate of 6.26% at the MRP traveling speed of
0.2 m/s. The four ties of plant growing row in the experimental area
corresponded to the four strawberry growth densities. Our

-11.8 ‘ -4.0 7.6

algorithm had high robustness when dealing with scenes with
various fruit densities.

The same strawberry appeared differently in various frames due
to the changes in shooting angles during the movement of MRP. An
unripe strawberry might be detected as a ripe or unripe one from
various angles due to the distribution of red color on the fruit, which
made n&; smaller than n&;. The proposed yield monitoring
approach is a detection-based pipeline, in which false detections
caused the higher err”. In order to meet the above challenges and

TABLE 4 The relative error rate of fruit counting under different algorithm setups.

Counting results of various videos

Avg err
21 2.2 3.1
15 2.029 2 0.029 28 29 31 31 43 46 37 36 0.032
10 3.044 3 0.044 28 29 31 31 43 46 37 36 0.032
6 5.073 5 0.073 29 29 30 31 43 46 37 35 0.035
5 6.088 6 0.088 28 29 31 31 43 47 37 35 0.038
3 10.146 10 0.146 30 26 29 30 44 46 36 35 0.052
14 2174 2 0.174 30 31 33 34 46 49 40 38 0.049
8 3.805 4 0.195 27 27 30 30 41 42 35 34 0.072
2 15219 15 0219 28 29 31 29 44 49 36 33 0.059
11 2767 3 0233 25 26 28 28 39 42 34 32 0.116
13 2341 2 0341 33 33 36 36 50 53 43 41 0.133
7 4348 4 0.348 31 31 34 34 46 48 40 39 0.058
9 3382 3 0382 31 32 34 34 48 51 41 40 0.083
4 7.610 8 0.390 27 27 30 30 41 42 35 34 0.072
12 2537 3 0.4635 23 24 26 26 36 38 31 30 0.185
nér 30 30 32 32 44 44 37 37

1_1 and 1_2 are the first and second videos of strawberries grown on the first tier, respectively. Avg err® is the average relative error rate of fruit counting, n& is the number of ripe strawberry
fruit in the detection results.
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FIGURE 9
The performance of distance and heading controller at various MRP speeds.
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obtain higher yield estimation accuracy, there exists a potential
solution, which is to process with the original video data. Videos
captured by the MRP could provide both spatial and temporal
information for better tracking and detecting a single fruit.
However, a large amount of needed computational time was the
limitation of this solution.

6 Conclusion

In this study, we have developed software and hardware of an
MRP, consisting of an AMR and an MPR, which can capture

temporal-spatial phenotypic data within the whole strawberry
factory. This paper reported two basic capabilities of the MRP,
navigation for multiple-location data acquisition and strawberry
yield monitoring. An ATI navigation algorithm was developed to
address the challenges of accurate navigation within the
repetitive and narrow structural environments of a plant
factory. The MRP performed robustly at various traveling
speeds tested with a PA of 13.0 mm. A counting-from-video
yield monitoring method that incorporated keyframes
extraction, fruit detection, and postprocessing technologies was
presented to process the video data captured by MRP’s
inspection for production management and harvesting

TABLE 5 Yield monitoring performance comparison at various speeds of MRP.

Avg err Avg err”

15 3 0.044 1 34 52 87 70

02 0.0265 0.0626
9 5 0.073 2 35 55 88 69
15 2 0.029 1 37 54 88 71

03 10 3 0.044 0.0229 0.0905
2 36 53 90 72

6 5 0.073

11 2 0.075 1 37 51 85 71

0.4 0.0252 0.0711
6 4 0.195 2 38 52 84 70
nGr 1 36 54 85 70
ner 2 32 51 83 65

T1 is the first tier of the plant growing row in the experimental area. n is the result of the yield monitoring algorithm. n&; is the number of ripe strawberry fruit in the detection results. ny is the

number of ripe strawberries in the raw video. errC is the relative error rate of fruit counting. err’ is the relative error rate of yield monitoring.
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schedules. The yield monitoring performance was found to have
an error rate of 6.26% when the plants were inspected at a
constant MRP traveling speed of 0.2 m/s. The temporal-spatial
phenotypic data within the whole strawberry factory captured by
the MRP could be further used to dynamically understand plant
growth and provide data support for growth model construction
and production management. The MRP’s functions are expected
to be transferable and expandable to other crop production
monitoring and cultural tasks.
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Machinery for potato harvesting:
a state-of-the-art review
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UK National Robotarium, School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh, United Kingdom

Potatoes are the fourth most important crop for human consumption. In the 18
century, potatoes saved the European population from starvation, and since
then, it has become one of the primary crops cultivated in countries such as
Spain, France, Germany, Ukraine and the United Kingdom. Potato production
worldwide reached 368.8 million tonnes in 2019, 371.1 million tonnes in 2020,
and 376.1 million tonnes in 2021, with production expected to grow alongside
the worldwide population. However, the agricultural sector is currently suffering
from urbanization. With the next generation of farmers relocating to cities, there
is a diminishing and ageing agricultural workforce. Consequently, farms urgently
need innovation, particularly from a technology perspective. As a result, this work
is focused on reviewing the worldwide developments in potato harvesting, with
an emphasis on mechatronics, the use of intelligent systems and the
opportunities that arise from applications utilising the Internet of Things (loT).
Our work covers worldwide scientific publications in the last five years, sustained
by public data made available from different governments. We end our review by
providing a discussion on the future trends derived from our analysis.

KEYWORDS

potato harvesting, automation, machinery, internet of things, artificial
intelligence, robotics

1 Introduction

Around the world, the strain placed upon agriculture is compounding. A diminishing
pool of skilled laborers, the impact of climate change, and an ever-increasing human
population are a few of the challenges facing modern agriculture. Potatoes, as the fourth
most grown crop in the world behind wheat, rice, and corn, will play a large role in feeding
the increasing population [Zhang et al. (2017); Jennings et al. (2020); Issa et al. (2020)].
Ensuring an efficient potato production pipeline is of great importance. The stage of the
potato production pipeline which suffers the greatest losses is harvesting [Spang and
Stevens (2018)]. Potato harvesting is the process of separating and collecting potato tubers
from the soil. During this, losses occur as potatoes are damaged or left in the field.

There is not a single potato harvesting solution which generalizes well to all farms,
geographies, and soil types. The mechanical design of potato harvesters depends heavily on
the environment in which it operates. Regional factors along with the available harvesting
methods can greatly impact potato production [Wei et al. (2019)], as can be seen in
Figure 1. The production in the northern and central parts of the globe, which use
mechanical harvesting, is significantly higher than in the southern hemisphere. There is
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also a great variation within hemispheres which is worth exploring
in more detail. It is important not to simplify the problem, but to
view the geographical and political issues which may arise when
proposing certain solutions to potato harvesting.

Potatoes can be harvested using a variety of equipment. The most
simplistic method of harvesting is manual. This can be done using a
hand hoe, spading fork or even without any equipment. Harvesting
by hand is a time-consuming and labor-intensive task [Gulati
(2019)]. Therefore animal-drawn harvesters, such as the traditional
plough, were deployed to solve these problems. Both methods of
harvesting are still common practice in many parts of the world,
despite draught animals being neglected and even sometimes
harmed. Many veterinarians and animal welfare organizations
continually advocate for an improvement in their living and
working conditions [Ramaswamy (1998); Mota-Rojas et al.
(2020)]. A step up in complexity introduces semi- and fully-
mechanised harvesters. The difference is that fully-mechanised
harvesters collect the potatoes in a trolley or bunker during
harvesting, saving the manual labor required to collect the potatoes
from the field by hand after harvesting. Mechanical harvesters are
considered an improvement on the first two methods of harvesting as
they reduce harvesting time, cost, and losses [Nasr et al. (2019);
Soethoudt and Castelein (2021)]. Finally, there has been discussion
regarding the automation of potato harvesters, though there is no
working prototype in academic literature or at an industrial scale
implementation [McPhee et al. (2020)].

This review will begin by looking into the current state of global
potato harvesting, diving into the geographical differences and
discussing reasons for these differences. Followed by potato
harvesting constraints which may impact harvesting. These are
potato and soil characteristics. The technology used in potato
harvesting will be reviewed, starting with the mechanical harvester
specifications and design. Followed by the future trends of potato

Potato production, 2020

Potato production is measured in tonnes.
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harvesting. Finally, a discussion will be provided on the state of potato
harvesting around the world, with the goal of specifying an automation
level for the top-producing potato countries in each continent.

This work only considers scientific journal articles released
from January 2017 - December 2022, and information available
from governmental agencies. For a fair analysis, we kept our
emphasis on articles from countries with available agricultural
information. The selected articles were obtained through the
Scopus database. Articles under the subject areas of Chemistry;
Medicine; and Biochemistry, Genetics and Molecular Biology were
automatically filtered out from the search. We also restricted the
articles to only those with an English version. The focus on the
selection of articles was put on the machinery for potato harvesting.

2 Potato harvesting: an
international assessment

Potato harvesting is complex, with various different factors
preventing farmers and scientists from finding an optimum -and
unique- harvesting solution. The geographical location for example
can impact the optimum harvesting solution due to variations in terrain,
climate and soil characteristics. Consequently, farmers around the world
require bespoke solutions to harvesting. The societal role of potatoes
around the world also varies. The majority of potato farms in Asia,
South America, and Africa are smallholders [Devaux et al. (2021)]. They
treat potatoes as a staple crop and not necessarily as a cash crop. A staple
crop is used to feed the general population and constitutes a significant
proportion of the nation’s diet. Cash crops on the other hand are grown
in order to generate profit. There is a drive for these smallholders to
increase their productivity by utilising modern farming techniques
[Devaux et al. (2021); Wu et al. (2018)]. However, such techniques
must be tailored to the farm in which they are deployed.

Our World
in Data

Nodata 0t

Source: UN Food and Agriculture Organization (FAO)

FIGURE 1

2.5miliont 5milliont 7.5 milliont 10 milliont 25 milliont 50 million t

OurWorldinData.org/agricultural-production + CC BY

Heatmap of the global production of potatoes in 2020 (in millions of tonnes). Image taken from Ritchie et al. (2023) using data made available by

Dataset FAO (2022Db).
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2.1 Potato production by continent
and country

The worldwide potato production landscape has changed in
recent years, as shown in Figure 2. Formerly the highest potato-
producing continent, Europe has experienced a large decline in
potato production being surpassed by Asia as the top-producing
continent. Africa also shows a rapid increase in potato production,
while Oceania, South and North America display steadier growth.

The top potato-producing countries in each continent will be
studied in this section. These are China, Ukraine, the USA, Peru,
and Australia. Another country included in this section is India, as
they are the second largest potato producer in the world after China.
Germany, as they are the largest Western European potato
producer. And the UK, as they recently left the European Union.
The potato production, in tonnes, for each of these countries from
1961-2021 can be found in Figure 3.

An in-depth study of these countries will be provided for the
years 2017-2021 since this review only considers scientific journal
articles released from 2017-2022. Data for 2022 is not provided as it
was not made available at the time of this review.

Potato production provides a one-dimensional view of a country’s
ability to grow and harvest potatoes. Larger countries can dedicate
more land to growing and ultimately will produce more potatoes. This
does not mean that they are efficient with their land use. In order to
provide an insight into their efficiency we look at yield. Yield is the
quantity of potatoes produced in a given area. Finally, the population of
a country is discussed. A higher population may result in a greater need
to produce potatoes in order to feed their population. Though a high
population may also restrict their land use.

2.2 Asia

China and India are the top potato-producing countries in the
world. Since China achieved the top spot in 1993, the nation has
been pushing campaigns to increase its consumption of this food

10.3389/fpls.2023.1156734

group [Devaux et al. (2021)]. Harvesting in China is split between
fully- and semi-mechanized harvesters, with the majority of
harvesting being semi-mechanized [Wei et al. (2019); Issa et al.
(2020); Fu et al. (2022)]. Due to the heavy clay soil found in
Northern China, their research revolves around removing soil after
extraction [Fu et al. (2022); Wei et al. (2019)]. Currently, soil clods
and stones are removed manually after harvesting. Though China is
doing research into the use of computer vision to automate their
removal (see Fu et al. (2022) and the references therein). India is
also primarily a semi-mechanized harvesting nation [Gulati
(2019)]. Though they are moving towards fully-mechanised
harvesters, such as the one proposed by Gulati (2019).

By 2050, Rosegrant et al. (2017) predicts that China will be
surpassed by India as the top potato-producing country. The results
found by Rosegrant et al. (2017) was adapted by Devaux et al.
(2021) producing the bar chart seen in Figure 4. Currently, India
ranks second in potato production, population and area harvested.
Although India has a higher yield than China it is still far smaller
than other countries included in the survey. It is unclear whether
improving yield will lead to higher production, as the reduction in
yield may be due to factors such as continuous monoculture
growing. Continuous monoculture growing can lead to disease
107 which reduces yield however continually growing potatoes
may be the reason for higher production.

2.3 Western Europe

Before Brexit, 60% of the European (EU-28) potato production
was produced in five Northwestern European countries. These
countries are referred to in Goffart et al. (2022) and Devaux et al.
(2021) as the NWEC-05. The NWEC-05 is made up of Germany,
Belgium, France, Netherlands, and the UK. It is worth mentioning
that the UK is no longer a member of the European Union, and
therefore will be discussed separately.

The high level of mechanization seen in NWEC-05 is expensive
[Goffart et al. (2022)]. Such costs are justified as these are advanced

Potato Production by Continent, 1961 - 2021
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Potato production by continent for the years 1961 - 2021 (in millions of tonnes), using data made available by Dataset FAO (2022b).
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Top Potato Producing Countries in each Continent, 1961 - 2021
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FIGURE 3

Top potato-producing countries by continent, including India, Germany, and the United Kingdom for the years 1961 - 2021 (in millions of tonnes),

using data made available by Dataset FAO (2022b).
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FIGURE 4
Prediction of future potato production taken from Devaux et al.
(2021) adapted from Rosegrant et al. (2017)

and profitable sectors for the countries. This high level of
automation in industrial farms is partially due to the fact that
potatoes are seen as cash crops as well as staple crops in these
countries. A high proportion of the crops are sold to processing
companies. For example, in Belgium, only 20% of the potatoes are
sold as fresh produce while the remaining 80% are sold for
processing [Devaux et al. (2021)].

The top potato-producing country in Western Europe is
Germany. As can be seen in Figure 2, potato production in
Europe is declining. This is evident in the data provided by
Germany. Between 2017-2021, a slight decline in production and
an increase in the harvested area saw a large reduction in Germany’s
yield. Germany also had the smallest variation in population across
the five years.

2.3.1 United Kingdom

As a member of NWEC-05, the UK was one of the top-
producing potato countries in Europe. Similar to Germany, it has
experienced a reduction in yield between 2017-2021. A noticeable
difference however is that while Germany produced slightly fewer
potatoes (-3.5%) by using more land (+3.1%); the UK produced
significantly fewer potatoes (-14.7%) while using less land (-6.2%).

Frontiers in Plant Science

Figure 5, shows the potato production and yield for the three
European countries discussed in this review: Germany, the UK, and
Ukraine. Both Germany and the UK experience a local maximum in
2017 followed by a steep reduction in production and yield. These
values begin to recover towards 2021 with Germany’s recovering
more quickly. This data shows that production can be greatly
disrupted in one year and it may take several years to recover.

2.4 Eastern Europe

The third largest potato-producing country in the world behind
China and India is Ukraine. Ukraine is a very active member of the
potato harvesting research community. They are a fully-mechanised
industry, although a significant number of the machines used to
grow potatoes are imported from Russia, Belarus, and Germany
[Hrushetsky et al. (2019); Hrushetskyi et al. (2021)]. Due to their
heavy loam soil, the majority of research papers discuss the removal
of soil clods from the harvesting process [Bulgakov et al. (2017;
Bulgakov et al., 2019; Bulgakov et al., 2020; Bulgakov et al., 2021)].
The harvesting may be fully-mechanised however the removal of
soil clods is still done manually which can be labor-intensive and
expensive [Bulgakov et al. (2021)].

Referring back to Figure 5, it clearly shows that Ukraine
produces more potatoes than its European counterparts, with
drastically lower yet more stable yields. These low yields may be
indicative of the loss found when harvesting in the heavy loam soil.
Ukraine, like the UK, experienced a decrease in potato production,
yield, and the harvested area between 2017-2021. However;
Ukraine alone experienced a steady reduction in population
between 2017-2021.

2.5 North America

In North America, like NWEC-05, potatoes are treated as cash
crops: with US potato production in 2021 equating to 410 million
cwt and processing accounting for 281 million cwt [USDA (2022)].
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Top European Potato Producing Countries, Production and Yield, 2010 - 2021
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Potato production (in tonnes) and yield (in hg/ha) for Germany, Ukraine and the United Kingdom from 2010-2021. Data extracted from Dataset FAO (2022b).

Farmers can optimize their financial returns by meeting certain
incentives in their contracts with processing companies [Waxman
et al. (2018)]. Mechanical approaches to harvesting can help the
farmer meet these incentives.

The United States of America experienced the highest yield of
any country in the survey and even managed to increase their yield
by +1.4% between 2017-2021. They experienced a decrease in
production (-9.2%) however since their harvested area decreased
by a large amount (-10.4%), their yield was not negatively affected.
They also had an increase in population, which is the third largest
population in the world behind China and India. However, unlike
the other two, their potato production ranking does not equate to
their population ranking.

2.6 South America

In countries such as Argentina, Brazil and Peru, potatoes are
harvested mainly by semi-mechanised methods. In Argentina for
example, only 10% of fresh potatoes are harvested by fully-
mechanised approaches [The Bureau of the Netherlands
Agricultural Council in Buenos Aires, (2008)]. Fully-mechanised
approaches are more common in processed potato production,
these are also often performed on larger areas of land. Semi-
mechanised potato harvesters extract the potato from the soil and
leave them in rows on top of the soil. The potatoes are then collected
by hand and stored in large bags. These bags can remain in the field
for up to 12 weeks, which ultimately results in large losses. In The
Bureau of the Netherlands Agricultural Council in Buenos Aires
(2008), it is suggested that harvesting can be performed better in
fresh potato production systems with a mechanical method of
picking up, cleaning, grading and bagging the potatoes after
extraction from the soil.

Peru is the largest potato-producing country in South America.
They experienced the greatest percentage increase in yield (+11.3%)
while also having the smallest variation in yield across all countries
in the survey. Peru also greatly increased its production (+18.5%)
and harvested area (+6.5%) over the five years. Their population
almost grew by the largest percentage between 2017-2021, just
behind that of Egypt.
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2.7 Africa

The papers discussing the agricultural landscape of Egypt and
Eritrea state that it is constituted of many smaller farms [Nasr et al.
(2018); Ghebreagziabiher et al. (2022)]. Such smallholder farmers
will likely require smaller harvesters. This is the exact problem
addressed in Nasr et al. (2018), where they proposed a semi-
mechanised potato harvester for smallholder farms. Africa has the
potential to increase potato production in the next few years
through input intensification rather than area expansion, due to
the increasing population [Devaux et al. (2021)]. Increasing potato
production without increasing the area means an improvement in
yield. This is beneficial since Sub-Saharan Africa suffers from a yield
gap [Harahagazwe et al. (2018)].

Egypt experienced the highest percentage increase in production
(+42.6%), population (+50.7%), and harvested area (+7.3%) between
2017-2021. Despite their yield decreasing by -5.4% during this time
period, it remained higher than that of China, India, Ukraine and Peru
showing that Egypt does not suffer the same yield gap as that seen in
Sub-Saharan Africa.

2.8 Oceania

The top potato-producing country in the Oceanic continent is
Australia. Potatoes are of great importance to Western Australia, as
behind wine it is their second highest value-adding horticultural
industry and their second highest value vegetable crop behind
carrots [Dataset Government of Western Australia, A (2018)].
Nevertheless, compared globally, the country’s production is low.
Recent research conducted in Australia proposed the use of a fleet of
small to medium-sized fully-autonomous potato harvesters
[McPhee et al. (2020)]. Although this proposal displayed the
highest level of automation out of all papers considered for this
review, it was never implemented.

Australia experienced the smallest variation in production and area
harvested during 2017-2021. Along with India and Peru, it is one of the
only countries to experience a percentage increase in all four metrics
between 2017-2021. Additionally, Australia had the smallest average
production, harvested area and population of any country in the study.
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3 Potato harvesting constraints

The efficiency of the potato harvesting process is affected by a
number of issues. These range from environmental issues to farm
management practices. This section will be focused on two specific
issues, those exclusively related to the plant and those related to
soil characteristics.

3.1 The potato characteristics that
impact harvesting

Understanding the characteristics of different potatoes can
result in better designed harvesters. Consideration of such
characteristics during the design of mechanical harvesters and
post-harvesting hardware can increase yield and reduce waste.
For example, Ahangarnezhad et al. (2019) studied the Agria
variety of potato and split the potato characteristics into physical
and mechanical properties. The physical properties include the
geometric and arithmetic mean diameter, which is important
when designing potato sorting and packaging machines in order
to reduce losses during transportation. The mass and volume of the
potatoes are also physical properties, which should be considered
when designing mechanisms for separating potatoes from other
materials during harvesting.

However, when reducing waste, Ahangarnezhad et al. (2019)
considers mechanical properties as the fundamental information
required to design harvesting or post-harvesting machinery.
Mechanical properties include the elasticity module, deformation
energy, and fracture force. These properties can be determined by a
uniaxial compression test. This test can generate a force-
deformation graph, which plots the impact force against the
penetration depth. When plotting the compression and restitution
within the same graph, the area under the graph represents the
energy absorbed by the potato. The energy absorbed by the potato is
relevant as high energy absorption equates to high bruise damage
[Surdilovic et al. (2018)].

It is to be noted that Ahangarnezhad et al. (2019) showed that
many physical properties such as length, width, mass, and
geometric mean diameter had a direct relationship to the potato
size, while density had an inverse relationship. Relative density, also
known as specific gravity, is one of the most important indicators of
potato quality (see Waxman et al. (2018) for further reading). This
is an estimate of the dry matter content of the potato, providing an
indication of its water content. The water content of potatoes is
relevant since, as stated by Surdilovic et al. (2018), potatoes with a
higher water content experience less force yet higher deformations.
Since higher levels of deformation equates to higher potato damage,
possessing a high specific gravity is a desirable characteristic. This
allows harvesters to move faster and exert more force on the
potatoes while maintaining the same level of damage.

The specific gravity of potatoes can be influenced by a variety of
factors. For example, Waxman et al. (2018) showed that the specific
gravity can be influenced by harvest time and species of potato.
Three potato varieties (Russet Burbank, Clearwater Russet, and
Alpine Russet) were grown with harvest timings standardized based
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on that of Russet Burbank, a popular variety of potato used in the
processing industry. There were three harvest timings used:
approximately 2 weeks prior to normal harvest (early), normal
Russet Burbank harvest time (normal), and approximately 2 weeks
past normal harvest (late). They determined the specific gravity of
the potatoes by two methods, weight-in-air and weight-in-water. A
low specific gravity was indicative of an early harvest and a
declining specific gravity was that of a late harvest. They also
found that the species of potato had an impact on the specific
gravity. Clearwater Russet exhibited the highest specific gravity in
both years of the experiment.

Potatoes can be bred to have desirable characteristics such as a
higher specific gravity. In Melito et al. (2017), an evaluation index is
proposed to support the selection of clones with interesting trait
combinations. As a result, they compared the tuber yield, specific
gravity, chipping ability and earliness. They found a 48% higher
productivity in clones compared to the best control. The various
clone families had significantly different tuber specific gravity, with
70% of clones having a higher score than 1.080 which is the
minimum required to be used in the processing industry. Potato
processing contracts often contain Incentive Adjusted Prices (IAP)
which provide farmers with financial incentives to produce higher
quality potatoes. A common criterion in IAPs is producing potatoes
over a certain specific gravity. Consequently, potatoes with a higher
specific gravity are not only easier to harvest but also financially
beneficial to the farmer.

3.2 The soil characteristics that
impact harvesting

Applying the correct agronomic practices for a potato species
can greatly improve the quality of potatoes produced. Agronomic
practices and potato characteristics, such as flesh color, can impact
the nutrition required to optimally grow and harvest potatoes
[Vaitkeviciené et al. (2020)]. Furthermore, throughout the growth
cycle, the nutritional demand and therefore availability of nutrients
in the soil varies. This temporal availability of nutrients can be
utilized by planting multiple species of crops in close proximity.
This is called intercropping.

The goal of intercropping systems is to achieve a Land
Equivalent Ratio (LER) > 1 [Dong et al. (2018)]. This would
suggest that the crops are temporally or spatially cooperating and
sharing resources. Conversely, an LER < 1 means the crops are in
competition for resources and no benefit is gained from the
intercropped system. Intercropping systems have multiple benefits
such as reducing weeds and disease. Potato harvester designs should
consider that there may be other crops, particularly above-ground
crops, in close proximity to the potatoes. Farmers can also get
similar benefits from crop rotation [Khakbazan et al. (2019)].
Reducing the load placed upon the farmer by maintaining
multiple crops concurrently.

Finally, the soil type and water content can greatly impact tuber
damage and loss when harvesting [Bulgakov et al. (2021); Wei et al.
(2019)]. Heavy loam soil is considered particularly difficult to
harvest as it is prone to compaction. This compaction leads to
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large soil clods getting extracted with the potatoes which in turn
bruise and damage the potatoes. A low water content can also
increase the probability of bruising and damaging the potato when
harvesting [Wei et al. (2019)]. Soil water content can be controlled
through irrigation [Tang et al. (2019)]. Irrigation can ensure that
potatoes grow optimally and do not experience water stress.
However, this can negatively impact the environment. As a result,
the environmental impact should be minimized while also
maximizing long-term yield [Tang et al. (2019)]. Table 1 displays
the soil type and water content of the soil in literature. As can be
seen in the table, several works discuss the soil type but fewer
discuss water content. Reporting these values can help to improve
the repeatability of experiments and also help identify trends that
arise due to these variables.

10.3389/fpls.2023.1156734

4 Mechanical harvesters

4.1 Mechanical harvester specifications

When harvesting potatoes, a common design option is the
tunable parameters. These parameters can be adjusted in the field to
optimize the performance of the harvester. The characteristics of
the potato and the soil can influence the optimal parameters. This
review will focus on the forward and conveyor speed of the
harvesters as well as the digging depth and angle. Forward speed
is the velocity of the harvester as it moves along the farm when
harvesting. Conveyor speed is the velocity of the conveyor belt that
lifts the potatoes out of the soil and places them in a collection
device or in windrows. The digging angle is the angle of the digging

TABLE 1 Potato harvesting papers from 2017-2022, the country of their experiment, and soil characteristics that impact harvesting.

Publication Country Soil Type Water Content
Muneer and Dowell (2022) Scotland - -
McPhee et al. (2020) Australia Clay loam -
Issa et al. (2020) China Sandy clay 23.8
Fu et al. (2022) China Heavy clay -
Wei et al. (2019) China Sandy, clayey 15.6
Tang et al. (2019) China - -
Dong et al. (2018) China Orthic anthrosol -
Bulgakov et al. (2021) Ukraine Heavy loam 15-25
Hrushetskyi et al. (2021) Ukraine Average loam 16.5
Bulgakov et al. (2017) Ukraine Medium loamy 11
Hrushetsky et al. (2019) Ukraine Loamy and sandy -
Bulgakov et al. (2020) Ukraine - 11
Bulgakov et al. (2019) Ukraine - -
Poppa et al. (2020) Germany - -
Surdilovic et al. (2018) Germany - -
Schneider et al. (2019) Austria, Germany - -
Nasr et al. (2018) Egypt Clay loam -
Ghebreagziabiher et al. (2022) Eritrea - -
Melito et al. (2017) Italy - -
Sibirev et al. (2019) Russia Sandy 21.5
Gulati (2019) India Sandy to sandy loam -
Khakbazan et al. (2019) Canada Silty clay loam -
Vaitkeviciené et al. (2020) Lithuania - -
Vezirov et al. (2021) Bulgaria - -
Ahangarnezhad et al. (2019) Iran - -
Waxman et al. (2018) USA Silt loam -

The soil characteristics are soil type and water content.

- means no data reported.
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blade in the soil and the digging depth is the depth. In recent
literature, forward speed has varied from 0.9-7.9km/h, conveyor
speed from 0.2-2.37m/s, digger angle from 10-24° and digging
depth from 12-27cm. The full list of publications discussing one of
these parameters —over the period under study- and the parameters
they used are presented in Table 2.

As much as soil and potato characteristics can help indicate the
optimal harvester parameters, the main criterion affecting these
parameters is the farmer’s optimization criterion. The farmer has to
balance several objectives such as reducing tuber damage and loss
while increasing their harvesting efficiency. Varying the forward
speed of the harvester can result in a variety of outcomes. One
outcome which is impacted by varying the forward speed is tuber
damage and loss. For example, Bulgakov et al. (2021) found that
increasing forward speed from 2.9-7.9km/h while increasing their
rotor diameter from 0.65-1m decreased their tuber damage rate
from 4.2% to 1.5%. This is in line with Bulgakov et al. (2017), which
shows an increase in forward speed decreases the percentage of
damaged tubers greatly, despite the percentage of tubers lost
increasing. However, contradictory results have been found by
Hrushetsky et al. (2019) and Issa et al. (2020), who found that
increasing forward speed increased tuber damage. Additionally,
Hrushetsky et al. (2019) witnessed an increase in both tuber loss and
damage percentage when increasing forward speed for their design
and that of the KST-1,4, which is a standard serial potato
digging machine.

Another factor impacted by forward speed is separation
efficiency. In Bulgakov et al. (2017); Bulgakov et al, (2021), the
impact of forward speed on separation efficiency is studied. In both
works, they notice that increasing forward speed up to a point can
improve separation efficiency, after which increasing forward speed
decreases performance. In Bulgakov et al. (2017), separation
efficiency increased slowly up to 2.4km/h after which there was a
slow decrease from 2.4 to 3.0km/h. As forward speed is further
increased to 4.0km/h a sharp drop in separation efficiency is

TABLE 2 Harvester specifications in papers from 2017-2022.

10.3389/fpls.2023.1156734

observed. This is confirmed in Bulgakov et al. (2021), where
increasing forward velocity from 2.9-5.4 km/h while increasing
the rotor diameter from 0.65-1m improved soil separation.
However, when further increasing the forward speed from 5.4-
7.9km/h they found that soil separation decreased.

Finally, forward speed also impacts field capacity and harvesting
efficiency; Issa et al. (2020) found that in general increasing forward
speed, increased actual field capacity and the power required by the
harvester, while also decreasing field efficiency and the specific
energy consumption of the harvester. Another observation from
this paper was that increasing forward speed from 2.5-4.5km/h
increased the tuber lifting percentage. Although tuber lifting
percentage decreased when further increasing forward speed from
4.5-6.5km/h.

Digging angle and depth are similar as a greater digging angle
equates to a greater digging depth. We can reduce tuber loss by
varying the digging angle: Issa et al. (2020) found that the lifted
potato percentage increased from 87.63% to 95.14% with an
increase in digging angle from 12°to 22°. The total potato damage
also decreased with an increase in the digging angle. However,
increasing the digging angle increased the soil resistance resulting in
a decreased actual field capacity and field efficiency alongside an
increase in required specific energy and power.

Increasing conveyor speed can also increase tuber damage: Wei
et al. (2019) acknowledges that at various stages of the potato-soil
separation process, the potato will experience different levels of soil
cushioning. As a result, they vary soil-potato proportions, splitting
them into three groups: the primary clod-crushing stage (7.83% -
38.55%), intermediate clod-crushing stage (38.55% - 69.28%) and
fine clod-crushing stage (59.04% - 69.28%). They also experiment
with agitator frequency and amplitude measuring the number of
impacts, impact acceleration, impact duration, and velocity change
as an indicator of potato bruising and damage probability. Potato
bruising was broken into 4 groups: no bruising, slight bruising,
moderate bruising, and severe bruising. Varying the potato-soil

Publication Forward Speed (km/h) Digging Depth (cm) Digger Angle (°) Conveyor Speed (m/s)
Bulgakov et al. (2021) 2.9,36,54,72,79 27 10 1.91

Issa et al. (2020) 2.5,45,65 14-25 12,17, 22 078, 1.11
Hrushetskyi et al. (2021) 7.92 14-25 16-24 -

Bulgakov et al. (2017) 1.9, 24, 3.0, 4.0 27 - 1.81-2.37

Sibirev et al. (2019) 3-5.2 12-18 - 1-1.78

Nasr et al. (2018) 1.5, 2.0, 2.5 16, 20, 24 - -

Hrushetsky et al. (2019) 0.9, 1.8,2.7, 3.6, 4.5 - - -

Gulati (2019) 2.7 - — _
Fu et al. (2022) - - - 0.2, 0.4, 0.6, 0.8, 1.0
Poppa et al. (2020) - - - 0.33, 1.00

Wei et al. (2019) - - - 1.54, 1.80, 2.06

Forward speed of the harvester in km/h. Digging depth of the harvester blade in cm. Digger blade angle in °. Conveyor speed in m/s.
- means no data reported.
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proportion had a large influence on the harvest quality and the
impact characteristics experienced during the separation process.
As the potato-soil proportion increased and the soil cushion
decreased, the number of impacts and peak impact acceleration
increased. A slight increase was seen between the primary and
intermediate stages but a significant increase was observed between
the intermediate and fine clod-crushing stages. The movement of
potatoes on the conveying device also varied depending on the
stage. At the primary stage, there was little potato movement, at the
intermediate stage the potatoes were rolling, and at the fine stage,
potatoes were jumping and rolling increasing the damage
probability. As the agitator vibration intensity increased the
number of impacts and peak impact acceleration also increased
gradually. Consequently, vibration intensity should be selected in
order to reduce bruising and mechanical damage while maximizing
separation efficiency. The impact of potato-soil proportion was
more obvious than that of the conveyor running speed. Although at
2.06m/s, the peak impact acceleration at intermediate and fine
potato-soil separation was higher than when the conveyor speed
was 1.54 and 1.80m/s. The number of impacts was slightly smaller
at 2.06m/s compared to 1.80m/s. They do state that increasing
speed, increases separation efficiency, and if the rod-type conveyor
speed is too slow it will negatively impact harvesting efficiency.
However, increasing the conveyor speed will increase the linear
velocity of the potatoes as they fall into the windrows or containers
which can cause damage.

An opposing discovery is presented by Bulgakov et al. (2017),
who shows that the percentage of soil separation and separation
intensity both decrease with an increase in conveyor speed. Finally,
Issa et al. (2020) state that the actual field capacity and field
efficiency increase with conveyor speed, although they conclude
that varying conveyor speed had no significant impact on tuber
damage. They also find that an increase in conveyor speed
decreased tuber lifting percentage.

4.2 Mechanical harvester designs

There is a significant amount of research into the mechanical
design of potato harvesters. These designs vary in complexity, from
simple designs focused on harvester specifications such as digging
depth and forward speed to more complex designs with agitators
and rotary components to remove soil clods from the
production pipeline.

Designing mechanised potato harvesters has proven to be a
constant trade-off between efficiency and potato damage. Designs
which improve efficiency while minimizing damage are highly
desirable. One common design option which can be altered to
optimize this goal is the sub-cultivating working parts of the
harvester. These parts are important in breaking up the soil and
reducing tuber damage. Done effectively, tuber damage can be
reduced and efficiency increased: Hrushetsky et al. (2019)
proposed to improve harvesting efficiency with a digging
component that utilizes a passive blade with cutting discs and soil
compactors. The design reduces the tractive resistance of the potato
digger by 18% while improving the buckling rate of the potato-soil
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layer. Ultimately increasing productivity by 22%, achieving a yield
of 13.2 t/ha and a digging completeness of 99.1% compared to the
serial digger KST-1,4 which achieved 97.6%. This is similar to the
work of Hrushetskyi et al. (2021) who aimed at reducing tuber
mechanical damages while providing qualitative indicators of the
potato heap separation process. They achieved this by
mathematically modelling the movement of particles when the
share-board surface of the harvester collided with the potato
heap. Similar to the work done by Hrushetsky et al. (2019), they
compare their theoretical and experimental results, showing their
model to have a deviation within 5%. They concluded that this
indicates the adequacy of their mathematical model to simulate the
separation process of potato heaps.

A different approach to improving the time efficiency of potato
harvesting was taken by Gulati (2019) by designing a two row
combine harvester. Their harvester can reduce labor, time, and
expenses by harvesting two rows of potatoes at once. The design
works again by breaking the soil ridge, exposing the potatoes so they
can be easily and efficiently collected. These potatoes are then lifted
from the soil and conveyed to the following trolley using a rod-
chain separator-conveyor and a swan-neck elevator-conveyor. Two
sets of agitators are attached to the conveying system. The purpose
of the rod-chain separator-conveyor system with agitators is to
remove the soil, stems and debris from the collected potatoes with
minimal injuries. Their prototype was able to operate with a single
40 horsepower tractor and has an effective field capacity of 0.26 ha/
hr, tuber bruising of 6%, and 98.4% of the excavated potatoes made
it to the trolley with a field loss of 1.6%.

Finally, Bulgakov et al. (2017; Bulgakov et al., 2019; Bulgakov
etal., 2020; Bulgakov et al., 2021) published four articles during 2017-
2021 related to the use of rotary components in potato harvesting.
The goal of this research was to clean the potatoes and in particular
remove soil clods. This was achieved by a variety of designs however
the key connection was that of rotation. Their later publication from
2021, relates to the concept of breaking up the potato-soil layer and
therefore will be discussed first. They designed a rotary-type potato
harvester that improves soil-clod separation in heavy loam soil
[Bulgakov et al. (2021)]. The rotational component was added to
help break up the soil, reducing the number of soil clods lifted onto
the separation tool. Their proposed design can be seen in Figure 6.
They varied the translational velocity of the machine, the rotor
rotation frequency, the rotor diameter, the rotor circumference and
the distance between the spherical discs to determine their effects on
performance. They found that the soil separation improves as the
rotor diameter increases from 0.65 to 1.0m and translational velocity
increases from 0.8 to 1.5m/s. However, when velocity increases from
1.5 to 2.2m/s soil separation decreases. Also, tuber damage rates
decrease from 4.2 to 1.5% when rotor diameter increases from 0.65 to
1.0m and translational velocity increases from 0.8 to 2.2m/s. When
the distance between the rotors’ circumference and the spherical discs
increases, the tuber damage rate also increases. The maximum soil
separation reached was 93.5%.

Other approaches by the same authors, discuss the concept of a
spiral soil separator that can be included in the conveyor system. For
example, Bulgakov et al. (2017) proposed a novel design for a spiral
potato heap separator. This design can be seen in Figure 7. They believe
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FIGURE 6

10.3389/fpls.2023.1156734

The design of a rotary-type potato harvester to improve soil clod separation. Image is taken from Bulgakov et al. (2021).

that their spiral separator in conjunction with other technical solutions
such as agitators can self-clean the rollers resulting in improved soil
separation. Their initial experiments corroborated this belief. They
found the optimal parameters to be: a peripheral speed of rotation of
1.75-2.0m/s; an inclination angle of the separator to the horizon of 15-
19°% and the installation eccentricity of the spirals as 5-10mm. The
recommended forward speed was 0.6-0.8m/s (2.16-2.88km/h).
Increasing the inclination angle of the separator and eccentricity of
the spirals increased soil sifting and separation intensity. Conversely,
increasing the peripheral speed of rotation towards 2m/s gradually
decreased the percentage of sifted soil. After 2m/s a rapid decrease in

the percentage of sifted soil was observed, this is due to a reduction in
the contact time between the potato-soil mixture and the separator.
The concept of a spiral separator was further developed in their
work, Bulgakov et al. (2019). In this paper, they discuss a theoretical
design with the goal of removing soil clods and unwanted debris.
They define a mathematical model for sieving potatoes on a spiral
separator and use Matlab to compare the impact of different
variables on the time taken to remove soil clods. They find that as
the angular velocity goes from 10 to 50 rad/s the time to complete
sieving goes from 0.07 to 0.025s. As the spiral’s radius goes from 0.1
to 0.3m the time to complete sieving goes from 0.04 to 0.01s.

FIGURE 7

The spiral potato heap separator design. Image taken from Bulgakov et al. (2017).
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Increasing the cleaning spiral’s helix angle from 10°to 30°at a radius
of 0.1m reduces the time to complete sieving from 0.75 to 0.026s, at
a radius of 0.28m it goes from 0.28 to 0.005s. Varying the amplitude
of oscillation of the spiral does not significantly impact the soil
clod’s residual mass.

Later in 2020, Bulgakov et al. (2020) implemented the spiral
separator with the goal of removing more clods, soil, plant debris,
and stones on the field so it is better environmentally. The spiral
potato cleaner contained three cleaning spirals mounted as
cantilevers. One end of each spiral is fixed on the hubs connected
to the driving shaft. The soil mixture is dropped from a small height,
which partially destroys the soil layer around the potato. Since the
spirals are cantilevers the free ends make oscillatory movements in
the longitudinal-vertical plane. There are gaps between the spirals
which allow small soil clods and plant debris to fall through. The
theoretical study of the motion and sifting of a body on the surface
of the spiral-type potato cleaner is based on the basic principles of
the dynamics of the motion of a body of variable mass. Their
equation takes into account that the mass of the soil clod will
decrease over time. Field experiments were used to determine the
performance of the potato cleaner. The following indicators were
used to determine the quality of the spiral-type potato cleaner: the
screening ability of the cleaner, the intensity separation of
admixtures, and the specific separation intensity. They then
performed regression on each quality indicator. The cleaning
ability of their design can be improved by altering the angular
velocity, the initial angle of inclination, and the radius of the spirals.
A soil clod reduction of 95% in the time range of 4.8-7.2s was
achieved. Similar to conveyor speed, too fast of an angular velocity
reduces the contact time between the soil clods and the spirals,
reducing the potato cleaner’s separation performance. Decreasing
the initial angle of contact between the potato-soil layer and the
spiral cleaner positively impacts the separation rate of the soil
admixtures from the potato heap.

5 Trends in potato harvesting

One trend identified during the review was the use of electronic
potatoes to understand the impact forces applied on the potato
throughout the harvesting process. This is important not only when
designing a potato harvester but also when selecting the harvester
specifications. Electronic potatoes are objects designed to be as
similar as possible to actual potatoes while containing sensors that
can record the forces exerted on them. They have been utilized by
Sibirev et al. (2019), to determine the impact forces experienced by
potatoes during the full harvesting process for three different potato
harvesters: AVR-Spirit-6200, Dewulf RA-3060 and Bolko. This
study varied the forward speed, depth of the ploughshare in the
soil, and the speed of the open-web elevator to determine their
influence. However, the difficulty with electronic potatoes revolves
around correctly modelling the potato in order to gain accurate
measurements. One paper using the coefficient of restitution and
the static modulus of elasticity to better model the impact
characteristics and elasticity of potatoes is Surdilovic et al. (2018).
The aim of this paper is to better understand the forces applied to
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potatoes when they fall. They found that all bar one of their
dummies did not accurately represent real potatoes. Noting that
the dummy potatoes had a higher maximum impact and
acceleration with a lower deformation.

Several publications, in the period under study, look to change
the status quo of potato harvesting procedures. The first of which is
that farmers are currently not accurately reporting the waste
generated during potato harvesting. As stated by Schneider et al.
(2019), undersized potatoes that get composted should be reported
as waste. Subsequently, they provide a practical approach for
determining potato losses directly on the field. Their study
included two farms, one in Austria, and the other in Germany.
They consider two types of loss, type one, those remaining in the
soil not collected by the harvester, and type two, those sorted out
due to technical or quality reasons. In Austria, they used a net to
catch type two, the net also helped to represent the area that needed
to be excavated to find type one. In the German farm, the farmer de-
haulms the potatoes prior to harvest and plants mustard plants. The
roots of the mustard plant loosen the soil and elevate the potatoes.
Due to this elevation, the potatoes are easier to extract from the soil
which allows the harvester to drive faster. Small potatoes at the root
of the plant are not economically viable for farmers to collect. As a
result, they set shallower digging angles to save fuel. These smaller
potatoes are often automatically filtered out by potato harvesters as
they fall through gaps in the conveyor system which are intended to
remove soil clods from the system. In Austria, loss two was higher
than loss one while in Germany loss one was higher than loss two.
The German farm on average produced larger potatoes which were
cut in half by the harvester. This in conjunction with several smaller
potatoes caused loss one to outnumber loss two. Overall, the loss in
Germany was 1.4% compared to 9.1% in Austria. They conclude
that losses during primary production are highly variable
depending on region, weather, type of crop as well as cultivator
and harvest method. They surmise that the harvester specifications
such as digging depth and forward speed have a big impact on tuber
loss. Their final proposal uses 2-4 people to determine loss, by
collecting and weighing the potatoes on the field.

Another trend potentially interrupting the status quo around
the world is the push to use more renewable energy. In particular,
the trend towards electric vehicles, and potato harvesting is not
exempt from such changes: Muneer and Dowell (2022) provides a
case study on the use of renewable energy on a potato farm in
Scotland, UK. In the case study, they compare the prices of different
energy sources. They show that the cost of generating one kWh of
energy using solar and wind power is lower than coal, gas,
geothermal and nuclear. And that the cost has dropped
significantly in the last 10 years as renewable technology
improves. In order to prove that renewable energy is appropriate
when potato harvesting they need to ensure that power is
consistently supplied to the farm year-round and that the
equipment used to generate the energy will not need to be
replaced frequently. To measure the performance of the wind
turbine they measure the average wind speed (m/s), average
power (kW), and capacity factor (ratio) for wind turbines across
the years of their experiment as well as across the months of 2015.
They also provide the energy generated and capacity factor for solar
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power. Solar power generates the most energy in summer, while
wind generates the most energy in the winter. In Scotland wind
power generates more energy than solar power. A combination of
the two can provide enough energy year-round to harvest and store
potatoes. They notice that the months from March to June produce
the most energy when combining both sources of energy. They also
state that if maintained correctly then the output from both solar
and wind energy does not deteriorate significantly in the first eight
years. With some countries signing on to meet specific climate
targets the pressure placed on agriculture to reduce its emissions
will increase. This may lead to more farms following the blueprint
provided in this article and therefore electronic tractors and potato
harvesters may increase in demand.

Finally, McPhee et al. (2020) attempts to model the impact of
low-mass autonomous vehicles on soil bulk density using
COMPSOIL. They also look at the critical soil bulk density and
what this means for harvesting two different crops, one of which is
potato. They determine suitability in terms of operational capacity
and what this means logistically for farming operations. They wish
to determine the correct size of machine which will reduce traffic-
induced soil compaction while still meeting a certain standard of
productivity. They determine that a medium-sized autonomous
fleet integrated into a Controlled Traffic Farming (CTF) approach
would be best equipped to meet these requirements. However, CTF
is not suitable for root and tuber farming as the harvester must
currently drive over the top of the crops. They also state that even
low-mass autonomous vehicles breach critical bulk density and
therefore are not a solution for avoiding soil compaction in potato
harvesting. They claim that alternative harvester designs must be
created to avoid soil compaction for potato harvesting.

6 Discussion

A better understanding of potato characteristics can improve the
design of the equipment involved in the harvesting and post-
harvesting processes. However, publications such as
Ahangarnezhad et al. (2019) need to ensure they develop upon
previous work in the field so as to not waste time repeating the work

100M

Avg Potato Production (tonnes)

2M
Avg Harvested Area (ha)

3m
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of others. This paper for example only discussed one other paper
which explores the physical and mechanical properties of the potato.
Despite this being a common area of research, especially in the
creation of electronic potatoes. They could also help to further
develop the community and improve the repeatability of their
experiment by providing the soil type and growing conditions for
the potato they used in their experiments. The following subsections,
are the main outcomes of the analysis covered in this work.

6.1 Farming land vs. population

The average population, harvested area, production and yield are
used to produce Figures 8, 9. In Figure 8, the average potato
production for 2017-2021 is plotted against the average harvested
area for this time period. This graph shows that generally, the larger
the average harvested area the higher the average potato production.
The size of each circle equates to the average population of the
country. Countries with a larger population tend to produce more
potatoes than those with a smaller population.

The opposite relationship between potato production and
harvested area is seen when comparing the average potato yield
against the average harvested area for 2017-2021 (see Figure 9). As
the average harvested area increases the average potato yield
decreases. Again, the population size is represented by the size of
the circle. However in this case there appears to be no clear
relationship between the population size and yield.

6.2 Conflicting harvester specifications

Harvester specifications are specific to the field and design of the
potato harvester. Therefore research can often appear to contradict
one another. For example, Bulgakov et al. (2021) states that
increasing forward speed decreases tuber damage while Issa et al.
(2020) found that increasing forward speed increased damage. There
are two important factors to discuss here. Firstly soil type, Bulgakov
etal. (2021) performed their experiments in heavy loam soil which is
notoriously difficult to harvest in due to the high percentage of soil

Country
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United Kingdom of Great Britain and Northern Ireland
Ukraine
United States of America
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Germany
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Australia

The average potato production (tonnes) between 2017-2021, against the average harvested area dedicated to growing potatoes (ha) for the same
time period for each country displayed. The size of each circle equates to the size of that countries population. Data extracted from Dataset FAO

(2022a) and Dataset FAO (2022Db).
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Country
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5M

The average yield (hg/ha) between 2017-2021, against the average harvested area dedicated to growing potatoes (ha) for the same time period for each
country displayed. The size of each circle equates to the size of that countries population. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

clods. In Issa et al. (2020), experiments were performed over sandy
clay, which is a more preferable environment for potato harvesters.
Most well-known potato combine harvesters are built to only operate
in sandy soils (see Bulgakov et al. (2021)]. The second is the design of
the harvester. The harvester design influences how forces are applied
to the soil and potato. Therefore changing the harvesting
specifications will vary their impact. Different designs will have
different optimal harvester specifications.

6.3 Levels of automation

This section looks at the current level of automation present in each
of the countries discussed in this review. The levels of automation
described here are based loosely on those presented by the SAE
International On-Road Automated Driving Committee, O (2021).
The levels however differ slightly and their definitions are presented
below: Level 0 equates to hand harvesting. Level 1 is a semi-mechanised
harvester. Level 2 is a fully-mechanised harvester. Level 3 is partial
automation of the harvesting process. Level 4 is the full automation of the
harvesting process. Level 5 is the full automation of the potato
farming process.

The only work reporting on automated potato harvesting was
McPhee et al. (2020). However it was a hypothetical proposal, no
potato harvester was actually automated. As such the highest level of
automation was achieved by Fu et al. (2022), with their autonomous
potato cleaner. This device was not attached to a harvester and therefore
it is not considered part of the harvesting process. Since no other paper
discussed automation, the top level of automation in potato harvesting is
therefore Level 2. There were no potato harvesting papers produced by
Peru and therefore it was not assigned a level of automation. However,
based on surrounding countries, it is likely that Peru is Level 1. Table 3
summarizes the automation levels of potato harvesting in the different
countries under study (over the period covered in this review).

China, India, Germany, and Australia were all assigned Level 2 due
to reviewed papers from these countries discussing fully-mechanised
harvesters [Fu et al. (2022); Gulati (2019); Schneider et al. (2019);
McPhee et al. (2020)]. Ukraine, the USA, and the UK were also
assigned Level 2, though this decision was arrived at based on
additional papers not included in the survey [Bulgakov et al. (2022);
Spang and Stevens (2018); Godwin et al. (1999)]. The UK and
Germany are also part of NWEC-05 which as discussed by Goffart
etal. (2022) has a very high level of mechanization, this confirmed their
assignment as Level 2. Egypt was assigned Level 1 based on their

TABLE 3 The levels of potato harvesting automation, number of potato harvesting based journal publications between 2017-2022; as well as
production and yield in 2021 for the top potato producing countries by continent.

Countries Automation Level Number of Publications Potato Production (tonnes) Yield (hg/ha)
China 2 5 94,362,175.0 163,179.0
Ukraine 2 6 21,356,320.0 166,430.0
India 2 1 54,230,000.0 241,237.0
Germany 2 3 11,312,100.0 437,944.0
UK 2 1 5,306,719.8 387,352.0
Australia 2 1 1,267,638.6 403,372.0
USA 2 1 18,582,370.0 490,727.0
Egypt 1 2 6,902,817.0 262,758.0
Peru - 0 5,661,443.0 171,245.0

Bold values means larger value.
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reviewed papers [Nasr et al. (2018; Nasr et al,, 2019)] proposing a semi-
mechanised potato harvester.

The following arguments can be made to change the automation
level for China, India, and Ukraine. China and India are both primarily
semi-mechanised harvesting countries [Wei etal. (2019); Gulati (2019)].
Despite this, they have both produced papers in the last five years
discussing the use of fully-mechanised harvesters [Gulati (2019); Fu etal.
(2022)]. As a result, both have been assigned an automation Level 2.

According to Hrushetskyi et al. (2021) and Hrushetsky et al.
(2019) the majority of Ukrainian potato harvesting is carried out
manually, despite previously most harvesting being mechanised.
The majority of potato harvesters are imported from Russia, Belarus
and Germany and are outdated. Nevertheless, since Ukrainian
research papers discuss fully-mechanised approaches [Bulgakov
et al. (2022)] they have been assigned an automation Level 2.

7 Conclusion and future work

Potato harvesting is a complex problem as the optimal solution
varies around the world. Potato and soil characteristics contribute
to the selection of an optimal harvesting technique and harvester
specification. In the last five years, automation in potato harvesting
has been discussed hypothetically but not implemented.
Subsequently, the highest level of automation is fully mechanised
harvesting (Automation Level 2). In recent literature, the design of
mechanical potato harvesters has revolved around the breaking up
and removal of soil clods. In addition to an improved ability to
remove soil clods, future harvesters may also be electric as the need
to reduce the environmental impact of farming increases. Intelligent
systems such as electronic potatoes can help to reduce tuber damage
and loss by understanding the forces exerted on the potato during
harvesting. Nevertheless, there is a gap for intelligent systems in
potato harvesting research. Introducing these intelligent systems
may help to ease the strain placed on the agricultural sector caused
by a shrinking workforce and an increasing population.
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Appendix Al

APPENDIX TABLE 1 China’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017-2021.

Production Yield Area Population
Harvested

2017 88,536,429.0 182,085.0 | 4,862,361.0 1,442,041,109
2018 90,321,442.0 189,722.0 | 4,760,724.0 1,448,928,199
2019 89,562,447.0  221,750.0 | 4,038,885.0 1,453,801,543
2020 92,852,722.1 198,588.0 | 4,675,654.0 1,456,928,486
2021 94,362,175.0 | 163,179.0 = 5,782,738.0 1,457,934,562
Mean 91,127,043.0  191,064.8 = 4,824,072.4  1,451,926,779.8
Std. 2,411,031.0 21,553.6 625,113.2 6,544,906.9
% Change 6.6 -10.4 189 11

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

Appendix A2

APPENDIX TABLE 2 India’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017-2021.

Production Yield Area Population
Harvested

2017 48,605,000.0 | 223,061.0 | 2,179,000.0 1,354,195,680
2018 51,310,0000 2395420 | 2,142,000.0 1,369,003,306
2019 50,190,000.0  230,971.0 | 2,173,000.0 1,383,112,050
2020 48,562,000.0 | 2367720 | 2,051,000.0 1,396,387,127
2021 54,230,0000 2412370 | 2,248,000.0 1,407,563,842
Mean 50,579,400.0 | 2343166 | 2,158,600.0 1,382,052,401.0
Std. 2,344,165.5 7,401.1 71,535.3 21,235,092.6
% Change 11.6 8.2 32 39

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

Appendix A3

APPENDIX TABLE 3 Germany's potato production (in tonnes), yield (in
hg/ha), area harvested (in ha), and population for the years 2017-2021.

Year Production Yield Area Population
Harvested
2017 11,720,000.0 467,864.0 250,500.0 82,624,374
(Continued)
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APPENDIX TABLE 3 Continued

Year Production Yield Area Population
Harvested
2018 8,920,800.0 353,719.0 252,200.0 82,896,696
2019 10,602,200.0 390,361.0 271,600.0 83,148,141
2020 11,715,100.0 428,340.0 273,500.0 83,328,988
2021 11,312,100.0 437,944.0 258,300.0 83,408,554
Mean 10,854,040.0 415,645.6 261,220.0 83,081,350.6
Std. 1,172,814.0 44,3265 10,762.8 322,402.0
% Change -35 -6.4 3.1 1.0

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

Appendix A4

APPENDIX TABLE 4 UK's potato production (in tonnes), yield (in hg/ha),
area harvested (in ha), and population for the years 2017-2021.

Production Yield Area Population
Harvested

2017 6,218,000.0 425,890.0 146,000.0 66,064,804
2018 5,060,000.0 361,429.0 140,000.0 66,432,993
2019 5,307,000.0 368,542.0 144,000.0 66,778,659
2020 5,512,813.1 388,226.0 142,000.0 67,059,474
2021 5,306,719.8 387,352.0 137,000.0 67,281,039
Mean 5,480,906.6 386,287.8 141,800.0 66,723,393.8
Std. 442,174.1 25,030.5 3,492.9 486,067.2
% Change -14.7 -9.1 -6.2 1.8

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

Appendix A5

APPENDIX TABLE 5 Ukraine’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017-2021.

Year Production Yield Area Population
Harvested
2017 22,208,220.0 167,837.0 1,323,200.0 44,657,257
2018 22,503,970.0 170,498.0 1,319,900.0 44,446,954
2019 20,269,190.0 154,869.0 1,308,800.0 44,211,094
2020 20,837,990.0 157,244.0 1,325,200.0 43,909,666
2021 21,356,320.0 166,430.0 1,283,200.0 43,531,422
(Continued)
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APPENDIX TABLE 5 Continued

Year Production Yield Area Population
Harvested

Mean 21,435,138.0 163,375.6 1,312,060.0 44,151,278.6

Std. 930,361.5 6,890.6 17,3332 444,301.4

% Change -3.8 -0.8 -3.0 -2.5

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value

10.3389/fpls.2023.1156734

value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

Appendix A8

APPENDIX TABLE 8 Egypt's potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017-2021.

that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

Appendix A6

APPENDIX TABLE 6 USA's potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017-2021.

Year Production Yield Area Population
Harvested

2017 20,453,430.0 483,887.0 422,690.0 329,791,231
2018 20,421,560.0 497,274.0 410,670.0 332,140,037
2019 19,251,320.0 507,522.0 379,320.0 334,319,671
2020 19,051,790.0 516,365.0 368,960.0 335,942,003
2021 18,582,370.0 490,727.0 378,670.0 336,997,624
Mean 19,552,094.0 499,155.0 392,062.0 333,838,113.2
Std. 844,024.8 12,979.5 23,236.5 2,911,248.8
% Change -9.2 14 -10.4 2.2

Production Yield Area Population
Harvested

2017 4,841,040.0 277,724.0 174,311.0 101,789,386
2018 4,960,062.0 289,282.0 171,461.0 103,740,765
2019 5,200,563.0 292,876.0 177,569.0 105,618,671
2020 6,786,340.0 246,203.0 275,640.0 107,465,134
2021 6,902,817.0 262,758.0 262,706.0 109,262,178
Mean 5,738,164.4 273,768.6 212,337.4 105,575,226.8
Std. 1,019,114.6 19,381.0 52,129.5 2,952,333.2
% Change 42.6 5.4 50.7 7.3

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

Appendix A9

APPENDIX TABLE 9 Australia’s potato production (in tonnes), yield (in
hg/ha), area harvested (in ha), and population for the years 2017-2021.

Appendix A7

APPENDIX TABLE 7 Peru’s potato production (in tonnes), yield (in hg/
ha), area harvested (in ha), and population for the years 2017-2021.

Year Production Yield Area Population
Harvested
2017 4,776,294.0 153,875.0 310,400.0 31,605,486
2018 5,133,927.3 159,012.0 322,864.0 32,203,944
2019 5,389,231.0 162,730.0 331,177.0 32,824,861
2020 5,515,378.0 165,551.0 333,153.0 33,304,756
2021 5,661,443.0 171,245.0 330,604.0 33,715,471
Mean 5,295,254.7 162,482.6 325,639.6 32,730,903.6
Std. 348,828.9 6,564.9 9,377.0 844,357.6
% Change 18.5 11.3 6.5 6.7

Year Production Yield Area Population
Harvested
2017 1,105,194.2 389,534.0 28,372.0 24,590,334
2018 1,188,655.0 399,682.0 29,740.0 24,979,230
2019 1,225,273.6 378,022.0 32,413.0 25,357,170
2020 1,076,780.1 397,971.0 27,057.0 25,670,051
2021 1,267,638.6 403,372.0 31,426.0 25,921,089
Mean 1,172,708.3 393,716.2 29,801.6 25,303,574.8
Std. 80,295.6 10,133.2 2,181.7 532,074.5
% Change 14.7 3.6 10.8 5.4

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
value across all countries in the study, except standard deviation where it is the smallest value
that is bold. Data extracted from Dataset FAO (2022a) and Dataset FAO (2022b).

The mean and standard deviation for each column across the four years is provided, as well as
the percentage change between the years 2017 and 2021. Bold text indicates that is the largest
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Accurate road extraction and recognition of roadside fruit in complex orchard
environments are essential prerequisites for robotic fruit picking and walking
behavioral decisions. In this study, a novel algorithm was proposed for
unstructured road extraction and roadside fruit synchronous recognition, with
wine grapes and nonstructural orchards as research objects. Initially, a
preprocessing method tailored to field orchards was proposed to reduce the
interference of adverse factors in the operating environment. The preprocessing
method contained 4 parts: interception of regions of interest, bilateral filter,
logarithmic space transformation and image enhancement based on the MSRCR
algorithm. Subsequently, the analysis of the enhanced image enabled the
optimization of the gray factor, and a road region extraction method based on
dual-space fusion was proposed by color channel enhancement and gray factor
optimization. Furthermore, the YOLO model suitable for grape cluster recognition in
the wild environment was selected, and its parameters were optimized to enhance
the recognition performance of the model for randomly distributed grapes. Finally, a
fusion recognition framework was innovatively established, wherein the road
extraction result was taken as input, and the optimized parameter YOLO model
was utilized to identify roadside fruits, thus realizing synchronous road extraction and
roadside fruit detection. Experimental results demonstrated that the proposed
method based on the pretreatment could reduce the impact of interfering factors
in complex orchard environments and enhance the quality of road extraction. Using
the optimized YOLOv7 model, the precision, recall, mAP, and F1-score for roadside
fruit cluster detection were 88.9%, 89.7%, 93.4%, and 89.3%, respectively, all of which
were higher than those of the YOLOvV5 model and were more suitable for roadside
grape recognition. Compared to the identification results obtained by the grape
detection algorithm alone, the proposed synchronous algorithm increased the
number of fruit identifications by 23.84% and the detection speed by 14.33%. This
research enhanced the perception ability of robots and provided a solid support for
behavioral decision systems.

KEYWORDS

non-structural environment, machine vision, fruit harvesting robot, deep learning,
roadside fruits detection
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1 Introduction

Around the world, fruit plays an increasingly vital role in
agriculture and economy. According to Food and Agriculture
Organization of the United Nations (FAO), the total value of grape
production has increased steadily since 1991, to more than $80 billion
by 2020. Fruit harvesting is characterized by having limited work
cycles and being labor intensive and time-consuming. With aging of
the population and lack of rural labor force, labor costs have
increased year by year (Wu et al,, 2021; Li Y. J. et al,, 2022). Under
the influence of the COVID-19 pandemic and related policies (Aamir
et al., 2021; Nawaz et al, 2021; Bhatti et al.,, 2022a; Bhatti et al.,
2022b), the contradiction between labor demand and labor costs has
become more prominent (Liang et al., 2021; Lin et al., 2022). This has
had a negative impact on traditional hand-picking operations. With
the deterioration of environmental issues (Bhatti et al., 2022; Galvan
et al,, 2022; Tang et al, 2023a), all the above factors pose a great
challenge to China’s fruit industry. With the rapid development of
modern information technology and artificial intelligence technology,
fruit harvesting robots and their related technologies have attracted
extensive attention (Chen M. et al., 2020; Fu L. H. et al., 2020; Fu L.
et al, 2020; Rysz and Mehta, 2021; Yang, 2021; Kang et al., 2022;
Wang X. et al,, 2022; Wu Z. et al., 2022).

As the basis of autonomous navigation, road detection is crucial
to the precise operation of fruit harvesting robots and has become
the focus of research in recent years (Ma et al, 2021; Sun et al,
2022). The main objective of road extraction is to extract the road
regions from the background in a complex scene to lay the
foundation for determining the navigation path. According to the
characteristics of roads, they can be divided into two categories:
structured roads and unstructured roads. Structured roads are
standardized roads similar to urban roads and expressways, with
clear lane markings, regular road edges, and distinct geometric
features. Unstructured roads are those with irregular road edges,
unclear road boundaries, no lane lines, and similar to orchards and
rural areas. Compared to structured roads, unstructured roads have
a more complex environmental background. For the most part, the
surface of the unstructured road is mostly uneven, with a few
random weeds. In contrast, the problem of unstructured road
extraction is more complicated.

Research of road detection is usually divided into machine
learning segmentation methods and traditional algorithms based on
image features.

Road segmentation methods of machine learning are mainly
divided into clustering (Zhang Z. Q. et al., 2022b), seed support
vector machine (SVM; Liu et al, 2018), deep learning (Li et al,
2020), and other methods. Yang Z. et al. (2022) have proposed a
visual navigation path extraction method based on neural network
and pixel scanning. They introduced Segnet and Unet networks to
improve the segmentation effect of orchard road condition
information and background environment and adopted sliding
filtering algorithm, a scanning method, and a weighted average
method to fit the final navigation path. Lei et al. (2021) have
combined improved SVM and two-dimensional lidar point cloud
data to detect and identify unstructured roads. Wang E. et al. (2019)
have realized road extraction of complex scenes by combining
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illumination invariant images and analyzing probability map and
gradient information. Kim et al. (2020) have implemented
automatic path detection in semi-structured orchards based on
patch and CNN neural network methods. Alam et al. (2021) have
implemented road extraction in structured and unstructured
environments by combining multi-nearest neighbor classification
and soft voting aggregation. Some scholars have also studied
methods for road extraction in remote sensing based on machine
learning methods (Xin et al., 2019; Chen et al,, 2022; Guan et al,,
20225 Yang M. et al., 2022). However, relevant research has been
more on the basis of urban development analysis or traffic network
monitoring and other fields, which are not applicable to picking
robots. Machine learning usually does not require manual feature
selection. However, this method requires specific network training
and a large number of training sets and has certain limitations.

In the method based on image-feature analysis, some scholars
use color, texture and other features to distinguish road and
nonroad areas by establishing models and other methods. Zhou
et al. (2021) have used the H component to extract the target path
for the sky region. Chen J et al. (2020; 2021) have used an improved
gray scale factor and the maximum interclass variance method
(Otsu) method to extract gray scale images of soil and plants and
realized segmentation of soil and plants in the greenhouse
environment. Qi et al. (2019) have segmented the road region
based on a graph-based manifold ranking approach and used
binomial functions to fit the road region model, thus realizing
road recognition in rural environment. Some scholars have also
considered the vanishing point and other spatial structure features
in the process of road extraction. Su et al. (2019) have adopted the
Dijkstra method combined with single-line lidar to realize road
extraction on the basis of the constraints of pre-vanishing points of
illumination-invariant images. Phung et al. (2016) have realized
pedestrian lane detection based on an improved vanishing point
estimation method combined with geometry and color features.
However, the detection of vanishing points is time-consuming and
mostly applied to structured road detection (Xu et al., 2018), which
is not suitable for dealing with unstructured roads.

To realize autonomous walking and precise operation of fruit
harvesting robots in orchard environments and aiming at the
uncertainty of random distribution of roadside fruit and road
complexity, it is necessary to deeply study the problem of
synchronous road extraction and fruit identification. This study
enables robot perception of barrier-free road areas and roadside fruit
distribution in the current environment and can provide an inferential
basis for robot global operational behavior decisions in complex
orchard environments. Moreover, this study can lay the foundation
for the joint control and operation of navigation and picking based on
visual guidance in the panoramic environment of wild orchards.
However, current approaches have only focused on road extraction,
without considering the roadside fruit detection. In this case, the
autonomous decision-making function of the robot cannot perform
reasonable picking responses and navigation path planning based on
the random distribution of fruits along the road, which is detrimental to
the intelligent global continuous operation of the robot.

In terms of object detection, neural networks have been widely
used in the field of smart agriculture (Khaki and Wang, 2019; Tang
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et al,, 2020; Feng et al,, 2022; Fu et al., 2022), and You Only Look
Once (YOLO), as one of the fastest target detection models at
present, has also been rapidly developed (Ye et al., 2020; Ning et al.,,
2022; Wang X. Y. et al,, 2022). For example, due to the excellent
performance of the YOLOv5 model in terms of accuracy and
running time, it has been greatly valued by scholars in the
research of crop growth-morphology recognition (Lv et al., 2022;
Rong et al, 2022; Wu F. et al,, 2022), detection and positioning
(Fang et al., 2022; Jintasuttisak et al., 2022; Li G. et al., 2022; Wang
H. et al., 2022), tracking counting (Lyu et al., 2022; She et al., 2022;
Zang et al., 2022), and pest recognition (Li S. et al., 2022; Qi et al,,
2022; Zhang et al., 2022).

Given the importance of detecting and locating fruit for picking
robots, researchers have explored various fruit detection and
location methods based on neural networks (Wang C. et al., 2019;
Ge et al,, 2022; Jia et al., 2022; Zhou et al., 2022; Tang et al., 2023c).
To improve the operational efficiency and success rate of picking
robots, researchers have gradually shifted their focus to picking-
path planning algorithms and picking decision systems based on
fruit detection (Lin et al., 2021; Wang Y. et al., 2022). For example,
Xu et al. (2022) have proposed an efficient combined multipoint
picking scheme for tea buds through a greedy algorithm and ant
colony algorithm, which improved picking efficiency and overall
picking success rate. Ning et al. (2022) proposed a method for
recognition and planning robotic picking sequences for sweet
peppers based on an improved YOLOV4 model and a principle
of anticollision picking within picking clusters. The method can
accurately detects sweet peppers, reduces collision damage, and
improves picking efficiency in high-density orchard environments.
Rong et al. (2022) have proposed an obstacle avoidance method that
combines end-effector grasping-pose adjustment and harvesting
sequence planning based on a custom manipulator. Experiments
show that the method significantly reduced the impact of collision
on the picking and improved the success rate of tomato picking.
Although some progress has been made in the study of local target
detection and picking planning, there have been few reports on the
synchronization information perception needs of picking robots to
autonomously pick and walk.

To implement the behavioral decision-making function of the
picker robot to walk autonomously and pick accurately throughout
the entire process in a large-area orchard environment, road
extraction and roadside fruit identification should first be
implemented in the current working scenario. Currently, many
algorithms only focus on road extraction and ignore the fruit
distribution along the road, which leads to the serious problem
that picking robots are not robust enough to adapt to the changing
orchard environments. Therefore, a road extraction and roadside
fruit synchronous recognition algorithm based on unstructured
road was proposed in this study. The main contributions of this
study were as follows:

(1) Currently, numerous studies have focused on extracting
unstructured roads without considering the synchronous
recognition of roadside fruits, which is detrimental to
improving the ability of picking robots to obtain
environmental information. Motivated by the need for
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cooperative behavioral decision-making in fruit picking
robots, this study proposed a framework for unstructured
road extraction and synchronous recognition of roadside
fruit. This framework can effectively improve the ability of
fruit-picking robots to extract crucial information from the
picking environment and lay a foundation for multitask
parallel processing, thereby enabling cooperative behavioral
decision-making among fruit-picking robots.

(2) Due to the randomness and complexity of orchard
environments, the results of road extraction directly
from raw images were not very accurate and contained a
large number of misidentified regions. An image
preprocessing method based on image enhancement and
filtering preprocessing was designed here which reduced
the influence of interference existing in the complex
orchard environment. Simultaneously, this approach
enhanced the precision of road extraction results and was
of great importance for improving the quality of road
extraction.

(3) The irregular road edges of unstructured roads and various
interference factors in orchards considerably impacted the
stability of the road extraction results. To address this issue,
analyses of orchard images were conducted to optimize the
gray factor and enhance its adaptability to field orchards. A
two-space fusion unstructured road extraction algorithm
was proposed, which used color channel enhancement and
gray factor optimization and demonstrated great
adaptability to interference factors, such as shadow,
uneven lighting, grapevine on the side of the road, and
strong contrast between light and shade in the field complex
environment.

(4) A fusion algorithm based on the road extraction algorithm
and roadside fruit detection algorithm was constructed.
Based on the detection requirements for roadside grapes in
wide-field environments, YOLO models were compared,
selected, and optimized for their parameters. Subsequently,
the three functions of image preprocessing, road extraction,
and roadside grape recognition were integrated to construct
a synchronous recognition algorithm, allowing for the
simultaneous extraction of road and other key
information during the fruit-picking process. The
proposed algorithm provided information for decision-
making and reasoning of collaborative behavior of key
parts of the robot, so as to improve robot adaptability to
randomly distributed fruit.

This study will lay a foundation for the construction of robot
behavior decision control system, and it is of great significance for
improving the intelligence, accuracy, and stability of robot field
autonomous work.

The rest of this report is organized as follows. Section 2
introduced the materials and data. Section 3 explained the
structure and implementation of the algorithm. Section 4
presented the experimental results and comparative discussion.
Finally, Section 5 summarized the study and plans for future work.
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2 Materials and data acquisition

2.1 Experimental platform for wine grape
picking and moving

This study was based on the wine grape visual mobile picking
robot that was independently designed and developed. The overall
layout of the test platform is shown in Figure 1A. The test platform
was battery powered to operate in the orchard. The length and
width of the platform were 1.065 and 0.7 m, respectively, and the
maximum climbing capacity was 30°. Two cameras were installed
on the end-effector of the platform as picking camera and
navigation camera, separately.

The control process of the experimental platform was divided
into three main parts (Figure 1B). The first part of the control
system was to construct algorithms for unstructured road
extraction and roadside fruit synchronization recognition based
on the collected datasets A and B. Then, the industrial personal
computer (IPC) implemented the algorithm-based key
information acquisition, recognition, and behavioral decisions.
The second part of the control system was to use the IPC to
control the navigation camera for orchard road extraction and
roadside fruit recognition. By recognizing the distinction between
unstructured roads and chaotic backgrounds, as well as the
classification and recognition of roadside grapes and grapevines,
it provided a judgment basis for the IPC to distinguish the
presence of roadside fruit and lay the foundation for behavioral
decisions. Based on the above information, the third part of the
control system extracted the navigation path of the orchard and
judged the presence of fruit in the current roadside area. If there
were fruit on the roadside, the controller controlled the tracked
vehicle to approach the fruit area of the roadside fruit tree and

10.3389/fpls.2023.1103276

fed the information to the robotic arm and another set of stereo
camera for precise positioning (the picking camera for short) for
picking operations. Using the picking camera, fruit could be re-
identified and accurately positioned to achieve fruit picking in
complex environments. The work of this study mainly
implemented the first part of the control system.

2.2 Experimental subjects

Wine grapes and non-structural orchards were taken as
experiment subjects in this research. Wine grape fruit are
clustered in shape and usually purple at maturity, with a clear
color difference from leaves. The planting mode is usually in rows
with a certain row spacing. As the fruit distribution and planting
patterns of wine grapes are similar to other row-grown crops, such
as tomato and dragon fruit, the results of this study are expected to
be extendable to other types of fruit.

2.3 Image acquisition

In August 2022, experimental images were obtained from Xinyu
Winehouse (Bohu County, Bazhou, Xinjiang). The device used for
dataset sampling was an OPPO RI11 mobile phone with a 20-
megapixel rear camera. All images were taken under natural
daylight conditions without artificial light sources and saved in
Joint Photographic Expert Group (jpg) format with image size
4608x2128 pixels.

The collected images were divided into datasets A and B. The
original images of vineyards in dataset A included roads and vines.
As the algorithm proposed in this study was intended to provide a
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FIGURE 1

Overall layout and control flow of test platform. (A) Overall layout of test platform. Mechanical arm (AUBO-i5, AUBO), 1; Battery, 2; Controller, 3;
Camera for picking (HBV-1714, Huiber Vision Technology Co., Ltd), 4; Camera for navigation (ZED 2, Stereolabs), 5; End-effector, 6; Human Machine
Interaction, 7; Industrial Personal Computer (IPC), 8; and Track car, 9. (B) Control flow of the test platform.

Frontiers in Plant Science

frontiersin.org

107


https://doi.org/10.3389/fpls.2023.1103276
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhou et al.

basis for behavioral decisions of grape-picking robots, the focus was
on the region of unstructured road and distribution of fruit in a
unilateral grape row. Therefore, during the collection process of
dataset A, the camera observation direction was biased to the right
of the road center line (Figure 2A). A total of 337 typical orchard
images were selected, in which the roads in the grape orchard
environment had features of shadow and irregular road edges
(Figure 2B). Dataset B was composed of 1081 valid images
showing wine grape clusters, including grape samples in
numerous cases, with images of grapes in front and backlight
(Figures 2C, D).

2.4 Image datasets

To simulate the vision system of the picking robot, valid grape
and orchard image samples were collected under different
conditions of illumination, weather, sampling distance, and
differing severity of fruit adhesion and occlusion, forming datasets
A and B.

Dataset A consisted mainly of orchard images with uneven
lighting, with multiple weeds, with large shadows, in different
weather conditions, and with different light and shade
contrasts (Figure 3A).

The natural images of grapes (dataset B) mainly included
images of single cluster grape, multiple clusters grape, slightly-
adhered grape, severely-adhered grapes, front and back
illumination, small string grapes, large cluster grapes, and grapes
on a sunny day, on a cloudy day, and in shadow as well as grapes at

10.3389/fpls.2023.1103276

different sampling distances. Their representative images are shown
in Figure 3B.

Datasets A and B were challenging considering the effects of
complex background, light levels, shadows, randomly distributed
fruits, weeds, and different levels of fruit occlusion. Images of grapes
and vineyards in a typical complex environment were contained in
dataset A and B (Figure 3).

Dataset A was only employed for testing the performance of
unstructured road extraction and the overall algorithm, with 100
images in this dataset randomly selected as the test set for
algorithms in this study. To improve algorithm efficiency, the
processing image size of the algorithm was set to 1024x473 pixels.

Dataset B was used for training and validation of the fruit model
on the YOLOV7 roadside. Under Labellmg (https://github.com/
tzutalin/labellmg), grapes in images were manually annotated as
rectangles with the label “fruit,” which then saved annotation files in
“txt” format. Among them, the whole image set was randomly
divided into training and validation sets with a ratio of 9 to 1.

3 Methodology and algorithm
description

In this study, the algorithm content was mainly divided into two
parts: First, the road in the unstructured orchard environment was
extracted. Second, taking the road extraction results as input,
roadside fruit were identified through YOLOvV7 to realize the
synchronous information extraction of the road extraction and
roadside fruit detection. The algorithm process of this study is
shown in Figure 4.

Messy background

Road center line

FIGURE 2

Road area with
unstructured edges|

Schematic diagram of the acquisition process of test images. (A) The camera observation direction. (B) Example image of the wine vineyard.

(C) Examples of frontlight images. (D) Examples of backlight images.
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Natural images of vineyards and wine grape clusters. (A) Natural images of vineyards. (B) Natural images of wine grape clusters.

3.1 Image preprocessing

During image acquisition in the orchard, it was inevitable to be
disturbed by external environmental noise, such as uneven light and
dust, which made the image details unclear and led to road
extraction errors. Therefore, this study preprocessed the images in
dataset A, which was of great significance for improving the quality
of road segmentation (Wang et al., 2018; Zhang P. et al., 2022). The
image preprocessing method proposed in this study consisted of five
steps, with the processing procedure and image quality
enhancement results illustrated in Figure 5. Further details can be
found in Sections 3.3.1 - 3.1.5.

3.1.1 Interception of regions of interest

The images in dataset A were composed of sky, road, grapes,
and messy background, among which the sky and messy
background were mainly distributed at the top of an image. In
the image processing process, if the entire image captured by the
camera was merely taken as the research object, a substantial
amount of computation would be required and a significant
amount of interference inevitably occurs, which will reduce road
extraction accuracy. To this end, only the regions of interest (ROI)
of the image was extracted for subsequent processing. After a
number of experiments, it was found that the appropriate ROI
was at the lower 5/6 position of the image (Figure 5B). This ROI
selection not only significantly reduced the calculation volume, but
also ensured the accuracy and reliability of unstructured
road extraction.

Frontiers in Plant Science

3.1.2 Bilateral filter

A bilateral filter can smooth the image while maintaining edge
details (Routray et al., 2020). To enhance and improve contrast
between the foreground and background of the road to facilitate
subsequent segmentation, a bilateral filter was used to process the
present images. To reduce the influence of minor areas, such as
vines, fruits, vine gaps, and cavities in subsequent segmentation, the
key parameters of the bilateral filter (Liu et al., 2017) in this study
were set to: diameter d of the pixel domain was 60, standard
deviation of spatial domain 120, and standard deviation of
intensity domain 60 (Figure 5C).

3.1.3 Logarithmic space transformation

To enhance the details in the shadowed regions and provide
images with enhanced details and uniform brightness for
subsequent MSRCR processing, a logarithmic transformation of
the V-component in hue, saturation, and value (HSV) space was
used here to expand the low gray values and compress high gray
values in this channel (Figure 5D). The standard form was

S=cxlog(1+1L) (1)

where S is the correction image, L the source image, and c¢ the
gain adjustment parameter, which was set to 1.

3.1.4 Image enhancement based on the MSRCR
algorithm

After the above processing and observing the image under RGB
color space, the altering influence of illumination was found not to
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Flow chart of the entire algorithm.

be entirely eliminated. Therefore, the MSRCR algorithm was
selected for image correction and enhancement here to obtain
realistic images with reduced illumination effects. The resulting
Equations 2-4 were expressed as:

Rysrer(®:y) = Ci(%, y)Rysr(, y) (2)

Rysr(x, ) = E(pn{logl x,¥) Elog x,y) * Li(x, y)}} 3)
N

Ci(xy) =B {log[ali(x, »)] - log {Z(L-(x, y))] } (4)
1

The optimal functional form of MSRCR is shown in Equation 5,
expressed as:

N
Rysrer(x,y) = G{Ci(xs}’) {10811'(%}’) - 2 log (I;(x, y) *F(x,y)} + b}
1
(5)

where I;(x, y) is the color component image corresponding to

each color channel, F(x, y) the Gaussian filter function, and C;(x, y)

the color restoration factor of the i™ color chan%el, @, the weight,

and N the number of spectral channel, where E(pn =1, Ba gain
1
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constant, and o the strength of nonlinearity, G and b the final gain
and offset values, respectively. The parameters of MSRCR in this
study were configured according to the reference (Jobson

et al., 1997).

3.1.5 S-component enhancement
To enrich color information, this study adjusted the saturation
channel S to enhance image quality, with the formulas described by
Equations 6-7 (Huang et al., 2022), expressed as:
Snpt =0k T Sori (6)

_ mean(R, G, B) + Max(R, G, B) + Min(R, G, B)

mean(R, G, B) @

where S, represents the enhanced saturation channel, S,,; the
original saturation channel of S, mean(R, G, B), Max(R, G, B), and
Min(R, G, B) the average, maximum, and minimum values of pixels
corresponding to R, G, and B color channels, respectively, and o
and T the gain coefficients of the saturation channel, which control
the enhancement degree of S channel image.

Qualitative and quantitative evaluation is significant for the
evaluation of image quality. In the qualitative evaluation, the quality
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Process and results of image preprocessing algorithm. (A) Original image. (B) Region of interest. (C) Bilateral filtering result. (D) Log space transformation.
(E) Image enhancement based on the MSRCR algorithm. (F) S-component enhancement. (G) Results of image preprocessing algorithm.

of the enhanced image was evaluated in color, contrast, and detail.
By comparing the gain effect at different values, it was observed that,
if the value of ¢ was too high or low, the image contrast was
reduced or saturation too strong, which affected the visual effect of
the image. When o, = 0.2, the contrast of the image was low,
resulting in poor overall visual effect. When o was greater than 0.5,
there was significant color distortion despite the high contrast of
images, resulting in partial loss of detail in the image. When o =
0.3, although the tone of the image was better maintained, the
enhancement effect was not obvious compared with the image
without S-component enhancement. When o = 0.4, the contrast
of the image was improved significantly without obvious color
distortion and the visual effect was the best.

In the quantitative evaluation, this paper evaluated the
performance the processing results by three metrics Peak signal-to-

Frontiers in Plant Science

noise ratio (PSNR, He et al., 2015), information entropy value (IE,
Wang et al,, 2021) and average gradient (AG, Zhang X. et al., 2022).
PSNR has been widely used for measuring attributes like texture
details enhancement, details preservation and contrast enhancement.
A higher PSNR generally indicates that the processed image is of
higher quality (Gupta and Tiwari, 2019). IE is mainly an objective
evaluation index that measures how much information an image
contains. The enormous IE value indicates that the enhancement
image contains more image information. AG represents the degree of
change in the gray value of the image, and is one of the criteria for
judging the processing of image details and clarity. The large AG value
indicates that the enhancement image contains more gradient
information and detailed texture. The image enhancement quality
evaluation parameters under different values of ¢ were shown in
Figure 5F, where the optimal parameter values were marked in red
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and the second highest parameter values were highlighted in blue.
Figure illustrated that the value of AG increased as the value of o
increased, indicating that the sharpness of the image was also
enhanced progressively. However, color distortion occurred when
o, was set to 0.5 or 0.6. Therefore, this paper eliminated the enhanced
images with these two parameters and only discussed the image
enhancement results with low o value(o,< 0.5). Moreover, the
highest value and the second highest value of PSNR and IE were
mainly concentrated in the results of o, =0.3 and o, =0.4, which
indicates that under the above two parameter settings, the images had
a good performance in terms of image information, contrast
enhancement and detail preservation. Furthermore, for 0,=0.4, both
the IE and AG values were higher than those for ¢t=0.3, while the
PSNR was slightly lower than the latter. Therefore, based on the
qualitative evaluation results and the requirements of enhanced
images in terms of clarity, information content, picture details and
contrast, o; was finally set at 0.4 in this study.

3.2 Unstructured road extraction

In this section, unstructured road extraction was achieved by
fusing two parts, including the segmented road region after

10.3389/fpls.2023.1103276

removing green regions from the HSV space and road region
based on improved gray factor.

3.2.1 Road extraction based on color enhancement
and HSV color space

HSV color space is composed of hue (H), saturation (S) and
luminance (V) channels. As HSV color space is more consistent
with human color perception, it has been widely used in multifield
research based on machine vision, such as medicine (Singh, 2020),
agriculture (Liao et al., 2022), and chemical industries (Safarik et al.,
2019). Therefore, the HSV color space was used here to extract
road regions.

First, the enhanced and optimized RGB image was converted
into an HSV image and the threshold range (Hiin» Hmax)> (Smins
Smax)> and (Vinin, Vinay) of each channel set to binarize the image.
This completed the constraint and extraction of the green area, so as
to distinguish the road area from the plant area (vines, weeds, and
background trees). Based on Exploratory data analysis (EDA) and
empirical values (Guo et al., 2013; Peng et al., 2013; Camizuli and
Carranza, 2018), the HSV ranges were set at (35,77),(43,255),and
(46,255), respectively (Figure 6A). As can be seen from the image,
although the road extraction was relatively complete, the main
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Process and results of road extraction. (A) Road extraction results in HSV space. (B) Road extraction results based on ExG Gray factor. (C) Road
segmentation effect under different Tg. (D) Road extraction results based on optimized grayscale factor. (E) Fused binary image. (F) Morphological
processing result. (G) Final extraction result. (H) Manual image segmentation. (I) Results of comparison between proposed algorithm and real situation
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constraint in the HSV space was the green region, such that there
were still interference regions due to grapes and their vines, leaf
gaps, and other factors in extraction results.

3.2.2 Road extraction based on gray factor
optimization

Taking advantage of the significant color difference between
different objects in the image, numerous researchers have realized
object segmentation by examining different gray weights, such as
excessive red plant index (ExR, Meyer et al., 1999), excessive green
index (ExG, Woebbecke et al,, 1995), and normalized difference
index (NDI, Woebbecke et al, 1993). The preprocessed image
mainly contained four areas: grape vines regions, soil areas,
background, and shadow areas. Therefore, through manual
segmentation of the above regions and obtaining the average
values of R, G, and B in different regions, the gray factor was
improved by a heuristic method based on the excessive green index
(ExG). The optimized gray factor and its binarized image
acquisition formula were expressed in Equations 8 and 9 as

gray(x,y) = 1.84G(x, ) - B(x,y) - R(x, y) ®)
0 ereeenvee 1.84G(x,y) — B(x,y) = R(x,y) < T
o) - { y y )
255 cee vun ee 1.84G(x,y) — B(x,y) = R(x,y) > Ty

where gray(x,y) is the optimized gray level factor, f(x,y) the
binarized image, and G(x,y), B(x,y), and R(x,y) as the green, blue,
and red components of the color range, respectively. And T is the
binarization threshold.

Based on the optimized grayscale factor, the grayscale image
and the grayscale histogram of the enhanced image after the S-
component were plotted in Figure 6C. As can be seen from the gray
histogram, most pixels in the image had a gray value of 0,
corresponding to the majority of black road areas in the gray
map. However, as shown by the red area in the grayscale image, a
few pixels in the road area had gray values that were not zero.
Therefore, the rationality of the binarization threshold T directly
affected the integrity of the road segmentation. To determine the
optimal binarization threshold, a comparative experiment was
conducted in this paper, using the threshold value Ty as the
independent variable and the road segmentation result as the
dependent variable. The initial value of the binarization threshold
was set to 0, and different binarization thresholds were used to
segment the road. The threshold of binarization was increased by 10
for each group until the segmentation result incorrectly included
the vine area on the side of the road.

When Tg= 0, the segmentation result indicated a significantly
smaller road area than the actual road. With Tj set at 10, the vast
majority of road area was accurately extracted from the
segmentation results. However, when Ty was increased to 20,
while the extracted road area was more comprehensive, there
were numerous incorrectly extracted sections. Consequently, for
this article, T was established at 10, the road extraction results were
shown in Figure 6D.

The extraction method of unoptimized gray factor based on
ExG was found to be affected by shadows and weeds, resulting in a
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large number of noise points and holes in the treatment results, and
only extracted a small number of road regions (Figure 6B). Thus,
the extracted area was significantly smaller than the real value. On
the other hand, the improved gray factor method exhibited superior
segmentation results for the grapevine area on the road and its
surroundings, showing great advantages in the accuracy and
integrity of road segmentation (as depicted in Figure 6D). The
above results indicated that compared with the unimproved gray
factor, the improved gray factor method was more adaptable to
unfavorable environmental conditions such as shadows and lighting
in the field.

3.2.3 Binary images fusion and morphological
processing

By fusing the above two binarized images in Figures 6 A, D, most
of the disturbances (Figure 6E) were eliminated and road edges
constrained. The fused results were more consistent with the
real situation.

However, there were various tiny noises and irregularly-shaped
edges in the fused binary image. Therefore, morphological
processing was performed on fused binary images to remove non-
correlated structures (Figures 6F, G).

The road edge extracted by this algorithm was found to be in
line with the trend of the real road and fundamentally eliminated
the vine area on the side of the road (Figure 6I). This reduced
the interference of light, shadow, weeds, and dead branches
to road extraction, with high extraction integrity and good
comprehensive performance.

3.2.4 Performance evaluation indexes

In this study, the number of ROI image pixels (NRP) and the
ratio between the wrongly extracted pixels and the number of ROI
image pixels (RBP) were used as evaluation indices for verifying the
performance of the road extraction algorithm. And the calculation
equations of this evaluation index expressed in Equation 10 as

NWP
RBP = x 100 % (10)
NRP

where NWP is the number of wrongly extracted pixels by
the algorithm.

3.3 Roadside fruit detection based on
YOLOv7

3.3.1 Characteristics of the YOLOV7 network
structure

As the latest version of the YOLO series (Wang C. et al., 2022),
YOLOV7 has improved the existing model in many ways. First, it
offers extended efficient layer aggregation networks (E-ELAN)
based on ELAN structure, which can guide different computing
blocks to learn more different features and enhance the learning
ability of the model on the basis of maintaining the original gradient
path. Then, a compound model scaling method based on the
cascade model has been proposed to ensure the initial
characteristics and optimal structure of the model, which
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efficiently utilizes parameters and computation. Meanwhile, several
trainable bag-of-freebies methods have been designed for real-time
object detection, which significantly improves detection accuracy
without increasing inference cost. Based on the above
improvements, YOLOv7 shows great advantages in terms of
speed and accuracy over other detection algorithms. Its network
architecture is shown in Figure 7.

Based on the performance advantages of the YOLOv7 and
YOLOV5 models, both models were adopted in this research to
detect roadside fruits. The results were compared to identify the
roadside grape detection model that is better suited for large-field
environments. The selected model’s feasibility and detection
performance were then further verified for roadside
fruit recognition.

3.3.2 Network training and parameter
optimization

The experiment was conducted on a Windows 10 operating
system, with the Python framework, YOLOv7, and YOLOv5
environments built in the Anaconda environment. The program
was written in Python 3.9 and CUDA Ver. 11.7. In terms of
hardware, the processor is an Intel (R) Core (R) i5-1240F CPU@

10.3389/fpls.2023.1103276

2.5 GHz, the dominant frequency is 2.5 GHz, internal storage 32.0
GB, and graphics card an NVIDIA GeForce RTX 3060.

Due to the complex orchard environment, directly applying
the default parameters of YOLO model to the roadside fruit
recognition model results in poor detection results. To adapt to
fruit recognition in complex field scenarios, the learning rate
parameter of the YOLO model was chosen as described in this
study. The initial value of the learning rate was set to 0.01 and the
model was trained with different learning rates. The learning rate
of each group was reduced by 0.002, respectively, until the optimal
parameters were detected and chosen. By comparison, it was
found that when the learning rate was larger than 0.002, the
loss curves for object detection in the results suffered from severe
oscillations, poor convergence or nonconvergence. Thus, the
learning rate of the wine grape orchard recognition model was
set to 0.002.

The training and verification sets were input into the network for
training, with a batch size of 16 and 150 epochs, respectively (Table 1).

3.3.3 Model evaluation
In this study, precision (P), recall (R), F1-score, and mAP were
used as the evaluation indices of roadside fruit detection
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TABLE 1 YOLO basic parameters.

Parameters of model Value

Input image resolution 640x640
Learning rate 0.002
Momentum 0.937
Optimizer weight decay 0.0005
Warmup momentum 0.8
Batch size 16
Training epochs 150

performance and the calculation equations of each evaluation index
expressed in Equations 11-14 as:

pP= L (11)
" TP+FP
TP
R=—"" 12
TP + FN (12)
F1 coe—ZXPXR (13)
SOTCE TP AR
‘AP
mAPzigl © (14)
c

where TP, FP, and FN correspond to true positives (there is a grape
bunch in the image and the algorithm predicts it correctly), false positives
(there are no grapes in the image, but the algorithm detects it), and false
negatives (the algorithm failed to detect a bunch of grapes which are
actually in the image), respectively, and C the number of detection
classes. As only one kind of fruit was identified in this study, C = 1.

4 Experiments and discussion

By achieving synchronous recognition of road extraction and
roadside fruit, this algorithm can considerably improve the ability of
robots to perceive critical information in the orchard environments
and lay the foundation for autonomous walking and picking
decisions based on machine vision. Therefore, the performance of
this algorithm was extremely critical for the robot’s picking rate,
navigation path extraction accuracy, and reliability of the decision
system in subsequent researches. At the same time, this study served
as a reference for other research in the same field.

In this section, the performance of image enhancement, road
extraction, roadside fruit recognition, and overall fusion algorithm
were verified and discussed.

4.1 Road extraction effects and ablation
tests

4.1.1 Road extraction results and analysis

To validate the image segmentation effect of the proposed road
extraction algorithm, the results obtained by fused segmentation
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were compared with those obtained by the conventional color
image method. This study adopted two traditional algorithms: a
method based on S component and Otsu and another based on the
Excess Green index (ExG) and Otsu. At the same time, 25 images
with pavement shadows, strong illumination variations, and
grapevines with different degrees of color were selected as test
samples to verify the adaptability of the above algorithms to
complex environments.

The results of multiple sample images were compared, in which
samples were original color images and other images obtained by
segmentation methods. The comparative findings for partial sample
images were illustrated in Figures 8A-F, while the comparative
results for additional images could be found in the Supplementary
Material. Figures 1-3 depict the image samples with the lowest
NWP value in the outcomes of Methods C, D, and E, while
Figures 4-6 depict the image samples with the highest NWP
value in the outcomes of Methods C, D, and E, respectively.

For simplicity, the proposed algorithm was abbreviated as
“Method C”, the method based on S component and Otsu was
abbreviated as “Method D”, and the method based on EXG and
Otsu was abbreviated as “Method E”.

In the qualitative evaluation, the quality of different
segmentation methods was assessed based on the completeness of
road segmentation and the distribution of error areas. Due to the
complexity of the field orchard, the primary environmental factors
that influence the precision of road segmentation outcomes include
the grapevine area, shadowed road area (Li et al., 2018), roadside
unevenly colored area, and high contrast between light and dark
areas (Tang et al., 2023b). As depicted in Figure 8A, strong lighting
caused the grapevine areas on the roadside to exhibit characteristics
such as uneven light and shade and varying color tones. This led to a
significant contrast between light and shade in the grapevine areas
on both sides of the road. Additionally, different lighting angles
resulted in distinct areas of shadow on the road surface, thereby
increasing the complexity involved in segmenting orchard roads.

Observationally, it was found that the extraction results of
methods D and E (Figures 8D, E) suffered from problems, such
as the large area errors in identification. Although the extraction
results were of great completeness, the results also contained a large
number of incorrect regions (Figure 8F). By comprehensive
comparison, the road obtained by the Method C was found to be
the closest to the real situation and had the best segmentation effect
among all considered methods.

To further analyze the adaptability of the above method to
complex vineyard scenarios, the extraction results of the proposed
algorithm were compared with real roads (Figures 8F, G). Based on
Figure 8F, it can be observed that the error areas of methods D and
E were primarily concentrated in the grapevine area on the side of
the road.

Method D was found to be sensitive to changes in brightness,
shade, and color uniformity of the grapevine region in the image,
which resulted in changes in the error area of the segmentation
result (Figure 8D). Due to the unpredictable and random nature of
illumination in field environments, it was difficult to guarantee the
accuracy and stability of the segmentation results achieved through
method D.
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FIGURE 8

Results and analysis of different segmentation methods. (A) Original images. (B) Manual image segmentation. (C) Proposed algorithm. (D) Method
based on S component and Otsu. (E) Method based on EXG and Otsu. (F) Error area results extracted by different methods. (G) RBP values of partial
images obtained by different methods. (H) Descriptive Statistics for NWP and RBP. (I) NWP values of 25 images obtained by different methods.

The primary error source of method E was the grapevine area
with strong contrast between light and shade, with the dark part of
it being incorrectly identified as the road area. This greatly reduced
the accuracy of the segmentation result. When the area of the dark
region of the grapevine on the side of the road was small, the error
rate of this algorithm decreased significantly. However, when faced
with areas that had uneven colors on the side of the road, the error
area of the segmentation result achieved through this method was
significantly smaller than that of method D.

Conversely, Method C adapted to the aforementioned
unfavorable factors, resulting in a smaller error in the segmented
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area, more stable road extraction performance, and the most
reliable segmentation results among the three methods.
Combined with the above analysis, the influence degree of
unfavorable factors on the accuracy and reliability of the results
obtained through different methods was comprehensively
evaluated, as presented in Table 2.

To quantitatively evaluate the extraction performance of the
above methods, NWP and RBP were taken as indices to achieve a
road extraction performance evaluation of different algorithms,
where NRP = 402,668 (Table 2; Figures 8H, I). To determine the
differences in road extraction performance among the three
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TABLE 2 Analysis of the influence degree of adverse factors on algorithms and extraction results.

Degree of influence of adverse factors on algorithm accuracy

Adverse environmental factors

Impact degree

Method C
Grapevine area Minor
Shadowed road area Minor
Roadside unevenly colored area Minor
Strong contrast between light & dark Minor

Method D Method E
Severity Severity
Minor Minor
Severity Medium
Severity Severity

Descriptive Statistics for NWP

Methods
Minimum Maximum Mean Std. Deviation
Method C 8506 36831 19967.040 8425.727
Method D 73428 194780 139663.16 33567.358
Method E 41264 214634 96580.960 36276.122
Pairwise Comparisons of Methods (NWP)
Method C vs Method D Method C vs Method E Method D vs Method E
Sig
<0.001 <0.001 0.008
Descriptive Statistics for RBP/%
Methods
Minimum Maximum Mean Std. Deviation
Method C 2.11 9.15 4.959 2.092
Method D 18.24 48.37 34.684 8.336
Method E 10.25 53.30 23.9847 9.009
Pairwise Comparisons of Methods (RBP)
Method C vs Method D Method C vs Method E Method D vs Method E
Sig

<0.001

methods, the non-parametric Kruskal-Wallis test was conducted
across the three groups using SPSS software version 27 (IBM
Corporation). The significance level was set at 0.05. The null
hypothesis in this test is that there is no difference between the
three methods in terms of the distribution of NWP and RBP. In fact,
for this test, the Sig values less than 0.05 indicate a significant
difference between the groups.

According to the descriptive statistical table of NWP, Method C
exhibited a generally low overall level of NWP value (Figure 8H).
Comparing the mean value of NWP across the three methods, it
was found that the mean value of NWP for Method C accounted for
only 14.3% and 20.67% of the mean value of NWP for Methods D
and E, respectively. Furthermore, the maximum and minimum
values of NWP for Method C were one order of magnitude smaller
than those of Methods D and E. Additionally, the standard
deviation of NWP value for Method C was significantly lower
than that of Methods D and E, indicating that the road extraction
performance of Method C was more stable in the face of variable
field interference factors. This observation was also validated in
Figure 81, which illustrates that the NWP of Method C exhibits a
relatively mild fluctuation in comparison to the other two methods.
Moreover, the Kruskal-Wallis test results showed that the NWP
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<0.001 0.008

values of Methods C and D (Sig<0.01), Methods C and E (Sig<0.01)
and Methods D and E (Sig = 0.008)were statistically significant
difference. Furthermore, it was confirmed that there were
substantial differences in the accuracy of road extraction among
the three methods.

Similar results were obtained from the descriptive statistical
table of RBP. Method C demonstrated favorable outcomes in
terms of the maximum, minimum, mean, and standard deviation
of RBP. Thereinto, Method C had an RBP of no more than 9.15%,
whereas Method D had an RBP of no more than 48.37%, and
Method E had a notably high RBP of 53.30%. The above data
suggested that the wrongly identified pixels in the road extraction
results of Method C only constituted a small portion of the
current image. Compared to the other two methods, Method C
was found to deliver better segmentation results for road
recognition in the field environment and exhibited greater

adaptability to the complex environmental interference factors
in the field orchard.

4.1.2 Ablation test
To verify the improvement of the image enhancement algorithm
on the overall performance of the road extraction algorithm, an
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ablation experiment was conducted. The comparative findings for a
selection of sample images were illustrated in Figure 9, while the
comparative results for additional images could be found in the
Supplementary Material. For simplicity, the proposed algorithm
without preprocessing was abbreviated as “Method F”.

Ablation experiments were conducted on the proposed
preprocessing method. The extraction results after pretreatment were
shown in Figure 9B and the algorithm results without pretreatment
were shown in Figure 9C. By comparing the two extraction results, the
latter extraction results were found to contain a large number of error
regions, such as dark grape vines area, grapes, and other objects on the
roadside (Figure 9E). This phenomenon was confirmed by NWP
descriptive statistics (Figure 9F).

Based on Figures 9F, G, it can be observed that the majority of
segmentation results obtained using Method F had a higher NWP
value compared to those obtained using Method C. However, a few
image processing results showed an opposite result. The reason for
this phenomenon can be attributed to the fact that after image
preprocessing, the segmentation result of Method C had more
stringent restrictions on green areas, resulting in the removal of a

10.3389/fpls.2023.1103276

large area of weeds from the road in the segmentation results,
thereby increasing the NWP value (4th row of Figure 9C).

After image preprocessing, the accuracy of the algorithm was
significantly improved at the cost of a small amount of
completeness, which reduced the impact of interference regions,
such as road shadows, dark fruits, branches, leaves, and gaps in
segmentation accuracy. Meanwhile, the Method C also suppressed
the interference of noncurrent road areas on the extracted results
and significantly reduced the number of misdetected pixels (3th row
of Figures 9C, D).

Differences in road extraction performance between the above
methods were determined using the non-parametric Mann-Whitney
U test. The significance level was set at 0.05. The null hypothesis in
this test is that there is no difference between the methods in terms of
the distribution of NWP. And the Sig values less than 0.05 mean a
significant difference between the groups. The Mann-Whitney U test
result showed that the NWP values of Methods C and F (Sig= 0.03)
were statistically significant difference (Figure 9F).

In conclusion, image preprocessing played a crucial role in
enhancing the accuracy and reliability of road segmentation results.
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FIGURE 9

Ablation test results from the proposed preprocessing method. (A) Original images. (B) Proposed algorithm. (C) Proposed algorithm without
preprocessing. (D) Error area results extracted by proposed algorithm. (E) Error area results extracted by proposed algorithm without preprocessing.
(F) Descriptive Statistics and significance analysis result. (G) NWP values of 25 images obtained by methods C and F.
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4.2 Comparison between YOLOVS and
YOLOv7

Target location is an important task in target detection and is
normally represented by the coordinate position of the bounding box.
The models in this paper used CIoU (Lv et al., 2022) loss to calculate
the boundary frame position loss, which was calculated as follows:

2(A,B
Ly = 1-10U+ P48 o (15)
Ca
4 wé wh\ 2 16
v= = arctanﬁ - arctanh—P (16)
= (17)

a=(1+IOU)+v

Where p*(A, B) is the Euclidean distance of the center points
between predicted box and ground truth box, ¢; is the diagonal
distance of the smallest rectangle containing predicted box and
ground truth box, o is the weight function, and v is the function that
measures the consistency of the aspect ratio. w® and h¢ are the width
and height of the ground truth box, while w” and h are the width
and height of the prediction box.

The confidence loss function is used to measure the difference
between the confidence score predicted by the model and the actual
label. In this paper, the confidence loss function was calculated
using a binary cross-entropy loss function (BCELoss, Zhao et al.,
2023), and its formula was as follows:

1

Legns = —NEL [y, x logx, + (1 -y,) xlog(1-x,)]  (18)
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Where y, denotes the true category, which generally takes the
value of 0 or 1, x, denotes the prediction confidence or target
probability obtained by the Sigmoid function, and N is the number
of positive and negative samples.

After training, the loss function value curves for the training and
validation sets of the two YOLO models were obtained, including the
loss values of the detection box and detection object (Figures 10A, B).
In Figure 10A, “BOX” and “Val BOX” represented the box loss of the
training set and validation set, respectively. In Figure 10B,
“Objectness” and “Val Objectness” represented the confidence loss
of the training set and validation set, respectively. As shown in
Figure 10A, B, it can be observed that the change trend of the loss
curves for both models was similar. In particular, it was observed that
the values of box and object detection losses for the two YOLO
models decreased sharply during training batches 0 to 20, after which
the rate of decline slowed down. The sample distribution ratio of
model training set and verification set is shown in Figure 10D. In
addition, the box and the object detection loss values of the YOLOv7
algorithm on the training set were smaller than that of the YOLOv5
algorithm after 150 training epochs. The box detection loss value of
YOLOV7 finally stabilized around 0.029 and object detection loss
value eventually stabilized around 0.012.

In addition, although the loss value of box detection in the
validation set was slightly higher than that of YOLOV5, the loss
value of object detection in the validation set of YOLOV5 showed a
trend of fluctuation and rise after 50 training batches. Meanwhile,
the loss value of YOLOV?7 algorithm decreased steadily and finally
the loss value tended to stabilize around 0.0025.

Under the same dataset B, the performance indices of YOLOvV7
were better than those of YOLOvV5 (Figure 10C). The P, R, mAP,
and Fl-scores of YOLOv7 were 88.9, 89.7, 93.4, and 89.3%,

+ Objectness (YOLOVS) -
Objectness (YOLOV?)

Val Objectness (YOLOVS)
Val Objectness (YOLOVT)
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Loss curves and detection results of the two YOLO models. (A) Box loss value curve of YOLOV5 and YOLOv7 model. (B) Confidence loss function
value curve of YOLOv7 model. (C) Detection results of YOLOV5 and YOLOv 7 on dataset B. (D) Training set and verification set introduction.
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respectively, which were 3.1, 2.9, 2.7, and 3% higher than
from YOLOV5.

Although the number of YOLOV7 targets detected in some
images was less than that of YOLOV5, the overall accuracy of the
former was higher than that of the latter (Figures 11A-C).
Moreover, in global images, YOLOv5 showed the phenomenon of
grape cluster misidentification (Figure 11, last row). Algorithm
detection confidence was the main evaluation metric in this
study. In summary, YOLOvV7 was able to better perform the task
of detecting clusters of grapes in orchards and, hence,YOLOvV7 was
used to identify grapes on the roadside.

The confidence level of grape clusters recognition results tested
by YOLOV7 on dataset B was mostly above 0.8, while it was mostly
above 0.5 on dataset A. There were two reasons for this
phenomenon. The first was that the grape clusters were smaller
on dataset A than those in the training set and the second that
dataset A contained a large number of backgrounds, such as sky,
trees, and roads, and the overall complexity of the image far greater
than that of the training set.

4.3 Recognition effects of the synchronous
detection algorithm

Furthermore, in order to evaluate the overall detection
performance of the synchronous detection algorithm proposed in

10.3389/fpls.2023.1103276

this paper (Figure 4), simultaneous recognition of the road and
roadside fruit was conducted (Figure 12A).

The results demonstrate that the algorithm was able to
effectively segment the road area despite the complex outdoor
environment, and accurately recognize the grapes on the side of
the road. This provides valuable information for the intelligent
decision-making and control of the robot during subsequent
walking and fruit picking operations, and enhances the robot’s
ability to identify crucial targets within a complex environment.

Furthermore, the synchronous recognition algorithm demonstrated
better effectiveness in roadside grape recognition. To validate the
positive impact of image preprocessing and road segmentation in the
synchronous recognition algorithm on the recognition performance of
road test grapes, the images with and without above aforementioned
steps were identified using yolov7 model (Figure 12B). The results
revealed that, under identical circumstances, the former approach
detected more clusters of grapes on the road side.

To further demonstrate the superiority of the proposed
synchronous recognition algorithm in roadside grape detection,
66 images from dataset B were used to detect grape clusters. The
number of recognized fruits, recognition time and the promotion
ratio (P,) were taken as evaluation parameters. The P, was

calculated by the following formula.

(19)

Original image b
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Comparison of partial detection results. (A) Original images. (B) Identification results of YOLOvV5 model. (C) Identification results of YOLOv7 model.
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detection algorithm recognition results. (B) Comparison results of roadside grape clusters identification results between proposed synchronous
detection algorithm and single YOLOv7 model. (C) Performance comparison between overall synchronous detection algorithm and the single

YOLOvV7 model.

Here, V,, represents the evaluation parameters obtained
through image calculation based on image preprocessing and
road segmentation, while V,, represents the evaluation parameters
obtained without image preprocessing and road segmentation.

The number of recognized grape clusters in the former was 41
more than that in the latter, representing a 23.84% increase.
Additionally, the recognition speed of the former was 0.267
seconds faster than that of the latter, resulting in a speed increase
of 14.33%. The results indicated that the images with pre-processing
and road segmentation were able to identify more grape clusters
and at a faster detection speed compared to the images without pre-
processing and road segmentation (refer to Figure 12C). This
finding provided evidence that the synchronous recognition
algorithm proposed in this paper outperforms using YOLOv7
alone for identifying roadside grapes under the same scenario.

The reasons for the above phenomena were as follows: First, due
to the extraction and preprocessing of the ROI in the overall

Frontiers in Plant Science

algorithm, a large number of backgrounds, such as sky and trees,
were eliminated, which improved the proportion of grape cluster
pixels in the whole image. In addition, after extracting the road in
the image, the interference of the road area on fruit cluster
recognition was reduced and grape features more pronounced,
which was beneficial for detecting fruit clusters on the roadside.

4.4 Discussion

Although the unstructured road extraction and roadside fruit
synchronous recognition algorithm proposed in this study had good
performance, it also had some limitations (Figures 13A-C). First, it was
difficult to distinguish the adhesive road areas between different rows
during road extraction. For example, when the death of grape plants
leads to a large area of vacancy on the road side, the road regions of
images consisted of two parts: the road part of the robot’s current row
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FIGURE 13

Adverse Conditions. (A) Original image. (B) Result of road extraction. (C) Analysis of adverse factors.

and road part of the non-current row (Figure 13C). In this case, it was
difficult for the proposed algorithm to distinguish the correct region
from the wrong one. At the same time, when there were a large area of
weeds near the end of the road with a width of more than 1/2 of the
width of the road, the completeness of the extracted results was
reduced. Future research will consider optimization algorithms and
add constraints to improve result accuracy.

In addition, in the process of roadside fruit string identification,
there was still a situation of missing grape-cluster detection. Future
research will further optimize and improve the network structure
for the problems of missing fruit string detection and low
confidence of some detection target results.

5 Conclusions

In this study, an algorithm for unstructured road extraction and
roadside fruit synchronous recognition in a complex orchard
environment was developed to address the above issues. The
main conclusions could be obtained as follows:

(1) An unstructured road extraction and roadside fruit
synchronous recognition framework was constructed for
achieving simultaneous road extraction and roadside fruit
detection, which effectively improved the ability of fruit
picking robots to extract key information from the picking
environment. The algorithm also provided information for
decision-making and reasoning of collaborative behavior of
key parts of the robot, which improved the adaptability of
the robot to randomly distributed fruit.

(2) Based on the analysis of the orchard images, an image
enhancement preprocessing method was proposed to
reduce the interference of road shadows, dark fruits,
branches, and leaves as well as gaps in segmentation
results. The method also suppressed the influence of
noncurrent road areas on extraction results to a certain
extent, which improved result accuracy and reliability.

(3) By enhancing the color channel and optimizing the grayscale
factor, the dual spatial fusion road extraction was achieved.
Experimental results showed that, compared with the
extraction method based on S component and Otsu and
extraction method based on EXG and Otsu, the proposed
algorithm showed greater adaptability to adverse conditions,
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such as uneven illumination and road shadows under the
background of complex orchards. The proposed road
extraction algorithm also largely avoided the problems of
missing extraction of real road areas and identification of
large area errors, which had the best segmentation effect.

(4) The YOLOv7 and YOLOV5 algorithms, optimized with
grape cluster target data, were used to identify roadside
grape clusters. The optimized YOLOv7 model achieved a
precision of 88.9%, recall of 89.7%, mAP of 93.4%, and F1-
score of 89.3%, all of which were higher than those obtained
from the YOLOv5 model. Based on this comparison, the
YOLOV7 with optimized parameters was found to be more
suitable for roadside grape recognition in wide-field views.

(5) The proposed fusion algorithm took the road extraction
results as input and then identified fruit strings on the road
side. The performance of the proposed fusion algorithm
was superior to only using the YOLOv7 model. Compared
with the single YOLOv7 model, the number of grape string
detections and detection speed of the fusion algorithm were
increased by 23.84% and 14.33%.

Although the new algorithm has achieved satisfactory results,
there remains some room for progress. First, due to the similarity
between different lines of the roads, the algorithm in this case had
difficulty in segmenting the cohesive road area between different
lines. At the same time, the completeness of the extraction results
was reduced when there were a large area of weeds with a width
ratio of 1/2 near the end of the road.

Future work will focus on network structure optimization to
improve the accuracy and speed of road extraction and roadside
fruit detection algorithms. Constraints between road zones will also
been studied to enable the identification and segmentation of road
zones between different lines. Furthermore, environment-aware
robot behavioral decision control systems will be developed to
enable collaborative decision planning and response control of
picking and walking operations in complex orchard environments.
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Forests are suffering water stress due to climate change; in some parts of the
globe, forests are being exposed to the highest temperatures historically recorded.
Machine learning techniques combined with robotic platforms and artificial vision
systems have been used to provide remote monitoring of the health of the forest,
including moisture content, chlorophyll, and nitrogen estimation, forest canopy,
and forest degradation, among others. However, artificial intelligence techniques
evolve fast associated with the computational resources; data acquisition, and
processing change accordingly. This article is aimed at gathering the latest
developments in remote monitoring of the health of the forests, with special
emphasis on the most important vegetation parameters (structural and
morphological), using machine learning techniques. The analysis presented here
gathered 108 articles from the last 5 years, and we conclude by showing the
newest developments in Al tools that might be used in the near future.

KEYWORDS

forestry health assessment, remote sensing, machine learning, vision system,
spectral information

1 Introduction

Climate change has increased the frequency and duration of droughts around the world
(Cook et al.,, 2014). This has a special impact on ecosystems, where it is estimated by the
United Nations Convention to Combat Desertification (UNCCD) that in the last 40 years
the percentage of vegetated areas affected by droughts has doubled, and around 12 million
hectares of agricultural land have been lost due to desertification (UNCCD, 2022). Another
issue caused by intense droughts is the increase in wildfires. According to UNCCD (2022)
more than 84% of terrestrial ecosystems are in danger due to more frequent and intensive
fires. Forests are particularly affected by longer droughts due to water stress; the
relationship between forestry health and posterior forest recovery is still being studied
(Xu et al., 2018).
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Forest management plays a fundamental role in the analysis of
forest health. Its main target is to reduce risks or negative impacts
derived from external disturbances (Migliavacca et al., 2021)
including wildfires (Hillman et al., 2021; Reilly et al,, 2021;
Rodriguez et al., 2021; Wells et al., 2021; Trencanova et al., 2022),
atmospheric pollution, forest stress (Cezkowski et al., 2020; Huo
et al, 2021), pests (Huo et al, 2021), climate change, and forest
diseases (Lin et al., 2018; Sapes et al., 2022). The scientific
community has established the use of forest indicators to ease
forest health assessment (Trumbore et al,, 2015; Cai et al., 2021;
Kopackova-Strnadova et al., 2021; Migliavacca et al., 2021; Neuville
et al,, 2021). These indicators comprise in their nucleus, a previous
examination of factors associated with the physical and chemical
forest attributes, such as greenness of the leaves, nitrogen content,
tree height, canopy height, diameter at breast height, and others.
Their importance lies in the study of water absorption, drought
response, moisture content, changes in vegetation, and detection of
tree diseases (Abdollahnejad and Panagiotidis, 2020; Raddi et al.,
2021; Malabad et al., 2022; Zhuo et al., 2022).

Technological developments have allowed researchers to
process massive data and obtain measurements of large portions
of land. Unmanned aerial vehicles have been used in recent years as
mechanisms to gather massive information about various
ecosystems (Eugenio et al., 2020; Osco et al., 2021; Sangjan and
Sankaran, 2021). Coupling UAVs with computer vision systems
(RGB, multi-spectral, hyper-spectral and thermal cameras) and
other sensors as LIDAR has allowed researchers to estimate forest
parameters like height, canopy cover, DBH, vegetation indexes
(Abdollahnejad and Panagiotidis, 2020; Kopackova-Strnadova
et al., 2021; Raddi et al., 2021; Malabad et al., 2022; Zhuo et al,,
2022). The promising use of UAVs in the assessment of forest health
allows the experimentation with larger-scale satellite monitoring
systems, particularly LANDSAT, SENTINEL, and even Google
Earth (Ahmad et al.,, 2021).

Likewise, the use of remotely sensed imagery has contributed to
the study of vegetation indices (Becker et al., 2018; Gallardo-Salazar
etal,, 2021; Rodriguez et al., 2021; Zhang Y. et al., 2021; Fakhri et al.,
2022; Qiu et al.,, 2022; Talavera et al., 2022; Xu et al,, 2022; Yang
et al,, 2022), forest mapping (Lin Y. Z. et al., 2021; Onishi and Ise,
2021; Fakhri et al.,, 2022; Li et al.,, 2022; Nasiri et al., 2022;
Trencanova et al.,, 2022; Xu et al., 2022), evaluation and detection
of diseased forests (Lin et al, 2018; Sapes et al., 2022), canopy
characterization(Furukawa et al., 2021; Ribas Costa et al., 2022), tree
species classification (Liu et al., 2021; Madyré et al., 2021; Onishi and
Ise, 2021; Zhang C. et al,, 2021; Hell et al.,, 2022; Yang and Kan,
2022), identification of fire-prone ecosystems (Trencanova et al,
2022), prediction of chlorophyll and nitrogen content (Yao et al.,
2021; Narmilan et al, 2022; Wan et al, 2022), recognition of
intrinsic forest factors (Xu et al, 2019; Dainelli et al., 2021),
wildfire prevention (Trencanova et al, 2022), and so on. The
analysis of these applications guarantees a comprehensive
assessment of woodland features which determines the current
forest health status and allows for better forest management.

In accordance with the data gathered by the different robotic
platforms and sensors, it is essential to know how to treat the
information. Although traditional methods such as statistical
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analysis are a viable option for post-processing data, currently the
use of machine learning techniques has been chosen in order to
generalize models, increase the accuracy of parameters estimation,
and provide better feature prediction to the ecosystems variability
and forest species involved (Corte et al., 2020; Wells et al., 2021;
Zhang Y. et al, 2021; Ilniyaz et al.,, 2022; Narmilan et al., 2022;
Nasiri et al., 2022; Qiu et al., 2022). In addition, some works have
considered the use of deep learning strategies to further improve
forest health monitoring capabilities and obtain more detailed
individual tree features (Mayri et al., 2021; Onishi and Ise, 2021;
Zhang C. et al., 2021; Hell et al., 2022; Li et al., 2022; Trencanova
et al., 2022).

Machine learning (ML) models have been used as both
classifiers and predictors. Forest structure parameters and tree
phenotypic features are predicted using machine learning
techniques with input data gathered from LiDAR, RGB, and
Multi-spectral cameras (Shin et al., 2018; McClelland et al., 2019;
Puliti et al., 2019; Abdollahnejad and Panagiotidis, 2020; Fan et al.,
2020; Imangholiloo et al., 2020; Ahmad et al., 2021; Cai et al., 2021;
Neuville et al., 2021; Sangjan and Sankaran, 2021; Yu et al., 2021).
Predictions of leaf moisture, chlorophyll, and nitrogen content,
have been achieved using machine learning methods (Watt et al.,
2020; Lou et al., 2021; Raddi et al., 2021; Raj et al., 2021; Narmilan
etal., 2022; Zhuo et al,, 2022). The most common predictor is linear
regression, but other common ones are support vector machine
regression, random forest regression, and gradient boost machines
(McClelland et al., 2019; Blanco-Sacristan et al., 2021; Fraser and
Congalton, 2021b; Yu et al., 2021; Torre-Tojal et al., 2022). Another
task that can be accomplished using ML methods is tree
classification, which is important for forest inventory and
mapping. The most common classifiers are random forests,
support vector machines, and artificial neural networks (Feng
et al., 2020; Guo et al., 2021; Hologa et al., 2021). Another use for
classifiers in forestry health assessment is the identification of live
trees and snags, the ratio between these two is an important
parameter to evaluate forest health (Shovon et al., 2022).

The use of high-resolution cameras has allowed researchers to
couple them with deep convolutional neural networks (Osco et al.,
2021). Using deep learning structures alongside high-resolution
aerial images has had good results in individual tree crown
segmentation (Lin and Chuang, 2021; Onishi and Ise, 2021; Li
et al, 2022). Other applications of deep convolutional neural
networks are tree identification from aerial RGB and multi-
spectral images, using temporal information has also been
explored by researchers with the aid of recurrent convolutional
neural networks (Feng et al., 2020). The most common deep
learning back-bones used to perform feature extraction are,
VGG19, RES-NET and Seg-Net (Pulido et al, 2020; Lin and
Chuang, 2021; Hao Z. et al, 2022). Other structures used in
semantic segmentation processes are U-NET and Mask-RCNN
(Pulido et al., 2020).

This work presents a systematic review of scientific articles from
the last five years (2017-2022) focused on forest health assessment
assisted by remote sensing and machine learning techniques. For
our analysis, we used Scopus (www.scopus.com) scientific database.
We intend to determine which forest properties are considered to
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assess forest health, and how remote sensing in conjunction with
machine learning strategies are used to estimate such features.
Other review works related to remote sensing for forestry
applications do not include information about the novel machine
learning algorithms to relate the data gathered by various sensors
and the expected metrics that are needed to evaluate forest health.
For example, (Torres et al., 2021) describes various applications of
remote sensing in the assessment of forest status and health
including stress factors, plagues, tree mortality, tree decline, and
tree health. However, there is no in-depth discussion about how the
data is processed in those studies. A similar case is the work
presented by (Guimardes et al., 2020), which covers other areas
for forest management including tree classification and mapping,
and tree parameter estimation; however, the processing techniques
are not addressed. In Eugenio et al. (2020) it is presented a similar
approach but focused on remotely piloted systems, and not
considering satellite platforms that are used for the assessment of
forests. A complete review of deep learning algorithms for forestry
was presented in Diez et al. (2021), focusing directly on the images
processing; however, such work does not present information about
machine learning for regression problems. A more complete review
including sensors and methods is discussed in Pérez-Cabello et al.
(2021); but it is limitedto the assessment of post-fire vegetation
recovery. To the best of our knowledge, our work is the only one
that offers a more in-depth discussion about machine learning
methods (including deep learning) and how they are
implemented alongside remote sensing techniques for the
assessment of forest health. Table 1 contains a comparison
between our work and previous reviews during the five-year
period under study.

This paper is organized as follows: Section 2 presents the main
issues and forestry problems studied using both remote sensing
techniques and machine learning methods. Section 3 presents the
hardware used in the assessment of forestry health, it includes both
sensors and platforms. Section 4 deals with the machine learning

10.3389/fpls.2023.1139232

techniques that are used to process data. Section 5 includes the
discussion and the challenges that arise in the assessment of forestry
health using remote sensing aided by machine learning.

2 Vegetative problems

This section discusses the vegetative issues that are currently
being studied for forestry health assessment. In a broad sense,
Figure 1 shows the distribution of the prevalent issues that have
been studied the most in the reviewed articles; these were: tree
classification and identification, tree structure identification,
biomass estimation chlorophyll estimation, crown fuel estimation,
and water and moisture content prediction.

The first subsection is dedicated to Vegetation Indices
since they are one of the most important features that help
researchers predict forest and individual features from the

Tree Identification

Tree Classification G ]

£

Vegetative Problems.
Journal articles-only

Water and Moisture Vegetation Indices

Content

Related Works
(2017-2022)

Biomass Estimation

Crown Fuel Estimation ‘ 06 ’

Chlorophyll Estimation

FIGURE 1
Distribution of the main vegetative problems that were studied in
the reviewed articles.

TABLE 1 Comparison between the present work and other similar reviews related to remote sensing in forestry applications.

Article  Years Forest issue Sensors Platforms Methods
Our Work 2017- Vegetation indices, Biomass estimation, Tree structure Cameras (RGB, Hyperspectra.l, UAV, Linear regression, Random
2022 parameters, Tree identification, Tree recognition, Water Multispectral, Thermal); LIDAR; Satellite forest, SVM, K-nearest
and moisture content, Chlorophyll estimation TerrestrialLaser Scanning, neighbors, Deep learning
Spectrometer
Pérez- N/A Post-fire vegetation recovery Cameras (RGB, Hyperspectral, UAV, Not Specified
Cabello Multispectral, Thermal), LIDAR, Satellite
et al. (2021) Terrestrial Laser Scanning,
Spectrometer
Eugenio 2000- Forest parameter estimation, Fire monitoring, Pest and Cameras (RGB, Hyperspectral, UAV Not Specified
et al. (2020) 2019 disease detection, Natural conservation Multispectral, Thermal), LIDAR
Torres et al. 2015- Forest plague detection, Forest current health, Forest Cameras (RGB, Hyperspectral, UAV, Random forest, SVM, K-
(2021) 2020 health decline and mortality Multispectral, Thermal), LIDAR Satellite nearest neighbors, Neural
networks
(Guimaraes N/A Forest parameter estimation, Tree classification and Cameras (RGB, Hyperspectral, UAV Not specified
et al., 2020) mapping, Forest health monitoring Multispectral, Thermal), LIDAR
(Diez et al., 2017- Forest parameter estimation, Tree classification and Cameras (RGB, Multispectral) UAV Deep learning
2021) 2021 mapping, Forest health monitoring

Frontiers in Plant Science

128

frontiersin.org


https://doi.org/10.3389/fpls.2023.1139232
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Estrada et al.

reflected electromagnetic spectrum. The following subsection
discusses tree classification and identification, tree structure
parameters, biomass estimation, chlorophyll estimation, crown
fuel estimation, and water and moisture content prediction.

2.1 Vegetation indices

A vegetation index is a mathematical transformation of two or
more spectral bands that are designed to enhance a specific property
or characteristic of the vegetation (Munnaf et al., 2020).

Recently, these indices have been used as input data for
prediction and classification purposes alike, the spectrum of tree
canopies can be considered a distinctive feature of the specific
vegetation, thus making VIs useful for both vegetation identification
in aerial photographs and for tree classification (Abdollahnejad and
Panagiotidis, 2020; Imangholiloo et al., 2020; Yang and Kan, 2020;
Guo et al., 2021; Arevalo-Ramirez et al., 2022; Cabrera-Ariza et al.,
2022; Shovon et al., 2022). Photosynthetic pigments have a
distinctive reflectance in some bands, thus the prediction of
chlorophyll content and other pigments is suitable with the

TABLE 2A Common Vls used in the reviewed articles.

10.3389/fpls.2023.1139232

appropriate VI (Watt et al, 2020; Kopackova-Strnadova et al,
2021; Lou et al., 2021; Lu et al,, 2021; Raddi et al., 2021; Raj et al.,
2021; Zhuo et al, 2022). Another application using VIs is the
prediction of biomass in different and (Morgan et al., 2021; Torre-
Tojal et al., 2022; Yan et al., 2022).

Tables 2A-D contain the main VIs used in different studies
regarding forest health, and their application; where R, G, B, NIR,
and RE denote the reflectance in the Red, Green, Blue, Near
Infrared, and Red Edge multi-spectral bands. Researchers focus
on these five bands since most of the reviewed works use
commercial infrared cameras that capture the radiation at these
wavelengths. Other indices take advantage of the full spectrum and
not only on specific bands but these indices are also obtained with
the aid of a hyper-spectral camera or by a laboratory or hand-held
spectrometer (Abdollahnejad and Panagiotidis, 2020; Watt et al.,
2020; Yang and Kan, 2020; de Almeida et al., 2021; Raj et al., 2021;
Villacrés and Cheein, 2022; Wan et al., 2022; Yang and Kan, 2022).
Li et al. (2021) uses spectral indices to estimate the leaf water
content. The authors specify five different indices: Simple Ratio,
Simple Difference, normalized difference, double difference index,
and difference ratio. Other indices are used to estimate the content

Vegetation Index Formula Application Reference
Normalized Difference NIR - R Predict forest vertical structure. Tree Recognition. Ahmed et al. (2021a); Raddi et al. (2021); Yu et al. (2021); Arevalo-
Vegetation Index NIR + R Chlorophyll Content Estimation. Fuel Content Ramirez et al. (2022); Qiao et al. (2022); Villacrés and Cheein
(NVDI) Prediction. (2022); Zhuo et al. (2022)
Green normalized NIR -G Predict forest vertical structure. Soil Moisture Content Yu et al. (2021); Raddi et al. (2021); Cheng et al. (2022); Arevalo-
difference vegetation NIR+ G Prediction. Chlorophyll Content estimation. Fuel Ramirez et al. (2022); Villacrés and Cheein (2022)
index (GNDVI) Content Prediction
Normalized difference NIR - RE Predict forest vertical structure Yu et al. (2021)
red edge index (NDRE) NIR + RE
Structure insensitive NIR - B Predict forest vertical structure. Soil Moisture Content Yu et al. (2021); Cheng et al. (2022)
pigment index (SIPI) NIR - R Prediction. Chlorophyll Content Prediction
Normalized green blue G-B Tree Classification Guo et al. (2021)
difference index G+B
(NGBDI)
Normalized green red G-R Tree Classification Guo et al. (2021); Cabrera-Ariza et al. (2022)
difference index G+R
(NGRDI)
Green red difference G-R Tree Classification Guo et al. (2021)
index (GRDI)
Normalized blue green B-G Tree Classification Guo et al. (2021)
vegetation index B+G
(NBGVI)
Normalized excessive 2G-R-B Tree Classification Guo et al. (2021)
green index (NEGI) 2G+R+B
Modified Green Blue G*-R? Biomass Prediction Morgan et al. (2021)
Vegetation Index G? + R?
(MGRVI)
Modified Visible G-B Biomass Prediction Morgan et al. (2021)
Atmospheric Resistant G+R-B
Index (MVARI)
Red-Green-Blue G? - BxR Biomass Prediction Morgan et al. (2021)
Vegetation Index G? - B«R

(RGBVI)
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TABLE 2B  Common Vis used in the reviewed articles.

Vegetation Index Formula

Triangular Greenness Index (TGI) G-0.39R-0.61B

Biomass Prediction

10.3389/fpls.2023.1139232

Application Reference

Morgan et al. (2021)

Visible atmospheric resistant index G-R Tree Structure. Biomass Prediction. Leaf Nitrogen Lu et al. (2021); Morgan et al. (2021); Qiao
(VARI) G+R-B Concentration et al. (2022)
Green red ration index (GRRI) E Leaf Nitrogen Concentration Lu et al. (2021)
R
Normalized redness intensity (NRI) R Leaf Nitrogen Concentration Lu et al. (2021)
R+G+B
Green Red Vegetation Index (GRVI) G-R Leaf Nitrogen Concentration. Biomass Prediction K.C. et al. (2021); Lu et al. (2021)
G+R
Atmospherical Resistant Vegetation G-R Leaf Nitrogen Concentration Lu et al. (2021)
Index (ARVI) G+R-B
Simple Ratio (SR) NIR Tree Classification. Chlorophyll Content Estimation Abdollahnejad and Panagiotidis (2020); Zhuo
R et al. (2022)
Soil Adjusted Vegetation Index (SAVI) NIR-R Tree Classification.Soil Moisture Content Prediction | Abdollahnejad and Panagiotidis (2020); Cheng
" NIR+R+0.5 et al. (2022)
Chlorophyll index (CI) NIR 1 Tree Classification Abdollahnejad and Panagiotidis (2020)
RE
Plant Sense Reflectance Index (PSRI) R-G Tree Classification Abdollahnejad and Panagiotidis (2020)
RE
Modified canopy chlorophyll content NIR + R+ RE Tree Classification Abdollahnejad and Panagiotidis (2020)

index (M3CL) NIR - RED + RE

Shadow Index (SI) R+G+B Biomass Prediction K.C. et al. (2021)
3
Modified Simple Ratio Index (MSR) NIR/R -1 Soil Moisture Content Prediction Cheng et al. (2022)

(NIR/R + 1)

Optimized Soil Adjusted Vegetation 1.16(NIR - R) Soil Moisture Content Prediction. Forest Structure Arevalo-Ramirez et al. (2022); Cheng et al.
Index (OSAVI) NIR +R +0.16 (2022)
Ratio Vegetation Index (RVI) NIR Soil Moisture Content Prediction Cheng et al. (2022)
R
Ratio Vegetation Index 2 (RVI,) NIR Soil Moisture Content Prediction Cheng et al. (2022)
G

of phosphorus and nitrogen, which is related to photosynthetic
efficiency (Watt et al, 2020; Raj et al., 2021), the information
gathered by hyperspectral indices, allows the processing data
models to make more accurate predictions.

Comparisons between hyper-spectral information and multi-
spectral indices have been performed to evaluate drought responses
in various ecosystems (Raddi et al., 2021). Other studies show that
there is the possibility to recreate indices from hyper-spectral bands
with the information gathered from multi-spectral indices
(Villacres and Cheein, 2022).

This section includes only a few of the most common VIs,
however, more extensive articles and reviews are available, and the
reader is encouraged to see (Tran et al., 2022).

2.2 Biomass estimation
From an ecological standpoint, biomass is defined as the mass of

living organisms in a determined area or ecosystem. Biomass
depending on the environment has multiple functions, for example,

Frontiers in Plant Science

to know about carbon sinks and it is important in water exchange
with the atmosphere. However, ecosystems are constantly changing
due to climate change has strengthened environmental stressors for
various ecosystems, changing the natural composition of biomass;
thus estimating its value is a strong indicator of how an ecosystem
responds to external changes. Biomass is also an indicator of
biological fuel present in environments (Morgan et al., 2021).

2.3 Chlorophyll estimation

Chlorophyll concentration (CC) indicates the physiological and
structural basis by which leaves drive photosynthesis (Narmilan et al,,
2022) and its relationship to soil respiration (Yao et al., 2021). Likewise,
studies evidence a strong connection with nitrogen content. As a
matter of fact, a deficiency in nitrogen content implies a reduction in
CC which improves leaf transmittance at visible wavelengths. Several
findings have demonstrated that this pigment has diverse spectrum
behavior with particular absorption properties at different wavelengths,
thus the electromagnetic leaf reflection is an indicator of chlorophyll
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TABLE 2C Common VIs used in the reviewed articles.

Vegetation Index Formula

Triangular Vegetation Index (TVI) 60(NIR — G) — 100(G — R)

NIR - R

Enhanced Vegetation Index (EVI) 5
" NIR+6R-7.5B+1

Green Index (GI) E
R

Transformed Chlorophyll Absorption in

3[(RE - R) - 0.2(RE - G) X
reflectance Index (TCARI) R

Application

Soil Moisture Content Prediction

Soil Moisture Content Prediction.

Forest Structure

Soil Moisture Content Prediction

Soil Moisture Content Prediction

10.3389/fpls.2023.1139232

Reference
Cheng et al. (2022)

Arevalo-Ramirez et al.
(2022); Cheng et al. (2022)

Cheng et al. (2022)

Cheng et al. (2022)

Simple Ratio Pigment Index (SRPI) B
R
Normalized Pigment Chlorophyll Index (NPCI) R-B
R+B
Normalized Difference Vegetation Index 2 G-B
(NDVIgp) G+B
Plant Senescence reflectance Index 2 (PSRI) B-R
G

Color Index of vegetation extraction (CIVE) 0.44R - 0.81G + 0.39B + 18.79

Near Infrared Reflectance of Vegetation (NIRy) NIR«NDVI

Difference Vegetation Index (DVI) NIR - R

Soil Moisture Content Prediction

Soil Moisture Content Prediction.

Chlorophyll Content Estimation

Soil Moisture Content Prediction

Soil Moisture Content Prediction

Soil Moisture Content Prediction
Chlorophyll Content Estimation

Fuel Estimation

Cheng et al. (2022)

Cheng et al. (2022); Zhuo
et al. (2022)

Cheng et al. (2022)

Cheng et al. (2022)

Cheng et al. (2022)
Raddi et al. (2021)

Villacrés and Cheein (2022)

Modified Soil Adjusted Vegetation Index (MSAVI) | [2NIR + 1 - v/2NIR + 1 - 8(NIR - R)] /2

Forest Structure

Arevalo-Ramirez et al. (2022)

Chlorophyll Absorption Reflectance Index (CARI) RE-R-02(RE-G)

TABLE 2D Common Vis used in the reviewed articles.

Forest Structure

Arevalo-Ramirez et al. (2022)

Vegetation Index Formula Application Reference
Red Edge Modified Simple Ratio (REMSR) NIR/RE - 1 Forest Structure Arevalo-Ramirez et al. (2022)
VNIR/RE + 1
Red Edge Normalized Difference Vegetation Index (RENDVI) NIR - RE Forest Structure Arevalo-Ramirez et al. (2022)
NIR + RE
Leaf Chlorophyll Index (LCI) NIR - RE Fuel Estimation Villacrés and Cheein (2022)
NIR + R
Normalized Difference Red Edge (NDRE) NIR - RE Fuel Estimation Villacrés and Cheein (2022)
NIR + RE
Red Edge Modified Simple Ratio (REMSR) NIR/RE - 1 Forest Structure Arevalo-Ramirez et al. (2022)
VNIR/RE + 1
Red Edge Normalized Difference Vegetation Index (RENDVI) NIR - RE Forest Structure Arevalo-Ramirez et al. (2022)
NIR + RE
Leaf Chlorophyll Index (LCI) NIR - RE Fuel Estimation Villacrés and Cheein (2022)
NIR +R
Normalized Difference Red Edge (NDRE) NIR - RE Fuel Estimation Villacrés and Cheein (2022)
NIR + RE

content. CC can be altered by natural or man-made noxious agents as

well as stress factors. Additionally, an accurate measurement of CC
involves a good examination of plant health, regulation of fertilizer
application, and so on. CC ground measurements are used as an
indicator of fertilizer status (Narmilan et al, 2022). Due to its
importance in the agriculture field, current remote sensing efforts
contemplate the blending of vegetation indices and machine learning
techniques in order to find a well-established model that accurately
defines CC (Yao et al., 2021; Narmilan et al., 2022).
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2.4 Water and moisture content

Water and moisture content (WMC) is affected by tree species
type (Yao et al., 2021) and canopy cover attributes (Gale et al.,
2021). It is also a factor of soil respiration. In addition, WMC is
associated with the production of CO; in soil and the transportation
of CO, from soil to the atmosphere, so continuous or unexpected
changes in WMC can affect soil respiration behaviors (Yao et al.,
2021). Likewise, WMC is commonly used to assess wildfire risk in
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forested areas, (Barmpoutis et al, 2020; Gale et al., 2021) and
knowledge of its behavior are necessary for land management
decision-making (Barber et al., 2021).

Parameters such as moisture of forest canopy are used jointly
with the moisture of the soil-litter layer and forest temperature for
the early detection of forest fires. Therefore the development and
usage of aerial remote sensing platforms including radiometer
sensors, which is useful for determining and classifying areas of
forests that are prone to wildfires (Varotsos et al., 2020).

The WMC is highly dependent on temperature changes, so
predictive models to estimate WMC are altered by meteorological
conditions (Gale et al., 2021). Current efforts are mainly focused on
establishing more accurate and affordable measure systems; the
most remarkable developments which have enabled effective
estimation of WMC are related to the improvement of processing
software/techniques and computational power and the availability
of aerial imagery from satellite data, airplanes, or unmanned aerial
vehicles (UAVs) (Forbes et al., 2022). Furthermore, recent studies
have shown that reflectance data in a variety of wavelengths is a
promising alternative for WMC estimation (Barber et al., 2021).

2.5 Tree recognition

The tree identification problem is to identify each individual
tree from an aerial image. Its importance relies on the fact that tree
recognition is a key factor when evaluating biodiversity evolution
due to external factors such as climate change and natural disasters
(Hologa et al., 2021). Another important application for tree
identification is to evaluate the survival rate of seedlings, which is
vital to assess the efforts of afforestation, identifying seedlings across
several seasons is a difficult task, given the fact that each individual
tree crown needs to be identified in a complex vegetation
environment (Guo et al, 2021). Forest inventory and mapping
are crucial for forest managers, to ensure the preservation of the
different habitats (Neuville et al., 2021).

Tree Height

FIGURE 2
Tree structure parameters used to assess forestry health.
aerial point of view, focusing on the tree crown.

Frontiers in Plant Science

Lenght

132

10.3389/fpls.2023.1139232

2.6 Tree structure

Tree and forest structure is related to forest biodiversity and
productivity (Bohn and Huth, 2017). Tree structure identification is
related to the measurement of parameters that help to characterize
both individual trees and forests alike. The most common
parameters used to characterize tree structure are tree height,
diameter at breast height, basal area, total stem volume, crown
cover, crown height, and crown area (Lin and Herold, 2016; Shin
et al., 2018; Fraser and Congalton, 2021b; Guo et al., 2021; Hologa
et al., 2021; Neuville et al., 2021; Terryn et al, 2022). These
parameters are strong indicators of forest vigor and forest health
when facing stress due to climate change (Fraser and Congalton,
2021b). Tree structure is essential in studies such as forest
meteorology, botany, and ecology (Lin and Herold, 2016; Terryn
et al.,, 2022). There is also a correlation between tree structure and
the exchange of energy, carbon, and water between the forest
canopy and its environment. Figure 2 indicates the most common
parameters that are used to assess forest structure

2.7 Tree classification

In the assessment of forested areas, tree species present distinctive
traits such as textural characteristics and a specific spectral
reflectance; these traits allow researchers to identify each tree
species (Zhang C. et al., 2021). One of the purposes of tree
classification is to know which tree species are able to regulate
temperature and relative humidity in a certain environment, a fact
that helps to better understand forested ecosystems (Liu et al., 2021;
Zhang C. et al., 2021). Tree species classification is a crucial research
topic for effective forest management (Onishi and Ise, 2021).
Nevertheless, the most predominant factors that prevent a well-
performed tree classification procedure are due to the diversity of
tree species and the complexity of land (Zhang C. et al., 2021). Thus,
gathering this data usually requires carrying out in situ measurements

Crown

Area
\/

Crown
Projection

Crown
Diameter

In (A) are shown the parameters from a frontal view, (B) shows the parameters from an
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from sample plots and extrapolating to larger scales (Hell et al., 2022).
Overall, this shallow or deep mapping is processed by hand-crafted
features or specialized methods (Miyri et al., 2021). Currently, there
are some new developments in this field, where researchers have
introduced novel techniques related to computing various vegetation
indices and textural features (Miyri et al., 2021), machine learning-
based models, deep learning methods to extract tree features (Liu
et al., 2021; Onishi and Tse, 2021) and the full use of forest spectral
information (Zhang C. et al., 2021). Moreover, sensors and platforms
used for this task, have become more specialized in order to capture
enough information to accurately assess the type of tree (Mayri et al.,
2021; Onishi and Ise, 2021; Zhang C. et al., 2021).

2.8 Crown fuel estimation

Several forest fire prediction studies rely on empirical models
(Barber et al., 2021) using site-specific information on climate,
topography, and fuels (Arkin et al., 2021). This information is
strongly important for fire-prone countries in order to predict the
impact of fire in certain scenarios. Fuel management programs
(Wells et al., 2021) have been considered to reduce fire risk. The
behavior of wildfires can be predicted by Crown Fuel Estimation
(CFE). CFE is the assessment of fuel hazard layers. CFE is the
assessment of fuel hazard due to the spatial arrangement of
vegetation elements (branches, leaves, etc.); thus CFE helps
researchers assess the severity of wildfires (Hillman et al,
2021), this task plays a key role since canopy fuels are the
primary fuel layer of initiation and spread of crown fire (Arkin
et al, 2021). It is worth mentioning that an accurate CFE can
infer in the total or partial wildfire mitigation (Hillman et al,
2021; Wells et al., 2021). However, to completely assess the risk
of wildfire; models including not only CFE but other tree

10.3389/fpls.2023.1139232

structure parameters are needed; for example, the measure of
live crown base height is critical this metric helps to estimate the
likelihood of fire propagating from the surface into tree crowns
(Arkin et al., 2021).

3 Hardware for remote
sensing applications

In remote sensing applications, hardware fulfills vital roles in
the data acquisition process, and choosing the correct sensors is
critical to the success of the desired task (Miillerova et al., 2021).
This section describes the different sensors, imaging systems, and
platforms used in the reviewed articles.

3.1 Sensors

Remote sensing platforms include various kinds of sensors for
gathering information about the environment. The most common
sensors for forestry health assessment include the following: Visible
Light Cameras (RGB Cameras), multi-spectral cameras, hyper-
spectral cameras, thermal cameras, Laser imaging Detection and
Ranging (LiDAR) systems, terrestrial laser scanning systems (TLS),
and other common sensors. This section will discuss the working
principle of the most common sensors in remote sensing for forestry
health assessment. Figure 3, contains a visual representation of the
most common sensors used for forestry health assessment.

3.1.1 RGB cameras

RGB cameras capture spectral information in visible light (400-
700 nm), which is the same spectrum perceived by the human eye
(Idrissi et al., 2022), the working principle of this kind of camera is

.

N
Remote Sensing o
Devices L
Journal articles-only § g
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i%? ?I 2 e
H o]
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‘ ‘ M RGB camera
[ Terrestrial-laser scanner B LiDAR sensor
W Hyper-spectral camera Multi-spectral camera
B Thermal camera M Hand-held spectrometer M Others
J

FIGURE 3

Most common sensors used for forestry health assessment, each column represents the number of articles that used each sensor in the data

collecting process.
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RGB camera Color fil

FIGURE 4
RGB camera working principle: a typical image processing system.

visualized in Figure 4. These cameras are designed to represent the
real colors of objects and nature using trichromatic red (620 - 750
nm), green (495-570 nm), and blue (450 -495 nm) wavelengths.
Overall, RGB cameras provide two-dimensional images (Lin et al,
2022), and their performance tends to decrease in the presence of
adverse atmospheric conditions (fog, haze, heat waves, etc.). The
quality of an RGB camera is expressed in megapixels, which
determine the number of pixels (i.e. length x height) of a static
photo (Linhares et al., 2020). RGB cameras have been used for the
study of vegetation indices based on RGB information (Ilniyaz et al.,
2022; Talavera et al., 2022; Yang et al., 2022), forest canopy mapping
and modeling (Nasiri et al., 2022; Suwardhi et al., 2022; Trencanova
et al., 2022), tree identification and characterization(Onishi and Ise,
2021), and among others.

3.1.2 Multi-spectral cameras

Multi-spectral cameras collect color data and spectral monitoring.
They capture two or more bands in the visible and invisible spectrum
(Akkoyun, 2022). These cameras are able to cover parts of the infrared
and ultraviolet regions. The most common wavelengths for these
cameras are the Near-infrared wavelength (NIR) and red-edge
wavelength from the infrared spectrum. Likewise, multi-spectral
cameras hold a sensitive area detector used in conjunction with a
series of specific waveband filters or a waveband tunable light source
(Ramirez et al, 2022). The working principle of a multi-spectral
camera is shown in Figure 5, with a visual representation of an image
expected from this camera. In forestry health assessment, multi-
spectral cameras have been used to obtain spectral indices and the
derived applications as seen in previous sections.

ter

10.3389/fpls.2023.1139232

Optical spectrum

Photodiode

Image data

3.1.3 Hyper-spectral cameras

Hyperspectral sensors capture the radiation emitted by bodies
in many bands, that go from hundreds up to thousands of
wavelength bands, with narrower bandwidths than multi-spectral
cameras (from 5 to 20 nm). Other sensors like RGB or Near-
infrared (NIR) cameras only capture a minor number of bands
(three in the case of RGB) (Adao et al., 2017). A comparison of
multi-spectral and hyper-spectral cameras is shown in Figure 6,
the main difference is that the hyper-spectral captures a
continuous representation of the light spectrum, given the fact
that it collects the reflectance in narrow bands; but the multi-
spectral cameras only capture the reflectance in a selected number
of bands.

Hyperspectral cameras have been used in forestry, to obtain new
VIs to predict vegetation features such as leaf nitrogen content (Raj
et al., 2021), chlorophyll, and other photosynthetic plant traits (Watt
et al,, 2020). Mapping forest hyperspectral characteristics have been
performed as well (Weinstein et al., 2021). The main advantage of
using hyperspectral cameras is the increased number of wavelengths,
thus more information is gathered about the environment, however,
the models created using this information might be overfitted and
thus not usable in general cases (Lee et al., 2004).

3.1.4 Infrared cameras

Infrared cameras are a specific type of sensor that captures the
infrared radiation that is emitted by all bodies with a temperature
above absolute zero. The range of wavelengths that is captured by these
sensors depends on the nature of each one, but common wavelengths
are Short-wave Infrared (SWIR) that ranges from 700 to 1400 nm,

Multispectral camera
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A
\

Lens

Color sensor

Channel 2

Infrared
sensor

FIGURE 5

Multi-spectral imaging: camera structure and a sample of spectral forestry images.
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FIGURE 6

Comparison between Multi-spectral and Hyper-spectral camera operation. The multi-spectral camera presents a discrete and reduced number of
bands, however, the hyper-spectral camera presents a continuous spectrum that ranges from wavelengths of 5 to 20 nm.

Mid-wave, infrared (MWIR) from 3000 to 5000 #nm, and Long Wave
infrared (LWIR) that ranges from 8000 to 14000 nm (Gade and
Moeslund, 2013), these sensors are also known as thermalcameras in
the reviewed studies (Xu et al., 2018; Cheng et al., 2022).

Figure 7 shows the common structure of a thermal camera used
in remote sensing applications. These sensors have been used in
forestry health assessment to create thermal mappings that are
coincident with RGB mapping information (Webster et al., 2018).
Other applications include the use of thermal indices to predict soil
moisture (Cheng et al., 2022) and for phenotyping (Xu et al., 2018).

3.1.5 LiDAR sensor

LiDAR (Light Detection And Ranging or Laser Imaging
Detection and Ranging) sensor is a device widely used for remote
sensing. It is considered an active device due to its light emission and
detection (See Figure 8 for comparison with passive sensors).
Moreover, this sensor has two key elements to gather and analyze
data: photodetector and optics. The principle of LiDAR is to emit
laser light towards an object on the Earth’s surface and compute how
long it takes to return to the LiDAR emitter, this definition holds for
an airborne-based LiDAR system (Khairul and Bhuiyan, 2017).

Thermal Camera
. Camera Image
IR Radiation Lens IR Sensor processing Thermal Image
.

FIGURE 7
Internal Structure and expected forestry image from a thermal camera.
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FIGURE 8
Differences between Passive sensors and Active sensors

The LiDAR point cloud is useful for obtaining physical
information about the surveyed area, the 3D measurements can
be used for generating terrain models, then by processing the
LiDAR point cloud information digital terrain models and digital
elevation models can be retrieved by thresholding the altitude of
each point and discerning which point can be considered from
terrain or from the top tree crowns. With this information,
elevation models are easily obtained by subtracting the digital
elevation modelsand digital surface models surface models
(Hologa et al, 2021). LiDAR point clouds are also useful for
obtaining geometric features of vegetation as slopes or texture
information; these metrics are then used as input data for
machine learning models with various tasks for example (Hologa
et al, 2021), uses geometric descriptions of vegetation obtained
from a point cloud to perform tree classification, a similar approach
is done in (Hell et al., 2022). Due to the resolution that the LIDAR
point cloud is capable of generating, individual trees can be
identified, and thus tree metrics can be directly computed. In
(Vizireanu et al.,, 2020; Neuville et al., 2021), DBH is estimated
based only on LiDAR retrieved data, other forest attributes
estimated by LiDAR cloud points are canopy cover (Cai et al,
2021), which can be derived through the density of vegetation
points, this metric is also used to predict biomass near rivers (Resop
et al, 2021), and with the purpose of determining crown fuels
(Suwardhi et al., 2022). Morphological features derived from
LiDAR point cloud can be key factors to determine and
differentiate between alive trees and snags or deciduous and
evergreen trees, this study is done by Stitt et al. (2022). The use of
LiDAR has helped researchers investigate the following: tree
modeling (Suwardhi et al., 2022), biomass estimation (Torre-Tojal
et al,, 2022), and tree classification (Hell et al., 2022) among others.

3.1.6 Terrestrial laser scanning systems

Terrestrial laser Scanning Systems (TLS) are instruments used
to obtain three dimension observation of the surface of objects. It
uses LiIDAR sensing to obtain the distance from the surface to the
sensor, and precise angular measurements to obtain 3D information
from the objects. TLS systems are capable of reconstructing an area
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with high precision in the order of millimeters (Liang et al., 2016). A
representation of the TLS and its measurements are shown in
Figure 9. In forest health assessment, TLS systems are used to
determine tree features and structure (Miraki and Sohrabi, 2021;
Terryn et al., 2022; Yang et al,, 2022), and to estimate crown fuel
and fuel hazard (Hillman et al., 2021).

3.1.7 Handheld spectrometer

A handheld spectrometer is a device that is capable to retrieve
the spectrum emitted by a body in many wavelength bands, the
same as a hyper-spectral camera, but this one is portable and
operated by hand. Another difference is that a hyperspectral
camera captures many pixels, and the spectrometer only captures
a single point. The main application for this device is to obtain
samples of an object that will serve as ground truth for mass data
obtained with a camera or by other means. Handheld spectrometers
have been used to gather information to estimate leaf water content
(Li et al., 2021), to monitor the chlorophyll response to droughts
(Raddietal,, 2021), and to perform tree recognition based on hyper-
spectral features (Yang and Kan, 2022).

-

FIGURE 9
TLS sensor variables needed for obtaining 3D cloud points
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3.1.8 Others

There are other kinds of sensors used for forestry health
assessment. For instance, an ANAFI camera (Ribas Costa et al,
2022), wireless sensors (Yang et al., 2022), a thermocouple (Yao
etal, 2021), and a SPAD-502 meter (chlorophyll meter) (Yao et al,
2021; Narmilan et al., 2022). These sensors are used for very specific
scenarios, such as measuring chlorophyll in a single leaf, and thus
are not considered for further revision in this review.

3.2 Remote sensing platforms

This section presents a brief review of the most common remote
sensing platforms; highlighting their advantages, disadvantages, and
applications; for a most extensive review on the topic, see (Omasa
et al.,, 2006; Ashraf et al., 2011; Pajares, 2015; Toth and Jo zkow,
2016; Zhang K. et al., 2020; Chamola et al., 2021; Zhao et al., 2022).

Remote sensing platforms are understood as the platforms that
physically carry the different cameras and sensors used for the
assessment of forestry health. There are two major groups of
platforms that are identified: Unmanned Aerial Vehicles (UAVs)
and satellites. Figure 10, summarizes the number of appearances
that the different remote sensing platforms have in the reviewed
articles. Figure 11 shows a remote sensing platform using a UAV.

3.2.1 Satellites

Satellites are commonly used for remote sensing purposes
(Zhao et al, 2022). These devices are aimed at gathering data
from Earth using imaging sensors. Satellites tend to capture
electromagnetic radiation in the microwave, ultraviolet, and
visible wavelengths reflected by the Earth’s surface (Ashraf et al,
2011). Overall, a remote-sensing satellite is able to take 4-5 photos
with different types of color filters, evidently, these color filters help

10.3389/fpls.2023.1139232

FIGURE 11
A remote sensing platform mounted on a hexacopter.

to better assess vegetation features such as soil, leaves, stems, tree
crowns, under/over the canopy, and so on.

Satellites carry onboard high-resolution microsatellite cameras
(HR-250 and Raptor imagers) with advanced electronic detectors
known as CCDs (Charge-Coupled Devices). These devices not only
allow them to be more sensitive than a film but also convert the
multispectral photographs into electronic signals for further study
(Zhang K. et al., 2020).

According to the literature reviewed, Sentinel 1 and 2 (Huo et al,
2021; Nasiri et al, 2022), Landsat-8 (Rodriguez et al., 2021),
Worldview-2 (Becker et al., 2018), Triplesat (Fakhri et al., 2022) are
the most prominent satellite platforms used to assess forestry health.

3.2.2 UAVs

Unmanned Aerial Vehicles are the most common platforms in
remote sensing applications for forestry health assessment. The
typical UAV for remote sensing is an electric-propelled air vehicle,
with a navigation system and communication system, and a sensor
for remote sensing (Toth and Jozkow, 2016). The navigation and
flight control systems are composed of various onboard sensors in

34 Remote Sensing
Platforms
Journal articles-only

Related Works
P (2017-2022)

M satellites
[ | Fixed-wing UAVs
] Hexacopters

B Quadcopters

B Single-rotor UAVs
7] Others
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Distribution of the most common UAV platforms in the reviewed journal articles.
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the UAV, the main ones are: Global Positioning System (GPS), an
Inertial Measurement System (IMU), and Micro-Electromechanical
System (MEMS) (Toth and Jozkow, 2016). The other components
of the remote sensing platform are the sensors needed for the data
acquisition process, the most common sensors in remote sensing
applications are the ones mentioned in section 3.1.

There are different kinds of UAVs, and according to their
configuration, they offer different features such as higher payload
capability, longer flight capacity, and better maneuverability among
others. We have identified the following classes:

3.2.2.1 Single-rotor

Single-rotor UAVs are formed by a single rotary wing, they are a
minority compared to other remote sensing platforms. Since they
only present a single rotor they present a much higher power
efficiency compared to multi-rotor UAVs, they are also used for
carrying heavy payloads (Chamola et al., 2021).

3.2.2.2 Multi-rotor

Multi-rotor UAVs are the most versatile and have been used in
a wide range of operations. This group includes quadcopters,
hexacopters, and octocopters. The main advantages of using these
UAVs are their commercial availability and affordability, the ease of
maneuverability, they don’t need a platform to take off, meaning
that they can take off and land on any surface; so they are preferred
for research purposes. The arrangement of multiple rotors provides
the UAV with better stability making them ideal for imaging
purposes (Toth and Jozkow, 2016; Chamola et al., 2021).

3.2.2.3 Fixed-wing UAV

These UAVs present a stationary wing, similar to a plane, the
advantage of using a fixed-wing is that lift forces are lower
compared to rotary wing UAVs. Since they are similar to a plane
they need some area for the takeoff and eventual landing. The main
advantage of fixed-wing drones is that they can fly for longer
periods of time, cover larger areas, and can carry heavier payloads
(Chamola et al., 2021).

3.2.2.4 Aircraft

Forestry studies have evoked their efforts to incorporate remote
sensing aircraft into the dynamics of forest surveys and data
collection. Aircraft remote sensing platforms rely heavily on
onboard sensors to leverage their advantages associated with
flexible use and high spatial resolution. In addition, images
captured from the aerial inspection can be used for rapid analysis
in different seasons of the year (Omasa et al.,, 2006).

4 Machine learning techniques used in
forestry health assessment

Machine learning is a set of algorithms that require the
computer or machine to infer and extract patterns from raw data
(Goodfellow et al., 2016); the effectiveness of machine learning
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heavily depends on the representation of the data fed to the model.
These algorithms can be used for regression tasks, which implies
predicting a number from a set of input data; classification
problems can also be accomplished by machine learning, in this
case, the algorithm predicts that the data representing a feature
belongs to a predefined class.

Learning is a key concept in machine learning, it can be
performed in these ways:

4.1 Supervised learning

In supervised Learning algorithms, the dataset containing
features also contains a number or a label that is the expected
output from the input features. In this case, the machine learning
algorithm needs to infer which is the relation between the set of
features and the expected output, then apply these found relations
in a set of testing data (Goodfellow et al., 2016).

4.2 Unsupervised learning

In these algorithms, the dataset contains a set of features and the
algorithm learns properties about how the data is structured, a
common task performed by unsupervised learning is to recreate the
probability distribution that generated the dataset; another
common function is to group data into clusters with similar
characteristics (Goodfellow et al., 2016).

4.3 Metrics

It is important to measure how the machine learning algorithm
is performing its task, thus it is important to describe the most
common metrics to quantitatively evaluate the algorithm’s
performance. The following are the most used metrics for
classification purposes:

4.3.1 Accuracy

It can be defined as the ratio between the number of correct
predictions and the number of total predictions made by the model
(Flach, 2019), it can be calculated with Eq. (1)

TP + TN

A - 1
CUTAY = Ip L TIN + FP + EN W

Where TP, TN, FP, and FN stand for True Positive, True
Negative, False Positive, and False Negative respectively.

4.3.2 Precision

It is the ratio between correct positive predictions and total
prediction, it indicates the proportion of how many correct
predictions the model yields, it is calculated with Eq. (2)

TP

— 2
TP + FP @

Prec =
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4.3.3 Recall
It measures the ratio of correct positive predictions and the total
predictions, it is obtained with Eq. (3)
TP

Rec= —— 3
“=TP+FN 3

4.3.4 F1 Score

It is a metric that combines both Precision and Recall, it is
useful when the classes in a dataset are unbalanced, and it is
computed with Eq. (4)

Prec - Rec

F =2 o

Prec + Rec

4.3.5 Root mean square error

It is a measure of the error between the predicted output of the
model and the real output of the model. This metric is used for
evaluating regression models. It is computed with Eq. (5)

N . Ara 2
RMSE = M (5)

4.3.6 Correlation factor (R?)

It is a number that indicates if there is a correlation between two
variables, in regression models it is a metric that helps to understand
if the output of the model is correlated with the input. It ranges from
0 to 1, where 0 indicates that there is no correlation between the
variables and 1 that there is a high correlation.

With the previous remarks, the section continues describing the
most common machine-learning techniques used in the reviewed
articles for the assessment of forestry health and the most critical
results supported by quantitative metrics, the discussed algorithms
in the section are: Linear Regression, Random Forests, Support
Vector Machines, K-Nearest Neighbours, deep learning approaches
and other not common machine learning techniques. Figure 12
shows the most common ML algorithms used in forestry health
assessment in articles from the last five years. Figure 13 shows a
visual representation of how three of the most common ML
methods divide the search space for classification purposes.

4.4 Linear regression

Linear Regression is one of the most common algorithms in
machine learning, for predicting results. Using an optimization
process,linear regression determines the appropriate equation that
maps the input features with the expected output (Goodfellow et al.,
2016). Linear regression has had a wide range of applications. It has
been used to find the correlation between the data derived from TLS
and airborne LiDAR; the study presented by Hillman et al. (2021)
demonstrated that estimations of canopy volume have a strong
correlation between the data from LiDAR and TLS which achieved
a value of 0.96, herein the ground-truth is the value obtained from
the TLS sensors, however other tree structure parameters such as
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Distribution of the most common machine learning algorithms for
forestry health assessment in the reviewed journal articles.

canopy base height achieved only a correlation of 0.794. In other
studies canopy height volume reached a correlation of only 0.394,
thus it is not suitable for predicting crown fuel (Shin et al., 2018),
similar experiments were conducted by Arkin et al. (2021). For
predicting the moisture of leaf fuels, multi-spectral VIs were used as
input data for regression models, however, the correlation factor
reached 0.435, thus more studies are needed for practical
implementations for this model (Barber et al., 2021).

Other vegetative problems are investigated using linear
regression models. Resop et al. (2021) studied the correlation
between vegetation metrics, the distance from water sources, and
seasonal variation; the results show that there is no correlation
between the distance to the water stream and canopy height and
vegetation density. Using multi-spectral VIs, regression models
have been used to predict biomass in the tidal marsh; the best VI
was ExG however the correlation index only reached 0.376 (Morgan
et al,, 2021). In coastal wetlands, the correlation between above-
ground biomass and flood depth was studied, and the regression
models follow a Gaussian distribution with a correlation factor of
0.54 (Yan et al, 2022). Xu et al. (2022) studied the correlation
between tree diversity and spectral indices. The correlation value
was 0.6; thus VIs could be used for tree classification purposes.

Estimating the correlation between tree features and point cloud
LiDAR data information, in the work presented by Fraser and
Congalton (2021a) RGB and LiDAR-derived metrics of DBH and
crown radius were studied in a coniferous forest. The results show a
correlation of 0.392 and RMSE which equates to 30% of the total
error. Fan et al. (2020) created tree models derived from LiDAR
point clouds, and then structure metrics were calculated, the
predictions were correlated with the ground truth collected in
situ, and the linear models achieved a correlation of more than
0.9 for DBH, tree height, and crown volume. In the article by
Imangholiloo et al. (2020), tree height was estimated using LIDAR
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A comparison between the most common machine learning methods, and how the space is divided to generate different classes.

metrics, such as point density, in leaf-on and leaf-off seasons, and
the correlation factor achieved 0.98. A similar study conducted by
Puliti et al. (2019), compared tree height, stem volume, and basal
area; from data obtained via different aerial methods (UAV, and
manned aircraft); the results show correlation values in the range of
0.64 and 0.73. Another study combined RGB images and LiDAR
metrics to predict tree height and DBH in a eucalyptus forest,
combining both metrics as input data for the model achieved a
correlation of 0.94 (Liao et al., 2022). Xu et al. (2021) developed a
remote sensing platform and the method of validating its data was
to find the correlation of tree structure parameters with the ground
truth found in the field, this study also contemplated the creation of
thermal and multi-spectral VIs.

Leaf area index (LAI) is another parameter that can be predicted
using LiDAR metrics and linear regression models. In the work by
Tesfamichael et al. (2018) the highest correlation value was 0.83;
however, this model used several metrics as input data; a simple
model using only two metrics achieved a correlation of 0.63 but the
simplicity of the model was considered an advantage. A similar study
using RGB point clouds for calculating LAI was conducted by Lin L.
et al. (2021), and the models achieved a correlation of 0.92. Miraki
and Sohrabi (2021) estimated LAI from RGB images and terrain
model descriptors as input data, but the correlation was only 0.42, in
the same study canopy height was also estimated, and using linear
regression models the correlation achieved was 0.84. The study
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presented by (Qiao et al, 2022) also considered morphological
features from the soil and the vegetation to improve the prediction
of LAI, achieving correlation values of 0.93 but it depends on the
growth stage of the vegetation. Water and transpiration models are
also associated with LAI and canopy volume; Aboutalebi et al. (2019)
estimated these parameters using information derived from airborne
LiDAR and multi-spectral cameras; the LAI derived by machine
learning achieved correlations of 0.7.

Predicting the chlorophyll changes in response to environmental
changes has been explored with the aid of regression models. In the
study presented by Raddi et al. (2021), using hyper-spectral indices
and multi-spectral indices; leaf chlorophyll content in textit Quercus
Robur, Quercus Pubescens, and Quercus ilex was estimated with the
aid of linear regression models; using both kinds of indices achieved a
correlation of 0.97 in both cases, thus providing an excellent
alternative to assess drought responses using the change of
chlorophyll content as an indicator. Zhuo et al. (2022), conducted a
similar study to predict chlorophyll content, however, it considered
the effect of mixed vegetation in wetlands for the computation of the
spectral indices, in this case, the model reached a correlation of 0.82.
(Kopackova-Strnadova et al., 2021) presented a study aimed to
predict photosynthetic pigments in coniferous Spruce forests, using
multi-spectral VIs; however, the researchers showed that information
from the growth stage of the forests is needed since the spectrum
from two years’ leaves was the only VI that reached a correlation

frontiersin.org


https://doi.org/10.3389/fpls.2023.1139232
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Estrada et al.

factor of 0.52 in a linear regression model. Watt et al. (2020)
conducted a similar procedure but with the purpose of predicting
nitrogen and phosphorus. Using hyperspectral VIs, regression
models were trained and the predictor for both P and N achieved
correlations of 0.75 and 0.83 respectively. Other studies predicting
chlorophyll in different ecosystems are done by Narmilan et al. (2022)
and Yao et al. (2021), with the purpose of evaluating soil respiration;
estimating nitrogen can be achieved with regression models and RGB
indices (Lu et al., 2021).

Problems related to moisture content, in general, can be
performed using linear regression. In the work presented by Li
et al. (2021), leaf water content estimation was performed using
hyper-spectral VIs in various growth stages of vegetation reaching a
correlation factor of 0.9 with the appropriate VI. Regression models
were also used to assess water evaporation models and trace element
uptake by trees growing on red gypsum landfill (Malabad et al,
2022). Cezkowski et al. (2020) used thermal indices used to predict
various indicators of water stress in wetlands (soil moisture,
chlorophyll content, and photosynthetic active radiation
(fAPAR)), the correlation factors for soil moisture and fAPAR
were of 0.62 and 0.70 respectively, thus the index could be an
indicator of water stress.

4.5 Random forest

Random Forest is a machine learning method that combines
multiple tree classifiers. Each tree is tested with a random input
vector, which leads to selecting the most significant features from
the input data. Random Forest can be used for classification and
regression problems (Breiman, 2001).

For classification purposes random forest has been used in
conjunction with information derived from LiDAR point cloud and
with multi-spectral indices derived from spectral imagery; this
approach presented by Hologa et al. (2021) was used to perform
individual tree classification in a mixed forested area, the trained
random forest achieved an accuracy of 96% over eleven different
tree species when combining both inputs from LiDAR and multi-
spectral imagery. A similar approach was done by Fraser and
Congalton (2021a), but in this case, due to the nature of the
forest, the classification task using random forest achieved an
accuracy of 85%, but the authors highlight the capability of
random forest over traditional methods for tree delineation.
Imangholiloo et al. (2020) used random forest for classification
between coniferous and deciduous trees from information obtained
by LiDAR. In the work presented by Miyoshi et al. (2020), the input
data included hyperspectral multi-temporal imaging data to
perform tree classification in a diverse tropical forest, even though
the accuracy only reached 50%, the use of multi-temporal imaging
improved previous approaches using random forests as classifiers,
leaving the door open to future researches in the same field.

Fraser et al. Fraser and Congalton (2021b), performed a
classification of forest stands in three different categories: healthy,
stressed, and degraded trees; for this purpose, VIs from multi-
spectral imagery were derived and they were used to train the RF
model; the accuracy achieved a maximum of 71%, due to the fact
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that there is a high variation in the characteristics of each
healthy tree.

Classification tasks are not only needed to differentiate between
tree species. Another important task is to classify between live trees
and dead trees, the reason being this ratio is important for assessing
the response of the ecosystem to external disturbances; Stitt et al.
(2022) used information derived from a LiDAR point cloud to
classify different kinds of snags, the model achieved an accuracy of
77%, signifying that only LiDAR information is not enough to
identify some characteristics of snags. In the work by (Shovon et al.,
2022), the RF algorithm was trained to segment between alive and
dead trees in forest stands with an accuracy of 89.4%, using as input
variables tree height derived from LiDAR point clouds and RGB
spectral indices.

Identifying forest structure can be achieved by using random
forest, Yu et al. (2021) explored the feasibility of using multi-
seasonal data from LiDAR and multi-spectral images to perform
vertical forest structure classification. The results show that adding
information from different seasons as input variables to the models
increases its performance and its capability of reliably identifying
the forest structure, even though the random forest was not the best
algorithm according to the metrics presented.

Individual tree recognition can be accomplished by random
forest. Guo et al. (2021), with the purpose of assessing
afforestation models, trained random forests methods to
recognize areas of interest that could potentially be identified as
tree crowns, for this purpose several VIs were computed from
RGB images and they were used as training data for the random
forest algorithm; the individual crown recognition task achieved
an accuracy of 92%, when using more than two input variables to
train the model.

Random Forests were also used for regression purposes. In the
work presented by Lou et al. (2021), the feasibility of predicting
canopy chlorophyll content in marsh vegetation was evaluated
using multispectral images from UAVs, and from satellite
platforms including Landsat-8 and Sentinel-2. The predicted
canopy from the random forest was validated with the real value
through a linear regression achieving a correlation value of 0, 92.
Villacrés and Cheein (2022) used random forests to retrieve spectral
VIs from multispectral imagery essential for mapping moisture
content, however, the results were unsatisfactory, and other
regression methods were needed.

Biomass prediction using Random Forest was explored by
Torre-Tojal et al. (2022), for this purpose, a LIDAR point cloud
was obtained using a UAV; subsequently, digital terrain models and
canopy models were reproduced. Some of the metrics obtained were
height distribution, canopy cover, and canopy height. An analysis of
the importance of those metrics was performed resulting in that the
metrics related to the height of the trees were the most significant
when describing biomass; using these variables the RF was trained,
and the predicted result of the model achieved a correlation value of
0.7, improving previous estimations. Indices and aerial images from
satellite platforms are also promising sources of data for prediction
purposes, Nasiri et al. (2022) used Sentinel-2 derived Vegetation
indices with the purpose of mapping canopy cover in forested areas
using Random Forest Regression to predict the percentage of
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canopy according to the indices, the trained model achieved a
correlation of 0.69, showing the potential of combining satellite
platforms and random forest for mapping purposes. Sentinel-2
imagery was used to predict the biomass of fine fuels in dryland
ecosystems, and the training of the random forest yielded a
correlation factor of 0.63 over a six-year period, highlighting the
potential of machine learning techniques for mass land estimation
of fine fuels (Wells et al., 2021).

4.6 Support vector machines

A support vector machine is a method mainly used for
classification purposes, the objective of the SVM is to find a
hyperplane that divides in the “best way” two different classes of
data. The “best way” refers to the fact that the distance between the
hyperplane and each class is maximum (Goodfellow et al., 2016).
The main advantage of SVM is that it uses a kernel function that
assigns the input data to a higher dimensional space, where it is
easier to find the hyperplane that separates two classes.

In forestry health assessment SVMs are used to perform
classification and regression tasks. In (Mayrd et al., 2021), SVMs
are used to perform the identification of tree species, using as input
vectors point clouds from LiDAR and images from hyperspectral
cameras from the SWIR region with 288 bands. From the point
clouds, individual tree segmentation was performed and the SVMs
were trained. This study shows that there are no major errors in tree
classification processes using SVM, achieving an accuracy of 82%;
although this method is outperformed by deep learning approaches
(Méyrd et al,, 2021), which achieved an accuracy of 87%.

The work by Blanco-Sacristan et al. (2021) uses SVM to
perform segmentation in images based on RGB and multi-
spectral images. Images were segmented based on their level of
dryness, it is important for monitoring possible fire-prone lands.
The accuracy reached 80% in most cases.

Tree structure classification has also been studied with the aid of
SVM (Yu et al., 2021), predicting the tree structure in a densely
forested area, for this purpose the authors used LiDAR and Multi-
spectral point clouds to generate height models which were used as
inputs to the SVM, in this case, the classification from the SVM was
outperformed by other methods. SVMs are used to evaluate carbon
models from tree parameters such as canopy height and DBH
(McClelland et al., 2019).

The segmentation of ground points based on VIs can be
considered as a classification algorithm, in this context Zhang V.
etal. (2021) used vegetation indices as input data for SVM with the
purpose of classifying ground points and vegetation points in aerial
images; this method achieved an accuracy of 94% using only two
VIs as input.

As a regression technique, Support Vector Regressor (SVR) was
used to predict tree structure parameters such as DBH, tree height,
and volume using as input data high-density LIDAR point clouds
(Corte et al.,, 2020). The results show that the errors in the
prediction were lower when using SVR, compared to other
algorithms such as RF or neural networks. Nasiri et al. (2022)
processed VIs derived from Sentinel-2 information to model
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canopy cover, achieving significant correlation values of 0.64. A
similar task was performed by Abdollahnejad and Panagiotidis
(2020), but the tree classification was performed with inputs from
multi-spectral VIs.

4.7 K-nearest neighbors

K-nearest Neighbors is a non-parametric machine learning
technique, which means that the training does not generate the
optimum parameters for a mapping function or plane. It simply is a
function of the training data, in its simplest form, KNN computes
the expected output value from a new input, by averaging the
output from the K nearest neighbors in the training data of this new
entry (Goodfellow et al., 2016).

The KNN algorithm was used to perform tree classification
from hyper-spectral information. In the work presented by Yang
and Kan (2020), the input vectors were information from hyper-
spectral imaging, in this case, the KNN algorithm was the least
effective algorithm. Tuominen et al. (2017) used KNN to estimate
tree structures from the information gathered manually in plots and
predict them in aerial photos, the results show that the error is
below 30 percent. Another use of KNN algorithm is presented by
Zhang Y. et al. (2021), the model was used to segment ground
points from vegetation points, however, this model was
outperformed by SVM.

4.8 Deep learning

Deep learning (DL) refers to techniques that rely on multiple
layers of units (called neurons). Each neuron is a function that maps
the input data to the desired output. In the training process, the
network is capable of learning the parameters of such mappings.
Figure 14 shows the scheme of a network with two hidden layers.
The name “deep” refers to the number of layers employed in these
kinds of models (Goodfellow et al., 2016). The key feature of a deep
learning model is its capability to make representations of
unstructured data such as images or raw text (Osco et al., 2021).

Likewise, DL models are used in conjunction with RGB, multi-
spectral, and hyper-spectral images, to perform different tasks
concerning the assessment of forest health. Lin and Chuang
(2021) used deep convolutional neural networks ResNet50,
VGG19, and SegNet to extract features from aerial RGB pictures
to perform tree classification. However the initial results showed
poor performance based on accuracy; thus the authors proposed a
simplification of the images using Principal Component Analysis,
selecting only the most important features of the images. With this
approach, SegNet reached an accuracy of 95%. The same task was
performed by Onishi and Ise (2021), from aerial RGB images
individual tree crowns were segmented, and each individual tree
crown was used as the input data for the deep learning model, which
was capable of categorizing seven different tree species and achieved
an accuracy over 90%. Here the deep learning architectures were
AlexNet, VGG16, Resnetl8, and Resnetl52, these were used for
fine-tuning the model. A similar approach was done by Zhang C.
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etal. (2020), where a model using ResNet50 achieved an accuracy of
92.6%. In the work presented by (Feng et al., 2020), the authors
investigated the results of using multi-temporal information in a
recurrent convolutional neural network, for mapping vegetation
using multiple-seasons aerial images. Hell et al. (2022) used
PointCNN and 3DmFV-NET to perform the classification of
coniferous, deciduous, and dead trees; from a LiDAR 3D cloud
point, the results show that both networks are capable of
differentiating between coniferous and dead trees, and it can
reach an overall accuracy of more than 80%.

Pulido et al. (2020) used segmentation networks DetectNET,
Faster R-CNN, and Single Shot Multibox Detector (SSD) to perform
tree recognition from multi-spectral images in a forested area. The
results show that, while traditional methods are capable of identifying
trees, DL models outperform them and show improved metrics in
areas where trees are clustered together. A similar task was performed
by Hao Z. et al. (2022), herein the authors used Mask region-bases
convolutional neural networks (Mask R-CNN) and evaluated the
effect of reducing the number for training. The results show that by
randomizing the training dataset, thus training the model with
dissimilar samples each time, the metrics of the model are not as
affected; therefore the training images can be reduced.

The creation of segmented images of fire-prone vegetation areas
can be achieved with the use of deep learning techniques,
Trencanova et al. (2022), trained U-NET network to identify
these areas from RGB images, and the results show an F1 score of
0.7 in the validation dataset; however, due to the complex labeling
process, the authors suggest that further improvements are needed
to enhance this technique of identifying areas in landscapes.

Liu et al. (2021) proposed a 3D deep learning structure called
LayerNet to perform tree classification tasks, the network used as
input individual tree point clouds obtained from a LiDAR point
cloud, the advantage of the network is that it can be trained from
disorganized 3D point clouds. Compared to other algorithms such
as random forest or KNN, this method achieved an accuracy of
88%, greatly outperforming the other two more common methods,
which also need to pre-process the information to reduce the
dimensions of the data, thus reducing potentially valuable traits.
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Deep learning can be used to determine canopy cover in a
densely forested area. Li et al. (2022) use a deep learning approach
to distinguish background vegetation points from over-story
canopy points, to produce canopy maps from forests’ 3D
imagery.The results show that the deep learning approach
outperforms traditional canopy mapping methods, therefore it is
an accurate and robust method for creating canopy maps under
different illuminations and terrain conditions.

Regression tasks can be performed using deep neural networks,
Babaeian et al. (2021) used several machine learning methods and
compared them to neural networks with two or three depth layers;
the input data were multi-spectral VIs, and texture measurements
from the soil and the expected output was soil moisture content; the
results indicate an error below 5% and a high correlation value
between the machine learning models and the predicted output.

4.9 Other algorithms

Other machine learning algorithms have been sparsely applied in
different tasks. For example, gradient boosting machines (GBM) have
been used to estimate soil moisture content in vegetated areas.
Babaeian et al. (2021) tested several ML algorithms to predict soil
moisture content including GBM. The results yielded that Neural
Networks outperformed the other algorithms based on prediction
error and the correlation factor. In the study presented by Villacrées and
Cheein (2022), boosting gradient machines were used to reconstruct
vegetation indices. Another task accomplished by GBM is the
prediction of leaf nitrogen content based on hyperspectral indices,
this is done by Raj et al. (2021), where the model achieved a correlation
factor of 0.63, in areas with water-stressed vegetation; however, the
model didn’t achieve the same results in well-irrigated areas.

A more optimized version of gradient boosting is Extreme
Gradient Boosting machine (XGB), this approach was used by Yu
etal. (2021), to determine the forest structure and it was compared
to random forest and support vector machines algorithms, in this
studyit was determined that XGB was the best algorithm for this
task achieving an F1 score of 0.91.
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For classification purposes, Yang and Kan (2020) studied the
use of Extreme learning machine (ELM) which is based on neural
networks; and a Linear Bayes Normal Classifier (LBNC); the
authors compared both algorithms with KNN; in this study ELM
and LBNC achieved an accuracy of 97.55% and 96.53% respectively,
both outperforming KNN in tree classification task.

The generation of digital terrain models was explored with
the aid of machine learning (Arevalo-Ramirez et al., 2022),
using conditional random field (CRF) to extract ground points;
this approach generated smoother terrain models than other
approaches not based on machine learning methods.

5 Discussion

There is a clear relationship between the discussed vegetative or
forest issues, the sensors, and the machine learning algorithms
selected to accomplish the research objectives. For tasks such as
tree recognition and classification, deep learning and other
classification algorithms prevail, and the selected sensors for this
task are mainly imaging systems, RGB, or multi-spectral. Other
tasks corresponding to determining and predicting phenotype
features of forests such as chlorophyll, water, and moisture
content often use regression algorithms, where input data are the
VIs gathered from RGB, multi-spectral, and hyperspectral cameras. In
the case of physical modeling of forests and determining its parameters,
sensors such as LIDAR or terrestrial laser scanning systems are more
suitable, due to their capability of creating 3d models from point
clouds. Figure 15 illustrates the relationship between the vegetative
issues, the sensors, and the data processing algorithms.

In general, all the reviewed works follow a somewhat similar
workflow described by Miillerova et al. (2021): a problem in forestry
health assessment is identified (chlorophyll prediction, water
content estimation, biomass estimation, forest structure

FIGURE 15
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parametersestimation, tree classification, crown fuel estimation).
Then the suitable sensors are selected depending on the needs of the
problem, for example, if the problem is related to the geometric
features of forests, a LIDAR sensor could fulfill the requirements.
RGB, multi-spectral, and hyper-spectral cameras are more suited
when spectral information is required and VIs are needed for
example in chlorophyll estimation. The specific spectral response
can also be used as an indicator of a specific tree speciesthus VIs are
ideal to perform tree segmentation. Once the sensors are chosen, the
data acquisition process is conducted. One of the most difficult parts
of assessing forest health is the information processing phase. There
is no clear pathway that leads to a correct decision when deciding
which algorithm is the best to process the information according to
the needs; as shown in the previous section, machine learning
algorithms are a powerful alternative to process data and reach
meaningful results.

5.1 Sensors used in remote sensing for
forestry health assessment

Forestry health assessment aided by machine learning and
remote sensing platforms is a promising trend in recent years.
With the evolution of technology and machine learning techniques,
better results in predictions of factors that affect forestry health have
been accomplished. It is now possible to determine features from
hyperspectral and multi-spectral imaging technologies, the use of
UAVs helps the survey of great areas in short time, contrasted with
a visual inspection from experts.

The use of LIDAR technology allows precise 3D reconstruction
of environments in the range of centimeters (Hologa et al., 2021),
allowing a complete geometrical characterization of forests, and the
retrieval of tree and forest structure parameters. Efforts of mapping
are important for forestry health assessment and to test algorithms;

achine learning
algorith
Deep
learning

Linear
egressio:
Support vector
regressor

Random forest
regressor
machine
K-nearest

Relation between the vegetative or forest issue studied, the sensors and the machine learning algorithm chosen to do the investigation.
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(Webster et al., 2018) performed thermal characterization of forest
canopies in a large survey area, the study also made a coincident
RGB mapping of the area, facilitating the access to public data to the
scientific community.

The use of multi-spectral and hyper-spectral cameras to detect
leaf reflectance and to compute different VIs has allowed an
improvement in prediction techniques with the aid of machine
learning algorithms. However, the information that can be gathered
from spectral imaging methods is vast, and most of it will not have
any correlation with the desired measurement, thus it is a current
challenge to discover which bands and VIs are suitable for the
different tasks in forestry health assessment. One way of reducing
the dimensionality of input data for machine learning algorithms is
the use of statistical methods to determine which information is
more valuable and will provide better insight into the process, a
common practice to reduce the dimensionality is to perform
principal component analysis (PCA). Shovon et al. (2022)
performed PCA in multi-spectral images, then a new VI with the
four principal components, which was useful for identifying trees
from snags. In the work presented by Kopackova-Strnadova et al.
(2021), PCA was performed to reduce four spectral bands to three
(three principal components), and with the selected bands, a VI was
computed to predict photosynthetic pigments (i.e Chlorophyll). A
similar process was performed by Barber et al. (2021), where the
authors reduced the number of bands to predict fuel moisture in
grasslands, again Ahmed et al. (2021b), reduced the number of
multi-spectral bands to three principal components that
represented the 86% variability of the images to generate VIs for
tree identification. There is a greater issue when using hyperspectral
imaging cameras since they can provide up to hundreds of bands;
Yang and Kan (2020) retrieved 114 bands from a hyper-spectral
camera, using a reduction process 14 bands were selected as
principal feature bands, greatly reducing the dimension of the data.

5.2 Machine learning in
forestry applications

The current trend in remote sensing for forestry health
assessment is to use machine learning methods to process the
information and find the desired correlations. These novel
techniques currently outperform other methods that do not involve
a training process, for example in the tree classification task Shovon
et al. (2022) presented a thresholding algorithm to perform tree
classification task, and even though the results were considered
satisfactory, they are greatly outperformed by deep learning
methods using convolutional layers. The accuracy is near a 90%
(Onishi and Ise, 2021) on the training dataset with seven different tree
species, whereas (Shovon et al., 2022) reported an accuracy of 80%.

The studies in classification tasks highlight that the use of deep
learning techniques greatly outperforms other classification
techniques (Onishi and Ise, 2021; Hell et al., 2022), and other
studies present the advantage that the data does not need pre-
processing (Liu et al, 2021). Hao Y. et al. (2022) performed
individual tree detection without using machine learning models,
and even though the proposed method improves the detection
accuracy, reaching 90% in some scenarios; it is outperformed by the
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deep learning algorithm conducted proposed by Hao Z.
et al. (2022).

The information needed as input data for deep learning
and machine learning techniques is not clear either; in some
cases, data extracted from UAV flights in a particular season of
the year is insufficient for regression and classification purposes;
thus recent articles investigate the use of multi-temporal data, for
example, the results presented by Kopackova-Strnadova et al.
(2021) suggest that temporal data is needed for predicting
photosynthetic pigments in trees, given the fact that VIs from
leaves of a certain age yielded the stronger correlated models.
Other studies (Imangholiloo et al., 2020), explored the option of
using data from different seasons for characterizing seedlings. Feng
et al. (2020) used multi-temporal data to train DL networks,
improving the accuracy of the model by more than 20%
compared to the model using mono-temporal information.

For regression purposes, there is no clear tendency in the
techniques that can be used to retrieve the desired data and make
the predictions with the least amount of error. Most of the studies
that rely on a prediction value, train different machine learning
algorithms and assess the performance of each one using
quantitative metrics. The performance of the algorithms varies
case by case.

5.2.1 Publicly available data

One of the biggest drawbacks of using machine learning is the
lack of curated available data to train the algorithms. In most forestry
health assessment applications, not only the data acquisition process
is necessary, but also generating the ground truthis needed. Generally,
the ground truth is acquired with the help of expert knowledge and in
situ measurements, which is an expensive and time-consuming
process; thus studies to create large datasets fulfill a vital role for
the scientific community. Weinstein et al. (2021) created a dataset
containing LiDAR, RGB, and hyper-spectral information, with
manual delineation of individual tree crowns. This dataset can be
used to train machine-learning algorithms for tree detection and
classification. Other studies compared how the reduction of samples
affects the performance of deep learning models. Hao Z. et al. (2022)
showed that by randomizing the training dataset and creating more
dissimilar samples it is possible to reduce the number of training
images without affecting the performance of the model. Research
about the retrieval of pigments, particularly chlorophyll, water, and
moisture content, is conducted through spectral information at the
leaf or canopy level. Several datasets containing samples of multiple
leaves and their reflectance are of great help when developing
machine learning models for regression purposes, using as input
some form of spectral data. Among the most used datasets for these
purposes are the following: ANGERS (Jacquemound et al., 2003),
which contains the spectral reflectance of 276 live, fresh leaves of 39
species of trees located in Angers, France; alongside chemical and
physical measurements such as chlorophyll content and water
content. Another dataset of similar characteristics is LOPEX dataset
(Hosgood et al., 1993), which presents reflectance data of 330 leaf
samples from 45 different tree species, this dataset also presents
biochemical properties for the dataset. Both datasets and other
similar ones can be found online (https://ecosis.org/). One
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important model for remote sensing applied to forestry applications
is the PROSPECT model (Feret et al., 2008), which recreates spectral
reflectance and transmittance at the canopy level, and could be of
great use when predicting biochemical properties of leaves including
pigment content (Feret et al., 2008). Information about publicly
available datasets, including ANGERS, LOPEX and the one
presented by Weinstein et al. (2021) is summarized in Table 3

Datasets for forestry applications using deep learning are scarce
and, in the reviewed works, every group of researchers created its
own databases with annotations, for their intended objectives.
However public information is available and it has been compiled
at Diez et al. (2021).

5.2.2 Big data approaches

Another future perspective for the assessment of forest health is
the use of big-data approaches; under this new perspective, it is
possible to use in conjunction with information retrieved from
various sources including satellite platforms, airborne and
terrestrial vehicles, and in-situ measurements to model the ever-
changing dynamic of forests. One approach is to use the geological
information-modeling system (GIMS), as presented by Varotsos
and Krapivin (2017), who used GIMS to perform simulations
evolution of the climate-nature-society system.

5.3 Future perspectives for machine
learning and remote sensing in forestry
health assessment

As shown in this current work, remote sensing aided by
machine learning algorithms for forestry health applications is an
active research field. As the methods of processing information
advance and become more sophisticated, there is the possibility of
highly improved forest management practices and contributing to
sustainable forest management. Various studies (Liu et al., 2021;
Onishi and Ise, 2021; Hell et al., 2022; Shovon et al., 2022), reported
improved results in the metrics for tree recognition and tree
classification, demonstrating the capabilities of machine learning
to generate more precise models.

Another area that will continue to benefit from the
improvement of models is the area of wildfire prevention (Jain
etal,, 2020). Correctly predicting fuel moisture content and biomass
is of great help for predicting areas prone to wildfires. As seen in the
reviewed works (Cezkowski et al., 2020; Raddi et al., 2021; Wells

TABLE 3 Publicly available datasets for forestry health assessment.

Dataset Content Information
Information from Visible and infrared spectra. Physical
ANGERS 276 leaves of measurements. Biochemical analysis (Pigment
different species content)
Information from Visible and infrared spectral. Physical
LOPEX 330 samples of Measurements. Biochemical Analysis (Pigment

different species content).

Multiple sensor
data and individual
crown delineation.

Dataset presented by
Weinstein et al., 2021).
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RGB images. Hyper-spectral images. LIDAR
point cloud. Individual image-annotated
crowns. Individual field annotated crowns.
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et al,, 2021; Yao et al., 2021; Narmilan et al., 2022; Nasiri et al., 2022;
Torre-Tojal et al,, 2022), * the use of machine learning algorithms
have helped researchers predict biomass of fine fuels and moisture
content at leaf and canopy level; thus helping identify dangerous
areas for wildfire prevention. Machine learning models, alongside
remote surveillance, carried out by UAV or satellite platforms will
be of great importance for the prevention of disasters and the
correct decision-making in disaster areas Jain et al. (2020).

6 Conclusions

The current state of the art suggests that for regression purposes
(i.e estimating tree features, chlorophyll content, water leaf content,
and soil moisture content among others); machine learning
techniques are suitable. Choosing the imaging systems or sensors
depends on the appropriate input data for the model it could be in
the form of multi-spectral indices or metrics derived from LiDAR
point clouds. However, there is no consensus on which regression
technique achieves better performance.

DL techniques are a common trend for tree identification and
classification tasks; these methods outperform other classification
algorithms such as SVM and random forests, but they present the
withdrawal of not enough data for training and validation purposes.

Most recent research is using multi-temporal information to
improve the classification of trees from aerial images since the
growing stage of trees affects their physical and chemical features.

The characterization of forests and their structure is a complex
task due to the nature of the terrain, mixed and dense vegetation,
constant evolution due to natural causes (different growth stages of
the trees), and external causes (droughts, wildfires, climate change);
therefore similar methodologies might not be suitable depending on
the ecosystem.

The reviewed articles suggest that assessing forest features
through remote sensing and machine learning techniques is a
viable trend; since many ML techniques are being used for
predicting forest health indices. Most recent works started
exploring the use of Deep Learning Models, particularly
convolutional neural networks to perform tree classification
and recognition; these algorithms show great promise in
reducing time for forest inventory and management, however;
generating data for the training process, and creating models for
general purposes are still some barriers in the use of deep
learning techniques.

Case Application

Development of model PROSPECT5 for reconstructing leaf
reflectance (Feret et al,, 2008). Testing machine learning algorithms
for pigment estimation (Koirala et al., 2020; Shi et al,, 2022).

Development of model PROSPECT5 (Feret et al., 2008). Training
machine learning algorithms for pigment estimation Koirala et al.
(2020)

Development of individual crown detection algorithms from RGB and
hyper-spectral images, and LiDAR point clouds Weinstein et al,, 2021).
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Multan, Pakistan

This study proposes an adaptive image augmentation scheme using deep
reinforcement learning (DRL) to improve the performance of a deep learning-
based automated optical inspection system. The study addresses the challenge
of inconsistency in the performance of single image augmentation methods. It
introduces a DRL algorithm, DQN, to select the most suitable augmentation
method for each image. The proposed approach extracts geometric and pixel
indicators to form states, and uses DeeplLab-v3+ model to verify the augmented
images and generate rewards. Image augmentation methods are treated as
actions, and the DQN algorithm selects the best methods based on the images
and segmentation model. The study demonstrates that the proposed framework
outperforms any single image augmentation method and achieves better
segmentation performance than other semantic segmentation models. The
framework has practical implications for developing more accurate and robust
automated optical inspection systems, critical for ensuring product quality in
various industries. Future research can explore the generalizability and scalability
of the proposed framework to other domains and applications. The code
for this application is uploaded at https://github.com/lynnkobe/Adaptive-
Image-Augmentation.git.

KEYWORDS

adaptive image augmentation, deep reinforcement learning, deep Q-learning,
automated optical inspection, semantic segmentation
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1 Introduction

Automated optical inspection (AOI) provides a flexible and
efficient method of object monitoring. In agriculture, AOI can be
used for early screening of leaf diseases to support timely
intervention to prevent leaf rust. Leaf rust is a type of plant
disease also known as red spot disease or sheep beard. There are
4,000 known species of leaf rust that attack a wide range of crops
such as beans, tomatoes, and roses (Liu et al., 2022; Bhatti et al,,
2023). Disease spots first appear as white and slightly raised spots
on the lower cuticles of the lower (older) leaves of mature plants.
Over time, the disease spots become covered in reddish-orange
spore masses. Later, pustules form and turn yellow-green and
eventually black. Severe infestations can cause foliage to chlorosis,
deform, and eventually fall off (Jain et al., 2019; Bhatti et al., 2021;
Lu et al,, 2023; Wang et al.,, 2023; Yang et al., 2022; Zhang et al,,
2022). The spread of this disease will seriously affect agricultural
production and cause huge losses. Thus, detecting plant disease and
rust is very important and effective for protecting plant growth and
development, improving crop yield and quality, reducing pesticide
use, and saving time and cost (Bhatti et al., 2022; Shoaib
et al., 2023).

Artificial intelligence-enhanced AOI methods based on
computer vision and deep learning are promising solutions for
the adaptive identification of plant diseases (Liu and Wang, 2021).
Algorithms that incorporate the two major computer vision tasks—
classification and detection—have been widely used in plant disease
detection. In terms of classification algorithms, Sethy et al. (2020)
used convolutional neural networks (CNNs), ResNet50, to extract
features, which were then fed to a support vector machine (SVM)
for the disease classification, achieving an F1 score of 0.9838. Zhong
and Zhao (2020) proposed three methods based on the DenseNet-
121 deep convolutional network: regression, multi-label
classification, and focal loss function to identify apple leaf
diseases and improve the detection accuracy in unbalanced plant
disease datasets. In terms of detection algorithms, Zhou et al. (2019)
proposed a fast rice disease detection method based on the fusion of
FCM-KM and Faster R-CNN to improve detection accuracy and
reduce detection time. Sun et al. (2020) proposed a CNN-based
multi-scale feature fusion instance detection method based on the
improved SSD to detect corn leaf blight on complex backgrounds,
with the highest average precision reaching 91.83%.

The classification and detection of plant diseases are only
possible to judge whether the disease occurs in certain locations
(Di and Li, 2022; Khan et al.,, 2022; Yan et al,, 2022; Deng et al,,
2023; Wang et al, 2023). Using computer vision segmentation
algorithms, the size and shape of plant rust spots can be obtained
(Wang et al,, 2021; Ban et al., 2022; Shoaib et al., 2022; Zhang et al.,
2022; Dang et al,, 2023; Wang et al., 2023), and the severity of rust
occurrence can be quantitatively evaluated. He et al. (2021)
proposed an asymmetric shuffle convolutional neural network
(ASNet) based on Mask R-CNN to segment three diseases,
including apple rust, with an average segmentation accuracy of
94.7%. Lin et al. (2019) proposed a U-net-based CNN to segment
powdery mildew from cucumber leaf images at the pixel level.
Unfortunately, compared with the classification and detection of
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diseases, there is still little research on applying deep learning
segmentation networks for rust identification.

In the study of rust detection, the size of the available data set is
limited, and manual labeling requires a lot of time and effort. The
traditional solution to image augmentation is to perform simple
image processing, which has been verified to improve the
performance of plant image segmentation. Lin et al. (2019)
proposed improving the U-net segmentation network by using
image augmentation technology to expand the training set to
train the semantic segmentation model better. Zhang et al. (2022)
proposed the DMCNN model, which obtained twice the data after
image augmentation and achieved an average apple disease
detection rate of more than 99.5%. The research proves that
sample size and data quality are critical to improving detection
accuracy. Unfortunately, whether there is redundancy in the data
set obtained by image augmentation or whether the data quality is
good or bad (Elmore and Lee, 2021; Dang et al., 2023; Xiong et al.,
2023) is a question worth exploring. Blind pursuit of a sample size
for inappropriate image augmentation may adversely affect
the model.

Several image augmentation methods have been proposed, such
as rotation and cropping. However, no single approach can always
outperform others, and the image quality generated by these
augmentation methods is uncertain. In other words, the
bottleneck of current image augmentation methods is that it is
difficult to define the optimal augmentation operation to achieve the
most significant performance improvement for semantic
segmentation. Currently, multiple augmentation methods are
generally used together: all methods for the complete image set,
one for a separated subset, or one for a randomly sampled subset.
However, none of these assignment mechanisms can guarantee the
best match between an image and an available augmentation
method. To overcome this problem, deep reinforcement learning
(DRL)-based image augmentation methods have been proposed
(Yang et al., 2023). DRL is a machine learning technique that
enables a software agent to optimize its decision-making policy by
interacting with its environment (Zhou et al., 2021). Le et al. (2022)
stated that DRL can automatically learn how to augment datasets
effectively. Qin et al. (2020) developed a novel automatic learning-
based image augmentation method for medical image
segmentation, using DRL to model the augmentation task as a
trial-and-error process.

However, image augmentation and image segmentation were
previously trained in separate ways (Di and Li, 2022). The image
segmentation results cannot provide feedback to the DRL-based
image augmentation model. Therefore, we propose a DRL-enabled
adaptive image augmentation framework based on the Deep Q-
learning (DQN) algorithm and the semantic segmentation model,
DeepLab-v3+, for apple rust detection. DQN learns the Q-value
function with a deep neural network and uses the experience
playback and the target network to improve the stability and
learning effect (Xu et al., 2022). The main contributions of this
study are as follows:

(1) A DRL-enabled adaptive image augmentation framework is
proposed to adaptively select the best-matched image
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augmentation methods according to the image features.
This way, an effective augmented image set is constructed
from the original image set.

(2) The DeepLab-v3+ model is applied. It is pre-trained by the
original image set and retrained in conjunction with the
augmentation image set. The model is retrained in a
transfer-learning way, featuring fast fine-tuning. The
retrained model outputs average performance over the
test image set as an evaluation index for the augmented
image. Furthermore, the evaluation index provided
feedback to the DRL model as a reward.

(3) The superiority of the DRL-enabled adaptive image
augmentation framework is verified by comparing it with
other image augmentation methods and semantic
segmentation models over a set of performance indexes.

(4) The main finding is that the DRL-enabled adaptive image
augmentation framework can best match image
augmentation methods with the image features and the
underlying segmentation model.

This paper provides an end-to-end, robust, and effective
method for segmenting rust spots at the pixel level, providing a
valuable tool for farmers and botanists to assess the severity of rust.

2 Method

The DRL-enabled adaptive image augmentation framework is
depicted in Figure 1. The DQN model acts as the Agent, and the
image set is treated as the environment. The Agent and the
Environment repeatedly interact through the signals: state s;,
action a;, and reward r;. The state s; and the reward r; are output
by the environment to the Agent while the action g, is determined
by the Agent and executed in the environment. The interaction
process consists of episodes, which in turn comprise multiple steps.
The experience data are collected during the interaction process and
used to train the Agent until the Agent can best match the
augmentation methods and the images. In this specific scenario,
the Agent can augment a given image appropriately so that the
augmented image set can enable the segmentation model to output
better performance.

The detailed interaction process is illustrated in Figure 2. A
group of objects, e.g., images, states, and actions, are represented as
a vector when the precedence relationship should be maintained;
otherwise, the group of things is encapsulated with a set. In any
round of interaction ¢, the geometric and pixel indicators are
applied to extract the image features of the father image vector
I,_,, which are then used to construct the state vector s,. After that,
the action vector a, is determined based on the state vector s, and
the Agent policy function my(a,|s;). The actions in a, represent
image augmentation methods selected individually for each image
in I, ;. Therefore, a, will produce a child image vector I, after being
executed. After that, the child image vector is combined with the
pre-training image set I, to construct a retraining image set. Then,
the retraining image set is used to retrain the pre-trained image
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segmentation model, DeepLab-v3+. Finally, the retrained model is
tested on the test image set I, and the testing results are used to
generate the reward r,. At this moment, the data (s;,a,,7;) can
be collected.

In the next round, the I; is used as the father image vector, and
the above process is repeated so that the data (s,,;,4a;,,,741) can be
collected. In addition, the data (s;,a;,;,5,,;) need storing in the
experience replay buffer for training the Agent policy function 7y(
a;|s;). After the process is repeated T times, an episode is said to be
completed. To begin the next episode, reset ¢ to 1, and restore the
pre-training image set I, as the father image vector. The number of
episodes, L, is another hyperparameter like the number of steps T
within an episode, which means a total of L by T steps should
be executed.

The Agent policy function my(a,|s;) evolves during the above
interaction process. A number of S samples are extracted from the
experience replay buffer and applied to update the parameter 6 of
7o(a;ls;). The hyperparameters, e.g., L, T, and S need adjusting and
7o(ay|s;) need updating till the performance is satisfied.

2.1 Image set and image vector

The original image set is divided into two subsets. Twenty
percent of the images are sampled randomly from the original
image set, forming the test image set I, that is used to test the
DeepLab-v3+ model. The remaining 80% of images are collected by
a subset denoted as I, which is called the pre-training image set. Let
Iy={ITop logs o Tom} = {(x(1)>y(1))> (x(z),)/g),..., (x(r)n’y(r)n)}’ where x}
and y? are the ith image and its corresponding label image, and m is
the total number of samples in the image set. Through the image
augmentation procedure, an image in I, | (t = 1... T) is applied to
an image augmentation method to produce an augmented image,
and all the augmented images make up the augmented image set
L={I L I} = { (1) (0, 92)s s (oY)}

During the DQN augmentation process, the image sets are
represented as vectors. In an image vector, the images are queued in
a line, each occupying a fixed and unique position. At the first step
of an episode, i.e., t = 1, I is used as the father image vector denoted
as I; ;. Then the images in I, ; are augmented to produce the child
image vector denoted as I;. The image vectors are used instead of
image sets because the corresponding relationship between I,_; and
I; should be maintained. In other words, the first image in I; is
produced from the first image in I, | and so forth. It is noted that
the images in I, ; are applied to image augmentation
methods independently.

The pre-training image set I, alone is used to pre-train the
DeepLab-v3+ model. In contrast, I, is combined with the
augmented image set I, to retrain the pre-trained DeepLab-v3+
model to verify the effect of I,. In other words, the I, and I, are
used to pre-train and test the semantic segmentation model
DeepLab-v3+. The pre-trained DeepLab-v3+ model is retrained
and tested by [,U I, and I,; to see the influence of the augmented
image set I, on the pre-trained model.

In the next step, the newly produced image vector I, instead of
I,y is used as the father image vector to produce its child image
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vector I,,,. Then, I, is united with I, to construct another
retraining image set to test the augmentation effect of I,,; based
on the pre-trained DeepLab-v3+ model. To sum up, the newly
produced child image vector is used as the father image vector in the
next step until the episode ends. However, to begin a new episode,
the pre-training image set I is used as the father image vector again,
and the image vectors produced in the last episode are discarded. It
is noted that the pre-trained DeepLab-v3+ model is restored in
every retraining process and is used as a base model to observe the
effect of the augmentation methods on the augmented image sets.

2.2 MDP model for DRL

The DRL-based optimization features a Markov decision
process (MDP) (Han et al, 2021). The Agent selects an action
from the candidate’s actions based on the current state of the
environment. The execution of the action will introduce a state
change to the environment which in turn generates a reward to the
Agent. The Agent decides (i.e., selects an action) based on the
current state only, not depending on the previous states. This design
contributes to simplifying the Agent policy function but requires
sophisticated state representation. The reward guides the evolution
of the policy function. Therefore, maximizing cumulative
compensation should correspond to the best selection policy of
augmentation methods for any given image set. Although the
single-step reward can be positive (a prize), negative (a penalty),
or zero, the Agent should tolerate the short-term penalty while
pursuing the maximum cumulative reward. The actions are
candidate image augmentation methods that have been proven to
be effective in certain circumstances. The best state-action match,
however, is still unknown, leaving optimization space for DRL.
Therefore, the state, action, and reward design will significantly
influence DRL’s optimization quality (Ladosz et al., 2022).

2.2.1 State

An amount of information is extracted from the image vector to
describe the state of the environment. In this study, each image’s
geometrical information and pixel information comprise a state for a
given image vector. At first, one segmentation model, called
Leafldentifier, is trained to separate a leaf from its background.
Furthermore, the other segmentation model, called RustIdentifier,
is trained to separate the rust from a leaf. The Leafldentifier and the
RustIdentifier models are developed based on the DeepLab-v3+
model but prepared with different datasets. The image set I, with
the leaf label is used to train the Leafldentifier model, while the image
set I with the rust label is used to train the RustIdentifier model.

After that, the centroid and area of the leaf and the rust can be
calculated. In addition, the pixel values can be averaged according to
the RGB color channels for the leaf and the rust, respectively.
Therefore, a state element that describes the ith image is:

Sti = {xl,i’)’l,i) AL Rijs Giis Bijs X0 s Vi Ar o Ry G By

where, x;; and y;; are the centroid coordinates of a leaf, A;; is the
area of a leaf, and R;;, Gj;, and Bj; are the average pixel values of a
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leaf, corresponding to the RGB color channels, respectively; x, ;, ¥,
A, R.;, G,;, and B,; are the corresponding elements for the rusts
on the leaf.

Therefore, the state vector has the same number of elements as
the father image vector, and their elements have a one-to-one
corresponding relationship.

2.2.2 Action

Eight kinds of image augmentation methods are selected as
actions, as shown in Table 1. The original image operation does not
change the image. The vertical flip operation makes an image flip
vertically, while the horizontal flip operation makes an image flip
horizontally. However, the vertical and horizontal flip operations
apply the two operations together to a single image. The clockwise
rotation operation causes an image to rotate 30° clockwise around
the center point. The affine transformation is a type of geometric
transformation that preserves collinearity and the ratios of distances
between points on a line. The crop operation is to crop the original
image and then resize it to the original size. When applying the
noise-adding operation, random white Gaussian noise will be added
to a given image. Each image augmentation method is assigned a
unique number, i.e,, 0, 1, 2,...7. In this study, a;(i = 0 ... 7) is used to
represent the eight candidates’ actions, and a,(t = 1... T) is used to
indicate the action vector consisting of actions selected
independently for each image in the decision step t. Therefore,
the different elements of a; possible correspond to the same a;.

2.2.3 Reward

The reward is a numerical evaluation of an action selected by
the Agent:

ry = 100(d; - d,_;) (1)
where, d, refers to the Dice ratio, defined as follows:

2

dt E PIoU (2)

‘Itest | (%,97) E e

where, |I .| is the number of elements in the test image set I,
and Py € [0, 1] represents the segmentation effect of the retrained
DeepLab-v3+ model on an image of I;,:

70 5l

)71U)’j

Py = > Yj = (-xj’yj) E ey (3)

where, j; is the predicted label image output by the retrained
DeepLab-v3+ model, and y; is the expected label image, both for the
image x; in the test image set Iy [7; N yj| and [y; Uy, are the
intersection and union area of the predicted and expected label
images, respectively:

Vi = F 05 001> % S (6,)) S Lies “@

where f denotes the retrained DeepLab-v3+ model, and 6, ;
denotes the parameters updated by the retraining image set ,U 1I,.
To sum up, d! indicates the overall influence of the selected
augmentation methods, a,, for a given image vector I;. As every I is
used to retrain the same pre-trained Deeplab-v3+ model, and the
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TABLE 1 Action definition.

a; Actions Examples cription

L The resultant image is the
0 Original image .
same as the original one.

The resultant image

mirrors the original one

1 Vertical flip . &
along the horizontal

center line.

The resultant image

. . mirrors the original one

2 Horizontal flip . &
along the vertical center

line.

The original image is
Vertical and flipped vertically and
horizontal flip horizontally to produce

the resultant image.

(Continued)
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TABLE 1 Continued

a; Actions Examples Description

€
€ (@

The original image is
rotated 30° clockwise
Clockwise .
. around the center point
rotation

to produce the resultant

image.

The original image is
transformed with the
matrix [[1, 0.2, 0], [0, 1,
0]] to produce the
resultant image.

Affine
transformation

The first 25 rows and 25
columns of pixels of the
original image are

6 Crop trimmed and then the
image is resized to 512 x
512 pixels to produce the

resultant image.

Some random white
Gaussian noise is added
7 Noise-adding to the original image to
produce the resultant

image.

Frontiers in Plant Science frontiersin.org
157


https://doi.org/10.3389/fpls.2023.1142957
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

retrained DeepLab-v3+ model is tested on the same test image set
I, di can be used for augmentation effect comparison and
reward calculation.

2.3 Semantic segmentation model

A semantic segmentation model is integrated into the
framework to evaluate the image augmentation effect. Based on
the evaluation results, rewards can be produced, and feedback can
be provided to the DQN model, which adjusts the Agent policy
function accordingly.

2.3.1 Model selection

At present, plant disease segmentation methods based on deep
learning mainly include semantic segmentation and instance
segmentation. Instance segmentation is more potent as it can
distinguish different objects, while semantic segmentation can
only determine things from the background. However, the
semantic segmentation method is a better choice for this study, as
it can meet the verification requirements, is simple and requires less
computing resource consumption.

Deep learning-based semantic segmentation methods can
improve accuracy and efficiency significantly compared with
traditional methods. Currently, commonly used deep learning
semantic segmentation models include FCN (Long et al., 2015),
U-Net (Ronneberger et al., 2015), SegNet (Badrinarayanan et al.,
2017), and DeepLab (Chen et al, 2014). The specific analysis is
shown in Table 2 (Chen et al, 2017). It can be seen that the
DeepLab-v3+ model (Chen et al,, 2018) has the highest accuracy
and the best application effect. Therefore, the DeepLab-v3+ model
is used in this study.

The DeepLab-v3+ model can convert an image into a prediction
highlighting diseased areas from the background (Tian et al., 2019).
In the rust detection application, each pixel in the apple rust leaf
image is assigned to one of the mutually exclusive classes: disease
spots VS background, to complete the segmentation of disease spots
from the background (Kuang and Wu, 2019).

10.3389/fpls.2023.1142957

2.3.2 Deeplab-v3+ model

As shown in Figure 3, the DeepLab-v3+ model adds a simple
and effective decoder layer to the DeepLab-v3 model to refine
the segmentation results. Furthermore, in the Encoder part, the
Atrous Spatial Pyramid Pooling (ASPP) module is constructed
using Atrous convolution and the Spatial Pyramid Pooling
module (SPP). Atrous convolution is the process of adding
spaces between convolution kernel elements to expand the
convolution kernel. The SPP performs pooling operations at
different resolution levels to capture rich contextual
information. Consequently, five different outputs are obtained
through the five distinct processes of ASPP to produce a high-level
feature, and the Atrous convolution outputs a low-level
component. In the Decoder part, the high-level feature is first
up-sampled by 4 and then connected with the low-level quality.
The concatenation passes through 3 x 3 convolutions and is
then up-sampled by 4 to give the predicted label image.

2.3.3 Model evaluation

To evaluate the segmentation effect of the DeepLab-v3+ model
from multiple perspectives, the confusion matrix is calculated
(Chen and Zhu, 2019), as shown in Table 3.

o Krp is the true positive, indicating the number of disease spot
pixels that are correctly classified into the disease spot
region.

o Kyp is the false positive, indicating the number of background
pixels that are wrongly classified into the disease spot
region.

o Kry is the true negative, indicating the number of
background pixels that are correctly classified into the
background region.

o Kgy is the false negative, indicating the number of disease
spot pixels wrongly classified into the background region.

After that, five performance indexes are defined based on Krp,
Kgp, K1y, and Ky (Wang et al., 2020).

TABLE 2 Performance comparison of deep learning-based semantic segmentation models.

Proposed Network Segmentation Trainin :
P 9 ning Algorithm Features
time model accuracy time
2014 FCN C B Based on the CNN network, it introduces a deconvolution layer.
It combines dilated convolutions with DCNN networks and optimizes with fully connected
2014 DeepLab-v1 B C .
conditional random fields.
2015 U-Net B - It is completely symmetrical and the decoder is added with convolution and deepening.
2016 DeepLab-v2 B c It uses‘dilated. convolutional layers instead of up-sampling and uses multi-scale spatial
pyramid pooling.
2017 SegNet c c It util%zes the encoder-decoder network structure and recovers the image size by up-
sampling.
It uses an encoder-decoder network structure to improve the segmentation of object edges
2018 DeepLab-v3+ A C i . X
and introduces dilated convolutions.

A. Very Good, B. Good, C. Fair.
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FIGURE 3
The network structure of the Deeplab-v3+ model.
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_ Krp + Ky
Krp + Krn + Kpp + Kin

P, (5)

where, P, € [0, 1] tells how many pixels are correctly classified
relative to the total number of pixels.

P 1 ( Krp Ky >
MPA = 5 +
2 \Kp +Kpp  Kpn + Kpy

where, Pyps € [0,1] averages correctly classified disease spot

(6)

pixels and background pixels relative to the predicted total disease
spot pixels and the total background pixels, respectively.

Krp

— (7)
Krp + Kgp

Pepp =
where, Pcpy € [0,1] tells how many disease spot pixels are
correctly classified relative to the predicted total disease spot pixels.

Krp
Krp + Kpx + Kpp

Py = (®)

where, Pj,y € [0,1] tells how many disease spot pixels are
correctly classified relative to the union of the predicted and
expected disease spot pixels.

1 K K
Pyviou == ( s + N ) %)
2 \Krp + Kgn + Kgp - Kpn + Kpp + Kin

TABLE 3 Confusion matrix of disease spot detection.

Pixel point classification area

where, Pyy,y € [0,1] averages correctly classified disease spot
pixels and background pixels relative to the union of the predicted
and expected disease spot pixels and the union of the predicted and
expected background pixels, respectively.

2.4 Model training

According to the MDP mentioned above and semantic
segmentation models, the main training steps are summarized as follows:

o Preprocessing: Producing leaf labels and rust labels for the
original image set and dividing it into the pre-training
image set I, and the test image set I,.; pre-training the
DeepLab-v3+ model with I, I, and the leaf labels to
generate the Leafldentifier; pre-training the DeepLab-v3+
model with Iy, I,,y, and the rust labels to generate the
RustIdentifier; selecting DQN as the specific DRL model,
and initializing the decision-making Q-function Q; and the
target Q-function Q, for DQN.

« Image augmentation: Taking the child image vector in step
t—1,1ie, I, i, as the father image vector in step f; using the
Leafldentifier, RustIdentifier, and the geometric and pixel
indicators to process the images in I, |, one by one, to

Expected class

‘ Disease spot
Predicted class
‘ Background
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generate the state vector s,, i.e., the processing result of one
image contributes one element in s;; using Q, to determine
one action for each state element, generating the action
vector a,, and one state element corresponds to one action
element; executing the action elements in 4, to the
corresponding image elements in I, ; to produce the child
image vector I;; getting s, from I,.

o Verification: Constructing the retraining image set, the
element of which is [,U I, that means I, plus I, gives a
training image set; restoring the pre-trained DeepLab-v3+
model; fine retraining the model with I,U I; testing the
retrained model against I,.y, storing the results, and
calculating the reward r;; storing (s;, a;, 14,5,4;) into the
experience replay buffer.

« DQN network updating: Sampling a batch of data,
(s, ai» 1,841), from the experience replay buffer;
calculating the loss function, L(6), with Q;, Q,, and the
sampled data; updating Q; with L(0) = [r; + m;ixQ2 (si41> @

) — Qi (s;» a;)]* and the backpropagation algorithm; copying
the parameters of Q, to Q, every C steps to update Q,. Q, is
updated C times slower than Q, for improving stability.

o Starting the next step or a new episode: The above steps
except preprocessing are repeated for every step of an
episode until the episode ends. To start a new episode,
the pre-training image set I, is restored as the father image
vector for the first step of the episode, and the above steps
except preprocessing are repeated until the episode ends.

In summary, the specific DRL algorithm, DQN, is used in this
study to organize an adaptive image augmentation scheme. The
DQN is assisted with the geometric and pixel indicators for state
extraction, the DeepLab-v3+ model for verifying the augmented
images and generating the reward, and the image augmentation
methods as actions. The image and its accompanying label image
are processed in the same way by the selected image augmentation
method. The DeepLab-v3+ model is pre-trained once and restored
for every retraining operation. DQN parameters keep updating
through all the steps and episodes, i.e., they are not reset or restored
from a previous step or episode.

3 Experimental results and discussion
3.1 Data sources and image preprocessing

The experimental data comes from the open-source apple leaf
disease image dataset on the Baidu AI Studio Development
platform, with a resolution of 512 x 512 pixels. Among them,
there are 438 images of apple leaf rust, including images collected in
various environments, all of which are used in this study. Some
representative images are shown in Figure 4A. The Elseg software
(Xian et al, 2016) uses the latest deep learning algorithms and
models to greatly reduce annotation effort. Therefore, it is used to
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mark the image, distinguishing the disease spot areas and the whole
leaf from the background, to produce labels, as shown in Figures 4B,
C. The label images have the same resolution as the original images.

The image set was divided according to the ratio of 8:2, and the
image and its label image would not separate during division. As a
result, there were 350 images in the pre-training image set I, and 88
images in the test image set I, ;, respectively.

3.2 DeepLab-v3+ model pre-training

The training hardware platform consisted of a Platinum 8358P
CPU, a GTX 3090 GPU, and 24 GB of running memory. The
software was built with the deep learning framework Pytorch. The
testing results indicated that the DeepLab-v3+ model could process
about 379 sets of images per second. During training, it took about 4
s to complete each epoch. As DeepLab-v3+ was set to 1,000 epochs
in our experiment, it took about 4,000 s in total to complete the pre-
training of the DeepLab-v3+ model.

The loss curve and the five performance indexes are shown in
Figure 5. The DeepLab-v3+ model converges after about 239
epochs, where the loss is about 3.42e—3. The average Py, Pppa,
Puious Popa, and Py are 0.9956, 0.9444, 0.9131, 0.8905, and
0.8307, respectively. In the verification stage, the pre-trained
DeepLab-v3+ model is retrained with [,U I, in a fast-fine-tuning
way. If the retrained DeepLab-v3+ model can output better
performance, the augmented images I, are said to improve
segmentation performance, which means the DRL model can
select proper augmentation methods.

3.3 DQN model training

The hardware platform for DQN training consisted of a 24
vCPU AMD EPYC 7642 48-Core processor and a single NVIDIA
GTX 3090 GPU with 24 GB of running memory. The DQN
algorithm was developed with PyTorch and Python 3.8.10. For
each training step of the proposed method, the image
augmentation set could be generated in 25 s, and it took about
165 s to complete the parameter fine-tuning of the DeepLab-v3+
model and about 0.003 s to update the parameters of DQN.
Therefore, it took about 3.16 min to complete each step and
9.48 min to complete one episode for the proposed method. As
DQN was set to 300 episodes in our experiment, it took about 2,844
min in total.

As shown in Figure 6, the reward is very small at the beginning,
i.e., =2.975. As the training process progresses, the reward increases
significantly and then fluctuates around zero. To sum up, the results
show that the reward increases from —2.975 to 0.9826 during DQN
training, achieving an improvement of nearly 3.958. That is to say,
the effect of the DQN model on disease spot segmentation is greatly
improved, which proves that the model can automatically learn how
to adopt reasonable and most effective image augmentation
methods according to the image features.

frontiersin.org


https://doi.org/10.3389/fpls.2023.1142957
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

10.3389/fpls.2023.1142957

FIGURE 4

Samples of (A) the apple rust images, (B) the rust labels, and (C) the leaf labels.

3.4 Performance comparison of the image
augmentation methods

The DQN model was compared with every single method listed
in , i.e,, No. 0: original image; No. 1: vertical flip; No. 2:
horizontal flip; No. 3: vertical and horizontal flip; No. 4: clockwise
rotation; No. 5: affine transformation; No. 6: crop; and No. 7: noise
adding. For the ith (i=0...

images in I, were augmented by the same augmentation method to

7) image augmentation method, the
produce an augmented image set. Then I, was combined with the

augmented image set to construct a retraining image set. The
retraining image set was used to retrain the pre-trained DeepLab-
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v3+ model, and the retrained model was tested on the I;,;. This way,
a separate set of performance indexes, e.g., P,y and Pcpy , were
produced for each image augmentation method for comparison.
shows the augmentation effect of different methods.
The original image augmentation method achieves an average P,y
value of 0.8117, which is the lowest. The affine transformation
augmentation method achieves an average Pcp, value of 0.9059,
which is also the lowest. In contrast, the DQN augmentation
method achieves the best performance, with Pj,;; value of 0.8426
and Pcp, value of 0.9255. Therefore, this experimental result
confirms the effectiveness of the DQN model in adaptively
selecting the augmentation methods according to the image
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features. The testing results showed that the DQN model could
generate 12 augmentation image sets (with labels) per second, and
the performance was maximum.

3.5 Performance comparison of the
semantic segmentation models

The DeepLab-v3+ model (denoted as DQN-DeepLab-v3+) was
compared with the FCN and SegNet models. Firstly, the DQN-
DeepLab-v3+, FCN, and SegNet models were pre-trained with I,
and I, respectively. Secondly, let the proposed DQN model
output an augmentation image set. Thirdly, a retraining image set
was constructed with I, and the augmented image set, and then the
retraining image set was used to retrain the DQN-DeepLab-v3+,
FCN, and SegNet models, respectively. Finally, the retrained DQN-
DeepLab-v3+, FCN, and SegNet models were respectively tested on
L. to get a separate set of average performance indexes
for comparison.

0.5 4

0.0 H
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FIGURE 6
Training histories of the reward.
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DeepLab-v3+ with random augmentation (denoted as RanAug-
DeepLab-v3+) was also constructed for comparison. RanAug-
DeepLab-v3+ was pre-trained, retrained, and tested following the
same procedure as the DQN-DeepLab-v3+, FCN, and SegNet
models. The only difference was that a random augmented image
set was used instead of the expanded image set output by the DQN
model. Furthermore, the test results of the pre-trained DeepLab-v3+
model were used as the baseline, as any augmented images did not
retrain it.

As shown in Figure 8, the proposed DQN-DeepLab-v3+ model
achieves the best performance on all the indexes. Py, Pypa> Puiou
, Pcpa» and Py reaches 0.9959, 0.9617, 0.9192, 0.9255, and 0.8426,
respectively, which are up to 0.2%, 3.7%, 3.9%, 7.3%, and 7.6%
higher than other methods. In contrast, the SegNet achieves the
worst performance, mainly by focusing on optimizing memory
usage. The version of the FCN model is also relatively low due to the
limited size of the perceptual area, easy loss of edge information,
and low computational efficiency. These results confirm that the
DQN-DeepLab-v3+ model is superior to the FCN and SegNet
models. On the other hand, some performance indicators of
RanAug-DeepLab-v3+ are lower than those of DeepLab-v3+,
indicating that the random augmentation tends to harm the
segmentation performance. In contrast, the DQN-DeepLab-v3+
model surpasses DeepLab-v3+, showing adaptive augmentation
can improve segmentation performance.

4 Conclusion

Deep learning-based automated optical inspection can benefit
from image augmentation, which enlarges the image quantity for
training and testing. However, one significant challenge is that any
single image augmentation method cannot achieve consistent
performance over all the images. To address this issue, a DRL-
enabled adaptive image augmentation framework is proposed in
this paper. The specific DRL algorithm, DQN, is used in this study
to organize an adaptive image augmentation scheme. Given an
image vector, segmentation models and key indicators are used to
extract image features and generate the state vector; the Agent
policy function determines the action vector based on the state
vector; and the actions produce an augmented image vector. To

frontiersin.org


https://doi.org/10.3389/fpls.2023.1142957
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

10.3389/fpls.2023.1142957

Bl P, =P

0.845 4 — 0.930
0.840 — i
1 — 0.925
0.835 | _
A 0.830 — ~ 0.920
4 e
1) 1 | )
8 0.825 o
E i ~ 0915
5 0.820 - i o
2 ] o
S 0.815 - 0910 5
< 1 L <
0.810
J —~ 0.905
0.805 |
0.800 - — 0.900
No.0  No.l No.2 No3 No4 No5 No6 No7 DQN
. augmentation
Augmentation methods e
FIGURE 7
Augmentation effect of different methods.
1.00 5 -~ - - - -
<
3 0.95
.8
©
g
£ 0.90 4
Gy
o
O
=
S 0.85 1
=
2
g
= 0.80 1
2
—— PA +PMPA+PM19U
P, P,
0.75 - —— L —O— Lhov
T x T * T ¥ T g T
SegNet FCN DeepLab-v3+ RanAug- DQN-DeepLab-v3+

FIGURE 8
Segmentation effect of different models.

evaluate the image augmentation effect, a raised image is used to
fine-tune a pre-trained semantic segmentation model, DeepLab-v3
+, and the resultant model is tested against a fixed test image set.
Based on the evaluation results, the reward is constructed, and
feedback is sent to the DQN model, which updates the Agent policy
function accordingly. Through iterations, the Agent policy
function is optimized. The proposed DRL-enabled adaptive image
augmentation framework achieves better augmentation
performance than any single image augmentation method

Frontiers in Plant Science

DeepLab-v3+

and better segmentation performance than other semantic
segmentation models. The experimental results confirm that the
DRL-enabled adaptive image augmentation framework can
adaptively select augmentation methods that best match the
images and the semantic segmentation model.

Future work should consider more advanced image
augmentation methods, segmentation targets, and a more flexible
and efficient DRL framework to provide more effective detection
schemes for complex AOI application scenarios.
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Soybean is an important grain and oil crop worldwide and is rich in nutritional value.
Phenotypic morphology plays an important role in the selection and breeding of
excellent soybean varieties to achieve high yield. Nowadays, the mainstream manual
phenotypic measurement has some problems such as strong subjectivity, high labor
intensity and slow speed. To address the problems, a three-dimensional (3D)
reconstruction method for soybean plants based on structure from motion (SFM)
was proposed. First, the 3D point cloud of a soybean plant was reconstructed from
multi-view images obtained by a smartphone based on the SFM algorithm. Second,
low-pass filtering, Gaussian filtering, Ordinary Least Square (OLS) plane fitting, and
Laplacian smoothing were used in fusion to automatically segment point cloud data,
such as individual plants, stems, and leaves. Finally, Eleven morphological traits, such
as plant height, minimum bounding box volume per plant, leaf projection area, leaf
projection length and width, and leaf tilt information, were accurately and
nondestructively measured by the proposed an algorithm for leaf phenotype
measurement (LPM). Moreover, Support Vector Machine (SVM), Back Propagation
Neural Network (BP), and Back Propagation Neural Network (GRNN) prediction
models were established to predict and identify soybean plant varieties. The results
indicated that, compared with the manual measurement, the root mean square error
(RMSE) of plant height, leaf length, and leaf width were 0.9997, 0.2357, and 0.2666
cm, and the mean absolute percentage error (MAPE) were 2.7013%, 1.4706%, and
1.8669%, and the coefficients of determination (R2) were 0.9775, 0.9785, and
0.9487, respectively. The accuracy of predicting plant species according to the six
leaf parameters was highest when using GRNN, reaching 0.9211, and the RMSE was
18.3263. Based on the phenotypic traits of plants, the differences between C3, 47-6
and W82 soybeans were analyzed genetically, and because C3 was an insect-
resistant line, the trait parametes (minimum box volume per plant, number of leaves,
minimum size of single leaf box, leaf projection area).The results show that the
proposed method can effectively extract the 3D phenotypic structure information of
soybean plants and leaves without loss which has the potential using ability in other
plants with dense leaves.

KEYWORDS

structure from motion, soybean plant, 3D point cloud, plant phenotype, 3D
trait extraction
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1 Introduction

Soybean is an important grain and oil crop worldwide and is
rich in high-quality protein, unsaturated fatty acids, isoflavones,
and other nutrients (Zhang T et al, 2019). The phenotypic
morphological characteristics embodied in the growth process
play an important role in the selection of excellent soybean
varieties (Zhu et al., 2020), and the phenotypic state of plants is
the physical manifestation of the genotype (Alonge et al., 2020),
which is not only of great significance for the quantitative analysis
of genotype-environment interactions (Barker et al, 2019; Van
Eeuwijk et al., 2019), but also for breeding activities, such as
optimal cultivation, fertilization, and irrigation of plants
(Chawade et al, 2019; Li et al, 2021). Phenotypes are prone to
changes in response to genetic mutations and environmental
influences (Vogt, 2021), which are the main bottlenecks limiting
the expansion of genomics in plant sciences, animal biology, and
medicine. Different genes determine different insect resistance in
plants, affecting plant phenotypes (Tyagi et al., 2020). Therefore,
accurate and non-destructive acquisition of soybean phenotypic
parameters is essential for the study of soybean plants and breeding
of insect-resistant varieties.

Chen et al. (2021). constructed the 3D model of soybean
plant can efficiently obtain its geometric characteristics and
morphological traits, which is essential for understanding plant
growth and plant response to biotic and abiotic stresses, so as to
estimate the growth rate of soybean plants and predict the tolerance
of stress, it greatly reduces the marginal cost of collecting multiple
morphological traits across multiple time points, which has
important theoretical significance and practical value for soybean
variety selection and breeding, scientific cultivation and fine
management (Wang et al.,, 2022). By means of the 3D model of
the plant, the growth situation and specific changes of the plant can
be quickly understood, which contributes to screen out excellent
varieties with high quality and strong insect resistance, and can also
lay the foundation for the genetic improvement of soybean and
breed better varieties (Xue et al., 2023).

The traditional methods used to obtain plant phenotypic
parameters include manual measurement, two-dimensional (2D)
image measurements, and precision instrument measurements.
Manual measurements are slow, costly, and subjectively
inaccurate (Gage et al., 2019), which can easily damage plants
during measurement. When plant phenotypic parameters are
measured based on 2D image technology (Das Choudhury et al.,
2020; Li et al., 2020; Omari et al., 2020; Kuett et al., 2022), critical
spatial and volumetric information, such as thickness, bending, and
orientation, is easily lost during data conversion from three-
dimensional (3D) to 2D states, and the morphology will also be
blocked from different perspectives (Martinez-Guanter et al., 2019).
Precision instruments, such as handheld laser scanners (Artec EVA
laser scanners and FastSCAN laser scanners) (Ma et al., 2022), 3D
laser scanning, and radar technology (FARO Focus3D 120 laser
scanning of ground objects) (Junttila et al, 2021; Nguyen et al,
2022), are often used to measure plant phenotypic traits. Although
it has a high resolution and can reconstruct the 3D model of the

Frontiers in Plant Science

10.3389/fpls.2023.1181322

plant with high precision and record the phenotypic information of
the plant (Ao et al., 2022), its acquisition speed is slow, the
equipment is expensive, and the lack of color information for the
obscured parts of plants fails to accurately reflect phenotypic traits.
In addition, for automatic analysis of plant phenotypic information,
3D point clouds generated by laser scanners must be correctly
extracted from a large amount of 3D data and classified for this
purpose. The high cost and limited availability of laser-scanning
equipment hinder its wide applications.

Recently, scholars have been increasingly interested in the
structure from motion (SFM) algorithm based on multi-view
stereo measurement, and a series of exploratory studies have
been carried out in the fields of geographical environment and
agriculture. The 3D model can be automatically reconstructed
according to overlapping 2D digital image sets (Jiang et al.,
2020), which has the advantages of being self-calibrated, less
constrained by the environment, and functional both indoors
and outdoors, and has been widely used in 3D reconstruction
(James et al., 2019; Swinfield et al., 2019). Ewertowski et al.
(2019) used UAV combined with this technology to quickly and
ultra-high-resolution 3D reconstruction of glacier landforms,
and drew the terrain related to glaciers in detail. In the field of
agriculture, He et al. (2017) used this technology to obtain 3D
models of strawberries and used custom software to process
point cloud data and obtain seven agronomic traits of
strawberries. Huang et al. (2022) used the DoidiltenGAN
image enhancement algorithm combined with SFM-MVS
algorithm to develop a set of agricultural equipment that could
accurately perceive the growth of crops under low light. Hui et al.
(2018) used this technology to obtain 3D point clouds for
cucumbers with flat leaves, peppers with small leaves, and
eggplants with curly leaves. With the help of precision
instruments and Geomagic Studio software, they measured five
characteristic parameters of the plant, including leaf length, leaf
width, and leaf area, and analyzed the errors between them. In
(Xu et al., 2019), a UAV was used in combination with this
technology to obtain a 3D model of cotton, and a DEM was used
to measure four phenotypic traits, such as plant height and
canopy coverage. In (Piermattei et al., 2019), this technology was
used to obtain 3D point clouds of trees and four parameters, such
as DBH and the number of trees. With the rising demand for
different types of phenotypic information from 3D point clouds,
Rahman et al. (2017) explored future research on volume
measurement and modeling using this method to obtain
3D models.

These studies show that the SFM algorithm has good potential
in the field of plant phenotype detection. However, at present, the
analysis of phenotypic trait parameters of plants is limited, most
software is used, and there is a lack of technology for reconstruction
and phenotype measurement of plants with various and dense
leaves. Therefore, in this study, we combined structure from
motion (SFM) with multiple view stereo (MVS) methods to build
a platform for acquiring plant sequence images. Using the soybean
seedlings with different gene expression patterns of the same
soybean plant at the R4 stage as the research object, the point
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cloud models were obtained by 3D reconstruction using different
sequence images, the LPM algorithm was used to quickly perform
non-destructive phenotype measurements, and the accuracy of
phenotype measurement was evaluated. The feasibility of SFM-
MVS technology combined with the LPM algorithm is explored
and the phenotype and insect resistance of soybean plants
are analyzed.

At present, machine learning (ML) and deep learning (DL)
algorithms are widely used in the plant phenotype classification.
For machine learning (ML), Tan et al. (2021) used the machine
learning (ML), based on tomato cultivation as well as disease
datasets to classify plant diseases; Barradas et al. (2021) applied
different machine learning (ML) methods such as Decision Tree
(DT), Random Forest (RF), and Extreme Gradient Boosting
(XGBoost) to classify plants into three drought stress levels;
Alam et al. (2020) used random forests (RF) for detection and
classification of weeds as well as crops and accurate identification
and control of weeds. For deep learning (DL), Ferentinos et al.
(2018). made use of Convolutional Neural Networks (CNN) to
classify plant disease images; Brugger (2022). analyzed spectral
data of plant phenotypes based on deep learning (DL) to forecast
plant diseases and categories; Cardellicchio et al. (2023) used
YOLOV5 to recognize fruits, flowers and the colors of objects;
Azimi et al. (2021) took advantage of deep learning (DL) to
classify stress in plant shoots based on plant phenotype images;
Zhou et al. (2021) applied advanced deep learning (DL) methods
based on convolutional neural networks to carry out the analysis
of corn phenotype. The above researches show that DL/ML has
favorable potential in the classification of plant phenotype, but
the obtained plant morphological traits are comparatively single
and there are few studies to predict plant species and analyze
insect resistance genotypes based on the morphological traits of
leaves, and the related ML/DL models are highly susceptible to
the influence of environment, images, data sets, etc. during the
implementation of detection. In this paper, we will try to solve
the above problems.

To evaluate crops based on soybean plant phenotypic
information, the traditional popular machine learning (ML)
often uses Shallow Neural networks, such as support vector
machine (SVM), back propagation neural network (BP),
generalized regression neural network (GRNN), and other
models based on small datasets are often applied to construct
plant gene-insect resistance models in the field of agricultural
engineering (Kamilaris and Prenafeta-Boldu, 2018). Deep
learning techniques, such as deep neural networks (DNN) (Du
etal., 2019), convolutional neural networks (CNN) (Cong et al.,
2019) , recurrent neural networks (RNN) (Yu et al,, 2019), and
residual neural networks (Resnet) (Alom et al., 2019), require a
large amount of data for modeling and are significantly less
effective than shallow neural networks for small data
(Chlingaryan et al., 2018). Owing to the difficulty of soybean
phenotypic data collection, therefore, we constructed a small
data set between plant phenotypes and varieties. Based on this,
we used popular shallow neural networks such as Support Vector
Machine (SVM), Back Propagation Neural Network (BP) and
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Generalized Regression Neural Network (GRNN)to build the
model respectively to classify its species based on the phenotypic
characteristics of soybean leaves.

Therefore, the aim of this study is to accurately extract
phenotypic trait parameters from the leaves of plants with
different gene expression forms of the same variety using the
LPM algorithm based on the application of the SFM algorithm
combined with the MVS reconstruction technique in plants. It will
construct a triple linkage between genotype-phenotype-insect
resistance and establish a prediction and classification model of
soybean varieties. This study is organized as follows: (1) A 3D target
acquisition system based on the SEFM algorithm combined with
MVS reconstruction technology is designed and constructed to
perform 3D reconstruction of soybean plants with different gene
expression forms (ko-Williams82, oe-Williams82, and Williams82)
of the same variety and obtain their 3D point cloud models. (2)
Point cloud data, such as individual plants, stems, and leaves, are
automatically segmented using low-pass filtering, Gaussian filtering,
ordinary least squares (OLS) plane fitting, and Laplacian
smoothing. (3) Eleven phenotypic parameters of the leaves,
including length, width, volume, projection area, projection
length, tilt information and so on, are obtained using the LPM
algorithm. (4) The reconstruction accuracy of the SFM-MVS
algorithm is analyzed using regression evaluation indicators
(RMSE, MAPE, Rz), and the association between genotype,
phenotype, and insect resistance is constructed by combining the
plant penetrance parameters of different gene expression forms. (5)
Three models, SVM, BP, and GRNN, are constructed to compare
the prediction and classification models of soybean species based on
six characteristic phenotypic parameters of leaves.

2 Materials and methods

2.1 Experimental materials and
data acquisition

Three soybean varieties, ko-Williams82, oe-Williams82, and
Williams82 (hereinafter referred to as C3, 47-6, and W82,
respectively) were selected from the Baima Base of Nanjing
Agricultural University. There were 15 plants of each variety
(planted in three replicates, each in a separate row with five
plants of each variety in a row), and a total of 45 soybean plant
samples were collected. The soybean row spacing was 40 cm and
the plant spacing was 80 cm. For the convenience of data
processing in the later stage, the experimental samples were
planted with potted plants (diameter of 27 cm; height of 21 cm)
to avoid occlusion between plants. The soil used for soybean
planting was first dried in the sun, then the dried soil was first
crushed, and then the stones and weeds in the soil were removed
through a 6 mm mesh screen to ensure the homogeneity of the
soil. Finally, the sieved soil and nutrient soil (organic matter
content >15%, total N, P, and K content >0.88%, ph7~7.5) were
divided into 3:1 evenly mixed, loaded quantitatively into a plastic
pot with a diameter of 30 cm, and water added to make the
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absolute water content of the soil 30%. Five soybean seeds were
placed in each pot at a sown depth of 3.0 cm. The soybean plants
were placed in a net chamber and provided normal water and
fertilizer management during soybean growth. When the
soybean grew to R4 stage, the density of one spot bug per
plant was used for insect treatment. After 10 days of damage,
dynamic non-destructive measurement and manual comparison
verification of plant height, leaf length, leaf width, and other
parameters of soybean plants were carried out, and the
association between soybean plant genotype, phenotype, and
insect resistance was established.

A smartphone (iPhone 11) was used as the acquisition device to
capture the soybean plant for 40 s. The resolution was set to 1080p
HD, 60fps before video acquisition to ensure the universality of the
video acquisition device. To avoid the influence of smart phone
mirror shooting on 3D reconstruction, an electric turntable
(diameter of 26 cm) with a speed of 0.05 r/s and a load bearing of
40 KG was used as the plant bearing platform. The smartphone was
placed on a scaffold with a height of 45 cm at a distance of 25 cm
from the plant, and the data at different angles of the plant were
collected by tilting down 30° at a horizontal height of approximately
30 cm above the plant. The carrying platform was rotated for two
weeks for video shooting, and 300 multi-view images were extracted
by frame in JPG format with 1080x1920 resolution. The back and
bottom of the platform were covered with a black fleece to ensure a
stable and reliable recording environment and to minimize noise
interference (Figure 1).

The specific steps of the manual measurement of soybean plant
height, leaf width, and leaf length are as follows. Four workers
measured the height of the same soybean plant using a scale ruler as
the reference line along the basin and measured the leaf length
(from leaf base to leaf tip, excluding petiole) and leaf width (the
widest part on the leaf that is perpendicular to the main vein) of all
the leaves of each soybean plant using a standard calculation paper
with a straight ruler. The average of the readings of the four workers
was taken as the final manually measured value of the phenotypic
parameters of the soybean plant.

The software used for the experiment was Free Studio, the 3D
reconstruction open-source software Visual SFM, and MATLAB
2022a. The electric turntable worked continuously for 40 s at a
speed of 0.05 r/s to obtain the image video of the soybean plant.
Three hundred multi-view images were extracted from the video
obtained by frame. To ensure a large amount of accurate point
cloud data, the ROI were selected from the multi-view images of the
plant, and the point cloud data were generated by 3D
reconstruction. The point cloud data were sampled and denoised;
low-pass filtering, point cloud clustering, OLS fitting, and Laplacian
smoothing were used. Parameters, such as plant height, the number
of leaves, leaf length, leaf width, minimum bounding box volume of
a single plant, minimum bounding box volume of a single leaf, the
volume of a leaf, leaf projection area, projection length, projection
width, and angle were automatically measured using the maximum
traversal and greedy projection triangle algorithms. The accuracy
and robustness of the SEM reconstruction of soybean plants were
evaluated and compared with the manual measurement of plant
height, leaf length, and leaf width.
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2.2 Overall process of SFM-MVS
method for reconstructing 3D
model of soybean plants

In this study, the SFM-MVS method was used to reconstruct the
3D models of soybean plants. A workflow diagram is shown in
Figure 2. It consists of seven steps: (1) capturing multi-view images
of soybean plants; (2) selecting the Plant ROJ; (3) finding key points
from multi-view images and reconstructing the 3D point cloud of
the plant; (4) filtering and segmentation algorithms to separate
leaves and stems; (5) reconstructing the smooth surface of the leaf
point cloud using the plane fitting algorithm and the Laplacian
smoothing algorithm; (6) extracting and evaluating plant structural
phenotype parameters based on the distance maximum traversal
algorithm and the greedy projection triangulation algorithm; and
(7) establishing the identification of soybean varieties based on
phenotypic information.

2.3 Extraction of ROI from soybean plants

This study proposes an improved detection and matching
strategy to accurately obtain the key feature points of multi-view
images and improve the efficiency of feature matching (Figure 3).
The proportion of the region of interest (ROI) is increased by
cropping the original image, and the scale of the image is reduced to
reduce the number of calculations for feature detection.

The preliminary segmentation of soybean plant regions in
multi-view images based on the ROI algorithm is a key part of
the 3D reconstruction. The multi-view image sequence is cropped
based on the ROI of each image, effectively reducing the resolution
of the image and increasing the proportion of the soybean plant in
the whole image. The rate of generation of dense point clouds was
increased by 81.62% by the SFM-MVS algorithm for the 3D
reconstruction of soybean plants after soybean plant
ROI extraction.

2.4 3D model reconstruction of
soybean plants

We used VisualSVM software to conduct the standard sfm-mvs
workflow and obtained the plant point clouds. The process of 3D
model reconstruction, as shown in Figure 4. The main steps in
soybean plant 3D model reconstruction are feature point extraction
and matching, sparse point cloud reconstruction, and dense point
cloud reconstruction.

2.5 Processing of soybean plants point
cloud data

As a result of the many dense leaves of soybean plants
(Figure 5A), the reconstructed data were large and interspersed
with a number of noisy background point clouds (Figure 5B). Point
cloud data sampling, denoising, optimization, coordinate
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FIGURE 1
3D object acquisition platform.

correction, and other processes are required because the soybean
3D point cloud model is inconsistent with the actual plant in the
standard 3D space direction and scale (Figure 5C).

2.5.1 Sampling of point cloud data

Owing to the large redundancy, long reconstruction time, and
low efficiency of 3D point cloud data reconstructed using Visual SFM
software, a point cloud simplification algorithm based on voxelized
grid downsampling was used. Voxelized grid downsampling creates a
minimum 3D voxel grid based on the point cloud data (Han et al,
2017), divides the point cloud data into a 3D voxel grid, selects a data
point as the center of gravity point of the grid, and retains the data
point closest to the center of gravity of the small grid. This method is
simple, efficient, and does not require the establishment of a complex
topological structure to simplify point cloud data, reduce operation
time, and improve the program running speed (Liang et al., 2020). As
shown in Figure 5B, the number of point clouds was reduced to 11%
of that presented in Figure 5A, and the soybean plant phenotype did
not show any change, which did not affect the extraction of its
phenotypic shape parameters.

2.5.2 Point cloud denoising

Owing to the influence of a series of external factors, such as
data sampling equipment, external environment, and experience of
experimental operators, noise points and outliers in the
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reconstruction process have adverse effects on trait extraction,
feature matching, and surface reconstruction (Li and Cheng,
2018). A low-pass filtering algorithm was used to locally fit the
soybean, and the appropriate threshold (Points/Radius was set to
0.098264, Maxerror was set to 2) was set to remove the points that
deviated from the fitting plane. The background noise and most of
the edge noise were removed by setting the RGB of the background
(the main background noise in this study was the point cloud of the
soil and basin along the color). The denoising effect of the 3D point
cloud of the soybean plant is shown in Figure 5C, where the number
of point clouds was reduced to 89% of the number of point clouds of
a single plant after sampling. As shown in Figure 5B, the reduced
points were background noise points.

2.5.3 Coordinate correction of point cloud data

(1) To accurately extract the phenotypic trait parameters of
soybean plants, coordinate correction is required for the 3D point
cloud of soybean, and the proportional coordinates are calculated
using the potted plant as the reference. The length of the potted
plant in the point cloud data was calculated using the Euclidean
distance algorithm and converted to obtain the transformation
coefficients to obtain the true coordinates of the soybean plant.
The calculation formula is as follows:

(xy.2) =alx',y',z") (1)
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FIGURE 2
Workflow of 3D reconstruction and accuracy evaluation.

where (x,y,z) is the length of reference in the point cloud, (x’,  obtained by using the Rodriguez rotation formula, and the
y',z") is the real length of reference, and o is the transformation  calculation formula is as follows:
coefficient of point cloud coordinates.

(2) The random sample consensus algorithm (RANSAC) is M= ok n s cos 6 )
used to detect the ground and obtain the normal vector of the

- -

ground 7, and the rotation angle 6 is obtained by combining the 6 = cos! ( m-n ) 3)
normal vector #(0,0,1) of the Z-axis. The rotation matrix can be mx*n
Multi-view
sequence ROI extraction Image set

L _ _.[ Setting the ROI area

FIGURE 3
Clipping of the ROI.
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(5)

where defined R(6) =1 - cos 6, respectively, m and n are
respectively the lengths of 7 and ethe 7, E is the third-order
identity matrix, 6 is the rotation angle, and 3(d1,d2,d3) is the
unit vector of 71 7.

2.5.4 Point cloud segmentation

The 3D point cloud segmentation of soybean plants mainly
aims to segment and extract the leaves and stems of soybean plants,
as shown in Figure 6. A gap exists between any two leaves, which is a

Original 3D point cloud
image

FIGURE 5

The 3D point cloud is
downsampled

clustering algorithm was used to segment different parts of the
leaves, a cylindrical fit to the stalk of the soybean plant based on a
random sampling consistency algorithm, and a statistical method to
remove noise and extraneous points from the root part of the leaves
was used.

2.5.5 Point cloud optimization

After the point cloud segmentation of leaves and stalks, white
noise generated by surface reflection or occlusion around leaves was
removed based on the difference between the color of the noise and
the characteristics of the leaf point cloud. The KD-Tree was used to
determine the point cloud data and the distance between the fields,
and the point cloud density was obtained by statistical analysis.
Clutter was eliminated using the data analysis method, and the
calculation formula is as follows:

C
O : Noisy point

3D point cloud
denoising

Down-sampling and denoising effect of soybean point cloud. (A) Original 3D point cloud image; (B) The 3D point cloud is downsampled; (C) 3D

point cloud denoising.
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FIGURE 6
Effect of point cloud segmentation.

(x5 = x)* + (i _J’i)z +(z; - z)

di = k (6)
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where, d; is the distance between soybean point cloud and other
K adjacent areas, El is the average value of the d;, o standard
deviation of soybean.
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To better realize the effect of Gaussian filtering, scalar fields
were used to establish the Z-coordinate axis and draw the
chromatographic diagram of the point cloud in Figure 7A.
The Gaussian filter algorithm was used to set the covariance of
the Gaussian filtering, draw the Gaussian distribution and filtering
result diagram of the soybean point cloud, which are shown in
Figures 7B, C.

The OLS plane fitting method was used to find the best
matching function by minimizing the square error (Rannik et al,
2020) for the plane fitting of soybean leaves. The Laplacian
smoothing algorithm was used to smooth the edges and surfaces
of the soybean leaves after the initial fitting. A statistical filtering

Point cloud Gaussian filtering, (A) soybean point cloud chromatogram, (B) soybean Gaussian distribution, and (C) filtering result
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algorithm was used to optimize the soybean stalks. A 3D soybean
point cloud model was obtained by splicing the optimized point
cloud leaf and stem models.

2.6 The LPM algorithm was used to extract
soybean plants traits

Based on the 3D point cloud of the soybean model, the LPM
algorithm is proposed in this study to calculate plant height, leaf
number, length and width, minimum bounding box volume of a
single plant, minimum bounding box volume of a single leaf and
leaf volume, projection area, projection length, and width. The
extraction process of the trait parameters is shown in Figure 8.
First, soybean plant point cloud is displayed, the height of

i %
RE 1)
Poirt cloud of soybean Extract the height of The mink hounding St of leaf point cloudshy
phnt thep ant boxvolume perphntwas clustering
obtained
Dividing
leaves

Point cloud of soyhean

10.3389/fpls.2023.1181322

soybean plant and minimum volume of bounding box per
plant were measured. Then, the phenotypic parameters of
leaves were extracted after segmentation. The specific
parameters were calculated as follows:

2.6.1 Height of soybean plants

Plant height is an important indicator of plant growth in
various environments (Xiao et al., 2020). The point clouds of
individual soybean plants (Figure 8A) were extracted, and all
points were traversed. After coordinate correction, the growth
direction of the soybean was consistent with the z-axis direction.
Therefore, the maximum value of the Z-axis coordinates
between soybean and potted plants was selected, and the
absolute value of the difference was the height of a single
soybean plant (Figure 8B).

leaves

The minimum Extraction of leaf
boundingbhoxvohume
of a single leaf i
obtained

Leafp mjeclﬁm Iength

FIGURE 8

Extraction of soybean plant trait parameters. (A) Point cloud of soybean plant; (B) Extract the height of the plant; (C) The minimum bounding box
volume per plant was obtained; (D) Segmentation of leaf point clouds by clustering; (E) Point cloud of soybean leaves; (F) The minimum bounding
box volume of a single leaf is obtained; (G) Extraction of leaf length; (H) Extracting leaf width; (I) Display leaf point cloud; (J) Leaf volume acquisition;
(K) Projection of leaf; (L) Leaf projection area; (M) Leaf projection length; (N) Leaf projection width; (O) Leaf tilt information.

Leafpnje;:dnnwﬂth
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2.6.2 Minimum volume of bounding box
per plant

The individual soybean plants were corrected to the main
direction, and the cuboid composed of yellow lines was the
bounding box. The maximum X, y, and z coordinate values and
the minimum x, y, and z coordinate values of the point cloud of the
individual soybean plant after correction were determined, and
eight vertices were obtained. The cuboid volume formed by the
connection of the eight vertices corresponds to the minimum
bounding box volume of the individual plant (Figure 8C).

2.6.3 Number of soybean leaves

The non-stem point cloud was extracted to remove noise and
external points, and the point cloud clustering algorithm was used
to segment soybean leaves into different parts of a single plant
(different colors represent different classes), where the number of
different classes clustered was the number of leaves (Figure 8D).

2.6.4 Minimum bounding box volume of a
single leaf

The individual soybean plants were corrected to the main
direction, and any parts of the leaves were cut (Figure 8E). The
cuboid, which is composed of yellow lines, is the bounding box. The
maximum X, y, and z coordinates and the minimum x, y, and z
coordinates of the point cloud of the corrected individual soybean
plants were determined, and eight vertices were obtained. The
volume of the cuboid formed by the connection of these eight
vertices was the minimum bounding box volume of a single

plant (Figure 8F).

2.6.5 Length of soybean leaves

The length of soybean leaves were calculated by the distance
along the surface of the leaf, and any segmented leaf was
extracted. The Euclidean distance algorithm was used to obtain
the distance between the leaf base and leaf tip as the leaf
length (Figure 8G).

2.6.6 Width of soybean leaves

The width of soybean leaves were calculated by the distance along
the surface of the leaf, and any segmented leaf was extracted. The
Euclidean distance algorithm was used to obtain the maximum
distance perpendicular to the leaf length as the leaf width (Figure 8H).

2.6.7 Leaf volume of soybean

After extraction and segmentation, any soybean leaf is displayed
(Figure 8I), and Gaussian filtering is used to de-noise the point
cloud, and the envelope of its 3D point cloud is extracted. Each
point cloud was divided into discrete grids, and the volume of the
corresponding cell of each grid was calculated and summed to
obtain the soybean leaf volume (Figure 8]).

2.6.8 Projected area of soybean leaves

The segmented arbitrary soybean leaves were projected onto the
oxy-plane, and the corresponding projected leaf point cloud was
generated (Figure 8K). The projected leaves were triangulated using
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a greedy projection algorithm (Zhang Y et al, 2019), and the
projected soybean leaves after triangulation were composed of
small triangles. The leaf projection area of a single leaf was
calculated based on the Helen formula and area summation
formula (Figure 8L). The formula used is given by

Si = \/pj(Pi =a)(p; = b)(p; ;) ©

Sop = 2008 (10)

where, p; is half of the perimeter of the triangulated triangle,
a;,b; and ¢; are the lengths of each side of the triangulated
triangle, m is the total number of triangulated triangles, j is the
index number of triangulated triangles, S; is the projection area
of a single planar triangulated facet, and S,p is the total
projection area of a single leaf.

2.6.9 Projection length of soybean leaves

The segmented soybean leaves were projected onto the oxy
plane to generate the corresponding projected leaf point cloud, and
the maximum and minimum values of the length-direction
coordinates were calculated. The absolute value of the difference
was the default length of the soybean leaf projections (Figure 8M).

2.6.10 Projection width of soybean leaves

The segmented soybean leaves were projected onto the oxy
plane to generate the corresponding projected leaf point cloud, and
the maximum and minimum values of the width-direction
coordinates were calculated. The absolute value of the difference
was the default width of the soybean leaf projections (Figure 8N).

2.6.11 Tilt information of leaves

The growth situation and environmental problems of soybeans
can be determined based on the tilt information of soybean leaves.
RANSAC plane fitting was used to obtain the plane, fitting variance
RMSE, and tilt matrix, which can judge the tilt direction from a series
of point cloud information using an iterative method (Figure 80).

2.7 Modeling based on plant
phenotype prediction

In this study, for three soybean varieties (C3, 47-6, W82) in R4
stage, because it is difficult to obtain the information of leaves and
only a small data set is available, we used popular shallow neural
networks such Support Vector Machine (SVM), Back Propagation
Neural Network (BP) and Generalized Regression Neural Network
(GRNN) to construct the model and select the optimal one.

Support Vector Machine (SVM) (Deng et al., 2019) is based on
statistical theory and its learning model algorithm, which
determines the optimal classification hyperplane in the high-
dimensional feature space of data by solving optimization
problems. The least-squares support vector machine (LS-SVM)
overcomes the computational burden of its constrained
optimization programming based on SVM to handle complex
data classification more effectively.
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Back Propagation Neural Network (BP) (Ju and Feng, 2019)
neural network is a multi-layer feedforward network trained by an
error backpropagation algorithm. The phenotypic data of plant
leaves were used as the input of the BP neural network, and the
output was the predicted value of the plant varieties.

Generalized Regression Neural Network (GRNN) (Dai et al,
2019) has strong nonlinear mapping ability and learning speed. In
terms of classification and fitting, the GRNN model performed
better when the accuracy of the plant phenotypic parameter data
was poor.

Since model prediction was made based on leaf morphological
traits and the light source maps the leaf vertically, the data of leaf
length and width are highly similar to the data of leaf projection
length and width. Therefore, Six experimental parameters (minimum
bounding box volume of a single leaf, leaf volume, projection length
of soybean leaves, projection width of soybean leaves, projected area
of soybean leaves and leaf tilt information) are preferably selected.
The input datatype for training (e.g., X is (447 x 6) array that records
6 traits of 447 leaves, Y is (447 x 1) array that records the cultivars of
corresponding, use integer as labels) to construct the models of
soybean sample variety prediction. For each prediction model, 80%
samples are randomly selected as the training set and 20% samples
are used as the test set to detect the prediction effect.

2.8 Accuracy evaluation

The soybean plant height, leaf length, and leaf width measured
by the algorithm were compared with manual measurement values
to evaluate the accuracy of the proposed method. The accuracy was
measured using the mean absolute percentage error (MAPE), root
mean square error (RMSE), and determination coefficient (R?) to
evaluate the accuracy of the SFM algorithm. Correlation coefficients
of calibration (Rc), Root mean square error of calibration
(RMSEC), Correlation coefficients of prediction (Rp) and Root
mean square error of prediction (RMSEP) are often used for
evaluating the accuracy of models.

Mean absolute percentage error (MAPE) (Chen et al., 2020)
is often used to evaluate the prediction of performance, which
intuitively reflects the difference between the real value and the
predicted value, usually in the range up to 100%. Root mean
square error (RMSE) (Hodson, 2022) is used to measure the
deviation between the predicted value and true value, and is
more sensitive to outliers in the data. Determination coefficient
(R2) (Piepho, 2019) is an important statistic that reflects the
goodness of fit of the model. The value ranges from 0 to 1, and
closer to 1 means better; Correlation coefficients of calibration
(Rc) (Wang et al,, 2020) as the correlation coefficient of
determination for calibration, commonly used to evaluate
model results, and with the value closer to 1 being better;
Root mean square error of calibration (RMSEC)
(Hacisalihoglu et al., 2022) is often used as an evaluation of
quantitative models; Correlation coefficients of prediction (Rp)
(Wang et al., 2020) as the correlation coefficient of
determination for the prediction set, with the value closer to 1
means better; Root mean square error of prediction (RMSEP)
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(Cominotte et al., 2020) is commonly used to verify the
prediction error of the model internally or externally, and is
the most critical parameter for evaluating the goodness of
a model.

3 Results
3.1 Results and analysis of LPM algorithm

In this study, a total of 45 soybean samples from three
soybean varieties (C3, 47-6, W82) in the R4 stage were used for
3D reconstruction using the SFM algorithm, and the plant
height and leaf point clouds of soybean plants were
automatically segmented, measured, and analyzed. In the 3D
point cloud of the soybean plant, the plant trait parameters
measured by the algorithm were proportionally converted, and
the automatically measured plant height, leaf length, and leaf
width were compared with the manually measured values.
Figure 9 shows the results.

As shown in Figure 9A, R2:0.9775, MAPE = 2.7013%, RMSE =
0.9997 cm, and the accuracy of the plant height measurement by the
algorithm was 97.2987%. In addition, R?=0.9785, MAPE = 1.4706%,
and RMSE = 0.2357 cm, and the accuracy of the leaf length
measurement was 98.5294%, as shown in Figure 9B. As shown in
Figure 9C, R? = 0.9487, MAPE= 1.8669%, and RMSE = 0.2666 cm,
and the accuracy of leaf width measurement by the algorithm was
98.1331%. According to Figure 9, the results show that the proposed
method has high accuracy, and the algorithm measurements are in
good agreement with human measurements.

3.2 Prediction results of plant varieties

In this study, three modeling methods, such as BP, SVM, and
GRNN were used to establish soybean plant variety prediction
models. Soybean leaf phenotypic parameters and the soybean plant
variety were used as model inputs and the output, respectively.
Among them, RMSEC is often used as an evaluation of quantitative
models; RMSEP is often used to validate the prediction error of a
model internally or externally; Rc as the correlation coefficient of
determination for calibration; Rp is used as the correlation
coefficient of determination of the prediction set. The modeling
results based on the six leaf phenotypic parameters are listed
in Table 1.

By modeling the leaf phenotypic parameters in Table 1 to
predict the types of soybean plants, the GRNN model had the
highest prediction accuracy. The training set Rc of soybean plants
was 0.9744, and the prediction set Rp was 0.9211.

4 Discussion

Zareef et al. (2019) used Partial Least Squares Regression
(PLSR) based on the phenolic compounds of Congo black tea to
predict and construct the model. The prediction accuracy of
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FIGURE 9

Comparison of manual and algorithmic measurements of soybean plant traits, (A) Height of the plant, (B) Length of the leaf, (C) Width of the leaf

Gallic acid was 0.9111, and the prediction accuracy of Rutin was
0.8255; Hasan et al. (2021) applied six commonly ML methods
(SVM, Adaboost, Logistic Regression, etc.), the gene models of
Roaceae, rice and Arabidopsis were predicted and constructed,
and the prediction accuracy was 0.918,0.827,0.635, respectively;
Yoosefzadeh-Najafabadi et al. (2021) took advantage of three
common ML (MLP, SVM, RF) based on hyperspectral
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reflectance data to predict and construct a soybean seed yield
model, and the accuracy of the model was 0.87. The above
methods use multiple models to classify and predict the
phenotypes and compounds of multiple experimental objects
quickly and efficiently, but the accuracy is relatively low.

The LPM algorithm used in this paper is combined with
GRNN to construct a soybean prediction model, and the
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TABLE 1 Modeling results of leaf phenotypic parameters.

10.3389/fpls.2023.1181322

LS-SVM 0.6934 0.5979 0.6536 0.6995
BPNN 0.7781 0.6419 0.5716 0.9528
GRNN 0.9744 18.3263 0.9211 18.9024
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FIGURE 10
Measurement results of soybean plant trait parameters, (A) Minimum bounding box volume per plant, (B) Number of leaves, (C) Minimum bounding
box volume of a single leaf, (D) Leaf volume, (E) Leaf projection area, (F) Leaf projection length, (G) Leaf projection width, (H) Leaf tilt information.
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accuracy of model can reach 0.9211. In the paper, the 3D model
of soybean plant can be reconstructed quickly and accurately by
using motion restoration structure algorithm and multi-view
stereo vision algorithm; The LPM algorithm can effectively
measure the phenotypic parameters of 11 plant three-
dimensional models, and constructed the relationship between
phenotype and insect resistance; The optimal model GRNN was
established to accurately predict and identify plant varieties
based on the morphological traits of leaves.

In terms of individual plant character parameters (minimum
bounding box volume per plant, number of leaves, minimum
bounding box volume per leaf, leaf volume, leaf projection area,
leaf projection width, leaf projection length, and leaf tilt
information), the soybeans of the C3 variety were lower than that
of the 47-6 and W82 varieties, as shown in Figure 10. Soybean plant
variety 47-6 were higher than soybean of variety W82 in terms of
four trait parameters (minimum enclosing box volume per plant,
number of leaves, leaf projected width, and leaf projected area).
Soybean of varieties 47-6 and W82 were higher than soybean of
variety W82 in four trait parameters (minimum enclosing box
volume per plant, number of leaves, minimum enclosing box
volume per leaf, and leaf projection area). There were no highly
significant differences between the 47-6 and W82 varieties in terms
of four trait parameters (leaf projection length, leaf volume, leaf
projection width, and leaf tilt information).

C3, 47-6, and W82 are different gene expression forms of the
same variety, where 47-6 (oe-Williams82) is a certain gene
overexpression strain and C3 (ko-Williams82) is a gene knockout
strain. Differences in gene expression may be the reason for the
changes in the overall parameters, and the differences in gene
expression will lead to changes in the surface hairs of the
soybean. These hairs of soybean pods of the 47-6 overexpressed
variety were sparse, and the pods were easily fed on by stink bugs.
The stink bugs bite the soybean pods through the mouth, resulting
in the normal development of soybean seeds (Chen et al., 2018) and
the formation of aborted seeds. Here, the sink and source
relationship is confusing. Therefore, the plant will use more
nutrients to promote the vegetative growth and growth of its
node, make the plant taller, and increase the volume of the
minimum bounding box per plant and the number of leaves.
However, pod feeding of M. obstatus did not affect changes in
leaf morphology-related information, such as leaf projection length,
leaf volume, leaf projection width, and leaf tilt information. C3 is an
insect-resistant line, which is considerably slightly damaged by the
bug. Thus, the trait parameters of C3 are significantly less than 47-6,
and gene knockout affects the changes in leaf morphology-related
information parameters. Plant phenotypic traits can be divided into
physiological, morphological, and component traits (Danilevicz
et al,, 2022). Among the three major targets of breeding, such as
the yield, quality, and resistance, the resistance target (biotic stress
or abiotic stress) is particularly important and indicates the core
productivity to ensure stable yield. Among them, changes in
morphological and structural traits, such as plant height and leaf
area, are the most intuitive reflections of plant resistance and they
play an important role in the study of insect resistance (Nelson
et al., 2018).
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5 Conclusion

The soybean plant 3D structure was successfully obtained by
SfM, and a good correction (R2>0.94) and small RMSE (<0.24) were
observed with manual measured. Compared to SVM and BPNN,
the GRNN showed the highest accuracy (0.9211) of the cultivar
classification tasks.

In this paper, we mainly focus on the 3D reconstruction of
soybean plants (ko-Williams82, oe-Williams82, and Williams82),
and analyze the relationship between phenotypic traits and insect
resistance genes. In the later stage, a whole set of machines will be
developed to expand the number of soybean varieties and monitor
the growth changes of soybean plants in real-time to further
enhance the practicability and realize more comparisons of
soybeans between species and genotypes to select superior insect-
resistant varieties.
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Development of effective model
for non-destructive detection of
defective kiwifruit based on
graded lines

Feiyun Wang', Chengxu Lv, Lizhong Dong, Xilong Li,
Pengfei Guo and Bo Zhao*'

National Key Laboratory of Agricultural Equipment Technology, Chinese Academy of Agricultural
Mechanization Sciences Group Co., Ltd, Beijing, China

The accurate detection of external defects in kiwifruit is an important part of
postharvest quality assessment. Previous studies have not considered the
problems posed by the actual grading environment. In this study, we designed
a novel approach based on improved Yolov5 to achieve real-time and efficient
non-destructive detection of multiple defect categories in kiwifruit. First, a
kiwifruit image acquisition device based on grading lines was developed to
enhance the image acquisition. Subsequently, a kiwifruit dataset was
constructed based on the external defect characteristics and a new data
enhancement method was proposed to augment the kiwifruit samples.
Thereafter, the SPD-Conv and DW-Conv modules were combined to improve
Yolov5s, with EIOU as the loss calculation function. The results demonstrated
that the improved model training loss value was 0.013 lower, the convergence
was accelerated, the number of parameters was reduced, and the computational
effort was increased. The detection accuracies of the samples in the test set,
which included healthy, leaf-rubbing damaged, healed cuts or scarred, and
sunburned samples, were 98.8%, 98.7%, 97.6%, and 95.9%, respectively, with
an overall detection accuracy of 97.7%. The detection time was 8.0 ms, thereby
meeting real-time sorting demands. The average detection accuracy and model
size of SSD, Yolov5s, Yolov7Z, and Yolov5-Ours were compared. When the
confidence threshold was 0.5, the detection accuracy of Yolov5-Ours was 10%
and 6.4% higher than that of SSD and Yolov5s, respectively. In terms of the model
size, Yolov5-Ours was approximately 6.5- and 4-fold smaller than SSD and
Yolov7, respectively. Thus, Yolov5-Ours achieved the highest accuracy,
adaptability, and robustness for the detection of all kiwifruit categories as well
as a small volume and portability. These results can provide technical support for
the non-destructive detection and grading of agricultural products in the future.

KEYWORDS

kiwifruit, grading line, SPD-Conv, DWConv, real time, non-destructive detection
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1 Introduction

Kiwifruit is characterized by a soft texture, sweet and sour taste,
and richness in amino acids and minerals. The detection and
grading of kiwifruit are key aspects of postharvest processing and
provide important support for value-added commercialization (Fu
et al.,, 2018; Li et al., 2022).

In China, the grading of kiwifruits from different cities is
primarily conducted by manual sorting at present, which is
inefficient and subjective. Existing sorting equipment, such as
mechanical size grading and weight grading, cannot identify the
external defects of the fruit. Thus, computer vision is being applied
increasingly to agricultural products with the developments in
image processing technology (Liu et al., 2020; Tian et al., 2021).

Traditional image processing methods usually achieve fruit
recognition and detection by combining the extraction of shallow
information, such as the color, size, and texture of the target, using
techniques such as segmentation and discriminative models. Cui
et al. (2012) proposed the use of a near-infrared light source for
image acquisition and realized the extraction of scratch, decay, and
sun-burning defects using segmentation. Yang et al. (2021) used the
K-means clustering algorithm to segment the surface of kiwifruit
and reject defective fruits according to the darker color of surface
defects, such as fruit scars and disease spots, compared with those of
normal fruits. Subsequent studies (Zhou et al., 2012; Liu and Gai,
2020) used an image segmentation algorithm to extract the
contours of the fruit in an image to meet the detection and
grading needs. Li et al. (2020) used hyperspectral techniques for
deformed kiwifruit detection and compared three methods: the
partial least-squares linear discriminant model, back-propagation
neural network (BPNN), and least-squares support vector machine.
The experimental results showed that the BPNN model achieved
the highest accuracy at 97.56%. Fu et al. (2016) used a camera with a
weight sensor on a grading line that was equipped for kiwifruit
shape grading through a stepwise multiple linear regression
method. The grading accuracy when using a linear combination
of the cross-sectional diameter length was 98.3%. However,
traditional image processing techniques, which generally extract
feature targets manually, are only applicable to specific scene
studies, have weaker robustness, and are susceptible to
environmental influences during the extraction process.

Deep convolutional neural networks (CNNs) are superior to
traditional methods and have been applied to the class classification
and defect detection of fruits. Fan et al. (2020) improved the
parameters and number of connections in a CNN model to detect
the surface defects of apples in real time, with an accuracy of 92%.
Lu et al. (2022) used the Attention-YOLOv4 model to detect the
ripeness of different-colored apples. Zhang et al. (2020) improved
the VGG16 model by converting it into a fully convolutional
network and combining it with a spectral projection image to
segment the mechanical damage and calyx regions of blueberries.
Their method achieved an accuracy of 81.2%. Similarly, Wang et al.
(2018) combined hyperspectral images with deep learning methods,
and used the AlexNet and ResNet models to detect internal
mechanical damage in blueberries. Their results showed that the
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deep learning models could maintain a higher accuracy than that of
machine learning methods while reducing the calculation time
significantly. Yu et al. (2018) proposed a combined model
consisting of an autoencoder and a fully connected neural
network to predict the hardness and soluble solid contents of
Korla fragrant pears, resulting in a correlation coefficient of 0.89.
Momeny et al. (2020) combined maximum pooling with mean
pooling in a CNN to classify self-built regular and irregular cherry
databases with an accuracy of 99.4%. Luna et al. (2019) created a
dataset of healthy and defective tomatoes and evaluated the
accuracy of their model using VGG16. A high accuracy rate of
98.75% was achieved. Azizah et al. (2017) used a four-fold cross-
validation method to classify CNN mangosteen with an accuracy of
97.5%. Jahanbakhshi et al. (2020) proposed an improved CNN
model for healthy and damaged sour lemon detection, achieving an
accuracy of 100%. Xue et al. (2018) improved the YOLOv2 model
using the Tiny-yolo-dense network to detect unripe mangoes with
an accuracy of 97.02%. CNNs have achieved high detection
accuracy, application flexibility, and good performance rates in
many fruit quality detection studies. However, the detection of
small objects with a low resolution remains challenging. This is
because small objects with a low resolution provide few learning
features and often coexist with larger undetectable objects.

Therefore, in this study, a kiwifruit dataset was constructed
according to an image acquisition device based on grading lines for
the detection of external kiwifruit defects. The widely used Yolov5s
(Li et al., 2023) was selected as the base model. The network
structure was improved and the loss function was optimized to
achieve non-destructive and efficient external detection of kiwifruit.
The results of this study can provide technical support for kiwifruit
quality grading.

2 Materials and methods
2.1 Dataset production

2.1.1 Sample source

Kiwifruit samples were obtained from the Zhouzhi (108.20 °E,
34.17 °N) and Meixian counties (107.76 °E, 34.29 °N) in Shaanxi
Province. The kiwifruit varieties Xu Xiang and Cui Xiang were
selected as the subjects of the study, and multiple batches were
acquired in the field and online from November 2021 to November
2022. A total of 1,020 original samples were obtained, including 320
healthy samples, 240 leaf-rubbing damaged samples, 240 sunburned
samples, and 220 healed cuts or scarred samples. The various
sample types are presented in Figure 1.

2.1.2 Image acquisition

Image acquisition was performed using an MV-EM200C
camera (Microvision, Xi’an, China) with a model BT-
23C0814MP5 industrial lens, an image resolution of 1,600 x
1,200 pixels, and an acquisition frame rate of 39.93 fps. The
image acquisition device was constructed based on a grading line
(Li et al., 2018), as illustrated in Figure 2, and mainly included the
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FIGURE 1
Kiwifruit samples. (A) Healthy, (B) leaf-rubbing damaged, (C) sunburned, (D) healed cuts or scarred.

acrylic plate

camera

lens light source

FIGURE 2
Acquisition device diagram
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camera, lens, camera obscura, light sources, and acrylic plate. The
camera height was adjusted to 32 cm above the tray level to capture
the information of the three trays completely in a single image for
the grading application scenario. When the grading line moved, the
roller tray could turn the kiwifruit, and three samples in a single
image could be obtained to acquire the full surface information of
the kiwifruit. The light source was emitted from the bottom and
reflected on the kiwifruit surface through a half-cylinder acrylic
plate, which helped to reduce the problems of uneven light exposure
and reflection at different locations owing to direct radiation. When
the graded line speed was adjusted to 3-5 pcs/sec, the pallet
information was captured by a counter-light sensor, which was
passed to the isolation plate, thereby driving the camera to trigger
synchronously. Thus, the quality of the images captured by the
device was improved. The captured images contained 1-3 unequal
samples, with a total of 2,220 images captured, as shown in Figure 3.

10.3389/fpls.2023.1170221

2.1.3 Data processing

First, the collected images were divided into training (1,332),
validation (444), and test (444) sets by batch at a 3:1:1 ratio. A multi-
data-enhanced fusion method based on an adjustable range was
implemented to enhance the robustness of the model under
background differences in the kiwifruit images. The training set data
were randomly combined using six methods: contrast, brightness, and
rotation angle adjustment, mirroring, Gaussian noise addition, and
filtering. The training dataset was enhanced seven times, resulting in a
total of 10,656 images. The specific parameters are listed in Table 1. The
experiment was conducted using a dataset in the Pascal Voc format and
the dataset was labeled using labellmg. Four categories were labeled:
“Kiwifruit,” “Leaf-rubbing damaged,” “Sunburned,” and “Healed cuts
or scarred,” with the latter three categories corresponding to each defect
type. The sample labeled “Kiwifruit” was used to locate the kiwifruit, but

a single sample labeled “Kiwifruit” was considered as healthy.

FIGURE 3
Image acquisition. (A) Single sample, (B) two samples, (C) three samples
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TABLE 1 Data enhancement methods.

Methods Parameter range

Mirroring /
Contrast ratio (0.8, 1.2)
Gaussian noise /

Filtering /
Rotation angle (-20°, 20°)
Brightness (0.8, 1.2)

/, non-random variation.

2.2 Model construction

2.2.1 Experimental environment

The experimental operating platform was a Dell Precision 7920
Tower workstation (Dell, Round Rock, TX, USA) with an Ubuntu
18.04 64-bit operating system. The central processor of the
workstation was an Intel Xeon Silver 4216 @ 2.10 GHz (X2; Intel,
Santa Clara, CA, USA) with 128 G of running memory. The GPU
was an NVIDIA GeForce RTX 3090 (Nvidia, Santa Clara, CA, USA)
with a 24 G display memory. A deep learning framework with a

2.Backbone

10.3389/fpls.2023.1170221

GPU was used to accelerate the dynamic neural network Pytorch
version 1.11, Anaconda 3.7 environment manager, and Python
version 3.8.

2.2.2 Model structure

The structure of Yolov5-Ours, which was based on Yolov5s, is
depicted in Figure 4. It included four parts: the input, backbone,
neck, and prediction.

(a) Input: The input was a three-channel RGB image of
kiwifruit, and the image size was uniformly adjusted from 1,600 x
1,200 to 640 x 640 at the acquisition time using adaptive
picture scaling.

(b) Backbone: The backbone consisted of CBL, DWCBL, SPD-
Conv, C3, and SPP. CBL consisted of convolutional and BN layers
and leaky ReLU. The image size at the input was 640 x 640 x 3, and
the output was 320 x 320 x 32 after slicing by the first CBL. DWCBL
consisted of depth-wise separable convolution (DWConv) and BN
layers and a Leaky ReLU. The DWConv layer with SPD-Conv
(consisting of spatial-depth (SPD) and step-free convolutional
layers) was implemented as the improved structure (the
numbered part marked in Figure 4). The improved structure is
described in detail in Section 2.3. C3 consisted of a CBL, residual
structure, and convolutional layer connection, which could solve

4.Prediction

[ 33 =+ conv

640%640x3

80x80x24
SPD

|—-’| Concat

¥

CBL

40x40x24

SPD

Concat

— {Convl

20%20x24

CBL

c3

|=—v| CBL H Resunitxx H Concat H CBL |

G —{ v -

[ sep |- cBL Maxpool |+ Concat |+ CBL |
1
[ Resunit |=—{ cBL bf cL || aDD |

FIGURE 4
Yolov5-Ours network structure.
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the problem of gradient repetition in the backbone network of the
large CNN framework. Furthermore, it integrated the gradient
changes into the feature map from beginning to end, thereby
reducing the number of model parameters and computation
values (Li et al, 2019) to ensure the speed and accuracy of the
inference. SPP concatenated the different scales of the feature maps
to expand the extraction of kiwifruit features using the maximum
down-sampling of different convolutional kernels.

(c) Neck: FPN+PAN (Lin et al.,, 2017; Liu et al., 2018) was used.
The FPN structure fuses and passes the feature information on the
upper layers from top to bottom by up-sampling. The PAN
structure is a bottom-up feature pyramid. The FPN+PAN
structure was fused with feature layers from different backbone
layers to improve the feature fusion capabilities further.

(d) Prediction: Output feature maps with sizes of 80 x 80, 40 x
40, and 20 x 20 were used to localize the kiwifruit defects. The
training loss values were calculated using the loss calculation
function and were iteratively updated to obtain the best model.

2.3 Structure optimization

2.3.1 SPD-Conv module

The convolution and pooling layers that are used in
conventional methods lead to the loss of fine-grained information
and insufficient learned features in the image. This results in small
and low-resolution kiwifruit defect features that cannot be learned
effectively during the convolution process. To address this problem,
we incorporated the convolutional structure of SPD-Conv (Sunkara
and Luo, 2022) into Yolov5s instead of the convolutional and
pooling layers. When the feature size of the kiwifruit was a
feature mapping X with a size of M x M x C, to achieve a two-
fold down-sampling operation, the scale value S was selected as 2 in
Equation (1). Subsequently, the SPD layer was subjected to spatial
sub-mapping foo. fo1v fios fi1 by slicing. These spatial sub-

mappings were spliced in the channel dimension to acquire the
M M
§=2°5=2°
convolutional layer after SPD was added to obtain the final

""(&,%,C"). The SPD layer preserved the

information in the channel dimension when down-sampling was

dimensional mapping X'( 4C), and a step-free

mapping X

10.3389/fpls.2023.1170221

performed in the feature layer by retaining all information in the
channel dimension when down-sampling the feature layer. The
step-free layer retained the feature discriminant information in the
convolution and adjusted the number of output channels. As
illustrated in Figure 4, SPD-Conv was used as a substitute for
four convolutional layers with a step size of 2 to down-sample the
feature map in the backbone. Similarly, two alternative operations
were executed in the neck.

foo :X[O:M:S,O:M:S],---fo)s,l =X[0:M:S, S-1:M:§]
fio=X[1:M:8,0:M:S],fs1 =X[1:M:5, S—1:M:§]

(1)

fo10=X[S-1:M:85,0:M:S],-fs_1 51 =X[S-1:M:5, S-1:M:§]

2.3.2 DWConv

The number of model calculation parameters and calculation
amount increased following the structural improvement described
in Section 2.3.1. We used DWConv (Chollet, 2017) instead of
conventional convolution to solve this problem. The four regular
convolutions in the backbone were replaced with DWConv, as
indicated in Figure 4. As illustrated in Figure 5, the basic
implementation process of DWConv consisted of depth-wise and
point-wise convolution. Each convolution kernel of the depth-wise
convolution convolved a single channel to make the number of
input feature map channels the same as that of the output feature
map channels. The point-wise convolution generated a new output
feature map by linearly weighting the number of input feature map
channels in the depth direction. DWConv effectively reduced the
volume and computation of the parameters compared with
conventional convolution for the same input and output cases.

2.4 Loss function

The target detection regression loss function IOU (Yu et al,
2016) cannot evaluate the distance information of the two frames
when the prediction and target frames do not intersect. Thus, the
gradient information cannot be passed back to the model, which
results in the model not being learned and trained further.

Depthwise convolution

Pointwise convolution

NXN
Convolution kernel

RGB

Feature map

1X1

FIGURE 5
Schematic of DWConv.
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Moreover, when the prediction and target frames intersect, the
model cannot reflect the overlapping method of both frames. GIOU
(Rezatofighi et al., 2019) introduces the minimum outer rectangle
concept into the prediction and target frames. Although it solves the
problems of IOU, errors, difficult convergences, and horizontal and
vertical instability occur when the prediction and target frames have
inclusion relations. DIOU (Xu et al., 2023) improves the penalty
term in GIOU to calculate the distance between the minimized
center point of the prediction and target frames to accelerate the
convergence. However, DIOU does not consider the aspect ratio in
the regression process. CIOU adds the influence factor to the
penalty term based on DIOU and considers the prediction frame
aspect ratio as fitting the target frame aspect ratio. However, the
aspect ratio that is described by CIOU is a relative value and may be
ambiguous. EIOU (Zhang et al., 2022) replaces the aspect ratio with
the width-height difference value based on CIOU and introduces
the focal loss to solve the problem of imbalance between difficult
and easy samples. Therefore, EIOU was used as the loss calculation
function in this study. The implementation process is illustrated in
Figure 6 and the loss function value is calculated using Equation (2).

Leiou = Liou + Lais + Lag

1 P U W o i) W o (/)
=1-I0U + {5 e + 0y (TR

2

where Ljoy is the overlap loss, Ly is the center distance loss,
and Lasp is the scale loss. Furthermore, b” and b' are the coordinates
of the center points of the prediction and target frames, respectively,
whereas d(b”, b%) is the Euclidean distance between the frames. w*
and h° are the width and height of the smallest outer rectangle of
the prediction and target frames, respectively. Moreover, IOU is the
ratio of the intersection of the prediction and target frames to the
union, d(w’,w&) is the difference between the widths of
the prediction and target frames, and d(h", h&) is the difference
between the lengths of the prediction and target frames.

2.5 Evaluation indicators

To evaluate the effectiveness of the external defect detection
model for kiwifruit, multiple metrics were used, including the rate
of precision and recall, number of parameters (Params) and FLOPs

10.3389/fpls.2023.1170221

(Li et al, 2021), model size, average precision (AP) of a single
sample, and average precision (mAP) of all categories. The
precision and recall are determined by Equations (3) and (4),
respectively.

P = TP/(TP + FP) x 100% 3)

R=TP/(TP + FN) x 100 %, (4)

where P is the precision rate; that is, the proportion of predicted
targets that are the same as the labeled targets, and R is the recall
rate; that is, the proportion of correctly predicted positive samples
to all labeled positive samples. TP represents the predicted positive
and actual positive samples, FP represents the predicted positive
and actual negative samples, and FN represents the predicted
negative and actual positive samples.

The curve for PR was plotted with R and P as the horizontal and
vertical coordinates, respectively, and the area enclosed by the curve
was calculated to obtain AP. The calculation of mAP is shown in
Equations (5) and (6).

1
AP = / P(R)R x 100 % (5)
0
1
mAP = — > AP(c) x 100 %, (6)
C ceC

where c is a single category and C is all categories.

3 Results and discussion
3.1 Model training results

A stochastic gradient descent optimizer with a momentum
of 0.937 and a weight decay of 0.0005 was selected to evaluate
the performance of the proposed network. The number of
training warm-up rounds, total number of rounds, and training
batches were set to 3, 200, and 32, respectively. The training
learning rate was set linearly from 0.003 to 0.01 following the
warm-up phase and decayed linearly to a final value of 0.0001 after
200 iterations.

ijund prediction

iterations=100

~

iterations=200
—_ >

k Ground_truth
FIGURE 6

Schematic of EIOU implementation.
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The loss value is a metric that is used to measure the effectiveness
of network training. Figure 7 shows the loss values of Yolov5s and
Yolov5-Ours in the training set. The loss value of Yolov5-Ours
decreased rapidly to approximately 0.08 from the beginning of the
iterations, and then steadily with an increase in iterations. The initial
loss value of Yolov5s was larger than that of Yolov5-Ours; the loss
value decreased more slowly and appeared to fluctuate with the
increase in iterations. After 200 iterations, the loss value of Yolov5-
Qurs was 0.050 and that of Yolov5s was 0.063. Thus, Yolov5-Ours
reduced the loss value by 0.013 compared to Yolov5s.

The AP of the training detection provides an important
indication of whether the model has learned the features
effectively. Figure 8 depicts the average class detection accuracies
of Yolov5s and Yolov5-Ours in the training set. From the beginning
of the iterations, the detection mAP increased while Yolov5s and
Yolov5-Ours learned the kiwifruit defect features. Yolov5-Ours
reached convergence at 100 iterations and the detection mAP was
slightly higher than that of Yolov5s. After 200 iteration rounds, both
Yolov5s and Yolov5-Ours reached stability, and both had better
detection mAPs for kiwifruit defects, but that of Yolov5-Ours was
slightly higher than that of Yolov5s. The Yolov5-Ours model
achieved a detection accuracy of 99.4% for healthy kiwifruit,
99.3% for leaf-rubbing damaged kiwifruit, 97.7% for healed cuts
or scarred kiwifruit, and 99.2% for sunburned kiwifruit during the
validation phase on 444 kiwifruit images.

The number of parameters and computations were visualized in
terms of the spatial and temporal complexity for the model size and
speed, respectively. Spatial complexity refers to the consumption of
computer hardware memory resources, whereas temporal complexity
is the model computation time. The number of parameters and
amount of computation during the training process of Yolov5s,
Yolov5s+SPD-Conv, and Yolov5-Ours were determined, as
indicated in Table 2. The number of parameters of Yolov5s+SPD-
Conv increased by 1.54 M and the computation amount increased by
17.5 G compared to Yolov5s. The number of parameters of Yolov5-
Ours decreased by 1.56 M and the computation amount decreased by
15.1 G compared to Yolov5s+SPD-Conv. These results demonstrate

0.2

Yolovs
Yolov5-Ours

0.18
0.16
0.14

(2]
8 0.12

P |
01}t
0.08f

0.06 -
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100 150
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FIGURE 7

Training loss value.
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FIGURE 8
Average accuracy of training categories.

the effectiveness of the model improvement described in
Section 2.3.1.

3.2 Model testing results

The 444 test set images contained 1,151 kiwifruit samples,
including 326 healthy, 268 leaf-rubbing damaged, 284 healed cuts
or scarred, and 273 sunburned samples. The samples in each
category were tested using Yolov5-Ours with optimal weights. As
indicated in Table 3, the precision rates for the four categories were
all higher than 99% and the recall rates were all higher than 95%.
The average detection precisions of the healthy, leaf-rubbing
damaged, healed cuts or scarred, and sunburned samples were
98.8%, 98.7%, 97.6%, and 95.9%, respectively, at a confidence
threshold of 0.5, whereas the detection mAP of all categories was
97.7%. Moreover, the detection time of the image was only 8.0 ms,
thereby meeting the real-time sorting requirements of the grading
line. As shown in a partial plot of the results (Figure 9), Yolov5-
Ours could effectively detect all categories at a confidence level
higher than 0.8 for each category, which suggests that the model is
highly adaptable and robust for each category of kiwifruit.

3.3 Model comparison
The sample mAP and model sizes of SSD, Yolov5s, Yolov7, and

Yolov5-Ours were compared to validate the performance of
Yolov5-Ours further. As shown in Table 4, the mAP of the

TABLE 2 Number of parameters and calculated values.

Model Params (M) FLOPs (G)
Yolov5s 7.03 15.9
Yolov5s+SPD-Conv 8.57 33.4
Yolov5-Ours 7.01 183
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TABLE 3 Test results.

P (%) R (%) AP@O.5 (%) mAP@O.5 (%) Image (ms)
99.8 97.1 98.8

Healthy
Leaf-rubbing damaged 99.7 96.7 98.7
97.7 8.0
Healed cuts or scarred 99.5 98.3 97.6
Sunburned 1.0 95.1 95.9
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FIGURE 9

Test results. (A) Healthy, (B) leaf-rubbing damaged, (C) sunburned, (D) healed cuts or scarred
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TABLE 4 Model comparison.

Model mAP@O0.5 (%)
SSD ‘ 87.7
Yolov5s ‘ 91.3
Yolov7 ‘ 98.8
Yolov5-Ours ‘ 97.7

samples was compared at confidence threshold values of 0.5 and 0.8.
When the confidence level was 0.5, the mAP of Yolov5-Ours was
1.1% lower than that of Yolov7, but 10% and 6.4% higher than those
of SSD and Yolov5s, respectively. When the confidence level was
0.8, the mAP of Yolov5-Ours was 88.3%, 15.5%, and 10.1% higher
than those of SSD and Yolov5s, but 3.2% lower than that of Yolov7.
The model size of Yolov5-Ours was the same as that of Yolov5s,
which was approximately 6.5- and 4-fold smaller than those of SSD
and Yolov7, respectively.

SSD is mainly divided into the backbone network and multi-scale
prediction network. The backbone network adopts the VGG16 model,
which is used to realize the initial extraction of image features. The
multi-scale feature detection network extracts the feature layers that
are obtained from the backbone network at different scales, so that
different feature maps can detect different-sized features. Finally, the
detection results are regressed. Yolov7 introduces model
reparameterization into the network structure, includes a new label
assignment method, and incorporates multiple tricks for efficient
training compared to Yolov5. Yolov7 achieves higher computational
efficiency and accuracy than Yolov5, and can achieve better detection
accuracy with the same computational resources. However, Yolov5 is
much faster than Yolov7 in terms of the inference speed, because the
faster computational efficiency of Yolov7 leads to more memory-
occupied resources. Yolov5-Ours improves the detection of small
feature defects on the surface of kiwifruit by adding the SPD-Conv
module based on Yolov5s and reduces the parameters using
DWConv, which means that the model size does not increase even
with higher detection accuracy. In summary, the results verified that
Yolov5-Ours balances the model size and accuracy and achieves
efficient performance in kiwifruit defect detection.

4 Conclusions

We developed and validated the effectiveness of a non-destructive
detection method for kiwifruit defects. We applied the target detection
technique to multiple healthy and defective kiwifruits and improved
several aspects, including the data acquisition and methodology, to
detect kiwifruit defects in various categories efficiently. First, a
kiwifruit image acquisition device was constructed and improved to
solve the problem of uneven light exposure in the image, thereby
improving the image quality. Subsequently, a kiwifruit database was
established. To avoid the problem of overfitting, the training dataset
was increased seven-fold using a new data enhancement method. We
proposed Yolov5-Ours based on Yolov5s, in which we fused SPD-
Conv and DWConv and improved the loss calculation function. The
average detection accuracy of healthy, leaf-rubbing damaged, healed
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mMAP@O0.8 (%) Weight (MB)
728 108.1
78.2 14.4
915 74.8
88.3 14.4

cuts or scarred and sunburned samples was 97.7%. The single-frame
image detection was run in 8.0 ms, thereby meeting the classification
line-sorting requirements. The results validated the effectiveness of
Yolov5-Ours in terms of both the accuracy and model size.

The external kiwifruit defects of sunburned and healed cuts or
scarred affect the flesh of the kiwifruit, and effective detection can
increase the commercial value of the kiwifruit. Leaf-rubbing damaged
kiwifruit only has defects in the skin and the flesh of the kiwifruit is
normal, and correct detection can increase the reuse of iso-extracted
fruits. Consequently, the proposed method can facilitate the effective
detection of kiwifruit defects, provide a theoretical basis for online
real-time detection and grading, and serve as a framework for future
non-destructive defect detection in agricultural products.

This study also has some shortcomings. Only three major
kiwifruit defects were selected for detection and sorting. We plan to
expand the categories of kiwifruit defects for detection in the future,
which will make the study more applicable to actual kiwifruit sorting.
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An improved Deeplab V3+
network based coconut CT
Image segmentation method

Qianfan Liu*, Yu Zhang™, Jing Chen®, Chengxu Sun®,
Mengxing Huang™, Mingwei Che*, Chun Li*

and Shenghuang Lin?

*School of Computer Science and Technology, Hainan University, Haikou, China, ?Central South
University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China, *Coconut Research

Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China, *School of
Information and Communication Engineering, Hainan University, Haikou, China

Due to the unique structure of coconuts, their cultivation heavily relies on
manual experience, making it difficult to accurately and timely observe their
internal characteristics. This limitation severely hinders the optimization of
coconut breeding. To address this issue, we propose a new model based on
the improved architecture of Deeplab V3+. We replace the original ASPP(Atrous
Spatial Pyramid Pooling) structure with a dense atrous spatial pyramid pooling
module and introduce CBAM(Convolutional Block Attention Module). This
approach resolves the issue of information loss due to sparse sampling and
effectively captures global features. Additionally, we embed a RRM(residual
refinement module) after the output level of the decoder to optimize
boundary information between organs. Multiple model comparisons and
ablation experiments are conducted, demonstrating that the improved
segmentation algorithm achieves higher accuracy when dealing with diverse
coconut organ CT(Computed Tomography) images. Our work provides a new
solution for accurately segmenting internal coconut organs, which facilitates
scientific decision-making for coconut researchers at different stages of growth.

KEYWORDS

coconut, CT images, semantic segmentation, DASPP, CBAM, RRM

1 Introduction

As a plant native to tropical environments, coconuts not only serve as distinctive
landscape trees for tourism, but also contribute significantly to the local economy as a pillar
industry. The various structures within coconuts are essential materials in other industries
and closely linked to people’s lives (Arumugam and Hatta, 2022). As a result, the
development of the coconut industry has garnered high attention and research efforts
worldwide. However, the unique growth environment of coconuts, coupled with factors
such as extensive farming practices, limited processing enterprises, weak risk resilience, low
technological content, and backward deep processing capabilities, have led to insufficient
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raw materials and severe homogeneity issues in coconut products.
Currently, the global coconut market is facing a severe supply-
demand imbalance, with a significant shortage of high-quality
coconuts. Consequently, the cultivation of superior coconut seeds
has become a research hotspot in order to provide higher-quality
seedlings and resources for the coconut industry. Real-time
monitoring of the internal structural growth during the
cultivation process has become the key to addressing this issue.
Currently, growers can only resort to destructive methods, such as
cutting open coconuts for observation and documentation, which
not only hampers the normal growth of the coconut but is also
unsuitable for large-scale cultivation research. However, the use of
X-ray imaging methods can be effectively applied in this scenario.

Computed tomography (CT) imaging, widely used in clinical
medicine, provides clear visualization of internal structures in the
human body, aiding doctors in obtaining crucial information for
diagnosing organs or tissues. It holds significant importance in
quantitative pathological assessment, treatment planning, and
disease progression monitoring. By applying this method to
agricultural research, utilizing the penetrating characteristics of X-
rays, we can obtain clear internal organ images of coconuts without
disrupting their normal physiological structure and growth (Zhang
et al., 2023).

For image segmentation tasks, traditional segmentation methods
suffer from poor robustness, low efficiency, and low accuracy. With
the development of deep learning techniques, image segmentation
can be achieved without relying on manually designed features, as
neural networks can automatically learn the features required for
segmentation tasks. Therefore, methods based on deep learning have
become the primary choice for researchers in various image
segmentation tasks (Suk et al., 2023). However, existing deep
learning-based image segmentation algorithms have significant
limitations when it comes to organ segmentation tasks in coconut
CT images, failing to meet the high-precision segmentation
requirements in agriculture. In response to these issues, this paper
proposes corresponding improvement methods and validates the
effectiveness and superiority of the proposed methods through
ablation experiments and comparative experiments. The model
proposed in this paper can obtain higher-precision semantic
information when facing coconut CT images, facilitating a more
detailed analysis and evaluation of coconut development and growth.

Our work has made the following main contributions:

1. We conducted non-destructive observations of coconuts at
different stages and with different characteristics through
CT scanning. We obtained internal images of coconuts at
multiple time periods and multiple categories. Based on the
growth conditions of coconuts, we classified and labeled the
internal organs of coconuts, establishing a CT-based
coconut organ image dataset named “CIDCO.” These
data were used for training and testing the network
model we constructed and also provided image resources
for coconut research.

2. To achieve precise segmentation of the internal structure of
coconuts, we proposed an improved image segmentation
method based on the modified Deeplab V3+ network.
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Through model comparison, we demonstrated that the
improved network achieves higher segmentation accuracy
and can be effectively applied to coconut image
segmentation and growth development research.

The structure of this paper is as follows: In Section 2, we introduce
and analyze relevant research on non-destructive observations and
image segmentation for agricultural applications. In Section 3, we
summarize the research methods used in this work. Section 4 presents
the experiments we designed and compares the results with other
models. In Section 5, we provide a summary of the entire work and
discuss future directions and ideas.

2 Related work

The use of non-destructive methods to acquire images of target
objects has been receiving increasing attention and gradually being
applied in various research fields. CT, ultrasound, infrared laser,
nuclear magnetic resonance, and other methods have been used for
image scanning. For example, Yu et al. (2022) employed electron
microscopy CT for non-destructive observation of coconut variations,
aiming to explore growth and development. Li et al. (2020) conducted
terahertz imaging to observe changes in leaf water content in their
research on crop water status monitoring and diagnosis. These studies
demonstrate the feasibility of obtaining images of target objects
through non-destructive means. Regarding image segmentation,
traditional methods include threshold determination, region-based
similarity aggregation, edge operator calculations, and energy-
minimizing active contour-based approaches to accomplish various
segmentation tasks. For instance, Thorp and Dierig (2011) presented a
color image segmentation method to monitor the flowering status of
Lesquerella. This method converts the RGB color space to the HSI
color space and utilizes histogram equalization to enhance image
contrast. Then, threshold segmentation is used to separate the flower
parts from the background, and morphological operations and region-
growing algorithms are employed to remove noise and connect
discontinuous flower parts. Finally, the number of flowers is counted
based on the segmentation results, achieving automatic monitoring of
Lesquerella flowering. Xiang (2018) introduced an image segmentation
method for nighttime identification of the entire tomato plant. This
method first converts the image to the HSV color space and then
separates the plant from the background using threshold segmentation.
However, these traditional methods perform reasonably well when
dealing with images with simple linear features. But once other factors
increase, they can greatly affect the segmentation results. With the rise
of deep neural networks, various neural network methods have been
quickly applied to various image segmentation tasks. Deep learning-
based methods fundamentally transform semantic segmentation into
an image per-pixel classification problem. Van De Looverbosch et al.
(2021) proposed a non-destructive internal defect detection method for
pears using deep learning techniques. X-ray CT scanning is employed
to acquire images, and semantic segmentation techniques are used for
internal defect detection and recognition. Ni et al. (2020) utilized deep
learning techniques to segment and extract features from blueberry
fruit images in order to better predict the harvest period and yield of
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blueberry fruits. This research provides a new method for accurately
predicting fruit harvest and yield. Sun et al. (2021) employed semantic
segmentation networks and shape-constrained level set methods to
detect and segment images of apple, peach, and pear flowers. The
research results demonstrate that this approach can more accurately
detect and segment the contours of flowers. Turgut et al. (2022)
proposed a deep learning architecture called RoseSegNet for plant
organ segmentation. This model, based on attention mechanisms, can
identify different organs of a rose, including petals, stamens, and leaves,
providing a new tool for botanical research. Singh et al. (2022)
proposed a method for semantic segmentation of cotton structures
from aerial images using deep convolutional neural networks. This
research achieved automatic identification and segmentation of cotton
bolls from the sky using deep convolutional neural networks. This
method can improve cotton harvesting efficiency, reduce costs, and
provide new technological support for modern agriculture. The
introduction of deep learning networks has brought faster and more
accurate solutions to image segmentation tasks. However, due to the
unique characteristics of coconuts, there is still limited research on the
application of high-precision semantic segmentation models in
coconut CT images. Therefore, our focus is on addressing this issue.

3 Method
3.1 Coconut data collection and scanning

Considering the suitable average temperature for coconuts to be
maintained between 24 to 27°C, with ample precipitation and an annual

10.3389/fpls.2023.1139666

sunlight guarantee of more than 2000 hours, and in order to obtain
richer raw material resources in large-scale cultivation areas, after careful
consideration, the experimental fields of Wenchang Coconut Research
Institute and the coconut plantation in Leiming Town, Ding’an County
were selected as the collection sites. The experimental fields adopted a
triangular planting pattern to achieve higher yields per unit area, mainly
consisting of green coconuts, red coconuts, and yellow coconuts,
covering an age range of 3 to 12 months. The coconut trees in the
plantation are approximately 20 years old, with a height of 10 meters and
30 leaves. The majority of coconuts produced are green coconuts at the
stage of 7 to 12 months. Refer to Figure 1 for illustration.

In the aforementioned field conditions, a total of 104 coconuts
were collected, categorized into different groups based on color,
type, and age. The coconuts were numbered according to their
growth months in sequential order. Using the anatomical scanning
of the human body as the reference position, they were scanned
using a Siemens 256 dual-source CT machine. X-rays were used to
obtain cross-sectional images in three directions: axial, coronal, and
sagittal. This process resulted in complete multi-angle sliced images
of each coconut. Considering that a single image may contain more
than one complete target coconut, additional coconuts with varying
representations were also included in the CT scan images. The
number of images obtained from each coconut scan ranged from
170 to 220, with approximately one-fourth of the images capturing
the complete structural information. An example of the coconut
scanning process is shown in Figure 2.

Each image is labeled in the format of “color_month_id” to
facilitate quick and accurate searching. The labeled images are then
stored and organized according to the major coconut varieties, with

FIGURE 1
Coconut collection area situation.
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FIGURE 2
Example of coconut scan.

corresponding annotation folders created. Coconut researchers and
project members were involved in the annotation process. The four
main organs of the coconut that are most relevant to its development
and growth are the absorber, solid endosperm (coconut meat), liquid
endosperm (coconut water), and embryo. These four organs were
annotated, with the background represented in black by default. The
absorber was annotated in yellow, the solid endosperm in red, and the
liquid endosperm in blue. Coconut CT images can be seen in Figure 3,
and the corresponding annotation results are shown in Figure 4.

3.2 Design of segmentation model

Given the limitations of the original Deeplab V3+ network, such
as insufficient utilization of inter-level feature information leading
to unclear segmentation boundaries and lack of detailed feature
map information, resulting in poor final results, we propose a new
semantic segmentation model for coconut CT images. The
improved model builds upon the advantages of the original
framework’s encoder-decoder architecture and enhances the
feature recognition and capture capabilities through module
replacement and addition.

After the input of the task image, the Deeplab V3+ model first uses
a deep convolutional network (DCNN) to extract features from the
input image, dividing them into two categories: high-level semantic
features and low-level semantic features. Some of the low-level features
directly enter the decoder, while other information enters the encoder
stage. At this point, the Atrous Spatial Pyramid Pooling (ASPP)
module is introduced to capture coconut organ features and requires
a sufficiently large receptive field. However, increasing the dilation rate
leads to sparser pixel sampling compared to traditional convolution,
resulting in more loss of detail information. As a result, the original
ASPP module experiences attenuation in the effectiveness of dilated
convolutions, and the effectiveness of atrous convolutions gradually
decreases, ultimately affecting the model’s capabilities.

Furthermore, the original network employs a 4x upsampling in
the decoder stage. For coconut organs, large-scale upsampling
adversely affects edge segmentation. Moreover, the fusion with only
low-level features from the base network may result in the loss of
some information, thus affecting the final segmentation accuracy.

To address these issues, the Dense Atrous Spatial Pyramid
module is used to replace the original ASPP module. The input-
output dense connections are established between each atrous
convolution layer, allowing for the coverage of multi-scale range

FIGURE 3
Example of CT image of coconut.
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FIGURE 4
Example of the corresponding labeled diagram

feature information using appropriate dilation rates. Additionally, a
convolutional attention module is introduced to enhance effective
feature information, suppress irrelevant information responses, and
improve feature extraction and representation capabilities. Finally, a
residual refinement module is embedded after the decoder to map
the significant information transmitted from the upper layers,
optimizing organ boundaries and improving segmentation

accuracy. The improved model is illustrated in

3.3 Principle of the improvement module

3.3.1 DASPP module

DASPP stands for “Dense Atrous Spatial Pyramid Pooling.” In
the structure of the DASPP module, atrous convolutions are
combined into a cascaded fusion operation. The dilation rate

DenseASPP

Input Image

I DCNN

N s ol o o o o — — — — — —

Decoder
Low-evel

increases layer by layer, with layers having lower dilation
rates placed in the lower-level parts and layers with higher
dilation rates placed in the higher-level parts. The subsequent
layers share information with the preceding layers, using their
features for information sharing. This dense connectivity allows
for more intensive pixel utilization. Each atrous layer concatenates
the input with the output of the previous lower-level layer as its
input, ultimately producing a feature map generated by multi-scale
atrous convolutions.

Compared to traditional ASPP, DASPP utilizes dense
connections to establish interconnections between layers with
different dilation rates. Each set can be considered as a
convolutional kernel of a different scale, representing different
receptive fields. This change brings about a denser feature
pyramid and a larger receptive field, allowing for better
recognition and integration of semantic features of target organs

Features

FIGURE 5
Diagram of the improved model structure
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of various scales. The structure of the module is illustrated
in Figure 6.

3.3.2 CBAM attention mechanism

CBAM is a lightweight and versatile module for feed-forward
convolutional neural networks. It concentrates attention resources
more on the key target areas in coconut image, allocating different
weights to information and background. It enhances the network’s
expressive power without significantly affecting its efficiency and
facilitates information propagation. CBAM consists of two main
parts: Channel Attention Module and Spatial Attention Module.
The input features pass through the Channel Attention Module and
the Spatial Attention Module sequentially, resulting in
recalibrated features.

In the Channel Attention Module, both average pooling and
max pooling are applied to the features. The pooled features are
then fed into a shared multi-layer perceptron with shared weights.
The output of the MLP is multiplied element-wise with the original
feature map after a sigmoid operation. In the Spatial Attention
Module, the feature map outputted by the Channel Attention
Module serves as the input. Two pooling operations are
performed along the channel dimension, resulting in feature maps
of size h * w * 1 each time. The feature maps from the two poolings
are then concatenated along the channel dimension, resulting in a
feature map of size h * w * 2. This feature map undergoes a
convolution operation with a kernel size of 7 * 7 and a convolutional
kernel count of 1 (channel compression). The result is then passed
through a sigmoid function and finally subjected to matrix
multiplication. The working principle of the entire CBAM
module is illustrated in Figure 7.

3.3.3 RRM module

The Residual Refinement Module (RRM) is a commonly used
module in deep neural networks that incorporates the idea of an
excellent encoder-decoder architecture (Qin et al., 2019). Its main
purpose is to refine the details in the optimized results that deviate
from the ground truth by learning to integrate features from both

Feature
Map |

DenseASPP

10.3389/fpls.2023.1139666

high and low layers. The RRM consists of four stages each for the
encoder and decoder. Each stage involves a convolution operation
to extract image features. Each layer has a set of 64 3x3
convolutional filters to capture specific feature information. Batch
normalization and ReLU activation functions are applied after each
convolution. The bridge connection layer follows the
same structure.

Upon receiving the fused feature map from the original
network’s decoder, the encoder utilizes non-overlapping max
pooling for downsampling to preserve global texture information.
The decoder employs up-sampling with bilinear interpolation to
restore the fine features to the original size. Finally, the module
outputs the result of the saliency feature map. This design enables
the continuous capture of detailed information at different scales
and enhances the completeness of boundary semantic features. The
structure of RRM is depicted in Figure 8.

3.4 CT image segmentation method based
on improved Deeplab V3+ network

After making improvements to the network model, and based
on the established dataset, the two main components are integrated
into the entire segmentation method. The logical flow of the process
is designed as shown in Figure 9. The diamond boxes represent the
results obtained before and after algorithm training and testing,
while the rectangular boxes represent the operations during the
training and testing process.

A self-built dataset of coconut CT images is used, including the
original images and the corresponding ground truth segmentation
images. The types and quantities of images can be selected and
divided into training and testing sets as needed. For network model
training, the original coconut CT images are used as inputs to
the entire model, with the ground truth segmentation images as the
supervision. The training process is end-to-end. After training,
the improved Deeplab V3+ model for coconut CT image
segmentation is obtained.

Prediction

FIGURE 6
Diagram of DASPP module.
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Then, in the segmentation stage, a given original coconut CT
image from the testing set is used. With the trained improved
segmentation model, specific target organs can be segmented from
the image. If it is necessary to view a specific organ separately, the
pixel color values can be traversed to detect and extract the target
region. Since the CT scanner has a fixed scale set when generating
slice images, the values obtained from the semantic image can be
transformed according to the scale to obtain actual quantified data
of the target organ. Subsequently, segmentation experiments and
validations will be conducted using this method.

4 Experiment
4.1 Experimental environment

The CT images were captured using a dual-source CT scanner
(Somatom Definition Flash, Siemens, Germany). Each time, the
coconut was placed uniformly with the top facing upwards and the
bottom placed on a fixed mold. They were sequenced according to
the month of growth, and positions were marked with a marker on
both the fixed mold and the coconut to ensure data uniformity and
completeness throughout long-term scanning. The CT scan
parameters were as follows: slice thickness/increment = 0.6mm/
75%, tube voltage 120kV, tube current 250mAs, field of view (FOV)
400mmx400mm, gantry rotation speed 0.5s/rotation.

Model training was conducted on a Dell workstation with the
Ubantu 20.04 operating system. It includes 24G of video memory,
an RTX3090 graphics card, an Inter i7 CPU, and was developed on
the Pycharm platform. The version of Pytorch used was torchl.10,
with cuda version 11.4. The model was trained using our own
constructed Coconut CT Imaging Dataset (CIDCO).Since the
previously established coconut CT dataset was categorized and
stored in separate folders according to coconut variety and
growth stage, to ensure comprehensive training data, images were
randomly selected from each category. Five categories were chosen
for semantic segmentation: absorber, solid endosperm, liquid
endosperm, embryo, and background. Due to the large differences
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in the internal organs of coconuts at different developmental stages,
some organ categories were missing.Taking into account the
prevention of an excessive number of images with the same stage
and same features, in order to maintain a relatively balanced
number of categories in the experimental dataset, the number of
pictures containing various organs was adjusted flexibly. In the end,
a total of 1470 images were confirmed as experimental data and
were divided into a training set and a test set at a ratio of 8:2.

4.2 Training parameters and
evaluation metrics

The improved semantic segmentation algorithm adopts a fully
supervised learning approach during training. All methods are
conducted on the same hardware. The hardware environment for
this experiment consists of a workstation based on a 64-bit Ubuntu
20.04 operating system, Intel i7-1050H CPU, 16GB of RAM, 24G of
video memory, and an NVIDIA GeForce GTX3090 graphics card.
The software environment includes the Pytorch 1.1.0 framework,
CUDA version 11.4, Python 3.6, and the Pycharm development
platform. The input images are uniformly adjusted to a size of
256x256 pixels. The hyperparameters for the training of the
coconut CT image segmentation model are as follows: The Adam
optimizer is used with a learning rate of 0.0001, a training batch size
of 4, momentum set to 9, a weight in the loss function of 0.7, and the
loss function being a combination of Dice loss and focal loss. The
total number of training epochs is set to 150.

To validate the effectiveness and robustness of the improved
network model, we use IoU (Intersection over Union) and PA (Pixel
Accuracy) to measure the segmentation results of individual organs.
mloU (mean Intersection over Union), mPA (mean Pixel
Accuracy), and F1_score are used to evaluate the model’s overall
semantic segmentation capability for coconut CT images. These are
commonly used evaluation metrics in semantic segmentation
tasks.IoU refers to the ratio of the intersection and union of the
model’s prediction results and actual values for a single category of a
coconut organ. PA refers to the proportion of correctly predicted
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pixels in a single organ category to the total number of pixels. mIoU
represents the average of the ratios of intersections and unions of
prediction results and actual values for each category of coconut
organs. mPA is calculated by first computing the PA for each organ
class of the coconut, and then taking the average of the PA; for all
classes.F1_Score represents a comprehensive score for the
correctness of the final results. Thus, the larger the value of these
indicators, the better the segmentation effect of the model. Their
calculation formulas are as per Equations 1-7, where TP represents
the number of correct detections, FP is the number of false
detections, FN is the number of undetected quantities, k
represents the number of categories, p; indicates the number of

correctly classified pixels; p; is the number of pixels of class i

.
predicted as class j, Precision(i) represents the precision of class i,
Recall(i) represents the recall rate of class i, and r; represents the

proportion of the number of samples of class i in the total samples.

TP
Precision = TP+ FP (Eq- 1)
Recall = Sensitivity = TPR = L (Eq. 2)
- Y= T Py EN 4
F1.S core = 2% Pre.c?sion # Recall (Eq. 3)
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TABLE 1 Module ablation data table.

10.3389/fpls.2023.1139666

4.3 Ablation study and model comparison

4.3.1 Module ablation study

To verify the effectiveness of our proposed improvements, we
designed an ablation study in which we run the model on the same
dataset, subtracting one of the three modules from the improved
model. ‘All’ represents the complete modules that we have added.
The training process uses the same parameter configuration, and
the final results are shown in Table 1.

According to the data in the table, the network structure
improved by the three modules shows the best overall
performance. When focusing on individual organs, the improved
new network has a higher pixel accuracy than the other comparative
modules. When faced with complete organ images showing
different features, the model’s mIoU, mPA, and F1_Score all
outperform structures missing a module. For the task of semantic
segmentation of coconut organs, focusing on the entire target area’s
features and supplementing with local boundary information is the
optimal solution. Thus, it is confirmed that this point of
improvement can significantly enhance the robustness and
accuracy of the segmentation method.

4.3.2 Comparison of segmentation results from
different models

In the same dataset, we compare our proposed model with
commonly used segmentation models to verify our model’s
excellent segmentation capability. We selected five models,
namely Basnet, Unet, Transfuse, MANet, and Deeplab v3+, using
IoU, PA, mloU, mPA, and F1_Score as evaluation metrics. We
compare and analyze the results from both qualitative and
quantitative perspectives, as shown in Figure 10 and Table 2.

From Table 2, it is clear that the improved model performs better
than the majority of models in terms of Intersection over Union (IoU)
and Pixel Accuracy (PA) when facing segmentation of individual organ
classes. This is especially apparent for liquid endosperm and embryos.
Other models are only comparable to the improved model in one or
two data points. For the semantic segmentation of the entire image, the
improved model has a clear advantage in terms of mean Intersection
over Union (mIoU), mean Pixel Accuracy (mPA), and F1_Score. These
three metrics show that the values have improved compared to the
comparison models, proving the effectiveness of the improvement
method proposed in this chapter. Apart from quantitative results,

Keep the module = Background Solid Embryo Haustorium Liquid mPA  F1_Score
Endosperm Endosperm
loU PA loU PA loUPA IloU PA loU PA
DASPP+CBAM 0.99 0.99 0.82 0.92 0.74 0.85 0.84 0.88 071 0.93 82.46 91.86 90.09
RRM+CBAM 0.99 0.99 0.82 0.92 0.75 0.85 0.85 0.90 0.72 091 82.99 92.02 90.43
DASPP+RRM 0.99 0.99 0.82 0.92 0.67 0.72 0.85 0.90 0.62 0.94 79.43 89.98 87.93
ALL(D+C+R) 0.99 0.99 0.82 0.93 0.75 0.85 0.84 0.89 0.72 0.92 83.10 92.05 90.50
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Original Basnet Unet
FIGURE 10

Semantic segmentation effect of different models.

shows the segmentation effects of each model at the image
level, demonstrating that the improved model still has a higher
accuracy in segmentation at a qualitative level.

4.4 Organ extraction
Considering that in actual scenarios, it may be necessary to

extract a particular organ for analysis, we set up an organ extraction
and data quantification section. After inputting the images to be
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MANet Deeplab v3+ Improved

operated on into the model, we obtain the semantic images of
coconuts. We then create a corresponding number of blank images
of the same size, traverse all pixels in the semantic image, and follow
the principle of point-to-point correspondence in the target organ
based on the RGB value in the semantic image to make the
corresponding points in the blank image the same value. This
way, we can obtain the image of the target organ alone. In terms
of determining the growth and development quality of the coconut,
quantitative data of the organs is one of the reference pieces of
information, in addition to making judgements in the form of two-
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TABLE 2 Model comparison table.

10.3389/fpls.2023.1139666

Network model Background Solid Embryo Haustorium  Liquid mPA  F1_Score
Endosperm Endosperm
loU PA loU PA loU PA IoU PA loU PA
Basnet 0.99 0.99 0.84 0.93 039 | 041 084 0.89 0.48 0.93 71.30 83.69 81.00
Unet 0.99 0.99 0.82 091 046 050 085 0.89 0.51 091 72.80 84.57 82.55
Tranfuse 0.99 0.99 0.83 0.92 046 | 054 084 0.89 0.55 0.88 73.94 84.92 83.49
MANet 0.99 0.99 0.83 0.92 065 076 085 0.90 0.74 0.94 81.75 90.82 89.54
Deeplab v3+ 0.99 0.99 0.79 0.92 065 070 084 0.90 0.64 0.88 78.47 88.34 87.36
Improved model 0.99 0.99 0.82 0.93 075 | 085 084 0.89 0.72 0.92 83.10 92.05 90.50

dimensional images. Whether it’s the complete semantic image of
the coconut or a particular organ that has been extracted, data can
still be obtained through the RGB value of the pixel points. For
example, the height of the embryo can be determined because, in
the semantic image, the embryo is characterized by the color green.
One can start from the top of the image and gradually traverse
downwards in the form of a horizontal line. When the RGB value of
a pixel point becomes (0, 255, 0), it is marked as point A. Then,
using the same method, traverse from the bottom of the image
upwards, and when you encounter a pixel point with the same
value, mark it as point B. The distance between points A and B is the
height of the embryo. When dealing with an embryo with a
significant curvature, it can be rotated to be relatively parallel to
the y-axis, and then the point traversal method can be used.
Figure 11 shows an example of the extracted image results.

FIGURE 11
Example of single class organ extraction.
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5 Conclusion and prospects

This chapter starts from the perspective of the black box
phenomenon present in the development process of the coconut
fruit. We used CT non-destructive observation to acquire images of
coconuts at various stages and of various varieties, thus establishing a
CT image dataset for coconuts. This work fills the gap in image
resources for coconuts. On this basis, we addressed the issue of
traditional semantic segmentation models not performing well on
coconut CT images. We replaced the original Atrous Spatial Pyramid
Pooling (ASPP) block with a Dense Atrous Spatial Pyramid Pooling
(DASPP) module, resolving information loss due to sparse sampling.
Then, we added the Convolutional Block Attention Module (CBAM)
to the network, enabling it to better capture the features of coconut
organs and reduce the interference of irrelevant redundant
information. Finally, a residual refinement module was embedded
after the decoder to enhance the boundary information between
closely connected organs. This allows the network to acquire richer
global feature information and optimize boundary details, thereby
improving the semantic segmentation accuracy of coconut CT
images. During the model training process, we used multi-state
feature coconut images to improve the model’s robustness. Finally,
detailed model comparisons and ablation experiments were carried
out. The results of the evaluation indicators and the semantic
segmentation effect images both quantitatively and qualitatively
demonstrate the improved model’s high-precision segmentation
ability on coconut CT images. Furthermore, individual organ
morphology and quantitative data can be obtained from the
semantic segmentation images to increase reference information
during the development process of the coconut. This is beneficial
in assisting decision-makers to make scientific judgments on the
development status and growth stage of the coconut.

In our future research work, we will analyze the high-precision
organ morphology and quantitative data obtained from the
segmentation model to further mine the laws of coconut growth
and development. At the same time, we will incorporate image
morphology changes to construct a visualized standard
development process for the coconut, thereby making more
precise predictions of coconut intelligent development.
Furthermore, we aim to deploy our model on mobile devices to
provide more reference information and decision support for
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optimizing coconut breeding. This will aid coconut cultivators in
better managing their cultivation practices, with the goal of
achieving and continuously surpassing targets for high yield and
high-quality coconuts.
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